| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEPTHWISE_CONV_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEPTHWISE_CONV_H_
- #include "tflite/kernels/internal/common.h"
- namespace tflite {
- namespace reference_integer_ops {
- inline void DepthwiseConvPerChannel(
- const DepthwiseParams& params, const int32* output_multiplier,
- const int32* output_shift, const RuntimeShape& input_shape,
- const int8* input_data, const RuntimeShape& filter_shape,
- const int8* filter_data, const RuntimeShape& bias_shape,
- const int32* bias_data, const RuntimeShape& output_shape,
- int8* output_data) {
- // Get parameters.
- // TODO(b/141565753): Re-introduce ScopedProfilingLabel on Micro.
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int dilation_width_factor = params.dilation_width_factor;
- const int dilation_height_factor = params.dilation_height_factor;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- const int depth_multiplier = params.depth_multiplier;
- const int32 input_offset = params.input_offset;
- const int32 output_offset = params.output_offset;
- const int32 output_activation_min = params.quantized_activation_min;
- const int32 output_activation_max = params.quantized_activation_max;
- // Check dimensions of the tensors.
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int input_depth = input_shape.Dims(3);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- for (int batch = 0; batch < batches; ++batch) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
- for (int m = 0; m < depth_multiplier; ++m) {
- const int output_channel = m + in_channel * depth_multiplier;
- const int in_x_origin = (out_x * stride_width) - pad_width;
- const int in_y_origin = (out_y * stride_height) - pad_height;
- int32 acc = 0;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- const int in_x = in_x_origin + dilation_width_factor * filter_x;
- const int in_y =
- in_y_origin + dilation_height_factor * filter_y;
- // Zero padding by omitting the areas outside the image.
- const bool is_point_inside_image =
- (in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
- (in_y < input_height);
- if (is_point_inside_image) {
- int32 input_val = input_data[Offset(input_shape, batch, in_y,
- in_x, in_channel)];
- int32 filter_val = filter_data[Offset(
- filter_shape, 0, filter_y, filter_x, output_channel)];
- // Accumulate with 32 bits accumulator.
- // In the nudging process during model quantization, we force
- // real value of 0.0 be represented by a quantized value. This
- // guarantees that the input_offset is a int8, even though it
- // is represented using int32.
- // int32 += int8 * (int8 - int8) so the highest value we can
- // get from each accumulation is [-127, 127] * ([-128, 127] -
- // [-128, 127]), which is [-32512, 32512]. log2(32512)
- // = 14.98, which means we can accumulate at least 2^16
- // multiplications without overflow. The accumulator is
- // applied to a filter so the accumulation logic will hold as
- // long as the filter size (filter_y * filter_x * in_channel)
- // does not exceed 2^16, which is the case in all the models
- // we have seen so far.
- // TODO(jianlijianli): Add a check to make sure the
- // accumulator depth is smaller than 2^16.
- acc += filter_val * (input_val + input_offset);
- }
- }
- }
- if (bias_data) {
- acc += bias_data[output_channel];
- }
- acc = MultiplyByQuantizedMultiplier(
- acc, output_multiplier[output_channel],
- output_shift[output_channel]);
- acc += output_offset;
- acc = std::max(acc, output_activation_min);
- acc = std::min(acc, output_activation_max);
- output_data[Offset(output_shape, batch, out_y, out_x,
- output_channel)] = static_cast<int8_t>(acc);
- }
- }
- }
- }
- }
- }
- inline void DepthwiseConvPerChannel(
- const DepthwiseParams& params, const int32* output_multiplier,
- const int32* output_shift, const RuntimeShape& input_shape,
- const int16* input_data, const RuntimeShape& filter_shape,
- const int8* filter_data, const RuntimeShape& bias_shape,
- const std::int64_t* bias_data, const RuntimeShape& output_shape,
- int16* output_data) {
- // Get parameters.
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int dilation_width_factor = params.dilation_width_factor;
- const int dilation_height_factor = params.dilation_height_factor;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- const int depth_multiplier = params.depth_multiplier;
- const int32 output_activation_min = params.quantized_activation_min;
- const int32 output_activation_max = params.quantized_activation_max;
- // Check dimensions of the tensors.
