| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/conv.h"
- #include "cmsis/CMSIS/NN/Include/arm_nn_types.h"
- #include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/padding.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace conv {
- constexpr int kInputTensor = 0;
- constexpr int kFilterTensor = 1;
- constexpr int kBiasTensor = 2;
- constexpr int kOutputTensor = 0;
- constexpr int kMaxChannels = 256;
- // Conv is quantized along dimension 0:
- // https://www.tensorflow.org/lite/performance/quantization_spec
- constexpr int kConvQuantizedDimension = 0;
- struct OpData {
- TfLitePaddingValues padding;
- // Cached tensor zero point values for quantized operations.
- int32_t input_zero_point;
- int32_t filter_zero_point;
- int32_t output_zero_point;
- // The scaling factor from input to output (aka the 'real multiplier') can
- // be represented as a fixed point multiplier plus a left shift.
- int32_t output_multiplier;
- int output_shift;
- // Per channel output multiplier and shift.
- // TODO(b/141139247): Allocate these dynamically when possible.
- int32_t per_channel_output_multiplier[kMaxChannels];
- int32_t per_channel_output_shift[kMaxChannels];
- // The range of the fused activation layer. For example for kNone and
- // uint8_t these would be 0 and 255.
- int32_t output_activation_min;
- int32_t output_activation_max;
- // Index to buffer for optimizations if applicable.
- int buffer_idx;
- };
- inline PaddingType RuntimePaddingType(TfLitePadding padding) {
- switch (padding) {
- case TfLitePadding::kTfLitePaddingSame:
- return PaddingType::kSame;
- case TfLitePadding::kTfLitePaddingValid:
- return PaddingType::kValid;
- case TfLitePadding::kTfLitePaddingUnknown:
- default:
- return PaddingType::kNone;
- }
- }
- TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
- TfLiteConvParams* params, int width, int height,
- int filter_width, int filter_height, int out_width,
- int out_height, const TfLiteType data_type,
- OpData* data) {
- bool has_bias = node->inputs->size == 3;
- // Check number of inputs/outputs
- TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
- TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
- // Matching GetWindowedOutputSize in TensorFlow.
- auto padding = params->padding;
- data->padding = ComputePaddingHeightWidth(
- params->stride_height, params->stride_width,
- params->dilation_height_factor, params->dilation_width_factor, height,
- width, filter_height, filter_width, padding, &out_height, &out_width);
- // Note that quantized inference requires that all tensors have their
- // parameters set. This is usually done during quantized training.
- if (data_type != kTfLiteFloat32) {
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
- const TfLiteTensor* bias =
- GetOptionalInputTensor(context, node, kBiasTensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- int num_channels = filter->dims->data[kConvQuantizedDimension];
- TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
- context, input, filter, bias, output, params->activation,
- &data->output_multiplier, &data->output_shift,
- &data->output_activation_min, &data->output_activation_max,
- data->per_channel_output_multiplier,
- reinterpret_cast<int*>(data->per_channel_output_shift), num_channels));
- }
- return kTfLiteOk;
- }
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- #if defined(__ARM_FEATURE_DSP) || defined(__ARM_FEATURE_MVE)
- int32_t buf_size = 0;
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
- auto* data = reinterpret_cast<OpData*>(node->user_data);
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
- const TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- RuntimeShape input_shape = GetTensorShape(input);
- RuntimeShape output_shape = GetTensorShape(output);
- // Initialize cmsis-nn input dimensions
- cmsis_nn_dims input_dims;
- input_dims.n = MatchingDim(input_shape, 0, output_shape, 0);
- input_dims.h = input->dims->data[1];
- input_dims.w = input->dims->data[2];
- input_dims.c = input_shape.Dims(3);
- // Initialize cmsis-nn filter dimensions
- cmsis_nn_dims filter_dims;
- filter_dims.n = output_shape.Dims(3);
- filter_dims.h = filter->dims->data[1];
- filter_dims.w = filter->dims->data[2];
- filter_dims.c = input_dims.c;
- // Initialize cmsis-nn output dimensions
- cmsis_nn_dims output_dims;
- output_dims.n = input_dims.n;
- output_dims.h = output->dims->data[1];
- output_dims.w = output->dims->data[2];
- output_dims.c = output_shape.Dims(3);
- TF_LITE_ENSURE_STATUS(CalculateOpData(
- context, node, params, input_dims.w, input_dims.h, filter_dims.w,
- filter_dims.h, output_dims.w, output_dims.h, input->type, data));
- data->input_zero_point = input->params.zero_point;
- data->filter_zero_point = filter->params.zero_point;
- data->output_zero_point = output->params.zero_point;
- if (input->type == kTfLiteInt8) {
- // Initialize cmsis-nn convolution parameters
- cmsis_nn_conv_params conv_params;
- conv_params.input_offset = -input->params.zero_point;
- conv_params.output_offset = output->params.zero_point;
- conv_params.stride.h = params->stride_height;
- conv_params.stride.w = params->stride_width;
