The Red Hat newlib C Library

Full Configuration

libc 2.5.0
December 2016

Steve Chamberlain
Roland Pesch

Red Hat Support
Jeff Johnston

sac@cygnus.com, pesch@cygnus.com, jjohnstn@redhat.com The Red Hat newlib C' Library
Copyright (© 1992, 1993, 1994-2004 Red Hat Inc.

libc includes software developed by the University of California, Berkeley and its contrib-
utors.

libc includes software developed by Martin Jackson, Graham Haley and Steve Chamberlain
of Tadpole Technology and released to Cygnus.

libc uses floating-point conversion software developed at AT& T, which includes this copy-
right information:

(" N
The author of this software is David M. Gay.

Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any purpose
without fee is hereby granted, provided that this entire notice is included in
all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EX-
PRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AU-
THOR NOR AT&T MAKES ANY REPRESENTATION OR WARRANTY OF
ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFT-

WARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
N J

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, subject to the terms of the GNU General Public License,
which includes the provision that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

1 Introduction

This reference manual describes the functions provided by the Red Hat “newlib” version of
the standard ANSI C library. This document is not intended as an overview or a tutorial for
the C library. Each library function is listed with a synopsis of its use, a brief description,
return values (including error handling), and portability issues.

Some of the library functions depend on support from the underlying operating system and
may not be available on every platform. For embedded systems in particular, many of these
underlying operating system services may not be available or may not be fully functional.
The specific operating system subroutines required for a particular library function are
listed in the “Portability” section of the function description. See Chapter 13 [Syscalls],
page 319, for a description of the relevant operating system calls.

2 Standard Utility Functions (stdlib.h)

This chapter groups utility functions useful in a variety of programs. The corresponding
declarations are in the header file std1ib.h.

4 Red Hat newlib C Library, Full

2.1 _Exit—end program execution with no cleanup
processing
Synopsis

#include <stdlib.h>
void _Exit(int code);

Description

Use _Exit to return control from a program to the host operating environment. Use the
argument code to pass an exit status to the operating environment: two particular values,
EXIT_SUCCESS and EXIT_FAILURE, are defined in ‘stdlib.h’ to indicate success or failure
in a portable fashion.

_Exit differs from exit in that it does not run any application-defined cleanup functions
registered with atexit and it does not clean up files and streams. It is identical to _exit.

Returns
_Exit does not return to its caller.

Portability
_Exit is defined by the C99 standard.

Supporting OS subroutines required: _exit.

Chapter 2: Standard Utility Functions (stdlib.h) 5

2.2 ab4l, 164a——convert between radix-64 ASCII string and
long

Synopsis
#include <stdlib.h>

long a64l(const char *input);
char *164a(long input);

Description

Conversion is performed between long and radix-64 characters. The 164a routine transforms
up to 32 bits of input value starting from least significant bits to the most significant bits.
The input value is split up into a maximum of 5 groups of 6 bits and possibly one group of
2 bits (bits 31 and 30).

Each group of 6 bits forms a value from 0-63 which is translated into a character as follows:
e 0=""
o 1=/
e 2-11 ="0t0"9
e 12-37="A"to’Z’
e 3863 =’a’ to’7’
When the remaining bits are zero or all bits have been translated, a null terminator is
appended to the string. An input value of 0 results in the empty string.

The a641 function performs the reverse translation. Each character is used to generate a
6-bit value for up to 30 bits and then a 2-bit value to complete a 32-bit result. The null
terminator means that the remaining digits are 0. An empty input string or NULL string
results in OL. An invalid string results in undefined behavior. If the size of a long is greater
than 32 bits, the result is sign-extended.

Returns
164a returns a null-terminated string of 0 to 6 characters. a641 returns the 32-bit translated
value from the input character string.

Portability
164a and a64l are non-ANSI and are defined by the Single Unix Specification.

Supporting OS subroutines required: None.

6 Red Hat newlib C Library, Full

2.3 abort—abnormal termination of a program
Synopsis

#include <stdlib.h>
void abort(void);

Description
Use abort to signal that your program has detected a condition it cannot deal with. Nor-
mally, abort ends your program’s execution.

Before terminating your program, abort raises the exception SIGABRT (using
‘raise (SIGABRT)’). If you have used signal to register an exception handler for this
condition, that handler has the opportunity to retain control, thereby avoiding program
termination.

In this implementation, abort does not perform any stream- or file-related cleanup (the
host environment may do so; if not, you can arrange for your program to do its own cleanup
with a SIGABRT exception handler).

Returns
abort does not return to its caller.

Portability
ANSI C requires abort.

Supporting OS subroutines required: _exit and optionally, write.

Chapter 2: Standard Utility Functions (stdlib.h) 7

2.4 abs—integer absolute value (magnitude)
Synopsis

#include <stdlib.h>
int abs(int i);

Description
abs returns |z|, the absolute value of i (also called the magnitude of i). That is, if i is
negative, the result is the opposite of i, but if i is nonnegative the result is i.

The similar function labs uses and returns long rather than int values.

Returns
The result is a nonnegative integer.

Portability
abs is ANSI.

No supporting OS subroutines are required.

8 Red Hat newlib C Library, Full

2.5 assert—macro for debugging diagnostics
Synopsis

#include <assert.h>
void assert(int expression);

Description

Use this macro to embed debuggging diagnostic statements in your programs. The argument
expression should be an expression which evaluates to true (nonzero) when your program
is working as you intended.

When expression evaluates to false (zero), assert calls abort, after first printing a message
showing what failed and where:

Assertion failed: expression, file filename, line lineno, function: func
If the name of the current function is not known (for example, when using a C89 compiler
that does not understand __func__), the function location is omitted.
The macro is defined to permit you to turn off all uses of assert at compile time by defining
NDEBUG as a preprocessor variable. If you do this, the assert macro expands to

(void(0))

Returns
assert does not return a value.

Portability
The assert macro is required by ANSI, as is the behavior when NDEBUG is defined.

Supporting OS subroutines required (only if enabled): close, fstat, getpid, isatty, kill,
1seek, read, sbrk, write.

Chapter 2: Standard Utility Functions (stdlib.h) 9

2.6 atexit—request execution of functions at program exit
Synopsis

#include <stdlib.h>
int atexit (void (*function) (void));

Description

You can use atexit to enroll functions in a list of functions that will be called when your
program terminates normally. The argument is a pointer to a user-defined function (which
must not require arguments and must not return a result).

The functions are kept in a LIFO stack; that is, the last function enrolled by atexit will
be the first to execute when your program exits.

There is no built-in limit to the number of functions you can enroll in this list; however,
after every group of 32 functions is enrolled, atexit will call malloc to get space for the
next part of the list. The initial list of 32 functions is statically allocated, so you can always
count on at least that many slots available.

Returns
atexit returns O if it succeeds in enrolling your function, -1 if it fails (possible only if no
space was available for malloc to extend the list of functions).

Portability
atexit is required by the ANSI standard, which also specifies that implementations must
support enrolling at least 32 functions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

10 Red Hat newlib C Library, Full

2.7 atof, atoff—string to double or float
Synopsis
#include <stdlib.h>

double atof(const char *s);
float atoff(const char *s);

Description
atof converts the initial portion of a string to a double. atoff converts the initial portion
of a string to a float.

The functions parse the character string s, locating a substring which can be converted to
a floating-point value. The substring must match the format:

[+|-1digits[.][digits] [(el|E) [+|-]digits]
The substring converted is the longest initial fragment of s that has the expected format,
beginning with the first non-whitespace character. The substring is empty if str is empty,
consists entirely of whitespace, or if the first non-whitespace character is something other
than +, -, ., or a digit.
atof (s) is implemented as strtod(s, NULL). atoff(s) is implemented as strtof (s,
NULL).

Returns

atof returns the converted substring value, if any, as a double; or 0.0, if no conversion
could be performed. If the correct value is out of the range of representable values, plus
or minus HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would
cause underflow, 0.0 is returned and ERANGE is stored in errno.

atoff obeys the same rules as atof, except that it returns a float.

Portability

atof is ANSI C. atof, atoi, and atol are subsumed by strod and strol, but are used
extensively in existing code. These functions are less reliable, but may be faster if the
argument is verified to be in a valid range.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (stdlib.h) 11

2.8 atoi, atol—string to integer

Synopsis
#include <stdlib.h>
int atoi(const char *s);
long atol(const char *s);
int _atoi_r(struct _reent *ptr, const char *s);
long _atol_r(struct _reent *ptr, const char *s);

Description

atoi converts the initial portion of a string to an int. atol converts the initial portion of
a string to a long.

atoi(s) is implemented as (int)strtol(s, NULL, 10). atol(s) is implemented as
strtol(s, NULL, 10).

_atoi_r and _atol_r are reentrant versions of atoi and atol respectively, passing the
reentrancy struct pointer.

Returns
The functions return the converted value, if any. If no conversion was made, 0 is returned.

Portability
atoi, atol are ANSI.

No supporting OS subroutines are required.

12 Red Hat newlib C Library, Full

2.9 atoll—convert a string to a long long integer
Synopsis
#include <stdlib.h>

long long atoll(const char *str);
long long _atoll_r(struct _reent *ptr, const char *str);

Description

The function atoll converts the initial portion of the string pointed to by *str to a type
long long. A call to atoll(str) in this implementation is equivalent to strtoll(str, (char
*)NULL, 10) including behavior on error.

The alternate function _atoll_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
The converted value.

Portability
atoll is ISO 9899 (C99) and POSIX 1003.1-2001 compatable.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (stdlib.h) 13

2.10 bsearch—binary search
Synopsis
#include <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

Description
bsearch searches an array beginning at base for any element that matches key, using binary
search. nmemb is the element count of the array; size is the size of each element.

The array must be sorted in ascending order with respect to the comparison function compar
(which you supply as the last argument of bsearch).

You must define the comparison function (*compar) to have two arguments; its result must
be negative if the first argument is less than the second, zero if the two arguments match,
and positive if the first argument is greater than the second (where “less than” and “greater
than” refer to whatever arbitrary ordering is appropriate).

Returns
Returns a pointer to an element of array that matches key. If more than one matching
element is available, the result may point to any of them.

Portability
bsearch is ANSI.

No supporting OS subroutines are required.

14 Red Hat newlib C Library, Full

2.11 calloc—allocate space for arrays
Synopsis
#include <stdlib.h>

void *calloc(size_t n, size_t s);
void *_calloc_r(void *reent, size_t n, size_t s);

Description

Use calloc to request a block of memory sufficient to hold an array of n elements, each of
which has size s.

The memory allocated by calloc comes out of the same memory pool used by malloc, but
the memory block is initialized to all zero bytes. (To avoid the overhead of initializing the
space, use malloc instead.)

The alternate function _calloc_r is reentrant. The extra argument reent is a pointer to a
reentrancy structure.

Returns
If successful, a pointer to the newly allocated space.

If unsuccessful, NULL.

Portability
calloc is ANSI.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (stdlib.h) 15

2.12 div—divide two integers
Synopsis

#include <stdlib.h>
div_t div(int n, int d);

Description
Divide n/d, returning quotient and remainder as two integers in a structure div_t.

Returns
The result is represented with the structure

typedef struct
{
int quot;
int rem;
} div_t;
where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
div(a,d);’ then n equals ‘r.rem + d*r.quot’.

To divide long rather than int values, use the similar function 1div.

Portability
div is ANSIL

No supporting OS subroutines are required.

16 Red Hat newlib C Library, Full

2.13 ecvt, ecvtf, fcvt, fcvtf—double or float to string
Synopsis
#include <stdlib.h>

char *ecvt(double val, int chars, int *decpt, int *sgn);
char xecvtf(float val, int chars, int *decpt, int *sgn);

char *fcvt(double val, int decimals,
int *decpt, int *sgn);

char *fcvtf(float val, int decimals,
int *decpt, int *sgn);

Description

ecvt and fcvt produce (null-terminated) strings of digits representating the double num-
ber val. ecvtf and fcvtf produce the corresponding character representations of float
numbers.

(The stdlib functions ecvtbuf and fcvtbuf are reentrant versions of ecvt and fcvt.)

The only difference between ecvt and fcvt is the interpretation of the second argument
(chars or decimals). For ecvt, the second argument chars specifies the total number of
characters to write (which is also the number of significant digits in the formatted string,
since these two functions write only digits). For fcvt, the second argument decimals speci-
fies the number of characters to write after the decimal point; all digits for the integer part
of val are always included.

Since ecvt and fcvt write only digits in the output string, they record the location of the
decimal point in *decpt, and the sign of the number in *sgn. After formatting a number,
xdecpt contains the number of digits to the left of the decimal point. *sgn contains 0 if
the number is positive, and 1 if it is negative.

Returns
All four functions return a pointer to the new string containing a character representation
of val.

Portability
None of these functions are ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (stdlib.h) 17

2.14 gcvt, gcvtf—format double or float as string

Synopsis
#include <stdlib.h>

char *gcvt(double val, int precision, char *buf);
char *gcvtf(float val, int precision, char *buf);

Description
gevt writes a fully formatted number as a null-terminated string in the buffer *buf. gcvtf
produces corresponding character representations of float numbers.

gcvt uses the same rules as the printf format ‘%,. precisiong’—only negative values are
signed (with ‘=’), and either exponential or ordinary decimal-fraction format is chosen de-
pending on the number of significant digits (specified by precision).

Returns
The result is a pointer to the formatted representation of val (the same as the argument
buf).

Portability
Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

18 Red Hat newlib C Library, Full

2.15 ecvtbuf, fcvtbuf—double or float to string
Synopsis
#include <stdio.h>

char *ecvtbuf (double val, int chars, int *decpt,
int *sgn, char *buf);

char *fcvtbuf(double val, int decimals, int *decpt,
int *sgn, char *buf);

Description
ecvtbuf and fcvtbuf produce (null-terminated) strings of digits representating the double
number val.

The only difference between ecvtbuf and fcvtbuf is the interpretation of the second ar-
gument (chars or decimals). For ecvtbuf, the second argument chars specifies the total
number of characters to write (which is also the number of significant digits in the format-
ted string, since these two functions write only digits). For fcvtbuf, the second argument
decimals specifies the number of characters to write after the decimal point; all digits for
the integer part of val are always included.

Since ecvtbuf and fcvtbuf write only digits in the output string, they record the location
of the decimal point in *decpt, and the sign of the number in *sgn. After formatting a
number, *decpt contains the number of digits to the left of the decimal point. *sgn contains
0 if the number is positive, and 1 if it is negative. For both functions, you supply a pointer
buf to an area of memory to hold the converted string.

Returns
Both functions return a pointer to buf, the string containing a character representation of
val.

Portability
Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (stdlib.h) 19

2.16 __env_lock env_unlock—Ilock environ variable

- P R——

Synopsis
#include <envlock.h>

void __env_lock (struct _reent *reent);
void __env_unlock (struct _reent *reent);

Description

The setenv family of routines call these functions when they need to modify the environ
variable. The version of these routines supplied in the library use the lock API defined
in sys/lock.h. If multiple threads of execution can call setenv, or if setenv can be called
reentrantly, then you need to define your own versions of these functions in order to safely
lock the memory pool during a call. If you do not, the memory pool may become corrupted.

A call to setenv may call __env_lock recursively; that is, the sequence of calls may go
__env_lock, __env_lock env_unlock env_unlock. Any implementation of these
routines must be careful to avoid causing a thread to wait for a lock that it already holds.

) ——) ——

20 Red Hat newlib C Library, Full

2.17 exit—end program execution
Synopsis

#include <stdlib.h>
void exit(int code);

Description

Use exit to return control from a program to the host operating environment. Use the
argument code to pass an exit status to the operating environment: two particular values,
EXIT_SUCCESS and EXIT_FAILURE, are defined in ‘stdlib.h’ to indicate success or failure
in a portable fashion.

exit does two kinds of cleanup before ending execution of your program. First, it calls
all application-defined cleanup functions you have enrolled with atexit. Second, files and
streams are cleaned up: any pending output is delivered to the host system, each open file
or stream is closed, and files created by tmpfile are deleted.

Returns
exit does not return to its caller.

Portability
ANSI C requires exit, and specifies that EXIT_SUCCESS and EXIT_FAILURE must be defined.

Supporting OS subroutines required: _exit.

Chapter 2: Standard Utility Functions (stdlib.h) 21

2.18 getenv—Ilook up environment variable

Synopsis
#include <stdlib.h>
char *getenv(const char *name) ;

Description

getenv searches the list of environment variable names and values (using the global pointer
“char **environ”) for a variable whose name matches the string at name. If a variable
name matches, getenv returns a pointer to the associated value.

Returns
A pointer to the (string) value of the environment variable, or NULL if there is no such
environment variable.

Portability
getenv is ANSI, but the rules for properly forming names of environment variables vary
from one system to another.

getenv requires a global pointer environ.

22 Red Hat newlib C Library, Full

2.19 itoa—integer to string

Synopsis
#include <stdlib.h>
char *itoa(int value, char *str, int base);
char *__itoa(int value, char *str, int base);

Description

itoa converts the integer value to a null-terminated string using the specified base, which
must be between 2 and 36, inclusive. If base is 10, value is treated as signed and the string
will be prefixed with ’-” if negative. For all other bases, value is treated as unsigned. str
should be an array long enough to contain the converted value, which in the worst case is
sizeof(int)*8+1 bytes.

Returns
A pointer to the string, str, or NULL if base is invalid.

Portability
itoa is non-ANSI.

No supporting OS subroutine calls are required.

Chapter 2: Standard Utility Functions (stdlib.h) 23

2.20 labs—Ilong integer absolute value

Synopsis
#include <stdlib.h>
long labs(long i);

Description
labs returns |z|, the absolute value of i (also called the magnitude of i). That is, if i is
negative, the result is the opposite of i, but if i is nonnegative the result is i.

The similar function abs uses and returns int rather than long values.

Returns
The result is a nonnegative long integer.

Portability
labs is ANSI.

No supporting OS subroutine calls are required.

24 Red Hat newlib C Library, Full

2.21 1ldiv—divide two long integers
Synopsis

#include <stdlib.h>
ldiv_t 1ldiv(long n, long d);

Description
Divide n/d, returning quotient and remainder as two long integers in a structure 1div_t.

Returns
The result is represented with the structure

typedef struct
{
long quot;
long rem;
} 1ldiv_t;
where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
1div(n,d);’ then n equals ‘r.rem + d*xr.quot’.

To divide int rather than long values, use the similar function div.

Portability
1div is ANSI.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (stdlib.h) 25

2.22 1labs——compute the absolute value of an long long
integer.
Synopsis

#include <stdlib.h>
long long llabs(long long j);

Description
The 1labs function computes the absolute value of the long long integer argument j (also
called the magnitude of j).

The similar function labs uses and returns long rather than long long values.

Returns
A nonnegative long long integer.

Portability
1labs is ISO 9899 (C99) compatable.

No supporting OS subroutines are required.

26 Red Hat newlib C Library, Full

2.23 1ldiv—divide two long long integers
Synopsis

#include <stdlib.h>
11div_t 11div(long long n, long long d);

Description
Divide n/d, returning quotient and remainder as two long long integers in a structure
11div_t.

Returns
The result is represented with the structure

typedef struct

{

long long quot;

long long rem;

} 1ldiv_t;
where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
1div(n,d);’ then n equals ‘r.rem + d*xr.quot’.

To divide long rather than long long values, use the similar function 1div.

Portability
11div is ISO 9899 (C99) compatable.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (stdlib.h) 27

2.24 malloc, realloc, free—manage memory
Synopsis

#include <stdlib.h>

void #*malloc(size_t nbytes);

void *realloc(void *aptr, size_t nbytes);
void *reallocf(void *aptr, size_t nbytes);
void free(void *aptr) ;

void #*memalign(size_t align, size_t nbytes);
size_t malloc_usable_size(void *aptr);

void *_malloc_r(void *reent, size_t nbytes);
void *_realloc_r(void *reent,
void *aptr, size_t nbytes);
void *_reallocf_r(void *reent,
void *aptr, size_t nbytes);
void _free_r(void *reent, void *aptr);

void *_memalign r(void *reent,
size_t align, size_t nbytes);

size_t _malloc_usable_size_r(void *reent, void *aptr);

Description
These functions manage a pool of system memory.

Use malloc to request allocation of an object with at least nbytes bytes of storage available.
If the space is available, malloc returns a pointer to a newly allocated block as its result.

If you already have a block of storage allocated by malloc, but you no longer need all the
space allocated to it, you can make it smaller by calling realloc with both the object
pointer and the new desired size as arguments. realloc guarantees that the contents of
the smaller object match the beginning of the original object.

Similarly, if you need more space for an object, use realloc to request the larger size; again,
realloc guarantees that the beginning of the new, larger object matches the contents of
the original object.

When you no longer need an object originally allocated by malloc or realloc (or the
related function calloc), return it to the memory storage pool by calling free with the
address of the object as the argument. You can also use realloc for this purpose by calling
it with 0 as the nbytes argument.

The reallocf function behaves just like realloc except if the function is required to
allocate new storage and this fails. In this case reallocf will free the original object
passed in whereas realloc will not.

The memalign function returns a block of size nbytes aligned to a align boundary. The
align argument must be a power of two.

28 Red Hat newlib C Library, Full

The malloc_usable_size function takes a pointer to a block allocated by malloc. It
returns the amount of space that is available in the block. This may or may not be more
than the size requested from malloc, due to alignment or minimum size constraints.

The alternate functions _malloc_r, _realloc_r, _reallocf_r, _free_r, _memalign_r,
and _malloc_usable_size_r are reentrant versions. The extra argument reent is a pointer
to a reentrancy structure.

If you have multiple threads of execution which may call any of these routines, or if any
of these routines may be called reentrantly, then you must provide implementations of the
__malloc_lock and __malloc_unlock functions for your system. See the documentation
for those functions.

These functions operate by calling the function _sbrk_r or sbrk, which allocates space.
You may need to provide one of these functions for your system. _sbrk_r is called with
a positive value to allocate more space, and with a negative value to release previously
allocated space if it is no longer required. See Section 13.1 [Stubs|, page 319.

Returns
malloc returns a pointer to the newly allocated space, if successful; otherwise it returns
NULL. If your application needs to generate empty objects, you may use malloc(0) for this
purpose.

realloc returns a pointer to the new block of memory, or NULL if a new block could not
be allocated. NULL is also the result when you use ‘realloc(aptr,0)’ (which has the
same effect as ‘free(aptr)’). You should always check the result of realloc; successful
reallocation is not guaranteed even when you request a smaller object.

free does not return a result.
memalign returns a pointer to the newly allocated space.

malloc_usable_size returns the usable size.

Portability
malloc, realloc, and free are specified by the ANSI C standard, but other conforming
implementations of malloc may behave differently when nbytes is zero.

memalign is part of SVRA.
malloc_usable_size is not portable.

Supporting OS subroutines required: sbrk.

Chapter 2: Standard Utility Functions (stdlib.h) 29

2.25 mallinfo, malloc_stats, mallopt—malloc support
Synopsis

#include <malloc.h>

struct mallinfo mallinfo(void);

void malloc_stats(void);
int mallopt(int parameter, value);

struct mallinfo _mallinfo_r(void *reent);
void _malloc_stats_r(void *reent);
int _mallopt_r(void *reent, int parameter, value);

Description

mallinfo returns a structure describing the current state of memory allocation. The struc-
ture is defined in malloc.h. The following fields are defined: arena is the total amount of
space in the heap; ordblks is the number of chunks which are not in use; uordblks is the
total amount of space allocated by malloc; fordblks is the total amount of space not in
use; keepcost is the size of the top most memory block.

malloc_stats print some statistics about memory allocation on standard error.

mallopt takes a parameter and a value. The parameters are defined in malloc.h, and may
be one of the following: M_TRIM_THRESHOLD sets the maximum amount of unused space in
the top most block before releasing it back to the system in free (the space is released by
calling _sbrk_r with a negative argument); M_TOP_PAD is the amount of padding to allocate
whenever _sbrk_r is called to allocate more space.

The alternate functions _mallinfo_r, _malloc_stats_r, and _mallopt_r are reentrant
versions. The extra argument reent is a pointer to a reentrancy structure.

Returns
mallinfo returns a mallinfo structure. The structure is defined in malloc.h.

malloc_stats does not return a result.

mallopt returns zero if the parameter could not be set, or non-zero if it could be set.

Portability
mallinfo and mallopt are provided by SVR4, but mallopt takes different parameters on
different systems. malloc_stats is not portable.

30 Red Hat newlib C Library, Full

2.26 __malloc_lock

malloc_unlock—Ilock malloc pool

[J——
Synopsis
#include <malloc.h>

void __malloc_lock (struct _reent *reent);
void __malloc_unlock (struct _reent *reent);

Description

The malloc family of routines call these functions when they need to lock the memory pool.
The version of these routines supplied in the library use the lock API defined in sys/lock.h.
If multiple threads of execution can call malloc, or if malloc can be called reentrantly, then
you need to define your own versions of these functions in order to safely lock the memory
pool during a call. If you do not, the memory pool may become corrupted.

A call tomalloc may call __malloc_lock recursively; that is, the sequence of calls may go __
malloc_lock, __malloc_lock, __malloc_unlock, __malloc_unlock. Any implementation
of these routines must be careful to avoid causing a thread to wait for a lock that it already
holds.

) ——) ——

Chapter 2: Standard Utility Functions (stdlib.h) 31

2.27 mblen—minimal multibyte length function
Synopsis

#include <stdlib.h>
int mblen(const char *s, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mblen. In this case, the only “multi-byte character sequences” recognized are single
bytes, and thus 1 is returned unless s is the null pointer or has a length of 0 or is the empty
string.

When -MB_CAPABLE is defined, this routine calls _mbtowc_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of mblen returns O if s is NULL or the empty string; it returns 1 if not
_MB_CAPABLE or the character is a single-byte character; it returns -1 if the multi-byte
character is invalid; otherwise it returns the number of bytes in the multibyte character.

Portability
mblen is required in the ANSI C standard. However, the precise effects vary with the locale.

mblen requires no supporting OS subroutines.

32 Red Hat newlib C Library, Full

2.28 mbsrtowcs, mbsnrtowcs—convert a character string to a
wide-character string

Synopsis
#include <wchar.h>
size_t mbsrtowcs(wchar_t *__restrict dst,
const char **__restrict src,
size_t len,
mbstate_t *__restrict ps);

#include <wchar.h>

size_t _mbsrtowcs_r(struct _reent *ptr, wchar_t *dst,
const char **src, size_t len,
mbstate_t *ps) ;

#include <wchar.h>
size_t mbsnrtowcs(wchar_t *__ restrict dst,
const char **__restrict src, size_t nms,
size_t len, mbstate_t *__restrict ps);
#include <wchar.h>
size_t _mbsnrtowcs_r(struct _reent *ptr, wchar_t *dst,
const char **src, size_t nms,
size_t len, mbstate_t *ps);

Description

The mbsrtowcs function converts a sequence of multibyte characters pointed to indirectly
by src into a sequence of corresponding wide characters and stores at most len of them in
the wchar_t array pointed to by dst, until it encounters a terminating null character ("\0’).
If dst is NULL, no characters are stored.

If dst is not NULL, the pointer pointed to by src is updated to point to the character
after the one that conversion stopped at. If conversion stops because a null character is
encountered, *src is set to NULL.

The mbstate_t argument, ps, is used to keep track of the shift state. If it is NULL,
mbsrtowcs uses an internal, static mbstate_t object, which is initialized to the initial con-
version state at program startup.

The mbsnrtowcs function behaves identically to mbsrtowcs, except that conversion stops
after reading at most nms bytes from the buffer pointed to by src.

Returns
The mbsrtowcs and mbsnrtowcs functions return the number of wide characters stored in
the array pointed to by dst if successful, otherwise it returns (size_t)-1.

Portability
mbsrtowcs is defined by the C99 standard. mbsnrtowcs is defined by the POSIX.1-2008
standard.

Chapter 2: Standard Utility Functions (stdlib.h) 33

2.29 mbstowcs—minimal multibyte string to wide char
converter

Synopsis
#include <stdlib.h>
int mbstowcs(wchar_t *restrict pwc, const char *restrict s, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mbstowcs. In this case, the only “multi-byte character sequences” recognized are single
bytes, and they are “converted” to wide-char versions simply by byte extension.

When _-MB_CAPABLE is defined, this routine calls _mbstowcs_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of mbstowcs returns 0 if s is NULL or is the empty string; it returns -1 if
_MB_CAPABLE and one of the multi-byte characters is invalid or incomplete; otherwise it
returns the minimum of: n or the number of multi-byte characters in s plus 1 (to compensate
for the nul character). If the return value is -1, the state of the pwc string is indeterminate.
If the input has a length of 0, the output string will be modified to contain a wchar_t nul
terminator.

Portability
mbstowcs is required in the ANSI C standard. However, the precise effects vary with the
locale.

mbstowcs requires no supporting OS subroutines.

34 Red Hat newlib C Library, Full

2.30 mbtowc—minimal multibyte to wide char converter

Synopsis
#include <stdlib.h>
int mbtowc(wchar_t *restrict pwc, const char *restrict s, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mbtowc. In this case, only “multi-byte character sequences” recognized are single bytes,
and they are “converted” to themselves. Each call to mbtowc copies one character from *s
to *pwc, unless s is a null pointer. The argument n is ignored.

When _MB_CAPABLE is defined, this routine calls _mbtowc_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of mbtowc returns 0 if s is NULL or is the empty string; it returns 1 if
not _-MB_CAPABLE or the character is a single-byte character; it returns -1 if n is 0 or the
multi-byte character is invalid; otherwise it returns the number of bytes in the multibyte
character. If the return value is -1, no changes are made to the pwc output string. If the
input is the empty string, a wchar_t nul is placed in the output string and 0 is returned. If
the input has a length of 0, no changes are made to the pwc output string.

Portability
mbtowc is required in the ANSI C standard. However, the precise effects vary with the
locale.

mbtowc requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (stdlib.h) 35

2.31 on_exit—request execution of function with argument
at program exit
Synopsis

#include <stdlib.h>
int on_exit (void (*function) (int, void *), void *arg);

Description

You can use on_exit to enroll functions in a list of functions that will be called when your
program terminates normally. The argument is a pointer to a user-defined function which
takes two arguments. The first is the status code passed to exit and the second argument is
of type pointer to void. The function must not return a result. The value of arg is registered
and passed as the argument to function.

The functions are kept in a LIFO stack; that is, the last function enrolled by atexit or
on_exit will be the first to execute when your program exits. You can intermix functions
using atexit and on_exit.

There is no built-in limit to the number of functions you can enroll in this list; however,
after every group of 32 functions is enrolled, atexit/on_exit will call malloc to get space
for the next part of the list. The initial list of 32 functions is statically allocated, so you
can always count on at least that many slots available.

Returns
on_exit returns 0 if it succeeds in enrolling your function, -1 if it fails (possible only if no
space was available for malloc to extend the list of functions).

Portability
on_exit is a non-standard glibc extension

Supporting OS subroutines required: None

36 Red Hat newlib C Library, Full

2.32 gsort—sort an array
Synopsis
#include <stdlib.h>

void gsort(void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

Description
gsort sorts an array (beginning at base) of nmemb objects. size describes the size of each
element of the array.

You must supply a pointer to a comparison function, using the argument shown as compar.
(This permits sorting objects of unknown properties.) Define the comparison function to
accept two arguments, each a pointer to an element of the array starting at base. The result
of (xcompar) must be negative if the first argument is less than the second, zero if the two
arguments match, and positive if the first argument is greater than the second (where “less
than” and “greater than” refer to whatever arbitrary ordering is appropriate).

The array is sorted in place; that is, when gsort returns, the array elements beginning at
base have been reordered.

Returns
gsort does not return a result.

Portability
gsort is required by ANSI (without specifying the sorting algorithm).

Chapter 2: Standard Utility Functions (stdlib.h) 37

2.33 rand, srand—pseudo-random numbers
Synopsis

#include <stdlib.h>

int rand(void);

void srand(unsigned int seed);
int rand_r(unsigned int *seed);

Description

rand returns a different integer each time it is called; each integer is chosen by an algorithm
designed to be unpredictable, so that you can use rand when you require a random number.
The algorithm depends on a static variable called the “random seed”; starting with a given
value of the random seed always produces the same sequence of numbers in successive calls
to rand.

You can set the random seed using srand; it does nothing beyond storing its argument in the
static variable used by rand. You can exploit this to make the pseudo-random sequence less
predictable, if you wish, by using some other unpredictable value (often the least significant
parts of a time-varying value) as the random seed before beginning a sequence of calls to
rand; or, if you wish to ensure (for example, while debugging) that successive runs of your
program use the same “random” numbers, you can use srand to set the same random seed
at the outset.

Returns
rand returns the next pseudo-random integer in sequence; it is a number between 0 and
RAND_MAX (inclusive).

srand does not return a result.

Notes
rand and srand are unsafe for multi-threaded applications. rand_r is thread-safe and
should be used instead.

Portability

rand is required by ANSI, but the algorithm for pseudo-random number generation is not
specified; therefore, even if you use the same random seed, you cannot expect the same
sequence of results on two different systems.

rand requires no supporting OS subroutines.

38 Red Hat newlib C Library, Full

2.34 random, srandom—pseudo-random numbers

Synopsis
#define _XOPEN_SOURCE 500
#include <stdlib.h>
long int random(void);
void srandom(unsigned int seed);

Description

random returns a different integer each time it is called; each integer is chosen by an algo-
rithm designed to be unpredictable, so that you can use random when you require a random
number. The algorithm depends on a static variable called the “random seed”; starting
with a given value of the random seed always produces the same sequence of numbers in
successive calls to random.

You can set the random seed using srandom; it does nothing beyond storing its argument in
the static variable used by rand. You can exploit this to make the pseudo-random sequence
less predictable, if you wish, by using some other unpredictable value (often the least sig-
nificant parts of a time-varying value) as the random seed before beginning a sequence of
calls to rand; or, if you wish to ensure (for example, while debugging) that successive runs
of your program use the same “random” numbers, you can use srandom to set the same
random seed at the outset.

Returns
random returns the next pseudo-random integer in sequence; it is a number between 0 and
RAND_MAX (inclusive).

srandom does not return a result.

Notes
random and srandom are unsafe for multi-threaded applications.

_XOPEN_SOURCE may be any value >= 500.

Portability
random is required by XSI. This implementation uses the same algorithm as rand.

random requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (stdlib.h) 39

2.35 rand48, drand48, erand48, lrand48, nrand48, mrand43,
jrand48, srand48, seed48, 1lcong4d8—pseudo-random

number generators and initialization routines

Synopsis

#include <stdlib.h>

double drand48(void);

double erand48(unsigned short xseed[3]);

long lrand48(void);

long nrand48(unsigned short xseed[3]);

long mrand48(void) ;

long jrand48(unsigned short xseed[3]);

void srand48(long seed);

unsigned short *seed48(unsigned short xseed[3]);

void lcong48(unsigned short p[7]);

Description

The rand48 family of functions generates pseudo-random numbers using a linear congruen-
tial algorithm working on integers 48 bits in size. The particular formula employed is r(n+1)
= (a * r(n) + ¢) mod m where the default values are for the multiplicand a = Oxfdeece66d
= 25214903917 and the addend ¢ = Oxb = 11. The modulo is always fixed at m = 2 ** 48.
r(n) is called the seed of the random number generator.

For all the six generator routines described next, the first computational step is to perform
a single iteration of the algorithm.

drand48 and erand48 return values of type double. The full 48 bits of r(n+1) are loaded
into the mantissa of the returned value, with the exponent set such that the values produced
lie in the interval [0.0, 1.0].

lrand48 and nrand48 return values of type long in the range [0, 2**31-1]. The high-order
(31) bits of r(n+1) are loaded into the lower bits of the returned value, with the topmost
(sign) bit set to zero.

mrand48 and jrand48 return values of type long in the range [-2**31, 2**31-1]. The high-
order (32) bits of r(n+1) are loaded into the returned value.

drand48, 1rand48, and mrand48 use an internal buffer to store r(n). For these functions
the initial value of r(0) = 0x1234abcd330e = 20017429951246.