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int input_depth = input_shape.Dims(3);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- for (int batch = 0; batch < batches; ++batch) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
- for (int m = 0; m < depth_multiplier; ++m) {
- const int output_channel = m + in_channel * depth_multiplier;
- const int in_x_origin = (out_x * stride_width) - pad_width;
- const int in_y_origin = (out_y * stride_height) - pad_height;
- std::int64_t acc = 0;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- const int in_x = in_x_origin + dilation_width_factor * filter_x;
- const int in_y =
- in_y_origin + dilation_height_factor * filter_y;
- // Zero padding by omitting the areas outside the image.
- const bool is_point_inside_image =
- (in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
- (in_y < input_height);
- if (is_point_inside_image) {
- int32 input_val = input_data[Offset(input_shape, batch, in_y,
- in_x, in_channel)];
- int32 filter_val = filter_data[Offset(
- filter_shape, 0, filter_y, filter_x, output_channel)];
- // Accumulate with 64 bits accumulator.
- // We assume maximum of 2^16 accumulations as with the 8-bit
- // case so actually the value in the accumulator should not
- // exceed 40 bits
- acc += static_cast<int64_t>(filter_val) *
- static_cast<int64_t>(input_val);
- }
- }
- }
- if (bias_data) {
- acc += bias_data[output_channel];
- }
- int32 scaled_acc = MultiplyByQuantizedMultiplier(
- acc, output_multiplier[output_channel],
- output_shift[output_channel]);
- scaled_acc = std::max(scaled_acc, output_activation_min);
- scaled_acc = std::min(scaled_acc, output_activation_max);
- output_data[Offset(output_shape, batch, out_y, out_x,
- output_channel)] =
- static_cast<int16_t>(scaled_acc);
- }
- }
- }
- }
- }
- }
- inline void DepthwiseConvHybridPerChannel(
- const DepthwiseParams& params, float* scaling_factors_ptr,
- const RuntimeShape& input_shape, const int8* input_data,
- const RuntimeShape& filter_shape, const int8* filter_data,
- const RuntimeShape& bias_shape, const float* bias_data,
- const RuntimeShape& output_shape, float* output_data,
- const float* per_channel_scale, int32_t* input_offset) {
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int dilation_width_factor = params.dilation_width_factor;
- const int dilation_height_factor = params.dilation_height_factor;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- const int depth_multiplier = params.depth_multiplier;
- const float output_activation_min = params.float_activation_min;
- const float output_activation_max = params.float_activation_max;
- // Check dimensions of the tensors.
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int input_depth = input_shape.Dims(3);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- const int bias_depth = bias_shape.FlatSize();
- TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
- TFLITE_DCHECK_EQ(bias_depth, output_depth);
- for (int batch = 0; batch < batches; ++batch) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
- for (int m = 0; m < depth_multiplier; ++m) {
- const int output_channel = m + in_channel * depth_multiplier;
- const int in_x_origin = (out_x * stride_width) - pad_width;
- const int in_y_origin = (out_y * stride_height) - pad_height;
- int32 acc = 0;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- const int in_x = in_x_origin + dilation_width_factor * filter_x;
- const int in_y =
- in_y_origin + dilation_height_factor * filter_y;
- // Zero padding by omitting the areas outside the image.
- const bool is_point_inside_image =
- (in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
- (in_y < input_height);
- if (is_point_inside_image) {
- int32 input_val = input_data[Offset(input_shape, batch, in_y,
- in_x, in_channel)];
- int32 filter_val = filter_data[Offset(
- filter_shape, 0, filter_y, filter_x, output_channel)];
- acc += filter_val * (input_val - input_offset[batch]);
- }
- }
- }
- float acc_float = static_cast<float>(acc);
- acc_float *=
- per_channel_scale[output_channel] * scaling_factors_ptr[batch];
- if (bias_data && output_channel < bias_depth) {
- acc_float += bias_data[output_channel];
- }
- output_data[Offset(output_shape, batch, out_y, out_x,
- output_channel)] =
- ActivationFunctionWithMinMax(acc_float, output_activation_min,
- output_activation_max);
- }
- }
- }
- }
- }
- }
- } // namespace reference_integer_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEPTHWISE_CONV_H_
|