| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace unpack {
- namespace {
- constexpr int kInputTensor = 0;
- template <typename T>
- TfLiteStatus UnpackImpl(TfLiteContext* context, TfLiteNode* node,
- const TfLiteEvalTensor* input, int output_count,
- int axis) {
- const TfLiteEvalTensor* output0 =
- tflite::micro::GetEvalOutput(context, node, 0);
- const TfLiteIntArray* input_dims = input->dims;
- const TfLiteIntArray* output_dims = output0->dims;
- const int dimensions = input_dims->size;
- if (axis < 0) {
- axis += input->dims->size;
- }
- TFLITE_DCHECK_LT(axis, dimensions);
- int outer_size = 1;
- for (int i = 0; i < axis; ++i) {
- outer_size *= input_dims->data[i];
- }
- int copy_size = 1;
- for (int i = axis + 1; i < dimensions; ++i) {
- copy_size *= input_dims->data[i];
- }
- int output_size = 1;
- for (int i = 0; i < output_dims->size; ++i) {
- output_size *= output_dims->data[i];
- }
- TFLITE_DCHECK_EQ(output_size, copy_size * outer_size);
- const T* input_data = tflite::micro::GetTensorData<T>(input);
- for (int i = 0; i < output_count; ++i) {
- TfLiteEvalTensor* t = tflite::micro::GetEvalOutput(context, node, i);
- T* output_data = tflite::micro::GetTensorData<T>(t);
- for (int k = 0; k < outer_size; ++k) {
- T* output_ptr = output_data + copy_size * k;
- int loc = k * output_count * copy_size + i * copy_size;
- const T* input_ptr = input_data + loc;
- for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j];
- }
- }
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TfLiteUnpackParams* data =
- reinterpret_cast<TfLiteUnpackParams*>(node->builtin_data);
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- switch (input->type) {
- case kTfLiteFloat32: {
- return UnpackImpl<float>(context, node, input, data->num, data->axis);
- }
- case kTfLiteInt32: {
- return UnpackImpl<int32_t>(context, node, input, data->num, data->axis);
- }
- case kTfLiteUInt8: {
- return UnpackImpl<uint8_t>(context, node, input, data->num, data->axis);
- }
- case kTfLiteInt8: {
- return UnpackImpl<int8_t>(context, node, input, data->num, data->axis);
- }
- default: {
- TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported by unpack.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- }
- return kTfLiteOk;
- }
- } // namespace
- } // namespace unpack
- TfLiteRegistration Register_UNPACK() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/unpack::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|