| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/reduce.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_utils.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace reduce {
- constexpr int kMaxNumberOfAxis = 4;
- constexpr int kMaxNumberOfReducedAxis = 2;
- TfLiteStatus PrepareSimple(TfLiteContext* context, TfLiteNode* node) {
- // Inputs Tensor (dtype depends on quantization):
- // [0] = Input
- // [1] = Axis
- // Outputs Tensor (dtype depends on quantization):
- // [0] = Output
- // Validate number of inputs and outputs
- TF_LITE_ENSURE_EQ(context, node->inputs->size, 2);
- TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
- // Validate axis type
- const TfLiteTensor* axis = GetInput(context, node, 1);
- TF_LITE_ENSURE_TYPES_EQ(context, axis->type, kTfLiteInt32);
- return kTfLiteOk;
- }
- TfLiteStatus PrepareMeanOrSum(TfLiteContext* context, TfLiteNode* node) {
- TF_LITE_ENSURE_OK(context, PrepareSimple(context, node));
- // TODO(b/144955155): Support uint8_t(b/144955155) and int8_t(b/144955018)
- return kTfLiteOk;
- }
- void ResolveAxis(const int* axis_data, int axis_count,
- tflite::MeanParams* op_params) {
- int i = 0;
- for (; i < axis_count; ++i) {
- op_params->axis[i] = static_cast<int16_t>(axis_data[i]);
- }
- for (; i < 4; ++i) {
- op_params->axis[i] = 1;
- }
- op_params->axis_count = axis_count;
- }
- TfLiteStatus EvalMean(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
- const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 1);
- TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
- TfLiteReducerParams* params =
- reinterpret_cast<TfLiteReducerParams*>(node->builtin_data);
- int num_axis = static_cast<int>(ElementCount(*axis->dims));
- int temp_index[kMaxNumberOfAxis];
- int resolved_axis[kMaxNumberOfReducedAxis];
- switch (input->type) {
- case kTfLiteFloat32: {
- tflite::MeanParams op_params;
- ResolveAxis(tflite::micro::GetTensorData<int>(axis), num_axis,
- &op_params);
- // TODO(b/146571391): Support only 4D Input and 2D Axis for Mean until
- // scratch tensor allocation has been implemented in (b/132070898)
- bool is_valid_inputs =
- (input->dims->size == 4 && op_params.axis_count == 2 &&
- ((op_params.axis[0] == 1 && op_params.axis[1] == 2) ||
- (op_params.axis[0] == 2 && op_params.axis[1] == 1)));
- TF_LITE_ENSURE_MSG(
- context, is_valid_inputs == true,
- "Number of Input "
- "dimensions != 4 OR the Axis is not either [1, 2] or [2, 1]");
- // TODO(b/139102329): Handle the below special case in the combined
- // reference method.
- // Defer to specialized implementation for 4D Mean across axes 1 & 2.
- if (params->keep_dims) {
- reference_ops::Mean(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- } else {
- TF_LITE_ENSURE(
- context,
- reference_ops::Mean(
- tflite::micro::GetTensorData<float>(input), input->dims->data,
- input->dims->size, tflite::micro::GetTensorData<float>(output),
- output->dims->data, output->dims->size,
- tflite::micro::GetTensorData<int>(axis), num_axis,
- params->keep_dims, temp_index, resolved_axis,
- tflite::micro::GetTensorData<float>(output)));
- }
- } break;
- default:
- // TODO(b/144955155): Support uint8_t(b/144955155) and int8_t(b/144955018)
- TF_LITE_ENSURE_MSG(context, false,
- "Currently, only float32 input type "
- "is supported.");
- }
- return kTfLiteOk;
- }
- } // namespace reduce
- TfLiteRegistration Register_MEAN() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/reduce::PrepareMeanOrSum,
- /*invoke=*/reduce::EvalMean,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|