| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/test_helpers.h"
- #include <cstdarg>
- #include <cstddef>
- #include <cstdint>
- #include <initializer_list>
- #include <new>
- #include "flatbuffers/flatbuffers.h" // from @flatbuffers
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/core/api/error_reporter.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/all_ops_resolver.h"
- #include "tensorflow/lite/micro/micro_utils.h"
- #include "tensorflow/lite/schema/schema_generated.h"
- namespace tflite {
- namespace testing {
- namespace {
- class StackAllocator : public flatbuffers::Allocator {
- public:
- StackAllocator() : data_(data_backing_), data_size_(0) {}
- uint8_t* allocate(size_t size) override {
- TFLITE_DCHECK((data_size_ + size) <= kStackAllocatorSize);
- uint8_t* result = data_;
- data_ += size;
- data_size_ += size;
- return result;
- }
- void deallocate(uint8_t* p, size_t) override {}
- static StackAllocator& instance() {
- // Avoid using true dynamic memory allocation to be portable to bare metal.
- static char inst_memory[sizeof(StackAllocator)];
- static StackAllocator* inst = new (inst_memory) StackAllocator;
- return *inst;
- }
- static constexpr size_t kStackAllocatorSize = 8192;
- private:
- uint8_t data_backing_[kStackAllocatorSize];
- uint8_t* data_;
- int data_size_;
- };
- flatbuffers::FlatBufferBuilder* BuilderInstance() {
- static char inst_memory[sizeof(flatbuffers::FlatBufferBuilder)];
- static flatbuffers::FlatBufferBuilder* inst =
- new (inst_memory) flatbuffers::FlatBufferBuilder(
- StackAllocator::kStackAllocatorSize, &StackAllocator::instance());
- return inst;
- }
- // A wrapper around FlatBuffer API to help build model easily.
- class ModelBuilder {
- public:
- typedef int32_t Tensor;
- typedef int Operator;
- typedef int Node;
- // `builder` needs to be available until BuildModel is called.
- explicit ModelBuilder(flatbuffers::FlatBufferBuilder* builder)
- : builder_(builder) {}
- // Registers an operator that will be used in the model.
- Operator RegisterOp(BuiltinOperator op, const char* custom_code,
- int32_t version);
- // Adds a tensor to the model.
- Tensor AddTensor(TensorType type, std::initializer_list<int32_t> shape) {
- return AddTensorImpl(type, /* is_variable */ false, shape);
- }
- // Adds a variable tensor to the model.
- Tensor AddVariableTensor(TensorType type,
- std::initializer_list<int32_t> shape) {
- return AddTensorImpl(type, /* is_variable */ true, shape);
- }
- // Adds a node to the model with given input and output Tensors.
- Node AddNode(Operator op, std::initializer_list<Tensor> inputs,
- std::initializer_list<Tensor> outputs);
- void AddMetadata(const char* description_string,
- const int32_t* metadata_buffer_data, size_t num_elements);
- // Constructs the flatbuffer model using `builder_` and return a pointer to
- // it. The returned model has the same lifetime as `builder_`.
- const Model* BuildModel(std::initializer_list<Tensor> inputs,
- std::initializer_list<Tensor> outputs);
- private:
- // Adds a tensor to the model.
- Tensor AddTensorImpl(TensorType type, bool is_variable,
- std::initializer_list<int32_t> shape);
- flatbuffers::FlatBufferBuilder* builder_;
- static constexpr int kMaxOperatorCodes = 10;
- flatbuffers::Offset<tflite::OperatorCode> operator_codes_[kMaxOperatorCodes];
- int next_operator_code_id_ = 0;
- static constexpr int kMaxOperators = 50;
- flatbuffers::Offset<tflite::Operator> operators_[kMaxOperators];
- int next_operator_id_ = 0;
- static constexpr int kMaxTensors = 50;
- flatbuffers::Offset<tflite::Tensor> tensors_[kMaxTensors];
- static constexpr int kMaxMetadataBuffers = 10;
- static constexpr int kMaxMetadatas = 10;
- flatbuffers::Offset<Metadata> metadata_[kMaxMetadatas];
- flatbuffers::Offset<Buffer> metadata_buffers_[kMaxMetadataBuffers];
- int nbr_of_metadata_buffers_ = 0;
- int next_tensor_id_ = 0;
- };
- ModelBuilder::Operator ModelBuilder::RegisterOp(BuiltinOperator op,
- const char* custom_code,
- int32_t version) {
- TFLITE_DCHECK(next_operator_code_id_ <= kMaxOperatorCodes);
- operator_codes_[next_operator_code_id_] =
- tflite::CreateOperatorCodeDirect(*builder_, op, custom_code, version);
- next_operator_code_id_++;
- return next_operator_code_id_ - 1;
- }
- ModelBuilder::Node ModelBuilder::AddNode(
- ModelBuilder::Operator op,
