| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/pooling.h"
- #include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h"
- #include "flatbuffers/base.h" // from @flatbuffers
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/padding.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace pooling {
- namespace {
- constexpr int kInputTensor = 0;
- constexpr int kOutputTensor = 0;
- struct OpData {
- TfLitePaddingValues padding;
- // Index to buffer for optimizations if applicable.
- int buffer_idx;
- int32_t activation_min;
- int32_t activation_max;
- };
- TfLiteStatus CalculateOpData(TfLiteContext* context,
- const TfLitePoolParams* params,
- const TfLiteTensor* input, TfLiteTensor* output,
- OpData* data) {
- // input: batch, height, width, channel
- int height = SizeOfDimension(input, 1);
- int width = SizeOfDimension(input, 2);
- int out_height, out_width;
- data->padding = ComputePaddingHeightWidth(
- params->stride_height, params->stride_width,
- /*dilation_rate_height=*/1,
- /*dilation_rate_width=*/1, height, width, params->filter_height,
- params->filter_width, params->padding, &out_height, &out_width);
- if (input->type != kTfLiteFloat32) {
- TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
- context, params->activation, output, &data->activation_min,
- &data->activation_max));
- TFLITE_DCHECK_LE(data->activation_min, data->activation_max);
- }
- // Set buffer index to a reset value
- data->buffer_idx = -1;
- return kTfLiteOk;
- }
- void AverageEvalFloat(const TfLiteContext* context, const TfLiteNode* node,
- const TfLitePoolParams* params, const OpData& data,
- const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
- float activation_min, activation_max;
- CalculateActivationRange(params->activation, &activation_min,
- &activation_max);
- PoolParams op_params;
- op_params.stride_height = params->stride_height;
- op_params.stride_width = params->stride_width;
- op_params.filter_height = params->filter_height;
- op_params.filter_width = params->filter_width;
- op_params.padding_values.height = data.padding.height;
- op_params.padding_values.width = data.padding.width;
- op_params.float_activation_min = activation_min;
- op_params.float_activation_max = activation_max;
- reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- }
- void AverageEvalQuantized(TfLiteContext* context, const TfLiteNode* node,
- const TfLitePoolParams* params, const OpData& data,
- const TfLiteEvalTensor* input,
- TfLiteEvalTensor* output) {
- TFLITE_DCHECK(input->type == kTfLiteUInt8 || input->type == kTfLiteInt8);
- PoolParams op_params;
- op_params.stride_height = params->stride_height;
- op_params.stride_width = params->stride_width;
- op_params.filter_height = params->filter_height;
- op_params.filter_width = params->filter_width;
- op_params.padding_values.height = data.padding.height;
- op_params.padding_values.width = data.padding.width;
- op_params.quantized_activation_min = data.activation_min;
- op_params.quantized_activation_max = data.activation_max;
- if (input->type == kTfLiteUInt8) {
- reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<uint8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- } else {
- RuntimeShape input_shape = tflite::micro::GetTensorShape(input);
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- const int depth = MatchingDim(input_shape, 3, output_shape, 3);
- cmsis_nn_dims input_dims;
- input_dims.n = 1;
- input_dims.h = input_shape.Dims(1);
- input_dims.w = input_shape.Dims(2);
- input_dims.c = depth;
- cmsis_nn_dims output_dims;
- output_dims.n = 1;
- output_dims.h = output_shape.Dims(1);
- output_dims.w = output_shape.Dims(2);
- output_dims.c = depth;
- cmsis_nn_pool_params pool_params;
- pool_params.stride.h = params->stride_height;
- pool_params.stride.w = params->stride_width;
- pool_params.padding.h = data.padding.height;
- pool_params.padding.w = data.padding.width;
- pool_params.activation.min = data.activation_min;
- pool_params.activation.max = data.activation_max;
- cmsis_nn_dims filter_dims;
- filter_dims.n = 1;
- filter_dims.h = params->filter_height;
- filter_dims.w = params->filter_width;
- filter_dims.c = 1;
- cmsis_nn_context ctx;
- ctx.buf = nullptr;
- ctx.size = 0;
- if (data.buffer_idx > -1) {
- ctx.buf = context->GetScratchBuffer(context, data.buffer_idx);
- }
- TFLITE_DCHECK_EQ(
- arm_avgpool_s8(&ctx, &pool_params, &input_dims,
- tflite::micro::GetTensorData<int8_t>(input),
- &filter_dims, &output_dims,
- tflite::micro::GetTensorData<int8_t>(output)),
- ARM_MATH_SUCCESS);
- }
- }
- void MaxEvalFloat(TfLiteContext* context, TfLiteNode* node,
- TfLitePoolParams* params, const OpData& data,
- const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
- float activation_min, activation_max;
- CalculateActivationRange(params->activation, &activation_min,
- &activation_max);
- tflite::PoolParams op_params;
- op_params.stride_height = params->stride_height;
- op_params.stride_width = params->stride_width;
- op_params.filter_height = params->filter_height;
- op_params.filter_width = params->filter_width;
- op_params.padding_values.height = data.padding.height;