On the other hand, erand48, nrand48, and jrand48 use a user-supplied buffer to store the
seed r(n), which consists of an array of 3 shorts, where the zeroth member holds the least
significant bits.

All functions share the same multiplicand and addend.

srand48 is used to initialize the internal buffer r(n) of drand48, 1rand48, and mrand48 such
that the 32 bits of the seed value are copied into the upper 32 bits of r(n), with the lower
16 bits of r(n) arbitrarily being set to 0x330e. Additionally, the constant multiplicand and
addend of the algorithm are reset to the default values given above.

seed48 also initializes the internal buffer r(n) of drand48, 1rand48, and mrand48, but here
all 48 bits of the seed can be specified in an array of 3 shorts, where the zeroth member
specifies the lowest bits. Again, the constant multiplicand and addend of the algorithm are
reset to the default values given above. seed48 returns a pointer to an array of 3 shorts

40 Red Hat newlib C Library, Full

which contains the old seed. This array is statically allocated, thus its contents are lost
after each new call to seed48.

Finally, 1cong48 allows full control over the multiplicand and addend used in drand48,
erand48, lrand48, nrand48, mrand48, and jrand48, and the seed used in drand48,
lrand48, and mrand48. An array of 7 shorts is passed as parameter; the first three shorts
are used to initialize the seed; the second three are used to initialize the multiplicand; and
the last short is used to initialize the addend. It is thus not possible to use values greater
than Oxffff as the addend.

Note that all three methods of seeding the random number generator always also set the
multiplicand and addend for any of the six generator calls.

For a more powerful random number generator, see random.

Portability
SUS requires these functions.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (stdlib.h) 41

2.36 rpmatch—determine whether response to question is
affirmative or negative
Synopsis

#include <stdlib.h>
int rpmatch(const char *response);

Description
The rpmatch function determines whether response is an affirmative or negative response
to a question according to the current locale.

Returns
rpmatch returns 1 if response is affirmative, 0 if negative, or -1 if not recognized as either.

Portability
rpmatch is a BSD extension also found in glibc.

Notes
No supporting OS subroutines are required.

42 Red Hat newlib C Library, Full

2.37 strtod, strtof, strtold, strtod_1, strtof_1, strtold_1—

string to double or float
Synopsis
#include <stdlib.h>
double strtod(const char *restrict str, char **restrict tail);
float strtof(const char *restrict str, char **restrict tail);

long double strtold(const char *restrict str,
char **restrict tail);

#include <stdlib.h>

double strtod_l(const char *restrict str, char **restrict tail,
locale_t locale);

float strtof_l(const char *restrict str, char **restrict tail,
locale_t locale);

long double strtold_l(const char *restrict str,
char **restrict tail,
locale_t locale);

double _strtod_r(void *reent,
const char *restrict str, char **restrict tail);

Description
strtod, strtof, strtold parse the character string str, producing a substring which can
be converted to a double, float, or long double value, respectively. The substring converted
is the longest initial subsequence of str, beginning with the first non-whitespace character,
that has one of these formats:

[+|-1digits[.[digits]] [(e|E) [+|-]digits]

[+|-].digits[(el|E) [+|-1digits]

+-1GEID @D EIR [EID @I G EIT) (1]

[+1-1 (IN) (alA) (mIN) [<(>[hexdigits]<)>]

[+1-]10(x|X)hexdigits[. [hexdigits]] [(p|P) [+|-]1digits]

[+1-10(x|X) .hexdigits[(p|P) [+|-1digits]
The substring contains no characters if str is empty, consists entirely of whitespace, or if
the first non-whitespace character is something other than +, -, ., or a digit, and cannot
be parsed as infinity or NaN. If the platform does not support NaN, then NaN is treated as
an empty substring. If the substring is empty, no conversion is done, and the value of str
is stored in *tail. Otherwise, the substring is converted, and a pointer to the final string
(which will contain at least the terminating null character of str) is stored in *tail. If you
want no assignment to *tail, pass a null pointer as tail.

This implementation returns the nearest machine number to the input decimal string. Ties
are broken by using the IEEE round-even rule. However, strtof is currently subject to
double rounding errors.

strtod_1l, strtof_l, strtold_1l are like strtod, strtof, strtold but perform

the conversion based on the locale specified by the locale object locale. If locale is
LC_GLOBAL_LOCALE or not a valid locale object, the behaviour is undefined.

The alternate function _strtod_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Chapter 2: Standard Utility Functions (stdlib.h) 43

Returns

These functions return the converted substring value, if any. If no conversion could be
performed, 0 is returned. If the correct value is out of the range of representable values,
plus or minus HUGE_VAL (HUGE_VALF, HUGE_VALL) is returned, and ERANGE is stored in errno.
If the correct value would cause underflow, 0 is returned and ERANGE is stored in errno.

Portability
strtod is ANSI. strtof, strtold are C99. strtod_1, strtof_1, strtold_1 are GNU
extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

44 Red Hat newlib C Library, Full

2.38 strtol, strtol_l—string to long
Synopsis

#include <stdlib.h>
long strtol(const char *restrict s, char **restrict ptr,
int base);

#include <stdlib.h>
long strtol_l(const char *restrict s, char **restrict ptr,
int base, locale_t locale);

long _strtol_r(void *reent, const char #*restrict s,
char **restrict ptr,int base);

Description

The function strtol converts the string *s to a long. First, it breaks down the string into
three parts: leading whitespace, which is ignored; a subject string consisting of characters
resembling an integer in the radix specified by base; and a trailing portion consisting of
zero or more unparseable characters, and always including the terminating null character.
Then, it attempts to convert the subject string into a long and returns the result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible ‘0x’ indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix specified by base, with an optional plus or minus
sign. The letters a—z (or, equivalently, A-Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtol attempts to deter-
mine the radix from the input string. A string with a leading 0x is treated as a hexadecimal
value; a string with a leading 0 and no x is treated as octal; all other strings are treated as
decimal. If base is between 2 and 36, it is used as the conversion radix, as described above.
If the subject string begins with a minus sign, the value is negated. Finally, a pointer to
the first character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

strtol_1 is like strtol but performs the conversion based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

The alternate function _strtol_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Chapter 2: Standard Utility Functions (stdlib.h) 45

Returns
strtol, strtol_1 return the converted value, if any. If no conversion was made, 0 is
returned.

strtol, strtol_1 return LONG_MAX or LONG_MIN if the magnitude of the converted value is
too large, and sets errno to ERANGE.

Portability
strtol is ANSI. strtol_1 is a GNU extension.

No supporting OS subroutines are required.

46 Red Hat newlib C Library, Full

2.39 strtoll, strtoll_l—string to long long

Synopsis
#include <stdlib.h>
long long strtoll(const char *restrict s, char *xrestrict ptr,
int base);

#include <stdlib.h>

long long strtoll_l(const char *restrict s,
char **restrict ptr, int base,
locale_t locale);

long long _strtoll_r(void *reent,
const char *restrict s,
char **restrict ptr, int base);

Description

The function strtoll converts the string *s to a long long. First, it breaks down the
string into three parts: leading whitespace, which is ignored; a subject string consisting
of characters resembling an integer in the radix specified by base; and a trailing portion
consisting of zero or more unparseable characters, and always including the terminating null
character. Then, it attempts to convert the subject string into a 1long long and returns the
result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible ‘Ox’ indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix specified by base, with an optional plus or minus
sign. The letters a—z (or, equivalently, A-Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoll attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix,
as described above. If the subject string begins with a minus sign, the value is negated.
Finally, a pointer to the first character past the converted subject string is stored in ptr, if
ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

strtoll_1 is like strtoll but performs the conversion based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Chapter 2: Standard Utility Functions (stdlib.h) 47

The alternate function _strtoll_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
strtoll, strtoll_1 return the converted value, if any. If no conversion was made, 0 is
returned.

strtoll, strtoll_1 return LONG_LONG_MAX or LONG_LONG_MIN if the magnitude of the
converted value is too large, and sets errno to ERANGE.

Portability
strtoll is ANSI. strtoll_1 is a GNU extension.

No supporting OS subroutines are required.

48 Red Hat newlib C Library, Full

2.40 strtoul, strtoul_l—string to unsigned long
Synopsis

#include <stdlib.h>
unsigned long strtoul(const char *restrict s,
char **restrict ptr, int base);

#include <stdlib.h>

unsigned long strtoul_l(const char *restrict s,
char **restrict ptr, int base,
locale_t locale);

unsigned long _strtoul_r(void *reent, const char *restrict s,
char **restrict ptr, int base);

Description

The function strtoul converts the string *s to an unsigned long. First, it breaks down
the string into three parts: leading whitespace, which is ignored; a subject string consisting
of the digits meaningful in the radix specified by base (for example, 0 through 7 if the value
of base is 8); and a trailing portion consisting of one or more unparseable characters, which
always includes the terminating null character. Then, it attempts to convert the subject
string into an unsigned long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix specified by base. The letters a—z (or A-Z) are used as digits valued
from 10 to 35. If base is 16, a leading Ox is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoul attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the first character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

strtoul_l is like strtoul but performs the conversion based on the locale specified by the
locale object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

The alternate function _strtoul_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Chapter 2: Standard Utility Functions (stdlib.h) 49

Returns

strtoul, strtoul_1 return the converted value, if any. If no conversion was made, 0 is
returned.

strtoul, strtoul_1 return ULONG_MAX if the magnitude of the converted value is too large,
and sets errno to ERANGE.

Portability
strtoul is ANSI. strtoul_1 is a GNU extension.

strtoul requires no supporting OS subroutines.

50 Red Hat newlib C Library, Full

2.41 strtoull, strtoull_l-—string to unsigned long long

Synopsis
#include <stdlib.h>
unsigned long long strtoull(const char *restrict s,
char *xrestrict ptr, int base);

#include <stdlib.h>

unsigned long long strtoull_l(const char *restrict s,
char **restrict ptr, int base,
locale_t locale);

unsigned long long _strtoull_r(void *reent,
const char *restrict s,
char **restrict ptr, int base);

Description

The function strtoull converts the string *s to an unsigned long long. First, it breaks
down the string into three parts: leading whitespace, which is ignored; a subject string
consisting of the digits meaningful in the radix specified by base (for example, 0 through
7 if the value of base is 8); and a trailing portion consisting of one or more unparseable
characters, which always includes the terminating null character. Then, it attempts to
convert the subject string into an unsigned long long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix specified by base. The letters a—z (or A-Z) are used as digits valued
from 10 to 35. If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoull attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the first character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).
strtoull_1 is like strtoull but performs the conversion based on the locale specified by
the locale object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object,
the behaviour is undefined.

The alternate function _strtoull_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Chapter 2: Standard Utility Functions (stdlib.h) 51

Returns
strtoull, strtoull_1 return the converted value, if any. If no conversion was made, 0 is
returned.

strtoull, strtoull_1 return ULONG_LONG_MAX if the magnitude of the converted value is
too large, and sets errno to ERANGE.

Portability
strtoull is ANSI. strtoull_1l is a GNU extension.

strtoull requires no supporting OS subroutines.

52 Red Hat newlib C Library, Full

2.42 wcsrtombs, wcsnrtombs—convert a wide-character string
to a character string

Synopsis

#include <wchar.h>

size_t wcsrtombs(char *__restrict dst,
const wchar_t **__restrict src, size_t len,
mbstate_t *__restrict ps);

#include <wchar.h>

size_t _wcsrtombs_r(struct _reent *ptr, char *dst,
const wchar_t **src, size_t len,
mbstate_t *ps);

#include <wchar.h>
size_t wcsnrtombs(char *__restrict dst,
const wchar_t **__restrict src,
size_t nwc, size_t len,
mbstate_t *__restrict ps);
#include <wchar.h>
size_t _wcsnrtombs_r(struct _reent *ptr, char *dst,
const wchar_t **src, size_t nwc,

size_t len, mbstate_t *ps);

Description

The wesrtombs function converts a string of wide characters indirectly pointed to by src to
a corresponding multibyte character string stored in the array pointed to by dst. No more
than len bytes are written to dst.

If dst is NULL, no characters are stored.

If dst is not NULL, the pointer pointed to by src is updated to point to the character
after the one that conversion stopped at. If conversion stops because a null character is
encountered, *src is set to NULL.

The mbstate_t argument, ps, is used to keep track of the shift state. If it is NULL,
wcsrtombs uses an internal, static mbstate_t object, which is initialized to the initial con-
version state at program startup.

The wcsnrtombs function behaves identically to wesrtombs, except that conversion stops
after reading at most nwc characters from the buffer pointed to by src.

Returns

The wcsrtombs and wesnrtombs functions return the number of bytes stored in the array
pointed to by dst (not including any terminating null), if successful, otherwise it returns
(size_t)-1.

Portability
wesrtombs is defined by C99 standard. wesnrtombs is defined by the POSIX.1-2008 stan-
dard.

Chapter 2: Standard Utility Functions (stdlib.h) 53

2.43 wcstod, westof, westold, westod_1, westof_1, westold_1—
wide char string to double or float

Synopsis

#include <stdlib.h>

double wcstod(const wchar_t *__
wchar_t **__restrict tail);

float wcstof(const wchar_t *__restrict str,
wchar_t **__restrict tail);

long double wcstold(const wchar_t *
wchar_t **__restrict tail);

restrict str,

_restrict str,

#include <stdlib.h>
double wcstod_1l(const wchar_t *__restrict str,
wchar_t **__restrict tail, locale_t locale);
float wcstof_l(const wchar_t *__restrict str,
wchar_t **__restrict tail, locale_t locale);
long double wcstold_l(const wchar_t *__restrict str,
wchar_t **__restrict tail,
locale_t locale);

double _wcstod_r(void *reent,

const wchar_t *str, wchar_t **tail);
float _wcstof_r(void *reent,

const wchar_t *str, wchar_t **tail);

Description
wcstod, westof, westold parse the wide-character string str, producing a substring which
can be converted to a double, float, or long double value. The substring converted is the
longest initial subsequence of str, beginning with the first non-whitespace character, that
has one of these formats:

[+|-1digits[.[digits]] [(el|E) [+|-]digits]

[+]-].digits[(elE) [+|-]1digits]

+H-1GEID @D EIB [EID @I GID EIT) (yID]

[+1-1(IN) (alA) (nIN) [<(>[hexdigits]<)>]

[+1-10(x|X)hexdigits[. [hexdigits]] [(p|P) [+|-]1digits]

[+1-10(xIX) .hexdigits[(p|P) [+|-]digits]

The substring contains no characters if str is empty, consists entirely of whitespace, or if
the first non-whitespace character is something other than +, -, ., or a digit, and cannot
be parsed as infinity or NaN. If the platform does not support NaN, then NaN is treated as
an empty substring. If the substring is empty, no conversion is done, and the value of str
is stored in *tail. Otherwise, the substring is converted, and a pointer to the final string
(which will contain at least the terminating null character of str) is stored in *tail. If you
want no assignment to *tail, pass a null pointer as tail.

This implementation returns the nearest machine number to the input decimal string. Ties
are broken by using the IEEE round-even rule. However, wcstof is currently subject to
double rounding errors.

54 Red Hat newlib C Library, Full

wcstod_1, wcstof_1, wcstold_1 are like wecstod, wcstof, wcstold but perform
the conversion based on the locale specified by the locale object locale. If locale is
LC_GLOBAL_LOCALE or not a valid locale object, the behaviour is undefined.

The alternate functions _wcstod_r and _wcstof_r are reentrant versions of wcstod and
wcstof, respectively. The extra argument reent is a pointer to a reentrancy structure.

Returns

Return the converted substring value, if any. If no conversion could be performed, 0 is
returned. If the correct value is out of the range of representable values, plus or minus
HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would cause
underflow, 0 is returned and ERANGE is stored in errno.

Portability
wcstod is ANSIL. westof, wcstold are C99. wcstod_1, wecstof_1, westold_1 are GNU
extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (stdlib.h) 55

2.44 wcstol, wcstol_l—wide string to long

Synopsis
#include <wchar.h>
long wcstol(const wchar_t *__restrict s,
wchar_t **__restrict ptr, int base);

#include <wchar.h>

long wcstol_l(const wchar_t *__restrict s,
wchar_t **__restrict ptr, int base,
locale_t locale);

long _wcstol_r(void *reent, const wchar_t *s,
wchar_t **ptr, int base);

Description

The function wcstol converts the wide string *s to a long. First, it breaks down the
string into three parts: leading whitespace, which is ignored; a subject string consisting
of characters resembling an integer in the radix specified by base; and a trailing portion
consisting of zero or more unparseable characters, and always including the terminating
null character. Then, it attempts to convert the subject string into a long and returns the
result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible ‘Ox’ indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix specified by base, with an optional plus or minus
sign. The letters a—z (or, equivalently, A-Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstol attempts to deter-
mine the radix from the input string. A string with a leading 0x is treated as a hexadecimal
value; a string with a leading 0 and no x is treated as octal; all other strings are treated as
decimal. If base is between 2 and 36, it is used as the conversion radix, as described above.
If the subject string begins with a minus sign, the value is negated. Finally, a pointer to
the first character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstol_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

westol_1 is like westol but performs the conversion based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

56 Red Hat newlib C Library, Full

Returns
wcstol, westol_1 return the converted value, if any. If no conversion was made, 0 is
returned.

wcstol, westol_1 return LONG_MAX or LONG_MIN if the magnitude of the converted value is
too large, and sets errno to ERANGE.

Portability
wcstol is ANSI. westol_1 is a GNU extension.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (stdlib.h) 57

2.45 wcstoll, westoll_l—wide string to long long
Synopsis

#include <wchar.h>
long long wcstoll(const wchar_t *__restrict s,
wchar_t **__restrict ptr,int base);

#include <wchar.h>

long long wcstoll_l(const wchar_t *__restrict s,
wchar_t **__restrict ptr, int base,
locale_t locale);

long long _wcstoll_r(void *reent, const wchar_t *s,
wchar_t **ptr, int base);

Description

The function wcstoll converts the wide string *s to a long long. First, it breaks down
the string into three parts: leading whitespace, which is ignored; a subject string consisting
of characters resembling an integer in the radix specified by base; and a trailing portion
consisting of zero or more unparseable characters, and always including the terminating null
character. Then, it attempts to convert the subject string into a long long and returns the
result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible ‘0x’ indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix specified by base, with an optional plus or minus
sign. The letters a—z (or, equivalently, A-Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoll attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix,
as described above. If the subject string begins with a minus sign, the value is negated.
Finally, a pointer to the first character past the converted subject string is stored in ptr, if
ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoll_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

58 Red Hat newlib C Library, Full

westoll_1 is like westoll but performs the conversion based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
wcstoll, westoll_1 return the converted value, if any. If no conversion was made, 0 is
returned.

wcstoll, westoll_1 return LONG_LONG_MAX or LONG_LONG_MIN if the magnitude of the
converted value is too large, and sets errno to ERANGE.

Portability
wcstoll is ANSI. westoll_1 is a GNU extension.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (stdlib.h) 59

2.46 wcstoul, wcstoul_l—wide string to unsigned long
Synopsis

#include <wchar.h>
unsigned long wcstoul (const wchar_t *__restrict s,
wchar_t **__restrict ptr, int base);

#include <wchar.h>

unsigned long wcstoul_l(const wchar_t *__restrict s,
wchar_t **__restrict ptr, int base,
locale_t locale);

unsigned long _wcstoul_r(void *reent, const wchar_t xs,
wchar_t **ptr, int base);

Description

The function westoul converts the wide string *s to an unsigned long. First, it breaks
down the string into three parts: leading whitespace, which is ignored; a subject string
consisting of the digits meaningful in the radix specified by base (for example, 0 through
7 if the value of base is 8); and a trailing portion consisting of one or more unparseable
characters, which always includes the terminating null character. Then, it attempts to
convert the subject string into an unsigned long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix specified by base. The letters a—z (or A-Z) are used as digits valued
from 10 to 35. If base is 16, a leading Ox is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoul attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the first character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoul_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

westoul_1 is like westoul but performs the conversion based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

60 Red Hat newlib C Library, Full

Returns

wcstoul, westoul_1 return the converted value, if any. If no conversion was made, O is
returned.

wcstoul, westoul_1 return ULONG_MAX if the magnitude of the converted value is too large,
and sets errno to ERANGE.

Portability
wcstoul is ANSI. westoul_1 is a GNU extension.

wcstoul requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (stdlib.h) 61

2.47 wcstoull, wcstoull_l—wide string to unsigned long long
Synopsis

#include <wchar.h>

unsigned long long wcstoull(const wchar_t *__restrict s,
wchar_t **__restrict ptr,
int base);

#include <wchar.h>

unsigned long long wcstoull_l(const wchar_t *__restrict s,
wchar_t **__restrict ptr,
int base,
locale_t locale);

unsigned long long _wcstoull_r(void *reent, const wchar_t *s,
wchar_t **ptr, int base);

Description

The function wcstoull converts the wide string *s to an unsigned long long. First,
it breaks down the string into three parts: leading whitespace, which is ignored; a sub-
ject string consisting of the digits meaningful in the radix specified by base (for example,
0 through 7 if the value of base is 8); and a trailing portion consisting of one or more
unparseable characters, which always includes the terminating null character. Then, it at-
tempts to convert the subject string into an unsigned long long integer, and returns the
result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant: an optional sign (+ or -), a possible 0x indicating hexadecimal radix or a possible
<0> indicating octal radix, and a number. If base is between 2 and 36, the expected form
of the subject is a sequence of digits (which may include letters, depending on the base)
representing an integer in the radix specified by base. The letters a—z (or A-Z) are used as
digits valued from 10 to 35. If base is 16, a leading Ox is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoull attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the first character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoull_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

62 Red Hat newlib C Library, Full

wcstoull_1 is like westoull but performs the conversion based on the locale specified by
the locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object,
the behaviour is undefined.

Returns
wcstoull, westoull_1 return O and sets errno to EINVAL if the value of base is not sup-
ported.

wcstoull, westoull_1 return the converted value, if any. If no conversion was made, 0 is
returned.

wcstoull, westoull_1 return ULLONG_MAX if the magnitude of the converted value is too
large, and sets errno to ERANGE.

Portability
westoull is ANSI. westoull_1 is a GNU extension.

wcstoull requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (stdlib.h) 63

2.48 system—execute command string
Synopsis

#include <stdlib.h>
int system(char *s);

int _system_r(void *reent, char *s);
Description

Use system to pass a command string *s to /bin/sh on your system, and wait for it to
finish executing.

Use “system(NULL)” to test whether your system has /bin/sh available.

The alternate function _system_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
system(NULL) returns a non-zero value if /bin/sh is available, and 0 if it is not.

With a command argument, the result of system is the exit status returned by /bin/sh.

Portability

ANSI C requires system, but leaves the nature and effects of a command processor unde-
fined. ANSI C does, however, specify that system(NULL) return zero or nonzero to report
on the existence of a command processor.

POSIX.2 requires system, and requires that it invoke a sh. Where sh is found is left
unspecified.

Supporting OS subroutines required: _exit, _execve, _fork_r, _wait_r.

64 Red Hat newlib C Library, Full

2.49 utoa—unsigned integer to string
Synopsis
#include <stdlib.h>

char *utoa(unsigned value, char *str, int base);
char *__utoa(unsigned value, char *str, int base);

Description

utoa converts the unsigned integer [<value>| to a null-terminated string using the specified
base, which must be between 2 and 36, inclusive. str should be an array long enough to
contain the converted value, which in the worst case is sizeof(int)*8+1 bytes.

Returns
A pointer to the string, str, or NULL if base is invalid.

Portability
utoa is non-ANSI.

No supporting OS subroutine calls are required.

Chapter 2: Standard Utility Functions (stdlib.h) 65

2.50 wcstombs—minimal wide char string to multibyte string
converter

Synopsis
#include <stdlib.h>
size_t wcstombs(char *restrict s, const wchar_t *restrict pwc, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of westombs. In this case, all wide-characters are expected to represent single bytes and so
are converted simply by casting to char.

When _-MB_CAPABLE is defined, this routine calls _wcstombs_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of wcstombs returns 0 if s is NULL or is the empty string; it returns
-1 if _"MB_CAPABLE and one of the wide-char characters does not represent a valid multi-
byte character; otherwise it returns the minimum of: n or the number of bytes that are
transferred to s, not including the nul terminator.

If the return value is -1, the state of the pwc string is indeterminate. If the input has a
length of 0, the output string will be modified to contain a wchar_t nul terminator if n > 0.

Portability
wcstombs is required in the ANSI C standard. However, the precise effects vary with the
locale.

wcstombs requires no supporting OS subroutines.

66 Red Hat newlib C Library, Full

2.51 wctomb—minimal wide char to multibyte converter
Synopsis

#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of wetomb. The only “wide characters” recognized are single bytes, and they are “converted”
to themselves.

When _-MB_CAPABLE is defined, this routine calls _wctomb_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Each call to wetomb modifies *s unless s is a null pointer or _-MB_CAPABLE is defined and
wchar is invalid.

Returns

This implementation of wctomb returns O if s is NULL; it returns -1 if _"MB_CAPABLE is
enabled and the wchar is not a valid multi-byte character, it returns 1 if _MB_CAPABLE
is not defined or the wchar is in reality a single byte character, otherwise it returns the
number of bytes in the multi-byte character.

Portability
wctomb is required in the ANSI C standard. However, the precise effects vary with the
locale.

wctomb requires no supporting OS subroutines.

67

3 Character Type Macros and Functions (ctype.h)

This chapter groups macros (which are also available as subroutines) to classify characters
into several categories (alphabetic, numeric, control characters, whitespace, and so on), or
to perform simple character mappings.

The header file ctype.h defines the macros.

68 Red Hat newlib C Library, Full

3.1 isalnum, isalnum_l—alphanumeric character predicate
Synopsis

#include <ctype.h>
int isalnum(int c);

#include <ctype.h>
int isalnum_1(int ¢, locale_t locale);

Description

isalnum is a macro which classifies singlebyte charset values by table lookup. It is a
predicate returning non-zero for alphabetic or numeric ASCII characters, and 0 for other
arguments. It is defined only if ¢ is representable as an unsigned char or if ¢ is EOF.

isalnum_1 is like isalnum but performs the check based on the locale specified by the locale
object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour
is undefined.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isalnum’ or ‘#undef isalnum_1’.

Returns
isalnum,isalnum_1 return non-zero if c is a letter or a digit.

Portability
isalnum is ANSI C. isalnum_1 is POSIX-1.2008.

No OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 69

3.2 isalpha, isalpha_l—alphabetic character predicate
Synopsis

#include <ctype.h>
int isalpha(int c);

#include <ctype.h>
int isalpha_1(int ¢, locale_t locale);

Description

isalpha is a macro which classifies singlebyte charset values by table lookup. It is a predi-
cate returning non-zero when c represents an alphabetic ASCII character, and 0 otherwise.
It is defined only if ¢ is representable as an unsigned char or if ¢ is EOF.

isalpha_1 is like isalpha but performs the check based on the locale specified by the locale
object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour
is undefined.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isalpha’ or ‘#undef isalpha_1’.

Returns
isalpha, isalpha_l return non-zero if c is a letter.

Portability
isalpha is ANSI C. isalpha_1 is POSIX-1.2008.

No supporting OS subroutines are required.

70 Red Hat newlib C Library, Full

3.3 isascii, isascii_1—ASCII character predicate
Synopsis

#include <ctype.h>
int isascii(int c);

#include <ctype.h>
int isascii_1(int ¢, locale_t locale);

Description

isascii is a macro which returns non-zero when c is an ASCII character, and 0 otherwise.
It is defined for all integer values.

isascii_1 is like isascii but performs the check based on the locale specified by the locale
object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour
is undefined.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isascii’ or ‘#undef isascii_1’.

Returns
isascii, isascii_1 return non-zero if the low order byte of c¢ is in the range 0 to 127
(0x00—0xT7F).

Portability
isascii is ANSI C. isascii_1 is a GNU extension.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 71

3.4 isblank, isblank_l—blank character predicate
Synopsis

#include <ctype.h>
int isblank(int c);

#include <ctype.h>
int isblank_1(int ¢, locale_t locale);

Description

isblank is a function which classifies singlebyte charset values by table lookup. It is a
predicate returning non-zero for blank characters, and 0 for other characters. It is defined
only if ¢ is representable as an unsigned char or if ¢ is EOF.

isblank_1 is like isblank but performs the check based on the locale specified by the locale
object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour
is undefined.

Returns
isblank, isblank_1 return non-zero if ¢ is a blank character.

Portability
isblank is C99. isblank_1 is POSIX-1.2008.

No supporting OS subroutines are required.

72 Red Hat newlib C Library, Full

3.5 iscntrl, iscntrl_l—control character predicate
Synopsis

#include <ctype.h>
int iscntrl(int c);

#include <ctype.h>
int iscntrl_1(int ¢, locale_t locale);

Description

iscntrl is a macro which classifies singlebyte charset values by table lookup. It is a
predicate returning non-zero for control characters, and 0 for other characters. It is defined
only if ¢ is representable as an unsigned char or if ¢ is EOF.

iscntrl_1 is like iscntrl but performs the check based on the locale specified by the locale
object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour
is undefined.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef iscntrl’ or ‘#undef iscntrl_1’.

Returns
iscntrl, iscntrl_1 return non-zero if ¢ is a delete character or ordinary control character.

Portability
iscntrl is ANSI C. iscntrl_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 73

3.6 isdigit, isdigit_l-—decimal digit predicate
Synopsis

#include <ctype.h>
int isdigit(int c);

#include <ctype.h>
int isdigit_1(int ¢, locale_t locale);

Description

isdigit is a macro which classifies singlebyte charset values by table lookup. It is a
predicate returning non-zero for decimal digits, and 0 for other characters. It is defined
only if ¢ is representable as an unsigned char or if ¢ is EOF.

isdigit_1 is like isdigit but performs the check based on the locale specified by the locale
object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour
is undefined.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isdigit’ or ‘#undef isdigit_1’.

Returns
isdigit, isdigit_1 return non-zero if ¢ is a decimal digit (0-9).

Portability
isdigit is ANSI C. isdigit_1 is POSIX-1.2008.

No supporting OS subroutines are required.

74 Red Hat newlib C Library, Full

3.7 islower, islower_l—lowercase character predicate
Synopsis

#include <ctype.h>
int islower(int c);

#include <ctype.h>
int islower_1(int ¢, locale_t locale);

Description

islower is a macro which classifies singlebyte charset values by table lookup. It is a
predicate returning non-zero for minuscules (lowercase alphabetic characters), and 0 for
other characters. It is defined only if ¢ is representable as an unsigned char or if ¢ is EOF.

islower_1 is like islower but performs the check based on the locale specified by the locale
object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour
is undefined.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef islower’ or ‘#undef islower_1’.

Returns
islower, islower_1 return non-zero if ¢ is a lowercase letter.

Portability
islower is ANSI C. islower_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 75

3.8 isprint, isgraph, isprint_1, isgraph_l—printable
character predicates
Synopsis
#include <ctype.h>
int isprint(int c);
int isgraph(int c);

#include <ctype.h>
int isprint_l(int c, locale_t locale);
int isgraph_1l(int c, locale_t locale);

Description

isprint is a macro which classifies singlebyte charset values by table lookup. It is a
predicate returning non-zero for printable characters, and 0 for other character arguments.
It is defined only if c is representable as an unsigned char or if ¢ is EOF.

isgraph behaves identically to isprint, except that space characters are excluded.

isprint_1, isgraph_1 are like isprint, isgraph but perform the check based on the locale
specified by the locale object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale
object, the behaviour is undefined.

You can use a compiled subroutine instead of the macro definition by undefining either
macro using ‘#undef isprint’ or ‘#undef isgraph’, or ‘#undef isprint_1’ or ‘#undef
isgraph_1’.

Returns
isprint, isprint_1 return non-zero if c¢ is a printing character. isgraph, isgraph_1
return non-zero if ¢ is a printing character except spaces.

Portability
isprint and isgraph are ANSI C.

No supporting OS subroutines are required.

76 Red Hat newlib C Library, Full

3.9 ispunct, ispunct_l—punctuation character predicate
Synopsis

#include <ctype.h>
int ispunct(int c);

#include <ctype.h>
int ispunct_1(int ¢, locale_t locale);

Description

ispunct is a macro which classifies singlebyte charset values by table lookup. It is a predi-
cate returning non-zero for printable punctuation characters, and 0 for other characters. It
is defined only if ¢ is representable as an unsigned char or if ¢ is EOF.

ispunct_1 is like ispunct but performs the check based on the locale specified by the locale
object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour
is undefined.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef ispunct’ or ‘#undef ispunct_1’.

Returns
ispunct, ispunct_1 return non-zero if c is a printable punctuation character.

Portability
ispunct is ANSI C. ispunct_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 77

3.10 isspace, isspace_l—whitespace character predicate
Synopsis

#include <ctype.h>
int isspace(int c);

#include <ctype.h>
int isspace_l(int ¢, locale_t locale);

Description

isspace is a macro which classifies singlebyte charset values by table lookup. It is a
predicate returning non-zero for whitespace characters, and 0 for other characters. It is
defined only when isascii(c) is true or c is EOF.

isspace_1 is like isspace but performs the check based on the locale specified by the locale
object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour
is undefined.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isspace’ or ‘#undef isspace_1’.

Returns
isspace, isspace_1 return non-zero if c is a space, tab, carriage return, new line, vertical
tab, or formfeed (0x09-0x0D, 0x20), or one of the other space characters in non-ASCII
charsets.

Portability
isspace is ANSI C. isspace_1 is POSIX-1.2008.

No supporting OS subroutines are required.

78 Red Hat newlib C Library, Full

3.11 isupper, isupper_l—uppercase character predicate
Synopsis

#include <ctype.h>
int isupper(int c);

#include <ctype.h>
int isupper_1(int c, locale_t locale);

Description
isupper is a macro which classifies singlebyte charset values by table lookup. It is a
predicate returning non-zero for uppercase letters (A-Z), and 0 for other characters.

isupper_1 is like isupper but performs the check based on the locale specified by the locale
object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour
is undefined.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isupper’ or ‘#undef isupper_1’.

Returns
isupper, isupper_1 return non-zero if ¢ is an uppercase letter.

Portability
isupper is ANSI C. isupper_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 79

3.12 isxdigit, isxdigit_l—hexadecimal digit predicate
Synopsis

#include <ctype.h>
int isxdigit(int c);

#include <ctype.h>
int isxdigit_1(int ¢, locale_t locale);

Description

isxdigit is a macro which classifies singlebyte charset values by table lookup. It is a
predicate returning non-zero for hexadecimal digits, and 0 for other characters. It is defined
only if ¢ is representable as an unsigned char or if ¢ is EOF.

isxdigit_1 is like isxdigit but performs the check based on the locale specified by the
locale object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isxdigit’ or ‘#undef isxdigit_1’.

Returns
isxdigit, isxdigit_1 return non-zero if ¢ is a hexadecimal digit (0-9, a—f, or A-F).

Portability
isxdigit is ANSI C. isxdigit_1 is POSIX-1.2008.

No supporting OS subroutines are required.

80 Red Hat newlib C Library, Full

3.13 toascii, toascii_l—force integers to ASCII range
Synopsis

#include <ctype.h>
int toascii(int c¢);

#include <ctype.h>
int toascii_1(int ¢, locale_t locale);

Description

toascii is a macro which coerces integers to the ASCII range (0-127) by zeroing any
higher-order bits.

toascii_1 is like toascii but performs the function based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

You can use a compiled subroutine instead of the macro definition by undefining this macro
using ‘#undef toascii’ or ‘#undef toascii_1’.

Returns
toascii, toascii_1 return integers between 0 and 127.

Portability
toascii is X/Open, BSD and POSIX-1.2001, but marked obsolete in POSIX-1.2008.
toascii_1 is a GNU extension.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 81

3.14 tolower, tolower_l—translate characters to lowercase
Synopsis
#include <ctype.h>

int tolower(int c);
int _tolower(int c);

#include <ctype.h>
int tolower_1l(int c, locale_t locale);

Description
tolower is a macro which converts uppercase characters to lowercase, leaving all other
characters unchanged. It is only defined when ¢ is an integer in the range EOF to 255.

tolower_1 is like tolower but performs the function based on the locale specified by the
locale object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

You can use a compiled subroutine instead of the macro definition by undefining this macro
using ‘#undef tolower’ or ‘#undef tolower_1 .

