| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/concatenation.h"
- #include <cstdint>
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace concatenation {
- constexpr int kMaxInputNum = 10; // Maximum number of input tensors
- constexpr int kOutputTensor = 0;
- struct OpData {
- ConcatenationParams params;
- };
- // Handles negative axis index, coerces to positive index value.
- inline int CalculatePositiveAxis(int axis, const TfLiteTensor* output_tensor) {
- if (axis >= 0) {
- return axis;
- } else {
- return NumDimensions(output_tensor) + axis;
- }
- }
- // The following functions are helpers to get tensor data in the format that the
- // reference op implementation expects. They provide the same functionality as
- // class VectorOfTensors and class VectorOfQuantizedTensors in TFLite.
- // Gets shapes from a list of tensors.
- inline void GetAllInputTensorShapes(const TfLiteContext* context,
- const TfLiteNode* node,
- RuntimeShape all_shapes[kMaxInputNum]) {
- TFLITE_DCHECK(context != nullptr);
- TFLITE_DCHECK(node != nullptr);
- for (int i = 0; i < node->inputs->size; ++i) {
- const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i);
- RuntimeShape shape = tflite::micro::GetTensorShape(t);
- all_shapes[i].ReplaceWith(shape.DimensionsCount(), shape.DimsData());
- }
- }
- // Get shape pointers from a list of shapes.
- inline void GetShapesPointers(const RuntimeShape* shapes, size_t num,
- const RuntimeShape* pointers[]) {
- for (size_t i = 0; i < num; ++i) {
- pointers[i] = &shapes[i];
- }
- }
- // Gets data pointers from a list of tensors.
- template <typename T>
- inline void GetAllInputTensorData(const TfLiteContext* context,
- const TfLiteNode* node,
- T* all_data[kMaxInputNum]) {
- TFLITE_DCHECK(context != nullptr);
- TFLITE_DCHECK(node != nullptr);
- for (int i = 0; i < node->inputs->size; ++i) {
- const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i);
- all_data[i] = tflite::micro::GetTensorData<T>(t);
- }
- }
- template <typename data_type>
- void EvalUnquantized(TfLiteContext* context, TfLiteNode* node) {
- // Collect the shapes and data pointer of input tensors
- RuntimeShape inputs_shape[kMaxInputNum];
- const RuntimeShape* inputs_shape_ptr[kMaxInputNum];
- const data_type* inputs_data[kMaxInputNum];
- GetAllInputTensorShapes(context, node, inputs_shape);
- GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr);
- GetAllInputTensorData(context, node, inputs_data);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- TFLITE_DCHECK(node->user_data != nullptr);
- const OpData* data = static_cast<const OpData*>(node->user_data);
- reference_ops::Concatenation(data->params, inputs_shape_ptr, inputs_data,
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<data_type>(output));
- }
- void EvalQuantizedUInt8(TfLiteContext* context, TfLiteNode* node) {
- // Collect the shapes and data pointer of input tensors
- RuntimeShape inputs_shape[kMaxInputNum];
- const RuntimeShape* inputs_shape_ptr[kMaxInputNum];
- const uint8_t* inputs_data[kMaxInputNum];
- GetAllInputTensorShapes(context, node, inputs_shape);
- GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr);
- GetAllInputTensorData(context, node, inputs_data);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- TFLITE_DCHECK(node->user_data != nullptr);
- const OpData* data = static_cast<const OpData*>(node->user_data);
- reference_ops::ConcatenationWithScaling(
- data->params, inputs_shape_ptr, inputs_data,
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- }
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- // This function only checks the types. Additional shape validations are
- // performed in the reference implementation called during Eval().
- const TfLiteConcatenationParams* params =
- reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data);
- TfLiteType input_type = GetInput(context, node, 0)->type;
- TfLiteType output_type = GetOutput(context, node, kOutputTensor)->type;
- // Check activation and input type
- TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone);
- TF_LITE_ENSURE(context,
- input_type == kTfLiteFloat32 || input_type == kTfLiteUInt8 ||
- input_type == kTfLiteInt8 || input_type == kTfLiteInt32 ||
- input_type == kTfLiteInt64);
- // Output type must match input type
- TF_LITE_ENSURE_EQ(context, output_type, input_type);
- // This implementation does not support large number of input tensors
- const int num_inputs = NumInputs(node);
- TF_LITE_ENSURE(context, num_inputs <= kMaxInputNum);
- // Shapes with dimensions >4 are not yet supported with static allocation.
- for (int i = 0; i < num_inputs; ++i) {
- const TfLiteTensor* input = GetInput(context, node, i);
- int num_dimensions = NumDimensions(input);
- if (num_dimensions > 4) {
- TF_LITE_KERNEL_LOG(
- context,
- "Op Concatenation does not currently support num dimensions >4 "
- "Tensor has %d dimensions.",
- num_dimensions);
- return kTfLiteError;
- }
- }
- // Calculate OpData.
- TFLITE_DCHECK(node->user_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- switch (output_type) { // Already know in/outtypes are same.
- case kTfLiteFloat32:
- case kTfLiteInt32:
- case kTfLiteInt64: {
- data->params.axis = CalculatePositiveAxis(params->axis, output);
- data->params.inputs_count = node->inputs->size;
- break;
- }
- case kTfLiteUInt8:
- case kTfLiteInt8: {
- data->params.axis = CalculatePositiveAxis(params->axis, output);
- data->params.inputs_count = node->inputs->size;
- float* input_scales =
- reinterpret_cast<float*>(context->AllocatePersistentBuffer(
- context, node->inputs->size * sizeof(float)));
- int32_t* input_zero_points =
- reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
- context, node->inputs->size * sizeof(int32_t)));
- // Allocate persistent scale and zeropoint buffers.
- // Store input scale and zero point values in OpParams:
- for (int i = 0; i < node->inputs->size; ++i) {
- const TfLiteTensor* t = GetInput(context, node, i);
- input_scales[i] = t->params.scale;
- input_zero_points[i] = t->params.zero_point;
- }
- data->params.input_scale = input_scales;
- data->params.input_zeropoint = input_zero_points;
- data->params.output_zeropoint = output->params.zero_point;
- data->params.output_scale = output->params.scale;
- break;
- }
- default:
- TF_LITE_KERNEL_LOG(
- context, "Op Concatenation does not currently support Type '%s'.",
- TfLiteTypeGetName(output_type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TfLiteType output_type = GetOutput(context, node, kOutputTensor)->type;
- switch (output_type) { // Already know in/outtypes are same.
- case kTfLiteFloat32:
- EvalUnquantized<float>(context, node);
- break;
- case kTfLiteInt32:
- EvalUnquantized<int32_t>(context, node);
- break;
- case kTfLiteUInt8:
- EvalQuantizedUInt8(context, node);
- break;
- case kTfLiteInt8:
- EvalUnquantized<int8_t>(context, node);
- break;
- case kTfLiteInt64:
- EvalUnquantized<int64_t>(context, node);
- break;
- default:
- TF_LITE_KERNEL_LOG(
- context, "Op Concatenation does not currently support Type '%s'.",
- TfLiteTypeGetName(output_type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace concatenation
- TfLiteRegistration Register_CONCATENATION() {
- return {/*init=*/concatenation::Init,
- /*free=*/nullptr,
- /*prepare=*/concatenation::Prepare,
- /*invoke=*/concatenation::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|