- std::initializer_list<ModelBuilder::Tensor> inputs,
- std::initializer_list<ModelBuilder::Tensor> outputs) {
- TFLITE_DCHECK(next_operator_id_ <= kMaxOperators);
- operators_[next_operator_id_] = tflite::CreateOperator(
- *builder_, op, builder_->CreateVector(inputs.begin(), inputs.size()),
- builder_->CreateVector(outputs.begin(), outputs.size()),
- BuiltinOptions_NONE);
- next_operator_id_++;
- return next_operator_id_ - 1;
- }
- void ModelBuilder::AddMetadata(const char* description_string,
- const int32_t* metadata_buffer_data,
- size_t num_elements) {
- metadata_[ModelBuilder::nbr_of_metadata_buffers_] =
- CreateMetadata(*builder_, builder_->CreateString(description_string),
- 1 + ModelBuilder::nbr_of_metadata_buffers_);
- metadata_buffers_[nbr_of_metadata_buffers_] = tflite::CreateBuffer(
- *builder_, builder_->CreateVector((uint8_t*)metadata_buffer_data,
- sizeof(uint32_t) * num_elements));
- ModelBuilder::nbr_of_metadata_buffers_++;
- }
- const Model* ModelBuilder::BuildModel(
- std::initializer_list<ModelBuilder::Tensor> inputs,
- std::initializer_list<ModelBuilder::Tensor> outputs) {
- // Model schema requires an empty buffer at idx 0.
- size_t buffer_size = 1 + ModelBuilder::nbr_of_metadata_buffers_;
- flatbuffers::Offset<Buffer> buffers[kMaxMetadataBuffers];
- buffers[0] = tflite::CreateBuffer(*builder_);
- // Place the metadata buffers first in the buffer since the indices for them
- // have already been set in AddMetadata()
- for (int i = 1; i < ModelBuilder::nbr_of_metadata_buffers_ + 1; ++i) {
- buffers[i] = metadata_buffers_[i - 1];
- }
- // TFLM only supports single subgraph.
- constexpr size_t subgraphs_size = 1;
- const flatbuffers::Offset<SubGraph> subgraphs[subgraphs_size] = {
- tflite::CreateSubGraph(
- *builder_, builder_->CreateVector(tensors_, next_tensor_id_),
- builder_->CreateVector(inputs.begin(), inputs.size()),
- builder_->CreateVector(outputs.begin(), outputs.size()),
- builder_->CreateVector(operators_, next_operator_id_),
- builder_->CreateString("test_subgraph"))};
- flatbuffers::Offset<Model> model_offset;
- if (ModelBuilder::nbr_of_metadata_buffers_ > 0) {
- model_offset = tflite::CreateModel(
- *builder_, 0,
- builder_->CreateVector(operator_codes_, next_operator_code_id_),
- builder_->CreateVector(subgraphs, subgraphs_size),
- builder_->CreateString("teset_model"),
- builder_->CreateVector(buffers, buffer_size), 0,
- builder_->CreateVector(metadata_,
- ModelBuilder::nbr_of_metadata_buffers_));
- } else {
- model_offset = tflite::CreateModel(
- *builder_, 0,
- builder_->CreateVector(operator_codes_, next_operator_code_id_),
- builder_->CreateVector(subgraphs, subgraphs_size),
- builder_->CreateString("teset_model"),
- builder_->CreateVector(buffers, buffer_size));
- }
- tflite::FinishModelBuffer(*builder_, model_offset);
- void* model_pointer = builder_->GetBufferPointer();
- const Model* model = flatbuffers::GetRoot<Model>(model_pointer);
- return model;
- }
- ModelBuilder::Tensor ModelBuilder::AddTensorImpl(
- TensorType type, bool is_variable, std::initializer_list<int32_t> shape) {
- TFLITE_DCHECK(next_tensor_id_ <= kMaxTensors);
- tensors_[next_tensor_id_] = tflite::CreateTensor(
- *builder_, builder_->CreateVector(shape.begin(), shape.size()), type,
- /* buffer */ 0, /* name */ 0, /* quantization */ 0,
- /* is_variable */ is_variable,
- /* sparsity */ 0);
- next_tensor_id_++;
- return next_tensor_id_ - 1;
- }
- const Model* BuildSimpleStatefulModel() {
- using flatbuffers::Offset;
- flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance();
- ModelBuilder model_builder(fb_builder);
- const int op_id =
- model_builder.RegisterOp(BuiltinOperator_CUSTOM, "simple_stateful_op", 0);
- const int input_tensor = model_builder.AddTensor(TensorType_UINT8, {3});
- const int median_tensor = model_builder.AddTensor(TensorType_UINT8, {3});
- const int invoke_count_tensor =
- model_builder.AddTensor(TensorType_INT32, {1});
- model_builder.AddNode(op_id, {input_tensor},
- {median_tensor, invoke_count_tensor});
- return model_builder.BuildModel({input_tensor},
- {median_tensor, invoke_count_tensor});
- }
- const Model* BuildSimpleModelWithBranch() {
- using flatbuffers::Offset;
- flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance();
- ModelBuilder model_builder(fb_builder);
- /* Model structure
