| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_UINT8_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_UINT8_H_
- #include <algorithm>
- #include "fixedpoint/fixedpoint.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- // Used in tests and template parameters to control which version of depthwise
- // convolution is called. Primarily for reference code, and specializations
- // forced in tests.
- enum class DepthwiseConvImplementation {
- // Run all tests against kUseStandardEntry even if also testing another
- // kernel, since we need to be sure that the main DepthwiseConv() function in
- // optimized_ops.h dispatches to a correctly-executing kernel.
- kNone = 0, // The "default" option: use the normal
- // DepthwiseConv kernel (entry) function.
- kUseGenericKernel, // Forced use of generic kernel.
- kUseNeon3x3, // 3x3 kernel that uses NEON when available.
- kUseNeon3x3DotProduct, // 3x3 kernel that uses dot-product enabled NEON
- // when available.
- kUseCModel3x3DotProduct, // 3x3 kernel, reference C model that is intended
- // to match overall design NEON code.
- kUseUnwound3x3DotProduct, // 3x3 kernel, reference C model with unwound loops
- // and some arrays.
- kUseIntrinsics3x3DotProduct, // 3x3 kernel using NEON intrinsics.
- };
- // Category of depthwise convolution output rounding.
- enum class DepthwiseConvOutputRounding {
- kNone = 0, // Invalid: specific method must be specified.
- kAwayFromZero, // Original method: exact halves rounded away from zero.
- kUpward, // Halves towards +infinity: adds 0.5 before truncate.
- // This is where a future kNearestEven would be placed.
- };
- // Category of depthwise convolution depth multiplication.
- enum class DepthwiseConvDepthMultiplication {
- kNoMultiplication = 0, // Depth multiplier = 1.
- kUnitInputDepth, // Input depth = 1, output depth = depth multiplier.
- };
- namespace reference_ops {
- namespace depthwise_conv {
- template <DepthwiseConvOutputRounding output_rounding>
- inline int32_t DepthwiseConvRound(int32_t x, int32_t quantized_multiplier,
- int shift) {
- TFLITE_DCHECK_NE(output_rounding, DepthwiseConvOutputRounding::kNone);
- return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift);
- }
- template <>
- inline int32_t DepthwiseConvRound<DepthwiseConvOutputRounding::kAwayFromZero>(
- int32_t x, int32_t quantized_multiplier, int shift) {
- return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift);
- }
- template <>
- inline int32_t DepthwiseConvRound<DepthwiseConvOutputRounding::kUpward>(
- int32_t x, int32_t quantized_multiplier, int shift) {
- using gemmlowp::SaturatingRoundingDoublingHighMul;
- const int left_shift = shift > 0 ? shift : 0;
- const int right_shift = shift > 0 ? 0 : -shift;
- const int rounding_offset = right_shift > 0 ? 1 << (right_shift - 1) : 0;
- return (SaturatingRoundingDoublingHighMul(x * (1 << left_shift),
- quantized_multiplier) +
- rounding_offset) >>
- right_shift;
- }
- template <DepthwiseConvOutputRounding output_rounding>
- struct DepthwiseConvBasicKernel {
- static inline void Run(
- const DepthwiseParams& params, const RuntimeShape& input_shape,
- const uint8_t* input_data, const RuntimeShape& filter_shape,
- const uint8_t* filter_data, const RuntimeShape& bias_shape,
- const int32_t* bias_data, const RuntimeShape& output_shape,
- uint8_t* output_data) {
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int dilation_width_factor = params.dilation_width_factor;
- const int dilation_height_factor = params.dilation_height_factor;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- const int depth_multiplier = params.depth_multiplier;
- const int32_t output_activation_min = params.quantized_activation_min;
- const int32_t output_activation_max = params.quantized_activation_max;
- const int32_t input_offset = params.input_offset;
- const int32_t filter_offset = params.weights_offset;
- const int32_t output_offset = params.output_offset;
- const int32_t output_multiplier = params.output_multiplier;
- const int output_shift = params.output_shift;
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int input_depth = input_shape.Dims(3);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- for (int b = 0; b < batches; ++b) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int ic = 0; ic < input_depth; ++ic) {
- for (int m = 0; m < depth_multiplier; m++) {
- const int oc = m + ic * depth_multiplier;
- const int in_x_origin = (out_x * stride_width) - pad_width;
- const int in_y_origin = (out_y * stride_height) - pad_height;
- int32_t acc = 0;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- const int in_x =
- in_x_origin + dilation_width_factor * filter_x;
- const int in_y =
- in_y_origin + dilation_height_factor * filter_y;
- // If the location is outside the bounds of the input image,
- // use zero as a default value.
