| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_
- #include <algorithm>
- #include <cmath>
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- inline void L2Normalization(const tflite::L2NormalizationParams& op_params,
- const RuntimeShape& input_shape,
- const float* input_data,
- const RuntimeShape& output_shape,
- float* output_data, float epsilon = 1e-6) {
- const int trailing_dim = input_shape.DimensionsCount() - 1;
- const int outer_size =
- MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
- const int depth =
- MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
- for (int i = 0; i < outer_size; ++i) {
- float squared_l2_norm = 0;
- for (int c = 0; c < depth; ++c) {
- const float val = input_data[depth * i + c];
- squared_l2_norm += val * val;
- }
- float l2_norm = std::sqrt(squared_l2_norm);
- l2_norm = std::max(l2_norm, epsilon);
- for (int c = 0; c < depth; ++c) {
- output_data[depth * i + c] = input_data[depth * i + c] / l2_norm;
- }
- }
- }
- inline void L2Normalization(const tflite::L2NormalizationParams& op_params,
- const RuntimeShape& input_shape,
- const uint8_t* input_data,
- const RuntimeShape& output_shape,
- uint8_t* output_data) {
- const int trailing_dim = input_shape.DimensionsCount() - 1;
- const int depth =
- MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
- const int outer_size =
- MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
- const int32_t input_zero_point = op_params.input_zero_point;
- for (int i = 0; i < outer_size; ++i) {
- int32_t square_l2_norm = 0;
- for (int c = 0; c < depth; c++) {
- int32_t diff = input_data[depth * i + c] - input_zero_point;
- square_l2_norm += diff * diff;
- }
- int32_t inv_l2norm_multiplier;
- int inv_l2norm_shift;
- GetInvSqrtQuantizedMultiplierExp(square_l2_norm, kReverseShift,
- &inv_l2norm_multiplier, &inv_l2norm_shift);
- for (int c = 0; c < depth; c++) {
- int32_t diff = input_data[depth * i + c] - input_zero_point;
- int32_t rescaled_diff = MultiplyByQuantizedMultiplierSmallerThanOneExp(
- 128 * diff, inv_l2norm_multiplier, inv_l2norm_shift);
- int32_t unclamped_output_val = 128 + rescaled_diff;
- int32_t output_val =
- std::min(static_cast<int32_t>(255),
- std::max(static_cast<int32_t>(0), unclamped_output_val));
- output_data[depth * i + c] = static_cast<uint8_t>(output_val);
- }
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_
|