| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/reference/binary_function.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace logical {
- namespace {
- // Input/output tensor index.
- constexpr int kInputTensor1 = 0;
- constexpr int kInputTensor2 = 1;
- constexpr int kOutputTensor = 0;
- TfLiteStatus LogicalImpl(TfLiteContext* context, TfLiteNode* node,
- bool (*func)(bool, bool)) {
- const TfLiteEvalTensor* input1 =
- tflite::micro::GetEvalInput(context, node, kInputTensor1);
- const TfLiteEvalTensor* input2 =
- tflite::micro::GetEvalInput(context, node, kInputTensor2);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- if (tflite::micro::HaveSameShapes(input1, input2)) {
- reference_ops::BinaryFunction<bool, bool, bool>(
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<bool>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<bool>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<bool>(output), func);
- } else {
- reference_ops::BroadcastBinaryFunction4DSlow<bool, bool, bool>(
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<bool>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<bool>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<bool>(output), func);
- }
- return kTfLiteOk;
- }
- bool LogicalOr(bool x, bool y) { return x || y; }
- TfLiteStatus LogicalOrEval(TfLiteContext* context, TfLiteNode* node) {
- return LogicalImpl(context, node, LogicalOr);
- }
- bool LogicalAnd(bool x, bool y) { return x && y; }
- TfLiteStatus LogicalAndEval(TfLiteContext* context, TfLiteNode* node) {
- return LogicalImpl(context, node, LogicalAnd);
- }
- } // namespace
- } // namespace logical
- TfLiteRegistration Register_LOGICAL_OR() {
- // Init, Free, Prepare, Eval are satisfying the Interface required by
- // TfLiteRegistration.
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/logical::LogicalOrEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- TfLiteRegistration Register_LOGICAL_AND() {
- // Init, Free, Prepare, Eval are satisfying the Interface required by
- // TfLiteRegistration.
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/logical::LogicalAndEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|