| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PAD_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PAD_H_
- #include <vector>
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- // TFLite Pad supports activation tensors with up to 4 dimensions.
- constexpr int PadKernelMaxDimensionCount() { return 4; }
- // There are two versions of pad: Pad and PadV2. In PadV2 there is a second
- // scalar input that provides the padding value. Therefore pad_value_ptr can be
- // equivalent to a simple input1_data. For Pad, it should point to a zero
- // value.
- //
- // Note that two typenames are required, so that T=P=int32_t is considered a
- // specialization distinct from P=int32_t.
- template <typename T, typename P>
- inline void PadImpl(const tflite::PadParams& op_params,
- const RuntimeShape& input_shape, const T* input_data,
- const P* pad_value_ptr, const RuntimeShape& output_shape,
- T* output_data) {
- const RuntimeShape ext_input_shape =
- RuntimeShape::ExtendedShape(PadKernelMaxDimensionCount(), input_shape);
- const RuntimeShape ext_output_shape =
- RuntimeShape::ExtendedShape(PadKernelMaxDimensionCount(), output_shape);
- TFLITE_DCHECK_LE(op_params.left_padding_count, PadKernelMaxDimensionCount());
- TFLITE_DCHECK_LE(op_params.right_padding_count, PadKernelMaxDimensionCount());
- // Runtime calls are currently fixed at 4 dimensions. Copy inputs so we can
- // pad them to 4 dims (yes, we are "padding the padding").
- int left_padding_copy[PadKernelMaxDimensionCount()];
- for (int i = 0; i < PadKernelMaxDimensionCount(); i++) {
- left_padding_copy[i] = 0;
- }
- for (int i = 0; i < op_params.left_padding_count; ++i) {
- left_padding_copy[i + PadKernelMaxDimensionCount() -
- op_params.left_padding_count] = op_params.left_padding[i];
- }
- int right_padding_copy[PadKernelMaxDimensionCount()];
- for (int i = 0; i < PadKernelMaxDimensionCount(); i++) {
- right_padding_copy[i] = 0;
- }
- for (int i = 0; i < op_params.right_padding_count; ++i) {
- right_padding_copy[i + PadKernelMaxDimensionCount() -
- op_params.right_padding_count] =
- op_params.right_padding[i];
- }
- const int output_batch = ext_output_shape.Dims(0);
- const int output_height = ext_output_shape.Dims(1);
- const int output_width = ext_output_shape.Dims(2);
- const int output_depth = ext_output_shape.Dims(3);
- const int left_b_padding = left_padding_copy[0];
- const int left_h_padding = left_padding_copy[1];
- const int left_w_padding = left_padding_copy[2];
- const int left_d_padding = left_padding_copy[3];
- const int right_b_padding = right_padding_copy[0];
- const int right_h_padding = right_padding_copy[1];
- const int right_w_padding = right_padding_copy[2];
- const int right_d_padding = right_padding_copy[3];
- const T pad_value = *pad_value_ptr;
- const T* in_ptr = input_data;
- T* out_ptr = output_data;
- for (int out_b = 0; out_b < output_batch; ++out_b) {
- for (int out_h = 0; out_h < output_height; ++out_h) {
- for (int out_w = 0; out_w < output_width; ++out_w) {
- for (int out_d = 0; out_d < output_depth; ++out_d) {
- if (out_b < left_b_padding ||
- out_b >= output_batch - right_b_padding ||
- out_h < left_h_padding ||
- out_h >= output_height - right_h_padding ||
- out_w < left_w_padding ||
- out_w >= output_width - right_w_padding ||
- out_d < left_d_padding ||
- out_d >= output_depth - right_d_padding) {
- *out_ptr++ = pad_value;
- } else {
- *out_ptr++ = *in_ptr++;
- }
- }
- }
- }
- }
- }
- template <typename T, typename P>
- inline void Pad(const tflite::PadParams& op_params,
- const RuntimeShape& input_shape, const T* input_data,
- const P* pad_value_ptr, const RuntimeShape& output_shape,
- T* output_data) {
- PadImpl(op_params, input_shape, input_data, pad_value_ptr, output_shape,
- output_data);
- }
- // The second (pad-value) input can be int32_t when, say, the first is uint8_t.
- template <typename T>
- inline void Pad(const tflite::PadParams& op_params,
- const RuntimeShape& input_shape, const T* input_data,
- const int32_t* pad_value_ptr, const RuntimeShape& output_shape,
- T* output_data) {
- const T converted_pad_value = static_cast<T>(*pad_value_ptr);
- PadImpl(op_params, input_shape, input_data, &converted_pad_value,
- output_shape, output_data);
- }
- // This version avoids conflicting template matching.
- template <>
- inline void Pad(const tflite::PadParams& op_params,
- const RuntimeShape& input_shape, const int32_t* input_data,
- const int32_t* pad_value_ptr, const RuntimeShape& output_shape,
- int32_t* output_data) {
- PadImpl(op_params, input_shape, input_data, pad_value_ptr, output_shape,
- output_data);
- }
- template <typename T, typename P>
- inline void PadImageStyle(const tflite::PadParams& op_params,
- const RuntimeShape& input_shape, const T* input_data,
- const P* pad_value_ptr,
- const RuntimeShape& output_shape, T* output_data) {
- Pad(op_params, input_shape, input_data, pad_value_ptr, output_shape,
- output_data);
- }
- template <typename P>
- inline void PadImageStyle(const tflite::PadParams& op_params,
- const RuntimeShape& input_shape,
- const float* input_data, const P* pad_value_ptr,
- const RuntimeShape& output_shape,
- float* output_data) {
- Pad(op_params, input_shape, input_data, pad_value_ptr, output_shape,
- output_data);
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PAD_H_
|