- | t0
- +------|
- | v
- | +---------+
- | | n0 |
- | | |
- | +---------+
- v +
- |
- +---------+ | t1
- | n1 | |
- | | |
- +---------+ |
- | |
- t2 | v
- | +---------+
- +-->| n2 |
- | |
- +-------|-+
- |t3
- v
- */
- const int op_id =
- model_builder.RegisterOp(BuiltinOperator_CUSTOM, "mock_custom",
- /* version= */ 0);
- const int t0 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3});
- const int t1 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3});
- const int t2 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3});
- const int t3 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3});
- model_builder.AddNode(op_id, {t0}, {t1}); // n0
- model_builder.AddNode(op_id, {t0}, {t2}); // n1
- model_builder.AddNode(op_id, {t1, t2}, {t3}); // n2
- return model_builder.BuildModel({t0}, {t3});
- }
- const Model* BuildModelWithOfflinePlanning(int number_of_tensors,
- const int32_t* metadata_buffer,
- NodeConnection* node_conn,
- int num_conns) {
- using flatbuffers::Offset;
- flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance();
- ModelBuilder model_builder(fb_builder);
- const int op_id =
- model_builder.RegisterOp(BuiltinOperator_CUSTOM, "mock_custom",
- /* version= */ 0);
- for (int i = 0; i < number_of_tensors; ++i) {
- model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3});
- }
- for (int i = 0; i < num_conns; ++i) {
- model_builder.AddNode(op_id, node_conn[i].input, node_conn[i].output);
- }
- model_builder.AddMetadata(
- "OfflineMemoryAllocation", metadata_buffer,
- number_of_tensors + tflite::testing::kOfflinePlannerHeaderSize);
- return model_builder.BuildModel(node_conn[0].input,
- node_conn[num_conns - 1].output);
- }
- const Model* BuildSimpleMockModel() {
- using flatbuffers::Offset;
- flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
- constexpr size_t buffer_data_size = 1;
- const uint8_t buffer_data[buffer_data_size] = {21};
- constexpr size_t buffers_size = 2;
- const Offset<Buffer> buffers[buffers_size] = {
- CreateBuffer(*builder),
- CreateBuffer(*builder,
- builder->CreateVector(buffer_data, buffer_data_size))};
- constexpr size_t tensor_shape_size = 1;
- const int32_t tensor_shape[tensor_shape_size] = {1};
- constexpr size_t tensors_size = 4;
- const Offset<Tensor> tensors[tensors_size] = {
- CreateTensor(*builder,
- builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 0,
- builder->CreateString("test_input_tensor"), 0, false),
- CreateTensor(*builder,
- builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_UINT8, 1,
- builder->CreateString("test_weight_tensor"), 0, false),
- CreateTensor(*builder,
- builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 0,
- builder->CreateString("test_output_tensor"), 0, false),
- CreateTensor(*builder,
- builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 0,
- builder->CreateString("test_output2_tensor"), 0, false),
- };
- constexpr size_t inputs_size = 1;
- const int32_t inputs[inputs_size] = {0};
- constexpr size_t outputs_size = 2;
- const int32_t outputs[outputs_size] = {2, 3};
- constexpr size_t operator_inputs_size = 2;
- const int32_t operator_inputs[operator_inputs_size] = {0, 1};
- constexpr size_t operator_outputs_size = 1;
- const int32_t operator_outputs[operator_outputs_size] = {2};
- const int32_t operator2_outputs[operator_outputs_size] = {3};
- constexpr size_t operators_size = 2;
- const Offset<Operator> operators[operators_size] = {
- CreateOperator(
- *builder, 0,
- builder->CreateVector(operator_inputs, operator_inputs_size),
- builder->CreateVector(operator_outputs, operator_outputs_size),
- BuiltinOptions_NONE),
- CreateOperator(
- *builder, 0,
- builder->CreateVector(operator_inputs, operator_inputs_size),
- builder->CreateVector(operator2_outputs, operator_outputs_size),
- BuiltinOptions_NONE),
- };
- constexpr size_t subgraphs_size = 1;
- const Offset<SubGraph> subgraphs[subgraphs_size] = {
- CreateSubGraph(*builder, builder->CreateVector(tensors, tensors_size),
- builder->CreateVector(inputs, inputs_size),
- builder->CreateVector(outputs, outputs_size),
- builder->CreateVector(operators, operators_size),
- builder->CreateString("test_subgraph"))};
- constexpr size_t operator_codes_size = 1;
- const Offset<OperatorCode> operator_codes[operator_codes_size] = {
- CreateOperatorCodeDirect(*builder, BuiltinOperator_CUSTOM, "mock_custom",
