| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h"
- #include "tensorflow/lite/kernels/internal/reference/l2normalization.h"
- #include "tensorflow/lite/kernels/internal/tensor.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace l2norm {
- namespace {
- // This file has two implementation of L2Norm.
- enum KernelType {
- kReference,
- kGenericOptimized,
- };
- constexpr int kInputTensor = 0;
- constexpr int kOutputTensor = 0;
- } // namespace
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* params = reinterpret_cast<TfLiteL2NormParams*>(node->builtin_data);
- L2NormalizationParams* data =
- static_cast<L2NormalizationParams*>(node->user_data);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE(context, NumDimensions(input) <= 4);
- TF_LITE_ENSURE(context, output->type == kTfLiteFloat32 ||
- output->type == kTfLiteUInt8 ||
- output->type == kTfLiteInt8);
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
- data->input_zero_point = input->params.zero_point;
- } else if (output->type == kTfLiteFloat32) {
- data->input_zero_point = 0;
- }
- // TODO(ahentz): For some reason our implementations don't support
- // activations.
- TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone);
- return kTfLiteOk;
- }
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context,
- sizeof(L2NormalizationParams));
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- const L2NormalizationParams& data =
- *(static_cast<const L2NormalizationParams*>(node->user_data));
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- // TODO(b/143912164): instead of hardcode the epsilon here, we should read it
- // from tensorflow, i.e., adding a params.
- // We don't compute epsilon for quantized kernel:
- //
- // epsilon_float = (epsilon_quant - zp) * scale
- // so
- // espsilon_quant = epsilon_float / scale + zp
- // We know epsilon_float is just a very small number to avoid division by
- // zero error, and scale is > 1, so the integer value of epsilon for quant
- // is just dominated by the zero point.
- // Also, GetInvSqrtQuantizedMultiplierExp handles the scenario where the sum
- // of input value squared is zero case well.
- // So we don't even need to do handle the epsilon for quantized kernel case.
- const float epsilon = 1e-6f;
- if (output->type == kTfLiteFloat32) {
- reference_ops::L2Normalization(data, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output),
- epsilon);
- } else if (output->type == kTfLiteUInt8) {
- reference_ops::L2Normalization(
- data, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<uint8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- } else if (output->type == kTfLiteInt8) {
- const auto input_shape = tflite::micro::GetTensorShape(input);
- const auto output_shape = tflite::micro::GetTensorShape(output);
- const int trailing_dim = input_shape.DimensionsCount() - 1;
- const int depth =
- MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
- const int outer_size =
- MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
- reference_integer_ops::L2Normalization(
- data.input_zero_point, outer_size, depth,
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorData<int8_t>(output));
- } else {
- TF_LITE_KERNEL_LOG(context, "Output type is %s, requires float.",
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace l2norm
- TfLiteRegistration Register_L2NORM_REF() {
- return {/*init=*/l2norm::Init,
- /*free=*/nullptr,
- /*prepare=*/l2norm::Prepare,
- /*invoke=*/l2norm::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- TfLiteRegistration Register_L2_NORMALIZATION() { return Register_L2NORM_REF(); }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|