| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TRANSPOSE_CONV_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TRANSPOSE_CONV_H_
- #include "tflite/kernels/internal/common.h"
- namespace tflite {
- namespace reference_integer_ops {
- // Fixed-point per-channel-quantization transpose convolution reference kernel.
- inline void TransposeConv(
- const ConvParams& params, const int32* output_multiplier,
- const int32* output_shift, const RuntimeShape& input_shape,
- const int8* input_data, const RuntimeShape& filter_shape,
- const int8* filter_data, const RuntimeShape& bias_shape,
- const int32* bias_data, const RuntimeShape& output_shape, int8* output_data,
- const RuntimeShape& im2col_shape, int8* im2col_data,
- int32* scratch_buffer) {
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- (void)im2col_data; // only used in optimized code.
- (void)im2col_shape; // only used in optimized code.
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
- const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
- if (bias_data) {
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- }
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- const int32 input_offset = params.input_offset;
- const int32 output_offset = params.output_offset;
- const int32 output_activation_min = std::numeric_limits<int8_t>::min();
- const int32 output_activation_max = std::numeric_limits<int8_t>::max();
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- const int num_elements = output_shape.FlatSize();
- // We need to initialize scratch_buffer to all 0s, as we apply the same
- // 'scatter' based trick as in float version.
- memset(scratch_buffer, 0, num_elements * sizeof(int32));
- // Loop through input elements one at a time.
- for (int batch = 0; batch < batches; ++batch) {
- for (int in_y = 0; in_y < input_height; ++in_y) {
- for (int in_x = 0; in_x < input_width; ++in_x) {
- for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
- // Loop through the output elements it will influence.
- const int out_x_origin = (in_x * stride_width) - pad_width;
- const int out_y_origin = (in_y * stride_height) - pad_height;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- for (int out_channel = 0; out_channel < output_depth;
- ++out_channel) {
- // Compute output element location.
- const int out_x = out_x_origin + filter_x;
- const int out_y = out_y_origin + filter_y;
- // We cannot accumulate out of bounds.
- if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) &&
- (out_y < output_height)) {
- const int8 input_value = input_data[Offset(
- input_shape, batch, in_y, in_x, in_channel)];
- const int8 filter_value =
- filter_data[Offset(filter_shape, out_channel, filter_y,
- filter_x, in_channel)];
- scratch_buffer[Offset(output_shape, batch, out_y, out_x,
- out_channel)] +=
- (input_value + input_offset) * filter_value;
- }
- }
- }
- }
- }
- }
- }
- }
- for (int batch = 0; batch < batches; ++batch) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
- int32 acc = scratch_buffer[Offset(output_shape, batch, out_y, out_x,
- out_channel)];
- if (bias_data) {
- acc += bias_data[out_channel];
- }
- acc = MultiplyByQuantizedMultiplier(
- acc, output_multiplier[out_channel], output_shift[out_channel]);
- acc += output_offset;
- acc = std::max(acc, output_activation_min);
- acc = std::min(acc, output_activation_max);
- output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
- static_cast<int8_t>(acc);
- }
- }
- }
- }
- }
- // int16 input (zero_point=0), int8 filter, int64 accumulator
- inline void TransposeConv(
- const ConvParams& params, const int32* output_multiplier,
- const int32* output_shift, const RuntimeShape& input_shape,
- const int16* input_data, const RuntimeShape& filter_shape,
- const int8* filter_data, const RuntimeShape& bias_shape,
- const std::int64_t* bias_data, const RuntimeShape& output_shape,
- int16* output_data, const RuntimeShape& im2col_shape, int8* im2col_data,
- std::int64_t* scratch_buffer) {
- const int stride_width = params.stride_width;
- const int stride_height = params.stride_height;
- const int pad_width = params.padding_values.width;
- const int pad_height = params.padding_values.height;
- TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
- TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
- (void)im2col_data; // only used in optimized code.
- (void)im2col_shape; // only used in optimized code.
- const int batches = MatchingDim(input_shape, 0, output_shape, 0);
- const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
- const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
- if (bias_data) {
- TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
- }
- const int input_height = input_shape.Dims(1);
- const int input_width = input_shape.Dims(2);
- const int filter_height = filter_shape.Dims(1);
- const int filter_width = filter_shape.Dims(2);
- const int output_height = output_shape.Dims(1);
- const int output_width = output_shape.Dims(2);
- const int32 output_activation_min = std::numeric_limits<int16_t>::min();
- const int32 output_activation_max = std::numeric_limits<int16_t>::max();
- TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
- const int num_elements = output_shape.FlatSize();
- // We need to initialize scratch_buffer to all 0s, as we apply the same
- // 'scatter' based trick as in float version.
- memset(scratch_buffer, 0, num_elements * sizeof(std::int64_t));
- // Loop through input elements one at a time.
- for (int batch = 0; batch < batches; ++batch) {
- for (int in_y = 0; in_y < input_height; ++in_y) {
- for (int in_x = 0; in_x < input_width; ++in_x) {
- for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
- // Loop through the output elements it will influence.
- const int out_x_origin = (in_x * stride_width) - pad_width;
- const int out_y_origin = (in_y * stride_height) - pad_height;
- for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
- for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
- for (int out_channel = 0; out_channel < output_depth;
- ++out_channel) {
- // Compute output element location.
- const int out_x = out_x_origin + filter_x;
- const int out_y = out_y_origin + filter_y;
- // We cannot accumulate out of bounds.
- if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) &&
- (out_y < output_height)) {
- const int32 input_value = input_data[Offset(
- input_shape, batch, in_y, in_x, in_channel)];
- const int32 filter_value =
- filter_data[Offset(filter_shape, out_channel, filter_y,
- filter_x, in_channel)];
- scratch_buffer[Offset(output_shape, batch, out_y, out_x,
- out_channel)] +=
- input_value * filter_value;
- }
- }
- }
- }
- }
- }
- }
- }
- for (int batch = 0; batch < batches; ++batch) {
- for (int out_y = 0; out_y < output_height; ++out_y) {
- for (int out_x = 0; out_x < output_width; ++out_x) {
- for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
- std::int64_t acc = scratch_buffer[Offset(output_shape, batch, out_y,
- out_x, out_channel)];
- if (bias_data) {
- acc += bias_data[out_channel];
- }
- int32 scaled_acc = MultiplyByQuantizedMultiplier(
- acc, output_multiplier[out_channel], output_shift[out_channel]);
- scaled_acc = std::max(scaled_acc, output_activation_min);
- scaled_acc = std::min(scaled_acc, output_activation_max);
- output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
- static_cast<int16_t>(scaled_acc);
- }
- }
- }
- }
- }
- } // namespace reference_integer_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TRANSPOSE_CONV_H_
|