| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/strided_slice.h"
- #include <cmath>
- #include <cstring>
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace strided_slice {
- constexpr int kInputTensor = 0;
- constexpr int kBeginTensor = 1;
- constexpr int kEndTensor = 2;
- constexpr int kStridesTensor = 3;
- constexpr int kOutputTensor = 0;
- struct StridedSliceContext {
- StridedSliceContext(TfLiteContext* context, TfLiteNode* node) {
- params = reinterpret_cast<TfLiteStridedSliceParams*>(node->builtin_data);
- input = GetInput(context, node, kInputTensor);
- begin = GetInput(context, node, kBeginTensor);
- end = GetInput(context, node, kEndTensor);
- strides = GetInput(context, node, kStridesTensor);
- output = GetOutput(context, node, kOutputTensor);
- dims = NumDimensions(input);
- }
- const TfLiteStridedSliceParams* params;
- const TfLiteTensor* input;
- const TfLiteTensor* begin;
- const TfLiteTensor* end;
- const TfLiteTensor* strides;
- TfLiteTensor* output;
- int dims;
- };
- // This Op only supports 1-4D cases and since we use the reference 4D
- // implementation, the 1-3D tensors are mapped to 4D.
- const int kMaxDim = 4;
- tflite::StridedSliceParams BuildStridedSliceParams(
- StridedSliceContext* op_context) {
- tflite::StridedSliceParams op_params;
- op_params.start_indices_count = op_context->dims;
- op_params.stop_indices_count = op_context->dims;
- op_params.strides_count = op_context->dims;
- for (int i = 0; i < op_context->dims; ++i) {
- op_params.start_indices[i] = GetTensorData<int32_t>(op_context->begin)[i];
- op_params.stop_indices[i] = GetTensorData<int32_t>(op_context->end)[i];
- op_params.strides[i] = GetTensorData<int32_t>(op_context->strides)[i];
- }
- op_params.begin_mask = op_context->params->begin_mask;
- op_params.ellipsis_mask = 0;
- op_params.end_mask = op_context->params->end_mask;
- op_params.new_axis_mask = 0;
- op_params.shrink_axis_mask = op_context->params->shrink_axis_mask;
- return op_params;
- }
- // Processes the indexing tensors (begin, end and strides) to resize the
- // output tensor. This function is callable from both Prepare() and Eval() as
- // long as the caller ensures the indexing tensors are present.
- TfLiteStatus CheckOutputSize(TfLiteContext* context,
- StridedSliceContext* op_context) {
- using ::tflite::strided_slice::StartForAxis;
- using ::tflite::strided_slice::StopForAxis;
- TfLiteIntArray* output_shape = op_context->output->dims;
- int shape_size = 0;
- auto op_params = BuildStridedSliceParams(op_context);
- auto input_shape = GetTensorShape(op_context->input);
- for (int idx = 0; idx < op_context->dims; ++idx) {
- int32_t stride = GetTensorData<int32_t>(op_context->strides)[idx];
- TF_LITE_ENSURE_MSG(context, stride != 0, "stride value has to be non-zero");
- int32_t begin = StartForAxis(op_params, input_shape, idx);
- int32_t end = StopForAxis(op_params, input_shape, idx, begin);
- // When shrinking an axis, the end position does not matter (and can be
- // incorrect when negative indexing is used, see Issue #19260). Always use
- // begin + 1 to generate a length 1 slice, since begin has
- // already been adjusted for negative indices by StartForAxis.
- const bool shrink_axis = op_context->params->shrink_axis_mask & (1 << idx);
- if (shrink_axis) {
- end = begin + 1;
- }
- // This is valid for both positive and negative strides
- int32_t dim_shape = std::ceil((end - begin) / static_cast<float>(stride));
- dim_shape = dim_shape < 0 ? 0 : dim_shape;
- if (!shrink_axis) {
- TF_LITE_ENSURE_EQ(context, output_shape->data[shape_size], dim_shape);
- shape_size++;
- }
- }
- TF_LITE_ENSURE_EQ(context, output_shape->size, shape_size);
- return kTfLiteOk;
- }
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(StridedSliceParams));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- StridedSliceParams* op_params =
- static_cast<StridedSliceParams*>(node->user_data);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 4);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- StridedSliceContext op_context(context, node);
- TF_LITE_ENSURE_MSG(context, op_context.dims <= kMaxDim,
- "input dim should not exceed 4");
- auto params = BuildStridedSliceParams(&op_context);
- memcpy(op_params, ¶ms, sizeof(StridedSliceParams));
- return CheckOutputSize(context, &op_context);
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- const StridedSliceParams& op_params =
- *(static_cast<const StridedSliceParams*>(node->user_data));
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- switch (output->type) {
- case kTfLiteFloat32:
- reference_ops::StridedSlice(op_params,
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- break;
- case kTfLiteUInt8:
- reference_ops::StridedSlice(
- op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<uint8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- break;
- case kTfLiteInt8:
- reference_ops::StridedSlice(op_params,
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
- TfLiteTypeGetName(input->type), input->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace strided_slice
- TfLiteRegistration Register_STRIDED_SLICE() {
- return {/*init=*/strided_slice::Init,
- /*free=*/nullptr,
- /*prepare=*/strided_slice::Prepare,
- /*invoke=*/strided_slice::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|