| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
- #include <stdint.h>
- #include <algorithm>
- #include <limits>
- #include "ruy/profiler/instrumentation.h" // from @ruy
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- inline void SubNonBroadcast(const ArithmeticParams& params,
- const RuntimeShape& input1_shape,
- const float* input1_data,
- const RuntimeShape& input2_shape,
- const float* input2_data,
- const RuntimeShape& output_shape,
- float* output_data) {
- const int flat_size =
- MatchingElementsSize(input1_shape, input2_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- output_data[i] = ActivationFunctionWithMinMax(
- input1_data[i] - input2_data[i], params.float_activation_min,
- params.float_activation_max);
- }
- }
- inline void SubNonBroadcast(const ArithmeticParams& params,
- const RuntimeShape& input1_shape,
- const int32_t* input1_data,
- const RuntimeShape& input2_shape,
- const int32_t* input2_data,
- const RuntimeShape& output_shape,
- int32_t* output_data) {
- const int flat_size =
- MatchingElementsSize(input1_shape, input2_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- output_data[i] = ActivationFunctionWithMinMax(
- input1_data[i] - input2_data[i], params.quantized_activation_min,
- params.quantized_activation_max);
- }
- }
- // TODO(b/151345304): We can implement BroadcastSub on buffers of arbitrary
- // dimensionality if the runtime code does a single loop over one dimension
- // that handles broadcasting as the base case. The code generator would then
- // generate max(D1, D2) nested for loops.
- // TODO(b/151345101): BroadcastSub is intentionally duplicated from
- // reference_ops.h. Once an optimized version is implemented and NdArrayDesc<T>
- // is no longer referenced in this file, move NdArrayDesc<T> from types.h to
- // reference_ops.h.
- template <int N = 5>
- inline void BroadcastSubSlow(const ArithmeticParams& params,
- const RuntimeShape& input1_shape,
- const float* input1_data,
- const RuntimeShape& input2_shape,
- const float* input2_data,
- const RuntimeShape& output_shape,
- float* output_data) {
- ruy::profiler::ScopeLabel label("BroadcastSubSlow/float");
- TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
- NdArrayDesc<N> desc1;
- NdArrayDesc<N> desc2;
- NdArrayDesc<N> output_desc;
- NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
- &desc2);
- CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- auto sub_func = [&](int indexes[N]) {
- output_data[SubscriptToIndex(output_desc, indexes)] =
- ActivationFunctionWithMinMax(
- input1_data[SubscriptToIndex(desc1, indexes)] -
- input2_data[SubscriptToIndex(desc2, indexes)],
- params.float_activation_min, params.float_activation_max);
- };
- NDOpsHelper<N>(output_desc, sub_func);
- }
- template <int N = 5>
- inline void BroadcastSubSlow(const ArithmeticParams& params,
- const RuntimeShape& input1_shape,
- const uint8_t* input1_data,
- const RuntimeShape& input2_shape,
- const uint8_t* input2_data,
- const RuntimeShape& output_shape,
- uint8_t* output_data) {
- ruy::profiler::ScopeLabel label("BroadcastSubSlow/uint8_t");
- TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
- NdArrayDesc<N> desc1;
- NdArrayDesc<N> desc2;
- NdArrayDesc<N> output_desc;
- NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
- &desc2);
- CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- auto sub_func = [&](int indexes[N]) {
- const int32_t input1_val =
- params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)];
- const int32_t input2_val =
- params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)];
- const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
- const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
- const int32_t scaled_input1_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, params.input1_multiplier, params.input1_shift);
- const int32_t scaled_input2_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, params.input2_multiplier, params.input2_shift);
- const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
- const int32_t raw_output =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sub, params.output_multiplier, params.output_shift) +
- params.output_offset;
- const int32_t clamped_output =
- std::min(params.quantized_activation_max,
- std::max(params.quantized_activation_min, raw_output));
- output_data[SubscriptToIndex(output_desc, indexes)] =
- static_cast<uint8_t>(clamped_output);
- };
- NDOpsHelper<N>(output_desc, sub_func);
- }
- template <int N = 5>
- inline void BroadcastSubSlow(const ArithmeticParams& params,
- const RuntimeShape& input1_shape,
- const int32_t* input1_data,
- const RuntimeShape& input2_shape,
- const int32_t* input2_data,
- const RuntimeShape& output_shape,
- int32_t* output_data) {
- ruy::profiler::ScopeLabel label("BroadcastSubSlow/int32_t");
- TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
- NdArrayDesc<N> desc1;
- NdArrayDesc<N> desc2;
- NdArrayDesc<N> output_desc;
- NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
- &desc2);
- CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- auto sub_func = [&](int indexes[N]) {
- output_data[SubscriptToIndex(output_desc, indexes)] =
- ActivationFunctionWithMinMax(
- input1_data[SubscriptToIndex(desc1, indexes)] -
