
FINSH控制台

RT-THREAD文档中心

上海睿赛德电子科技有限公司版权 @2023

WWW.RT-THREAD.ORG

Tuesday 25th July, 2023

目录

目录 i

1 FinSH简介 . 1

2 FinSH内置命令 . 3

2.1 显示线程状态 . 3

2.2 显示信号量状态 . 4

2.3 显示事件状态 . 4

2.4 显示互斥量状态 . 5

2.5 显示邮箱状态 . 5

2.6 显示消息队列状态 . 6

2.7 显示内存池状态 . 6

2.8 显示定时器状态 . 6

2.9 显示设备状态 . 7

2.10 显示动态内存状态 . 7

3 自定义 FinSH命令 . 8

3.1 自定义msh命令 . 8

3.2 自定义命令重命名 . 9

4 FinSH功能配置 . 9

5 FinSH应用示例 . 10

5.1 不带参数的msh命令示例 . 10

5.2 带参数的msh命令示例 . 11

6 FinSH移植 . 12

FinSH控制台 1节 FinSH简介

在计算机发展的早期，图形系统出现之前，没有鼠标，甚至没有键盘。那时候人们如何与计算机交互

呢？最早期的计算机使用打孔的纸条向计算机输入命令，编写程序。后来随着计算机的不断发展，显示器、

键盘成为计算机的标准配置，但此时的操作系统还不支持图形界面，计算机先驱们开发了一种软件，它接

受用户输入的命令，解释之后，传递给操作系统，并将操作系统执行的结果返回给用户。这个程序像一层

外壳包裹在操作系统的外面，所以它被称为 shell。

嵌入式设备通常需要将开发板与 PC机连接起来通讯，常见连接方式包括：串口、USB、以太网、Wi-Fi
等。一个灵活的 shell也应该支持在多种连接方式上工作。有了 shell，就像在开发者和计算机之间架起了
一座沟通的桥梁，开发者能很方便的获取系统的运行情况，并通过命令控制系统的运行。特别是在调试阶

段，有了 shell，开发者除了能更快的定位到问题之外，也能利用 shell调用测试函数，改变测试函数的参
数，减少代码的烧录次数，缩短项目的开发时间。

FinSH 是 RT-Thread 的命令行组件（shell），正是基于上面这些考虑而诞生的，FinSH 的发音为
[ˈfɪnʃ]。读完本章，我们会对 FinSH的工作方式以及如何导出自己的命令到 FinSH有更加深入的了解。

1 FinSH简介

FinSH是 RT-Thread的命令行组件，提供一套供用户在命令行调用的操作接口，主要用于调试或查
看系统信息。它可以使用串口 /以太网 / USB等与 PC机进行通信，硬件拓扑结构如下图所示：

图 1: FinSH硬件连接图

用户在控制终端输入命令，控制终端通过串口、USB、网络等方式将命令传给设备里的 FinSH，FinSH
会读取设备输入命令，解析并自动扫描内部函数表，寻找对应函数名，执行函数后输出回应，回应通过原

路返回，将结果显示在控制终端上。

当使用串口连接设备与控制终端时，FinSH命令的执行流程，如下图所示：

FinSH控制台 1

FinSH控制台 1节 FinSH简介

图 2: FinSH命令执行流程图

FinSH支持权限验证功能，系统在启动后会进行权限验证，只有权限验证通过，才会开启 FinSH功能，
提升系统输入的安全性。

FinSH支持自动补全、查看历史命令等功能，通过键盘上的按键可以很方便的使用这些功能，FinSH
支持的按键如下表所示：

按键 功能描述

Tab键 当没有输入任何字符时按下 Tab键将会打印当前系统支持
的所有命令。若已经输入部分字符时按下 Tab键，将会查
找匹配的命令，也会按照文件系统的当前目录下的文件名

进行补全，并可以继续输入，多次补全

��键 上下翻阅最近输入的历史命令

退格键 删除符

��键 向左或向右移动标

FinSH支持命令行模式，此模式又称为msh(module shell)，msh模式下，FinSH与传统 shell（dos/
bash）执行方式一致，例如，可以通过 cd /命令将目录切换至根目录。

msh通过解析，将输入字符分解成以空格区分开的命令和参数。其命令执行格式如下所示：

command [arg1] [arg2] [...]

