| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/micro_utils.h"
- #include <limits.h>
- #include <math.h>
- #include <stdint.h>
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- namespace tflite {
- namespace {
- static const uint8_t kAsymmetricUInt8Min = 0;
- static const uint8_t kAsymmetricUInt8Max = UINT8_MAX;
- static const uint8_t kSymmetricUInt8Min = 1;
- static const uint8_t kSymmetricUInt8Max = UINT8_MAX;
- static const int8_t kAsymmetricInt8Min = INT8_MIN;
- static const int8_t kAsymmetricInt8Max = INT8_MAX;
- static const int kSymmetricInt8Scale = kAsymmetricInt8Max;
- static const int16_t kAsymmetricInt16Min = INT16_MIN;
- static const int16_t kAsymmetricInt16Max = INT16_MAX;
- static const int kSymmetricInt16Scale = kAsymmetricInt16Max;
- static const int32_t kAsymmetricInt32Max = INT32_MAX;
- static const int kSymmetricInt32Scale = kAsymmetricInt32Max;
- } // namespace
- int ElementCount(const TfLiteIntArray& dims) {
- int result = 1;
- for (int i = 0; i < dims.size; ++i) {
- result *= dims.data[i];
- }
- return result;
- }
- // Converts a float value into an unsigned eight-bit quantized value.
- uint8_t FloatToAsymmetricQuantizedUInt8(const float value, const float scale,
- const int zero_point) {
- int32_t result = round(value / scale) + zero_point;
- if (result < kAsymmetricUInt8Min) {
- result = kAsymmetricUInt8Min;
- }
- if (result > kAsymmetricUInt8Max) {
- result = kAsymmetricUInt8Max;
- }
- return result;
- }
- uint8_t FloatToSymmetricQuantizedUInt8(const float value, const float scale) {
- int32_t result = round(value / scale);
- if (result < kSymmetricUInt8Min) {
- result = kSymmetricUInt8Min;
- }
- if (result > kSymmetricUInt8Max) {
- result = kSymmetricUInt8Max;
- }
- return result;
- }
- int8_t FloatToAsymmetricQuantizedInt8(const float value, const float scale,
- const int zero_point) {
- int32_t result = round(value / scale) + zero_point;
- if (result < kAsymmetricInt8Min) {
- result = kAsymmetricInt8Min;
- }
- if (result > kAsymmetricInt8Max) {
- result = kAsymmetricInt8Max;
- }
- return result;
- }
- int16_t FloatToAsymmetricQuantizedInt16(const float value, const float scale,
- const int zero_point) {
- int32_t result = round(value / scale) + zero_point;
- if (result < kAsymmetricInt16Min) {
- result = kAsymmetricInt16Min;
- }
- if (result > kAsymmetricInt16Max) {
- result = kAsymmetricInt16Max;
- }
- return result;
- }
- int8_t FloatToSymmetricQuantizedInt8(const float value, const float scale) {
- return FloatToAsymmetricQuantizedInt8(value, scale, 0.0f);
- }
- int32_t FloatToSymmetricQuantizedInt32(const float value, const float scale) {
- float quantized = round(value / scale);
- if (static_cast<int>(quantized) > INT_MAX) {
- quantized = static_cast<float>(INT_MAX);
- } else if (quantized < INT_MIN) {
- quantized = static_cast<float> INT_MIN;
- }
- return static_cast<int>(quantized);
- }
- void AsymmetricQuantize(const float* input, int8_t* output, int num_elements,
- float scale, int zero_point) {
- for (int i = 0; i < num_elements; i++) {
- output[i] = FloatToAsymmetricQuantizedInt8(input[i], scale, zero_point);
- }
- }
- void AsymmetricQuantize(const float* input, uint8_t* output, int num_elements,
- float scale, int zero_point) {
- for (int i = 0; i < num_elements; i++) {
- output[i] = FloatToAsymmetricQuantizedUInt8(input[i], scale, zero_point);
- }
- }
- void AsymmetricQuantize(const float* input, int16_t* output, int num_elements,
- float scale, int zero_point) {
- for (int i = 0; i < num_elements; i++) {
- output[i] = FloatToAsymmetricQuantizedInt16(input[i], scale, zero_point);
- }
- }
- void SymmetricQuantize(const float* input, int32_t* output, int num_elements,
- float scale) {
- for (int i = 0; i < num_elements; i++) {
- output[i] = FloatToSymmetricQuantizedInt32(input[i], scale);
- }
- }
- void SymmetricPerChannelQuantize(const float* input, int32_t* output,
- int num_elements, int num_channels,
- float* scales) {
- int elements_per_channel = num_elements / num_channels;
- for (int i = 0; i < num_channels; i++) {
- for (int j = 0; j < elements_per_channel; j++) {
- output[i * elements_per_channel + j] = FloatToSymmetricQuantizedInt32(
- input[i * elements_per_channel + j], scales[i]);
- }
- }
- }
- void SignedSymmetricPerChannelQuantize(const float* values,
- TfLiteIntArray* dims,
- int quantized_dimension,
- int8_t* quantized_values,
- float* scaling_factors) {
- int input_size = ElementCount(*dims);
- int channel_count = dims->data[quantized_dimension];
- int per_channel_size = input_size / channel_count;
- int stride;
- int channel_stride;
- if (quantized_dimension == 0) {
- stride = 1;
- channel_stride = per_channel_size;
- } else if (quantized_dimension == 3) {
- stride = channel_count;
- channel_stride = 1;
- } else {
- TF_LITE_FATAL("quantized dimension must be 0 or 3");
- }
- // Calculate scales for each channel.
