| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOGISTIC_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOGISTIC_H_
- #include <cmath>
- #include "fixedpoint/fixedpoint.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/cppmath.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- namespace tflite {
- namespace reference_ops {
- inline void Logistic(const RuntimeShape& input_shape, const float* input_data,
- const RuntimeShape& output_shape, float* output_data) {
- const float cutoff_upper = 16.619047164916992188f;
- const float cutoff_lower = -9.f;
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- // Rational for using approximation in reference kernel.
- // 0. This approximation gives enough precision for float.
- // 1. This works around an issue on an embedded chipset where exp() does not
- // return correctly as expected - exp(x) should return inf when overflown
- // not 1.701417 IEEE 754 defines representation for inf.
- // 2. This will speed up calculation and is matching the behavior in the
- // optimized kernels. (check the definition of scalar_logistic_op<float>)
- for (int i = 0; i < flat_size; i++) {
- float val = input_data[i];
- float result;
- if (val > cutoff_upper) {
- result = 1.0f;
- } else if (val < cutoff_lower) {
- result = std::exp(val);
- } else {
- result = 1.f / (1.f + std::exp(-val));
- }
- output_data[i] = result;
- }
- }
- // Convenience version that allows, for example, generated-code calls to be
- // uniform between data types.
- inline void Logistic(const LogisticParams&, const RuntimeShape& input_shape,
- const float* input_data, const RuntimeShape& output_shape,
- float* output_data) {
- // Drop params: not needed.
- Logistic(input_shape, input_data, output_shape, output_data);
- }
- inline void Logistic(const LogisticParams& params,
- const RuntimeShape& input_shape, const int16_t* input_data,
- const RuntimeShape& output_shape, int16_t* output_data) {
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; i++) {
- // F0 uses 0 integer bits, range [-1, 1].
- // This is the return type of math functions such as tanh, logistic,
- // whose range is in [-1, 1].
- using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
- // F3 uses 3 integer bits, range [-8, 8], the input range expected here.
- using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
- const F3 input = F3::FromRaw(input_data[i]);
- F0 output = gemmlowp::logistic(input);
- output_data[i] = output.raw();
- }
- }
- // Quantized int8_t logistic activation. Cheats by dequantizing and
- // requantizing around the floating point logistic method. This implementation
- // is slow on platforms without a floating point unit.
- // TODO(b/141211002): Delete this int8_t implementation once we can reuse the
- // approach used in TFLite for int8_t Logistic.
- inline void Logistic(const RuntimeShape& input_shape, const int8_t* input_data,
- float input_scale, int input_zero_point,
- const RuntimeShape& output_shape, int8_t* output_data,
- float output_scale, int output_zero_point) {
- const float cutoff_upper = 16.619047164916992188f;
- const float cutoff_lower = -9.f;
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- // Rational for using approximation in reference kernel.
- // 0. This approximation gives enough precision for float.
- // 1. This works around an issue on an embedded chipset where exp() does not
- // return correctly as expected - exp(x) should return inf when overflown
- // not 1.701417 IEEE 754 defines representation for inf.
- // 2. This will speed up calculation and is matching the behavior in the
- // optimized kernels. (check the definition of scalar_logistic_op<float>)
- for (int i = 0; i < flat_size; i++) {
- // Dequantize.
- float val =
- static_cast<float>((input_data[i] - input_zero_point) * input_scale);
- float result;
- if (val > cutoff_upper) {
- result = 1.0f;
- } else if (val < cutoff_lower) {
- result = std::exp(val);
- } else {
- result = 1.f / (1.f + std::exp(-val));
- }
- // Requantize
- int8_t output =
- static_cast<int8_t>(result / output_scale + output_zero_point);
- output_data[i] = output;
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOGISTIC_H_
|