- 0)};
- const Offset<Model> model_offset = CreateModel(
- *builder, 0, builder->CreateVector(operator_codes, operator_codes_size),
- builder->CreateVector(subgraphs, subgraphs_size),
- builder->CreateString("test_model"),
- builder->CreateVector(buffers, buffers_size));
- FinishModelBuffer(*builder, model_offset);
- void* model_pointer = builder->GetBufferPointer();
- const Model* model = flatbuffers::GetRoot<Model>(model_pointer);
- return model;
- }
- const Model* BuildComplexMockModel() {
- using flatbuffers::Offset;
- flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
- constexpr size_t buffer_data_size = 1;
- const uint8_t buffer_data_1[buffer_data_size] = {21};
- const uint8_t buffer_data_2[buffer_data_size] = {21};
- const uint8_t buffer_data_3[buffer_data_size] = {21};
- constexpr size_t buffers_size = 7;
- const Offset<Buffer> buffers[buffers_size] = {
- // Op 1 buffers:
- CreateBuffer(*builder),
- CreateBuffer(*builder),
- CreateBuffer(*builder,
- builder->CreateVector(buffer_data_1, buffer_data_size)),
- // Op 2 buffers:
- CreateBuffer(*builder),
- CreateBuffer(*builder,
- builder->CreateVector(buffer_data_2, buffer_data_size)),
- // Op 3 buffers:
- CreateBuffer(*builder),
- CreateBuffer(*builder,
- builder->CreateVector(buffer_data_3, buffer_data_size)),
- };
- constexpr size_t tensor_shape_size = 1;
- const int32_t tensor_shape[tensor_shape_size] = {1};
- constexpr size_t tensors_size = 10;
- const Offset<Tensor> tensors[tensors_size] = {
- // Op 1 inputs:
- CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 0, builder->CreateString("test_input_tensor_1"), 0,
- false /* is_variable */),
- CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 1, builder->CreateString("test_variable_tensor_1"),
- 0, true /* is_variable */),
- CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_1"), 0,
- false /* is_variable */),
- // Op 1 output / Op 2 input:
- CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 0, builder->CreateString("test_output_tensor_1"), 0,
- false /* is_variable */),
- // Op 2 inputs:
- CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 1, builder->CreateString("test_variable_tensor_2"),
- 0, true /* is_variable */),
- CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_2"), 0,
- false /* is_variable */),
- // Op 2 output / Op 3 input:
- CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 0, builder->CreateString("test_output_tensor_2"), 0,
- false /* is_variable */),
- // Op 3 inputs:
- CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 1, builder->CreateString("test_variable_tensor_3"),
- 0, true /* is_variable */),
- CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_3"), 0,
- false /* is_variable */),
- // Op 3 output:
- CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 0, builder->CreateString("test_output_tensor_3"), 0,
- false /* is_variable */),
- };
- constexpr size_t operators_size = 3;
- Offset<Operator> operators[operators_size];
- {
- // Set Op 1 attributes:
- constexpr size_t operator_inputs_size = 3;
- const int32_t operator_inputs[operator_inputs_size] = {0, 1, 2};
- constexpr size_t operator_outputs_size = 1;
- const int32_t operator_outputs[operator_outputs_size] = {3};
- operators[0] = {CreateOperator(
- *builder, 0,
- builder->CreateVector(operator_inputs, operator_inputs_size),
- builder->CreateVector(operator_outputs, operator_outputs_size),
- BuiltinOptions_NONE)};
- }
- {
- // Set Op 2 attributes
- constexpr size_t operator_inputs_size = 3;
- const int32_t operator_inputs[operator_inputs_size] = {3, 4, 5};
- constexpr size_t operator_outputs_size = 1;
- const int32_t operator_outputs[operator_outputs_size] = {6};
- operators[1] = {CreateOperator(
- *builder, 0,
- builder->CreateVector(operator_inputs, operator_inputs_size),
- builder->CreateVector(operator_outputs, operator_outputs_size),
- BuiltinOptions_NONE)};
- }
- {
- // Set Op 3 attributes
- constexpr size_t operator_inputs_size = 3;
- const int32_t operator_inputs[operator_inputs_size] = {6, 7, 8};
- constexpr size_t operator_outputs_size = 1;
- const int32_t operator_outputs[operator_outputs_size] = {9};
- operators[2] = {CreateOperator(
- *builder, 0,
- builder->CreateVector(operator_inputs, operator_inputs_size),
- builder->CreateVector(operator_outputs, operator_outputs_size),
