| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/sub.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace sub {
- constexpr int kInputTensor1 = 0;
- constexpr int kInputTensor2 = 1;
- constexpr int kOutputTensor = 0;
- struct OpData {
- bool requires_broadcast;
- // These fields are used in both the general 8-bit -> 8bit quantized path,
- // and the special 16-bit -> 16bit quantized path
- int input1_shift;
- int input2_shift;
- int32_t output_activation_min;
- int32_t output_activation_max;
- // These fields are used only in the general 8-bit -> 8bit quantized path
- int32_t input1_multiplier;
- int32_t input2_multiplier;
- int32_t output_multiplier;
- int output_shift;
- int left_shift;
- int32_t input1_offset;
- int32_t input2_offset;
- int32_t output_offset;
- };
- TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteSubParams* params,
- const TfLiteTensor* input1,
- const TfLiteTensor* input2, TfLiteTensor* output,
- OpData* data) {
- data->requires_broadcast = !HaveSameShapes(input1, input2);
- if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
- // 8bit -> 8bit general quantized path, with general rescalings
- data->input1_offset = -input1->params.zero_point;
- data->input2_offset = -input2->params.zero_point;
- data->output_offset = output->params.zero_point;
- data->left_shift = 20;
- const float twice_max_input_scale =
- 2 * std::max(input1->params.scale, input2->params.scale);
- const double real_input1_multiplier =
- static_cast<double>(input1->params.scale / twice_max_input_scale);
- const double real_input2_multiplier =
- static_cast<double>(input2->params.scale / twice_max_input_scale);
- const double real_output_multiplier =
- static_cast<double>(twice_max_input_scale /
- ((1 << data->left_shift) * output->params.scale));
- QuantizeMultiplierSmallerThanOneExp(
- real_input1_multiplier, &data->input1_multiplier, &data->input1_shift);
- QuantizeMultiplierSmallerThanOneExp(
- real_input2_multiplier, &data->input2_multiplier, &data->input2_shift);
- QuantizeMultiplierSmallerThanOneExp(
- real_output_multiplier, &data->output_multiplier, &data->output_shift);
- TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
- context, params->activation, output, &data->output_activation_min,
- &data->output_activation_max));
- }
- return kTfLiteOk;
- }
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- OpData* data = static_cast<OpData*>(node->user_data);
- auto* params = reinterpret_cast<TfLiteSubParams*>(node->builtin_data);
- const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
- const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE_STATUS(
- CalculateOpData(context, params, input1, input2, output, data));
- return kTfLiteOk;
- }
- void EvalSub(TfLiteContext* context, TfLiteNode* node, TfLiteSubParams* params,
- const OpData* data, const TfLiteEvalTensor* input1,
- const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
- float output_activation_min, output_activation_max;
- CalculateActivationRange(params->activation, &output_activation_min,
- &output_activation_max);
- tflite::ArithmeticParams op_params;
- SetActivationParams(output_activation_min, output_activation_max, &op_params);
- if (data->requires_broadcast) {
- tflite::reference_ops::BroadcastSubSlow(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<float>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<float>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- } else {
- tflite::reference_ops::SubWithActivation(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<float>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<float>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- }
- }
- TfLiteStatus EvalSubQuantized(TfLiteContext* context, TfLiteNode* node,
- TfLiteSubParams* params, const OpData* data,
- const TfLiteEvalTensor* input1,
- const TfLiteEvalTensor* input2,
- TfLiteEvalTensor* output) {
- if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
- tflite::ArithmeticParams op_params;
- op_params.left_shift = data->left_shift;
- op_params.input1_offset = data->input1_offset;
- op_params.input1_multiplier = data->input1_multiplier;
- op_params.input1_shift = data->input1_shift;
- op_params.input2_offset = data->input2_offset;
- op_params.input2_multiplier = data->input2_multiplier;
- op_params.input2_shift = data->input2_shift;
- op_params.output_offset = data->output_offset;
- op_params.output_multiplier = data->output_multiplier;
- op_params.output_shift = data->output_shift;
- SetActivationParams(data->output_activation_min,
- data->output_activation_max, &op_params);
- bool need_broadcast = reference_ops::ProcessBroadcastShapes(
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorShape(input2), &op_params);
- if (output->type == kTfLiteInt8) {
- if (need_broadcast) {
- tflite::reference_ops::BroadcastSubSlow(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<int8_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<int8_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- } else {
- tflite::reference_ops::Sub(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<int8_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<int8_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- }
- } else {
- if (need_broadcast) {
- tflite::reference_ops::BroadcastSubSlow(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<uint8_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<uint8_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- } else {
- tflite::reference_ops::Sub(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<uint8_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<uint8_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<uint8_t>(output));
- }
- }
- }
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- auto* params = reinterpret_cast<TfLiteSubParams*>(node->builtin_data);
- const TfLiteEvalTensor* input1 =
- tflite::micro::GetEvalInput(context, node, kInputTensor1);
- const TfLiteEvalTensor* input2 =
- tflite::micro::GetEvalInput(context, node, kInputTensor2);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- TFLITE_DCHECK(node->user_data != nullptr);
- const OpData& data = *(static_cast<const OpData*>(node->user_data));
- if (output->type == kTfLiteFloat32) {
- EvalSub(context, node, params, &data, input1, input2, output);
- } else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
- TF_LITE_ENSURE_OK(context, EvalSubQuantized(context, node, params, &data,
- input1, input2, output));
- } else {
- TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
- TfLiteTypeGetName(output->type), output->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace sub
- TfLiteRegistration Register_SUB() {
- return {/*init=*/sub::Init,
- /*free=*/nullptr,
- /*prepare=*/sub::Prepare,
- /*invoke=*/sub::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|