| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_
- #include <limits>
- #include "fixedpoint/fixedpoint.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- namespace tflite {
- namespace reference_integer_ops {
- inline void Tanh(int32_t input_zero_point, int32_t input_range_radius,
- int32_t input_multiplier, int32_t input_shift,
- int32_t input_size, const int8_t* input_data,
- int8_t* output_data) {
- // Integer bits must be in sync with Prepare() function.
- static constexpr int32_t kInputIntegerBits = 4;
- static constexpr int32_t kOutputScale = 7;
- static constexpr int32_t kMinInt8 = std::numeric_limits<int8_t>::min();
- static constexpr int32_t kMaxInt8 = std::numeric_limits<int8_t>::max();
- using F4 = gemmlowp::FixedPoint<int32_t, kInputIntegerBits>;
- for (int i = 0; i < input_size; ++i) {
- const int32_t input =
- static_cast<int32_t>(input_data[i]) - input_zero_point;
- if (input <= -input_range_radius) {
- output_data[i] = kMinInt8;
- } else if (input >= input_range_radius) {
- output_data[i] = kMaxInt8;
- } else {
- const int32_t input_in_q4 =
- MultiplyByQuantizedMultiplier(input, input_multiplier, input_shift);
- const int32_t output_in_q0 =
- gemmlowp::tanh(F4::FromRaw(input_in_q4)).raw();
- // Rescale and downcast.
- using gemmlowp::RoundingDivideByPOT;
- int32_t output_in_q24 =
- RoundingDivideByPOT(output_in_q0, 31 - kOutputScale);
- output_in_q24 = std::min(std::max(output_in_q24, kMinInt8), kMaxInt8);
- output_data[i] = static_cast<int8_t>(output_in_q24);
- }
- }
- }
- inline void Tanh(int32_t input_multiplier, int32_t input_left_shift,
- int32_t input_size, const int16_t* ptr_input_data,
- int16_t* ptr_output_data) {
- // We use the LUT for sigmoid and take into account, that
- // tanh(x) = 2*sigmoid(2*x) - 1
- int32_t input_data_mul = (input_multiplier > 0) ? input_multiplier : 1;
- for (int i = 0; i < input_size; ++i, ptr_input_data++, ptr_output_data++) {
- int32_t input_data = (*ptr_input_data) * input_data_mul;
- if (input_left_shift == 1) {
- input_data <<= 1;
- }
- // Scale by 3/4 to expand range [-8,8]->[-10.7,10.7].
- uint32_t abs_input_data = 3 * abs(input_data);
- uint32_t uh = abs_input_data >> 8;
- int32_t result;
- if (uh >= 255) {
- // Saturate to maximum.
- result = 0xFFFF << 8;
- } else {
- uint32_t ua = sigmoid_table_uint16[uh];
- uint32_t ub = sigmoid_table_uint16[uh + 1];
- uint8_t ut = abs_input_data & 0xFF;
- result = (ua << 8) + ut * (ub - ua);
- }
- result = (input_data >= 0)
- ? (result - (1 << (14 + 9)) + (1 << (9 - 2)))
- : (-result + (1 << (14 + 9)) + (1 << (9 - 2)) - 1);
- // Convert back to 16-bit.
- result >>= (9 - 1);
- *ptr_output_data = result;
- }
- }
- } // namespace reference_integer_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_
|