- input2_data[SubscriptToIndex(desc2, indexes)],
- params.quantized_activation_min, params.quantized_activation_max);
- };
- NDOpsHelper<N>(output_desc, sub_func);
- }
- template <int N = 5>
- inline void BroadcastSubSlow(const ArithmeticParams& params,
- const RuntimeShape& input1_shape,
- const int8_t* input1_data,
- const RuntimeShape& input2_shape,
- const int8_t* input2_data,
- const RuntimeShape& output_shape,
- int8_t* output_data) {
- ruy::profiler::ScopeLabel label("BroadcastSubSlow/int8_t");
- NdArrayDesc<N> desc1;
- NdArrayDesc<N> desc2;
- NdArrayDesc<N> output_desc;
- NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
- &desc2);
- CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- auto sub_func = [&](int indexes[N]) {
- const int32_t input1_val =
- params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)];
- const int32_t input2_val =
- params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)];
- const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
- const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
- const int32_t scaled_input1_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, params.input1_multiplier, params.input1_shift);
- const int32_t scaled_input2_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, params.input2_multiplier, params.input2_shift);
- const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
- const int32_t raw_output =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sub, params.output_multiplier, params.output_shift) +
- params.output_offset;
- const int32_t clamped_output =
- std::min(params.quantized_activation_max,
- std::max(params.quantized_activation_min, raw_output));
- output_data[SubscriptToIndex(output_desc, indexes)] =
- static_cast<int8_t>(clamped_output);
- };
- NDOpsHelper<N>(output_desc, sub_func);
- }
- template <int N = 5>
- void BroadcastSubSlow(const ArithmeticParams& params,
- const RuntimeShape& input1_shape,
- const int64_t* input1_data,
- const RuntimeShape& input2_shape,
- const int64_t* input2_data,
- const RuntimeShape& output_shape, int64_t* output_data) {
- ruy::profiler::ScopeLabel label("BroadcastSubSlow/int64_t");
- TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
- NdArrayDesc<N> desc1;
- NdArrayDesc<N> desc2;
- NdArrayDesc<N> output_desc;
- NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
- &desc2);
- CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- auto sub_func = [&](int indexes[N]) {
- output_data[SubscriptToIndex(output_desc, indexes)] =
- ActivationFunctionWithMinMax(
- input1_data[SubscriptToIndex(desc1, indexes)] -
- input2_data[SubscriptToIndex(desc2, indexes)],
- params.int64_activation_min, params.int64_activation_max);
- };
- NDOpsHelper<N>(output_desc, sub_func);
- }
- template <typename T, int N = 5>
- void BroadcastSubSlow(const ArithmeticParams& params,
- const RuntimeShape& input1_shape, const T* input1_data,
- const RuntimeShape& input2_shape, const T* input2_data,
- const RuntimeShape& output_shape, T* output_data) {
- ruy::profiler::ScopeLabel label("BroadcastSubSlow/templated");
- TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
- TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
- NdArrayDesc<N> desc1;
- NdArrayDesc<N> desc2;
- NdArrayDesc<N> output_desc;
- NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
- &desc2);
- CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- auto sub_func = [&](int indexes[N]) {
- output_data[SubscriptToIndex(output_desc, indexes)] =
- ActivationFunctionWithMinMax(
- input1_data[SubscriptToIndex(desc1, indexes)] -
- input2_data[SubscriptToIndex(desc2, indexes)],
- params.quantized_activation_min, params.quantized_activation_max);
- };
- NDOpsHelper<N>(output_desc, sub_func);
- }
- // Element-wise Sub that can often be used for inner loop of broadcast sub as
- // well as the non-broadcast sub.
- inline void SubElementwise(int size, const ArithmeticParams& params,
- const uint8_t* input1_data,
- const uint8_t* input2_data, uint8_t* output_data) {
- TFLITE_DCHECK_GT(params.input1_offset, -256);
- TFLITE_DCHECK_GT(params.input2_offset, -256);
- TFLITE_DCHECK_LT(params.input1_offset, 256);
- TFLITE_DCHECK_LT(params.input2_offset, 256);
- for (int i = 0; i < size; ++i) {
- const int32_t input1_val = params.input1_offset + input1_data[i];
- const int32_t input2_val = params.input2_offset + input2_data[i];
- const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
- const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
- const int32_t scaled_input1_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, params.input1_multiplier, params.input1_shift);
- const int32_t scaled_input2_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, params.input2_multiplier, params.input2_shift);
- const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
- const int32_t raw_output =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sub, params.output_multiplier, params.output_shift) +
- params.output_offset;
- const int32_t clamped_output =
- std::min(params.quantized_activation_max,
- std::max(params.quantized_activation_min, raw_output));
- output_data[i] = static_cast<uint8_t>(clamped_output);
- }
- }
- // Element-wise add that can often be used for inner loop of broadcast add as
- // well as the non-broadcast add.