_tolower performs the same conversion as tolower, but should only be used when c is
known to be an uppercase character (A-Z).

Returns

tolower, tolower_1 return the lowercase equivalent of ¢ when c is an uppercase character,
and c otherwise.

_tolower returns the lowercase equivalent of ¢ when it is a character between A and Z. If
¢ is not one of these characters, the behaviour of _tolower is undefined.

Portability
tolower is ANSI C. _tolower is not recommended for portable programs. tolower_1 is
POSIX-1.2008.

No supporting OS subroutines are required.

82 Red Hat newlib C Library, Full

3.15 toupper, toupper_l—translate characters to uppercase
Synopsis
#include <ctype.h>

int toupper(int c¢);
int _toupper(int c);

#include <ctype.h>
int toupper_l(int c¢, locale_t locale);

Description
toupper is a macro which converts lowercase characters to uppercase, leaving all other
characters unchanged. It is only defined when ¢ is an integer in the range EOF to 255.

toupper_1 is like toupper but performs the function based on the locale specified by the
locale object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

You can use a compiled subroutine instead of the macro definition by undefining this macro
using ‘#undef toupper’ or ‘#undef toupper_1’.

_toupper performs the same conversion as toupper, but should only be used when ¢ is
known to be a lowercase character (a—z).

Returns

toupper, toupper_1 return the uppercase equivalent of ¢ when c is a lowercase character,
and c otherwise.

_toupper returns the uppercase equivalent of ¢ when it is a character between a and z. If
¢ is not one of these characters, the behaviour of _toupper is undefined.

Portability
toupper is ANSI C. _toupper is not recommended for portable programs. toupper_1 is
POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 83

3.16 iswalnum, iswalnum_l—alphanumeric wide character test
Synopsis

#include <wctype.h>
int iswalnum(wint_t c¢);

#include <wctype.h>
int iswalnum_l(wint_t ¢, locale_t locale);

Description
iswalnum is a function which classifies wide-character values that are alphanumeric.

iswalnum_1 is like iswalnum but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswalnum, iswalnum_1 return non-zero if c¢ is a alphanumeric wide character.

Portability
iswalnum is C99. iswalnum_1 is POSIX-1.2008.

No supporting OS subroutines are required.

84 Red Hat newlib C Library, Full

3.17 iswalpha, iswalpha_l-—alphabetic wide character test
Synopsis

#include <wctype.h>
int iswalpha(wint_t c);

#include <wctype.h>
int iswalpha_l(wint_t c, locale_t locale);

Description
iswalpha is a function which classifies wide-character values that are alphabetic.

iswalpha_l is like iswalpha but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswalpha, iswalpha_1 return non-zero if c¢ is an alphabetic wide character.

Portability
iswalpha is C99. iswalpha_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 85

3.18 iswcntrl, iswcntrl_l—control wide character test
Synopsis

#include <wctype.h>
int iswcntrl(wint_t ¢);

#include <wctype.h>
int iswcntrl_l(wint_t ¢, locale_t locale);

Description
iswentrl is a function which classifies wide-character values that are categorized as control
characters.

iswentrl_1 is like iswentrl but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswentrl, iswentrl_1 return non-zero if ¢ is a control wide character.

Portability
iswentrl is C99. iswentrl_1 is POSIX-1.2008.

No supporting OS subroutines are required.

86 Red Hat newlib C Library, Full

3.19 iswblank, iswblank_l—blank wide character test
Synopsis

#include <wctype.h>
int iswblank(wint_t c¢);

#include <wctype.h>
int iswblank_l(wint_t ¢, locale_t locale);

Description
iswblank is a function which classifies wide-character values that are categorized as blank.

iswblank_1 is like iswblank but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswblank, iswblank_1 return non-zero if c¢ is a blank wide character.

Portability
iswblank is C99. iswblank_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 87

3.20 iswdigit, iswdigit_l-—decimal digit wide character test
Synopsis

#include <wctype.h>
int iswdigit(wint_t c);

#include <wctype.h>
int iswdigit_l(wint_t c, locale_t locale);

Description
iswdigit is a function which classifies wide-character values that are decimal digits.

iswdigit_1 is like iswdigit but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswdigit, iswdigit_1 return non-zero if c¢ is a decimal digit wide character.

Portability
iswdigit is C99. iswdigit_1 is POSIX-1.2008.

No supporting OS subroutines are required.

88 Red Hat newlib C Library, Full

3.21 iswgraph, iswgraph_l-—graphic wide character test
Synopsis

#include <wctype.h>
int iswgraph(wint_t c);

#include <wctype.h>
int iswgraph_l(wint_t c, locale_t locale);

Description
iswgraph is a function which classifies wide-character values that are graphic.

iswgraph_1 is like iswgraph but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswgraph, iswgraph_1 return non-zero if c¢ is a graphic wide character.

Portability
iswgraph is C99. iswgraph_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 89

3.22 iswlower, iswlower_l—Ilowercase wide character test
Synopsis

#include <wctype.h>
int iswlower(wint_t ¢);

#include <wctype.h>
int iswlower_l(wint_t ¢, locale_t locale);

Description
iswlower is a function which classifies wide-character values that are categorized as lower-
case.

iswlower_1 is like iswlower but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswlower, iswlower_1 return non-zero if ¢ is a lowercase wide character.

Portability
iswlower is C99. iswlower_1 is POSIX-1.2008.

No supporting OS subroutines are required.

90 Red Hat newlib C Library, Full

3.23 iswprint, iswprint_l-—printable wide character test
Synopsis

#include <wctype.h>
int iswprint(wint_t c);

#include <wctype.h>
int iswprint_l(wint_t c, locale_t locale);

Description
iswprint is a function which classifies wide-character values that are printable.

iswprint_1 is like iswprint but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswprint, iswprint_1 return non-zero if c is a printable wide character.

Portability
iswprint is C99. iswprint_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 91

3.24 iswpunct, iswpunct_l—punctuation wide character test
Synopsis

#include <wctype.h>
int iswpunct(wint_t c);

#include <wctype.h>
int iswpunct_l(wint_t c, locale_t locale);

Description
iswpunct is a function which classifies wide-character values that are punctuation.

iswpunct_1 is like iswpunct but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswpunct, iswpunct_1 return non-zero if c¢ is a punctuation wide character.

Portability
iswpunct is C99. iswpunct_1 is POSIX-1.2008.

No supporting OS subroutines are required.

92 Red Hat newlib C Library, Full

3.25 iswspace, iswspace_l—whitespace wide character test
Synopsis

#include <wctype.h>
int iswspace(wint_t c);

#include <wctype.h>
int iswspace_l(wint_t c, locale_t locale);

Description
iswspace is a function which classifies wide-character values that are categorized as white-
space.

iswspace_l1 is like iswspace but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswspace, iswspace_1 return non-zero if ¢ is a whitespace wide character.

Portability
iswspace is C99. iswspace_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 93

3.26 iswupper, iswupper_l—uppercase wide character test
Synopsis

#include <wctype.h>
int iswupper(wint_t c);

#include <wctype.h>
int iswupper_l(wint_t c, locale_t locale);

Description
iswupper is a function which classifies wide-character values that are categorized as upper-
case.

iswupper_1 is like iswupper but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswupper, iswupper_1 return non-zero if ¢ is an uppercase wide character.

Portability
iswupper is C99. iswupper_1 is POSIX-1.2008.

No supporting OS subroutines are required.

94 Red Hat newlib C Library, Full

3.27 iswxdigit, iswxdigit_l—hexadecimal digit wide
character test
Synopsis

#include <wctype.h>
int iswxdigit(wint_t c);

#include <wctype.h>
int iswxdigit_l(wint_t c, locale_t locale);

Description
iswxdigit is a function which classifies wide character values that are hexadecimal digits.

iswxdigit_1 is like iswxdigit but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswxdigit, iswxdigit_1 return non-zero if c¢ is a hexadecimal digit wide character.

Portability
iswxdigit is C99. iswxdigit_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 95

3.28 iswctype, iswctype_l—extensible wide-character test
Synopsis

#include <wctype.h>
int iswctype(wint_t c, wctype_t desc);

#include <wctype.h>
int iswctype_l(wint_t c, wctype_t desc, locale_t locale);

Description
iswctype is a function which classifies wide-character values using the wide-character test
specified by desc.

iswctype_1l is like iswctype but performs the check based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
iswctype, iswctype_1 return non-zero if and only if ¢ matches the test specified by desc.
If desc is unknown, zero is returned.

Portability
iswctype is C99. iswctype_1 is POSIX-1.2008.

No supporting OS subroutines are required.

96 Red Hat newlib C Library, Full

3.29 wctype, wctype_l—get wide-character classification type
Synopsis

#include <wctype.h>
wctype_t wctype(const char *c);

#include <wctype.h>
wctype_t wctype_l(const char *c, locale_t locale);

Description

wctype is a function which takes a string ¢ and gives back the appropriate wctype_t type
value associated with the string, if one exists. The following values are guaranteed to
be recognized: "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower", "print",
"punct", "space", "upper", and "xdigit".

wctype_1 is like wctype but performs the function based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
wctype, wetype_1 return O and sets errno to EINVAL if the given name is invalid. Otherwise,
it returns a valid non-zero wctype_t value.

Portability
wetype is C99. wetype_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 97

3.30 towlower, towlower_l—translate wide characters to
lowercase
Synopsis

#include <wctype.h>
wint_t towlower (wint_t ¢);

#include <wctype.h>
wint_t towlower_l(wint_t c, locale_t locale);

Description
towlower is a function which converts uppercase wide characters to lowercase, leaving all
other characters unchanged.

towlower_1 is like towlower but performs the function based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
towlower, towlower_1 return the lowercase equivalent of ¢ when it is a uppercase wide
character; otherwise, it returns the input character.

Portability
towlower is C99. towlower_1 is POSIX-1.2008.

No supporting OS subroutines are required.

98 Red Hat newlib C Library, Full

3.31 towupper, towupper_l—translate wide characters to
uppercase
Synopsis

#include <wctype.h>
wint_t towupper(wint_t c);

#include <wctype.h>
wint_t towupper_l(wint_t c, locale_t locale);

Description
towupper is a function which converts lowercase wide characters to uppercase, leaving all
other characters unchanged.

towupper_1 is like towupper but performs the function based on the locale specified by the
locale object locale. If locale is LC_.GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
towupper, towupper_1 return the uppercase equivalent of ¢ when it is a lowercase wide
character, otherwise, it returns the input character.

Portability
towupper is C99. towupper_1 is POSIX-1.2008.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (ctype.h) 99

3.32 towctrans, towctrans_l—extensible wide-character
translation

Synopsis
#include <wctype.h>
wint_t towctrans(wint_t ¢, wctrans_t w);

#include <wctype.h>
wint_t towctrans_l(wint_t ¢, wctrans_t w, locale_t locale);

Description

towctrans is a function which converts wide characters based on a specified translation
type w. If the translation type is invalid or cannot be applied to the current character, no
change to the character is made.

towctrans_1 is like towctrans but performs the function based on the locale specified by

the locale object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object,
the behaviour is undefined.

Returns

towctrans, towctrans_1 return the translated equivalent of ¢ when it is a valid for the
given translation, otherwise, it returns the input character. When the translation type is
invalid, errno is set to EINVAL.

Portability
towctrans is C99. towctrans_1 is POSIX-1.2008.

No supporting OS subroutines are required.

100 Red Hat newlib C Library, Full

3.33 wctrans, wctrans_l—get wide-character translation type
Synopsis

#include <wctype.h>
wctrans_t wctrans(const char *c);

#include <wctype.h>
wctrans_t wctrans_1l(const char *c, locale_t locale);

Description

wctrans is a function which takes a string ¢ and gives back the appropriate wctrans_t type
value associated with the string, if one exists. The following values are guaranteed to be
recognized: "tolower" and "toupper".

wctrans_1 is like wctrans but performs the function based on the locale specified by the
locale object locale. If locale is LC_GLOBAL_LOCALE or not a valid locale object, the
behaviour is undefined.

Returns
wctrans, wctrans_1 return 0 and sets errno to EINVAL if the given name is invalid. Oth-
erwise, it returns a valid non-zero wctrans_t value.

Portability
wctrans is C99. wctrans_1 is POSIX-1.2008.

No supporting OS subroutines are required.

101

4 Input and Output (stdio.h)

This chapter comprises functions to manage files or other input/output streams. Among
these functions are subroutines to generate or scan strings according to specifications from
a format string.

The underlying facilities for input and output depend on the host system, but these functions
provide a uniform interface.

The corresponding declarations are in stdio.h.
The reentrant versions of these functions use macros

_stdin_r(reent)
_stdout_r(reent)
_stderr_r(reent)

instead of the globals stdin, stdout, and stderr. The argument reent is a pointer to a
reentrancy structure.

102 Red Hat newlib C Library, Full

4.1 clearerr, clearerr_unlocked—-clear file or stream error
indicator
Synopsis

#include <stdio.h>
void clearerr(FILE *fp);

#define _BSD_SOURCE
#include <stdio.h>
void clearerr_unlocked(FILE *fp);

Description

The stdio functions maintain an error indicator with each file pointer fp, to record whether
any read or write errors have occurred on the associated file or stream. Similarly, it main-
tains an end-of-file indicator to record whether there is no more data in the file.

Use clearerr to reset both of these indicators.

See ferror and feof to query the two indicators.

clearerr_unlocked is a non-thread-safe version of clearerr. clearerr_unlocked may
only safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then clearerr_unlocked
is equivalent to clearerr.

Returns
clearerr does not return a result.

Portability
ANSI C requires clearerr.

clearerr_unlocked is a BSD extension also provided by GNU libc.

No supporting OS subroutines are required.

Chapter 4: Input and Output (stdio.h) 103

4.2 diprintf, vdiprintf—print to a file descriptor (integer
only)
Synopsis
#include <stdio.h>
#include <stdarg.h>
int diprintf(int fd, const char *format, ...);
int vdiprintf (int fd, const char *format, va_list ap);
int _diprintf_r(struct _reent *ptr, int fd,
const char *format, ...);
int _vdiprintf_r(struct _reent *ptr, int fd,
const char *format, va_list ap);

Description

diprintf and vdiprintf are similar to dprintf and vdprintf, except that only integer
format specifiers are processed.

The functions _diprintf_r and _vdiprintf_r are simply reentrant versions of the func-
tions above.

Returns
Similar to dprintf and vdprintf.

Portability
This set of functions is an integer-only extension, and is not portable.

Supporting OS subroutines required: sbrk, write.

104 Red Hat newlib C Library, Full

4.3 dprintf, vdprintf—print to a file descriptor
Synopsis
#include <stdio.h>
#include <stdarg.h>
int dprintf(int fd, const char *restrict format, ...);
int vdprintf(int fd, const char *restrict format,
va_list ap);
int _dprintf_r(struct _reent *ptr, int fd,
const char *restrict format, ...);
int _vdprintf_r(struct _reent *ptr, int fd,
const char *restrict format, va_list ap);

Description
dprintf and vdprintf allow printing a format, similarly to printf, but write to a file
descriptor instead of to a FILE stream.

The functions _dprintf_r and _vdprintf_r are simply reentrant versions of the functions
above.

Returns
The return value and errors are exactly as for write, except that errno may also be set to
ENOMEM if the heap is exhausted.

Portability
This function is originally a GNU extension in glibc and is not portable.

Supporting OS subroutines required: sbrk, write.

Chapter 4: Input and Output (stdio.h) 105

4.4 fclose——close a file
Synopsis
#include <stdio.h>

int fclose(FILE *fp);
int _fclose_r(struct _reent *reent, FILE *fp);

Description
If the file or stream identified by fp is open, fclose closes it, after first ensuring that any
pending data is written (by calling £fflush(£p)).

The alternate function _fclose_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
fclose returns 0 if successful (including when fp is NULL or not an open file); otherwise, it
returns EOF.

Portability
fclose is required by ANSI C.

Required OS subroutines: close, fstat, isatty, lseek, read, sbrk, write.

106 Red Hat newlib C Library, Full

4.5 fcloseall—-close all files
Synopsis
#include <stdio.h>

int fcloseall(void);
int _fcloseall_r (struct _reent *ptr);

Description

fcloseall closes all files in the current reentrancy struct’s domain. The function
_fcloseall_r is the same function, except the reentrancy struct is passed in as the ptr
argument.

This function is not recommended as it closes all streams, including the std streams.

Returns
fclose returns O if all closes are successful. Otherwise, EOF is returned.

Portability
fcloseall is a glibc extension.

Required OS subroutines: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 107

4.6 fdopen—turn open file into a stream
Synopsis

#include <stdio.h>

FILE *fdopen(int fd, const char *mode) ;

FILE *_fdopen_r(struct _reent *reent,
int fd, const char *mode);

Description

fdopen produces a file descriptor of type FILE *, from a descriptor for an already-open file
(returned, for example, by the system subroutine open rather than by fopen). The mode
argument has the same meanings as in fopen.

Returns
File pointer or NULL, as for fopen.

Portability
fdopen is ANSI.

108 Red Hat newlib C Library, Full

4.7 feof, feof_unlocked—test for end of file
Synopsis

#include <stdio.h>
int feof (FILE *fp);

#define _BSD_SOURCE
#include <stdio.h>
int feof_unlocked(FILE *fp);

Description
feof tests whether or not the end of the file identified by fp has been reached.

feof _unlocked is a non-thread-safe version of feof. feof_unlocked may only safely be
used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). This func-
tion may safely be used in a multi-threaded program if and only if they are called while the
invoking thread owns the (FILE *) object, as is the case after a successful call to the flock-
file() or ftrylockfile() functions. If threads are disabled, then feof_unlocked is equivalent
to feof.

Returns
feof returns 0 if the end of file has not yet been reached; if at end of file, the result is
nonzero.

Portability
feof is required by ANSI C.

feof_unlocked is a BSD extension also provided by GNU libc.

No supporting OS subroutines are required.

Chapter 4: Input and Output (stdio.h) 109

4.8 ferror, ferror_unlocked—test whether read/write error
has occurred

Synopsis
#include <stdio.h>
int ferror (FILE *fp);

#define _BSD_SOURCE
#include <stdio.h>
int ferror_unlocked(FILE *fp);

Description

The stdio functions maintain an error indicator with each file pointer fp, to record whether
any read or write errors have occurred on the associated file or stream. Use ferror to query
this indicator.

See clearerr to reset the error indicator.

ferror_unlocked is a non-thread-safe version of ferror. ferror_unlocked may only
safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then ferror_unlocked is
equivalent to ferror.

Returns
ferror returns 0 if no errors have occurred; it returns a nonzero value otherwise.

Portability
ANSI C requires ferror.

ferror_unlocked is a BSD extension also provided by GNU libc.

No supporting OS subroutines are required.

110 Red Hat newlib C Library, Full

4.9 fflush, fflush_unlocked—~fush buffered file output
Synopsis

#include <stdio.h>
int fflush(FILE *fp);

#define _BSD_SOURCE
#include <stdio.h>
int fflush_unlocked(FILE *fp);

#include <stdio.h>
int _fflush_r(struct _reent *reent, FILE *fp);

#define _BSD_SOURCE
#include <stdio.h>
int _fflush_unlocked_r(struct _reent *reent, FILE *fp);

Description
The stdio output functions can buffer output before delivering it to the host system, in
order to minimize the overhead of system calls.

Use fflush to deliver any such pending output (for the file or stream identified by fp) to
the host system.

If fp is NULL, £f1lush delivers pending output from all open files.

Additionally, if fp is a seekable input stream visiting a file descriptor, set the position of
the file descriptor to match next unread byte, useful for obeying POSIX semantics when
ending a process without consuming all input from the stream.

fflush_unlocked is a non-thread-safe version of fflush. fflush_unlocked may only
safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fflush_unlocked is
equivalent to £flush.

The alternate functions _fflush_r and _fflush_unlocked_r are reentrant versions, where
the extra argument reent is a pointer to a reentrancy structure, and fp must not be NULL.

Returns
fflush returns O unless it encounters a write error; in that situation, it returns EOF.

Portability
ANSI C requires fflush. The behavior on input streams is only specified by POSIX, and
not all implementations follow POSIX rules.

fflush_unlocked is a BSD extension also provided by GNU libc.

No supporting OS subroutines are required.

Chapter 4: Input and Output (stdio.h) 111

4.10 fgetc, fgetc_unlocked—get a character from a file or
stream
Synopsis

#include <stdio.h>
int fgetc(FILE *fp);

#define _BSD_SOURCE
#include <stdio.h>
int fgetc_unlocked(FILE *fp);

#include <stdio.h>
int _fgetc_r(struct _reent *ptr, FILE *fp);

#define _BSD_SOURCE
#include <stdio.h>
int _fgetc_unlocked_r(struct _reent *ptr, FILE *fp);

Description
Use fgetc to get the next single character from the file or stream identified by fp. As a
side effect, fgetc advances the file’s current position indicator.

For a macro version of this function, see getc.

fgetc_unlocked is a non-thread-safe version of fgetc. fgetc_unlocked may only safely
be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). This
function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fgetc_unlocked is
equivalent to fgetc.

The functions _fgetc_r and _fgetc_unlocked_r are simply reentrant versions that are
passed the additional reentrant structure pointer argument: ptr.

Returns

The next character (read as an unsigned char, and cast to int), unless there is no more
data, or the host system reports a read error; in either of these situations, fgetc returns
EQF.

You can distinguish the two situations that cause an EOF result by using the ferror and
feof functions.

Portability
ANSI C requires fgetc.

fgetc_unlocked is a BSD extension also provided by GNU libc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

112 Red Hat newlib C Library, Full

4.11 fgetpos—record position in a stream or file
Synopsis
#include <stdio.h>

int fgetpos(FILE *restrict fp, fpos_t #*restrict pos);
int _fgetpos_r(struct _reent *ptr, FILE *restrict fp, fpos_t *restrict pos);

Description

Objects of type FILE can have a “position” that records how much of the file your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side effect.

You can use fgetpos to report on the current position for a file identified by fp; fgetpos
will write a value representing that position at *pos. Later, you can use this value with
fsetpos to return the file to this position.

In the current implementation, fgetpos simply uses a character count to represent the file
position; this is the same number that would be returned by ftell.

Returns

fgetpos returns O when successful. If fgetpos fails, the result is 1. Failure occurs on
streams that do not support positioning; the global errno indicates this condition with the
value ESPIPE.

Portability

fgetpos is required by the ANSI C standard, but the meaning of the value it records is not
specified beyond requiring that it be acceptable as an argument to fsetpos. In particular,
other conforming C implementations may return a different result from ftell than what
fgetpos writes at *pos.

No supporting OS subroutines are required.

Chapter 4: Input and Output (stdio.h) 113

4.12 fgets, fgets_unlocked—get character string from a file
or stream
Synopsis

#include <stdio.h>
char *fgets(char *restrict buf, int n, FILE *restrict fp);

#define _GNU_SOURCE
#include <stdio.h>
char *fgets_unlocked(char *restrict buf, int n, FILE *restrict fp);

#include <stdio.h>
char *_fgets_r(struct _reent *ptr, char *restrict buf, int n, FILE *restrict fp);

#include <stdio.h>
char *_fgets_unlocked_r(struct _reent *ptr, char *restrict buf, int n, FILE *restrict

Description
Reads at most n-1 characters from fp until a newline is found. The characters including to
the newline are stored in buf. The buffer is terminated with a 0.

fgets_unlocked is a non-thread-safe version of fgets. fgets_unlocked may only safely
be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). This
function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fgets_unlocked is
equivalent to fgets.

The functions _fgets_r and _fgets_unlocked_r are simply reentrant versions that are
passed the additional reentrant structure pointer argument: ptr.

Returns

fgets returns the buffer passed to it, with the data filled in. If end of file occurs with some
data already accumulated, the data is returned with no other indication. If no data are
read, NULL is returned instead.

Portability
fgets should replace all uses of gets. Note however that fgets returns all of the data,
while gets removes the trailing newline (with no indication that it has done so.)

fgets_unlocked is a GNU extension.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

114 Red Hat newlib C Library, Full

4.13 fgetwc, getwc, fgetwc_unlocked, getwc_unlocked—get a
wide character from a file or stream

Synopsis

#include <stdio.h>
#include <wchar.h>
wint_t fgetwc(FILE *fp);

#define _GNU_SOURCE

#include <stdio.h>

#include <wchar.h>

wint_t fgetwc_unlocked (FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t _fgetwc_r(struct _reent *ptr, FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t _fgetwc_unlocked_r(struct _reent *ptr, FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t getwc(FILE *fp);

#define _GNU_SOURCE

#include <stdio.h>

#include <wchar.h>

wint_t getwc_unlocked(FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t _getwc_r(struct _reent *ptr, FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t _getwc_unlocked_r(struct _reent *ptr, FILE *fp);

Description
Use fgetwc to get the next wide character from the file or stream identified by fp. As a
side effect, fgetwc advances the file’s current position indicator.

fgetwc_unlocked is a non-thread-safe version of fgetwc. fgetwc_unlocked may only
safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fgetwc_unlocked is
equivalent to fgetwc.

Chapter 4: Input and Output (stdio.h) 115

The getwc and getwc_unlocked functions or macros functions identically to fgetwc and
fgetwc_unlocked. It may be implemented as a macro, and may evaluate its argument
more than once. There is no reason ever to use it.

_fgetwc_r, _getwc_r, _fgetwc_unlocked_r, and _getwc_unlocked_r are simply reentrant
versions of the above functions that are passed the additional reentrant structure pointer
argument: ptr.

Returns
The next wide character cast to wint_t, unless there is no more data, or the host system
reports a read error; in either of these situations, fgetwc and getwc return WEOF.

You can distinguish the two situations that cause an EOF result by using the ferror and
feof functions.

Portability
fgetwc and getwc are required by C99 and POSIX.1-2001.

fgetwc_unlocked and getwc_unlocked are GNU extensions.

116 Red Hat newlib C Library, Full

4.14 fgetws, fgetws_unlocked—get wide character string
from a file or stream
Synopsis
#include <wchar.h>

wchar_t *fgetws(wchar_t *
FILE *__restrict fp);

_restrict ws, int n,

#define _GNU_SOURCE

#include <wchar.h>

wchar_t *fgetws_unlocked(wchar_t *__restrict ws, int n,
FILE *__restrict fp);

#include <wchar.h>
wchar_t *_fgetws_r(struct _reent *ptr, wchar_t *ws,
int n, FILE *fp);

#include <wchar.h>
wchar_t *_fgetws_unlocked_r(struct _reent *ptr, wchar_t *ws,
int n, FILE *fp);

Description
Reads at most n-1 wide characters from fp until a newline is found. The wide characters
including to the newline are stored in ws. The buffer is terminated with a 0.

fgetws_unlocked is a non-thread-safe version of fgetws. fgetws_unlocked may only
safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fgetws_unlocked is
equivalent to fgetws.

The _fgetws_r and _fgetws_unlocked_r functions are simply reentrant version of the
above and are passed an additional reentrancy structure pointer: ptr.

Returns

fgetws returns the buffer passed to it, with the data filled in. If end of file occurs with
some data already accumulated, the data is returned with no other indication. If no data
are read, NULL is returned instead.

Portability
fgetws is required by C99 and POSIX.1-2001.

fgetws_unlocked is a GNU extension.

Chapter 4: Input and Output (stdio.h) 117

4.15 fileno, fileno_unlocked—return file descriptor
associated with stream
Synopsis

#include <stdio.h>
int fileno(FILE *fp);

#define _BSD_SOURCE
#include <stdio.h>
int fileno_unlocked(FILE *fp);

Description
You can use fileno to return the file descriptor identified by fp.

fileno_unlocked is a non-thread-safe version of fileno. fileno_unlocked may only
safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fileno_unlocked is
equivalent to fileno.

Returns
fileno returns a non-negative integer when successful. If fp is not an open stream, fileno
returns -1.

Portability
fileno is not part of ANSI C. POSIX requires fileno.

fileno_unlocked is a BSD extension also provided by GNU libc.

Supporting OS subroutines required: none.

118 Red Hat newlib C Library, Full

4.16 fmemopen—open a stream around a fixed-length string
Synopsis
#include <stdio.h>

FILE *fmemopen(void *restrict buf, size_t size,
const char *restrict mode);

Description

fmemopen creates a seekable FILE stream that wraps a fixed-length buffer of size bytes
starting at buf. The stream is opened with mode treated as in fopen, where append mode
starts writing at the first NUL byte. If buf is NULL, then size bytes are automatically
provided as if by malloc, with the initial size of 0, and mode must contain + so that data
can be read after it is written.

The stream maintains a current position, which moves according to bytes read or written,
and which can be one past the end of the array. The stream also maintains a current file
size, which is never greater than size. If mode starts with r, the position starts at 0, and
file size starts at size if buf was provided. If mode starts with w, the position and file size
start at 0, and if buf was provided, the first byte is set to NUL. If mode starts with a,
the position and file size start at the location of the first NUL byte, or else size if buf was
provided.

When reading, NUL bytes have no significance, and reads cannot exceed the current file
size. When writing, the file size can increase up to size as needed, and NUL bytes may be
embedded in the stream (see open_memstrean for an alternative that automatically enlarges
the buffer). When the stream is flushed or closed after a write that changed the file size,
a NUL byte is written at the current position if there is still room; if the stream is not
also open for reading, a NUL byte is additionally written at the last byte of buf when the
stream has exceeded size, so that a write-only buf is always NUL-terminated when the
stream is flushed or closed (and the initial size should take this into account). It is not
possible to seek outside the bounds of size. A NUL byte written during a flush is restored
to its previous value when seeking elsewhere in the string.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno
will be set to EINVAL if size is zero or mode is invalid, ENOMEM if buf was NULL and
memory could not be allocated, or EMFILE if too many streams are already open.

Portability
This function is being added to POSIX 200x, but is not in POSIX 2001.

Supporting OS subroutines required: sbrk.

Chapter 4: Input and Output (stdio.h) 119

4.17 fopen—open a file

Synopsis
#include <stdio.h>
FILE *fopen(const char *file, const char *mode) ;

FILE *_fopen_r(struct _reent *reent,
const char *file, const char *mode);

Description
fopen initializes the data structures needed to read or write a file. Specify the file’s name
as the string at file, and the kind of access you need to the file with the string at mode.

The alternate function _fopen_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Three fundamental kinds of access are available: read, write, and append. *mode must

[P i

begin with one of the three characters ‘r’; ‘w’; or ‘a’, to select one of these:

r Open the file for reading; the operation will fail if the file does not exist, or if
the host system does not permit you to read it.

W Open the file for writing from the beginning of the file: effectively, this always
creates a new file. If the file whose name you specified already existed, its old
contents are discarded.

a Open the file for appending data, that is writing from the end of file. When
you open a file this way, all data always goes to the current end of file; you
cannot change this using fseek.

Some host systems distinguish between “binary” and “text” files. Such systems may perform
data transformations on data written to, or read from, files opened as “text”. If your system
is one of these, then you can append a ‘b’ to any of the three modes above, to specify that
you are opening the file as a binary file (the default is to open the file as a text file).

‘rb’, then, means “read binary”; ‘wb’, “write binary”; and ‘ab’, “append binary”.
To make C programs more portable, the ‘b’ is accepted on all systems, whether or not it
makes a difference.

Finally, you might need to both read and write from the same file. You can also append a
‘+’ to any of the three modes, to permit this. (If you want to append both ‘b’ and ‘+’; you
can do it in either order: for example, "rb+" means the same thing as "r+b" when used as
a mode string.)

Use "r+" (or "rb+") to permit reading and writing anywhere in an existing file, without
discarding any data; "w+" (or "wb+") to create a new file (or begin by discarding all data
from an old one) that permits reading and writing anywhere in it; and "a+" (or "ab+") to
permit reading anywhere in an existing file, but writing only at the end.

Returns

fopen returns a file pointer which you can use for other file operations, unless the file you
requested could not be opened; in that situation, the result is NULL. If the reason for failure
was an invalid string at mode, errno is set to EINVAL.

120 Red Hat newlib C Library, Full

Portability
fopen is required by ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, open, read, sbrk,
write.

Chapter 4: Input and Output (stdio.h) 121

4.18 fopencookie—open a stream with custom callbacks
Synopsis

#include <stdio.h>
FILE xfopencookie(const void *cookie, const char *mode,
cookie_io_functions_t functions);

Description
fopencookie creates a FILE stream where I/O is performed using custom callbacks. The
callbacks are registered via the structure:

typedef ssize_t (*cookie_read_function_t)(void *_cookie, char *_buf, size_t _n); typedef
ssize_t (*cookie_write_function_t)(void *_cookie, const char *_buf, size_t _n); typedef
int (*cookie_seek_function_t)(void *_cookie, off_t *_off, int _whence); typedef int
(*cookie_close_function_t)(void *_cookie);

typedef struct

{

cookie_read_function_t *read;

cookie_write_function_t *write;

cookie_seek_function_t *seek;

cookie_close_function_t *close;
} cookie_io_functions_t;

The stream is opened with mode treated as in fopen. The callbacks functions.read and
functions.write may only be NULL when mode does not require them.

functions.read should return -1 on failure, or else the number of bytes read (0 on EOF). It
is similar to read, except that cookie will be passed as the first argument.

functions.write should return -1 on failure, or else the number of bytes written. It is similar
to write, except that cookie will be passed as the first argument.

functions.seek should return -1 on failure, and 0 on success, with _off set to the current file
position. It is a cross between lseek and fseek, with the _whence argument interpreted
in the same manner. A NULL functions.seek makes the stream behave similarly to a pipe
in relation to stdio functions that require positioning.

functions.close should return -1 on failure, or 0 on success. It is similar to close, except
that cookie will be passed as the first argument. A NULL functions.close merely flushes all
data then lets fclose succeed. A failed close will still invalidate the stream.

Read and write I/O functions are allowed to change the underlying buffer on fully buffered
or line buffered streams by calling setvbuf. They are also not required to completely fill
or empty the buffer. They are not, however, allowed to change streams from unbuffered to
buffered or to change the state of the line buffering flag. They must also be prepared to
have read or write calls occur on buffers other than the one most recently specified.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno
will be set to EINVAL if a function pointer is missing or mode is invalid, ENOMEM if the
stream cannot be created, or EMFILE if too many streams are already open.

122 Red Hat newlib C Library, Full

Portability
This function is a newlib extension, copying the prototype from Linux. It is not portable.
See also the funopen interface from BSD.

Supporting OS subroutines required: sbrk.

Chapter 4: Input and Output (stdio.h) 123

4.19 fpurge—discard pending file I/0
Synopsis

#include <stdio.h>
int fpurge(FILE *fp);

int _fpurge_r(struct _reent *reent, FILE *fp);

#include <stdio.h>
#include <stdio_ext.h>
void __fpurge(FILE *fp);

Description

Use fpurge to clear all buffers of the given stream. For output streams, this discards data
not yet written to disk. For input streams, this discards any data from ungetc and any
data retrieved from disk but not yet read via getc. This is more severe than fflush, and
generally is only needed when manually altering the underlying file descriptor of a stream.

fpurge behaves exactly like fpurge but does not return a value.

The alternate function _fpurge_r is a reentrant version, where the extra argument reent is
a pointer to a reentrancy structure, and fp must not be NULL.

Returns
fpurge returns O unless fp is not valid, in which case it returns EOF and sets errno.

Portability
These functions are not portable to any standard.

No supporting OS subroutines are required.

124 Red Hat newlib C Library, Full

4.20 fputc, fputc_unlocked—write a character on a stream
or file
Synopsis

#include <stdio.h>
int fputc(int ch, FILE *fp);

#define _BSD_SOURCE
#include <stdio.h>
int fputc_unlocked(int ch, FILE *fp);

#include <stdio.h>
int _fputc_r(struct _rent *ptr, int ch, FILE *fp);

#include <stdio.h>
int _fputc_unlocked_r(struct _rent *ptr, int ch, FILE *fp);

Description
fputc converts the argument ch from an int to an unsigned char, then writes it to the
file or stream identified by fp.