- conv_params.dilation.h = params->dilation_height_factor;
- conv_params.dilation.w = params->dilation_width_factor;
- conv_params.padding.h = data->padding.height;
- conv_params.padding.w = data->padding.width;
- conv_params.activation.min = data->output_activation_min;
- conv_params.activation.max = data->output_activation_max;
- buf_size = arm_convolve_wrapper_s8_get_buffer_size(
- &conv_params, &input_dims, &filter_dims, &output_dims);
- }
- if (buf_size > 0) {
- TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena(
- context, buf_size, &data->buffer_idx));
- } else {
- data->buffer_idx = -1;
- }
- #endif
- return kTfLiteOk;
- }
- TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
- TfLiteConvParams* params, const OpData& data,
- const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* filter,
- const TfLiteEvalTensor* bias,
- TfLiteEvalTensor* im2col,
- TfLiteEvalTensor* hwcn_weights,
- TfLiteEvalTensor* output) {
- const int32_t input_offset = -data.input_zero_point;
- const int32_t filter_offset = -data.filter_zero_point;
- const int32_t output_offset = data.output_zero_point;
- ConvParams op_params;
- op_params.padding_type = RuntimePaddingType(params->padding);
- op_params.padding_values.width = data.padding.width;
- op_params.padding_values.height = data.padding.height;
- op_params.stride_width = params->stride_width;
- op_params.stride_height = params->stride_height;
- op_params.dilation_width_factor = params->dilation_width_factor;
- op_params.dilation_height_factor = params->dilation_height_factor;
- op_params.input_offset = input_offset;
- op_params.weights_offset = filter_offset;
- op_params.output_offset = output_offset;
- op_params.output_multiplier = data.output_multiplier;
- op_params.output_shift = -data.output_shift;
- op_params.quantized_activation_min = data.output_activation_min;
- op_params.quantized_activation_max = data.output_activation_max;
- reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<uint8_t>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<uint8_t>(filter),
- tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData<int32_t>(bias),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output),
- tflite::micro::GetTensorShape(im2col),
- tflite::micro::GetTensorData<uint8_t>(im2col), nullptr);
- return kTfLiteOk;
- }
- TfLiteStatus EvalQuantizedPerChannel(
- TfLiteContext* context, TfLiteNode* node, TfLiteConvParams* params,
- const OpData& data, const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias,
- TfLiteEvalTensor* output, TfLiteEvalTensor* im2col) {
- // Initialize cmsis-nn convolution parameters
- cmsis_nn_conv_params conv_params;
- conv_params.input_offset = -data.input_zero_point;
- conv_params.output_offset = data.output_zero_point;
- conv_params.stride.h = params->stride_height;
- conv_params.stride.w = params->stride_width;
- conv_params.dilation.h = params->dilation_height_factor;
- conv_params.dilation.w = params->dilation_width_factor;
- conv_params.padding.h = data.padding.height;
- conv_params.padding.w = data.padding.width;
- conv_params.activation.min = data.output_activation_min;
- conv_params.activation.max = data.output_activation_max;
- // Initialize cmsis-nn per channel quantization parameters
- cmsis_nn_per_channel_quant_params quant_params;
- quant_params.multiplier =
- const_cast<int32_t*>(data.per_channel_output_multiplier);
- quant_params.shift = const_cast<int32_t*>(data.per_channel_output_shift);
- #if defined(__ARM_FEATURE_DSP) || defined(__ARM_FEATURE_MVE)
- RuntimeShape filter_shape = tflite::micro::GetTensorShape(filter);
- RuntimeShape input_shape = tflite::micro::GetTensorShape(input);
- RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
- RuntimeShape bias_shape = tflite::micro::GetTensorShape(bias);
- // Consistency check.
- TFLITE_DCHECK_LE(conv_params.activation.min, conv_params.activation.max);
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- const int batch_size = MatchingDim(input_shape, 0, output_shape, 0);
- const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
- const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
- if (tflite::micro::GetTensorData<int8_t>(bias)) {
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- }
- // Initialize cmsis-nn dimensions
- // Input
- cmsis_nn_dims input_dims;
- input_dims.n = batch_size;
- input_dims.h = input_shape.Dims(1);
- input_dims.w = input_shape.Dims(2);
- input_dims.c = input_depth;
- // Filter
- cmsis_nn_dims filter_dims;
- filter_dims.n = output_depth;
- filter_dims.h = filter_shape.Dims(1);
- filter_dims.w = filter_shape.Dims(2);
- filter_dims.c = input_depth;
- // Bias
- cmsis_nn_dims bias_dims;
- bias_dims.n = 1;
- bias_dims.h = 1;
- bias_dims.w = 1;
- bias_dims.c = output_depth;
- // Output
- cmsis_nn_dims output_dims;
- output_dims.n = batch_size;
- output_dims.h = output_shape.Dims(1);
- output_dims.w = output_shape.Dims(2);
- output_dims.c = output_depth;
- // Initialize cmsis-nn context
- cmsis_nn_context ctx;
- ctx.buf = nullptr;
- ctx.size = 0;
- if (data.buffer_idx > -1) {
- ctx.buf = context->GetScratchBuffer(context, data.buffer_idx);
- // Note: ctx.size is currently not used in cmsis-nn.
