| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tflite/c/builtin_op_data.h"
- #include "tflite/c/common.h"
- #include "tflite/kernels/internal/common.h"
- #include "tflite/kernels/internal/quantization_util.h"
- #include "tflite/kernels/internal/tensor_ctypes.h"
- #include "tflite/kernels/main/kernel_util.h"
- #include "tflite/kernels/main/op_macros.h"
- #include "tflite/micro/micro_main/micro_utils.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace activations {
- constexpr int kInputTensor = 0;
- constexpr int kOutputTensor = 0;
- template <typename Q>
- inline void ReluQuantized(int32_t lower, const RuntimeShape& input_shape,
- const Q* input_data, const RuntimeShape& output_shape,
- Q* output_data) {
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- const Q val = input_data[i];
- const Q clamped = val < lower ? lower : val;
- output_data[i] = clamped;
- }
- }
- inline void ReluFloat(const RuntimeShape& input_shape, const float* input_data,
- const RuntimeShape& output_shape, float* output_data) {
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- const float val = input_data[i];
- const float lower = 0.0f;
- const float clamped = val < lower ? lower : val;
- output_data[i] = clamped;
- }
- }
- inline void Relu6Float(const RuntimeShape& input_shape, const float* input_data,
- const RuntimeShape& output_shape, float* output_data) {
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- const float val = input_data[i];
- const float upper = 6.0f;
- const float lower = 0.0f;
- const float clamped = val > upper ? upper : val < lower ? lower : val;
- output_data[i] = clamped;
- }
- }
- template <typename Q>
- inline void Relu6Quantized(Q lower, Q upper, const RuntimeShape& input_shape,
- const Q* input_data,
- const RuntimeShape& output_shape, Q* output_data) {
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- const Q val = input_data[i];
- const Q clamped = val > upper ? upper : val < lower ? lower : val;
- output_data[i] = clamped;
- }
- }
- TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) {
- return kTfLiteOk;
- }
- TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- switch (input->type) {
- case kTfLiteFloat32: {
- ReluFloat(GetTensorShape(input), GetTensorData<float>(input),
- GetTensorShape(output), GetTensorData<float>(output));
- return kTfLiteOk;
- }
- case kTfLiteInt8: {
- ReluQuantized<int8_t>(input->params.zero_point, GetTensorShape(input),
- GetTensorData<int8_t>(input),
- GetTensorShape(output),
- GetTensorData<int8_t>(output));
- return kTfLiteOk;
- }
- case kTfLiteUInt8: {
- ReluQuantized<uint8_t>(input->params.zero_point, GetTensorShape(input),
- GetTensorData<uint8_t>(input),
- GetTensorShape(output),
- GetTensorData<uint8_t>(output));
- return kTfLiteOk;
- }
- default: {
- TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- }
- }
- TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node) {
- return kTfLiteOk;
- }
- TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- switch (input->type) {
- case kTfLiteFloat32: {
- Relu6Float(GetTensorShape(input), GetTensorData<float>(input),
- GetTensorShape(output), GetTensorData<float>(output));
- return kTfLiteOk;
- }
- case kTfLiteInt8: {
- const int8_t six = FloatToAsymmetricQuantizedInt8(
- 6.0f, input->params.scale, input->params.zero_point);
- const int8_t zero = input->params.zero_point;
- Relu6Quantized<int8_t>(
- zero, six, GetTensorShape(input), GetTensorData<int8_t>(input),
- GetTensorShape(output), GetTensorData<int8_t>(output));
- return kTfLiteOk;
- }
- case kTfLiteUInt8: {
- const uint8_t six = FloatToAsymmetricQuantizedUInt8(
- 6.0f, input->params.scale, input->params.zero_point);
- const uint8_t zero = input->params.zero_point;
- Relu6Quantized<uint8_t>(
- zero, six, GetTensorShape(input), GetTensorData<uint8_t>(input),
- GetTensorShape(output), GetTensorData<uint8_t>(output));
- return kTfLiteOk;
- }
- default: {
- TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- }
- }
- } // namespace activations
- TfLiteRegistration* Register_RELU() {
- static TfLiteRegistration r = {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/activations::ReluPrepare,
- /*invoke=*/activations::ReluEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- return &r;
- }
- TfLiteRegistration* Register_RELU6() {
- static TfLiteRegistration r = {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/activations::Relu6Prepare,
- /*invoke=*/activations::Relu6Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- return &r;
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|