- BuiltinOptions_NONE)};
- }
- constexpr size_t inputs_size = 1;
- const int32_t inputs[inputs_size] = {0};
- constexpr size_t outputs_size = 1;
- const int32_t outputs[outputs_size] = {9};
- constexpr size_t subgraphs_size = 1;
- const Offset<SubGraph> subgraphs[subgraphs_size] = {
- CreateSubGraph(*builder, builder->CreateVector(tensors, tensors_size),
- builder->CreateVector(inputs, inputs_size),
- builder->CreateVector(outputs, outputs_size),
- builder->CreateVector(operators, operators_size),
- builder->CreateString("test_subgraph"))};
- constexpr size_t operator_codes_size = 1;
- const Offset<OperatorCode> operator_codes[operator_codes_size] = {
- CreateOperatorCodeDirect(*builder, BuiltinOperator_CUSTOM, "mock_custom",
- 0)};
- const Offset<Model> model_offset = CreateModel(
- *builder, 0, builder->CreateVector(operator_codes, operator_codes_size),
- builder->CreateVector(subgraphs, subgraphs_size),
- builder->CreateString("test_model"),
- builder->CreateVector(buffers, buffers_size));
- FinishModelBuffer(*builder, model_offset);
- void* model_pointer = builder->GetBufferPointer();
- const Model* model = flatbuffers::GetRoot<Model>(model_pointer);
- return model;
- }
- } // namespace
- const TfLiteRegistration* SimpleStatefulOp::getRegistration() {
- return GetMutableRegistration();
- }
- TfLiteRegistration* SimpleStatefulOp::GetMutableRegistration() {
- static TfLiteRegistration r;
- r.init = Init;
- r.prepare = Prepare;
- r.invoke = Invoke;
- return &r;
- }
- void* SimpleStatefulOp::Init(TfLiteContext* context, const char* buffer,
- size_t length) {
- TFLITE_DCHECK(context->AllocateBufferForEval == nullptr);
- TFLITE_DCHECK(context->GetScratchBuffer == nullptr);
- TFLITE_DCHECK(context->RequestScratchBufferInArena == nullptr);
- void* raw = context->AllocatePersistentBuffer(context, sizeof(OpData));
- OpData* data = reinterpret_cast<OpData*>(raw);
- *data = {};
- return raw;
- }
- TfLiteStatus SimpleStatefulOp::Prepare(TfLiteContext* context,
- TfLiteNode* node) {
- OpData* data = reinterpret_cast<OpData*>(node->user_data);
- // Make sure that the input is in uint8_t with at least 1 data entry.
- const TfLiteTensor* input = tflite::GetInput(context, node, kInputTensor);
- if (input->type != kTfLiteUInt8) return kTfLiteError;
- if (NumElements(input->dims) == 0) return kTfLiteError;
- // Allocate a temporary buffer with the same size of input for sorting.
- TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena(
- context, sizeof(uint8_t) * NumElements(input->dims),
- &data->sorting_buffer));
- return kTfLiteOk;
- }
- TfLiteStatus SimpleStatefulOp::Invoke(TfLiteContext* context,
- TfLiteNode* node) {
- OpData* data = reinterpret_cast<OpData*>(node->user_data);
- data->invoke_count += 1;
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- const uint8_t* input_data = GetTensorData<uint8_t>(input);
- int size = NumElements(input->dims);
- uint8_t* sorting_buffer = reinterpret_cast<uint8_t*>(
- context->GetScratchBuffer(context, data->sorting_buffer));
- // Copy inputs data to the sorting buffer. We don't want to mutate the input
- // tensor as it might be used by a another node.
- for (int i = 0; i < size; i++) {
- sorting_buffer[i] = input_data[i];
- }
- // In place insertion sort on `sorting_buffer`.
- for (int i = 1; i < size; i++) {
- for (int j = i; j > 0 && sorting_buffer[j] < sorting_buffer[j - 1]; j--) {
- std::swap(sorting_buffer[j], sorting_buffer[j - 1]);
- }
- }
- TfLiteTensor* median = GetOutput(context, node, kMedianTensor);
- uint8_t* median_data = GetTensorData<uint8_t>(median);
- TfLiteTensor* invoke_count = GetOutput(context, node, kInvokeCount);
- int32_t* invoke_count_data = GetTensorData<int32_t>(invoke_count);
- median_data[0] = sorting_buffer[size / 2];
- invoke_count_data[0] = data->invoke_count;
- return kTfLiteOk;
- }
- const TfLiteRegistration* MockCustom::getRegistration() {
- return GetMutableRegistration();
- }
- TfLiteRegistration* MockCustom::GetMutableRegistration() {
- static TfLiteRegistration r;
- r.init = Init;
- r.prepare = Prepare;
- r.invoke = Invoke;
- r.free = Free;
- return &r;
- }
- void* MockCustom::Init(TfLiteContext* context, const char* buffer,
- size_t length) {
- // We don't support delegate in TFL micro. This is a weak check to test if
- // context struct being zero-initialized.