其中 command既可以是 RT-Thread内置的命令，也可以是可执行的文件。

FinSH控制台 2

FinSH控制台 2节 FinSH内置命令

2 FinSH内置命令

在 RT-Thread中默认内置了一些 FinSH命令，在 FinSH中输入 help后回车或者直接按下 Tab键，
就可以打印当前系统支持的所有命令。

msh模式下，按下 Tab键后可以列出当前支持的所有命令。默认命令的数量不是固定的，RT-Thread
的各个组件会向 FinSH输出一些命令。例如，当打开 DFS组件时，就会把 ls，cp，cd等命令加到 FinSH
中，方便开发者调试。

以下为按下 Tab键后打印出来的当前支持的所有显示 RT-Thread内核状态信息的命令，左边是命令
名称，右边是关于命令的描述：

RT-Thread shell commands:
version - show RT-Thread version information
list_thread - list thread
list_sem - list semaphore in system
list_event - list event in system
list_mutex - list mutex in system
list_mailbox - list mail box in system
list_msgqueue - list message queue in system
list_timer - list timer in system
list_device - list device in system
exit - return to RT-Thread shell mode.
help - RT-Thread shell help.
ps - List threads in the system.
time - Execute command with time.
free - Show the memory usage in the system.

这里列出输入常用命令后返回的字段信息，方便开发者理解返回的信息内容。

2.1 显示线程状态

使用 ps或者 list_thread命令来列出系统中的所有线程信息，包括线程优先级、状态、栈的最大使用
量等。

msh />list_thread
thread pri status sp stack size max used left tick error
-------- --- ------- ---------- ---------- ------ ---------- ---
tshell 20 ready 0x00000118 0x00001000 29% 0x00000009 000
tidle 31 ready 0x0000005c 0x00000200 28% 0x00000005 000
timer 4 suspend 0x00000078 0x00000400 11% 0x00000009 000

list_thread返回字段的描述:

字段 描述

thread 线程的名称

pri 线程的优先级

FinSH控制台 3

FinSH控制台 2节 FinSH内置命令

字段 描述

status 线程当前的状态

sp 线程当前的栈位置

stack size 线程的栈大小

max used 线程历史中使用的最大栈位置

left tick 线程剩余的运行节拍数

error 线程的错误码

2.2 显示信号量状态

使用 list_sem命令来显示系统中所有信号量信息，包括信号量的名称、信号量的值和等待这个信号量
的线程数目。

msh />list_sem
semaphore v suspend thread
-------- --- --------------
shrx 000 0
e0 000 0

list_sem返回字段的描述:

字段 描述

semaphore 信号量的名称

v 信号量当前的值

suspend thread 等待这个信号量的线程数目

2.3 显示事件状态

使用 list_event命令来显示系统中所有的事件信息，包括事件名称、事件的值和等待这个事件的线程
数目。

msh />list_event
event set suspend thread
----- ---------- --------------

list_event返回字段的描述:

字段 描述

event 事件集的名称

set 事件集中当前发生的事件

FinSH控制台 4

FinSH控制台 2节 FinSH内置命令

字段 描述

suspend thread 在这个事件集中等待事件的线程数目

2.4 显示互斥量状态

使用 list_mutex命令来显示系统中所有的互斥量信息，包括互斥量名称、互斥量的所有者和所有者在
互斥量上持有的嵌套次数等。

msh />list_mutex
mutex owner hold suspend thread
-------- -------- ---- --------------
fat0 (NULL) 0000 0
sal_lock (NULL) 0000 0

list_mutex返回字段的描述:

字段 描述

mutxe 互斥量的名称

owner 当前持有互斥量的线程

hold 持有者在这个互斥量上嵌套持有的次数

suspend thread 等待这个互斥量的线程数目

2.5 显示邮箱状态

使用 list_mailbox命令显示系统中所有的邮箱信息，包括邮箱名称、邮箱中邮件的数目和邮箱能容纳
邮件的最大数目等。

msh />list_mailbox
mailbox entry size suspend thread
-------- ---- ---- --------------
etxmb 0000 0008 1:etx
erxmb 0000 0008 1:erx

list_mailbox返回字段的描述:

