| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MUL_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MUL_H_
- #include "tensorflow/lite/kernels/internal/common.h"
- namespace tflite {
- namespace reference_ops {
- // Element-wise mul that can often be used for inner loop of broadcast Mul as
- // well as the non-broadcast Mul.
- inline void MulElementwise(int size, const ArithmeticParams& params,
- const uint8_t* input1_data,
- const uint8_t* input2_data, uint8_t* output_data) {
- for (int i = 0; i < size; ++i) {
- const int32_t input1_val = params.input1_offset + input1_data[i];
- const int32_t input2_val = params.input2_offset + input2_data[i];
- const int32_t unclamped_result =
- params.output_offset +
- MultiplyByQuantizedMultiplier(input1_val * input2_val,
- params.output_multiplier,
- params.output_shift);
- const int32_t clamped_output =
- std::min(params.quantized_activation_max,
- std::max(params.quantized_activation_min, unclamped_result));
- output_data[i] = static_cast<uint8_t>(clamped_output);
- }
- }
- template <typename T>
- inline void Mul(const ArithmeticParams& params,
- const RuntimeShape& input1_shape, const T* input1_data,
- const RuntimeShape& input2_shape, const T* input2_data,
- const RuntimeShape& output_shape, T* output_data) {
- T output_activation_min;
- T output_activation_max;
- GetActivationParams(params, &output_activation_min, &output_activation_max);
- const int flat_size =
- MatchingFlatSize(input1_shape, input2_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- output_data[i] = ActivationFunctionWithMinMax(
- input1_data[i] * input2_data[i], output_activation_min,
- output_activation_max);
- }
- }
- inline void Mul(const ArithmeticParams& params,
- const RuntimeShape& input1_shape, const uint8_t* input1_data,
- const RuntimeShape& input2_shape, const uint8_t* input2_data,
- const RuntimeShape& output_shape, uint8_t* output_data) {
- TFLITE_DCHECK_LE(params.quantized_activation_min,
- params.quantized_activation_max);
- const int flat_size =
- MatchingFlatSize(input1_shape, input2_shape, output_shape);
- MulElementwise(flat_size, params, input1_data, input2_data, output_data);
- }
- inline void BroadcastMul4DSlow(const ArithmeticParams& params,
- const RuntimeShape& input1_shape,
- const uint8_t* input1_data,
- const RuntimeShape& input2_shape,
- const uint8_t* input2_data,
- const RuntimeShape& output_shape,
- uint8_t* output_data) {
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
- &desc2);
- const RuntimeShape extended_output_shape =
- RuntimeShape::ExtendedShape(4, output_shape);
- for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
- for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
- for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
- for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
- const int32_t input1_val =
- params.input1_offset +
- input1_data[SubscriptToIndex(desc1, b, y, x, c)];
- const int32_t input2_val =
- params.input2_offset +
- input2_data[SubscriptToIndex(desc2, b, y, x, c)];
- const int32_t unclamped_result =
- params.output_offset +
- MultiplyByQuantizedMultiplier(input1_val * input2_val,
- params.output_multiplier,
- params.output_shift);
- const int32_t clamped_output = std::min(
- params.quantized_activation_max,
- std::max(params.quantized_activation_min, unclamped_result));
- output_data[Offset(extended_output_shape, b, y, x, c)] =
- static_cast<uint8_t>(clamped_output);
- }
- }
- }
- }
- }
- template <typename T>
- void BroadcastMul4DSlow(const ArithmeticParams& params,
- const RuntimeShape& unextended_input1_shape,
- const T* input1_data,
- const RuntimeShape& unextended_input2_shape,
- const T* input2_data,
- const RuntimeShape& unextended_output_shape,
- T* output_data) {
- T output_activation_min;
- T output_activation_max;
- GetActivationParams(params, &output_activation_min, &output_activation_max);
- TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
- const RuntimeShape output_shape =
- RuntimeShape::ExtendedShape(4, unextended_output_shape);
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
- unextended_input2_shape, &desc1, &desc2);
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- for (int b = 0; b < output_shape.Dims(0); ++b) {
- for (int y = 0; y < output_shape.Dims(1); ++y) {
- for (int x = 0; x < output_shape.Dims(2); ++x) {
- for (int c = 0; c < output_shape.Dims(3); ++c) {
- output_data[Offset(output_shape, b, y, x, c)] =
- ActivationFunctionWithMinMax(
- input1_data[SubscriptToIndex(desc1, b, y, x, c)] *
- input2_data[SubscriptToIndex(desc2, b, y, x, c)],
- output_activation_min, output_activation_max);
- }
- }
- }
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MUL_H_
|