| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tflite/kernels/internal/reference/mul.h"
- #include "tflite/c/common.h"
- #include "tflite/kernels/internal/quantization_util.h"
- #include "tflite/kernels/internal/reference/integer_ops/mul.h"
- #include "tflite/kernels/internal/reference/process_broadcast_shapes.h"
- #include "tflite/kernels/internal/tensor_ctypes.h"
- #include "tflite/kernels/main/kernel_util.h"
- namespace tflite {
- namespace ops {
- namespace micro {
- namespace mul {
- constexpr int kInput1Tensor = 0;
- constexpr int kInput2Tensor = 1;
- constexpr int kOutputTensor = 0;
- struct OpData {
- int32_t output_activation_min;
- int32_t output_activation_max;
- int32_t output_multiplier;
- int output_shift;
- };
- TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
- TfLiteMulParams* params, OpData* data) {
- const TfLiteTensor* input1 = GetInput(context, node, kInput1Tensor);
- const TfLiteTensor* input2 = GetInput(context, node, kInput2Tensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- TF_LITE_ENSURE_EQ(context, input1->type, input2->type);
- if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
- TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
- context, params->activation, output, &data->output_activation_min,
- &data->output_activation_max));
- double real_multiplier = static_cast<double>(input1->params.scale) *
- static_cast<double>(input2->params.scale) /
- static_cast<double>(output->params.scale);
- QuantizeMultiplier(real_multiplier, &data->output_multiplier,
- &data->output_shift);
- }
- return kTfLiteOk;
- }
- void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
- TfLiteMulParams* params, OpData* data,
- const TfLiteTensor* input1, const TfLiteTensor* input2,
- TfLiteTensor* output) {
- if (output->type == kTfLiteInt8 || output->type == kTfLiteUInt8) {
- tflite::ArithmeticParams op_params;
- SetActivationParams(data->output_activation_min,
- data->output_activation_max, &op_params);
- op_params.input1_offset = -input1->params.zero_point;
- op_params.input2_offset = -input2->params.zero_point;
- op_params.output_offset = output->params.zero_point;
- op_params.output_multiplier = data->output_multiplier;
- op_params.output_shift = data->output_shift;
- bool need_broadcast = reference_ops::ProcessBroadcastShapes(
- GetTensorShape(input1), GetTensorShape(input2), &op_params);
- #define TF_LITE_MUL(type, opname, dtype) \
- type::opname(op_params, GetTensorShape(input1), \
- GetTensorData<dtype>(input1), GetTensorShape(input2), \
- GetTensorData<dtype>(input2), GetTensorShape(output), \
- GetTensorData<dtype>(output));
- if (output->type == kTfLiteInt8) {
- if (need_broadcast) {
- TF_LITE_MUL(reference_integer_ops, BroadcastMul4DSlow, int8_t);
- } else {
- TF_LITE_MUL(reference_integer_ops, Mul, int8_t);
- }
- } else if (output->type == kTfLiteUInt8) {
- if (need_broadcast) {
- TF_LITE_MUL(reference_ops, BroadcastMul4DSlow, uint8_t);
- } else {
- TF_LITE_MUL(reference_ops, Mul, uint8_t);
- }
- }
- #undef TF_LITE_MUL
- }
- }
- void EvalFloat(TfLiteContext* context, TfLiteNode* node,
- TfLiteMulParams* params, OpData* data,
- const TfLiteTensor* input1, const TfLiteTensor* input2,
- TfLiteTensor* output) {
- float output_activation_min, output_activation_max;
- CalculateActivationRange(params->activation, &output_activation_min,
- &output_activation_max);
- tflite::ArithmeticParams op_params;
- SetActivationParams(output_activation_min, output_activation_max, &op_params);
- bool need_broadcast = reference_ops::ProcessBroadcastShapes(
- GetTensorShape(input1), GetTensorShape(input2), &op_params);
- #define TF_LITE_MUL(opname) \
- reference_ops::opname(op_params, GetTensorShape(input1), \
- GetTensorData<float>(input1), GetTensorShape(input2), \
- GetTensorData<float>(input2), GetTensorShape(output), \
- GetTensorData<float>(output));
- if (need_broadcast) {
- TF_LITE_MUL(BroadcastMul4DSlow);
- } else {
- TF_LITE_MUL(Mul);
- }
- #undef TF_LITE_MUL
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
- OpData data;
- const TfLiteTensor* input1 = GetInput(context, node, kInput1Tensor);
- const TfLiteTensor* input2 = GetInput(context, node, kInput2Tensor);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, &data));
- switch (input1->type) {
- case kTfLiteUInt8:
- case kTfLiteInt8:
- EvalQuantized(context, node, params, &data, input1, input2, output);
- break;
- case kTfLiteFloat32:
- EvalFloat(context, node, params, &data, input1, input2, output);
- break;
- default:
- TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
- TfLiteTypeGetName(input1->type), input1->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace mul
- TfLiteRegistration* Register_MUL() {
- static TfLiteRegistration r = {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/nullptr,
- /*invoke=*/mul::Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- return &r;
- }
- } // namespace micro
- } // namespace ops
- } // namespace tflite
|