| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/experimental/microfrontend/lib/log_scale.h"
- #include "tensorflow/lite/experimental/microfrontend/lib/bits.h"
- #include "tensorflow/lite/experimental/microfrontend/lib/log_lut.h"
- #define kuint16max 0x0000FFFF
- // The following functions implement integer logarithms of various sizes. The
- // approximation is calculated according to method described in
- // www.inti.gob.ar/electronicaeinformatica/instrumentacion/utic/
- // publicaciones/SPL2007/Log10-spl07.pdf
- // It first calculates log2 of the input and then converts it to natural
- // logarithm.
- static uint32_t Log2FractionPart(const uint32_t x, const uint32_t log2x) {
- // Part 1
- int32_t frac = x - (1LL << log2x);
- if (log2x < kLogScaleLog2) {
- frac <<= kLogScaleLog2 - log2x;
- } else {
- frac >>= log2x - kLogScaleLog2;
- }
- // Part 2
- const uint32_t base_seg = frac >> (kLogScaleLog2 - kLogSegmentsLog2);
- const uint32_t seg_unit =
- (((uint32_t)1) << kLogScaleLog2) >> kLogSegmentsLog2;
- const int32_t c0 = kLogLut[base_seg];
- const int32_t c1 = kLogLut[base_seg + 1];
- const int32_t seg_base = seg_unit * base_seg;
- const int32_t rel_pos = ((c1 - c0) * (frac - seg_base)) >> kLogScaleLog2;
- return frac + c0 + rel_pos;
- }
- static uint32_t Log(const uint32_t x, const uint32_t scale_shift) {
- const uint32_t integer = MostSignificantBit32(x) - 1;
- const uint32_t fraction = Log2FractionPart(x, integer);
- const uint32_t log2 = (integer << kLogScaleLog2) + fraction;
- const uint32_t round = kLogScale / 2;
- const uint32_t loge = (((uint64_t)kLogCoeff) * log2 + round) >> kLogScaleLog2;
- // Finally scale to our output scale
- const uint32_t loge_scaled = ((loge << scale_shift) + round) >> kLogScaleLog2;
- return loge_scaled;
- }
- uint16_t* LogScaleApply(struct LogScaleState* state, uint32_t* signal,
- int signal_size, int correction_bits) {
- const int scale_shift = state->scale_shift;
- uint16_t* output = (uint16_t*)signal;
- uint16_t* ret = output;
- int i;
- for (i = 0; i < signal_size; ++i) {
- uint32_t value = *signal++;
- if (state->enable_log) {
- if (correction_bits < 0) {
- value >>= -correction_bits;
- } else {
- value <<= correction_bits;
- }
- if (value > 1) {
- value = Log(value, scale_shift);
- } else {
- value = 0;
- }
- }
- *output++ = (value < kuint16max) ? value : kuint16max;
- }
- return ret;
- }
|