| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h"
- #include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/padding.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace depthwise_conv {
- namespace {
- constexpr int kInputTensor = 0;
- constexpr int kFilterTensor = 1;
- constexpr int kBiasTensor = 2;
- constexpr int kOutputTensor = 0;
- // Depthwise conv is quantized along dimension 3:
- // https://www.tensorflow.org/lite/performance/quantization_spec
- constexpr int kDepthwiseConvQuantizedDimension = 3;
- struct OpData {
- TfLitePaddingValues padding;
- // Cached tensor zero point values for quantized operations.
- int32_t input_zero_point;
- int32_t filter_zero_point;
- int32_t output_zero_point;
- // The scaling factor from input to output (aka the 'real multiplier') can
- // be represented as a fixed point multiplier plus a left shift.
- int32_t output_multiplier;
- int output_shift;
- // Per channel output multiplier and shift.
- int32_t* per_channel_output_multiplier;
- int32_t* per_channel_output_shift;
- // The range of the fused activation layer. For example for kNone and
- // uint8_t these would be 0 and 255.
- int32_t output_activation_min;
- int32_t output_activation_max;
- };
- TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
- TfLiteDepthwiseConvParams* params, int width,
- int height, int filter_width, int filter_height,
- const TfLiteType data_type, OpData* data) {
- bool has_bias = node->inputs->size == 3;
- // Check number of inputs/outputs
- TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
- TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
- int unused_output_height, unused_output_width;
- data->padding = ComputePaddingHeightWidth(
- params->stride_height, params->stride_width, 1, 1, height, width,
- filter_height, filter_width, params->padding, &unused_output_height,
- &unused_output_width);
- // Note that quantized inference requires that all tensors have their
- // parameters set. This is usually done during quantized training.
- if (data_type != kTfLiteFloat32) {
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
- const TfLiteTensor* bias =
- GetOptionalInputTensor(context, node, kBiasTensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
- return tflite::PopulateConvolutionQuantizationParams(
- context, input, filter, bias, output, params->activation,
- &data->output_multiplier, &data->output_shift,
- &data->output_activation_min, &data->output_activation_max,
- data->per_channel_output_multiplier,
- reinterpret_cast<int*>(data->per_channel_output_shift), num_channels);
- }
- return kTfLiteOk;
- }
- } // namespace
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* params =
- reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
- OpData* data = static_cast<OpData*>(node->user_data);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
- const TfLiteType data_type = input->type;
- int width = SizeOfDimension(input, 2);
- int height = SizeOfDimension(input, 1);
- int filter_width = SizeOfDimension(filter, 2);
- int filter_height = SizeOfDimension(filter, 1);
- // Per channel quantization is only needed for int8_t inference. For other
- // quantized types, only a single scale and zero point is needed.
- const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
- // Dynimically allocate per-channel quantization parameters.
- data->per_channel_output_multiplier =
- reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
- context, num_channels * sizeof(int32_t)));
- data->per_channel_output_shift =
- reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
- context, num_channels * sizeof(int32_t)));
- // All per-channel quantized tensors need valid zero point and scale arrays.
- if (input->type == kTfLiteInt8) {
- TF_LITE_ENSURE_EQ(context, filter->quantization.type,
- kTfLiteAffineQuantization);
- const auto* affine_quantization =
- reinterpret_cast<TfLiteAffineQuantization*>(
- filter->quantization.params);
- TF_LITE_ENSURE(context, affine_quantization);
- TF_LITE_ENSURE(context, affine_quantization->scale);
- TF_LITE_ENSURE(context, affine_quantization->zero_point);
- TF_LITE_ENSURE(
- context, affine_quantization->scale->size == 1 ||
- affine_quantization->scale->size ==
- filter->dims->data[kDepthwiseConvQuantizedDimension]);
- TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
- affine_quantization->zero_point->size);
- }
- TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, width, height,
- filter_width, filter_height, data_type,
- data));
- data->input_zero_point = input->params.zero_point;
- data->filter_zero_point = filter->params.zero_point;
- data->output_zero_point = output->params.zero_point;
- return kTfLiteOk;
- }
- void EvalFloat(TfLiteContext* context, TfLiteNode* node,
- TfLiteDepthwiseConvParams* params, const OpData& data,
- const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter,
- const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) {
- float output_activation_min, output_activation_max;
- CalculateActivationRange(params->activation, &output_activation_min,
- &output_activation_max);
- tflite::DepthwiseParams op_params;
- // Padding type is ignored, but still set.
