| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
- #include <cmath>
- #include "fixedpoint/fixedpoint.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/cppmath.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- namespace tflite {
- namespace reference_ops {
- inline void Tanh(const RuntimeShape& input_shape, const float* input_data,
- const RuntimeShape& output_shape, float* output_data) {
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; i++) {
- float val = input_data[i];
- float result = std::tanh(val);
- output_data[i] = result;
- }
- }
- // Convenience version that allows, for example, generated-code calls to be
- // uniform between data types.
- inline void Tanh(const TanhParams&, const RuntimeShape& input_shape,
- const float* input_data, const RuntimeShape& output_shape,
- float* output_data) {
- // Drop params: not needed.
- Tanh(input_shape, input_data, output_shape, output_data);
- }
- inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape,
- const int16_t* input_data, const RuntimeShape& output_shape,
- int16_t* output_data) {
- const int input_left_shift = params.input_left_shift;
- // Support for shifts is limited until we have a parameterized version of
- // SaturatingRoundingMultiplyByPOT().
- TFLITE_DCHECK_GE(input_left_shift, 0);
- TFLITE_DCHECK_LE(input_left_shift, 1);
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- // F0 uses 0 integer bits, range [-1, 1].
- // This is the return type of math functions such as tanh, logistic,
- // whose range is in [-1, 1].
- using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
- // F3 uses 3 integer bits, range [-8, 8], the input range expected here.
- using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
- if (input_left_shift == 0) {
- for (int i = 0; i < flat_size; i++) {
- F3 input = F3::FromRaw(input_data[i]);
- F0 output = gemmlowp::tanh(input);
- output_data[i] = output.raw();
- }
- } else {
- for (int i = 0; i < flat_size; i++) {
- F3 input = F3::FromRaw(
- gemmlowp::SaturatingRoundingMultiplyByPOT<1>(input_data[i]));
- F0 output = gemmlowp::tanh(input);
- output_data[i] = output.raw();
- }
- }
- }
- inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape,
- const uint8_t* input_data, const RuntimeShape& output_shape,
- uint8_t* output_data) {
- const int32_t input_zero_point = params.input_zero_point;
- const int32_t input_range_radius = params.input_range_radius;
- const int32_t input_multiplier = params.input_multiplier;
- const int input_left_shift = params.input_left_shift;
- const int32_t output_zero_point = 128;
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; i++) {
- const uint8_t input_val_u8 = input_data[i];
- const int32_t input_val_centered =
- static_cast<int32_t>(input_val_u8) - input_zero_point;
- uint8_t output_val;
- if (input_val_centered <= -input_range_radius) {
- output_val = 0;
- } else if (input_val_centered >= input_range_radius) {
- output_val = 255;
- } else {
- const int32_t input_val_rescaled =
- MultiplyByQuantizedMultiplierGreaterThanOne(
- input_val_centered, input_multiplier, input_left_shift);
- using FixedPoint4 = gemmlowp::FixedPoint<int32_t, 4>;
- using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
- const FixedPoint4 input_val_f4 = FixedPoint4::FromRaw(input_val_rescaled);
- const FixedPoint0 output_val_f0 = gemmlowp::tanh(input_val_f4);
- // Convert from Q0.31 to Q24.7.
- using gemmlowp::RoundingDivideByPOT;
- int32_t output_val_s32 = RoundingDivideByPOT(output_val_f0.raw(), 24);
- output_val_s32 += output_zero_point;
- if (output_val_s32 == 256) {
- output_val_s32 = 255;
- }
- // Reinterpret as Q0.7, encoded in uint8_t.
- TFLITE_DCHECK_GE(output_val_s32, 0);
- TFLITE_DCHECK_LE(output_val_s32, 255);
- output_val = static_cast<uint8_t>(output_val_s32);
- }
- output_data[i] = output_val;
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
|