| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PRELU_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PRELU_H_
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- // Broadcast prelu to output_shape for quantized uint8_t/int8_t data.
- template <typename T>
- inline void BroadcastPrelu4DSlow(
- const PreluParams& params, const RuntimeShape& input_shape,
- const T* input_data, const RuntimeShape& alpha_shape, const T* alpha_data,
- const RuntimeShape& output_shape, T* output_data) {
- TFLITE_DCHECK_LE(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_LE(alpha_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_LE(output_shape.DimensionsCount(), 4);
- const RuntimeShape extended_output_shape =
- RuntimeShape::ExtendedShape(4, output_shape);
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input_shape, alpha_shape, &desc1, &desc2);
- for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
- for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
- for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
- for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
- int output_index = Offset(extended_output_shape, b, y, x, c);
- int input_index = SubscriptToIndex(desc1, b, y, x, c);
- const int32_t input_value =
- params.input_offset + input_data[input_index];
- int32_t output_value;
- if (input_value >= 0) {
- output_value = MultiplyByQuantizedMultiplier(
- input_value, params.output_multiplier_1, params.output_shift_1);
- } else {
- auto alpha_index = SubscriptToIndex(desc2, b, y, x, c);
- const int32_t alpha_value =
- params.alpha_offset + alpha_data[alpha_index];
- output_value = MultiplyByQuantizedMultiplier(
- input_value * alpha_value, params.output_multiplier_2,
- params.output_shift_2);
- }
- output_value += params.output_offset;
- const int32_t quantized_min = std::numeric_limits<T>::min();
- const int32_t quantized_max = std::numeric_limits<T>::max();
- const int32_t clamped_output =
- std::min(quantized_max, std::max(quantized_min, output_value));
- output_data[output_index] = static_cast<T>(clamped_output);
- }
- }
- }
- }
- }
- template <typename T>
- inline void Prelu(const PreluParams& params, const RuntimeShape& input_shape,
- const T* input_data, const RuntimeShape& alpha_shape,
- const T* alpha_data, const RuntimeShape& output_shape,
- T* output_data) {
- const int32_t quantized_min = std::numeric_limits<T>::min();
- const int32_t quantized_max = std::numeric_limits<T>::max();
- const int flat_size =
- MatchingElementsSize(input_shape, alpha_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- const int32_t input_value = params.input_offset + input_data[i];
- int32_t output_value;
- if (input_value >= 0) {
- output_value = MultiplyByQuantizedMultiplier(
- input_value, params.output_multiplier_1, params.output_shift_1);
- } else {
- const int32_t alpha_value = params.alpha_offset + alpha_data[i];
- output_value = MultiplyByQuantizedMultiplier(input_value * alpha_value,
- params.output_multiplier_2,
- params.output_shift_2);
- }
- output_value += params.output_offset;
- const int32_t clamped_output =
- std::min(quantized_max, std::max(quantized_min, output_value));
- output_data[i] = static_cast<T>(clamped_output);
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PRELU_H_
|