| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/quantize.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/requantize.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_utils.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace quantize {
- struct OpData {
- tflite::QuantizationParams quantization_params;
- // The scaling factor from input to output (aka the 'real multiplier') can
- // be represented as a fixed point multiplier plus a left shift.
- int32_t output_multiplier;
- int output_shift;
- int32_t input_zero_point;
- };
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- const TfLiteTensor* input = GetInput(context, node, 0);
- TfLiteTensor* output = GetOutput(context, node, 0);
- // TODO(b/128934713): Add support for fixed-point per-channel quantization.
- // Currently this only support affine per-layer quantization.
- TF_LITE_ENSURE_EQ(context, output->quantization.type,
- kTfLiteAffineQuantization);
- const auto* affine_quantization =
- reinterpret_cast<TfLiteAffineQuantization*>(output->quantization.params);
- TF_LITE_ENSURE(context, affine_quantization);
- TF_LITE_ENSURE(context, affine_quantization->scale);
- TF_LITE_ENSURE(context, affine_quantization->scale->size == 1);
- TF_LITE_ENSURE(context, input->type == kTfLiteFloat32 ||
- input->type == kTfLiteInt16 ||
- input->type == kTfLiteInt8);
- TF_LITE_ENSURE(context,
- output->type == kTfLiteUInt8 || output->type == kTfLiteInt8);
- if ((input->type == kTfLiteInt16 || input->type == kTfLiteInt8) &&
- output->type == kTfLiteInt8) {
- double effective_scale =
- static_cast<double>(input->params.scale / output->params.scale);
- QuantizeMultiplier(effective_scale, &data->output_multiplier,
- &data->output_shift);
- }
- data->quantization_params.zero_point = output->params.zero_point;
- data->quantization_params.scale = static_cast<double>(output->params.scale);
- data->input_zero_point = input->params.zero_point;
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
- TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
- if (input->type == kTfLiteFloat32) {
- switch (output->type) {
- case kTfLiteInt8:
- reference_ops::AffineQuantize(
- data->quantization_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- case kTfLiteUInt8:
- reference_ops::AffineQuantize(
- data->quantization_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else if (input->type == kTfLiteInt16) {
- size_t size = ElementCount(*input->dims);
- switch (output->type) {
- case kTfLiteInt8:
- reference_ops::Requantize(tflite::micro::GetTensorData<int16_t>(input),
- size, data->output_multiplier,
- data->output_shift, data->input_zero_point,
- data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else if (input->type == kTfLiteInt8) {
- // Int8 to Int8 requantization, required if the input and output tensors
- // have different scales and/or zero points.
- size_t size = ElementCount(*input->dims);
- switch (output->type) {
- case kTfLiteInt8:
- reference_ops::Requantize(tflite::micro::GetTensorData<int8_t>(input),
- size, data->output_multiplier,
- data->output_shift, data->input_zero_point,
- data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else {
- TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace quantize
- // This Op (QUANTIZE) quantizes the input and produces quantized output.
- // AffineQuantize takes scale and zero point and quantizes the float value to
- // quantized output, in int8_t or uint8_t format.
- TfLiteRegistration Register_QUANTIZE() {
- return {/*init=*/quantize::Init,
- /*free=*/nullptr,
- /*prepare=*/quantize::Prepare,
- /*invoke=*/quantize::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|