- if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
- (in_y < input_height)) {
- int32_t input_val =
- input_data[Offset(input_shape, b, in_y, in_x, ic)];
- int32_t filter_val = filter_data[Offset(
- filter_shape, 0, filter_y, filter_x, oc)];
- acc += (filter_val + filter_offset) *
- (input_val + input_offset);
- }
- }
- }
- if (bias_data) {
- acc += bias_data[oc];
- }
- acc = DepthwiseConvRound<output_rounding>(acc, output_multiplier,
- output_shift);
- acc += output_offset;
- acc = std::max(acc, output_activation_min);
- acc = std::min(acc, output_activation_max);
- output_data[Offset(output_shape, b, out_y, out_x, oc)] =
- static_cast<uint8_t>(acc);
- }
- }
- }
- }
- }
- }
- // TODO(b/148596273): Reconcile reference versions, perhaps with common
- // MultiplyByQuantizedMultiplier or DepthwiseConvRound function.
- static inline void RunPerChannel(
- const DepthwiseParams& params, const RuntimeShape& input_shape,
- const int8_t* input_data, const RuntimeShape& filter_shape,
- const int8_t* filter_data, const RuntimeShape& bias_shape,
- const int32_t* bias_data, const RuntimeShape& output_shape,
- int8_t* output_data) {
- // Get parameters.
- // TODO(b/141565753): Re-introduce ScopedProfilingLabel on Micro.
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int dilation_width_factor = params.dilation_width_factor;
- const int dilation_height_factor = params.dilation_height_factor;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- const int depth_multiplier = params.depth_multiplier;
- const int32_t input_offset = params.input_offset;
- const int32_t output_offset = params.output_offset;
- const int32_t output_activation_min = params.quantized_activation_min;
- const int32_t output_activation_max = params.quantized_activation_max;
- const int32_t* output_multiplier = params.output_multiplier_per_channel;
- const int32_t* output_shift = params.output_shift_per_channel;
- // Check dimensions of the tensors.
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int input_depth = input_shape.Dims(3);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- for (int batch = 0; batch < batches; ++batch) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
- for (int m = 0; m < depth_multiplier; ++m) {
- const int output_channel = m + in_channel * depth_multiplier;
- const int in_x_origin = (out_x * stride_width) - pad_width;
- const int in_y_origin = (out_y * stride_height) - pad_height;
- int32_t acc = 0;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- const int in_x =
- in_x_origin + dilation_width_factor * filter_x;
- const int in_y =
- in_y_origin + dilation_height_factor * filter_y;
- // Zero padding by omitting the areas outside the image.
- const bool is_point_inside_image =
- (in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
- (in_y < input_height);
- if (is_point_inside_image) {
- int32_t input_val = input_data[Offset(
- input_shape, batch, in_y, in_x, in_channel)];
- int32_t filter_val = filter_data[Offset(
- filter_shape, 0, filter_y, filter_x, output_channel)];
- // Accumulate with 32 bits accumulator.
- // In the nudging process during model quantization, we
- // force real value of 0.0 be represented by a quantized
- // value. This guarantees that the input_offset is a int8_t,
- // even though it is represented using int32_t. int32_t +=
- // int8_t
- // * (int8_t - int8_t) so the highest value we can get from
- // each accumulation is [-127, 127] * ([-128, 127] -
- // [-128, 127]), which is [-32512, 32512]. log2(32512)
- // = 14.98, which means we can accumulate at least 2^16
- // multiplications without overflow. The accumulator is
- // applied to a filter so the accumulation logic will hold
- // as long as the filter size (filter_y * filter_x *
- // in_channel) does not exceed 2^16, which is the case in
- // all the models we have seen so far.
- acc += filter_val * (input_val + input_offset);
- }
- }
- }
- if (bias_data) {
- acc += bias_data[output_channel];
- }
- acc = DepthwiseConvRound<output_rounding>(
- acc, output_multiplier[output_channel],
- output_shift[output_channel]);
- acc += output_offset;
- acc = std::max(acc, output_activation_min);
- acc = std::min(acc, output_activation_max);
- output_data[Offset(output_shape, batch, out_y, out_x,
- output_channel)] = static_cast<int8_t>(acc);
- }
- }
- }
- }
- }
- }
- };
- } // namespace depthwise_conv
- inline void DepthwiseConv(
- const DepthwiseParams& params, const RuntimeShape& input_shape,
- const uint8_t* input_data, const RuntimeShape& filter_shape,
- const uint8_t* filter_data, const RuntimeShape& bias_shape,
- const int32_t* bias_data, const RuntimeShape& output_shape,
- uint8_t* output_data) {
- return depthwise_conv::DepthwiseConvBasicKernel<
- DepthwiseConvOutputRounding::kAwayFromZero>::Run(params, input_shape,
- input_data, filter_shape,
- filter_data, bias_shape,
- bias_data, output_shape,
- output_data);
- }
- } // namespace reference_ops
- } // end namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_UINT8_H_
|