| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/memory_helpers.h"
- #include <cstddef>
- #include <cstdint>
- #include "flatbuffers/flatbuffers.h" // from @flatbuffers
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/core/api/error_reporter.h"
- #include "tensorflow/lite/core/api/flatbuffer_conversions.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/schema/schema_generated.h"
- namespace tflite {
- uint8_t* AlignPointerUp(uint8_t* data, size_t alignment) {
- std::uintptr_t data_as_uintptr_t = reinterpret_cast<std::uintptr_t>(data);
- uint8_t* aligned_result = reinterpret_cast<uint8_t*>(
- ((data_as_uintptr_t + (alignment - 1)) / alignment) * alignment);
- return aligned_result;
- }
- uint8_t* AlignPointerDown(uint8_t* data, size_t alignment) {
- std::uintptr_t data_as_uintptr_t = reinterpret_cast<std::uintptr_t>(data);
- uint8_t* aligned_result =
- reinterpret_cast<uint8_t*>((data_as_uintptr_t / alignment) * alignment);
- return aligned_result;
- }
- size_t AlignSizeUp(size_t size, size_t alignment) {
- size_t aligned_size = (((size + (alignment - 1)) / alignment) * alignment);
- return aligned_size;
- }
- TfLiteStatus TfLiteTypeSizeOf(TfLiteType type, size_t* size) {
- switch (type) {
- case kTfLiteFloat32:
- *size = sizeof(float);
- break;
- case kTfLiteInt16:
- *size = sizeof(int16_t);
- break;
- case kTfLiteInt32:
- *size = sizeof(int32_t);
- break;
- case kTfLiteUInt8:
- *size = sizeof(uint8_t);
- break;
- case kTfLiteInt8:
- *size = sizeof(int8_t);
- break;
- case kTfLiteInt64:
- *size = sizeof(int64_t);
- break;
- case kTfLiteBool:
- *size = sizeof(bool);
- break;
- case kTfLiteComplex64:
- *size = sizeof(float) * 2;
- break;
- case kTfLiteComplex128:
- *size = sizeof(double) * 2;
- break;
- default:
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- TfLiteStatus BytesRequiredForTensor(const tflite::Tensor& flatbuffer_tensor,
- size_t* bytes, size_t* type_size,
- ErrorReporter* error_reporter) {
- int element_count = 1;
- // If flatbuffer_tensor.shape == nullptr, then flatbuffer_tensor is a scalar
- // so has 1 element.
- if (flatbuffer_tensor.shape() != nullptr) {
- for (size_t n = 0; n < flatbuffer_tensor.shape()->Length(); ++n) {
- element_count *= flatbuffer_tensor.shape()->Get(n);
- }
- }
- TfLiteType tf_lite_type;
- TF_LITE_ENSURE_STATUS(ConvertTensorType(flatbuffer_tensor.type(),
- &tf_lite_type, error_reporter));
- TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(tf_lite_type, type_size));
- *bytes = element_count * (*type_size);
- return kTfLiteOk;
- }
- TfLiteStatus TfLiteEvalTensorByteLength(const TfLiteEvalTensor* eval_tensor,
- size_t* out_bytes) {
- TFLITE_DCHECK(out_bytes != nullptr);
- int element_count = 1;
- // If eval_tensor->dims == nullptr, then tensor is a scalar so has 1 element.
- if (eval_tensor->dims != nullptr) {
- for (int n = 0; n < eval_tensor->dims->size; ++n) {
- element_count *= eval_tensor->dims->data[n];
- }
- }
- size_t type_size;
- TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(eval_tensor->type, &type_size));
- *out_bytes = element_count * type_size;
- return kTfLiteOk;
- }
- TfLiteStatus AllocateOutputDimensionsFromInput(TfLiteContext* context,
- const TfLiteTensor* input1,
- const TfLiteTensor* input2,
- TfLiteTensor* output) {
- const TfLiteTensor* input = nullptr;
- TF_LITE_ENSURE(context, input1->dims != nullptr);
- TF_LITE_ENSURE(context, input2->dims != nullptr);
- TF_LITE_ENSURE(context, output->dims->size == 0);
- input = input1->dims->size > input2->dims->size ? input1 : input2;
- TF_LITE_ENSURE(context, output->type == input->type);
- size_t size = 0;
- TfLiteTypeSizeOf(input->type, &size);
- const int dimensions_count = tflite::GetTensorShape(input).DimensionsCount();
- for (int i = 0; i < dimensions_count; i++) {
- size *= input->dims->data[i];
- }
- output->bytes = size;
- output->dims =
- reinterpret_cast<TfLiteIntArray*>(context->AllocatePersistentBuffer(
- context, TfLiteIntArrayGetSizeInBytes(size)));
- output->dims->size = input->dims->size;
- for (int i = 0; i < dimensions_count; i++) {
- output->dims->data[i] = input->dims->data[i];
- }
- return kTfLiteOk;
- }
- } // namespace tflite
|