- TFLITE_DCHECK(context->ReplaceNodeSubsetsWithDelegateKernels == nullptr);
- freed_ = false;
- // Do nothing.
- return nullptr;
- }
- void MockCustom::Free(TfLiteContext* context, void* buffer) { freed_ = true; }
- TfLiteStatus MockCustom::Prepare(TfLiteContext* context, TfLiteNode* node) {
- return kTfLiteOk;
- }
- TfLiteStatus MockCustom::Invoke(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteTensor* input = tflite::GetInput(context, node, 0);
- const int32_t* input_data = input->data.i32;
- const TfLiteTensor* weight = tflite::GetInput(context, node, 1);
- const uint8_t* weight_data = weight->data.uint8;
- TfLiteTensor* output = GetOutput(context, node, 0);
- int32_t* output_data = output->data.i32;
- output_data[0] =
- 0; // Catch output tensor sharing memory with an input tensor
- output_data[0] = input_data[0] + weight_data[0];
- return kTfLiteOk;
- }
- bool MockCustom::freed_ = false;
- AllOpsResolver GetOpResolver() {
- AllOpsResolver op_resolver;
- op_resolver.AddCustom("mock_custom", MockCustom::GetMutableRegistration());
- op_resolver.AddCustom("simple_stateful_op",
- SimpleStatefulOp::GetMutableRegistration());
- return op_resolver;
- }
- const Model* GetSimpleMockModel() {
- static Model* model = nullptr;
- if (!model) {
- model = const_cast<Model*>(BuildSimpleMockModel());
- }
- return model;
- }
- const Model* GetComplexMockModel() {
- static Model* model = nullptr;
- if (!model) {
- model = const_cast<Model*>(BuildComplexMockModel());
- }
- return model;
- }
- const Model* GetSimpleModelWithBranch() {
- static Model* model = nullptr;
- if (!model) {
- model = const_cast<Model*>(BuildSimpleModelWithBranch());
- }
- return model;
- }
- const Model* GetModelWithOfflinePlanning(int num_tensors,
- const int32_t* metadata_buffer,
- NodeConnection* node_conn,
- int num_conns) {
- const Model* model = BuildModelWithOfflinePlanning(
- num_tensors, metadata_buffer, node_conn, num_conns);
- return model;
- }
- const Model* GetSimpleStatefulModel() {
- static Model* model = nullptr;
- if (!model) {
- model = const_cast<Model*>(BuildSimpleStatefulModel());
- }
- return model;
- }
- const Tensor* Create1dFlatbufferTensor(int size, bool is_variable) {
- using flatbuffers::Offset;
- flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
- constexpr size_t tensor_shape_size = 1;
- const int32_t tensor_shape[tensor_shape_size] = {size};
- const Offset<Tensor> tensor_offset = CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 0, builder->CreateString("test_tensor"), 0,
- is_variable);
- builder->Finish(tensor_offset);
- void* tensor_pointer = builder->GetBufferPointer();
- const Tensor* tensor = flatbuffers::GetRoot<Tensor>(tensor_pointer);
- return tensor;
- }
- const Tensor* CreateQuantizedFlatbufferTensor(int size) {
- using flatbuffers::Offset;
- flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
- const Offset<QuantizationParameters> quant_params =
- CreateQuantizationParameters(
- *builder,
- /*min=*/builder->CreateVector<float>({0.1f}),
- /*max=*/builder->CreateVector<float>({0.2f}),
- /*scale=*/builder->CreateVector<float>({0.3f}),
- /*zero_point=*/builder->CreateVector<int64_t>({100ll}));
- constexpr size_t tensor_shape_size = 1;
- const int32_t tensor_shape[tensor_shape_size] = {size};
- const Offset<Tensor> tensor_offset = CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 0, builder->CreateString("test_tensor"), quant_params,
- false);
- builder->Finish(tensor_offset);
- void* tensor_pointer = builder->GetBufferPointer();
- const Tensor* tensor = flatbuffers::GetRoot<Tensor>(tensor_pointer);
- return tensor;
- }
- const Tensor* CreateMissingQuantizationFlatbufferTensor(int size) {
- using flatbuffers::Offset;
- flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
- const Offset<QuantizationParameters> quant_params =
- CreateQuantizationParameters(*builder, 0, 0, 0, 0,
- QuantizationDetails_NONE, 0, 0);
- constexpr size_t tensor_shape_size = 1;
- const int32_t tensor_shape[tensor_shape_size] = {size};
- const Offset<Tensor> tensor_offset = CreateTensor(
- *builder, builder->CreateVector(tensor_shape, tensor_shape_size),
- TensorType_INT32, 0, builder->CreateString("test_tensor"), quant_params,
- false);
- builder->Finish(tensor_offset);
- void* tensor_pointer = builder->GetBufferPointer();
- const Tensor* tensor = flatbuffers::GetRoot<Tensor>(tensor_pointer);
- return tensor;
- }
- const flatbuffers::Vector<flatbuffers::Offset<Buffer>>*
- CreateFlatbufferBuffers() {
- using flatbuffers::Offset;
- flatbuffers::FlatBufferBuilder* builder = BuilderInstance();
- constexpr size_t buffers_size = 1;
- const Offset<Buffer> buffers[buffers_size] = {
- CreateBuffer(*builder),
- };
- const flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>>
- buffers_offset = builder->CreateVector(buffers, buffers_size);
- builder->Finish(buffers_offset);
- void* buffers_pointer = builder->GetBufferPointer();
- const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* result =
- flatbuffers::GetRoot<flatbuffers::Vector<flatbuffers::Offset<Buffer>>>(
- buffers_pointer);
- return result;
- }
- int TestStrcmp(const char* a, const char* b) {
- if ((a == nullptr) || (b == nullptr)) {
- return -1;
- }
- while ((*a != 0) && (*a == *b)) {
- a++;
- b++;
- }
- return *reinterpret_cast<const unsigned char*>(a) -
- *reinterpret_cast<const unsigned char*>(b);
- }
- // Wrapper to forward kernel errors to the interpreter's error reporter.