If the file was opened with append mode (or if the stream cannot support positioning), then
the new character goes at the end of the file or stream. Otherwise, the new character is
written at the current value of the position indicator, and the position indicator oadvances
by one.

For a macro version of this function, see putc.

fputc_unlocked is a non-thread-safe version of fputc. fputc_unlocked may only safely
be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). This
function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fputc_unlocked is
equivalent to fputc.

The _fputc_r and _fputc_unlocked_r functions are simply reentrant versions of the above
that take an additional reentrant structure argument: ptr.

Returns
If successful, fputc returns its argument ch. If an error intervenes, the result is EOF. You
can use ‘ferror (fp)’ to query for errors.

Portability
fputc is required by ANSI C.

fputc_unlocked is a BSD extension also provided by GNU libc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 125

4.21 fputs, fputs_unlocked—write a character string in a file
or stream
Synopsis

#include <stdio.h>
int fputs(const char *restrict s, FILE *restrict fp);

#define _GNU_SOURCE
#include <stdio.h>
int fputs_unlocked(const char *restrict s, FILE *restrict fp);

#include <stdio.h>
int _fputs_r(struct _reent #*ptr, const char *restrict s, FILE *restrict fp);

#include <stdio.h>
int _fputs_unlocked_r(struct _reent *ptr, const char *restrict s, FILE *restrict fp);

Description

fputs writes the string at s (but without the trailing null) to the file or stream identified
by fp.

fputs_unlocked is a non-thread-safe version of fputs. fputs_unlocked may only safely
be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). This
function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fputs_unlocked is
equivalent to fputs.

_fputs_r and _fputs_unlocked_r are simply reentrant versions of the above that take an
additional reentrant struct pointer argument: ptr.

Returns
If successful, the result is 0; otherwise, the result is EOF.

Portability
ANSI C requires fputs, but does not specify that the result on success must be 0; any
non-negative value is permitted.

fputs_unlocked is a GNU extension.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

126 Red Hat newlib C Library, Full

4.22 fputwc, putwc, fputwc_unlocked, putwc_unlocked—write a
wide character on a stream or file

Synopsis

#include <stdio.h>
#include <wchar.h>
wint_t fputwc(wchar_t wc, FILE *fp);

#define _GNU_SOURCE

#include <stdio.h>

#include <wchar.h>

wint_t fputwc_unlocked(wchar_t wc, FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t _fputwc_r(struct _reent *ptr, wchar_t wc, FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t _fputwc_unlocked_r(struct _reent *ptr, wchar_t wc, FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t putwc(wchar_t wc, FILE *fp);

#define _GNU_SOURCE

#include <stdio.h>

#include <wchar.h>

wint_t putwc_unlocked(wchar_t wc, FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t _putwc_r(struct _reent *ptr, wchar_t wc, FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t _putwc_unlocked_r(struct _reent *ptr, wchar_t wc, FILE *fp);

Description
fputwc writes the wide character argument wc to the file or stream identified by fp.

If the file was opened with append mode (or if the stream cannot support positioning),
then the new wide character goes at the end of the file or stream. Otherwise, the new wide
character is written at the current value of the position indicator, and the position indicator
oadvances by one.

fputwc_unlocked is a non-thread-safe version of fputwc. fputwc_unlocked may only
safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called

Chapter 4: Input and Output (stdio.h) 127

while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fputwc_unlocked is
equivalent to fputwc.

The putwc and putwc_unlocked functions or macros function identically to fputwc and
fputwc_unlocked. They may be implemented as a macro, and may evaluate its argument
more than once. There is no reason ever to use them.

The _fputwc_r, _putwc_r, _fputwc_unlocked_r, and _putwc_unlocked_r functions are
simply reentrant versions of the above that take an additional reentrant structure argument:
ptr.

Returns
If successful, fputwec and putwc return their argument we. If an error intervenes, the result
is EOF. You can use ‘ferror (£fp)’ to query for errors.

Portability
fputwec and putwc are required by C99 and POSIX.1-2001.

fputwc_unlocked and putwc_unlocked are GNU extensions.

128 Red Hat newlib C Library, Full

4.23 fputws, fputws_unlocked—write a wide character string

in a file or stream
Synopsis
#include <wchar.h>
int fputws(const wchar_t *__restrict ws, FILE *__restrict fp);
#define _GNU_SOURCE
#include <wchar.h>
int fputws_unlocked(const wchar_t *

_restrict ws, FILE *__restrict fp);

#include <wchar.h>
int _fputws_r(struct _reent *ptr, const wchar_t *ws,
FILE *fp);

#include <wchar.h>
int _fputws_unlocked_r(struct _reent *ptr, const wchar_t *ws,
FILE *fp);

Description
fputws writes the wide character string at ws (but without the trailing null) to the file or
stream identified by fp.

fputws_unlocked is a non-thread-safe version of fputws. fputws_unlocked may only
safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fputws_unlocked is
equivalent to fputws.

_fputws_r and _fputws_unlocked_r are simply reentrant versions of the above that take
an additional reentrant struct pointer argument: ptr.

Returns
If successful, the result is a non-negative integer; otherwise, the result is -1 to indicate an
error.

Portability
fputws is required by C99 and POSIX.1-2001.

fputws_unlocked is a GNU extension.

Chapter 4: Input and Output (stdio.h) 129

4.24 fread, fread_unlocked—read array elements from a file
Synopsis
#include <stdio.h>

size_t fread(void *restrict buf, size_t size, size_t count,
FILE *restrict fp);

#define _BSD_SOURCE

#include <stdio.h>

size_t fread_unlocked(void *restrict buf, size_t size, size_t count,
FILE *restrict fp);

#include <stdio.h>
size_t _fread_r(struct _reent *ptr, void *restrict buf,
size_t size, size_t count, FILE *restrict fp);

#include <stdio.h>
size_t _fread_unlocked_r(struct _reent *ptr, void *restrict buf,
size_t size, size_t count, FILE *restrict fp);

Description

fread attempts to copy, from the file or stream identified by fp, count elements (each of
size size) into memory, starting at buf. fread may copy fewer elements than count if an
error, or end of file, intervenes.

fread also advances the file position indicator (if any) for fp by the number of characters
actually read.

fread_unlocked is a non-thread-safe version of fread. fread_unlocked may only safely
be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). This
function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fread_unlocked is
equivalent to fread.

_fread_r and _fread_unlocked_r are simply reentrant versions of the above that take an
additional reentrant structure pointer argument: ptr.

Returns
The result of fread is the number of elements it succeeded in reading.

Portability
ANSI C requires fread.

fread_unlocked is a BSD extension also provided by GNU libc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

130 Red Hat newlib C Library, Full

4.25 freopen—open a file using an existing file descriptor
Synopsis
#include <stdio.h>
FILE *freopen(const char *restrict file, const char *restrict mode,
FILE *restrict fp);

FILE *_freopen_r(struct _reent *ptr, const char *restrict file,
const char *restrict mode, FILE *restrict fp);

Description

Use this variant of fopen if you wish to specify a particular file descriptor fp (notably stdin,
stdout, or stderr) for the file.

If fp was associated with another file or stream, freopen closes that other file or stream
(but ignores any errors while closing it).

file and mode are used just as in fopen.

If file is NULL, the underlying stream is modified rather than closed. The file cannot be
given a more permissive access mode (for example, a mode of "w" will fail on a read-only

file descriptor), but can change status such as append or binary mode. If modification is
not possible, failure occurs.

Returns
If successful, the result is the same as the argument fp. If the file cannot be opened as
specified, the result is NULL.

Portability
ANSI C requires freopen.

Supporting OS subroutines required: close, fstat, isatty, lseek, open, read, sbrk,
write.

Chapter 4: Input and Output (stdio.h) 131

4.26 fseek, fseeko—set file position
Synopsis
#include <stdio.h>
int fseek(FILE *fp, long offset, int whence);
int fseeko(FILE *fp, off_t offset, int whence);
int _fseek_r(struct _reent *ptr, FILE *fp,
long offset, int whence) ;
int _fseeko_r(struct _reent *ptr, FILE x*fp,
off_t offset, int whence);

Description

Objects of type FILE can have a “position” that records how much of the file your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side effect.

You can use fseek/fseeko to set the position for the file identified by fp. The value of
offset determines the new position, in one of three ways selected by the value of whence
(defined as macros in ‘stdio.h’):

SEEK_SET—offset is the absolute file position (an offset from the beginning of the file)
desired. offset must be positive.

SEEK_CUR—offset is relative to the current file position. offset can meaningfully be either
positive or negative.

SEEK_END—offset is relative to the current end of file. offset can meaningfully be either
positive (to increase the size of the file) or negative.

See ftell/ftello to determine the current file position.

Returns

fseek/fseeko return 0 when successful. On failure, the result is EOF. The reason for
failure is indicated in errno: either ESPIPE (the stream identified by fp doesn’t support
repositioning) or EINVAL (invalid file position).

Portability
ANSI C requires fseek.

fseeko is defined by the Single Unix specification.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

132 Red Hat newlib C Library, Full

4.27 __fsetlocking—set or query locking mode on FILE
stream
Synopsis
#include <stdio.h>

#include <stdio_ext.h>
int __fsetlocking(FILE *fp, int type);

Description
This function sets how the stdio functions handle locking of FILE fp. The following values
describe type:

FSETLOCKING_INTERNAL is the default state, where stdio functions automatically lock and
unlock the stream.

FSETLOCKING_BYCALLER means that automatic locking in stdio functions is disabled. Ap-
plications which set this take all responsibility for file locking themselves.

FSETLOCKING_QUERY returns the current locking mode without changing it.

Returns
__fsetlocking returns the current locking mode of fp.

Portability
This function originates from Solaris and is also provided by GNU libc.

No supporting OS subroutines are required.

Chapter 4: Input and Output (stdio.h) 133

4.28 fsetpos—restore position of a stream or file
Synopsis

#include <stdio.h>

int fsetpos(FILE *fp, const fpos_t *pos);

int _fsetpos_r(struct _reent *ptr, FILE *fp,
const fpos_t *pos);

Description

Objects of type FILE can have a “position” that records how much of the file your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side effect.

You can use fsetpos to return the file identified by fp to a previous position *pos (after
first recording it with fgetpos).

See fseek for a similar facility.

Returns

fgetpos returns 0 when successful. If fgetpos fails, the result is 1. The reason for failure is
indicated in errno: either ESPIPE (the stream identified by fp doesn’t support repositioning)
or EINVAL (invalid file position).

Portability
ANSI C requires fsetpos, but does not specify the nature of *pos beyond identifying it as
written by fgetpos.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

134 Red Hat newlib C Library, Full

4.29 ftell, ftello—return position in a stream or file
Synopsis

#include <stdio.h>

long ftell(FILE *fp);

off_t ftello(FILE *fp);

long _ftell_r(struct _reent *ptr, FILE *fp);

off _t _ftello_r(struct _reent *ptr, FILE *fp);

Description

Objects of type FILE can have a “position” that records how much of the file your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side effect.

The result of ftell/ftello is the current position for a file identified by fp. If you record
this result, you can later use it with fseek/fseeko to return the file to this position. The
difference between ftell and ftello is that ftell returns long and ftello returns off_t.

In the current implementation, ftell/ftello simply uses a character count to represent
the file position; this is the same number that would be recorded by fgetpos.

Returns

ftell/ftello return the file position, if possible. If they cannot do this, they return -1L.
Failure occurs on streams that do not support positioning; the global errno indicates this
condition with the value ESPIPE.

Portability

ftell is required by the ANSI C standard, but the meaning of its result (when successful) is
not specified beyond requiring that it be acceptable as an argument to £seek. In particular,
other conforming C implementations may return a different result from ftell than what
fgetpos records.

ftello is defined by the Single Unix specification.

No supporting OS subroutines are required.

Chapter 4: Input and Output (stdio.h) 135

4.30 funopen, fropen, fwopen—open a stream with custom
callbacks

Synopsis

#include <stdio.h>

FILE *funopen(const void *cookie,
int (*readfn) (void *cookie, char *buf, int n),
int (*writefn) (void *cookie, const char *buf, int n),
fpos_t (*seekfn) (void *cookie, fpos_t off, int whence),
int (*closefn) (void *cookie));

FILE *fropen(const void *cookie,
int (*xreadfn) (void *cookie, char *buf, int n));

FILE *fwopen(const void *cookie,
int (*xwritefn) (void *cookie, const char *buf, int n));

Description

funopen creates a FILE stream where I/O is performed using custom callbacks. At least
one of readfn and writefn must be provided, which determines whether the stream behaves
with mode <"r">, <"w">, or <"r+">.

readfn should return -1 on failure, or else the number of bytes read (0 on EOF). It is similar
to read, except that <int> rather than <size_t> bounds a transaction size, and cookie will
be passed as the first argument. A NULL readfn makes attempts to read the stream fail.

writefn should return -1 on failure, or else the number of bytes written. It is similar to
write, except that <int> rather than <size_t> bounds a transaction size, and cookie will be
passed as the first argument. A NULL writefn makes attempts to write the stream fail.

seekfn should return (fpos_t)-1 on failure, or else the current file position. It is similar to
1seek, except that cookie will be passed as the first argument. A NULL seekfn makes the
stream behave similarly to a pipe in relation to stdio functions that require positioning.
This implementation assumes fpos_t and off_t are the same type.

closefn should return -1 on failure, or 0 on success. It is similar to close, except that
cookie will be passed as the first argument. A NULL closefn merely flushes all data then
lets fclose succeed. A failed close will still invalidate the stream.

Read and write I/O functions are allowed to change the underlying buffer on fully buffered
or line buffered streams by calling setvbuf. They are also not required to completely fill
or empty the buffer. They are not, however, allowed to change streams from unbuffered to
buffered or to change the state of the line buffering flag. They must also be prepared to
have read or write calls occur on buffers other than the one most recently specified.

The functions fropen and fwopen are convenience macros around funopen that only use
the specified callback.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno
will be set to EINVAL if a function pointer is missing, ENOMEM if the stream cannot be
created, or EMFILE if too many streams are already open.

136 Red Hat newlib C Library, Full

Portability
This function is a newlib extension, copying the prototype from BSD. It is not portable.
See also the fopencookie interface from Linux.

Supporting OS subroutines required: sbrk.

Chapter 4: Input and Output (stdio.h) 137

4.31 fwide—set and determine the orientation of a FILE
stream
Synopsis

#include <wchar.h>
int fwide(FILE *fp, int mode) ;

int _fwide_r(struct _reent *ptr, FILE *fp, int mode);

Description

When mode is zero, the fwide function determines the current orientation of fp. It returns
a value > 0 if fp is wide-character oriented, i.e. if wide character I/O is permitted but char
I/0 is disallowed. It returns a value < 0 if fp is byte oriented, i.e. if char I/O is permitted
but wide character I/O is disallowed. It returns zero if fp has no orientation yet; in this
case the next I/O operation might change the orientation (to byte oriented if it is a char
I/O operation, or to wide-character oriented if it is a wide character I/O operation).

Once a stream has an orientation, it cannot be changed and persists until the stream is
closed, unless the stream is re-opened with freopen, which removes the orientation of the
stream.

When mode is non-zero, the fwide function first attempts to set fp’s orientation (to wide-
character oriented if mode > 0, or to byte oriented if mode < 0). It then returns a value
denoting the current orientation, as above.

Returns

The fwide function returns fp’s orientation, after possibly changing it. A return value > 0
means wide-character oriented. A return value < 0 means byte oriented. A return value of
zero means undecided.

Portability
C99, POSIX.1-2001.

138 Red Hat newlib C Library, Full

4.32 fwrite, fwrite_unlocked—write array elements

Synopsis
#include <stdio.h>
size_t fwrite(const void *restrict buf, size_t size,
size_t count, FILE *restrict fp);

#define _BSD_SOURCE

#include <stdio.h>

size_t fwrite_unlocked(const void *restrict buf, size_t size,
size_t count, FILE *restrict fp);

#include <stdio.h>
size_t _fwrite_r(struct _reent *ptr, const void *restrict buf, size_t size,
size_t count, FILE *restrict fp);

#include <stdio.h>
size_t _fwrite_unlocked_r(struct _reent *ptr, const void *restrict buf, size_t size,
size_t count, FILE *restrict fp);

Description

fwrite attempts to copy, starting from the memory location buf, count elements (each of
size size) into the file or stream identified by fp. fwrite may copy fewer elements than
count if an error intervenes.

fwrite also advances the file position indicator (if any) for fp by the number of characters
actually written.

fwrite_unlocked is a non-thread-safe version of fwrite. fwrite_unlocked may only
safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then fwrite_unlocked is
equivalent to fwrite.

_furite_r and _fwrite_unlocked_r are simply reentrant versions of the above that take
an additional reentrant structure argument: ptr.

Returns

If fwrite succeeds in writing all the elements you specify, the result is the same as the
argument count. In any event, the result is the number of complete elements that fwrite
copied to the file.

Portability
ANSI C requires fwrite.

fwrite_unlocked is a BSD extension also provided by GNU libc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 139

4.33 getc—read a character (macro)
Synopsis

#include <stdio.h>
int getc(FILE *fp);

#include <stdio.h>
int _getc_r(struct _reent *ptr, FILE *fp);

Description

getc is a macro, defined in stdio.h. You can use getc to get the next single character
from the file or stream identified by fp. As a side effect, getc advances the file’s current
position indicator.

For a subroutine version of this macro, see fgetc.

The _getc_r function is simply the reentrant version of getc which passes an additional
reentrancy structure pointer argument: ptr.

Returns

The next character (read as an unsigned char, and cast to int), unless there is no more
data, or the host system reports a read error; in either of these situations, getc returns
EQF.

You can distinguish the two situations that cause an EOF result by using the ferror and
feof functions.

Portability

ANSI C requires getc; it suggests, but does not require, that getc be implemented as a
macro. The standard explicitly permits macro implementations of getc to use the argument
more than once; therefore, in a portable program, you should not use an expression with
side effects as the getc argument.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

140 Red Hat newlib C Library, Full

4.34 getc_unlocked—non-thread-safe version of getc (macro)
Synopsis

#include <stdio.h>
int getc_unlocked(FILE *fp);

#include <stdio.h>
int _getc_unlocked_r(FILE *fp);

Description

getc_unlocked is a non-thread-safe version of getc declared in stdio.h. getc_unlocked
may only safely be used within a scope protected by flockfile() (or ftrylockfile()) and fun-
lockfile(). These functions may safely be used in a multi-threaded program if and only if
they are called while the invoking thread owns the (FILE *) object, as is the case after
a successful call to the flockfile() or ftrylockfile() functions. If threads are disabled, then
getc_unlocked is equivalent to getc.

The _getc_unlocked_r function is simply the reentrant version of get_unlocked which
passes an additional reentrancy structure pointer argument: ptr.

Returns
See getc.

Portability
POSIX 1003.1 requires getc_unlocked. getc_unlocked may be implemented as a macro,
so arguments should not have side-effects.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 141

4.35 getchar—read a character (macro)
Synopsis

#include <stdio.h>
int getchar(void);

int _getchar_r(struct _reent *reent);

Description

getchar is a macro, defined in stdio.h. You can use getchar to get the next single
character from the standard input stream. As a side effect, getchar advances the standard
input’s current position indicator.

The alternate function _getchar_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

The next character (read as an unsigned char, and cast to int), unless there is no more
data, or the host system reports a read error; in either of these situations, getchar returns
EQF.

You can distinguish the two situations that cause an EOF result by using ‘ferror(stdin)’
and ‘feof (stdin)’.

Portability
ANSI C requires getchar; it suggests, but does not require, that getchar be implemented
as a macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

142 Red Hat newlib C Library, Full

4.36 getchar_unlocked—mnon-thread-safe version of getchar
(macro)
Synopsis

#include <stdio.h>
int getchar_unlocked(void);

#include <stdio.h>
int _getchar_unlocked_r(struct _reent *ptr);

Description

getchar_unlocked is a non-thread-safe version of getchar declared in stdio.h. getchar_
unlocked may only safely be used within a scope protected by flockfile() (or ftrylockfile())
and funlockfile(). These functions may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case
after a successful call to the flockfile() or ftrylockfile() functions. If threads are disabled,
then getchar_unlocked is equivalent to getchar.

The _getchar_unlocked_r function is simply the reentrant version of getchar_unlocked
which passes an addtional reentrancy structure pointer argument: ptr.

Returns
See getchar.

Portability
POSIX 1003.1 requires getchar_unlocked. getchar_unlocked may be implemented as a
macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 143

4.37 getdelim—read a line up to a specified line delimiter
Synopsis
#include <stdio.h>

int getdelim(char *kpufptr, size_t *n,
int delim, FILE *fp);

Description

getdelim reads a file fp up to and possibly including a specified delimiter delim. The line
is read into a buffer pointed to by bufptr and designated with size *n. If the buffer is not
large enough, it will be dynamically grown by getdelim. As the buffer is grown, the pointer
to the size n will be updated.

Returns
getdelim returns -1 if no characters were successfully read; otherwise, it returns the number
of bytes successfully read. At end of file, the result is nonzero.

Portability
getdelim is a glibc extension.

No supporting OS subroutines are directly required.

144 Red Hat newlib C Library, Full

4.38 getline—read a line from a file
Synopsis

#include <stdio.h>
ssize_t getline(char *xbufptr, size_t *n, FILE *fp);

Description

getline reads a file fp up to and possibly including the newline character. The line is read
into a buffer pointed to by bufptr and designated with size *n. If the buffer is not large
enough, it will be dynamically grown by getdelim. As the buffer is grown, the pointer to
the size n will be updated.

getline is equivalent to getdelim(bufptr, n, \n’, fp);

Returns
getline returns -1 if no characters were successfully read, otherwise, it returns the number
of bytes successfully read. at end of file, the result is nonzero.

Portability
getline is a glibc extension.

No supporting OS subroutines are directly required.

Chapter 4: Input and Output (stdio.h) 145

4.39 gets—get character string (obsolete, use fgets instead)
Synopsis
#include <stdio.h>

char *gets(char *buf);

char *_gets_r(struct _reent *reent, char *buf);

Description
Reads characters from standard input until a newline is found. The characters up to the
newline are stored in buf. The newline is discarded, and the buffer is terminated with a 0.

This is a dangerous function, as it has no way of checking the amount of space available in
buf. One of the attacks used by the Internet Worm of 1988 used this to overrun a buffer
allocated on the stack of the finger daemon and overwrite the return address, causing the
daemon to execute code downloaded into it over the connection.

The alternate function _gets_r is a reentrant version. The extra argument reent is a pointer
to a reentrancy structure.

Returns

gets returns the buffer passed to it, with the data filled in. If end of file occurs with some
data already accumulated, the data is returned with no other indication. If end of file occurs
with no data in the buffer, NULL is returned.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

146 Red Hat newlib C Library, Full

4.40 getw—read a word (int)
Synopsis

#include <stdio.h>
int getw(FILE *fp);

Description

getw is a function, defined in stdio.h. You can use getw to get the next word from the
file or stream identified by fp. As a side effect, getw advances the file’s current position
indicator.

Returns

The next word (read as an int), unless there is no more data or the host system reports
a read error; in either of these situations, getw returns EOF. Since EOF is a valid int, you
must use ferror or feof to distinguish these situations.

Portability
getw is a remnant of K&R C; it is not part of any ISO C Standard. fread should be used
instead. In fact, this implementation of getw is based upon fread.

Supporting OS subroutines required: fread.

Chapter 4: Input and Output (stdio.h) 147

4.41 getwchar, getwchar_unlocked—read a wide character
from standard input
Synopsis

#include <wchar.h>
wint_t getwchar(void);

#define _GNU_SOURCE
#include <wchar.h>
wint_t getwchar_unlocked(void);

#include <wchar.h>
wint_t _getwchar_r(struct _reent *reent);

#include <wchar.h>
wint_t _getwchar_unlocked_r(struct _reent *reent);

Description

getwchar function or macro is the wide character equivalent of the getchar function. You
can use getwchar to get the next wide character from the standard input stream. As a side
effect, getwchar advances the standard input’s current position indicator.
getwchar_unlocked is a non-thread-safe version of getwchar. getwchar_unlocked may
only safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then getwchar_unlocked
is equivalent to getwchar.

The alternate functions _getwchar_r and _getwchar_unlocked_r are reentrant versions of
the above. The extra argument reent is a pointer to a reentrancy structure.

Returns
The next wide character cast to wint_t, unless there is no more data, or the host system
reports a read error; in either of these situations, getwchar returns WEOF.

You can distinguish the two situations that cause an WEOF result by using ‘ferror(stdin)’
and ‘feof (stdin)’.

Portability
getwchar is required by C99.

getwchar_unlocked is a GNU extension.

148 Red Hat newlib C Library, Full

4.42 mktemp, mkstemp, mkostemp, mkstemps,
Synopsis

#include <stdlib.h>

char #*mktemp(char #*path);

char *mkdtemp(char *path);

int mkstemp(char *path) ;

int mkstemps(char *path, int suffixlen);

int mkostemp(char *path, int flags);

int mkostemps(char *path, int suffixlen, int flags);

char *_mktemp_r(struct _reent *reent, char *path) ;

char *_mkdtemp_r(struct _reent *reent, char *path);

int *_mkstemp_r(struct _reent *reent, char *path);

int *_mkstemps_r(struct _reent *reent, char *path, int len);

int *_mkostemp_r(struct _reent *reent, char *path,
int flags);

int *_mkostemps_r(struct _reent *reent, char *path, int len,
int flags);

Description

mktemp, mkstemp, and mkstemps attempt to generate a file name that is not yet in use
for any existing file. mkstemp and mkstemps create the file and open it for reading and
writing; mktemp simply generates the file name (making mktemp a security risk). mkostemp
and mkostemps allow the addition of other open flags, such as 0_CLOEXEC, 0_APPEND, or 0_
SYNC. On platforms with a separate text mode, mkstemp forces 0_BINARY, while mkostemp
allows the choice between 0_BINARY, O_TEXT, or O for default. mkdtemp attempts to create
a directory instead of a file, with a permissions mask of 0700.

You supply a simple pattern for the generated file name, as the string at path. The pattern
should be a valid filename (including path information if you wish) ending with at least six
‘X’ characters. The generated filename will match the leading part of the name you supply,
with the trailing ‘X’ characters replaced by some combination of digits and letters. With
mkstemps, the ‘X’ characters end suffixlen bytes before the end of the string.

The alternate functions _mktemp_r, _mkdtemp_r, _mkstemp_r, _mkostemp_r, _mkostemps_
r, and _mkstemps_r are reentrant versions. The extra argument reent is a pointer to a
reentrancy structure.

Returns

mktemp returns the pointer path to the modified string representing an unused filename,
unless it could not generate one, or the pattern you provided is not suitable for a filename;
in that case, it returns NULL. Be aware that there is an inherent race between generating the
name and attempting to create a file by that name; you are advised to use 0_EXCL | 0_CREAT.

mkdtemp returns the pointer path to the modified string if the directory was created, oth-
erwise it returns NULL.

Chapter 4: Input and Output (stdio.h) 149

mkstemp, mkstemps, mkostemp, and mkostemps return a file descriptor to the newly created
file, unless it could not generate an unused filename, or the pattern you provided is not
suitable for a filename; in that case, it returns -1.

Notes

Never use mktemp. The generated filenames are easy to guess and there’s a race between
the test if the file exists and the creation of the file. In combination this makes mktemp
prone to attacks and using it is a security risk. Whenever possible use mkstemp instead. It
doesn’t suffer the race condition.

Portability
ANSI C does not require either mktemp or mkstemp; the System V Interface Definition
requires mktemp as of Issue 2. POSIX 2001 requires mkstemp, and POSIX 2008 requires

mkdtemp while deprecating mktemp. mkstemps, mkostemp, and mkostemps are not stan-
dardized.

Supporting OS subroutines required: getpid, mkdir, open, stat.

150 Red Hat newlib C Library, Full

4.43 open_memstream, open_wmemstream—open a write stream
around an arbitrary-length string
Synopsis
#include <stdio.h>

FILE *open_memstream(char **restrict buf,
size_t *restrict size);

#include <wchar.h>
FILE *open_wmemstream(wchar_t **restrict buf,
size_t *restrict size);

Description

open_memstream creates a seekable, byte-oriented FILE stream that wraps an arbitrary-
length buffer, created as if by malloc. The current contents of *buf are ignored; this
implementation uses *size as a hint of the maximum size expected, but does not fail if the
hint was wrong. The parameters buf and size are later stored through following any call
to fflush or fclose, set to the current address and usable size of the allocated string;
although after flush, the pointer is only valid until another stream operation that results
in a write. Behavior is undefined if the user alters either *buf or *size prior to fclose.

open_wmemstream is like open_memstream just with the associated stream being wide-
oriented. The size set in size in subsequent operations is the number of wide characters.

The stream is write-only, since the user can directly read *buf after a flush; see fmemopen
for a way to wrap a string with a readable stream. The user is responsible for calling free
on the final *buf after fclose.

Any time the stream is flushed, a NUL byte is written at the current position (but is not
counted in the buffer length), so that the string is always NUL-terminated after at most
*size bytes (or wide characters in case of open_wmemstream). However, data previously
written beyond the current stream offset is not lost, and the NUL value written during a
flush is restored to its previous value when seeking elsewhere in the string.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno
will be set to EINVAL if buf or size is NULL, ENOMEM if memory could not be allocated,
or EMFILE if too many streams are already open.

Portability
POSIX.1-2008

Supporting OS subroutines required: sbrk.

Chapter 4: Input and Output (stdio.h) 151

4.44 perror—print an error message on standard error
Synopsis

#include <stdio.h>
void perror(char *prefix);

void _perror_r(struct _reent *reent, char *prefix);

Description

Use perror to print (on standard error) an error message corresponding to the current value
of the global variable errno. Unless you use NULL as the value of the argument prefix, the
error message will begin with the string at prefix, followed by a colon and a space (:). The
remainder of the error message is one of the strings described for strerror.

The alternate function _perror_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
perror returns no result.

Portability
ANSI C requires perror, but the strings issued vary from one implementation to another.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

152 Red Hat newlib C Library, Full

4.45 putc—write a character (macro)
Synopsis

#include <stdio.h>
int putc(int ch, FILE *fp);

#include <stdio.h>
int _putc_r(struct _reent *ptr, int ch, FILE *fp);

Description
putc is a macro, defined in stdio.h. putc writes the argument ch to the file or stream
identified by fp, after converting it from an int to an unsigned char.

If the file was opened with append mode (or if the stream cannot support positioning), then
the new character goes at the end of the file or stream. Otherwise, the new character is
written at the current value of the position indicator, and the position indicator advances
by one.

For a subroutine version of this macro, see fputc.

The _putc_r function is simply the reentrant version of putc that takes an additional
reentrant structure argument: ptr.

Returns
If successful, putc returns its argument ch. If an error intervenes, the result is EOF. You
can use ‘ferror(fp)’ to query for errors.

Portability

ANSI C requires putc; it suggests, but does not require, that putc be implemented as
a macro. The standard explicitly permits macro implementations of putc to use the fp
argument more than once; therefore, in a portable program, you should not use an expression
with side effects as this argument.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 153

4.46 putc_unlocked—non-thread-safe version of putc (macro)
Synopsis

#include <stdio.h>
int putc_unlocked(int ch, FILE *fp);

#include <stdio.h>
int _putc_unlocked_r(struct _reent *ptr, int ch, FILE *fp);

Description

putc_unlocked is a non-thread-safe version of putc declared in stdio.h. putc_unlocked
may only safely be used within a scope protected by flockfile() (or ftrylockfile()) and fun-
lockfile(). These functions may safely be used in a multi-threaded program if and only if
they are called while the invoking thread owns the (FILE *) object, as is the case after
a successful call to the flockfile() or ftrylockfile() functions. If threads are disabled, then
putc_unlocked is equivalent to putc.

The function _putc_unlocked_r is simply the reentrant version of putc_unlocked that
takes an additional reentrant structure pointer argument: ptr.

Returns
See putc.

Portability
POSIX 1003.1 requires putc_unlocked. putc_unlocked may be implemented as a macro,
so arguments should not have side-effects.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

154 Red Hat newlib C Library, Full

4.47 putchar—write a character (macro)
Synopsis

#include <stdio.h>
int putchar(int ch);

int _putchar_r(struct _reent *reent, int ch);

Description
putchar is a macro, defined in stdio.h. putchar writes its argument to the standard
output stream, after converting it from an int to an unsigned char.

The alternate function _putchar_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
If successful, putchar returns its argument ch. If an error intervenes, the result is EOF. You
can use ‘ferror(stdin)’ to query for errors.

Portability
ANSI C requires putchar; it suggests, but does not require, that putchar be implemented
as a macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 155

4.48 putchar_unlocked—non-thread-safe version of putchar
(macro)
Synopsis

#include <stdio.h>
int putchar_unlocked(int ch);

Description

putchar_unlocked is a non-thread-safe version of putchar declared in stdio.h. putchar_
unlocked may only safely be used within a scope protected by flockfile() (or ftrylockfile())
and funlockfile(). These functions may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case
after a successful call to the flockfile() or ftrylockfile() functions. If threads are disabled,
then putchar_unlocked is equivalent to putchar.

Returns
See putchar.

Portability
POSIX 1003.1 requires putchar_unlocked. putchar_unlocked may be implemented as a
macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

156 Red Hat newlib C Library, Full

4.49 puts—write a character string
Synopsis

#include <stdio.h>
int puts(const char *s);

int _puts_r(struct _reent *reent, const char *s);

Description

puts writes the string at s (followed by a newline, instead of the trailing null) to the standard
output stream.

The alternate function _puts_r is a reentrant version. The extra argument reent is a pointer
to a reentrancy structure.

Returns
If successful, the result is a nonnegative integer; otherwise, the result is EOF.

Portability
ANSI C requires puts, but does not specify that the result on success must be 0; any
non-negative value is permitted.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 157

4.50 putw—write a word (int)
Synopsis

#include <stdio.h>
int putw(int w, FILE *fp);

Description
putw is a function, defined in stdio.h. You can use putw to write a word to the file or
stream identified by fp. As a side effect, putw advances the file’s current position indicator.

Returns
Zero on success, EOF on failure.

Portability
putw is a remnant of K&R C; it is not part of any ISO C Standard. fwrite should be used
instead. In fact, this implementation of putw is based upon fwrite.

Supporting OS subroutines required: fwrite.

158 Red Hat newlib C Library, Full

4.51 putwchar, putwchar_unlocked—write a wide character to
standard output
Synopsis

#include <wchar.h>
wint_t putwchar(wchar_t wc);

#include <wchar.h>
wint_t putwchar_unlocked(wchar_t wc);

#include <wchar.h>
wint_t _putwchar_r(struct _reent *reent, wchar_t wc);

#include <wchar.h>
wint_t _putwchar_unlocked_r(struct _reent *reent, wchar_t wc);

Description
The putwchar function or macro is the wide-character equivalent of the putchar function.
It writes the wide character wc to stdout.

putwchar_unlocked is a non-thread-safe version of putwchar. putwchar_unlocked may
only safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile().
This function may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then putwchar_unlocked
is equivalent to putwchar.

The alternate functions _putwchar_r and _putwchar_unlocked_r are reentrant versions of
the above. The extra argument reent is a pointer to a reentrancy structure.

Returns
If successful, putwchar returns its argument we. If an error intervenes, the result is EOF.
You can use ‘ferror(stdin)’ to query for errors.

Portability
putwchar is required by C99.

putwchar_unlocked is a GNU extension.

Chapter 4: Input and Output (stdio.h) 159

4.52 remove—delete a file’s name
Synopsis

#include <stdio.h>
int remove(char *filename) ;

int _remove_r(struct _reent *reent, char *filename);

Description

Use remove to dissolve the association between a particular filename (the string at filename)
and the file it represents. After calling remove with a particular filename, you will no longer
be able to open the file by that name.

In this implementation, you may use remove on an open file without error; existing file
descriptors for the file will continue to access the file’s data until the program using them
closes the file.

The alternate function _remove_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
remove returns 0 if it succeeds, -1 if it fails.

