| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- template <typename T1, typename T2, typename T3, typename Cmp>
- void ArgMinMax(const RuntimeShape& input1_shape, const T1* input1_data,
- const T3* input2_data, const RuntimeShape& output_shape,
- T2* output_data, const Cmp& cmp) {
- TFLITE_DCHECK_GT(input1_shape.DimensionsCount(), 0);
- TFLITE_DCHECK_EQ(input1_shape.DimensionsCount() - 1,
- output_shape.DimensionsCount());
- int axis = input2_data[0];
- if (axis < 0) {
- axis += input1_shape.DimensionsCount();
- }
- const int axis_size = input1_shape.Dims(axis);
- int outer_size = 1;
- for (int i = 0; i < axis; ++i) {
- TFLITE_DCHECK_EQ(input1_shape.Dims(i), output_shape.Dims(i));
- outer_size *= input1_shape.Dims(i);
- }
- int inner_size = 1;
- const int dims_count = input1_shape.DimensionsCount();
- for (int i = axis + 1; i < dims_count; ++i) {
- TFLITE_DCHECK_EQ(input1_shape.Dims(i), output_shape.Dims(i - 1));
- inner_size *= input1_shape.Dims(i);
- }
- for (int outer = 0; outer < outer_size; ++outer) {
- for (int inner = 0; inner < inner_size; ++inner) {
- auto min_max_value = input1_data[outer * axis_size * inner_size + inner];
- T2 min_max_index = 0;
- for (int i = 1; i < axis_size; ++i) {
- const auto& curr_value =
- input1_data[(outer * axis_size + i) * inner_size + inner];
- if (cmp(curr_value, min_max_value)) {
- min_max_value = curr_value;
- min_max_index = static_cast<T2>(i);
- }
- }
- output_data[outer * inner_size + inner] = min_max_index;
- }
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_
|