| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/logistic.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace activations {
- namespace {
- constexpr int kInputTensor = 0;
- constexpr int kOutputTensor = 0;
- struct OpData {
- int32_t input_zero_point;
- int32_t input_range_radius;
- int32_t input_multiplier;
- int input_left_shift;
- };
- TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
- OpData* data) {
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- if (input->type == kTfLiteInt8) {
- TF_LITE_ENSURE_EQ(context, output->params.zero_point,
- std::numeric_limits<int8_t>::min());
- static constexpr int kInputIntegerBits = 4;
- const double input_real_multiplier =
- static_cast<double>(input->params.scale) *
- static_cast<double>(1 << (31 - kInputIntegerBits));
- data->input_zero_point = input->params.zero_point;
- const double q = std::frexp(input_real_multiplier, &data->input_left_shift);
- data->input_multiplier = static_cast<int32_t>(TfLiteRound(q * (1ll << 31)));
- data->input_range_radius =
- CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31);
- }
- return kTfLiteOk;
- }
- } // namespace
- void* LogisticInit(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus LogisticPrepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- return CalculateArithmeticOpData(context, node, data);
- }
- TfLiteStatus LogisticEval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- TFLITE_DCHECK(node->user_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- if (input->type == kTfLiteFloat32) {
- switch (output->type) {
- case kTfLiteFloat32: {
- reference_ops::Logistic(tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- }
- default:
- TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else if (input->type == kTfLiteInt8) {
- switch (output->type) {
- case kTfLiteInt8: {
- reference_integer_ops::Logistic(
- data->input_zero_point, data->input_range_radius,
- data->input_multiplier, data->input_left_shift,
- NumElements(input->dims),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorData<int8_t>(output));
- return kTfLiteOk;
- }
- default:
- TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else {
- // TODO(b/141211002): Also support other data types once we have supported
- // temporary tensors in TFLM.
- TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace activations
- TfLiteRegistration Register_LOGISTIC() {
- return {/*init=*/activations::LogisticInit,
- /*free=*/nullptr,
- /*prepare=*/activations::LogisticPrepare,
- /*invoke=*/activations::LogisticEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|