Portability
ANSI C requires remove, but only specifies that the result on failure be nonzero. The
behavior of remove when you call it on an open file may vary among implementations.

Supporting OS subroutine required: unlink.

160 Red Hat newlib C Library, Full

4.53 rename—rename a file
Synopsis

#include <stdio.h>
int rename(const char *old, const char *new);

Description

Use rename to establish a new name (the string at new) for a file now known by the string
at old. After a successful rename, the file is no longer accessible by the string at old.

If rename fails, the file named *01d is unaffected. The conditions for failure depend on the
host operating system.

Returns
The result is either 0 (when successful) or -1 (when the file could not be renamed).

Portability
ANSI C requires rename, but only specifies that the result on failure be nonzero. The effects
of using the name of an existing file as *new may vary from one implementation to another.

Supporting OS subroutines required: link, unlink, or rename.

Chapter 4: Input and Output (stdio.h) 161

4.54 rewind—reinitialize a file or stream

Synopsis
#include <stdio.h>
void rewind(FILE *fp);
void _rewind_r(struct _reent *ptr, FILE *fp);

Description
rewind returns the file position indicator (if any) for the file or stream identified by fp to
the beginning of the file. It also clears any error indicator and flushes any pending output.

Returns
rewind does not return a result.

Portability
ANSI C requires rewind.

No supporting OS subroutines are required.

162 Red Hat newlib C Library, Full

4.55 setbuf—specify full buffering for a file or stream
Synopsis

#include <stdio.h>
void setbuf (FILE *fp, char *buf);

Description

setbuf specifies that output to the file or stream identified by fp should be fully buffered.
All output for this file will go to a buffer (of size BUFSIZ, specified in ‘stdio.h’). Output
will be passed on to the host system only when the buffer is full, or when an input operation
intervenes.

You may, if you wish, supply your own buffer by passing a pointer to it as the argument
buf. It must have size BUFSIZ. You can also use NULL as the value of buf, to signal that the
setbuf function is to allocate the buffer.

Warnings
You may only use setbuf before performing any file operation other than opening the file.

If you supply a non-null buf, you must ensure that the associated storage continues to be
available until you close the stream identified by fp.

Returns
setbuf does not return a result.

Portability

Both ANSI C and the System V Interface Definition (Issue 2) require setbuf. However,
they differ on the meaning of a NULL buffer pointer: the SVID issue 2 specification says that
a NULL buffer pointer requests unbuffered output. For maximum portability, avoid NULL
buffer pointers.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 163

4.56 setbuffer—specify full buffering for a file or stream
with size
Synopsis

#include <stdio.h>
void setbuffer(FILE *fp, char *buf, int size);

Description

setbuffer specifies that output to the file or stream identified by fp should be fully buffered.
All output for this file will go to a buffer (of size size). Output will be passed on to the
host system only when the buffer is full, or when an input operation intervenes.

You may, if you wish, supply your own buffer by passing a pointer to it as the argument
buf. Tt must have size size. You can also use NULL as the value of buf, to signal that the
setbuffer function is to allocate the buffer.

Warnings
You may only use setbuffer before performing any file operation other than opening the
file.

If you supply a non-null buf, you must ensure that the associated storage continues to be
available until you close the stream identified by fp.

Returns
setbuffer does not return a result.

Portability
This function comes from BSD not ANSI or POSIX.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

164 Red Hat newlib C Library, Full

4.57 setlinebuf—specify line buffering for a file or stream
Synopsis

#include <stdio.h>
void setlinebuf (FILE *fp);

Description

setlinebuf specifies that output to the file or stream identified by fp should be line buffered.
This causes the file or stream to pass on output to the host system at every newline, as well
as when the buffer is full, or when an input operation intervenes.

Warnings
You may only use setlinebuf before performing any file operation other than opening the
file.

Returns
setlinebuf returns as per setvbuf.

Portability
This function comes from BSD not ANSI or POSIX.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 165

4.58 setvbuf—specify file or stream buffering
Synopsis
#include <stdio.h>

int setvbuf (FILE *fp, char *buf,
int mode, size_t size);

Description
Use setvbuf to specify what kind of buffering you want for the file or stream identified by
fp, by using one of the following values (from stdio.h) as the mode argument:

_IONBF Do not use a buffer: send output directly to the host system for the file or
stream identified by fp.

_IOFBF Use full output buffering: output will be passed on to the host system only
when the buffer is full, or when an input operation intervenes.

_IOLBF Use line buffering: pass on output to the host system at every newline, as well
as when the buffer is full, or when an input operation intervenes.

Use the size argument to specify how large a buffer you wish. You can supply the buffer
itself, if you wish, by passing a pointer to a suitable area of memory as buf. Otherwise, you
may pass NULL as the buf argument, and setvbuf will allocate the buffer.

Warnings
You may only use setvbuf before performing any file operation other than opening the file.

If you supply a non-null buf, you must ensure that the associated storage continues to be
available until you close the stream identified by fp.

Returns
A 0 result indicates success, EOF failure (invalid mode or size can cause failure).

Portability

Both ANSI C and the System V Interface Definition (Issue 2) require setvbuf. However,
they differ on the meaning of a NULL buffer pointer: the SVID issue 2 specification says that
a NULL buffer pointer requests unbuffered output. For maximum portability, avoid NULL
buffer pointers.

Both specifications describe the result on failure only as a nonzero value.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

166 Red Hat newlib C Library, Full

4.59 siprintf, fiprintf, iprintf, sniprintf, asiprintf,
asniprintf—format output (integer only)
Synopsis
#include <stdio.h>

int iprintf(const char *format, ...);
int fiprintf(FILE *fd, const char *format , ...);
int siprintf(char *str, const char *format, ...);
int sniprintf(char *str, size_t size, const char *format,
s
int asiprintf(char **strp, const char *format, ...);
char *asniprintf(char *str, size_t *size,
const char *format, ...);
int _iprintf_r(struct _reent *ptr, const char *format, ...);
int _fiprintf_r(struct _reent *ptr, FILE *fd,
const char *format, ...);
int _siprintf_r(struct _reent *ptr, char *str,
const char *format, ...);
int _sniprintf_r(struct _reent *ptr, char *str, size_t size,
const char *format, ...);
int _asiprintf_r(struct _reent *ptr, char *xstrp,
const char *format, ...);
char *_asniprintf_r(struct _reent *ptr, char *str,
size_t *size, const char *format, ...);
Description

iprintf, fiprintf, siprintf, sniprintf, asiprintf, and asniprintf are the same as
printf, fprintf, sprintf, snprintf, asprintf, and asnprintf, respectively, except that
they restrict usage to non-floating-point format specifiers.

_iprintf_r, _fiprintf_r, _asiprintf_r, _siprintf_r, _sniprintf_r, _asniprintf_r
are simply reentrant versions of the functions above.

Returns
Similar to printf, fprintf, sprintf, snprintf, asprintf, and asnprintf.

Portability
iprintf, fiprintf, siprintf, sniprintf, asiprintf, and asniprintf are newlib exten-
sions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write

Chapter 4: Input and Output (stdio.h) 167

4.60 siscanf, fiscanf, iscanf—scan and format non-floating
input
Synopsis
#include <stdio.h>

int iscanf(const char *format, ...);
int fiscanf(FILE *fd, const char *format, ...);
int siscanf(const char *str, const char *format, ...);
int _iscanf_r(struct _reent *ptr, const char *format, ...);
int _fiscanf_r(struct _reent *ptr, FILE *fd,
const char *format, ...);
int _siscanf_r(struct _reent *ptr, const char *str,
const char *format, ...);
Description

iscanf, fiscanf, and siscanf are the same as scanf, fscanf, and sscanf respectively,
only that they restrict the available formats to non-floating-point format specifiers.

The routines _iscanf_r, _fiscanf_r, and _siscanf_r are reentrant versions of iscanf,
fiscanf, and siscanf that take an additional first argument pointing to a reentrancy
structure.

Returns
iscanf returns the number of input fields successfully scanned, converted and stored; the
return value does not include scanned fields which were not stored.

If iscanf attempts to read at end-of-file, the return value is EOF.

If no fields were stored, the return value is 0.

Portability
iscanf, fiscanf, and siscanf are newlib extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

168 Red Hat newlib C Library, Full

4.61 sprintf, fprintf, printf, snprintf, asprintf,
asnprintf—format output
Synopsis

#include <stdio.h>

int printf(const char *restrict format, ...);
int fprintf (FILE *restrict fd, const char #*restrict format, ...);
int sprintf(char *restrict str, const char *restrict format, ...);
int snprintf(char *restrict str, size_t size, const char #*restrict format,
s
int asprintf(char **restrict strp, const char *restrict format, ...);
char *asnprintf(char *restrict str, size_t *restrict size, const char *restrict format
D
int _printf_r(struct _reent *ptr, const char *restrict format, ...);
int _fprintf_r(struct _reent *ptr, FILE *restrict fd,
const char *restrict format, ...);
int _sprintf_r(struct _reent *ptr, char *restrict str,
const char *restrict format, ...);
int _snprintf_r(struct _reent *ptr, char *restrict str, size_t size,
const char *restrict format, ...);
int _asprintf_r(struct _reent *ptr, char **restrict strp,
const char *restrict format, ...);
char *_asnprintf_r(struct _reent *ptr, char *restrict str,
size_t *restrict size, const char *restrict format, ...);
Description

printf accepts a series of arguments, applies to each a format specifier from *format, and
writes the formatted data to stdout, without a terminating NUL character. The behavior
of printf is undefined if there are not enough arguments for the format. printf returns
when it reaches the end of the format string. If there are more arguments than the format
requires, excess arguments are ignored.

fprintf is like printf, except that output is directed to the stream fd rather than stdout.

sprintf is like printf, except that output is directed to the buffer str, and a terminating
NUL is output. Behavior is undefined if more output is generated than the buffer can hold.

snprintf is like sprintf, except that output is limited to at most size bytes, including the
terminating NUL. As a special case, if size is 0, str can be NULL, and snprintf merely
calculates how many bytes would be printed.

asprintf is like sprintf, except that the output is stored in a dynamically allocated buffer,
pstr, which should be freed later with free.

asnprintf is like sprintf, except that the return type is either the original str if it was
large enough, or a dynamically allocated string if the output exceeds *size; the length of
the result is returned in *size. When dynamic allocation occurs, the contents of the original
str may have been modified.

Chapter 4: Input and Output (stdio.h) 169

For sprintf, snprintf, and asnprintf, the behavior is undefined if the output *str
overlaps with one of the arguments. Behavior is also undefined if the argument for %n
within *format overlaps another argument.

format is a pointer to a character string containing two types of objects: ordinary characters

(other than %), which are copied unchanged to the output, and conversion specifications,

each of which is introduced by %. (To include % in the output, use %% in the format string.)

A conversion specification has the following form:

%[pos] [flags] [width] [.prec] [size] type
The fields of the conversion specification have the following meanings:
® pos

Conversions normally consume arguments in the order that they are presented. How-
ever, it is possible to consume arguments out of order, and reuse an argument for more
than one conversion specification (although the behavior is undefined if the same ar-
gument is requested with different types), by specifying pos, which is a decimal integer
followed by ’$’. The integer must be between 1 and <NL_ARGMAX> from limits.h,
and if argument %n$ is requested, all earlier arguments must be requested somewhere
within format. If positional parameters are used, then all conversion specifications ex-
cept for %% must specify a position. This positional parameters method is a POSIX
extension to the C standard definition for the functions.

o flags

flags is an optional sequence of characters which control output justification, numeric
signs, decimal points, trailing zeros, and octal and hex prefixes. The flag characters
are minus (=), plus (+), space (), zero (0), sharp (#), and quote (’). They can appear
in any combination, although not all flags can be used for all conversion specification
types.

’ A POSIX extension to the C standard. However, this implementation
presently treats it as a no-op, which is the default behavior for the C
locale, anyway. (If it did what it is supposed to, when type were i, 4, u, f,
F, g, or G, the integer portion of the conversion would be formatted with
thousands’ grouping wide characters.)

- The result of the conversion is left justified, and the right is padded with
blanks. If you do not use this flag, the result is right justified, and padded
on the left.

+ The result of a signed conversion (as determined by type of d, i, a, A, e,
E, f, F, g, or G) will always begin with a plus or minus sign. (If you do not
use this flag, positive values do not begin with a plus sign.)

nn (Space)
If the first character of a signed conversion specification is not a sign, or
if a signed conversion results in no characters, the result will begin with a
space. If the space () flag and the plus (+) flag both appear, the space flag
is ignored.

0 If the type character is d, i, o, u, x, X, a, A, e, E, £, F, g, or G: leading
zeros are used to pad the field width (following any indication of sign or

170

Red Hat newlib C Library, Full

base); no spaces are used for padding. If the zero (0) and minus (-) flags
both appear, the zero (0) flag will be ignored. For d, i, o, u, x, and X
conversions, if a precision prec is specified, the zero (0) flag is ignored.

Note that 0 is interpreted as a flag, not as the beginning of a field width.

The result is to be converted to an alternative form, according to the type
character.

The alternative form output with the # flag depends on the type character:

) Increases precision to force the first digit of the result to be a zero.
X A non-zero result will have a 0x prefix.
X A non-zero result will have a 0X prefix.

a,A,e, E, f, orF
The result will always contain a decimal point even if no digits follow
the point. (Normally, a decimal point appears only if a digit follows it.)
Trailing zeros are removed.

gorG The result will always contain a decimal point even if no digits follow the
point. Trailing zeros are not removed.

all others
Undefined.

width

width is an optional minimum field width. You can either specify it directly as a
decimal integer, or indirectly by using instead an asterisk (*), in which case an int
argument is used as the field width. If positional arguments are used, then the width
must also be specified positionally as *m$, with m as a decimal integer. Negative field
widths are treated as specifying the minus (-) flag for left justfication, along with a
positive field width. The resulting format may be wider than the specified width.

prec

prec is an optional field; if present, it is introduced with ¢.” (a period). You can specify
the precision either directly as a decimal integer or indirectly by using an asterisk (*),
in which case an int argument is used as the precision. If positional arguments are
used, then the precision must also be specified positionally as *m$, with m as a decimal
integer. Supplying a negative precision is equivalent to omitting the precision. If only
a period is specified the precision is zero. The effect depends on the conversion type.

d, i, o, u, x, or X
Minimum number of digits to appear. If no precision is given, defaults to
1.

aorA Number of digits to appear after the decimal point. If no precision is given,
the precision defaults to the minimum needed for an exact representation.

e, E, forF
Number of digits to appear after the decimal point. If no precision is given,
the precision defaults to 6.

Chapter 4: Input and Output (stdio.h) 171

gor G

sor S

all others

e size

Maximum number of significant digits. A precision of 0 is treated the same
as a precision of 1. If no precision is given, the precision defaults to 6.

Maximum number of characters to print from the string. If no precision is
given, the entire string is printed.

undefined.

size is an optional modifier that changes the data type that the corresponding argument
has. Behavior is unspecified if a size is given that does not match the type.

hh

11

L
® type

With 4, i, o, u, %, or X, specifies that the argument should be converted
to a signed char or unsigned char before printing.

With n, specifies that the argument is a pointer to a signed char.

With d, i, o, u, x, or X, specifies that the argument should be converted
to a short or unsigned short before printing.

With n, specifies that the argument is a pointer to a short.

With d, i, o, u, x, or X, specifies that the argument is a long or unsigned
long.

With c, specifies that the argument has type wint_t.

With s, specifies that the argument is a pointer to wchar_t.

With n, specifies that the argument is a pointer to a long.

With a, A, e, E, f, F, g, or G, has no effect (because of vararg promotion
rules, there is no need to distinguish between float and double).

With 4, i, o, u, x, or X, specifies that the argument is a long long or
unsigned long long.

With n, specifies that the argument is a pointer to a long long.

With 4, i, o, u, x, or X, specifies that the argument is an intmax_t or
uintmax_t.

With n, specifies that the argument is a pointer to an intmax_t.

With d, i, o, u, %, or X, specifies that the argument is a size_t.

With n, specifies that the argument is a pointer to a size_t.

With d, i, o, u, x, or X, specifies that the argument is a ptrdiff_t.
With n, specifies that the argument is a pointer to a ptrdiff_t.

With a, A, e, E, £, F, g, or G, specifies that the argument is a 1long double.

type specifies what kind of conversion printf performs. Here is a table of these:

h

C

Prints the percent character (%).

Prints arg as single character. If the 1 size specifier is in effect, a multibyte
character is printed.

172

or i

Red Hat newlib C Library, Full

Short for %1lc. A POSIX extension to the C standard.

Prints the elements of a pointer to char until the precision or a null charac-
ter is reached. If the 1 size specifier is in effect, the pointer is to an array of
wchar_t, and the string is converted to multibyte characters before print-
ing.

Short for %1s. A POSIX extension to the C standard.

Prints a signed decimal integer; takes an int. Leading zeros are inserted as
necessary to reach the precision. A value of 0 with a precision of 0 produces
an empty string.

Newlib extension, short for %1d.

Prints an unsigned octal integer; takes an unsigned. Leading zeros are
inserted as necessary to reach the precision. A value of 0 with a precision
of 0 produces an empty string.

Newlib extension, short for %1lo.

Prints an unsigned decimal integer; takes an unsigned. Leading zeros are
inserted as necessary to reach the precision. A value of 0 with a precision
of 0 produces an empty string.

Newlib extension, short for %1u.

Prints an unsigned hexadecimal integer (using abcdef as digits beyond 9);
takes an unsigned. Leading zeros are inserted as necessary to reach the
precision. A value of 0 with a precision of 0 produces an empty string.

Like x, but uses ABCDEF as digits beyond 9.

Prints a signed value of the form [-]19999.9999, with the precision deter-
mining how many digits follow the decimal point; takes a double (remem-
ber that float promotes to double as a vararg). The low order digit is
rounded to even. If the precision results in at most DECIMAL_DIG digits,
the result is rounded correctly; if more than DECIMAL_DIG digits are
printed, the result is only guaranteed to round back to the original value.

If the value is infinite, the result is inf, and no zero padding is performed.
If the value is not a number, the result is nan, and no zero padding is
performed.

Like £, but uses INF and NAN for non-finite numbers.

Prints a signed value of the form [-]19.9999e[+|-]999; takes a double.
The digit before the decimal point is non-zero if the value is non-zero.
The precision determines how many digits appear between . and e, and
the exponent always contains at least two digits. The value zero has an
exponent of zero. If the value is not finite, it is printed like f.

Like e, but using E to introduce the exponent, and like F for non-finite
values.

Chapter 4: Input and Output (stdio.h) 173

g Prints a signed value in either f or e form, based on the given value and
precision—an exponent less than -4 or greater than the precision selects the
e form. Trailing zeros and the decimal point are printed only if necessary;
takes a double.

G Like g, except use F or E form.

a Prints a signed value of the form [-]0x1.ffffp[+|-]19; takes a double.
The letters abcdef are used for digits beyond 9. The precision determines
how many digits appear after the decimal point. The exponent contains at
least one digit, and is a decimal value representing the power of 2; a value
of 0 has an exponent of 0. Non-finite values are printed like f.

A Like a, except uses X, P, and ABCDEF instead of lower case.

n Takes a pointer to int, and stores a count of the number of bytes written
so far. No output is created.

P Takes a pointer to void, and prints it in an implementation-defined format.
This implementation is similar to %#tx), except that 0x appears even for
the NULL pointer.

m Prints the output of strerror(errno); no argument is required. A GNU
extension.

_printf_r, _fprintf_r, _asprintf_r, _sprintf_r, _snprintf_r, _asnprintf_r are sim-
ply reentrant versions of the functions above.

Returns

On success, sprintf and asprintf return the number of bytes in the output string, except
the concluding NUL is not counted. snprintf returns the number of bytes that would be in
the output string, except the concluding NUL is not counted. printf and fprintf return the
number of characters transmitted. asnprintf returns the original str if there was enough
room, otherwise it returns an allocated string.

If an error occurs, the result of printf, fprintf, snprintf, and asprintf is a negative
value, and the result of asnprintf is NULL. No error returns occur for sprintf. For
printf and fprintf, errno may be set according to fputc. For asprintf and asnprintf,
errno may be set to ENOMEM if allocation fails, and for snprintf, errno may be set to
EOVERFLOW if size or the output length exceeds INT_MAX.

Bugs
The “”’ (quote) flag does not work when locale’s thousands_sep is not empty.
Portability

ANSI C requires printf, fprintf, sprintf, and snprintf. asprintf and asnprintf are
newlib extensions.

The ANSI C standard specifies that implementations must support at least formatted out-
put of up to 509 characters. This implementation has no inherent limit.

Depending on how newlib was configured, not all format specifiers are supported.

174 Red Hat newlib C Library, Full

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 175

4.62 sscanf, fscanf, scanf—scan and format input
Synopsis
#include <stdio.h>

int scanf(const char *restrict format, ...);
int fscanf(FILE *restrict fd, const char *restrict format, ...);
int sscanf(const char *restrict str, const char *restrict format, ...);
int _scanf_r(struct _reent *ptr, const char *restrict format, ...);
int _fscanf_r(struct _reent *ptr, FILE *restrict fd,
const char *restrict format, ...);
int _sscanf_r(struct _reent *ptr, const char *restrict str,
const char *restrict format, ...);
Description

scanf scans a series of input fields from standard input, one character at a time. Each
field is interpreted according to a format specifier passed to scanf in the format string at
*format. scanf stores the interpreted input from each field at the address passed to it as
the corresponding argument following format. You must supply the same number of format
specifiers and address arguments as there are input fields.

There must be sufficient address arguments for the given format specifiers; if not the results
are unpredictable and likely disasterous. Excess address arguments are merely ignored.

scanf often produces unexpected results if the input diverges from an expected pattern.
Since the combination of gets or fgets followed by sscanf is safe and easy, that is the
preferred way to be certain that a program is synchronized with input at the end of a line.

fscanf and sscanf are identical to scanf, other than the source of input: fscanf reads
from a file, and sscanf from a string.

The routines _scanf_r, _fscanf_r, and _sscanf_r are reentrant versions of scanf, fscanf,
and sscanf that take an additional first argument pointing to a reentrancy structure.
The string at *format is a character sequence composed of zero or more directives. Direc-

tives are composed of one or more whitespace characters, non-whitespace characters, and
format specifications.

Whitespace characters are blank (), tab (\t), or newline (\n). When scanf encounters
a whitespace character in the format string it will read (but not store) all consecutive
whitespace characters up to the next non-whitespace character in the input.
Non-whitespace characters are all other ASCII characters except the percent sign (%). When
scanf encounters a non-whitespace character in the format string it will read, but not store
a matching non-whitespace character.

Format specifications tell scanf to read and convert characters from the input field into
specific types of values, and store then in the locations specified by the address arguments.

Trailing whitespace is left unread unless explicitly matched in the format string.

The format specifiers must begin with a percent sign (%) and have the following form:
%[*]1 [width] [size] type

176 Red Hat newlib C Library, Full

Each format specification begins with the percent character (%). The other fields are:

o *
an optional marker; if present, it suppresses interpretation and assignment of this input
field.

e width
an optional maximum field width: a decimal integer, which controls the maximum
number of characters that will be read before converting the current input field. If the
input field has fewer than width characters, scanf reads all the characters in the field,
and then proceeds with the next field and its format specification.
If a whitespace or a non-convertable character occurs before width character are read,
the characters up to that character are read, converted, and stored. Then scanf
proceeds to the next format specification.

e size
h, j, 1, L, t, and z are optional size characters which override the default way that
scanf interprets the data type of the corresponding argument.

Modifier Type(s)

hh d,i,0,u,x,n convert input to char, store in char object

h d,i, 0, u x, convert input to short, store in short object

h D, 1,O,U, X, e f c,s,p no effect

J d,i, o, u x, n convert input to intmax_t, store in intmax_t
object

j all others no effect

1 d, i, 0, u,x,n convert input to long, store in long object

1 e, f, g convert input to double, store in a double
object

1 D, I,O,U, X, ¢, s, p no effect

11 d, i, 0, u, x, convert to long long, store in long long object

L d, i, 0, u,x,n convert to long long, store in long long object

L e, f,g E G convert to long double, store in long double
object

L all others no effect

t d,i, 0, u x, 0 convert input to ptrdiff_t, store in ptrdiff_t
object

t all others no effect

Z d,i, 0, u x,n convert input to size_t, store in size_t object

Z all others no effect

e type

A character to specify what kind of conversion scanf performs. Here is a table of the
conversion characters:

pA No conversion is done; the percent character (%) is stored.
c Scans one character. Corresponding arg: (char *arg).
s Reads a character string into the array supplied. Corresponding arg: (char

argll).

Chapter 4: Input and Output (stdio.h) 177

[pattern]

x,X
e, f, g

E,F,G

Reads a non-empty character string into memory starting at arg. This
area must be large enough to accept the sequence and a terminating null
character which will be added automatically. (pattern is discussed in the
paragraph following this table). Corresponding arg: (char *arg).

Reads a decimal integer into the corresponding arg: (int *arg).
Reads a decimal integer into the corresponding arg: (long *arg).
Reads an octal integer into the corresponding arg: (int *arg).
Reads an octal integer into the corresponding arg: (long *arg).

Reads an unsigned decimal integer into the corresponding arg: (unsigned
int *arg).

Reads an unsigned decimal integer into the corresponding arg: (unsigned
long *arg).

Read a hexadecimal integer into the corresponding arg: (int *arg).
Read a floating-point number into the corresponding arg: (float *arg).
Read a floating-point number into the corresponding arg: (double *arg).

Reads a decimal, octal or hexadecimal integer into the corresponding arg:
(int *arg).

Reads a decimal, octal or hexadecimal integer into the corresponding arg:
(long *arg).

Stores the number of characters read in the corresponding arg: (int *arg).

Stores a scanned pointer. ANSI C leaves the details to each implementa-
tion; this implementation treats %p exactly the same as %U. Corresponding
arg: (void x*arg).

A pattern of characters surrounded by square brackets can be used instead of the s type
character. pattern is a set of characters which define a search set of possible characters
making up the scanf input field. If the first character in the brackets is a caret (7), the
search set is inverted to include all ASCII characters except those between the brackets.
There is also a range facility which you can use as a shortcut. %[0-9] matches all
decimal digits. The hyphen must not be the first or last character in the set. The
character prior to the hyphen must be lexically less than the character after it.

Here are some pattern examples:

% [abcd]
%["abcd]
% [A-DW-Z]

%[z-al

matches strings containing only a, b, c, and d.

matches strings containing any characters except a, b, ¢, or d

matches strings containing A, B, C,D, W, X, Y, Z

matches the characters z, -, and a

178 Red Hat newlib C Library, Full

Floating point numbers (for field types e, f, g, E, F, G) must correspond to the following
general form:
[+/-]1 ddddd[.1ddd [Ele[+|-]ddd]

where objects inclosed in square brackets are optional, and ddd represents decimal,
octal, or hexadecimal digits.

Returns
scanf returns the number of input fields successfully scanned, converted and stored; the
return value does not include scanned fields which were not stored.

If scanf attempts to read at end-of-file, the return value is EOF.
If no fields were stored, the return value is 0.

scanf might stop scanning a particular field before reaching the normal field end character,
or may terminate entirely.

scanf stops scanning and storing the current field and moves to the next input field (if any)
in any of the following situations:
e The assignment suppressing character (*) appears after the % in the format specifica-
tion; the current input field is scanned but not stored.
e width characters have been read (width is a width specification, a positive decimal
integer).
e The next character read cannot be converted under the the current format (for example,
if a Z is read when the format is decimal).

e The next character in the input field does not appear in the search set (or does appear
in the inverted search set).

When scanf stops scanning the current input field for one of these reasons, the next char-
acter is considered unread and used as the first character of the following input field, or the
first character in a subsequent read operation on the input.

scanf will terminate under the following circumstances:

e The next character in the input field conflicts with a corresponding non-whitespace
character in the format string.

e The next character in the input field is EOF.

e The format string has been exhausted.
When the format string contains a character sequence that is not part of a format spec-
ification, the same character sequence must appear in the input; scanf will scan but not

store the matched characters. If a conflict occurs, the first conflicting character remains in
the input as if it had never been read.

Portability
scanf is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 4: Input and Output (stdio.h) 179

4.63 stdio_ext,__fbufsize, _fpending, _flbf, _freadable,_
_fwritable,__freading, _fwriting—access internals of

FILE structure
Synopsis

#include <stdio.h>
#include <stdio_ext.h>
size_t __fbufsize(FILE *fp);
size_t __fpending(FILE *fp);
int __f1bf (FILE *fp);
int __freadable(FILE *fp);
int __fwritable(FILE *fp);
int __freading(FILE *fp);
int __fwriting(FILE *fp);

9

Description
These functions provides access to the internals of the FILE structure fp.

Returns
__fbufsize returns the number of bytes in the buffer of stream fp.

__fpending returns the number of bytes in the output buffer of stream fp.
__f1bf returns nonzero if stream fp is line-buffered, and 0 if not.
__freadable returns nonzero if stream fp may be read, and 0 if not.
__fwritable returns nonzero if stream fp may be written, and 0 if not.

__freading returns nonzero if stream fp if the last operation on it was a read, or if it
read-only, and 0 if not.

__furiting returns nonzero if stream fp if the last operation on it was a write, or if it
write-only, and 0 if not.

Portability
These functions originate from Solaris and are also provided by GNU libc.

No supporting OS subroutines are required.

180 Red Hat newlib C Library, Full

4.64 swprintf, fwprintf, wprintf—wide character format
output
Synopsis

#include <wchar.h>

int wprintf(const wchar_t *format, ...);

int fwprintf(FILE *__restrict fd,
const wchar_t *__restrict format, ...);

int swprintf(wchar_t *__restrict str, size_t size,
const wchar_t *__restrict format, ...);

int _wprintf_r(struct _reent *ptr, const wchar_t *format, ...);

int _fwprintf_r(struct _reent *ptr, FILE *fd,
const wchar_t *format, ...);

int _swprintf_r(struct _reent *ptr, wchar_t *str,
size_t size, const wchar_t *format, ...);

Description

wprintf accepts a series of arguments, applies to each a format specifier from *format,
and writes the formatted data to stdout, without a terminating NUL wide character. The
behavior of wprintf is undefined if there are not enough arguments for the format or if any
argument is not the right type for the corresponding conversion specifier. wprintf returns
when it reaches the end of the format string. If there are more arguments than the format
requires, excess arguments are ignored.

fwprintf is like wprintf, except that output is directed to the stream fd rather than
stdout.

swprintf is like wprintf, except that output is directed to the buffer str with a terminating
wide NUL, and the resulting string length is limited to at most size wide characters, including
the terminating NUL. It is considered an error if the output (including the terminating wide-
NULL) does not fit into size wide characters. (This error behavior is not the same as for
snprintf, which swprintf is otherwise completely analogous to. While snprintf allows
the needed size to be known simply by giving size=0, swprintf does not, giving an error
instead.)

For swprintf the behavior is undefined if the output *str overlaps with one of the argu-
ments. Behavior is also undefined if the argument for %n within *format overlaps another
argument.

format is a pointer to a wide character string containing two types of objects: ordinary
characters (other than %), which are copied unchanged to the output, and conversion speci-
fications, each of which is introduced by %. (To include % in the output, use %% in the format
string.) A conversion specification has the following form:

%[pos] [flags] [width] [.prec] [size] type

The fields of the conversion specification have the following meanings:
® DpOs

Conversions normally consume arguments in the order that they are presented. How-
ever, it is possible to consume arguments out of order, and reuse an argument for more

Chapter 4: Input and Output (stdio.h) 181

than one conversion specification (although the behavior is undefined if the same ar-
gument is requested with different types), by specifying pos, which is a decimal integer
followed by ’$’. The integer must be between 1 and <NL_ARGMAX> from limits.h,
and if argument %n$ is requested, all earlier arguments must be requested somewhere
within format. If positional parameters are used, then all conversion specifications ex-
cept for %% must specify a position. This positional parameters method is a POSIX
extension to the C standard definition for the functions.

o flags

flags is an optional sequence of characters which control output justification, numeric
signs, decimal points, trailing zeros, and octal and hex prefixes. The flag characters
are minus (=), plus (+), space (), zero (0), sharp (#), and quote (*). They can appear
in any combination, although not all flags can be used for all conversion specification
types.

’ A POSIX extension to the C standard. However, this implementation
presently treats it as a no-op, which is the default behavior for the C
locale, anyway. (If it did what it is supposed to, when type were i, d, u, £,
F, g, or G, the integer portion of the conversion would be formatted with
thousands’ grouping wide characters.)

- The result of the conversion is left justified, and the right is padded with
blanks. If you do not use this flag, the result is right justified, and padded
on the left.

+ The result of a signed conversion (as determined by type of d, i, a, A, e,
E, f, F, g, or G) will always begin with a plus or minus sign. (If you do not
use this flag, positive values do not begin with a plus sign.)

' " (space)
If the first character of a signed conversion specification is not a sign, or
if a signed conversion results in no characters, the result will begin with a
space. If the space () flag and the plus (+) flag both appear, the space flag
is ignored.

0 If the type character is 4, i, o, u, x, X, a, A, e, E, £, F, g, or G: leading
zeros are used to pad the field width (following any indication of sign or
base); no spaces are used for padding. If the zero (0) and minus (-) flags
both appear, the zero (0) flag will be ignored. For d, i, o, u, x, and X
conversions, if a precision prec is specified, the zero (0) flag is ignored.

Note that 0 is interpreted as a flag, not as the beginning of a field width.

The result is to be converted to an alternative form, according to the type
character.

The alternative form output with the # flag depends on the type character:
) Increases precision to force the first digit of the result to be a zero.
X A non-zero result will have a 0x prefix.

X A non-zero result will have a 0X prefix.

182

Red Hat newlib C Library, Full
a,A,e,E, f, or F
The result will always contain a decimal point even if no digits follow
the point. (Normally, a decimal point appears only if a digit follows it.)
Trailing zeros are removed.
gor G The result will always contain a decimal point even if no digits follow the
point. Trailing zeros are not removed.
all others
Undefined.
width

width is an optional minimum field width. You can either specify it directly as a
decimal integer, or indirectly by using instead an asterisk (*), in which case an int
argument is used as the field width. If positional arguments are used, then the width
must also be specified positionally as *m$, with m as a decimal integer. Negative field
widths are treated as specifying the minus (-) flag for left justfication, along with a
positive field width. The resulting format may be wider than the specified width.

prec

prec is an optional field; if present, it is introduced with ‘.’ (a period). You can specify
the precision either directly as a decimal integer or indirectly by using an asterisk (*),
in which case an int argument is used as the precision. If positional arguments are
used, then the precision must also be specified positionally as *m$, with m as a decimal
integer. Supplying a negative precision is equivalent to omitting the precision. If only
a period is specified the precision is zero. The effect depends on the conversion type.

d, i, o, u, x, or X
Minimum number of digits to appear. If no precision is given, defaults to

1.
aor A Number of digits to appear after the decimal point. If no precision is given,
the precision defaults to the minimum needed for an exact representation.
e, E, forF

Number of digits to appear after the decimal point. If no precision is given,
the precision defaults to 6.

gorG Maximum number of significant digits. A precision of 0 is treated the same
as a precision of 1. If no precision is given, the precision defaults to 6.

sor S Maximum number of characters to print from the string. If no precision is
given, the entire string is printed.

all others
undefined.
size
size is an optional modifier that changes the data type that the corresponding argument
has. Behavior is unspecified if a size is given that does not match the type.
hh With 4, i, o, u, x, or X, specifies that the argument should be converted
to a signed char or unsigned char before printing.
With n, specifies that the argument is a pointer to a signed char.

Chapter 4: Input and Output (stdio.h) 183

h With 4, i, o, u, x, or X, specifies that the argument should be converted
to a short or unsigned short before printing.

With n, specifies that the argument is a pointer to a short.

1 With d, i, o, u, %, or X, specifies that the argument is a long or unsigned
long.
With c, specifies that the argument has type wint_t.
With s, specifies that the argument is a pointer to wchar_t.
With n, specifies that the argument is a pointer to a long.
With a, A, e, E, f, F, g, or G, has no effect (because of vararg promotion
rules, there is no need to distinguish between float and double).