- // The buffer should be allocated in the Prepare function through
- // arm_convolve_wrapper_s8_get_buffer_size
- }
- // arm_convolve_wrapper_s8 dispatches the optimized kernel accordingly with
- // the parameters passed
- arm_status status = arm_convolve_wrapper_s8(
- &ctx, &conv_params, &quant_params, &input_dims,
- tflite::micro::GetTensorData<int8_t>(input), &filter_dims,
- tflite::micro::GetTensorData<int8_t>(filter), &bias_dims,
- tflite::micro::GetTensorData<int32_t>(bias), &output_dims,
- tflite::micro::GetTensorData<int8_t>(output));
- if (status == ARM_MATH_SUCCESS) {
- return kTfLiteOk;
- } else {
- return kTfLiteError;
- }
- #else
- #pragma message( \
- "CMSIS-NN optimization for conv not available for this target. Using reference kernel.")
- ConvParams op_params;
- conv_params.input_offset = -data.input_zero_point;
- conv_params.output_offset = data.output_zero_point;
- op_params.stride_height = params->stride_height;
- op_params.stride_width = params->stride_width;
- op_params.dilation_height_factor = params->dilation_height_factor;
- op_params.dilation_width_factor = params->dilation_width_factor;
- op_params.padding_values.height = data.padding.height;
- op_params.padding_values.width = data.padding.width;
- op_params.quantized_activation_min = data->output_activation_min;
- op_params.quantized_activation_max = data->output_activation_max;
- reference_integer_ops::ConvPerChannel(
- op_params, data->per_channel_output_multiplier,
- data->per_channel_output_shift, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<int8_t>(filter),
- tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData<int32_t>(bias),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- #endif
- return kTfLiteOk;
- }
- TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node,
- TfLiteConvParams* params, const OpData& data,
- const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* filter,
- const TfLiteEvalTensor* bias, TfLiteEvalTensor* im2col,
- TfLiteEvalTensor* hwcn_weights,
- TfLiteEvalTensor* output) {
- float output_activation_min, output_activation_max;
- CalculateActivationRange(params->activation, &output_activation_min,
- &output_activation_max);
- // TODO(b/154032858): Investigate removing extra copies.
- ConvParams op_params;
- op_params.padding_type = RuntimePaddingType(params->padding);
- op_params.padding_values.width = data.padding.width;
- op_params.padding_values.height = data.padding.height;
- op_params.stride_width = params->stride_width;
- op_params.stride_height = params->stride_height;
- op_params.dilation_width_factor = params->dilation_width_factor;
- op_params.dilation_height_factor = params->dilation_height_factor;
- op_params.float_activation_min = output_activation_min;
- op_params.float_activation_max = output_activation_max;
- reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<float>(filter),
- tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData<float>(bias),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output),
- tflite::micro::GetTensorShape(im2col),
- tflite::micro::GetTensorData<float>(im2col));
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- const TfLiteEvalTensor* filter =
- tflite::micro::GetEvalInput(context, node, kFilterTensor);
- const TfLiteEvalTensor* bias =
- (NumInputs(node) == 3)
- ? tflite::micro::GetEvalInput(context, node, kBiasTensor)
- : nullptr;
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- TFLITE_DCHECK(node->user_data != nullptr);
- const OpData& data = *(static_cast<const OpData*>(node->user_data));
- switch (input->type) { // Already know in/out types are same.
- case kTfLiteFloat32:
- EvalFloat(context, node, params, data, input, filter, bias, nullptr,
- nullptr, output);
- break;
- case kTfLiteInt8:
- return EvalQuantizedPerChannel(context, node, params, data, input, filter,
- bias, output, nullptr);
- break;
- case kTfLiteUInt8:
- return EvalQuantized(context, node, params, data, input, filter, bias,
- nullptr, nullptr, output);
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
- TfLiteTypeGetName(input->type), input->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace conv
- TfLiteRegistration Register_CONV_2D() {
- return {/*init=*/conv::Init,
- /*free=*/nullptr,
- /*prepare=*/conv::Prepare,
- /*invoke=*/conv::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|