| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_PADDING_H_
- #define TENSORFLOW_LITE_KERNELS_PADDING_H_
- #include "tensorflow/lite/c/builtin_op_data.h"
- namespace tflite {
- // TODO(renjieliu): Migrate others to use ComputePaddingWithLeftover.
- inline int ComputePadding(int stride, int dilation_rate, int in_size,
- int filter_size, int out_size) {
- int effective_filter_size = (filter_size - 1) * dilation_rate + 1;
- int padding = ((out_size - 1) * stride + effective_filter_size - in_size) / 2;
- return padding > 0 ? padding : 0;
- }
- // It's not guaranteed that padding is symmetric. It's important to keep
- // offset for algorithms need all paddings.
- inline int ComputePaddingWithOffset(int stride, int dilation_rate, int in_size,
- int filter_size, int out_size,
- int* offset) {
- int effective_filter_size = (filter_size - 1) * dilation_rate + 1;
- int total_padding =
- ((out_size - 1) * stride + effective_filter_size - in_size);
- total_padding = total_padding > 0 ? total_padding : 0;
- *offset = total_padding % 2;
- return total_padding / 2;
- }
- // Matching GetWindowedOutputSize in TensorFlow.
- inline int ComputeOutSize(TfLitePadding padding, int image_size,
- int filter_size, int stride, int dilation_rate = 1) {
- int effective_filter_size = (filter_size - 1) * dilation_rate + 1;
- switch (padding) {
- case kTfLitePaddingSame:
- return (image_size + stride - 1) / stride;
- case kTfLitePaddingValid:
- return (image_size + stride - effective_filter_size) / stride;
- default:
- return 0;
- }
- }
- inline TfLitePaddingValues ComputePaddingHeightWidth(
- int stride_height, int stride_width, int dilation_rate_height,
- int dilation_rate_width, int in_height, int in_width, int filter_height,
- int filter_width, TfLitePadding padding, int* out_height, int* out_width) {
- *out_width = ComputeOutSize(padding, in_width, filter_width, stride_width,
- dilation_rate_width);
- *out_height = ComputeOutSize(padding, in_height, filter_height, stride_height,
- dilation_rate_height);
- TfLitePaddingValues padding_values;
- int offset = 0;
- padding_values.height =
- ComputePaddingWithOffset(stride_height, dilation_rate_height, in_height,
- filter_height, *out_height, &offset);
- padding_values.height_offset = offset;
- padding_values.width =
- ComputePaddingWithOffset(stride_width, dilation_rate_width, in_width,
- filter_width, *out_width, &offset);
- padding_values.width_offset = offset;
- return padding_values;
- }
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_PADDING_H_
|