11 With d, i, o, u, %, or X, specifies that the argument is a long long or
unsigned long long.
With n, specifies that the argument is a pointer to a long long.

j With d, i, o, u, x, or X, specifies that the argument is an intmax_t or
uintmax_t.

With n, specifies that the argument is a pointer to an intmax_t.

z With d, i, o, u, %, or X, specifies that the argument is a size_t.

With n, specifies that the argument is a pointer to a size_t.

t With d, i, o, u, %, or X, specifies that the argument is a ptrdiff_t.
With n, specifies that the argument is a pointer to a ptrdiff_t.
L With a, A, e, E, £, F, g, or G, specifies that the argument is a long double.
e type
type specifies what kind of conversion wprintf performs. Here is a table of these:
% Prints the percent character (%).
c If no 1 qualifier is present, the int argument shall be converted to a wide

character as if by calling the btowc() function and the resulting wide char-
acter shall be written. Otherwise, the wint_t argument shall be converted
to wchar_t, and written.

C Short for %1c. A POSIX extension to the C standard.

s If no 1 qualifier is present, the application shall ensure that the argument
is a pointer to a character array containing a character sequence beginning
in the initial shift state. Characters from the array shall be converted as
if by repeated calls to the mbrtowc() function, with the conversion state
described by an mbstate_t object initialized to zero before the first char-
acter is converted, and written up to (but not including) the terminating
null wide character. If the precision is specified, no more than that many
wide characters shall be written. If the precision is not specified, or is
greater than the size of the array, the application shall ensure that the
array contains a null wide character.

184

dor i

Red Hat newlib C Library, Full

If an 1 qualifier is present, the application shall ensure that the argument is
a pointer to an array of type wchar_t. Wide characters from the array shall
be written up to (but not including) a terminating null wide character. If no
precision is specified, or is greater than the size of the array, the application
shall ensure that the array contains a null wide character. If a precision is
specified, no more than that many wide characters shall be written.

Short for %1s. A POSIX extension to the C standard.

Prints a signed decimal integer; takes an int. Leading zeros are inserted as
necessary to reach the precision. A value of 0 with a precision of 0 produces
an empty string.

Prints an unsigned octal integer; takes an unsigned. Leading zeros are
inserted as necessary to reach the precision. A value of 0 with a precision
of 0 produces an empty string.

Prints an unsigned decimal integer; takes an unsigned. Leading zeros are
inserted as necessary to reach the precision. A value of 0 with a precision
of 0 produces an empty string.

Prints an unsigned hexadecimal integer (using abcdef as digits beyond 9);
takes an unsigned. Leading zeros are inserted as necessary to reach the
precision. A value of 0 with a precision of 0 produces an empty string.

Like x, but uses ABCDEF as digits beyond 9.

Prints a signed value of the form [-]9999.9999, with the precision deter-
mining how many digits follow the decimal point; takes a double (remem-
ber that float promotes to double as a vararg). The low order digit is
rounded to even. If the precision results in at most DECIMAL_DIG digits,
the result is rounded correctly; if more than DECIMAL_DIG digits are
printed, the result is only guaranteed to round back to the original value.

If the value is infinite, the result is inf, and no zero padding is performed.
If the value is not a number, the result is nan, and no zero padding is
performed.

Like f, but uses INF and NAN for non-finite numbers.

Prints a signed value of the form [-]9.9999e[+|-]1999; takes a double.
The digit before the decimal point is non-zero if the value is non-zero.
The precision determines how many digits appear between . and e, and
the exponent always contains at least two digits. The value zero has an
exponent of zero. If the value is not finite, it is printed like £.

Like e, but using E to introduce the exponent, and like F for non-finite
values.

Prints a signed value in either £ or e form, based on the given value and
precision—an exponent less than -4 or greater than the precision selects the
e form. Trailing zeros and the decimal point are printed only if necessary;
takes a double.

Like g, except use F or E form.

Chapter 4: Input and Output (stdio.h) 185

Prints a signed value of the form [-]0x1.ffffp[+|-]9; takes a double.
The letters abcdef are used for digits beyond 9. The precision determines
how many digits appear after the decimal point. The exponent contains at
least one digit, and is a decimal value representing the power of 2; a value
of 0 has an exponent of 0. Non-finite values are printed like f.

Like a, except uses X, P, and ABCDEF instead of lower case.

Takes a pointer to int, and stores a count of the number of bytes written
so far. No output is created.

Takes a pointer to void, and prints it in an implementation-defined format.
This implementation is similar to %#tx), except that 0x appears even for
the NULL pointer.

Prints the output of strerror(errno); no argument is required. A GNU
extension.

_wprintf_r, _fwprintf_r, _swprintf_r, are simply reentrant versions of the functions

above.

Returns

On success, swprintf return the number of wide characters in the output string, except
the concluding NUL is not counted. wprintf and fwprintf return the number of characters

transmitted.

If an error occurs, the result of wprintf, fwprintf, and swprintf is a negative value. For
wprintf and fwprintf, errno may be set according to fputwc. For swprintf, errno may
be set to EOVERFLOW if size is greater than INT_MAX / sizeof (wchar_t), or when the
output does not fit into size wide characters (including the terminating wide NULL).

Bugs
The “”’ (quote) flag does not work when locale’s thousands_sep is not empty.
Portability

POSIX-1.2008 with extensions; C99 (compliant except for POSIX extensions).

Depending on how newlib was configured, not all format specifiers are supported.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

186 Red Hat newlib C Library, Full

4.65 swscanf, fwscanf, wscanf—scan and format wide
character input
Synopsis
#include <stdio.h>

int wscanf(const wchar_t *__restrict format, ...);
int fwscanf (FILE *__restrict fd,
const wchar_t *__restrict format, ...);
int swscanf(const wchar_t *__restrict str,
const wchar_t *__restrict format, ...);
int _wscanf_r(struct _reent *ptr, const wchar_t *format, ...);
int _fwscanf_r(struct _reent *ptr, FILE *fd,
const wchar_t *format, ...);
int _swscanf_r(struct _reent *ptr, const wchar_t *str,
const wchar_t *format, ...);
Description

wscanf scans a series of input fields from standard input, one wide character at a time. Each
field is interpreted according to a format specifier passed to wscanf in the format string at
*format. wscanf stores the interpreted input from each field at the address passed to it as
the corresponding argument following format. You must supply the same number of format
specifiers and address arguments as there are input fields.

There must be sufficient address arguments for the given format specifiers; if not the results
are unpredictable and likely disasterous. Excess address arguments are merely ignored.

wscanf often produces unexpected results if the input diverges from an expected pattern.
Since the combination of gets or fgets followed by swscanf is safe and easy, that is the
preferred way to be certain that a program is synchronized with input at the end of a line.

fwscanf and swscanf are identical to wscanf, other than the source of input: fwscanf
reads from a file, and swscanf from a string.

The routines _wscanf_r, _fwscanf_r, and _swscanf_r are reentrant versions of wscanf,
fwscanf, and swscanf that take an additional first argument pointing to a reentrancy
structure.

The string at *format is a wide character sequence composed of zero or more directives.
Directives are composed of one or more whitespace characters, non-whitespace characters,
and format specifications.

Whitespace characters are blank (), tab (\t), or newline (\n). When wscanf encounters
a whitespace character in the format string it will read (but not store) all consecutive
whitespace characters up to the next non-whitespace character in the input.

Non-whitespace characters are all other ASCII characters except the percent sign (%). When
wscanf encounters a non-whitespace character in the format string it will read, but not store
a matching non-whitespace character.

Format specifications tell wscanf to read and convert characters from the input field into
specific types of values, and store then in the locations specified by the address arguments.

Trailing whitespace is left unread unless explicitly matched in the format string.

Chapter 4: Input and Output (stdio.h) 187

The format specifiers must begin with a percent sign (%) and have the following form:

%[*] [width] [sizel type

Each format specification begins with the percent character (%). The other fields are:

*

an optional marker; if present, it suppresses interpretation and assignment of this input
field.

width

an optional maximum field width: a decimal integer, which controls the maximum
number of characters that will be read before converting the current input field. If the
input field has fewer than width characters, wscanf reads all the characters in the field,
and then proceeds with the next field and its format specification.

If a whitespace or a non-convertable wide character occurs before width character are
read, the characters up to that character are read, converted, and stored. Then wscanf
proceeds to the next format specification.

size

h, j, 1, L, t, and z are optional size characters which override the default way that
wscanf interprets the data type of the corresponding argument.

Modifier Type(s)

hh d,i, 0, u x, 0 convert input to char, store in char object

h d,i, 0, u x,n convert input to short, store in short object

h e, f,c, s, p no effect

] d, i, o, u, x, convert input to intmax_t, store in intmax_t
object

j all others no effect

1 d, i, 0, u,x,n convert input to long, store in long object

1 e, f, g convert input to double, store in a double
object

1 s, | the input is stored in a wchar_t object

1 p no effect

11 d,i, 0, u x,n convert to long long, store in long long object

L d, i, 0, u,x,n convert to long long, store in long long object

L e, f, g, E, G convert to long double, store in long double
object

L all others no effect

t d, i, 0, u, x,n convert input to ptrdiff_t, store in ptrdiff_t
object

t all others no effect

7 d,i, 0, u,x,n convert input to size_t, store in size_t object

Z all others no effect

type

A character to specify what kind of conversion wscanf performs. Here is a table of the

conversion characters:

yA No conversion is done; the percent character (%) is stored.

188

[pattern]

x,X
e, f, g
E,F, G

Red Hat newlib C Library, Full

Scans one wide character. Corresponding arg: (char *arg). Otherwise, if
an 1 specifier is present, the corresponding arg is a (wchar_t *arg).

Reads a character string into the array supplied. Corresponding arg: (char
arg[]). If an 1 specifier is present, the corresponding arg is a (wchar_t
*arg).

Reads a non-empty character string into memory starting at arg. This
area must be large enough to accept the sequence and a terminating null
character which will be added automatically. (pattern is discussed in the
paragraph following this table). Corresponding arg: (char *arg). If an 1
specifier is present, the corresponding arg is a (wchar_t *arg).

Reads a decimal integer into the corresponding arg: (int *arg).
Reads an octal integer into the corresponding arg: (int *arg).

Reads an unsigned decimal integer into the corresponding arg: (unsigned
int *arg).

Read a hexadecimal integer into the corresponding arg: (int *arg).
Read a floating-point number into the corresponding arg: (float *arg).
Read a floating-point number into the corresponding arg: (double *arg).

Reads a decimal, octal or hexadecimal integer into the corresponding arg:
(int *arg).

Stores the number of characters read in the corresponding arg: (int *arg).
Stores a scanned pointer. ANSI C leaves the details to each implementa-

tion; this implementation treats %p exactly the same as %U. Corresponding
arg: (void **arg).

A pattern of characters surrounded by square brackets can be used instead of the s type
character. pattern is a set of characters which define a search set of possible characters
making up the wscanf input field. If the first character in the brackets is a caret (7), the
search set is inverted to include all ASCII characters except those between the brackets.
There is no range facility as is defined in the corresponding non-wide character scanf
functions. Ranges are not part of the POSIX standard.

Here are some pattern examples:

% [abcd]
%[~abcd]

% [A-DW-Z]

matches wide character strings containing only a, b, ¢, and d.

matches wide character strings containing any characters except a, b, ¢, or
d.

Note: No wide character ranges, so this expression matches wide character
strings containing A, -, D, W, Z.

Floating point numbers (for field types e, f, g, E, F, G) must correspond to the following
general form:
[+/-] ddddd[.]ddd [Ele[+|-]ddd]

Chapter 4: Input and Output (stdio.h) 189

where objects inclosed in square brackets are optional, and ddd represents decimal,
octal, or hexadecimal digits.

Returns
wscanf returns the number of input fields successfully scanned, converted and stored; the
return value does not include scanned fields which were not stored.

If wscanf attempts to read at end-of-file, the return value is EOF.
If no fields were stored, the return value is 0.

wscanf might stop scanning a particular field before reaching the normal field end character,
or may terminate entirely.

wscanf stops scanning and storing the current field and moves to the next input field (if
any) in any of the following situations:

e The assignment suppressing character (*) appears after the % in the format specifica-
tion; the current input field is scanned but not stored.

e width characters have been read (width is a width specification, a positive decimal
integer).

e The next wide character read cannot be converted under the the current format (for
example, if a Z is read when the format is decimal).

e The next wide character in the input field does not appear in the search set (or does
appear in the inverted search set).

When wscanf stops scanning the current input field for one of these reasons, the next
character is considered unread and used as the first character of the following input field,
or the first character in a subsequent read operation on the input.

wscanf will terminate under the following circumstances:

e The next wide character in the input field conflicts with a corresponding non-whitespace
character in the format string.

e The next wide character in the input field is WEOF.

e The format string has been exhausted.
When the format string contains a wide character sequence that is not part of a format
specification, the same wide character sequence must appear in the input; wscanf will scan

but not store the matched characters. If a conflict occurs, the first conflicting wide character
remains in the input as if it had never been read.

Portability
wscanf is C99, POSIX-1.2008.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

190 Red Hat newlib C Library, Full

4.66 tmpfile—create a temporary file
Synopsis

#include <stdio.h>
FILE *tmpfile(void);

FILE *_tmpfile_r(struct _reent *reent);

Description

Create a temporary file (a file which will be deleted automatically), using a name generated
by tmpnam. The temporary file is opened with the mode "wb+", permitting you to read and
write anywhere in it as a binary file (without any data transformations the host system
may perform for text files).

The alternate function _tmpfile_r is a reentrant version. The argument reent is a pointer
to a reentrancy structure.

Returns
tmpfile normally returns a pointer to the temporary file. If no temporary file could be
created, the result is NULL, and errno records the reason for failure.

Portability
Both ANSI C and the System V Interface Definition (Issue 2) require tmpfile.

Supporting OS subroutines required: close, fstat, getpid, isatty, lseek, open, read,
sbrk, write.

tmpfile also requires the global pointer environ.

Chapter 4: Input and Output (stdio.h) 191

4.67 tmpnam, tempnam—name for a temporary file
Synopsis

#include <stdio.h>

char *tmpnam(char *s);

char *tempnam(char *dir, char *pfx);

char *_tmpnam_r(struct _reent *reent, char *s);

char *_tempnam_r(struct _reent *reent, char *dir, char *pfx);

Description
Use either of these functions to generate a name for a temporary file. The generated name
is guaranteed to avoid collision with other files (for up to TMP_MAX calls of either function).

tmpnam generates file names with the value of P_tmpdir (defined in ‘stdio.h’) as the leading
directory component of the path.

You can use the tmpnam argument s to specify a suitable area of memory for the generated
filename; otherwise, you can call tmpnam (NULL) to use an internal static buffer.

tempnam allows you more control over the generated filename: you can use the argument
dir to specify the path to a directory for temporary files, and you can use the argument pfx
to specify a prefix for the base filename.

If dir is NULL, tempnam will attempt to use the value of environment variable TMPDIR instead;
if there is no such value, tempnam uses the value of P_tmpdir (defined in ‘stdio.h’).

If you don’t need any particular prefix to the basename of temporary files, you can pass
NULL as the pfx argument to tempnam.

_tmpnam_r and _tempnam_r are reentrant versions of tmpnam and tempnam respectively. The
extra argument reent is a pointer to a reentrancy structure.

Warnings

The generated filenames are suitable for temporary files, but do not in themselves make
files temporary. Files with these names must still be explicitly removed when you no longer
want them.

If you supply your own data area s for tmpnam, you must ensure that it has room for at
least L_tmpnam elements of type char.

Returns
Both tmpnam and tempnam return a pointer to the newly generated filename.

Portability
ANSI C requires tmpnam, but does not specify the use of P_tmpdir. The System V Interface
Definition (Issue 2) requires both tmpnam and tempnam.

Supporting OS subroutines required: close, fstat, getpid, isatty, lseek, open, read,
sbrk, write.

The global pointer environ is also required.

192 Red Hat newlib C Library, Full

4.68 ungetc—push data back into a stream
Synopsis

#include <stdio.h>
int ungetc(int c, FILE *stream);

int _ungetc_r(struct _reent *reent, int c, FILE *stream);

Description

ungetc is used to return bytes back to stream to be read again. If ¢ is EOF, the stream
is unchanged. Otherwise, the unsigned char ¢ is put back on the stream, and subsequent
reads will see the bytes pushed back in reverse order. Pushed byes are lost if the stream is
repositioned, such as by fseek, fsetpos, or rewind.

The underlying file is not changed, but it is possible to push back something different than
what was originally read. Ungetting a character will clear the end-of-stream marker, and
decrement the file position indicator. Pushing back beyond the beginning of a file gives
unspecified behavior.

The alternate function _ungetc_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
The character pushed back, or EOF on error.

Portability

ANSI C requires ungetc, but only requires a pushback buffer of one byte; although this
implementation can handle multiple bytes, not all can. Pushing back a signed char is a
common application bug.

Supporting OS subroutines required: sbrk.

Chapter 4: Input and Output (stdio.h) 193

4.69 ungetwc—push wide character data back into a stream
Synopsis
#include <stdio.h>

#include <wchar.h>
wint_t ungetwc(wint_t wc, FILE *stream) ;

wint_t _ungetwc_r(struct _reent *reent, wint_t wc, FILE *stream) ;

Description

ungetwc is used to return wide characters back to stream to be read again. If we is WEOF,
the stream is unchanged. Otherwise, the wide character wc is put back on the stream, and
subsequent reads will see the wide chars pushed back in reverse order. Pushed wide chars
are lost if the stream is repositioned, such as by fseek, fsetpos, or rewind.

The underlying file is not changed, but it is possible to push back something different than
what was originally read. Ungetting a character will clear the end-of-stream marker, and
decrement the file position indicator. Pushing back beyond the beginning of a file gives
unspecified behavior.

The alternate function _ungetwc_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
The wide character pushed back, or WEOF on error.

Portability
C99

194 Red Hat newlib C Library, Full

4.70 viprintf, vprintf, vsprintf, vsnprintf, vasprintf,
vasnprintf—format argument list
Synopsis
#include <stdio.h>
#include <stdarg.h>
int vprintf(const char *fmt, va_list list);
int vfprintf (FILE *fp, const char *fmt, va_list list);
int vsprintf(char *str, const char *fmt, va_list list);
int vsnprintf (char *str, size_t size, const char *fmt,
va_list 1list);
int vasprintf (char **strp, const char *fmt, va_list list);
char *vasnprintf(char *str, size_t *size, const char *fmt,
va_list list);

int _vprintf_r(struct _reent *reent, const char *fmt,
va_list list);

int _vfprintf_r(struct _reent *reent, FILE *fp,
const char *fmt, va_list list);

int _vsprintf_r(struct _reent *reent, char *str,
const char *fmt, va_list list);

int _vasprintf_r(struct _reent *reent, char **str,
const char *fmt, va_list list);

int _vsnprintf_r(struct _reent *reent, char *str,
size_t size, const char *fmt, va_list list);

char *_vasnprintf_r(struct _reent *reent, char *str,
size_t *size, const char *fmt, va_list list);

Description

vprintf, viprintf, vasprintf, vsprintf, vsnprintf, and vasnprintf are (respectively)
variants of printf, fprintf, asprintf, sprintf, snprintf, and asnprintf. They differ
only in allowing their caller to pass the variable argument list as a va_list object (initialized
by va_start) rather than directly accepting a variable number of arguments. The caller is
responsible for calling va_end.

_vprintf_r, _viprintf_r, _vasprintf_r, _vsprintf_r, _vsnprintf_r, and
_vasnprintf_r are reentrant versions of the above

Returns
The return values are consistent with the corresponding functions.

Portability
ANSI C requires vprintf, vfprintf, vsprintf, and vsnprintf. The remaining functions
are newlib extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write

Chapter 4: Input and Output (stdio.h) 195

4.71 vfscanf, vscanf, vsscanf—format argument list
Synopsis

#include <stdio.h>

#include <stdarg.h>

int vscanf(const char *fmt, va_list list);

int vfscanf(FILE *fp, const char *fmt, va_list list);
int vsscanf(const char *str, const char *fmt, va_list list);

int _vscanf_r(struct _reent *reent, const char *fmt,
va_list list);

int _vfscanf_r(struct _reent *reent, FILE *fp, const char *fmt,
va_list list);

int _vsscanf_r(struct _reent *reent, const char *str,
const char *fmt, va_list list);

Description

vscanf, vfscanf, and vsscanf are (respectively) variants of scanf, fscanf, and sscanf.
They differ only in allowing their caller to pass the variable argument list as a va_list object
(initialized by va_start) rather than directly accepting a variable number of arguments.

Returns

The return values are consistent with the corresponding functions: vscanf returns the
number of input fields successfully scanned, converted, and stored; the return value does
not include scanned fields which were not stored.

If vscanf attempts to read at end-of-file, the return value is EOF.
If no fields were stored, the return value is 0.

The routines _vscanf_r, _vfscanf_f, and _vsscanf_r are reentrant versions which take
an additional first parameter which points to the reentrancy structure.

Portability
These are GNU extensions.

Supporting OS subroutines required:

196 Red Hat newlib C Library, Full

4.72 viwprintf, vwprintf, vswprintf—wide character format

argument list
Synopsis
#include <stdio.h>
#include <stdarg.h>
#include <wchar.h>
int vwprintf(const wchar_t *__restrict fmt, va_list list);
int vfwprintf(FILE *__restrict fp,

const wchar_t *__restrict fmt, va_list list);

int vswprintf(wchar_t * __restrict str, size_t size,
const wchar_t *__ restrict fmt, va_list list);

int _vwprintf_r(struct _reent *reent, const wchar_t *fmt,
va_list list);

int _vfwprintf_r(struct _reent *reent, FILE *fp,
const wchar_t *fmt, va_list list);

int _vswprintf_r(struct _reent *reent, wchar_t *str,
size_t size, const wchar_t *fmt, va_list list);

Description

vwprintf, vifwprintf and vswprintf are (respectively) variants of wprintf, fwprintf and
swprintf. They differ only in allowing their caller to pass the variable argument list as a
va_list object (initialized by va_start) rather than directly accepting a variable number
of arguments. The caller is responsible for calling va_end.

_vwprintf_r, _vfwprintf_r and _vswprintf_r are reentrant versions of the above.

Returns
The return values are consistent with the corresponding functions.

Portability
POSIX-1.2008 with extensions; C99 (compliant except for POSIX extensions).

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write

See Also
wprintf, fwprintf and swprintf.

Chapter 4: Input and Output (stdio.h) 197

4.73 vfwscanf, vwscanf, vswscanf—scan and format argument

list from wide character input
Synopsis
#include <stdio.h>
#include <stdarg.h>
int vwscanf(const wchar_t *__restrict fmt, va_list list);
int vfwscanf (FILE *__restrict fp,
const wchar_t *__restrict fmt, va_list list);

int vswscanf (const wchar_t *__restrict str,

const wchar_t *__restrict fmt, va_list list);

int _vwscanf (struct _reent *reent, const wchar_t *fmt,
va_list list);

int _vfwscanf (struct _reent *reent, FILE *fp,
const wchar_t *fmt, va_list list);

int _vswscanf(struct _reent *reent, const wchar_t *str,
const wchar_t *fmt, va_list list);

Description

vwscanf, vfwscanf, and vswscanf are (respectively) variants of wscanf, fwscanf, and
swscanf. They differ only in allowing their caller to pass the variable argument list as a
va_list object (initialized by va_start) rather than directly accepting a variable number
of arguments.

Returns

The return values are consistent with the corresponding functions: vwscanf returns the
number of input fields successfully scanned, converted, and stored; the return value does
not include scanned fields which were not stored.

If vwscanf attempts to read at end-of-file, the return value is EQF.

If no fields were stored, the return value is 0.

The routines _vwscanf, _vfwscanf, and _vswscanf are reentrant versions which take an
additional first parameter which points to the reentrancy structure.

Portability
€99, POSIX-1.2008

198 Red Hat newlib C Library, Full

4.74 viprintf, vfiprintf, vsiprintf, vsniprintf, vasiprintf,
vasniprintf—format argument list (integer only)
Synopsis
#include <stdio.h>
#include <stdarg.h>
int viprintf(const char *fmt, va_list list);
int vfiprintf (FILE *fp, const char *fmt, va_list list);
int vsiprintf(char *str, const char *fmt, va_list list);
int vsniprintf(char *str, size_t size, const char *fmt,
va_list 1list);
int vasiprintf(char *xstrp, const char *fmt, va_list list);
char *vasniprintf(char *str, size_t *size, const char *fmt,
va_list list);

int _viprintf_r(struct _reent *reent, const char *fmt,
va_list list);

int _vfiprintf_r(struct _reent *reent, FILE *fp,
const char *fmt, va_list list);

int _vsiprintf_r(struct _reent *reent, char *str,
const char *fmt, va_list list);

int _vsniprintf_r(struct _reent *reent, char *str,
size_t size, const char *xfmt, va_list list);

int _vasiprintf_r(struct _reent *reent, char #**str,
const char *fmt, va_list list);

char *_vasniprintf_r(struct _reent *reent, char *str,
size_t *size, const char *fmt, va_list list);

Description

viprintf, vfiprintf, vasiprintf, vsiprintf, vsniprintf, and vasniprintf are (respec-
tively) variants of iprintf, fiprintf, asiprintf, siprintf, sniprintf, and asniprintf
They differ only in allowing their caller to pass the variable argument list as a va_list object
(initialized by va_start) rather than directly accepting a variable number of arguments.
The caller is responsible for calling va_end.

_viprintf_r, _vfiprintf_r, _vasiprintf_r, _vsiprintf_r, _vsniprintf_r, and
_vasniprintf_r are reentrant versions of the above.

Returns
The return values are consistent with the corresponding functions:

Portability
All of these functions are newlib extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write

Chapter 4: Input and Output (stdio.h) 199

4.75 viscanf, vfiscanf, vsiscanf—format argument list
Synopsis

#include <stdio.h>

#include <stdarg.h>

int viscanf(const char *fmt, va_list list);

int vfiscanf (FILE *fp, const char *fmt, va_list list);
int vsiscanf(const char *str, const char *fmt, va_list list);

int _viscanf_r(struct _reent *reent, const char *fmt,
va_list list);

int _vfiscanf_r(struct _reent *reent, FILE *fp, const char *fmt,
va_list list);

int _vsiscanf_r(struct _reent *reent, const char *str,
const char *fmt, va_list list);

Description

viscanf, vfiscanf, and vsiscanf are (respectively) variants of iscanf, fiscanf, and
siscanf. They differ only in allowing their caller to pass the variable argument list as a
va_list object (initialized by va_start) rather than directly accepting a variable number
of arguments.

Returns

The return values are consistent with the corresponding functions: viscanf returns the
number of input fields successfully scanned, converted, and stored; the return value does
not include scanned fields which were not stored.

If viscanf attempts to read at end-of-file, the return value is EOF.
If no fields were stored, the return value is 0.

The routines _viscanf_r, _vfiscanf_f, and _vsiscanf_r are reentrant versions which
take an additional first parameter which points to the reentrancy structure.

Portability
These are newlib extensions.

Supporting OS subroutines required:

201

5 Strings and Memory (string.h)

This chapter describes string-handling functions and functions for managing areas of mem-
ory. The corresponding declarations are in string.h.

202 Red Hat newlib C Library, Full

5.1 bcmp—compare two memory areas
Synopsis

#include <strings.h>
int bcmp(const void *s1, const void *s2, size_t n);

Description
This function compares not more than n bytes of the object pointed to by s1 with the object
pointed to by s2.

This function is identical to memcmp.

Returns

The function returns an integer greater than, equal to or less than zero according to whether
the object pointed to by sl is greater than, equal to or less than the object pointed to by
s2.

Portability
bcmp requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 203

5.2 bcopy—copy memory regions
Synopsis

#include <strings.h>
void bcopy(const void *in, void *out, size_t n);

Description
This function copies n bytes from the memory region pointed to by in to the memory region
pointed to by out.

This function is implemented in term of memmove.

Portability
becopy requires no supporting OS subroutines.

204 Red Hat newlib C Library, Full

5.3 bzero—initialize memory to zero
Synopsis

#include <strings.h>
void bzero(void *b, size_t length);

Description
bzero initializes length bytes of memory, starting at address b, to zero.

Returns
bzero does not return a result.

Portability
bzero is in the Berkeley Software Distribution. Neither ANSI C nor the System V Interface
Definition (Issue 2) require bzero.

bzero requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 205

5.4 index—search for character in string

Synopsis
#include <strings.h>
char * index(const char *string, int c);

Description
This function finds the first occurence of ¢ (converted to a char) in the string pointed to by
string (including the terminating null character).

This function is identical to strchr.

Returns
Returns a pointer to the located character, or a null pointer if ¢ does not occur in string.

Portability
index requires no supporting OS subroutines.

206 Red Hat newlib C Library, Full

5.5 memccpy—copy memory regions with end-token check

Synopsis
#include <string.h>
void* memccpy(void *restrict out, const void *restrict in,
int endchar, size_t n);

Description

This function copies up to n bytes from the memory region pointed to by in to the memory
region pointed to by out. If a byte matching the endchar is encountered, the byte is copied
and copying stops.

If the regions overlap, the behavior is undefined.

Returns
memccpy returns a pointer to the first byte following the endchar in the out region. If no
byte matching endchar was copied, then NULL is returned.

Portability
memccpy is a GNU extension.

memccpy requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 207

5.6 memchr—find character in memory

Synopsis
#include <string.h>
void *memchr(const void *src, int c, size_t length);

Description

This function searches memory starting at *src for the character c¢. The search only ends
with the first occurrence of ¢, or after length characters; in particular, NUL does not terminate
the search.

Returns
If the character ¢ is found within length characters of *src, a pointer to the character is
returned. If ¢ is not found, then NULL is returned.

Portability
memchr is ANSI C.

memchr requires no supporting OS subroutines.

208 Red Hat newlib C Library, Full

5.7 memcmp—compare two memory areas

Synopsis
#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description
This function compares not more than n characters of the object pointed to by s1 with the
object pointed to by s2.

Returns

The function returns an integer greater than, equal to or less than zero according to whether
the object pointed to by sl is greater than, equal to or less than the object pointed to by
52.

Portability
memcmp is ANSI C.

memcmp requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 209

5.8 memcpy—copy memory regions

Synopsis
#include <string.h>
void* memcpy(void *restrict out, const void *restrict in,
size_t n);

Description
This function copies n bytes from the memory region pointed to by in to the memory region
pointed to by out.

If the regions overlap, the behavior is undefined.

Returns
memcpy returns a pointer to the first byte of the out region.

Portability
memcpy is ANSI C.

memcpy requires no supporting OS subroutines.

210 Red Hat newlib C Library, Full

5.9 memmem—i{find memory segment
Synopsis

#include <string.h>
void *memmem(const void *s1, size_t 11, const void *s2,
size_t 12);

Description

Locates the first occurrence in the memory region pointed to by sl with length 11 of the
sequence of bytes pointed to by s2 of length 12. If you already know the lengths of your
haystack and needle, memmem is much faster than strstr.

Returns
Returns a pointer to the located segment, or a null pointer if s2 is not found. If 12 is 0, s1
is returned.

Portability
memmemn is a newlib extension.

memmem requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 211

5.10 memmove—move possibly overlapping memory

Synopsis
#include <string.h>
void *memmove(void *dst, const void *src, size_t length);

Description

This function moves length characters from the block of memory starting at *src to the
memory starting at *dst. memmove reproduces the characters correctly at *dst even if the
two areas overlap.

Returns
The function returns dst as passed.

Portability
memmove is ANSI C.

memmove requires no supporting OS subroutines.

212 Red Hat newlib C Library, Full

5.11 mempcpy—copy memory regions and return end pointer

Synopsis
#include <string.h>
void* mempcpy(void *out, const void *in, size_t n);

Description
This function copies n bytes from the memory region pointed to by in to the memory region
pointed to by out.

If the regions overlap, the behavior is undefined.

Returns
mempcpy returns a pointer to the byte following the last byte copied to the out region.

Portability
mempcpy is a GNU extension.

mempcpy requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 213

5.12 memrchr—reverse search for character in memory

Synopsis
#include <string.h>
void *memrchr(const void *src, int c, size_t length);

Description

This function searches memory starting at length bytes beyond *src backwards for the
character c. The search only ends with the first occurrence of c¢; in particular, NUL does not
terminate the search.

Returns
If the character ¢ is found within length characters of *src, a pointer to the character is
returned. If ¢ is not found, then NULL is returned.

Portability
memrchr is a GNU extension.

memrchr requires no supporting OS subroutines.

214 Red Hat newlib C Library, Full

5.13 memset—set an area of memory

Synopsis
#include <string.h>
void *memset(void *dst, int c, size_t length);

Description
This function converts the argument ¢ into an unsigned char and fills the first length char-
acters of the array pointed to by dst to the value.

Returns
memset returns the value of dst.

Portability
memset is ANSI C.

memset requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 215

5.14 rawmemchr—find character in memory

Synopsis
#include <string.h>
void *rawmemchr (const void *src, int c);

Description

This function searches memory starting at *src for the character c¢. The search only ends
with the first occurrence of c; in particular, NUL does not terminate the search. No bounds
checking is performed, so this function should only be used when it is certain that the
character ¢ will be found.

Returns
A pointer to the first occurance of character c.

Portability
rawmemchr is a GNU extension.

rawmemchr requires no supporting OS subroutines.

216 Red Hat newlib C Library, Full

5.15 rindex—reverse search for character in string
Synopsis

#include <string.h>
char * rindex(const char *string, int c);

Description
This function finds the last occurence of ¢ (converted to a char) in the string pointed to by
string (including the terminating null character).

This function is identical to strrchr.

Returns
Returns a pointer to the located character, or a null pointer if ¢ does not occur in string.

Portability
rindex requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 217

5.16 stpcpy——copy string returning a pointer to its end

Synopsis
#include <string.h>
char *stpcpy(char *restrict dst, const char *restrict src);

Description
stpcpy copies the string pointed to by src (including the terminating null character) to the
array pointed to by dst.

Returns
This function returns a pointer to the end of the destination string, thus pointing to the
trailing "\0’.

Portability
stpcpy is a GNU extension, candidate for inclusion into POSIX/SUSv4.

stpcpy requires no supporting OS subroutines.

218 Red Hat newlib C Library, Full

5.17 stpncpy—counted copy string returning a pointer to its
end
Synopsis
#include <string.h>

char *stpncpy(char *restrict dst, const char *restrict src,
size_t length);

Description

stpncpy copies not more than length characters from the the string pointed to by src
(including the terminating null character) to the array pointed to by dst. If the string
pointed to by src is shorter than length characters, null characters are appended to the
destination array until a total of length characters have been written.

Returns
This function returns a pointer to the end of the destination string, thus pointing to the
trailing '\(0’, or, if the destination string is not null-terminated, pointing to dst + n.

Portability
stpncpy is a GNU extension, candidate for inclusion into POSIX/SUSv4.

stpncpy requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 219

5.18 strcasecmp——case-insensitive character string compare
Synopsis

#include <strings.h>
int strcasecmp(const char *a, const char *b);

Description
strcasecmp compares the string at a to the string at b in a case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to lowercase), strcasecmp
returns a number greater than zero. If the two strings match, strcasecmp returns zero. If
xa sorts lexicographically before *b, strcasecmp returns a number less than zero.

Portability
strcasecmp is in the Berkeley Software Distribution.

strcasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in this
library.

220 Red Hat newlib C Library, Full

5.19 strcasestr——case-insensitive character string search
Synopsis

#include <string.h>
char *strcasestr(const char *s, const char *find);

Description
strcasestr searchs the string s for the first occurrence of the sequence find. strcasestr
is identical to strstr except the search is case-insensitive.

Returns

A pointer to the first case-insensitive occurrence of the sequence find or NULL if no match
was found.

Portability
strcasestr is in the Berkeley Software Distribution.

strcasestr requires no supporting OS subroutines. It uses tolower() from elsewhere in this
library.