字段 描述

mailbox 邮箱的名称

entry 邮箱中包含的邮件数目

size 邮箱能够容纳的最大邮件数目

suspend thread 等待这个邮箱的线程数目

FinSH控制台 5

FinSH控制台 2节 FinSH内置命令

2.6 显示消息队列状态

使用 list_msgqueue命令来显示系统中所有的消息队列信息，包括消息队列的名称、包含的消息数目
和等待这个消息队列的线程数目。

msh />list_msgqueue
msgqueue entry suspend thread
-------- ---- --------------

list_msgqueue返回字段的描述:

字段 描述

msgqueue 消息队列的名称

entry 消息队列当前包含的消息数目

suspend thread 等待这个消息队列的线程数目

2.7 显示内存池状态

使用 list_mempool命令来显示系统中所有的内存池信息，包括内存池的名称、内存池的大小和最大
使用的内存大小等。

msh />list_mempool
mempool block total free suspend thread
------- ---- ---- ---- --------------
signal 0012 0032 0032 0

list_mempool返回字段的描述:

字段 描述

mempool 内存池名称

block 内存块大小

total 总内存块

free 空闲内存块

suspend thread 等待这个内存池的线程数目

2.8 显示定时器状态

使用 list_timer命令来显示系统中所有的定时器信息，包括定时器的名称、是否是周期性定时器和定
时器超时的节拍数等。

msh />list_timer
timer periodic timeout flag

FinSH控制台 6

FinSH控制台 2节 FinSH内置命令

-------- ---------- ---------- -----------
tshell 0x00000000 0x00000000 deactivated
tidle 0x00000000 0x00000000 deactivated
timer 0x00000000 0x00000000 deactivated

list_timer返回字段的描述:

字段 描述

timer 定时器的名称

periodic 定时器是否是周期性的

timeout 定时器超时时的节拍数

flag 定时器的状态，activated表示活动的，deactivated表示不活动的

2.9 显示设备状态

使用 list_device命令来显示系统中所有的设备信息，包括设备名称、设备类型和设备被打开次数。

msh />list_device
device type ref count
------ ----------------- ----------
e0 Network Interface 0
uart0 Character Device 2

list_device返回字段的描述:

字段 描述

device 设备的名称

type 设备的类型

ref count 设备被打开次数

2.10 显示动态内存状态

使用 free命令来显示系统中所有的内存信息。

msh />free
total memory: 7669836
used memory : 15240
maximum allocated memory: 18520

free返回字段的描述:

FinSH控制台 7

FinSH控制台 3节 自定义 FinSH命令

字段 描述

total memory 内存总大小

used memory 已使用的内存大小

maximum allocated memory 最大分配内存

3 自定义 FinSH命令

除了 FinSH自带的命令，FinSH还也提供了多个宏接口来导出自定义命令，导出的命令可以直接在
FinSH中执行。

3.1 自定义msh命令

自定义的msh命令，可以在msh模式下被运行，将一个命令导出到msh模式可以使用如下宏接口：

MSH_CMD_EXPORT(name, desc);

参数 描述

name 要导出的命令

desc 导出命令的描述

这个命令可以导出有参数的命令，也可以导出无参数的命令。导出无参数命令时，函数的入参为 void，
示例如下：

void hello(void)
{

rt_kprintf("hello RT-Thread!\n");
}

MSH_CMD_EXPORT(hello , say hello to RT-Thread);

导出有参数的命令时，函数的入参为 int argc和 char**argv。argc表示参数的个数，argv表示命
令行参数字符串指针数组指针。导出有参数命令示例如下：

static void atcmd(int argc, char**argv)
{

……

}

MSH_CMD_EXPORT(atcmd, atcmd sample: atcmd <server|client>);

