| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/hard_swish.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_utils.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace hard_swish {
- constexpr int kInputTensor = 0;
- constexpr int kOutputTensor = 0;
- void* HardSwishInit(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(HardSwishParams));
- }
- TfLiteStatus HardSwishPrepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
- HardSwishParams* params = static_cast<HardSwishParams*>(node->user_data);
- params->input_zero_point = input->params.zero_point;
- params->output_zero_point = output->params.zero_point;
- const float input_scale = input->params.scale;
- const float hires_input_scale = (1.0f / 128.0f) * input_scale;
- const float reluish_scale = 3.0f / 32768.0f;
- const float output_scale = output->params.scale;
- const double output_multiplier =
- static_cast<double>(hires_input_scale / output_scale);
- int32_t output_multiplier_fixedpoint_int32;
- QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint_int32,
- ¶ms->output_multiplier_exponent);
- DownScaleInt32ToInt16Multiplier(
- output_multiplier_fixedpoint_int32,
- ¶ms->output_multiplier_fixedpoint_int16);
- TF_LITE_ENSURE(context, params->output_multiplier_exponent <= 0);
- const double reluish_multiplier =
- static_cast<double>(hires_input_scale / reluish_scale);
- int32_t reluish_multiplier_fixedpoint_int32;
- QuantizeMultiplier(reluish_multiplier, &reluish_multiplier_fixedpoint_int32,
- ¶ms->reluish_multiplier_exponent);
- DownScaleInt32ToInt16Multiplier(
- reluish_multiplier_fixedpoint_int32,
- ¶ms->reluish_multiplier_fixedpoint_int16);
- }
- return kTfLiteOk;
- }
- TfLiteStatus HardSwishEval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- HardSwishParams* params = static_cast<HardSwishParams*>(node->user_data);
- switch (input->type) {
- case kTfLiteFloat32: {
- tflite::reference_ops::HardSwish<float>(
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- } break;
- case kTfLiteUInt8: {
- tflite::reference_ops::HardSwish<uint8_t>(
- *params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<uint8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- } break;
- case kTfLiteInt8: {
- tflite::reference_ops::HardSwish<int8_t>(
- *params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- } break;
- default: {
- TF_LITE_KERNEL_LOG(
- context,
- "Only float32/int8_t/uint8_t are supported currently, got %s",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- }
- return kTfLiteOk;
- }
- } // namespace hard_swish
- TfLiteRegistration Register_HARD_SWISH() {
- return {/*init=*/hard_swish::HardSwishInit,
- /*free=*/nullptr,
- /*prepare=*/hard_swish::HardSwishPrepare,
- /*invoke=*/hard_swish::HardSwishEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|