stm32f7x.cfg 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. # SPDX-License-Identifier: GPL-2.0-or-later
  2. # script for stm32f7x family
  3. #
  4. # stm32f7 devices support both JTAG and SWD transports.
  5. #
  6. source [find target/swj-dp.tcl]
  7. source [find mem_helper.tcl]
  8. if { [info exists CHIPNAME] } {
  9. set _CHIPNAME $CHIPNAME
  10. } else {
  11. set _CHIPNAME stm32f7x
  12. }
  13. set _ENDIAN little
  14. # Work-area is a space in RAM used for flash programming
  15. # By default use 128kB
  16. if { [info exists WORKAREASIZE] } {
  17. set _WORKAREASIZE $WORKAREASIZE
  18. } else {
  19. set _WORKAREASIZE 0x20000
  20. }
  21. #jtag scan chain
  22. if { [info exists CPUTAPID] } {
  23. set _CPUTAPID $CPUTAPID
  24. } else {
  25. if { [using_jtag] } {
  26. # See STM Document RM0385
  27. # Section 40.6.3 - corresponds to Cortex-M7 with FPU r0p0
  28. set _CPUTAPID 0x5ba00477
  29. } {
  30. set _CPUTAPID 0x5ba02477
  31. }
  32. }
  33. swj_newdap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
  34. dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu
  35. if {[using_jtag]} {
  36. jtag newtap $_CHIPNAME bs -irlen 5
  37. }
  38. set _TARGETNAME $_CHIPNAME.cpu
  39. target create $_TARGETNAME cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap
  40. $_TARGETNAME configure -work-area-phys 0x20000000 -work-area-size $_WORKAREASIZE -work-area-backup 0
  41. set _FLASHNAME $_CHIPNAME.flash
  42. flash bank $_FLASHNAME stm32f2x 0 0 0 0 $_TARGETNAME
  43. flash bank $_CHIPNAME.otp stm32f2x 0x1ff0f000 0 0 0 $_TARGETNAME
  44. # On the STM32F7, the Flash is mapped at address 0x08000000 via the AXI and
  45. # also address 0x00200000 via the ITCM. The former mapping is read-write in
  46. # hardware, while the latter is read-only. By presenting an alias, we
  47. # accomplish two things:
  48. # (1) We allow writing at 0x00200000 (because the alias acts identically to the
  49. # original bank), which allows code intended to run from that address to
  50. # also be linked for loading at that address, simplifying linking.
  51. # (2) We allow the proper memory map to be delivered to GDB, which will cause
  52. # it to use hardware breakpoints at the 0x00200000 mapping (correctly
  53. # identifying it as Flash), which it would otherwise not do. Configuring
  54. # the Flash via ITCM alias as virtual
  55. flash bank $_CHIPNAME.itcm-flash.alias virtual 0x00200000 0 0 0 $_TARGETNAME $_FLASHNAME
  56. if { [info exists QUADSPI] && $QUADSPI } {
  57. set a [llength [flash list]]
  58. set _QSPINAME $_CHIPNAME.qspi
  59. flash bank $_QSPINAME stmqspi 0x90000000 0 0 0 $_TARGETNAME 0xA0001000
  60. }
  61. # adapter speed should be <= F_CPU/6. F_CPU after reset is 16MHz, so use F_JTAG = 2MHz
  62. adapter speed 2000
  63. adapter srst delay 100
  64. if {[using_jtag]} {
  65. jtag_ntrst_delay 100
  66. }
  67. # Use hardware reset.
  68. #
  69. # This target is compatible with connect_assert_srst, which may be set in a
  70. # board file.
  71. reset_config srst_nogate
  72. if {![using_hla]} {
  73. # if srst is not fitted use SYSRESETREQ to
  74. # perform a soft reset
  75. cortex_m reset_config sysresetreq
  76. # Set CSW[27], which according to ARM ADI v5 appendix E1.4 maps to AHB signal
  77. # HPROT[3], which according to AMBA AHB/ASB/APB specification chapter 3.7.3
  78. # makes the data access cacheable. This allows reading and writing data in the
  79. # CPU cache from the debugger, which is far more useful than going straight to
  80. # RAM when operating on typical variables, and is generally no worse when
  81. # operating on special memory locations.