- op_params.padding_values.width = data.padding.width;
- op_params.float_activation_min = activation_min;
- op_params.float_activation_max = activation_max;
- reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- }
- void MaxEvalQuantizedUInt8(TfLiteContext* context, TfLiteNode* node,
- TfLitePoolParams* params, const OpData& data,
- const TfLiteEvalTensor* input,
- TfLiteEvalTensor* output) {
- tflite::PoolParams op_params;
- op_params.stride_height = params->stride_height;
- op_params.stride_width = params->stride_width;
- op_params.filter_height = params->filter_height;
- op_params.filter_width = params->filter_width;
- op_params.padding_values.height = data.padding.height;
- op_params.padding_values.width = data.padding.width;
- op_params.quantized_activation_min = data.activation_min;
- op_params.quantized_activation_max = data.activation_max;
- reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<uint8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- }
- TfLiteStatus MaxEvalInt8(TfLiteContext* context, const TfLiteNode* node,
- const TfLitePoolParams* params, const OpData& data,
- const TfLiteEvalTensor* input,
- TfLiteEvalTensor* output) {
- RuntimeShape input_shape = tflite::micro::GetTensorShape(input);
- RuntimeShape output_shape = tflite::micro::GetTensorShape(output);
- const int depth = MatchingDim(input_shape, 3, output_shape, 3);
- cmsis_nn_dims input_dims;
- input_dims.n = 1;
- input_dims.h = input_shape.Dims(1);
- input_dims.w = input_shape.Dims(2);
- input_dims.c = depth;
- cmsis_nn_dims output_dims;
- output_dims.n = 1;
- output_dims.h = output_shape.Dims(1);
- output_dims.w = output_shape.Dims(2);
- output_dims.c = depth;
- cmsis_nn_pool_params pool_params;
- pool_params.stride.h = params->stride_height;
- pool_params.stride.w = params->stride_width;
- pool_params.padding.h = data.padding.height;
- pool_params.padding.w = data.padding.width;
- pool_params.activation.min = data.activation_min;
- pool_params.activation.max = data.activation_max;
- cmsis_nn_dims filter_dims;
- filter_dims.n = 1;
- filter_dims.h = params->filter_height;
- filter_dims.w = params->filter_width;
- filter_dims.c = 1;
- cmsis_nn_context ctx;
- ctx.buf = nullptr;
- ctx.size = 0;
- if (data.buffer_idx > -1) {
- ctx.buf = context->GetScratchBuffer(context, data.buffer_idx);
- }
- TFLITE_DCHECK_EQ(
- arm_max_pool_s8(&ctx, &pool_params, &input_dims,
- tflite::micro::GetTensorData<int8_t>(input), &filter_dims,
- &output_dims,
- tflite::micro::GetTensorData<int8_t>(output)),
- ARM_MATH_SUCCESS);
- return kTfLiteOk;
- }
- } // namespace
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus MaxPrepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, data));
- return kTfLiteOk;
- }
- TfLiteStatus AveragePrepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, data));
- if (input->type == kTfLiteInt8) {
- RuntimeShape input_shape = GetTensorShape(input);
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- RuntimeShape output_shape = GetTensorShape(output);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- const int depth = MatchingDim(input_shape, 3, output_shape, 3);
- const int output_width = output_shape.Dims(2);
- const int32_t buffer_size =
- arm_avgpool_s8_get_buffer_size(output_width, depth);
- if (buffer_size > 0) {
- TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena(
- context, buffer_size, &data->buffer_idx));
- } else {
- data->buffer_idx = -1;
- }
- }
- return kTfLiteOk;
- }
- TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) {
- auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
- const OpData& data = *(static_cast<const OpData*>(node->user_data));
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- // Inputs and outputs share the same type, guaranteed by the converter.
- switch (input->type) {
- case kTfLiteFloat32:
- AverageEvalFloat(context, node, params, data, input, output);
- break;
- case kTfLiteUInt8:
- case kTfLiteInt8:
- AverageEvalQuantized(context, node, params, data, input, output);
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Input type %s is not currently supported",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) {
- auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
- const OpData& data = *(static_cast<const OpData*>(node->user_data));
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- switch (input->type) {
- case kTfLiteFloat32:
- MaxEvalFloat(context, node, params, data, input, output);
- break;
- case kTfLiteUInt8:
- MaxEvalQuantizedUInt8(context, node, params, data, input, output);
- break;
- case kTfLiteInt8:
- MaxEvalInt8(context, node, params, data, input, output);
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace pooling
- TfLiteRegistration Register_AVERAGE_POOL_2D() {
- return {/*init=*/pooling::Init,
- /*free=*/nullptr,
- /*prepare=*/pooling::AveragePrepare,
- /*invoke=*/pooling::AverageEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- TfLiteRegistration Register_MAX_POOL_2D() {
- return {/*init=*/pooling::Init,
- /*free=*/nullptr,
- /*prepare=*/pooling::MaxPrepare,
- /*invoke=*/pooling::MaxEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|