- op_params.padding_type = PaddingType::kSame;
- op_params.padding_values.width = data.padding.width;
- op_params.padding_values.height = data.padding.height;
- op_params.stride_width = params->stride_width;
- op_params.stride_height = params->stride_height;
- op_params.dilation_width_factor = params->dilation_width_factor;
- op_params.dilation_height_factor = params->dilation_height_factor;
- op_params.depth_multiplier = params->depth_multiplier;
- op_params.float_activation_min = output_activation_min;
- op_params.float_activation_max = output_activation_max;
- tflite::reference_ops::DepthwiseConv(
- op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<float>(filter),
- tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData<float>(bias),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- }
- void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
- TfLiteDepthwiseConvParams* params,
- const OpData& data, const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* filter,
- const TfLiteEvalTensor* bias,
- TfLiteEvalTensor* output) {
- DepthwiseParams op_params;
- op_params.padding_type = PaddingType::kSame;
- op_params.padding_values.width = data.padding.width;
- op_params.padding_values.height = data.padding.height;
- op_params.stride_width = params->stride_width;
- op_params.stride_height = params->stride_height;
- op_params.dilation_width_factor = params->dilation_width_factor;
- op_params.dilation_height_factor = params->dilation_height_factor;
- op_params.depth_multiplier = params->depth_multiplier;
- op_params.input_offset = -data.input_zero_point;
- op_params.weights_offset = 0;
- op_params.output_offset = data.output_zero_point;
- // TODO(b/130439627): Use calculated value for clamping.
- op_params.quantized_activation_min = std::numeric_limits<int8_t>::min();
- op_params.quantized_activation_max = std::numeric_limits<int8_t>::max();
- reference_integer_ops::DepthwiseConvPerChannel(
- op_params, data.per_channel_output_multiplier,
- data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<int8_t>(filter),
- tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData<int32_t>(bias),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- }
- void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
- TfLiteDepthwiseConvParams* params, const OpData& data,
- const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias,
- TfLiteEvalTensor* output) {
- const int32_t input_offset = -data.input_zero_point;
- const int32_t filter_offset = -data.filter_zero_point;
- const int32_t output_offset = data.output_zero_point;
- tflite::DepthwiseParams op_params;
- // Padding type is ignored, but still set.
- op_params.padding_type = PaddingType::kSame;
- op_params.padding_values.width = data.padding.width;
- op_params.padding_values.height = data.padding.height;
- op_params.stride_width = params->stride_width;
- op_params.stride_height = params->stride_height;
- op_params.dilation_width_factor = params->dilation_width_factor;
- op_params.dilation_height_factor = params->dilation_height_factor;
- op_params.depth_multiplier = params->depth_multiplier;
- op_params.quantized_activation_min = data.output_activation_min;
- op_params.quantized_activation_max = data.output_activation_max;
- op_params.input_offset = input_offset;
- op_params.weights_offset = filter_offset;
- op_params.output_offset = output_offset;
- op_params.output_multiplier = data.output_multiplier;
- // Legacy ops used mixed left and right shifts. Now all are +ve-means-left.
- op_params.output_shift = -data.output_shift;
- tflite::reference_ops::DepthwiseConv(
- op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<uint8_t>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<uint8_t>(filter),
- tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData<int32_t>(bias),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* params =
- reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
- const OpData& data = *(static_cast<const OpData*>(node->user_data));
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- const TfLiteEvalTensor* filter =
- tflite::micro::GetEvalInput(context, node, kFilterTensor);
- const TfLiteEvalTensor* bias =
- (NumInputs(node) == 3)
- ? tflite::micro::GetEvalInput(context, node, kBiasTensor)
- : nullptr;
- // TODO(aselle): Consider whether float conv and quantized conv should be
- // separate ops to avoid dispatch overhead here.
- switch (input->type) { // Already know in/out types are same.
- case kTfLiteFloat32:
- EvalFloat(context, node, params, data, input, filter, bias, output);
- break;
- case kTfLiteInt8:
- EvalQuantizedPerChannel(context, node, params, data, input, filter, bias,
- output);
- break;
- case kTfLiteUInt8:
- EvalQuantized(context, node, params, data, input, filter, bias, output);
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
- TfLiteTypeGetName(input->type), input->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace depthwise_conv
- TfLiteRegistration Register_DEPTHWISE_CONV_2D() {
- return {/*init=*/depthwise_conv::Init,
- /*free=*/nullptr,
- /*prepare=*/depthwise_conv::Prepare,
- /*invoke=*/depthwise_conv::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|