FinSH控制台 8

FinSH控制台 4节 FinSH功能配置

3.2 自定义命令重命名

FinSH 的函数名字长度有一定限制，它由 finsh.h 中的宏定义 FINSH_NAME_MAX 控制，默认是
16 字节，这意味着 FinSH 命令长度不会超过 16 字节。这里有个潜在的问题：当一个函数名长度超过
FINSH_NAME_MAX时，使用 FINSH_FUNCTION_EXPORT导出这个函数到命令表中后，在 FinSH符号
表中看到完整的函数名，但是完整输入执行会出现 null node错误。这是因为虽然显示了完整的函数名，
但是实际上 FinSH中却保存了前 16字节作为命令，过多的输入会导致无法正确找到命令，这时就可以使
用 FINSH_FUNCTION_EXPORT_ALIAS来对导出的命令进行重命名。

FINSH_FUNCTION_EXPORT_ALIAS(name, alias, desc);

参数 描述

name 要导出的命令

alias 导出到 FinSH时显示的名字

desc 导出命令的描述

在重命名的命令名字前加 __cmd_就可以将命令导出到msh模式，否则，命令会被导出到 C-Style模
式。以下示例定义了一个 hello函数，并将它重命名为 ho后导出成 C-Style模式下的命令。

void hello(void)
{

rt_kprintf("hello RT-Thread!\n");
}

FINSH_FUNCTION_EXPORT_ALIAS(hello , ho, say hello to RT-Thread);

4 FinSH功能配置

FinSH功能可以裁剪，宏配置选项在 rtconfig.h文件中定义，具体配置项如下表所示。

宏定义

取值类

型 描述 默认值

#define RT_USING_FINSH 无 使能 FinSH 开启

#define FINSH_THREAD_NAME 字符串 FinSH线程的名字 “tshell”

#define FINSH_USING_HISTORY 无 打开历史回溯功能 开启

#define FINSH_HISTORY_LINES 整数型 能回溯的历史命令行数 5

#define FINSH_USING_SYMTAB 无 可以在 FinSH中使用符
号表

开启

#define FINSH_USING_DESCRIPTION 无 给每个 FinSH的符号添
加一段描述

开启

#define FINSH_USING_MSH 无 使能msh模式 开启

FinSH控制台 9

FinSH控制台 5节 FinSH应用示例

宏定义

取值类

型 描述 默认值

#define FINSH_ARG_MAX 整数型 最大输入参数数量 10

#define FINSH_USING_AUTH 无 使能权限验证 关闭

#define FINSH_DEFAULT_PASSWORD 字符串 权限验证密码 关闭

rtconfig.h中的参考配置示例如下所示，可以根据实际功能需求情况进行配置。

/* 开启 FinSH */
#define RT_USING_FINSH

/* 将线程名称定义为 tshell */
#define FINSH_THREAD_NAME "tshell"

/* 开启历史命令 */
#define FINSH_USING_HISTORY
/* 记录 5 行历史命令 */
#define FINSH_HISTORY_LINES 5

/* 开启使用 Tab 键 */
#define FINSH_USING_SYMTAB
/* 开启描述功能 */
#define FINSH_USING_DESCRIPTION

/* 定义 FinSH 线程优先级为 20 */
#define FINSH_THREAD_PRIORITY 20
/* 定义 FinSH 线程的栈大小为 4KB */
#define FINSH_THREAD_STACK_SIZE 4096
/* 定义命令字符长度为 80 字节 */
#define FINSH_CMD_SIZE 80

/* 开启 msh 功能 */
#define FINSH_USING_MSH

/* 最大输入参数数量为 10 个 */
#define FINSH_ARG_MAX 10

5 FinSH应用示例

5.1 不带参数的msh命令示例

本小节将演示如何将一个自定义的命令导出到msh中，示例代码如下所示，代码中创建了 hello函数，
然后通过MSH_CMD_EXPORT命令即可将 hello函数导出到 FinSH命令列表中。

#include <rtthread.h>

FinSH控制台 10

FinSH控制台 5节 FinSH应用示例

void hello(void)
{

rt_kprintf("hello RT-Thread!\n");
}

MSH_CMD_EXPORT(hello , say hello to RT-Thread);

系统运行起来后，在 FinSH控制台按 tab键可以看到导出的命令：

msh />
RT-Thread shell commands:
hello - say hello to RT-Thread
version - show RT-Thread version information
list_thread - list thread
……

