| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BINARY_FUNCTION_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BINARY_FUNCTION_H_
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- // TODO(ycling): Refactoring. Remove BroadcastLogical and use the more
- // generalized and efficient BroadcastBinaryFunction.
- //
- // Also appears to duplicate MinimumMaximum.
- //
- // R: Result type. T1: Input 1 type. T2: Input 2 type.
- template <typename R, typename T1, typename T2>
- inline void BroadcastBinaryFunction4DSlow(
- const RuntimeShape& unextended_input1_shape, const T1* input1_data,
- const RuntimeShape& unextended_input2_shape, const T2* input2_data,
- const RuntimeShape& unextended_output_shape, R* output_data,
- R (*func)(T1, T2)) {
- TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
- const RuntimeShape output_shape =
- RuntimeShape::ExtendedShape(4, unextended_output_shape);
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
- unextended_input2_shape, &desc1, &desc2);
- for (int b = 0; b < output_shape.Dims(0); ++b) {
- for (int y = 0; y < output_shape.Dims(1); ++y) {
- for (int x = 0; x < output_shape.Dims(2); ++x) {
- for (int c = 0; c < output_shape.Dims(3); ++c) {
- auto out_idx = Offset(output_shape, b, y, x, c);
- auto in1_idx = SubscriptToIndex(desc1, b, y, x, c);
- auto in2_idx = SubscriptToIndex(desc2, b, y, x, c);
- auto in1_val = input1_data[in1_idx];
- auto in2_val = input2_data[in2_idx];
- output_data[out_idx] = func(in1_val, in2_val);
- }
- }
- }
- }
- }
- // R: Result type. T1: Input 1 type. T2: Input 2 type.
- // TODO(renjieliu): Refactor other binary functions to use this one.
- template <typename R, typename T1, typename T2>
- inline void BinaryFunction(const RuntimeShape& input1_shape,
- const T1* input1_data,
- const RuntimeShape& input2_shape,
- const T2* input2_data,
- const RuntimeShape& output_shape, R* output_data,
- R (*func)(T1, T2)) {
- const int flat_size =
- MatchingFlatSize(input1_shape, input2_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- output_data[i] = func(input1_data[i], input2_data[i]);
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BINARY_FUNCTION_H_
|