- void ReportOpError(struct TfLiteContext* context, const char* format, ...) {
- #ifndef TF_LITE_STRIP_ERROR_STRINGS
- ErrorReporter* error_reporter = static_cast<ErrorReporter*>(context->impl_);
- va_list args;
- va_start(args, format);
- TF_LITE_REPORT_ERROR(error_reporter, format, args);
- va_end(args);
- #endif
- }
- // Create a TfLiteIntArray from an array of ints. The first element in the
- // supplied array must be the size of the array expressed as an int.
- TfLiteIntArray* IntArrayFromInts(const int* int_array) {
- return const_cast<TfLiteIntArray*>(
- reinterpret_cast<const TfLiteIntArray*>(int_array));
- }
- // Create a TfLiteFloatArray from an array of floats. The first element in the
- // supplied array must be the size of the array expressed as a float.
- TfLiteFloatArray* FloatArrayFromFloats(const float* floats) {
- static_assert(sizeof(float) == sizeof(int),
- "assumes sizeof(float) == sizeof(int) to perform casting");
- int size = static_cast<int>(floats[0]);
- *reinterpret_cast<int32_t*>(const_cast<float*>(floats)) = size;
- return reinterpret_cast<TfLiteFloatArray*>(const_cast<float*>(floats));
- }
- TfLiteTensor CreateTensor(TfLiteIntArray* dims, bool is_variable) {
- TfLiteTensor result;
- result.dims = dims;
- result.params = {};
- result.quantization = {kTfLiteNoQuantization, nullptr};
- result.is_variable = is_variable;
- result.allocation_type = kTfLiteMemNone;
- return result;
- }
- TfLiteTensor CreateFloatTensor(const float* data, TfLiteIntArray* dims,
- bool is_variable) {
- TfLiteTensor result = CreateTensor(dims, is_variable);
- result.type = kTfLiteFloat32;
- result.data.f = const_cast<float*>(data);
- result.bytes = ElementCount(*dims) * sizeof(float);
- return result;
- }
- void PopulateFloatTensor(TfLiteTensor* tensor, float* begin, float* end) {
- float* p = begin;
- float* v = tensor->data.f;
- while (p != end) {
- *v++ = *p++;
- }
- }
- TfLiteTensor CreateBoolTensor(const bool* data, TfLiteIntArray* dims,
- bool is_variable) {
- TfLiteTensor result = CreateTensor(dims, is_variable);
- result.type = kTfLiteBool;
- result.data.b = const_cast<bool*>(data);
- result.bytes = ElementCount(*dims) * sizeof(bool);
- return result;
- }
- TfLiteTensor CreateInt32Tensor(const int32_t* data, TfLiteIntArray* dims,
- bool is_variable) {
- TfLiteTensor result = CreateTensor(dims, is_variable);
- result.type = kTfLiteInt32;
- result.data.i32 = const_cast<int32_t*>(data);
- result.bytes = ElementCount(*dims) * sizeof(int32_t);
- return result;
- }
- TfLiteTensor CreateQuantizedTensor(const uint8_t* data, TfLiteIntArray* dims,
- float scale, int zero_point,
- bool is_variable) {
- TfLiteTensor result = CreateTensor(dims, is_variable);
- result.type = kTfLiteUInt8;
- result.data.uint8 = const_cast<uint8_t*>(data);
- result.params = {scale, zero_point};
- result.quantization = {kTfLiteAffineQuantization, nullptr};
- result.bytes = ElementCount(*dims) * sizeof(uint8_t);
- return result;
- }
- TfLiteTensor CreateQuantizedTensor(const int8_t* data, TfLiteIntArray* dims,
- float scale, int zero_point,
- bool is_variable) {
- TfLiteTensor result = CreateTensor(dims, is_variable);
- result.type = kTfLiteInt8;
- result.data.int8 = const_cast<int8_t*>(data);
- result.params = {scale, zero_point};
- result.quantization = {kTfLiteAffineQuantization, nullptr};
- result.bytes = ElementCount(*dims) * sizeof(int8_t);
- return result;
- }
- TfLiteTensor CreateQuantizedTensor(const int16_t* data, TfLiteIntArray* dims,
- float scale, int zero_point,
- bool is_variable) {
- TfLiteTensor result = CreateTensor(dims, is_variable);
