| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- namespace tflite {
- namespace reference_ops {
- inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
- const float* input_data, const RuntimeShape& filter_shape,
- const float* filter_data, const RuntimeShape& bias_shape,
- const float* bias_data, const RuntimeShape& output_shape,
- float* output_data, const RuntimeShape& im2col_shape,
- float* im2col_data) {
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int dilation_width_factor = params.dilation_width_factor;
- const int dilation_height_factor = params.dilation_height_factor;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- const float output_activation_min = params.float_activation_min;
- const float output_activation_max = params.float_activation_max;
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- (void)im2col_data; // only used in optimized code.
- (void)im2col_shape; // only used in optimized code.
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
- const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
- if (bias_data) {
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- }
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- for (int batch = 0; batch < batches; ++batch) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
- const int in_x_origin = (out_x * stride_width) - pad_width;
- const int in_y_origin = (out_y * stride_height) - pad_height;
- float total = 0.f;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
- const int in_x = in_x_origin + dilation_width_factor * filter_x;
- const int in_y =
- in_y_origin + dilation_height_factor * filter_y;
- // If the location is outside the bounds of the input image,
- // use zero as a default value.
- if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
- (in_y < input_height)) {
- float input_value = input_data[Offset(
- input_shape, batch, in_y, in_x, in_channel)];
- float filter_value =
- filter_data[Offset(filter_shape, out_channel, filter_y,
- filter_x, in_channel)];
- total += (input_value * filter_value);
- }
- }
- }
- }
- float bias_value = 0.0f;
- if (bias_data) {
- bias_value = bias_data[out_channel];
- }
- output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
- ActivationFunctionWithMinMax(total + bias_value,
- output_activation_min,
- output_activation_max);
- }
- }
- }
- }
- }
- inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
- const uint8_t* input_data, const RuntimeShape& filter_shape,
- const uint8_t* filter_data, const RuntimeShape& bias_shape,
- const int32_t* bias_data, const RuntimeShape& output_shape,
- uint8_t* output_data, const RuntimeShape& im2col_shape,
- uint8_t* im2col_data, void* cpu_backend_context) {
- (void)cpu_backend_context; // only used in optimized code.
- (void)im2col_data; // only used in optimized code.
- (void)im2col_shape; // only used in optimized code.
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int dilation_width_factor = params.dilation_width_factor;
- const int dilation_height_factor = params.dilation_height_factor;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- const int32_t input_offset = params.input_offset;
- const int32_t filter_offset = params.weights_offset;
- const int32_t output_offset = params.output_offset;
- const int32_t output_multiplier = params.output_multiplier;
- const int output_shift = params.output_shift;
- const int32_t output_activation_min = params.quantized_activation_min;
- const int32_t output_activation_max = params.quantized_activation_max;
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
- const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
- if (bias_data) {
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- }
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- for (int batch = 0; batch < batches; ++batch) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
- const int in_x_origin = (out_x * stride_width) - pad_width;
- const int in_y_origin = (out_y * stride_height) - pad_height;
- int32_t acc = 0;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
- const int in_x = in_x_origin + dilation_width_factor * filter_x;
- const int in_y =
- in_y_origin + dilation_height_factor * filter_y;
- // If the location is outside the bounds of the input image,
- // use zero as a default value.
- if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
- (in_y < input_height)) {
- int32_t input_val = input_data[Offset(
- input_shape, batch, in_y, in_x, in_channel)];
- int32_t filter_val =
- filter_data[Offset(filter_shape, out_channel, filter_y,
- filter_x, in_channel)];
- acc +=
- (filter_val + filter_offset) * (input_val + input_offset);
- }
- }
- }
- }
- if (bias_data) {
- acc += bias_data[out_channel];
- }
- acc = MultiplyByQuantizedMultiplier(acc, output_multiplier,
- output_shift);
- acc += output_offset;
- acc = std::max(acc, output_activation_min);
- acc = std::min(acc, output_activation_max);
- output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
- static_cast<uint8_t>(acc);
- }
- }
- }
- }
- }
- inline void HybridConvPerChannel(
- const ConvParams& params, float* scaling_factors_ptr,
- const RuntimeShape& input_shape, const int8_t* input_data,
- const RuntimeShape& filter_shape, const int8_t* filter_data,
- const RuntimeShape& bias_shape, const float* bias_data,
- const RuntimeShape& output_shape, float* output_data,
- const RuntimeShape& im2col_shape, int8_t* im2col_data,
- const float* per_channel_scale, int32_t* input_offset) {
- (void)im2col_data; // only used in optimized code.
- (void)im2col_shape; // only used in optimized code.
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int dilation_width_factor = params.dilation_width_factor;
- const int dilation_height_factor = params.dilation_height_factor;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- const float output_activation_min = params.float_activation_min;
- const float output_activation_max = params.float_activation_max;
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
- const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
- if (bias_data) {
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- }
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- for (int batch = 0; batch < batches; ++batch) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
- const int in_x_origin = (out_x * stride_width) - pad_width;
- const int in_y_origin = (out_y * stride_height) - pad_height;
- int32_t acc = 0;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
- const int in_x = in_x_origin + dilation_width_factor * filter_x;
- const int in_y =
- in_y_origin + dilation_height_factor * filter_y;
- // If the location is outside the bounds of the input image,
- // use zero as a default value.
- if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
- (in_y < input_height)) {
- int32_t input_val = input_data[Offset(
- input_shape, batch, in_y, in_x, in_channel)];
- int32_t filter_val =
- filter_data[Offset(filter_shape, out_channel, filter_y,
- filter_x, in_channel)];
- acc += filter_val * (input_val - input_offset[batch]);
- }
- }
- }
- }
- float acc_float =
- acc * per_channel_scale[out_channel] * scaling_factors_ptr[batch];
- if (bias_data) {
- acc_float += bias_data[out_channel];
- }
- output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
- ActivationFunctionWithMinMax(acc_float, output_activation_min,
- output_activation_max);
- }
- }
- }
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_
|