| 12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEQUANTIZE_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEQUANTIZE_H_
- #include "tflite/kernels/internal/common.h"
- #include "tflite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_integer_ops {
- template <typename T>
- inline void Dequantize(const tflite::DequantizationParams& op_params,
- const RuntimeShape& input_shape, const T* input_data,
- const RuntimeShape& output_shape, float* output_data) {
- const int32 zero_point = op_params.zero_point;
- const double scale = op_params.scale;
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; i++) {
- const int32 val = static_cast<int32>(input_data[i]);
- const float result = static_cast<float>(scale * (val - zero_point));
- output_data[i] = result;
- }
- }
- } // namespace reference_integer_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEQUANTIZE_H_
|