  82. $_CHIPNAME.dap apcsw 0x08000000 0x08000000
  83. }
  84. $_TARGETNAME configure -event examine-end {
  85. # DBGMCU_CR |= DBG_STANDBY | DBG_STOP | DBG_SLEEP
  86. mmw 0xE0042004 0x00000007 0
  87. # Stop watchdog counters during halt
  88. # DBGMCU_APB1_FZ |= DBG_IWDG_STOP | DBG_WWDG_STOP
  89. mmw 0xE0042008 0x00001800 0
  90. }
  91. tpiu create $_CHIPNAME.tpiu -dap $_CHIPNAME.dap -ap-num 0 -baseaddr 0xE0040000
  92. lappend _telnet_autocomplete_skip _proc_pre_enable_$_CHIPNAME.tpiu
  93. proc _proc_pre_enable_$_CHIPNAME.tpiu {_targetname} {
  94. targets $_targetname
  95. # Set TRACE_IOEN; TRACE_MODE is set to async; when using sync
  96. # change this value accordingly to configure trace pins
  97. # assignment
  98. mmw 0xE0042004 0x00000020 0
  99. }
  100. $_CHIPNAME.tpiu configure -event pre-enable "_proc_pre_enable_$_CHIPNAME.tpiu $_TARGETNAME"
  101. $_TARGETNAME configure -event reset-init {
  102. # If the HSE was previously enabled and the external clock source
  103. # disappeared, RCC_CR.HSERDY can get stuck at 1 and the PLL cannot be
  104. # properly switched back to HSI. This situation persists even over a system
  105. # reset, including a pin reset via SRST. However, activating the clock
  106. # security system will detect the problem and clear HSERDY to 0, which in
  107. # turn allows the PLL to switch back to HSI properly. Since we just came
  108. # out of reset, HSEON should be 0. If HSERDY is 1, then this situation must
  109. # have happened; in that case, activate the clock security system to clear
  110. # HSERDY.
  111. if {[mrw 0x40023800] & 0x00020000} {
  112. mmw 0x40023800 0x00090000 0 ;# RCC_CR = CSSON | HSEON
  113. sleep 10 ;# Wait for CSS to fire, if it wants to
  114. mmw 0x40023800 0 0x00090000 ;# RCC_CR &= ~CSSON & ~HSEON
  115. mww 0x4002380C 0x00800000 ;# RCC_CIR = CSSC
  116. sleep 1 ;# Wait for CSSF to clear
  117. }
  118. # If the clock security system fired, it will pend an NMI. A pending NMI
  119. # will cause a bad time for any subsequent executing code, such as a
  120. # programming algorithm.
  121. if {[mrw 0xE000ED04] & 0x80000000} {
  122. # ICSR.NMIPENDSET reads as 1. Need to clear it. A pending NMI can’t be
  123. # cleared by any normal means (such as ICSR or NVIC). It can only be
  124. # cleared by entering the NMI handler or by resetting the processor.
  125. echo "[target current]: Clock security system generated NMI. Clearing."
  126. # Keep the old DEMCR value.
  127. set old [mrw 0xE000EDFC]
  128. # Enable vector catch on reset.
  129. mww 0xE000EDFC 0x01000001
  130. # Issue local reset via AIRCR.
  131. mww 0xE000ED0C 0x05FA0001
  132. # Restore old DEMCR value.
  133. mww 0xE000EDFC $old
  134. }
  135. # Configure PLL to boost clock to HSI x 10 (160 MHz)
  136. mww 0x40023804 0x08002808 ;# RCC_PLLCFGR 16 Mhz /10 (M) * 128 (N) /2(P)
  137. mww 0x40023C00 0x00000107 ;# FLASH_ACR = PRFTBE | 7(Latency)
  138. mmw 0x40023800 0x01000000 0 ;# RCC_CR |= PLLON
  139. sleep 10 ;# Wait for PLL to lock
  140. mww 0x40023808 0x00009400 ;# RCC_CFGR_PPRE1 = 5(div 4), PPRE2 = 4(div 2)
  141. mmw 0x40023808 0x00000002 0 ;# RCC_CFGR |= RCC_CFGR_SW_PLL
  142. # Boost SWD frequency
  143. # Do not boost JTAG frequency and slow down JTAG memory access or flash write algo
  144. # suffers from DAP WAITs
  145. if {[using_jtag]} {
  146. [[target current] cget -dap] memaccess 16
  147. } {
  148. adapter speed 8000
  149. }
  150. }
  151. $_TARGETNAME configure -event reset-start {
  152. # Reduce speed since CPU speed will slow down to 16MHz with the reset
  153. adapter speed 2000
  154. }