| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/fully_connected.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace fully_connected {
- namespace {
- struct OpData {
- // The scaling factor from input to output (aka the 'real multiplier') can
- // be represented as a fixed point multiplier plus a left shift.
- int32_t output_multiplier;
- int output_shift;
- // The range of the fused activation layer. For example for kNone and
- // uint8_t these would be 0 and 255.
- int32_t output_activation_min;
- int32_t output_activation_max;
- // The index of the temporary tensor where the quantized inputs are cached.
- int input_quantized_index;
- // Cached zero point values of tensors.
- int32_t input_zero_point;
- int32_t filter_zero_point;
- int32_t output_zero_point;
- };
- constexpr int kInputTensor = 0;
- constexpr int kWeightsTensor = 1;
- constexpr int kBiasTensor = 2;
- constexpr int kOutputTensor = 0;
- TfLiteStatus CalculateOpData(TfLiteContext* context,
- TfLiteFusedActivation activation,
- TfLiteType data_type, const TfLiteTensor* input,
- const TfLiteTensor* filter,
- const TfLiteTensor* bias, TfLiteTensor* output,
- OpData* data) {
- TfLiteStatus status = kTfLiteOk;
- if (data_type != kTfLiteFloat32) {
- double real_multiplier = 0.0;
- TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler(
- context, input, filter, bias, output, &real_multiplier));
- int exponent;
- QuantizeMultiplier(real_multiplier, &data->output_multiplier, &exponent);
- data->output_shift = -exponent;
- TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
- context, activation, output, &data->output_activation_min,
- &data->output_activation_max));
- data->input_zero_point = input->params.zero_point;
- data->filter_zero_point = filter->params.zero_point;
- data->output_zero_point = output->params.zero_point;
- }
- return status;
- }
- } // namespace
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- const auto params =
- static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- const TfLiteTensor* filter = GetInput(context, node, kWeightsTensor);
- const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- TF_LITE_ENSURE_MSG(context, input->type == filter->type,
- "Hybrid models are not supported on TFLite Micro.");
- return CalculateOpData(context, params->activation, input->type, input,
- filter, bias, output, data);
- }
- TfLiteStatus EvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node,
- const OpData& data,
- const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* filter,
- const TfLiteEvalTensor* bias,
- TfLiteEvalTensor* output) {
- tflite::FullyConnectedParams op_params;
- op_params.input_offset = -data.input_zero_point;
- op_params.weights_offset = -data.filter_zero_point;
- op_params.output_offset = data.output_zero_point;
- op_params.output_multiplier = data.output_multiplier;
- // TODO(b/138810107): Figure out whether output shift should be inverted
- op_params.output_shift = -data.output_shift;
- op_params.quantized_activation_min = data.output_activation_min;
- op_params.quantized_activation_max = data.output_activation_max;
- reference_integer_ops::FullyConnected(
- op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<int8_t>(filter),
- tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData<int32_t>(bias),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- return kTfLiteOk;
- }
- TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
- const OpData& data, const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* filter,
- const TfLiteEvalTensor* bias,
- TfLiteEvalTensor* output) {
- const int32_t input_offset = -data.input_zero_point;
- const int32_t filter_offset = -data.filter_zero_point;
- const int32_t output_offset = data.output_zero_point;
- tflite::FullyConnectedParams op_params;
- op_params.input_offset = input_offset;
- op_params.weights_offset = filter_offset;
- op_params.output_offset = output_offset;
- op_params.output_multiplier = data.output_multiplier;
- // Legacy ops used mixed left and right shifts. Now all are +ve-means-left.
- op_params.output_shift = -data.output_shift;
- op_params.quantized_activation_min = data.output_activation_min;
- op_params.quantized_activation_max = data.output_activation_max;
- #define TF_LITE_FULLY_CONNECTED(output_data_type) \
- reference_ops::FullyConnected( \
- op_params, tflite::micro::GetTensorShape(input), \
- tflite::micro::GetTensorData<uint8_t>(input), \
- tflite::micro::GetTensorShape(filter), \
- tflite::micro::GetTensorData<uint8_t>(filter), \
- tflite::micro::GetTensorShape(bias), \
- tflite::micro::GetTensorData<int32_t>(bias), \
- tflite::micro::GetTensorShape(output), \
- tflite::micro::GetTensorData<output_data_type>(output))
- switch (output->type) {
- case kTfLiteUInt8:
- TF_LITE_FULLY_CONNECTED(uint8_t);
- break;
- case kTfLiteInt16:
- TF_LITE_FULLY_CONNECTED(int16_t);
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
- TfLiteTypeGetName(output->type), output->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node,
- TfLiteFusedActivation activation,
- const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* filter,
- const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) {
- float output_activation_min, output_activation_max;
- CalculateActivationRange(activation, &output_activation_min,
- &output_activation_max);
- tflite::FullyConnectedParams op_params;
- op_params.float_activation_min = output_activation_min;
- op_params.float_activation_max = output_activation_max;
- tflite::reference_ops::FullyConnected(
- op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<float>(filter),
- tflite::micro::GetTensorShape(bias),
- tflite::micro::GetTensorData<float>(bias),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->builtin_data != nullptr);
- const auto* params =
- static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- const TfLiteEvalTensor* filter =
- tflite::micro::GetEvalInput(context, node, kWeightsTensor);
- const TfLiteEvalTensor* bias =
- tflite::micro::GetEvalInput(context, node, kBiasTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- TFLITE_DCHECK(node->user_data != nullptr);
- const OpData& data = *(static_cast<const OpData*>(node->user_data));
- // Checks in Prepare ensure input, output and filter types are all the same.
- switch (input->type) {
- case kTfLiteFloat32:
- return EvalFloat(context, node, params->activation, input, filter, bias,
- output);
- case kTfLiteInt8:
- return EvalQuantizedInt8(context, node, data, input, filter, bias,
- output);
- case kTfLiteUInt8:
- return EvalQuantized(context, node, data, input, filter, bias, output);
- default:
- TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
- TfLiteTypeGetName(input->type), input->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace fully_connected
- TfLiteRegistration Register_FULLY_CONNECTED() {
- return {/*init=*/fully_connected::Init,
- /*free=*/nullptr,
- /*prepare=*/fully_connected::Prepare,
- /*invoke=*/fully_connected::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|