| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- inline void DepthwiseConv(
- const DepthwiseParams& params, const RuntimeShape& input_shape,
- const float* input_data, const RuntimeShape& filter_shape,
- const float* filter_data, const RuntimeShape& bias_shape,
- const float* bias_data, const RuntimeShape& output_shape,
- float* output_data) {
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int dilation_width_factor = params.dilation_width_factor;
- const int dilation_height_factor = params.dilation_height_factor;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- const int depth_multiplier = params.depth_multiplier;
- const float output_activation_min = params.float_activation_min;
- const float output_activation_max = params.float_activation_max;
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int input_depth = input_shape.Dims(3);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- for (int b = 0; b < batches; ++b) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int ic = 0; ic < input_depth; ++ic) {
- for (int m = 0; m < depth_multiplier; m++) {
- const int oc = m + ic * depth_multiplier;
- const int in_x_origin = (out_x * stride_width) - pad_width;
- const int in_y_origin = (out_y * stride_height) - pad_height;
- float total = 0.f;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- const int in_x = in_x_origin + dilation_width_factor * filter_x;
- const int in_y =
- in_y_origin + dilation_height_factor * filter_y;
- // If the location is outside the bounds of the input image,
- // use zero as a default value.
- if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
- (in_y < input_height)) {
- float input_value =
- input_data[Offset(input_shape, b, in_y, in_x, ic)];
- float filter_value = filter_data[Offset(
- filter_shape, 0, filter_y, filter_x, oc)];
- total += (input_value * filter_value);
- }
- }
- }
- float bias_value = 0.0f;
- if (bias_data) {
- bias_value = bias_data[oc];
- }
- output_data[Offset(output_shape, b, out_y, out_x, oc)] =
- ActivationFunctionWithMinMax(total + bias_value,
- output_activation_min,
- output_activation_max);
- }
- }
- }
- }
- }
- }
- } // end namespace reference_ops
- } // end namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_
|