| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/pad.h"
- #include <string.h>
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace pad {
- namespace {
- struct OpData {
- PadParams params;
- int32_t output_zero_point;
- };
- } // namespace
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- TF_LITE_ENSURE(context, NumInputs(node) == 2 || NumInputs(node) == 3);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- const TfLiteTensor* input = GetInput(context, node, /*index=*/0);
- const TfLiteTensor* paddings = GetInput(context, node, /*index=*/1);
- const TfLiteTensor* constant_values =
- NumInputs(node) == 3 ? GetInput(context, node, /*index=*/2) : nullptr;
- TfLiteTensor* output = GetOutput(context, node, /*index=*/0);
- TF_LITE_ENSURE_EQ(context, input->type, output->type);
- // Current implementations rely on the inputs being <= 4D.
- TF_LITE_ENSURE(context, NumDimensions(input) <=
- reference_ops::PadKernelMaxDimensionCount());
- if (constant_values != nullptr) {
- TF_LITE_ENSURE_EQ(context, input->type, constant_values->type);
- // Ensure that constant_values is a scalar.
- TF_LITE_ENSURE_EQ(context, NumElements(constant_values), 1);
- }
- // There must be a pair of paddings for each output dimension.
- TF_LITE_ENSURE_EQ(context, GetTensorShape(paddings).FlatSize(),
- output->dims->size * 2);
- // On Micro, outputs must be properly sized by the converter.
- // NOTE: This data is only available because the paddings buffer is stored in
- // the flatbuffer:
- TF_LITE_ENSURE(context, IsConstantTensor(paddings));
- const int32_t* paddings_data = GetTensorData<int32_t>(paddings);
- for (int i = 0; i < output->dims->size; i++) {
- int output_dim = output->dims->data[i];
- int expected_dim =
- input->dims->data[i] + paddings_data[i * 2] + paddings_data[i * 2 + 1];
- TF_LITE_ENSURE_EQ(context, output_dim, expected_dim);
- }
- // Calculate OpData:
- data->params.resizing_category = ResizingCategory::kGenericResize;
- const int paddings_total = GetTensorShape(paddings).FlatSize();
- if (paddings_total == 8 && (paddings_data[0] == 0 && paddings_data[1] == 0) &&
- (paddings_data[6] == 0 && paddings_data[7] == 0)) {
- data->params.resizing_category = ResizingCategory::kImageStyle;
- }
- const int num_input_dimensions = NumDimensions(input);
- data->params.left_padding_count = num_input_dimensions;
- data->params.right_padding_count = num_input_dimensions;
- for (int idx = num_input_dimensions - 1; idx >= 0; --idx) {
- data->params.left_padding[idx] = paddings_data[idx * 2];
- data->params.right_padding[idx] = paddings_data[idx * 2 + 1];
- }
- if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) {
- if (constant_values == nullptr) {
- // Quantized Pad requires that 0 is represented in the quantized
- // range.
- if (input->type == kTfLiteUInt8) {
- TF_LITE_ENSURE(context, output->params.zero_point >=
- std::numeric_limits<uint8_t>::min());
- TF_LITE_ENSURE(context, output->params.zero_point <=
- std::numeric_limits<uint8_t>::max());
- } else {
- TF_LITE_ENSURE(context, output->params.zero_point >=
- std::numeric_limits<int8_t>::min());
- TF_LITE_ENSURE(context, output->params.zero_point <=
- std::numeric_limits<int8_t>::max());
- }
- } else {
- // Quantized Pad requires that 'constant_values' is represented in the
- // same quantized range as the input and output tensors.
- TF_LITE_ENSURE_EQ(context, output->params.zero_point,
- constant_values->params.zero_point);
- TF_LITE_ENSURE_EQ(context, static_cast<double>(output->params.scale),
- static_cast<double>(constant_values->params.scale));
- }
- data->output_zero_point = output->params.zero_point;
- }
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- const OpData* data = static_cast<const OpData*>(node->user_data);
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, /*index=*/0);
- const TfLiteEvalTensor* constant_values =
- NumInputs(node) == 3
- ? tflite::micro::GetEvalInput(context, node, /*index=*/2)
- : nullptr;
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, /*index=*/0);
- switch (input->type) {
- case kTfLiteFloat32: {
- float pad_value =
- constant_values == nullptr
- ? 0.f
- : *tflite::micro::GetTensorData<float>(constant_values);
- if (data->params.resizing_category == ResizingCategory::kImageStyle) {
- reference_ops::PadImageStyle(
- data->params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input), &pad_value,
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- } else {
- reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- &pad_value, tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- }
- } break;
- case kTfLiteUInt8: {
- uint8_t pad_value;
- if (constant_values == nullptr) {
- pad_value = static_cast<uint8_t>(data->output_zero_point);
- } else {
- pad_value = *tflite::micro::GetTensorData<uint8_t>(constant_values);
- }
- if (data->params.resizing_category == ResizingCategory::kImageStyle) {
- reference_ops::PadImageStyle(
- data->params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<uint8_t>(input), &pad_value,
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- } else {
- reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<uint8_t>(input),
- &pad_value, tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- }
- } break;
- case kTfLiteInt8: {
- int8_t pad_value;
- if (constant_values == nullptr) {
- pad_value = static_cast<uint8_t>(data->output_zero_point);
- } else {
- pad_value = *tflite::micro::GetTensorData<int8_t>(constant_values);
- }
- if (data->params.resizing_category == ResizingCategory::kImageStyle) {
- reference_ops::PadImageStyle(
- data->params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input), &pad_value,
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- } else {
- reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- &pad_value, tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- }
- } break;
- case kTfLiteInt32: {
- int32_t pad_value =
- constant_values == nullptr
- ? 0
- : *tflite::micro::GetTensorData<int32_t>(constant_values);
- reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int32_t>(input),
- &pad_value, tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int32_t>(output));
- } break;
- default:
- TF_LITE_KERNEL_LOG(context, "Type %s not currently supported by Pad.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- #undef TF_LITE_PAD
- return kTfLiteOk;
- }
- } // namespace pad
- TfLiteRegistration Register_PAD() {
- return {/*init=*/pad::Init,
- /*free=*/nullptr,
- /*prepare=*/pad::Prepare,
- /*invoke=*/pad::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- // Also register Pad as PadV2.
- TfLiteRegistration Register_PADV2() {
- return {/*init=*/pad::Init,
- /*free=*/nullptr,
- /*prepare=*/pad::Prepare,
- /*invoke=*/pad::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|