运行 hello命令，运行结果如下所示：

msh />hello
hello RT_Thread!
msh />

5.2 带参数的msh命令示例

本小节将演示如何将一个带参数的自定义的命令导出到 FinSH中,示例代码如下所示，代码中创建了
atcmd()函数，然后通过MSH_CMD_EXPORT命令即可将 atcmd()函数导出到msh命令列表中。

#include <rtthread.h>

static void atcmd(int argc, char**argv)
{

if (argc < 2)
{

rt_kprintf("Please input'atcmd <server|client>'\n");
return;

}

if (!rt_strcmp(argv[1], "server"))
{

rt_kprintf("AT server!\n");
}
else if (!rt_strcmp(argv[1], "client"))
{

rt_kprintf("AT client!\n");
}
else
{

rt_kprintf("Please input'atcmd <server|client>'\n");

FinSH控制台 11

FinSH控制台 6节 FinSH移植

}
}

MSH_CMD_EXPORT(atcmd, atcmd sample: atcmd <server|client>);

系统运行起来后，在 FinSH控制台按 tab键可以看到导出的命令：

msh />
RT-Thread shell commands:
hello - say hello to RT-Thread
atcmd - atcmd sample: atcmd <server|client>
version - show RT-Thread version information
list_thread - list thread
……

运行 atcmd命令，运行结果如下所示：

msh />atcmd
Please input 'atcmd <server|client>'
msh />

运行 atcmd server命令，运行结果如下所示：

msh />atcmd server
AT server!
msh />

运行 atcmd client命令，运行结果如下所示：

msh />atcmd client
AT client!
msh />

6 FinSH移植

FinSH完全采用 ANSI C编写，具备极好的移植性；内存占用少，如果不使用前面章节中介绍的函数
方式动态地向 FinSH添加符号，FinSH将不会动态申请内存。FinSH源码位于 components/finsh目录

下。移植 FinSH需要注意以下几个方面：

• FinSH线程：

每次的命令执行都是在 FinSH线程（即 tshell线程）的上下文中完成的。当定义 RT_USING_FINSH
宏时，就可以在初始化线程中调用 finsh_system_init() 初始化 FinSH 线程。RT-Thread 1.2.0 之后的
版本中可以不使用 finsh_set_device(const char* device_name)函数去显式指定使用的设备，而是

会自动调用 rt_console_get_device() 函数去使用 console 设备（RT-Thread 1.1.x 及以下版本中必
须使用 finsh_set_device(const char* device_name) 指定 FinSH 使用的设备）。FinSH 线程在函数
finsh_system_init()函数中被创建，它将一直等待 rx_sem信号量。

FinSH控制台 12

FinSH控制台 6节 FinSH移植

• FinSH的输出：

FinSH 的输出依赖于系统的输出，在 RT-Thread 中依赖 rt_kprintf() 输出。在启动函数

rt_hw_board_init() 中，rt_console_set_device(const char* name) 函数设置了 FinSH 的打印输
出设备。

• FinSH的输入：

FinSH线程在获得了 rx_sem信号量后，调用 rt_device_read()函数从设备 (选用串口设备)中获得
一个字符然后处理。所以 FinSH的移植需要 rt_device_read()函数的实现。而 rx_sem信号量的释放
通过调用 rx_indicate()函数以完成对 FinSH线程的输入通知。通常的过程是，当串口接收中断发生时
（即串口有输入），接受中断服务例程调用 rx_indicate()函数通知 FinSH线程有输入，而后 FinSH线程
获取串口输入最后做相应的命令处理。

FinSH控制台 13

	目录
	1 FinSH 简介
	2 FinSH 内置命令
	2.1 显示线程状态
	2.2 显示信号量状态
	2.3 显示事件状态
	2.4 显示互斥量状态
	2.5 显示邮箱状态
	2.6 显示消息队列状态
	2.7 显示内存池状态
	2.8 显示定时器状态
	2.9 显示设备状态
	2.10 显示动态内存状态

	3 自定义 FinSH 命令
	3.1 自定义 msh 命令
	3.2 自定义命令重命名

	4 FinSH 功能配置
	5 FinSH 应用示例
	5.1 不带参数的 msh 命令示例
	5.2 带参数的 msh 命令示例

	6 FinSH 移植

