| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/kernels/internal/cppmath.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- template <typename Scalar>
- inline void Concatenation(const ConcatenationParams& params,
- const RuntimeShape* const* input_shapes,
- const Scalar* const* input_data,
- const RuntimeShape& output_shape,
- Scalar* output_data) {
- int axis = params.axis;
- int inputs_count = params.inputs_count;
- const int concat_dimensions = output_shape.DimensionsCount();
- TFLITE_DCHECK_LT(axis, concat_dimensions);
- int64_t concat_size = 0;
- for (int i = 0; i < inputs_count; i++) {
- TFLITE_DCHECK_EQ(input_shapes[i]->DimensionsCount(), concat_dimensions);
- for (int j = 0; j < concat_dimensions; j++) {
- if (j != axis) {
- MatchingDim(*input_shapes[i], j, output_shape, j);
- }
- }
- concat_size += input_shapes[i]->Dims(axis);
- }
- TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis));
- int64_t outer_size = 1;
- for (int i = 0; i < axis; ++i) {
- outer_size *= output_shape.Dims(i);
- }
- // For all input arrays,
- // FlatSize() = outer_size * Dims(axis) * base_inner_size;
- int64_t base_inner_size = 1;
- for (int i = axis + 1; i < concat_dimensions; ++i) {
- base_inner_size *= output_shape.Dims(i);
- }
- Scalar* output_ptr = output_data;
- for (int k = 0; k < outer_size; k++) {
- for (int i = 0; i < inputs_count; ++i) {
- const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size;
- const Scalar* input_ptr = input_data[i] + k * copy_size;
- memcpy(output_ptr, input_ptr, copy_size * sizeof(Scalar));
- output_ptr += copy_size;
- }
- }
- }
- // TODO(prabhumk): This is the same as the optimized implementation.
- // TODO(prabhumk): The quantized implementation of concatentation isn't fully
- // quantized as it takes scale as a floating point value. This should be fixed
- // when optimizng this routine further.
- inline void ConcatenationWithScaling(const ConcatenationParams& params,
- const RuntimeShape* const* input_shapes,
- const uint8_t* const* input_data,
- const RuntimeShape& output_shape,
- uint8_t* output_data) {
- int axis = params.axis;
- const int32_t* input_zeropoint = params.input_zeropoint;
- const float* input_scale = params.input_scale;
- int inputs_count = params.inputs_count;
- const int32_t output_zeropoint = params.output_zeropoint;
- const float output_scale = params.output_scale;
- const int concat_dimensions = output_shape.DimensionsCount();
- TFLITE_DCHECK_LT(axis, concat_dimensions);
- int64_t concat_size = 0;
- for (int i = 0; i < inputs_count; i++) {
- TFLITE_DCHECK_EQ(input_shapes[i]->DimensionsCount(), concat_dimensions);
- for (int j = 0; j < concat_dimensions; j++) {
- if (j != axis) {
- MatchingDim(*input_shapes[i], j, output_shape, j);
- }
- }
- concat_size += input_shapes[i]->Dims(axis);
- }
- TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis));
- int64_t outer_size = 1;
- for (int i = 0; i < axis; ++i) {
- outer_size *= output_shape.Dims(i);
- }
- // For all input arrays,
- // FlatSize() = outer_size * Dims(axis) * base_inner_size;
- int64_t base_inner_size = 1;
- for (int i = axis + 1; i < concat_dimensions; ++i) {
- base_inner_size *= output_shape.Dims(i);
- }
- const float inverse_output_scale = 1.f / output_scale;
- uint8_t* output_ptr = output_data;
- for (int k = 0; k < outer_size; k++) {
- for (int i = 0; i < inputs_count; ++i) {
- const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size;
- const uint8_t* input_ptr = input_data[i] + k * copy_size;
- if (input_zeropoint[i] == output_zeropoint &&
- input_scale[i] == output_scale) {
- memcpy(output_ptr, input_ptr, copy_size);
- } else {
- const float scale = input_scale[i] * inverse_output_scale;
- const float bias = -input_zeropoint[i] * scale;
- for (int j = 0; j < copy_size; ++j) {
- const int32_t value = static_cast<int32_t>(tflite::TfLiteRound(
- input_ptr[j] * scale + bias)) +
- output_zeropoint;
- output_ptr[j] = static_cast<uint8_t>(
- std::max<int32_t>(std::min<int32_t>(255, value), 0));
- }
- }
- output_ptr += copy_size;
- }
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_
|