- result.type = kTfLiteInt16;
- result.data.i16 = const_cast<int16_t*>(data);
- result.params = {scale, zero_point};
- result.quantization = {kTfLiteAffineQuantization, nullptr};
- result.bytes = ElementCount(*dims) * sizeof(int16_t);
- return result;
- }
- TfLiteTensor CreateQuantizedBiasTensor(const float* data, int32_t* quantized,
- TfLiteIntArray* dims, float input_scale,
- float weights_scale, bool is_variable) {
- float bias_scale = input_scale * weights_scale;
- tflite::SymmetricQuantize(data, quantized, ElementCount(*dims), bias_scale);
- TfLiteTensor result = CreateTensor(dims, is_variable);
- result.type = kTfLiteInt32;
- result.data.i32 = const_cast<int32_t*>(quantized);
- // Quantized int32_t tensors always have a zero point of 0, since the range of
- // int32_t values is large, and because zero point costs extra cycles during
- // processing.
- result.params = {bias_scale, 0};
- result.quantization = {kTfLiteAffineQuantization, nullptr};
- result.bytes = ElementCount(*dims) * sizeof(int32_t);
- return result;
- }
- // Quantizes int32_t bias tensor with per-channel weights determined by input
- // scale multiplied by weight scale for each channel.
- TfLiteTensor CreatePerChannelQuantizedBiasTensor(
- const float* input, int32_t* quantized, TfLiteIntArray* dims,
- float input_scale, float* weight_scales, float* scales, int* zero_points,
- TfLiteAffineQuantization* affine_quant, int quantized_dimension,
- bool is_variable) {
- int input_size = ElementCount(*dims);
- int num_channels = dims->data[quantized_dimension];
- // First element is reserved for array length
- zero_points[0] = num_channels;
- scales[0] = static_cast<float>(num_channels);
- float* scales_array = &scales[1];
- for (int i = 0; i < num_channels; i++) {
- scales_array[i] = input_scale * weight_scales[i];
- zero_points[i + 1] = 0;
- }
- SymmetricPerChannelQuantize(input, quantized, input_size, num_channels,
- scales_array);
- affine_quant->scale = FloatArrayFromFloats(scales);
- affine_quant->zero_point = IntArrayFromInts(zero_points);
- affine_quant->quantized_dimension = quantized_dimension;
- TfLiteTensor result = CreateTensor(dims, is_variable);
- result.type = kTfLiteInt32;
- result.data.i32 = const_cast<int32_t*>(quantized);
- result.quantization = {kTfLiteAffineQuantization, affine_quant};
- result.bytes = ElementCount(*dims) * sizeof(int32_t);
- return result;
- }
- TfLiteTensor CreateSymmetricPerChannelQuantizedTensor(
- const float* input, int8_t* quantized, TfLiteIntArray* dims, float* scales,
- int* zero_points, TfLiteAffineQuantization* affine_quant,
- int quantized_dimension, bool is_variable) {
- int channel_count = dims->data[quantized_dimension];
- scales[0] = static_cast<float>(channel_count);
- zero_points[0] = channel_count;
- SignedSymmetricPerChannelQuantize(input, dims, quantized_dimension, quantized,
- &scales[1]);
- for (int i = 0; i < channel_count; i++) {
- zero_points[i + 1] = 0;
- }
- affine_quant->scale = FloatArrayFromFloats(scales);
- affine_quant->zero_point = IntArrayFromInts(zero_points);
- affine_quant->quantized_dimension = quantized_dimension;
- TfLiteTensor result = CreateTensor(dims, is_variable);
- result.type = kTfLiteInt8;
- result.data.int8 = const_cast<int8_t*>(quantized);
- result.quantization = {kTfLiteAffineQuantization, affine_quant};
- result.bytes = ElementCount(*dims) * sizeof(int8_t);
- return result;
- }
- size_t GetModelTensorCount(const Model* model) {
- auto* subgraphs = model->subgraphs();
- if (subgraphs) {
- return (*subgraphs)[0]->tensors()->size();
- }
- return 0;
- }
- } // namespace testing
- } // namespace tflite
|