- inline void SubElementwise(int size, const ArithmeticParams& params,
- const int8_t* input1_data, const int8_t* input2_data,
- int8_t* output_data) {
- const int32_t int8_max_value = std::numeric_limits<int8_t>::max();
- TFLITE_DCHECK_GE(params.input1_offset, -1 * int8_max_value);
- TFLITE_DCHECK_GE(params.input2_offset, -1 * int8_max_value);
- TFLITE_DCHECK_LE(params.input1_offset, int8_max_value);
- TFLITE_DCHECK_LE(params.input2_offset, int8_max_value);
- for (int i = 0; i < size; ++i) {
- const int32_t input1_val = params.input1_offset + input1_data[i];
- const int32_t input2_val = params.input2_offset + input2_data[i];
- const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
- const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
- const int32_t scaled_input1_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, params.input1_multiplier, params.input1_shift);
- const int32_t scaled_input2_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, params.input2_multiplier, params.input2_shift);
- const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
- const int32_t raw_output =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- raw_sub, params.output_multiplier, params.output_shift) +
- params.output_offset;
- const int32_t clamped_output =
- std::min(params.quantized_activation_max,
- std::max(params.quantized_activation_min, raw_output));
- output_data[i] = static_cast<int8_t>(clamped_output);
- }
- }
- inline void Sub(const ArithmeticParams& params,
- const RuntimeShape& input1_shape, const uint8_t* input1_data,
- const RuntimeShape& input2_shape, const uint8_t* input2_data,
- const RuntimeShape& output_shape, uint8_t* output_data) {
- TFLITE_DCHECK_LE(params.quantized_activation_min,
- params.quantized_activation_max);
- const int flat_size =
- MatchingElementsSize(input1_shape, input2_shape, output_shape);
- TFLITE_DCHECK_GT(params.input1_offset, -256);
- TFLITE_DCHECK_GT(params.input2_offset, -256);
- TFLITE_DCHECK_LT(params.input1_offset, 256);
- TFLITE_DCHECK_LT(params.input2_offset, 256);
- SubElementwise(flat_size, params, input1_data, input2_data, output_data);
- }
- inline void Sub(const ArithmeticParams& params,
- const RuntimeShape& input1_shape, const int8_t* input1_data,
- const RuntimeShape& input2_shape, const int8_t* input2_data,
- const RuntimeShape& output_shape, int8_t* output_data) {
- TFLITE_DCHECK_LE(params.quantized_activation_min,
- params.quantized_activation_max);
- const int flat_size =
- MatchingElementsSize(input1_shape, input2_shape, output_shape);
- const int32_t int8_max_value = std::numeric_limits<int8_t>::max();
- TFLITE_DCHECK_GE(params.input1_offset, -1 * int8_max_value);
- TFLITE_DCHECK_GE(params.input2_offset, -1 * int8_max_value);
- TFLITE_DCHECK_LE(params.input1_offset, int8_max_value);
- TFLITE_DCHECK_LE(params.input2_offset, int8_max_value);
- SubElementwise(flat_size, params, input1_data, input2_data, output_data);
- }
- template <typename T>
- void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape,
- const T* input1_data, const RuntimeShape& input2_shape,
- const T* input2_data, const RuntimeShape& output_shape,
- T* output_data) {
- NdArrayDesc<4> desc1;
- NdArrayDesc<4> desc2;
- NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
- &desc2);
- const RuntimeShape extended_output_shape =
- RuntimeShape::ExtendedShape(4, output_shape);
- // In Tensorflow, the dimensions are canonically named (batch_number, row,
- // col, channel), with extents (batches, height, width, depth), with the
- // trailing dimension changing most rapidly (channels has the smallest stride,
- // typically 1 element).
- //
- // In generated C code, we store arrays with the dimensions reversed. The
- // first dimension has smallest stride.
- //
- // We name our variables by their Tensorflow convention, but generate C code
- // nesting loops such that the innermost loop has the smallest stride for the
- // best cache behavior.
- for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
- for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
- for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
- for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
- output_data[Offset(extended_output_shape, b, y, x, c)] =
- input1_data[SubscriptToIndex(desc1, b, y, x, c)] -
- input2_data[SubscriptToIndex(desc2, b, y, x, c)];
- }
- }
- }
- }
- }
- inline void SetActivationMinMax(const ArithmeticParams& params,
- int32_t* activation_min,
- int32_t* activation_max) {
- *activation_min = params.quantized_activation_min;
- *activation_max = params.quantized_activation_max;
- }
- inline void SetActivationMinMax(const ArithmeticParams& params,
- float* activation_min, float* activation_max) {
- *activation_min = params.float_activation_min;
- *activation_max = params.float_activation_max;
- }
- inline void SetActivationMinMax(const ArithmeticParams& params,
- int64_t* activation_min,
- int64_t* activation_max) {
- *activation_min = params.int64_activation_min;
- *activation_max = params.int64_activation_max;
- }
- template <typename T>
- inline void SubWithActivation(
- const ArithmeticParams& params, const RuntimeShape& input1_shape,
- const T* input1_data, const RuntimeShape& input2_shape,
- const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
- ruy::profiler::ScopeLabel label("SubWithActivation");
- const int flat_size =
- MatchingElementsSize(input1_shape, input2_shape, output_shape);
- T activation_min, activation_max;
- SetActivationMinMax(params, &activation_min, &activation_max);
- for (int i = 0; i < flat_size; ++i) {
- output_data[i] = ActivationFunctionWithMinMax(
- input1_data[i] - input2_data[i], activation_min, activation_max);
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
|