- for (int channel = 0; channel < channel_count; channel++) {
- float min = 0;
- float max = 0;
- for (int i = 0; i < per_channel_size; i++) {
- int idx = channel * channel_stride + i * stride;
- min = fminf(min, values[idx]);
- max = fmaxf(max, values[idx]);
- }
- scaling_factors[channel] =
- fmaxf(fabs(min), fabs(max)) / kSymmetricInt8Scale;
- for (int i = 0; i < per_channel_size; i++) {
- int idx = channel * channel_stride + i * stride;
- const int32_t quantized_value =
- static_cast<int32_t>(roundf(values[idx] / scaling_factors[channel]));
- // Clamp: just in case some odd numeric offset.
- quantized_values[idx] = fminf(
- kSymmetricInt8Scale, fmaxf(-kSymmetricInt8Scale, quantized_value));
- }
- }
- }
- void SignedSymmetricQuantize(const float* values, TfLiteIntArray* dims,
- int8_t* quantized_values, float* scaling_factor) {
- int input_size = ElementCount(*dims);
- float min = 0;
- float max = 0;
- for (int i = 0; i < input_size; i++) {
- min = fminf(min, values[i]);
- max = fmaxf(max, values[i]);
- }
- *scaling_factor = fmaxf(fabs(min), fabs(max)) / kSymmetricInt8Scale;
- for (int i = 0; i < input_size; i++) {
- const int32_t quantized_value =
- static_cast<int32_t>(roundf(values[i] / *scaling_factor));
- // Clamp: just in case some odd numeric offset.
- quantized_values[i] = fminf(kSymmetricInt8Scale,
- fmaxf(-kSymmetricInt8Scale, quantized_value));
- }
- }
- void SignedSymmetricQuantize(const float* values, TfLiteIntArray* dims,
- int16_t* quantized_values, float* scaling_factor) {
- int input_size = ElementCount(*dims);
- float min = 0;
- float max = 0;
- for (int i = 0; i < input_size; i++) {
- min = fminf(min, values[i]);
- max = fmaxf(max, values[i]);
- }
- *scaling_factor = fmaxf(fabs(min), fabs(max)) / kSymmetricInt16Scale;
- for (int i = 0; i < input_size; i++) {
- const int32_t quantized_value =
- static_cast<int32_t>(roundf(values[i] / *scaling_factor));
- // Clamp: just in case some odd numeric offset.
- quantized_values[i] = fminf(kSymmetricInt16Scale,
- fmaxf(-kSymmetricInt16Scale, quantized_value));
- }
- }
- void SignedSymmetricQuantize(const float* values, TfLiteIntArray* dims,
- int32_t* quantized_values, float* scaling_factor) {
- int input_size = ElementCount(*dims);
- float min = 0;
- float max = 0;
- for (int i = 0; i < input_size; i++) {
- min = fminf(min, values[i]);
- max = fmaxf(max, values[i]);
- }
- *scaling_factor =
- fmaxf(fabs(min), fabs(max)) / static_cast<float>(kSymmetricInt32Scale);
- for (int i = 0; i < input_size; i++) {
- const int32_t quantized_value =
- static_cast<int32_t>(roundf(values[i] / *scaling_factor));
- // Clamp: just in case some odd numeric offset.
- quantized_values[i] = fminf(
- static_cast<float>(kSymmetricInt32Scale),
- fmaxf(static_cast<float>(-kSymmetricInt32Scale), quantized_value));
- }
- }
- void SymmetricQuantize(const float* values, TfLiteIntArray* dims,
- uint8_t* quantized_values, float* scaling_factor) {
- SignedSymmetricQuantize(values, dims,
- reinterpret_cast<int8_t*>(quantized_values),
- scaling_factor);
- }
- void SymmetricDequantize(const int8_t* values, const int size,
- const float dequantization_scale,
- float* dequantized_values) {
- for (int i = 0; i < size; ++i) {
- dequantized_values[i] = values[i] * dequantization_scale;
- }
- }
- } // namespace tflite
|