Chapter 5: Strings and Memory (string.h) 221

5.20 strcat——concatenate strings

Synopsis
#include <string.h>
char *strcat(char *restrict dst, const char *restrict src);

Description

strcat appends a copy of the string pointed to by src (including the terminating null
character) to the end of the string pointed to by dst. The initial character of src overwrites
the null character at the end of dst.

Returns
This function returns the initial value of dst

Portability
strcat is ANSI C.

strcat requires no supporting OS subroutines.

222 Red Hat newlib C Library, Full

5.21 strchr—search for character in string
Synopsis

#include <string.h>
char * strchr(const char *string, int c);

Description
This function finds the first occurence of ¢ (converted to a char) in the string pointed to by
string (including the terminating null character).

Returns
Returns a pointer to the located character, or a null pointer if ¢ does not occur in string.

Portability
strchr is ANSI C.

strchr requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 223

5.22 strchrnul—search for character in string

Synopsis
#include <string.h>
char * strchrnul(const char *string, int c);

Description
This function finds the first occurence of ¢ (converted to a char) in the string pointed to by
string (including the terminating null character).

Returns
Returns a pointer to the located character, or a pointer to the concluding null byte if ¢ does
not occur in string.

Portability
strchrnul is a GNU extension.

strchrnul requires no supporting OS subroutines. It uses strchr() and strlen() from else-
where in this library.

224 Red Hat newlib C Library, Full

5.23 strcmp—-character string compare
Synopsis

#include <string.h>
int strcmp(const char *a, const char *b);

Description
strcmp compares the string at a to the string at b.

Returns

If *a sorts lexicographically after *b, strcmp returns a number greater than zero. If the two
strings match, strcmp returns zero. If *a sorts lexicographically before *b, strcmp returns
a number less than zero.

Portability
strcmp is ANSI C.

strcmp requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 225

5.24 strcoll—locale-specific character string compare

Synopsis
#include <string.h>
int strcoll(const char *stra, const char * strb);

Description
strcoll compares the string pointed to by stra to the string pointed to by strb, using an
interpretation appropriate to the current LC_COLLATE state.

(NOT Cygwin:) The current implementation of strcoll simply uses strcmp and does not
support any language-specific sorting.

Returns

If the first string is greater than the second string, strcoll returns a number greater than
zero. If the two strings are equivalent, strcoll returns zero. If the first string is less than
the second string, strcoll returns a number less than zero.

Portability
strcoll is ANSI C.

strcoll requires no supporting OS subroutines.

226 Red Hat newlib C Library, Full

5.25 strcpy—copy string
Synopsis

#include <string.h>
char *strcpy(char *dst, const char *src);

Description
strcpy copies the string pointed to by src (including the terminating null character) to the
array pointed to by dst.

Returns
This function returns the initial value of dst.

Portability
strcpy is ANSI C.

strcpy requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 227

5.26 strcspn—count characters not in string
Synopsis

size_t strcspn(const char *s1, const char *s2);

Description

This function computes the length of the initial part of the string pointed to by sI which
consists entirely of characters NOT from the string pointed to by s2 (excluding the termi-
nating null character).

Returns
strcspn returns the length of the substring found.

Portability
strcspn is ANSI C.

strcspn requires no supporting OS subroutines.

228 Red Hat newlib C Library, Full

5.27 strerror, strerror_l—convert error number to string
Synopsis

#include <string.h>

char *strerror(int errnum);

char *strerror_1l(int errnum, locale_t locale);

char *_strerror_r(struct _reent ptr, int errnum,
int intermal, int *error);

Description
strerror converts the error number errnum into a string. The value of errnum is usually a
copy of errno. If errnum is not a known error number, the result points to an empty string.

strerror_1 is like strerror but creates a string in a format as expected in locale locale.
If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour is undefined.

This implementation of strerror prints out the following strings for each of the values
defined in ‘errno.h’:

0 Success
E2BIG Arg list too long
EACCES Permission denied

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Address not available

EADV Advertise error

EAFNOSUPPORT
Address family not supported by protocol family

EAGAIN No more processes
EALREADY Socket already connected
EBADF Bad file number
EBADMSG Bad message

EBUSY Device or resource busy

ECANCELED
Operation canceled

ECHILD No children
ECOMM Communication error

ECONNABORTED
Software caused connection abort

ECONNREFUSED
Connection refused

Chapter 5: Strings and Memory (string.h)

ECONNRESET
Connection reset by peer

EDEADLK Deadlock

EDESTADDRREQ
Destination address required

EEXIST File exists

EDOM Mathematics argument out of domain of function
EFAULT Bad address

EFBIG File too large

EHOSTDOWN
Host is down

EHOSTUNREACH
Host is unreachable

EIDRM Identifier removed
EILSEQ Illegal byte sequence

EINPROGRESS
Connection already in progress

EINTR Interrupted system call

EINVAL Invalid argument

EIO I/O error

EISCONN Socket is already connected

EISDIR Is a directory

ELIBACC Cannot access a needed shared library
ELIBBAD Accessing a corrupted shared library
ELIBEXEC Cannot exec a shared library directly
ELIBMAX Attempting to link in more shared libraries than system limit
ELIBSCN .1ib section in a.out corrupted
EMFILE File descriptor value too large

EMLINK Too many links

EMSGSIZE Message too long

EMULTIHOP
Multihop attempted

ENAMETOOLONG
File or path name too long

ENETDOWN Network interface is not configured

229

230 Red Hat newlib C Library, Full

ENETRESET
Connection aborted by network

ENETUNREACH
Network is unreachable

ENFILE Too many open files in system
ENOBUFS No buffer space available
ENODATA No data

ENODEV No such device

ENOENT No such file or directory
ENOEXEC Exec format error

ENOLCK No lock

ENOLINK Virtual circuit is gone

ENOMEM Not enough space

ENOMSG No message of desired type
ENONET Machine is not on the network
ENOPKG No package

ENOPROTOOPT
Protocol not available

ENOSPC No space left on device
ENOSR No stream resources
ENOSTR Not a stream

ENOSYS Function not implemented
ENOTBLK Block device required
ENOTCONN Socket is not connected
ENOTDIR Not a directory

ENOTEMPTY
Directory not empty

ENOTRECOVERABLE
State not recoverable

ENOTSOCK Socket operation on non-socket
ENOTSUP Not supported

ENOTTY Not a character device

ENXIO No such device or address

EOPNOTSUPP
Operation not supported on socket

Chapter 5: Strings and Memory (string.h) 231

EOVERFLOW
Value too large for defined data type

EOWNERDEAD
Previous owner died

EPERM Not owner
EPIPE Broken pipe
EPROTO Protocol error

EPROTOTYPE
Protocol wrong type for socket

EPROTONOSUPPORT
Unknown protocol

ERANGE Result too large
EREMOTE Resource is remote
EROFS Read-only file system

ESHUTDOWN
Can’t send after socket shutdown

ESOCKTNOSUPPORT
Socket type not supported

ESPIPE Illegal seek

ESRCH No such process
ESRMNT Srmount error
ESTRPIPE Strings pipe error
ETIME Stream ioctl timeout

ETIMEDOUT
Connection timed out

ETXTBSY Text file busy

EWOULDBLOCK
Operation would block (usually same as EAGAIN)
EXDEV Cross-device link

_strerror_r is a reentrant version of the above.

Returns
This function returns a pointer to a string. Your application must not modify that string.

Portability
ANSI C requires strerror, but does not specify the strings used for each error number.

strerror_1 is POSIX-1.2008.

232 Red Hat newlib C Library, Full

Although this implementation of strerror is reentrant (depending on _user_strerror),
ANSI C declares that subsequent calls to strerror may overwrite the result string; therefore
portable code cannot depend on the reentrancy of this subroutine.

Although this implementation of strerror guarantees a non-null result with a
NUL-terminator, some implementations return NULL on failure. Although POSIX allows
strerror to set errno to EINVAL on failure, this implementation does not do so (unless
you provide _user_strerror).

POSIX recommends that unknown errnum result in a message including that value, however
it is not a requirement and this implementation does not provide that information (unless
you provide _user_strerror).

This implementation of strerror provides for user-defined extensibility. errno.h defines
__ELASTERROR, which can be used as a base for user-defined error values. If the user
supplies a routine named _user_strerror, and errnum passed to strerror does not match
any of the supported values, _user_strerror is called with three arguments. The first is
of type int, and is the errnum value unknown to strerror. The second is of type int,
and matches the internal argument of _strerror_r; this should be zero if called from
strerror and non-zero if called from any other function; _user_strerror can use this
information to satisfy the POSIX rule that no other standardized function can overwrite a
static buffer reused by strerror. The third is of type int *, and matches the error argument
of _strerror_r; if a non-zero value is stored into that location (usually EINVAL), then
strerror will set errno to that value, and the XPG variant of strerror_r will return
that value instead of zero or ERANGE. _user_strerror returns a char * value; returning
NULL implies that the user function did not choose to handle errnum. The default _user_
strerror returns NULL for all input values. Note that _user_sterror must be thread-safe,
and only denote errors via the third argument rather than modifying errno, if strerror
and strerror_r are are to comply with POSIX.

strerror requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 233

5.28 strerror_r——convert error number to string and copy

to buffer
Synopsis
#include <string.h>
#ifdef _GNU_SOURCE
char *strerror_r(int errnum, char *buffer, size_t n);
#else

int strerror_r(int errnum, char *buffer, size_t n);
#endif

Description

strerror_r converts the error number errnum into a string and copies the result into the
supplied buffer for a length up to n, including the NUL terminator. The value of errnum
is usually a copy of errno. If errnum is not a known error number, the result is the empty
string.

See strerror for how strings are mapped to errnum.

Returns

There are two variants: the GNU version always returns a NUL-terminated string, which
is buffer if all went well, but which is another pointer if n was too small (leaving buffer
untouched). If the return is not buffer, your application must not modify that string. The
POSIX version returns 0 on success, EINVAL if errnum was not recognized, and ERANGE
if n was too small. The variant chosen depends on macros that you define before inclusion
of string.h.

Portability
strerror_r with a char * result is a GNU extension. strerror_r with an int result is re-
quired by POSIX 2001. This function is compliant only if _user_strerror is not provided,
or if it is thread-safe and uses separate storage according to whether the second argument
of that function is non-zero. For more details on _user_strerror, see the strerror docu-
mentation.

POSIX states that the contents of buf are unspecified on error, although this implementa-
tion guarantees a NUL-terminated string for all except n of 0.

POSIX recommends that unknown errnum result in a message including that value, how-
ever it is not a requirement and this implementation provides only an empty string (unless
you provide _user_strerror). POSIX also recommends that unknown errnum fail with
EINVAL even when providing such a message, however it is not a requirement and this im-
plementation will return success if _user_strerror provided a non-empty alternate string
without assigning into its third argument.

strerror_r requires no supporting OS subroutines.

234 Red Hat newlib C Library, Full

5.29 strlen—character string length
Synopsis

#include <string.h>
size_t strlen(const char *str);

Description
The strlen function works out the length of the string starting at *str by counting charar-
acters until it reaches a NULL character.

Returns
strlen returns the character count.

Portability
strlen is ANSI C.

strlen requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h)

5.30 strlwr—force string to lowercase

Synopsis
#include <string.h>
char *strlwr(char *a);

Description

strlwr converts each character in the string at a to lowercase.

Returns
strlwr returns its argument, a.

Portability
strlwr is not widely portable.

strlwr requires no supporting OS subroutines.

235

236 Red Hat newlib C Library, Full

5.31 strncasecmp——case-insensitive character string compare
Synopsis

#include <strings.h>
int strncasecmp(const char *a, const char * b, size_t length);

Description
strncasecmp compares up to length characters from the string at a to the string at b in a
case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to lowercase), strncasecmp
returns a number greater than zero. If the two strings are equivalent, strncasecmp returns
zero. If *a sorts lexicographically before *b, strncasecmp returns a number less than zero.

Portability
strncasecmp is in the Berkeley Software Distribution.

strncasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in
this library.

Chapter 5: Strings and Memory (string.h) 237

5.32 strncat—concatenate strings

Synopsis
#include <string.h>
char *strncat(char *restrict dst, const char *restrict src,
size_t length);

Description

strncat appends not more than length characters from the string pointed to by src (in-
cluding the terminating null character) to the end of the string pointed to by dst. The
initial character of src overwrites the null character at the end of dst. A terminating null
character is always appended to the result

Warnings
Note that a null is always appended, so that if the copy is limited by the length argument,
the number of characters appended to dst is n + 1.

Returns
This function returns the initial value of dst

Portability
strncat is ANSI C.

strncat requires no supporting OS subroutines.

238 Red Hat newlib C Library, Full

5.33 strncmp—-character string compare
Synopsis

#include <string.h>
int strncmp(const char *a, const char * b, size_t length);

Description
strncmp compares up to length characters from the string at a to the string at b.

Returns

If *a sorts lexicographically after *b, strncmp returns a number greater than zero. If the
two strings are equivalent, strncmp returns zero. If *a sorts lexicographically before *b,
strncmp returns a number less than zero.

Portability
strncmp is ANSI C.

strncmp requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 239

5.34 strncpy—counted copy string

Synopsis
#include <string.h>
char *strncpy(char *restrict dst, const char *restrict src,
size_t length);

Description

strncpy copies not more than length characters from the the string pointed to by src
(including the terminating null character) to the array pointed to by dst. If the string
pointed to by src is shorter than length characters, null characters are appended to the
destination array until a total of length characters have been written.

Returns
This function returns the initial value of dst.

Portability
strncpy is ANSI C.

strncpy requires no supporting OS subroutines.

240 Red Hat newlib C Library, Full

5.35 strnstr—{find string segment
Synopsis

#include <string.h>
size_t strnstr(const char *s1, const char *s2, size_t n);

Description
Locates the first occurrence in the string pointed to by sl of the sequence of limited to the
n characters in the string pointed to by s2

Returns
Returns a pointer to the located string segment, or a null pointer if the string s2 is not
found. If s2 points to a string with zero length, sI is returned.

Portability
strnstr is a BSD extension.

strnstr requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 241

5.36 strnlen—-character string length

Synopsis
#include <string.h>
size_t strnlen(const char *str, size_t n);

Description

The strnlen function works out the length of the string starting at *str by counting
chararacters until it reaches a NUL character or the maximum: n number of characters
have been inspected.

Returns
strnlen returns the character count or n.

Portability
strnlen is a GNU extension.

strnlen requires no supporting OS subroutines.

242 Red Hat newlib C Library, Full

5.37 strpbrk—{find characters in string
Synopsis

#include <string.h>
char *strpbrk(const char *sl1, const char *s2);

Description
This function locates the first occurence in the string pointed to by sl of any character in
string pointed to by s2 (excluding the terminating null character).

Returns
strpbrk returns a pointer to the character found in sI, or a null pointer if no character
from s2 occurs in s1.

Portability
strpbrk requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 243

5.38 strrchr—reverse search for character in string

Synopsis
#include <string.h>
char * strrchr(const char *string, int c);

Description
This function finds the last occurence of ¢ (converted to a char) in the string pointed to by
string (including the terminating null character).

Returns
Returns a pointer to the located character, or a null pointer if ¢ does not occur in string.

Portability
strrchr is ANSI C.

strrchr requires no supporting OS subroutines.

244 Red Hat newlib C Library, Full

5.39 strsignal—convert signal number to string
Synopsis

#include <string.h>
char *strsignal(int signal);

Description

strsignal converts the signal number signal into a string. If signal is not a known signal
number, the result will be of the form "Unknown signal NN" where NN is the signal is a
decimal number.

Returns
This function returns a pointer to a string. Your application must not modify that string.

Portability
POSIX.1-2008 C requires strsignal, but does not specify the strings used for each signal
number.

strsignal requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 245

5.40 strspn—i{ind initial match

Synopsis
#include <string.h>
size_t strspn(const char *sl1, const char *s2);

Description

This function computes the length of the initial segment of the string pointed to by s1 which
consists entirely of characters from the string pointed to by s2 (excluding the terminating
null character).

Returns
strspn returns the length of the segment found.

Portability
strspn is ANSI C.

strspn requires no supporting OS subroutines.

246 Red Hat newlib C Library, Full

5.41 strstr—find string segment
Synopsis

#include <string.h>
char *strstr(const char *sl1, const char *s2);

Description
Locates the first occurrence in the string pointed to by sl of the sequence of characters in
the string pointed to by s2 (excluding the terminating null character).

Returns
Returns a pointer to the located string segment, or a null pointer if the string s2 is not
found. If s2 points to a string with zero length, s1 is returned.

Portability
strstr is ANSI C.

strstr requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 247

5.42 strtok, strtok_r, strsep—get next token from a string
Synopsis
#include <string.h>
char *strtok(char *restrict source,
const char *restrict delimiters);
char *strtok_r(char *restrict source,
const char *restrict delimiters,
char *xlasts);
char *strsep(char #**source_ptr, const char *delimiters);

Description

The strtok function is used to isolate sequential tokens in a null-terminated string,
xsource. These tokens are delimited in the string by at least one of the characters
in *delimiters. The first time that strtok is called, *source should be specified;
subsequent calls, wishing to obtain further tokens from the same string, should pass a null
pointer instead. The separator string, *delimiters, must be supplied each time and may
change between calls.

The strtok function returns a pointer to the beginning of each subsequent token in the
string, after replacing the separator character itself with a null character. When no more
tokens remain, a null pointer is returned.

The strtok_r function has the same behavior as strtok, except a pointer to placeholder
*lasts must be supplied by the caller.

The strsep function is similar in behavior to strtok, except a pointer to the string pointer
must be supplied source_ptr and the function does not skip leading delimiters. When the
string starts with a delimiter, the delimiter is changed to the null character and the empty
string is returned. Like strtok_r and strtok, the *source_ptr is updated to the next
character following the last delimiter found or NULL if the end of string is reached with no
more delimiters.

Returns
strtok, strtok_r, and strsep all return a pointer to the next token, or NULL if no more
tokens can be found. For strsep, a token may be the empty string.

Notes
strtok is unsafe for multi-threaded applications. strtok_r and strsep are thread-safe and
should be used instead.

Portability
strtok is ANSI C. strtok_r is POSIX. strsep is a BSD extension.

strtok, strtok_r, and strsep require no supporting OS subroutines.

248 Red Hat newlib C Library, Full

5.43 strupr—force string to uppercase
Synopsis

#include <string.h>
char *strupr(char *a);

Description
strupr converts each character in the string at a to uppercase.

Returns
strupr returns its argument, a.

Portability
strupr is not widely portable.

strupr requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 249

5.44 strverscmp—version string compare

Synopsis
#define _GNU_SOURCE
#include <string.h>
int strverscmp(const char *a, const char *b);

Description
strverscmp compares the string at a to the string at b in a version-logical order.

Returns

If *a version-sorts after *b, strverscmp returns a number greater than zero. If the two
strings match, strverscmp returns zero. If *a version-sorts before *b, strverscmp returns
a number less than zero.

Portability
strverscmp is a GNU extension.

strverscmp requires no supporting OS subroutines. It uses isdigit() from elsewhere in this
library.

250 Red Hat newlib C Library, Full

5.45 strxfrm—transform string
Synopsis
#include <string.h>

size_t strxfrm(char *restrict sl1, const char *restrict s2,
size_t n);

Description

This function transforms the string pointed to by s2 and places the resulting string into the
array pointed to by sl. The transformation is such that if the strcmp function is applied
to the two transformed strings, it returns a value greater than, equal to, or less than zero,
correspoinding to the result of a strcoll function applied to the same two original strings.

No more than n characters are placed into the resulting array pointed to by s1, including
the terminating null character. If n is zero, sI may be a null pointer. If copying takes place
between objects that overlap, the behavior is undefined.

(NOT Cygwin:) The current implementation of strxfrm simply copies the input and does
not support any language-specific transformations.

Returns

The strxfrm function returns the length of the transformed string (not including the termi-
nating null character). If the value returned is n or more, the contents of the array pointed
to by sl are indeterminate.

Portability
strxfrm is ANSI C.

strxfrm requires no supporting OS subroutines.

Chapter 5: Strings and Memory (string.h) 251

5.46 swab—swap adjacent bytes

Synopsis
#include <unistd.h>
void swab(const void *in, void *out, ssize_t n);

Description
This function copies n bytes from the memory region pointed to by in to the memory region
pointed to by out, exchanging adjacent even and odd bytes.

Portability
swab requires no supporting OS subroutines.

252 Red Hat newlib C Library, Full

5.47 wcscasecmp—case-insensitive wide character string
compare
Synopsis

#include <wchar.h>
int wcscasecmp(const wchar_t *a, const wchar_t *b);

Description
wcscasecmp compares the wide character string at a to the wide character string at b in a
case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to uppercase), wcscasecmp
returns a number greater than zero. If the two strings match, wcscasecmp returns zero. If
*a sorts lexicographically before *b, wcscasecmp returns a number less than zero.

Portability
POSIX-1.2008

wcscasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in this
library.

Chapter 5: Strings and Memory (string.h) 253

5.48 wcsdup—wide character string duplicate

Synopsis
#include <wchar.h>
wchar_t #*wcsdup(const wchar_t *str);

#include <wchar.h>
wchar_t *_wcsdup_r(struct _reent *ptr, const wchar_t *str);

Description
wesdup allocates a new wide character string using malloc, and copies the content of the
argument str into the newly allocated string, thus making a copy of str.

Returns
wcsdup returns a pointer to the copy of str if enough memory for the copy was available.
Otherwise it returns NULL and errno is set to ENOMEM.

Portability
POSIX-1.2008

254 Red Hat newlib C Library, Full

5.49 wcsncasecmp—case-insensitive wide character string
compare
Synopsis

#include <wchar.h>
int wcsncasecmp(const wchar_t *a, const wchar_t * b, size_t length);

Description
wcsncasecmp compares up to length wide characters from the string at a to the string at b
in a case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to uppercase), wcsncasecmp
returns a number greater than zero. If the two strings are equivalent, wcsncasecmp returns
zero. If *a sorts lexicographically before *b, wesncasecmp returns a number less than zero.

Portability
POSIX-1.2008

wcsncasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in
this library.

255

6 Wide Character Strings (wchar.h)

This chapter describes wide-character string-handling functions and managing areas of
memory containing wide characters. The corresponding declarations are in wchar.h.

256 Red Hat newlib C Library, Full

6.1 wmemchr—find a wide character in memory

Synopsis
#include <wchar.h>
wchar_t *wmemchr (const wchar_t *s, wchar_t c, size_t n);

Description

The wmemchr function locates the first occurrence of ¢ in the initial n wide characters of the
object pointed to be s. This function is not affected by locale and all wchar_t values are
treated identically. The null wide character and wchar_t values not corresponding to valid
characters are not treated specially.

If n is zero, s must be a valid pointer and the function behaves as if no valid occurrence of
¢ is found.

Returns
The wmemchr function returns a pointer to the located wide character, or a null pointer if
the wide character does not occur in the object.

Portability
wmemchr is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 257

6.2 wmemcmp—compare wide characters in memory
Synopsis

#include <wchar.h>
int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description

The wmemcmp function compares the first n wide characters of the object pointed to by sl
to the first n wide characters of the object pointed to by s2. This function is not affected by
locale and all wchar_t values are treated identically. The null wide character and wchar_t
values not corresponding to valid characters are not treated specially.

If n is zero, s1 and s2 must be a valid pointers and the function behaves as if the two objects
compare equal.

Returns

The wmemcmp function returns an integer greater than, equal to, or less than zero, accordingly
as the object pointed to by sl is greater than, equal to, or less than the object pointed to
by s2.

Portability
wmemcmp is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

258 Red Hat newlib C Library, Full

6.3 wmemcpy—copy wide characters in memory
Synopsis
#include <wchar.h>

wchar_t *wmemcpy(wchar_t *__restrict d,
const wchar_t *__restrict s, size_t n);

Description

The wmemcpy function copies n wide characters from the object pointed to by s to the
object pointed to be d. This function is not affected by locale and all wchar_t values are
treated identically. The null wide character and wchar_t values not corresponding to valid
characters are not treated specially.

If n is zero, d and s must be a valid pointers, and the function copies zero wide characters.

Returns
The wmemcpy function returns the value of d.

Portability
wmemcpy is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 259

6.4 wmemmove—copy wide characters in memory with
overlapping areas
Synopsis

#include <wchar.h>
wchar_t *wmemmove (wchar_t *d, const wchar_t *s, size_t n);

Description

The wmemmove function copies n wide characters from the object pointed to by s to the
object pointed to by d. Copying takes place as if the n wide characters from the object
pointed to by s are first copied into a temporary array of n wide characters that does not
overlap the objects pointed to by d or s, and then the n wide characters from the temporary
array are copied into the object pointed to by d.

This function is not affected by locale and all wchar_t values are treated identically. The
null wide character and wchar_t values not corresponding to valid characters are not treated
specially.

If n is zero, d and s must be a valid pointers, and the function copies zero wide characters.

Returns
The wmemmove function returns the value of d.

Portability
wmemmove is ISO/TEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

260 Red Hat newlib C Library, Full

6.5 wmempcpy——copy wide characters in memory and return
end pointer

Synopsis
#define _GNU_SOURCE
#include <wchar.h>
wchar_t *wmempcpy(wchar_t *d,
const wchar_t *s, size_t n);

Description

The wmemcpy function copies n wide characters from the object pointed to by s to the
object pointed to be d. This function is not affected by locale and all wchar_t values are
treated identically. The null wide character and wchar_t values not corresponding to valid
characters are not treated specially.

If n is zero, d and s must be a valid pointers, and the function copies zero wide characters.

Returns
wmempcpy returns a pointer to the wide character following the last wide character copied
to the out region.

Portability
wmempcpy is a GNU extension.

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 261

6.6 wmemset—set wide characters in memory
Synopsis

#include <wchar.h>
wchar_t *wmemset(wchar_t *s, wchar_t ¢, size_t n);

Description

The wmemset function copies the value of ¢ into each of the first n wide characters of the
object pointed to by s. This function is not affected by locale and all wchar_t values are
treated identically. The null wide character and wchar_t values not corresponding to valid
characters are not treated specially.

If n is zero, s must be a valid pointer and the function copies zero wide characters.

Returns
The wmemset function returns the value of s.

Portability
wmenmset is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

262 Red Hat newlib C Library, Full

6.7 wcscat—concatenate two wide-character strings
Synopsis

#include <wchar.h>

wchar_t *wcscat(wchar_t *__restrict si,

const wchar_t *__restrict s2);

Description

The wcscat function appends a copy of the wide-character string pointed to by s2 (including
the terminating null wide-character code) to the end of the wide-character string pointed to
by sl. The initial wide-character code of s2 overwrites the null wide-character code at the
end of sl1. If copying takes place between objects that overlap, the behaviour is undefined.

Returns
The wcscat function returns s1; no return value is reserved to indicate an error.

Portability
wescat is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 263

6.8 wcschr—wide-character string scanning operation
Synopsis

#include <wchar.h>
wchar_t *wcschr(const wchar_t *s, wchar_t c¢);

Description

The wcschr function locates the first occurrence of ¢ in the wide-character string pointed
to by s. The value of ¢ must be a character representable as a type wchar_t and must
be a wide-character code corresponding to a valid character in the current locale. The
terminating null wide-character string.

Returns
Upon completion, wcschr returns a pointer to the wide-character code, or a null pointer if
the wide-character code is not found.

Portability
weschr is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

264 Red Hat newlib C Library, Full

6.9 wcscmp—compare two wide-character strings

Synopsis
#include <wchar.h>
int wcscmp(const wchar_t *s1, *s2);

Description
The wescmp function compares the wide-character string pointed to by sI to the wide-
character string pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared.

Returns

Upon completion, wecscmp returns an integer greater than, equal to or less than 0, if the wide-
character string pointed to by sl is greater than, equal to or less than the wide-character
string pointed to by s2 respectively.

Portability
wcscmp is ISO/TEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 265

6.10 wcscoll—locale-specific wide-character string compare

Synopsis
#include <wchar.h>
int wcscoll(const wchar_t *stra, const wchar_t * strb);

Description
wcscoll compares the wide-character string pointed to by stra to the wide-character string
pointed to by strb, using an interpretation appropriate to the current LC_COLLATE state.

(NOT Cygwin:) The current implementation of wescoll simply uses wescmp and does not
support any language-specific sorting.

Returns

If the first string is greater than the second string, wcscoll returns a number greater than
zero. If the two strings are equivalent, wcscoll returns zero. If the first string is less than
the second string, wescoll returns a number less than zero.

Portability
wcscoll is ISO/IEC 9899/AMD1:1995 (ISO C).

266 Red Hat newlib C Library, Full

6.11 wcscpy——copy a wide-character string
Synopsis
#include <wchar.h>

wchar_t *wcscpy(wchar_t *__restrict si,
const wchar_t *__restrict s2);

Description

The wescpy function copies the wide-character string pointed to by s2 (including the ter-
minating null wide-character code) into the array pointed to by sl. If copying takes place
between objects that overlap, the behaviour is undefined.

Returns
The wescpy function returns s1; no return value is reserved to indicate an error.

Portability
wcscpy is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 267

6.12 wcpcpy—copy a wide-character string returning a
pointer to its end

Synopsis
#include <wchar.h>
wchar_t *wcpcpy(wchar_t *s1, const wchar_t *s2);

Description

The wepepy function copies the wide-character string pointed to by s2 (including the ter-
minating null wide-character code) into the array pointed to by sI. If copying takes place
between objects that overlap, the behaviour is undefined.

Returns
This function returns a pointer to the end of the destination string, thus pointing to the
trailing "\0’.

Portability
wepepy is a GNU extension.

No supporting OS subroutines are required.

268 Red Hat newlib C Library, Full

6.13 wcscspn—get length of a complementary wide substring

Synopsis
#include <wchar.h>
size_t wcscspn(const wchar_t *s, wchar_t *set);

Description

The wescspn function computes the length of the maximum initial segment of the wide-
character string pointed to by s which consists entirely of wide-character codes not from
the wide-character string pointed to by set.

Returns
The wcscspn function returns the length of the initial substring of s1; no return value is
reserved to indicate an error.

Portability
wcscspn is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 269

6.14 wcsftime——convert date and time to a formatted wide-

character string
Synopsis
#include <time.h>
#include <wchar.h>

size_t wcsftime(wchar_t *s, size_t maxsize,
const wchar_t *format, const struct tm *timp);

Description
wcsftime is equivalent to strftime, except that:

e The argument s points to the initial element of an array of wide characters into which
the generated output is to be placed.

e The argument maxsize indicates the limiting number of wide characters.

e The argument format is a wide-character string and the conversion specifiers are re-
placed by corresponding sequences of wide characters.

e The return value indicates the number of wide characters.

(The difference in all of the above being wide characters versus regular characters.) See
strftime for the details of the format specifiers.

Returns

When the formatted time takes up no more than maxsize wide characters, the result is the
length of the formatted wide string. Otherwise, if the formatting operation was abandoned
due to lack of room, the result is 0, and the wide-character string starting at s corresponds
to just those parts of *format that could be completely filled in within the maxsize limit.

Portability

C99 and POSIX require wesftime, but do not specify the contents of *s when the formatted
string would require more than maxsize characters. Unrecognized specifiers and fields of
timp that are out of range cause undefined results. Since some formats expand to 0 bytes,
it is wise to set *s to a nonzero value beforehand to distinguish between failure and an
empty string. This implementation does not support s being NULL, nor overlapping s and
format.

wcsftime requires no supporting OS subroutines.

See Also

strftime

270 Red Hat newlib C Library, Full

6.15 wcslcat—concatenate wide-character strings to
specified length
Synopsis

#include <wchar.h>
size_t wcslcat(wchar_t *dst, const wchar_t *src, size_t siz);

Description

The weslcat function appends wide characters from src to end of the dst wide-character
string so that the resultant wide-character string is not more than siz wide characters
including the terminating null wide-character code. A terminating null wide character is
always added unless siz is 0. Thus, the maximum number of wide characters that can
be appended from src is siz - 1. If copying takes place between objects that overlap, the
behaviour is undefined.

Returns

Wide-character string length of initial dst plus the wide-character string length of src (does
not include terminating null wide-characters). If the return value is greater than or equal
to siz, then truncation occurred and not all wide characters from src were appended.

Portability
No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 271

6.16 wcslcpy—copy a wide-character string to specified
length
Synopsis

#include <wchar.h>
size_t wcslcpy(wchar_t *dst, const wchar_t *src, size_t siz);

Description
weslepy copies wide characters from src to dst such that up to siz - 1 characters are copied.
A terminating null is appended to the result, unless siz is zero.

Returns

wcslcepy returns the number of wide characters in src, not including the terminating null
wide character. If the return value is greater than or equal to siz, then not all wide characters
were copied from src and truncation occurred.

Portability
No supporting OS subroutines are required.

272 Red Hat newlib C Library, Full

6.17 wcslen—get wide-character string length

Synopsis
#include <wchar.h>
size_t wcslen(const wchar_t *s);

Description
The weslen function computes the number of wide-character codes in the wide-character
string to which s points, not including the terminating null wide-character code.

Returns
The wcslen function returns the length of s; no return value is reserved to indicate an error.

Portability
wcslen is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 273

6.18 wcsncat——concatenate part of two wide-character
strings
Synopsis
#include <wchar.h>
wchar_t *wcsncat(wchar_t *__restrict si,

const wchar_t *__restrict s2, size_t n);

Description

The wesncat function appends not more than n wide-character codes (a null wide-character
code and wide-character codes that follow it are not appended) from the array pointed to
by s2 to the end of the wide-character string pointed to by sl. The initial wide-character
code of 52 overwrites the null wide-character code at the end of s1. A terminating null wide-
character code is always appended to the result. If copying takes place between objects that
overlap, the behaviour is undefined.

Returns
The wcsncat function returns s1; no return value is reserved to indicate an error.

Portability
wesncat is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

274 Red Hat newlib C Library, Full

6.19 wcsncmp——compare part of two wide-character strings
Synopsis

#include <wchar.h>
int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description

The wesnemp function compares not more than n wide-character codes (wide-character codes
that follow a null wide-character code are not compared) from the array pointed to by sl
to the array pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of wide-character codes that differ in the objects being compared.

Returns

Upon successful completion, wesnemp returns an integer greater than, equal to or less than
0, if the possibly null-terminated array pointed to by sl is greater than, equal to or less
than the possibly null-terminated array pointed to by s2 respectively.

Portability
wesncemp is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 275

6.20 wcsncpy—copy part of a wide-character string

Synopsis
#include <wchar.h>

wchar_t *wcsncpy(wchar_t *__restrict sli,
const wchar_t *__restrict s2, size_t n);

Description

The wesnepy function copies not more than n wide-character codes (wide-character codes
that follow a null wide-character code are not copied) from the array pointed to by s2 to the
array pointed to by sl. If copying takes place between objects that overlap, the behaviour
is undefined. Note that if sI contains more than n wide characters before its terminating
null, the result is not null-terminated.

If the array pointed to by s2 is a wide-character string that is shorter than n wide-character
codes, null wide-character codes are appended to the copy in the array pointed to by sI,
until n wide-character codes in all are written.

Returns
The wesncepy function returns s1; no return value is reserved to indicate an error.

Portability
ISO/IEC 9899; POSIX.1.

No supporting OS subroutines are required.

276 Red Hat newlib C Library, Full

6.21 wcpncpy—copy part of a wide-character string returning
a pointer to its end

Synopsis
#include <wchar.h>
wchar_t *wcpncpy(wchar_t *__restrict si,
const wchar_t *__restrict s2, size_t n);

Description
The wepnepy function copies not more than n wide-character codes (wide-character codes
that follow a null wide-character code are not copied) from the array pointed to by s2 to the
array pointed to by sl. If copying takes place between objects that overlap, the behaviour
is undefined.

If the array pointed to by s2 is a wide-character string that is shorter than n wide-character
codes, null wide-character codes are appended to the copy in the array pointed to by sI,
until n wide-character codes in all are written.

Returns
The wepnepy function returns s1; no return value is reserved to indicate an error.

Portability
wepnepy is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 277

6.22 wcsnlen—get fixed-size wide-character string length

Synopsis
#include <wchar.h>
size_t wcsnlen(const wchar_t *s, size_t maxlen);

Description

The wecsnlen function computes the number of wide-character codes in the wide-character
string pointed to by s not including the terminating 1.’\0’ wide character but at most maxlen
wide characters.

Returns
wcsnlen returns the length of s if it is less then maxlen, or maxlen if there is no L’\0” wide
character in first maxlen characters.

Portability
wesnlen is a GNU extension.

wcsnlen requires no supporting OS subroutines.

278 Red Hat newlib C Library, Full

6.23 wcspbrk——-scan wide-character string for a wide-
character code
Synopsis

#include <wchar.h>
wchar_t *wcspbrk(const wchar_t *s, const wchar_t *set);

Description
The wespbrk function locates the first occurrence in the wide-character string pointed to
by s of any wide-character code from the wide-character string pointed to by set.

Returns
Upon successful completion, wespbrk returns a pointer to the wide-character code or a null
pointer if no wide-character code from set occurs in s.

Portability
wespbrk is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 279

6.24 wcsrchr—wide-character string scanning operation

Synopsis
#include <wchar.h>
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

Description

The wesrchr function locates the last occurrence of ¢ in the wide-character string pointed
to by s. The value of ¢ must be a character representable as a type wchar_t and must
be a wide-character code corresponding to a valid character in the current locale. The
terminating null wide-character code is considered to be part of the wide-character string.

Returns
Upon successful completion, wesrchr returns a pointer to the wide-character code or a null
pointer if ¢ does not occur in the wide-character string.

Portability
wesrchr is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

280 Red Hat newlib C Library, Full

6.25 wcsspn—get length of a wide substring
Synopsis

#include <wchar.h>
size_t wcsspn(const wchar_t *s, const wchar_t *set);

Description

The wcsspn function computes the length of the maximum initial segment of the wide-
character string pointed to by s which consists entirely of wide-character codes from the
wide-character string pointed to by set.

Returns
The wesspn() function returns the length s1; no return value is reserved to indicate an error.

Portability
wesspn is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

Chapter 6: Wide Character Strings (wchar.h) 281

6.26 wcsstr—find a wide-character substring

Synopsis
#include <wchar.h>
wchar_t *wcsstr(const wchar_t *__restrict big,
const wchar_t *__restrict little);

Description

The wecsstr function locates the first occurrence in the wide-character string pointed to by
big of the sequence of wide characters (excluding the terminating null wide character) in
the wide-character string pointed to by little.

Returns
On successful completion, wcsstr returns a pointer to the located wide-character string, or
a null pointer if the wide-character string is not found.

If little points to a wide-character string with zero length, the function returns big.

Portability
wesstr is ISO/IEC 9899/AMD1:1995 (ISO C).

282 Red Hat newlib C Library, Full

6.27 wcstok—get next token from a string
Synopsis
#include <wchar.h>
wchar_t *wcstok(wchar_t *__restrict source,
const wchar_t *__restrict delimiters,
wchar_t **__restrict lasts);

Description
The westok function is the wide-character equivalent of the strtok_r function (which in
turn is the same as the strtok function with an added argument to make it thread-safe).

The westok function is used to isolate (one at a time) sequential tokens in a null-terminated
wide-character string, *source. A token is defined as a substring not containing any wide-
characters from *delimiters.

The first time that wcstok is called, *source should be specified with the wide-character
string to be searched, and *lasts—but not lasts, which must be non-NULL-may be ran-
dom; subsequent calls, wishing to obtain further tokens from the same string, should pass
a null pointer for *source instead but must supply *lasts unchanged from the last call.
The separator wide-character string, *delimiters, must be supplied each time and may
change between calls. A pointer to placeholder *1asts must be supplied by the caller, and
is set each time as needed to save the state by wcstok. Every call to wcstok with *source
== NULL must pass the value of *lasts as last set by wcstok.

The wcstok function returns a pointer to the beginning of each subsequent token in the
string, after replacing the separator wide-character itself with a null wide-character. When
no more tokens remain, a null pointer is returned.

Returns
wcstok returns a pointer to the first wide character of a token, or NULL if there is no token.

Notes
wcstok is thread-safe (unlike strtok, but like strtok_r). wcstok writes into the string
being searched.

Portability
westok is C99 and POSIX.1-2001.

wcstok requires no supporting OS subroutines.

Chapter 6: Wide Character Strings (wchar.h) 283

6.28 wcswidth—number of column positions of a wide-
character string

Synopsis
#include <wchar.h>
int wcswidth(const wchar_t *pwcs, size_t n);

Description

The wcswidth function shall determine the number of column positions required for n
wide-character codes (or fewer than n wide-character codes if a null wide-character code is
encountered before n wide-character codes are exhausted) in the string pointed to by pwcs.

Returns

The weswidth function either shall return 0 (if pwes points to a null wide-character code), or
return the number of column positions to be occupied by the wide-character string pointed
to by pwes, or return -1 (if any of the first n wide-character codes in the wide-character
string pointed to by pwcs is not a printable wide-character code).

Portability
wcswidth has been introduced in the Single UNIX Specification Volume 2. wcswidth has
been marked as an extension in the Single UNIX Specification Volume 3.

284 Red Hat newlib C Library, Full

6.29 wcsxfrm—Ilocale-specific wide-character string
transformation

Synopsis
#include <wchar.h>
int wesxfrm(wchar_t *__restrict stra,

const wchar_t *__restrict strb, size_t n);

Description

wcsxfrm transforms the wide-character string pointed to by strb to the wide-character string
pointed to by stra, Comparing two transformed wide strings with wescmp should return the
same result as comparing the original strings with wcscoll. No more than n wide characters
are transformed, including the trailing null character.

If n is 0, stra may be a NULL pointer.

(NOT Cygwin:) The current implementation of wesxfrm simply uses weslcpy and does not
support any language-specific transformations.

Returns
wesxfrm returns the length of the transformed wide character string. if the return value is
greater or equal to n, the content of stra is undefined.

Portability
wesxfrm is ISO/IEC 9899/AMD1:1995 (ISO C).

Chapter 6: Wide Character Strings (wchar.h) 285

6.30 wcwidth—number of column positions of a wide-
character code
Synopsis

#include <wchar.h>
int wcwidth(const wint_t wc);

Description

The wcwidth function shall determine the number of column positions required for the wide
character we. The application shall ensure that the value of wc is a character representable
as a wint_t (combining Unicode surrogate pairs into single 21-bit Unicode code points), and
is a wide-character code corresponding to a valid character in the current locale.

Returns

The wewidth function shall either return 0 (if we is a null wide-character code), or return
the number of column positions to be occupied by the wide-character code we, or return -1
(if we does not correspond to a printable wide-character code).

Portability
wcwidth has been introduced in the Single UNIX Specification Volume 2. wcwidth has been
marked as an extension in the Single UNIX Specification Volume 3.

287

7 Signal Handling (signal.h)

A signal is an event that interrupts the normal flow of control in your program. Your
operating environment normally defines the full set of signals available (see sys/signal.h),
as well as the default means of dealing with them—typically, either printing an error message
and aborting your program, or ignoring the signal.

All systems support at least the following signals:

SIGABRT Abnormal termination of a program; raised by the abort function.

SIGFPE A domain error in arithmetic, such as overflow, or division by zero.
SIGILL Attempt to execute as a function data that is not executable.
SIGINT Interrupt; an interactive attention signal.

SIGSEGV An attempt to access a memory location that is not available.
SIGTERM A request that your program end execution.

Two functions are available for dealing with asynchronous signals—one to allow your pro-
gram to send signals to itself (this is called raising a signal), and one to specify subroutines
(called handlers to handle particular signals that you anticipate may occur—whether raised
by your own program or the operating environment.

To support these functions, signal.h defines three macros:

SIG_DFL Used with the signal function in place of a pointer to a handler subroutine, to
select the operating environment’s default handling of a signal.

SIG_IGN Used with the signal function in place of a pointer to a handler, to ignore a
particular signal.

SIG_ERR Returned by the signal function in place of a pointer to a handler, to indicate
that your request to set up a handler could not be honored for some reason.

signal.h also defines an integral type, sig_atomic_t. This type is not used in any function
declarations; it exists only to allow your signal handlers to declare a static storage location
where they may store a signal value. (Static storage is not otherwise reliable from signal
handlers.)

288 Red Hat newlib C Library, Full

7.1 psignal—print a signal message on standard error
Synopsis

#include <stdio.h>
void psignal(int signal, const char *prefix);

Description

Use psignal to print (on standard error) a signal message corresponding to the value of
the signal number signal. Unless you use NULL as the value of the argument prefix, the
signal message will begin with the string at prefix, followed by a colon and a space (:).
The remainder of the signal message is one of the strings described for strsignal.

Returns
psignal returns no result.

Portability
POSIX.1-2008 requires psignal, but the strings issued vary from one implementation to
another.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 7: Signal Handling (signal.h) 289

7.2 raise—send a signal
Synopsis

#include <signal.h>
int raise(int sig);

int _raise_r(void *reent, int sig);

Description

Send the signal sig (one of the macros from ‘sys/signal.h’). This interrupts your program’s
normal flow of execution, and allows a signal handler (if you've defined one, using signal)
to take control.

The alternate function _raise_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

The result is 0 if sig was successfully raised, 1 otherwise. However, the return value (since
it depends on the normal flow of execution) may not be visible, unless the signal handler
for sig terminates with a return or unless SIG_IGN is in effect for this signal.

Portability
ANSI C requires raise, but allows the full set of signal numbers to vary from one imple-
mentation to another.

Required OS subroutines: getpid, kill.

290 Red Hat newlib C Library, Full

7.3 signal—specify handler subroutine for a signal
Synopsis

#include <signal.h>
void (*signal(int sig, void(*func) (int))) (int);

void (*_signal_r(void *reent, int sig, void(*func)(int))) (int);

Description
signal provides a simple signal-handling implementation for embedded targets.

signal allows you to request changed treatment for a particular signal sig. You can use one
of the predefined macros SIG_DFL (select system default handling) or SIG_IGN (ignore this
signal) as the value of func; otherwise, func is a function pointer that identifies a subroutine
in your program as the handler for this signal.

Some of the execution environment for signal handlers is unpredictable; notably, the only
library function required to work correctly from within a signal handler is signal itself,
and only when used to redefine the handler for the current signal value.

Static storage is likewise unreliable for signal handlers, with one exception: if you declare
a static storage location as ‘volatile sig_atomic_t’, then you may use that location in a
signal handler to store signal values.

If your signal handler terminates using return (or implicit return), your program’s execution
continues at the point where it was when the signal was raised (whether by your program
itself, or by an external event). Signal handlers can also use functions such as exit and
abort to avoid returning.

The alternate function _signal_r is the reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
If your request for a signal handler cannot be honored, the result is SIG_ERR; a specific error
number is also recorded in errno.

Otherwise, the result is the previous handler (a function pointer or one of the predefined
macros).

Portability

ANSI C requires signal.

No supporting OS subroutines are required to link with signal, but it will not have any
useful effects, except for software generated signals, without an operating system that can
actually raise exceptions.

291

8 Time Functions (time.h)

This chapter groups functions used either for reporting on time (elapsed, current, or compute
time) or to perform calculations based on time.

The header file time.h defines three types. clock_t and time_t are both used for represen-
tations of time particularly suitable for arithmetic. (In this implementation, quantities of
type clock_t have the highest resolution possible on your machine, and quantities of type
time_t resolve to seconds.) size_t is also defined if necessary for quantities representing

sizes.

time.h also defines the structure tm for the traditional representation of Gregorian calendar
time as a series of numbers, with the following fields:

tm_sec
tm_min
tm_hour
tm_mday
tm_mon
tm_year
tm_wday
tm_yday

tm_isdst

Seconds, between 0 and 60 inclusive (60 allows for leap seconds).

Minutes, between 0 and 59 inclusive.

Hours, between 0 and 23 inclusive.

Day of the month, between 1 and 31 inclusive.

Month, between 0 (January) and 11 (December).

Year (since 1900), can be negative for earlier years.

Day of week, between 0 (Sunday) and 6 (Saturday).

Number of days elapsed since last January 1, between 0 and 365 inclusive.

Daylight Savings Time flag: positive means DST in effect, zero means DST not
in effect, negative means no information about DST is available. Although for
mktime(), negative means that it should decide if DST is in effect or not.

292 Red Hat newlib C Library, Full

8.1 asctime—format time as string
Synopsis
#include <time.h>

char *asctime(const struct tm *clock);
char *_asctime_r(const struct tm *clock, char *buf);

Description
Format the time value at clock into a string of the form
Wed Jun 15 11:38:07 1988\n\0

The string is generated in a static buffer; each call to asctime overwrites the string generated
by previous calls.

Returns
A pointer to the string containing a formatted timestamp.

Portability
ANSI C requires asctime.

asctime requires no supporting OS subroutines.

Chapter 8: Time Functions (time.h) 293

8.2 clock—cumulative processor time

Synopsis
#include <time.h>
clock_t clock(void);

Description

Calculates the best available approximation of the cumulative amount of time used by your
program since it started. To convert the result into seconds, divide by the macro CLOCKS_
PER_SEC.

Returns
The amount of processor time used so far by your program, in units defined by the machine-
dependent macro CLOCKS_PER_SEC. If no measurement is available, the result is (clock_t)-1.

Portability
ANSI C requires clock and CLOCKS_PER_SEC.

Supporting OS subroutine required: times.

294 Red Hat newlib C Library, Full

8.3 ctime—convert time to local and format as string
Synopsis
#include <time.h>

char *ctime(const time_t *clock);
char *ctime_r(const time_t *clock, char *buf);

Description
Convert the time value at clock to local time (like localtime) and format it into a string
of the form

Wed Jun 15 11:38:07 1988\n\0

(like asctime).

Returns
A pointer to the string containing a formatted timestamp.

Portability
ANSI C requires ctime.

ctime requires no supporting OS subroutines.

Chapter 8: Time Functions (time.h) 295

8.4 difftime—subtract two times
Synopsis

#include <time.h>
double difftime(time_t timl, time_t tim2);

Description
Subtracts the two times in the arguments: ‘tim1 - tim2’.

Returns
The difference (in seconds) between tim2 and timl, as a double.

Portability
ANSI C requires difftime, and defines its result to be in seconds in all implementations.

difftime requires no supporting OS subroutines.

296 Red Hat newlib C Library, Full

8.5 gmtime—convert time to UTC traditional form

Synopsis
#include <time.h>
struct tm *gmtime(const time_t *clock);
struct tm *gmtime_r(const time_t *clock, struct tm *res);

Description

gmtime takes the time at clock representing the number of elapsed seconds since 00:00:00
on January 1, 1970, Universal Coordinated Time (UTC, also known in some countries as
GMT, Greenwich Mean time) and converts it to a struct tm representation.

gmtime constructs the traditional time representation in static storage; each call to gmtime
or localtime will overwrite the information generated by previous calls to either function.

Returns
A pointer to the traditional time representation (struct tm).

Portability
ANSI C requires gmtime.

gmtime requires no supporting OS subroutines.

Chapter 8: Time Functions (time.h) 297

8.6 localtime—convert time to local representation

Synopsis
#include <time.h>

struct tm *localtime(time_t *clock);
struct tm *localtime_r(time_t *clock, struct tm *res);

Description
localtime converts the time at clock into local time, then converts its representation from
the arithmetic representation to the traditional representation defined by struct tm.

localtime constructs the traditional time representation in static storage; each call to
gmtime or localtime will overwrite the information generated by previous calls to either
function.

mktime is the inverse of localtime.

Returns
A pointer to the traditional time representation (struct tm).

Portability
ANSI C requires localtime.

localtime requires no supporting OS subroutines.

298 Red Hat newlib C Library, Full

8.7 mktime—convert time to arithmetic representation

Synopsis
#include <time.h>
time_t mktime(struct tm *timp);

Description
mktime assumes the time at timp is a local time, and converts its representation from the
traditional representation defined by struct tm into a representation suitable for arithmetic.

localtime is the inverse of mktime.

Returns
If the contents of the structure at timp do not form a valid calendar time representation,
the result is -1. Otherwise, the result is the time, converted to a time_t value.

Portability
ANSI C requires mktime.

mktime requires no supporting OS subroutines.

Chapter 8: Time Functions (time.h) 299

8.8 strftime, strftime_l—convert date and time to a

formatted string
Synopsis

#include <time.h>

size_t strftime(char *restrict s, size_t maxsize,
const char *restrict format,
const struct tm *restrict timp);

size_t strftime_l(char *restrict s, size_t maxsize,
const char *restrict format,

const struct tm *restrict timp,
locale_t locale);

Description
strftime converts a struct tm representation of the time (at timp) into a null-terminated
string, starting at s and occupying no more than maxsize characters.

strftime_1 is like strftime but creates a string in a format as expected in locale locale.
If locale is LC_GLOBAL_LOCALE or not a valid locale object, the behaviour is undefined.

You control the format of the output using the string at format. *format can contain
two kinds of specifications: text to be copied literally into the formatted string, and time
conversion specifications. Time conversion specifications are two- and three-character se-
quences beginning with ‘%’ (use ‘%%’ to include a percent sign in the output). Each defined
conversion specification selects only the specified field(s) of calendar time data from *timp,
and converts it to a string in one of the following ways:

ha The abbreviated weekday name according to the current locale. [tm_wday]

%A The full weekday name according to the current locale. In the default "C"
locale, one of ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’,
‘Saturday’. [tm_wday]

PAS) The abbreviated month name according to the current locale. [tm_mon)]

%B The full month name according to the current locale. In the default "C" locale,
one of ‘January’, ‘February’, ‘March’, ‘April’, ‘May’, ‘June’, ‘July’, ‘August’,
‘September’, ‘October’, ‘November’, ‘December’. [tm_mon]

he The preferred date and time representation for the current locale. [tm_sec,
tm_min, tm_hour, tm_mday, tm_mon, tm_year, tm_wday]

C The century, that is, the year divided by 100 then truncated. For 4-digit years,
the result is zero-padded and exactly two characters; but for other years, there
may a negative sign or more digits. In this way, ‘%Chy’ is equivalent to ‘%Y’.

[tm_year]
hd The day of the month, formatted with two digits (from ‘01’ to ‘31’). [tm_mday]
%D A string representing the date, in the form ‘"%m/%d/%y"’. [tm_mday, tm_mon,
tm_year]
he The day of the month, formatted with leading space if single digit (from ‘1’ to

‘317). [tm_mday]

300

%Ex

%F

hg

hG

%h
%H

I

5]

JA'S

hl

%m
yAUl
%n

%0x
p
%P

%r

%R

%s

Red Hat newlib C Library, Full

In some locales, the E modifier selects alternative representations of certain
modifiers x. In newlib, it is ignored, and treated as %x.

A string representing the ISO 8601:2000 date format, in the form ‘"% Y-%m-%d"’.
[tm_mday, tm_mon, tm_year]

The last two digits of the week-based year, see specifier %G (from ‘00’ to ‘99’).
[tm_year, tm_wday, tm_yday]

The week-based year. In the ISO 8601:2000 calendar, week 1 of the year includes
January 4th, and begin on Mondays. Therefore, if January 1st, 2nd, or 3rd falls
on a Sunday, that day and earlier belong to the last week of the previous year;
and if December 29th, 30th, or 31st falls on Monday, that day and later belong
to week 1 of the next year. For consistency with %Y, it always has at least four
characters. Example: "%G" for Saturday 2nd January 1999 gives "1998", and
for Tuesday 30th December 1997 gives "1998". [tm_year, tm_wday, tm_yday]

Synonym for "%b". [tm_mon]

The hour (on a 24-hour clock), formatted with two digits (from ‘00’ to ‘23’).
[tm_hour]

The hour (on a 12-hour clock), formatted with two digits (from ‘01’ to ‘12’).
[tm_hour]

The count of days in the year, formatted with three digits (from ‘001’ to ‘366’).
[tm_yday]

The hour (on a 24-hour clock), formatted with leading space if single digit (from
‘0’ to ‘23’). Non-POSIX extension (c.p. %I). [tm_hour]
(

The hour (on a 12-hour clock), formatted with leading space if single digit (from
‘1’ to ‘12’). Non-POSIX extension (c.p. %H). [tm_hour]

The month number, formatted with two digits (from ‘01’ to ‘12’). [tm_mon]
The minute, formatted with two digits (from ‘00’ to ‘69’). [tm_min]
A newline character (‘\n’).

In some locales, the O modifier selects alternative digit characters for certain
modifiers x. In newlib, it is ignored, and treated as %x.

Either ‘AM’ or ‘PM’ as appropriate, or the corresponding strings for the current
locale. [tm_hour]

Same as '%p’, but in lowercase. This is a GNU extension. [tm_hour]

Replaced by the time in a.m. and p.m. notation. In the "C" locale this
is equivalent to "%L:%M:%S %p". In locales which don’t define a.m./p.m.
notations, the result is an empty string. [tm_sec, tm_min, tm_hour]

The 24-hour time, to the minute. Equivalent to "%H:%M". [tm_min, tm_hour]

The time elapsed, in seconds, since the start of the Unix epoch at 1970-01-01
00:00:00 UTC.

Chapter 8: Time Functions (time.h) 301

hS

%t

%T

%u

yAY

Al

%w

Al

hx

%X

hy

WY

%z

WZ

Toth

Returns

The second, formatted with two digits (from ‘00’ to ‘60’). The value 60 accounts
for the occasional leap second. [tm_sec]

A tab character (‘\t’).

The 24-hour time, to the second. Equivalent to "%H:%M:%S". [tm_sec,
tm_min, tm_hour]

The weekday as a number, 1-based from Monday (from ‘1’ to ‘7’). [tm_wday]

The week number, where weeks start on Sunday, week 1 contains the first
Sunday in a year, and earlier days are in week 0. Formatted with two digits
(from ‘00’ to ‘63’). See also %W. [tm_wday, tm_yday]

The week number, where weeks start on Monday, week 1 contains January 4th,
and earlier days are in the previous year. Formatted with two digits (from ‘01’
to ‘63’). See also %G. [tm_year, tm_wday, tm_yday]

The weekday as a number, 0-based from Sunday (from ‘0’ to ‘6’). [tm_wday]

The week number, where weeks start on Monday, week 1 contains the first
Monday in a year, and earlier days are in week 0. Formatted with two digits
(from ‘00’ to ‘63’). [tm_wday, tm_yday]

Replaced by the preferred date representation in the current locale. In the "C"
locale this is equivalent to "%m/%d/%y". [tm_-mon, tm_mday, tm_year]

Replaced by the preferred time representation in the current locale. In the "C"
locale this is equivalent to "%H:%M:%S". [tm_sec, tm_min, tm_hour]

The last two digits of the year (from ‘00’ to ‘99’). [tm_year| (Implementation
interpretation: always positive, even for negative years.)

The full year, equivalent to %Cl%y. It will always have at least four characters,
but may have more. The year is accurate even when tm_year added to the
offset of 1900 overflows an int. [tm_year]

The offset from UTC. The format consists of a sign (negative is west of
Greewich), two characters for hour, then two characters for minutes (-hhmm
or +hhmm). If tm_isdst is negative, the offset is unknown and no output is
generated; if it is zero, the offset is the standard offset for the current time
zone; and if it is positive, the offset is the daylight savings offset for the current
timezone. The offset is determined from the TZ environment variable, as if by
calling tzset(). [tm_isdst]

The time zone name. If tm_isdst is negative, no output is generated. Otherwise,
the time zone name is based on the TZ environment variable, as if by calling
tzset(). [tm_isdst]

A single character, ‘% .

When the formatted time takes up no more than maxsize characters, the result is the length
of the formatted string. Otherwise, if the formatting operation was abandoned due to lack

302 Red Hat newlib C Library, Full

of room, the result is 0, and the string starting at s corresponds to just those parts of
xformat that could be completely filled in within the maxsize limit.

Portability

ANSI C requires strftime, but does not specify the contents of *s when the formatted
string would require more than maxsize characters. Unrecognized specifiers and fields of
timp that are out of range cause undefined results. Since some formats expand to 0 bytes,
it is wise to set *s to a nonzero value beforehand to distinguish between failure and an
empty string. This implementation does not support s being NULL, nor overlapping s and
format.

strftime_1 is POSIX-1.2008.

strftime and strftime_1 require no supporting OS subroutines.

Bugs
(NOT Cygwin:) strftime ignores the LC_TIME category of the current locale, hard-coding
the "C" locale settings.

Chapter 8: Time Functions (time.h) 303

8.9 time—get current calendar time (as single number)

Synopsis
#include <time.h>
time_t time(time_t *t);

Description
time looks up the best available representation of the current time and returns it, encoded
as a time_t. It stores the same value at t unless the argument is NULL.

Returns
A -1 result means the current time is not available; otherwise the result represents the
current time.

Portability
ANSI C requires time.

Supporting OS subroutine required: Some implementations require gettimeofday.

304 Red Hat newlib C Library, Full

8.10 __tz_lock

tz_unlock—Ilock time zone global variables

[——
Synopsis
#include "local.h"

void __tz_lock (void);
void __tz_unlock (void);

Description

The tzset facility functions call these functions when they need to ensure the values of
global variables. The version of these routines supplied in the library use the lock API
defined in sys/lock.h. If multiple threads of execution can call the time functions and give
up scheduling in the middle, then you you need to define your own versions of these functions
in order to safely lock the time zone variables during a call. If you do not, the results of
localtime, mktime, ctime, and strftime are undefined.

The lock __tz_lock may not be called recursively; that is, a call __tz_lock will always
lock all subsequent __tz_lock calls until the corresponding __tz_unlock call on the same
thread is made.

Chapter 8: Time Functions (time.h) 305

8.11 tzset—set timezone characteristics from TZ
environment variable
Synopsis
#include <time.h>

void tzset(void);
void _tzset_r (struct _reent *reent_ptr);

Description

tzset examines the TZ environment variable and sets up the three external variables: _
timezone, _daylight, and tzname. The value of _timezone shall be the offset from the
current time zone to GMT. The value of _daylight shall be 0 if there is no daylight savings
time for the current time zone, otherwise it will be non-zero. The tzname array has two
entries: the first is the name of the standard time zone, the second is the name of the
daylight-savings time zone.

The TZ environment variable is expected to be in the following POSIX format:
stdoffset1[dst[offset2][,start[/timel],end[/time2]]]

where: std is the name of the standard time-zone (minimum 3 chars) offsetl is the value to
add to local time to arrive at Universal time it has the form: hh[:mm[:ss]] dst is the name of
the alternate (daylight-savings) time-zone (min 3 chars) offset2 is the value to add to local
time to arrive at Universal time it has the same format as the std offset start is the day
that the alternate time-zone starts timel is the optional time that the alternate time-zone
starts (this is in local time and defaults to 02:00:00 if not specified) end is the day that the
alternate time-zone ends time2 is the time that the alternate time-zone ends (it is in local
time and defaults to 02:00:00 if not specified)

Note that there is no white-space padding between fields. Also note that if TZ is null, the
default is Universal GMT which has no daylight-savings time. If TZ is empty, the default
EST5EDT is used.

The function _tzset_r is identical to tzset only it is reentrant and is used for applications
that use multiple threads.

Returns
There is no return value.

Portability
tzset is part of the POSIX standard.

Supporting OS subroutine required: None

307

9 Locale (locale.h)

A locale is the name for a collection of parameters (affecting collating sequences and format-
ting conventions) that may be different depending on location or culture. The "C" locale is
the only one defined in the ANSI C standard.

This is a minimal implementation, supporting only the required "C" value for locale; strings
representing other locales are not honored. ("" is also accepted; it represents the default
locale for an implementation, here equivalent to "C").

locale.h defines the structure lconv to collect the information on a locale, with the fol-
lowing fields:

char *decimal_point
The decimal point character used to format “ordinary” numbers (all numbers
except those referring to amounts of money). "." in the C locale.

)

char *thousands_sep
The character (if any) used to separate groups of digits, when formatting ordi-
nary numbers. "" in the C locale.

char *grouping
Specifications for how many digits to group (if any grouping is done at all)
when formatting ordinary numbers. The numeric value of each character in
the string represents the number of digits for the next group, and a value of
0 (that is, the string’s trailing NULL) means to continue grouping digits using
the last value specified. Use CHAR_MAX to indicate that no further grouping is
desired. "" in the C locale.

char *int_curr_symbol
The international currency symbol (first three characters), if any, and the char-
acter used to separate it from numbers. "" in the C locale.

char *currency_symbol
The local currency symbol, if any. "" in the C locale.

char *mon_decimal_point
The symbol used to delimit fractions in amounts of money. "" in the C locale.

char *mon_thousands_sep
Similar to thousands_sep, but used for amounts of money. "" in the C locale.

char *mon_grouping
Similar to grouping, but used for amounts of money. "" in the C locale.

char *positive_sign
A string to flag positive amounts of money when formatting. "" in the C locale.

char *negative_sign
A string to flag negative amounts of money when formatting. "" in the C locale.

char int_frac_digits
The number of digits to display when formatting amounts of money to inter-
national conventions. CHAR_MAX (the largest number representable as a char)
in the C locale.

308 Red Hat newlib C Library, Full

char frac_digits
The number of digits to display when formatting amounts of money to local
conventions. CHAR_MAX in the C locale.

char p_cs_precedes
1 indicates the local currency symbol is used before a positive or zero formatted
amount of money; 0 indicates the currency symbol is placed after the formatted
number. CHAR_MAX in the C locale.

char p_sep_by_space
1 indicates the local currency symbol must be separated from positive or zero
numbers by a space; 0 indicates that it is immediately adjacent to numbers.
CHAR_MAX in the C locale.

char n_cs_precedes
1 indicates the local currency symbol is used before a negative formatted amount
of money; 0 indicates the currency symbol is placed after the formatted number.
CHAR_MAX in the C locale.

char n_sep_by_space
1 indicates the local currency symbol must be separated from negative numbers
by a space; 0 indicates that it is immediately adjacent to numbers. CHAR_MAX
in the C locale.

char p_sign_posn
Controls the position of the positive sign for numbers representing money. 0
means parentheses surround the number; 1 means the sign is placed before both
the number and the currency symbol; 2 means the sign is placed after both the
number and the currency symbol; 3 means the sign is placed just before the
currency symbol; and 4 means the sign is placed just after the currency symbol.
CHAR_MAX in the C locale.

char n_sign_posn
Controls the position of the negative sign for numbers representing money, using
the same rules as p_sign_posn. CHAR_MAX in the C locale.

Chapter 9: Locale (locale.h) 309

9.1 setlocale, localeconv—select or query locale
Synopsis
#include <locale.h>

char *setlocale(int category, const char *locale);
lconv *localeconv(void);

char *_setlocale_r(void *reent,
int category, const char *locale);
lconv *_localeconv_r(void *reent);

Description

setlocale is the facility defined by ANSI C to condition the execution environment for
international collating and formatting information; localeconv reports on the settings of
the current locale.

This is a minimal implementation, supporting only the required "POSIX" and "C" values for
locale; strings representing other locales are not honored unless _MB_CAPABLE is defined.

If _MB_CAPABLE is defined, POSIX locale strings are allowed, following the form
language[-TERRITORY][.charset][@modifier]

"language" is a two character string per ISO 639, or, if not available for a given language,
a three character string per ISO 639-3. "TERRITORY" is a country code per ISO 3166. For
"charset" and "modifier" see below.

Additionally to the POSIX specifier, the following extension is supported for backward
compatibility with older implementations using newlib: "C-charset". Instead of "C-", you
can also specify "C.". Both variations allow to specify language neutral locales while using
other charsets than ASCII, for instance "C.UTF-8", which keeps all settings as in the C
locale, but uses the UTF-8 charset.

The following charsets are recognized: "UTF-8", "JIS", "EUCJP", "SJIS", "KOI8-R",
"KOI8-U", "GEORGIAN-PS", "PT154", "TIS-620", "IS0-8859-x" with 1 <= x <= 16, or
"CPxxx" with xxx in [437, 720, 737, 775, 850, 852, 855, 857, 858, 862, 866, 874, 932, 1125,
1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258).

Charsets are case insensitive. For instance, "EUCJP" and "eucJP" are equivalent. Charset
names with dashes can also be written without dashes, as in "UTF8", "iso88591" or
"koi8r". "EUCJP" and "EUCKR" are also recognized with dash, "EUC-JP" and "EUC-KR".

Full support for all of the above charsets requires that newlib has been build with multibyte
support and support for all ISO and Windows Codepage. Otherwise all singlebyte charsets
are simply mapped to ASCII. Right now, only newlib for Cygwin is built with full charset
support by default. Under Cygwin, this implementation additionally supports the charsets
"GBK", "GB2312", "eucCN", "eucKR", and "Big5". Cygwin does not support "JIS".

Cygwin additionally supports locales from the file /usr/share/locale/locale.alias.

("" is also accepted; if given, the settings are read from the corresponding LC_* environment
variables and $LANG according to POSIX rules.)

This implementation also supports the modifiers "cjknarrow" and "cjkwide",
which affect how the functions wcwidth and wcswidth handle charac-
ters from the "CJK Ambiguous Width" category of characters described at

310 Red Hat newlib C Library, Full

http://www.unicode.org/reports/tr11l/# Ambiguous. These characters have a width of 1
for singlebyte charsets and a width of 2 for multibyte charsets other than UTF-8. For
UTF-8, their width depends on the language specifier: it is 2 for "zh" (Chinese), "ja"
(Japanese), and "ko" (Korean), and 1 for everything else. Specifying "cjknarrow" or
"cjkwide" forces a width of 1 or 2, respectively, independent of charset and language.

If you use NULL as the locale argument, setlocale returns a pointer to the string repre-
senting the current locale. The acceptable values for category are defined in ‘locale.h’ as
macros beginning with "LC_".

localeconv returns a pointer to a structure (also defined in ‘locale.h’) describing the
locale-specific conventions currently in effect.

_localeconv_r and _setlocale_r are reentrant versions of localeconv and setlocale
respectively. The extra argument reent is a pointer to a reentrancy structure.

Returns

A successful call to setlocale returns a pointer to a string associated with the specified
category for the new locale. The string returned by setlocale is such that a subsequent
call using that string will restore that category (or all categories in case of LC_ALL), to
that state. The application shall not modify the string returned which may be overwritten
by a subsequent call to setlocale. On error, setlocale returns NULL.

localeconv returns a pointer to a structure of type lconv, which describes the formatting
and collating conventions in effect (in this implementation, always those of the C locale).

Portability
ANSI C requires setlocale, but the only locale required across all implementations is the
C locale.

Notes
There is no ISO-8859-12 codepage. It’s also refused by this implementation.

No supporting OS subroutines are required.

311

10 Reentrancy

Reentrancy is a characteristic of library functions which allows multiple processes to use
the same address space with assurance that the values stored in those spaces will remain
constant between calls. The Red Hat newlib implementation of the library functions ensures
that whenever possible, these library functions are reentrant. However, there are some
functions that can not be trivially made reentrant. Hooks have been provided to allow you
to use these functions in a fully reentrant fashion.

These hooks use the structure _reent defined in reent.h. A variable defined as ‘struct
_reent’ is called a reentrancy structure. All functions which must manipulate global in-
formation are available in two versions. The first version has the usual name, and uses a
single global instance of the reentrancy structure. The second has a different name, nor-
mally formed by prepending ‘_’ and appending ‘_r’, and takes a pointer to the particular
reentrancy structure to use.

For example, the function fopen takes two arguments, file and mode, and uses the global
reentrancy structure. The function _fopen_r takes the arguments, struct_reent, which is a
pointer to an instance of the reentrancy structure, file and mode.

There are two versions of ‘struct _reent’, a normal one and one for small memory
systems, controlled by the _REENT_SMALL definition from the (automatically included)
<sys/config.h>.

Each function which uses the global reentrancy structure uses the global variable _impure_
ptr, which points to a reentrancy structure.

This means that you have two ways to achieve reentrancy. Both require that each thread
of execution control initialize a unique global variable of type ‘struct _reent’:

1. Use the reentrant versions of the library functions, after initializing a global reentrancy
structure for each process. Use the pointer to this structure as the extra argument for
all library functions.

2. Ensure that each thread of execution control has a pointer to its own unique reentrancy
structure in the global variable _impure_ptr, and call the standard library subroutines.

The following functions are provided in both reentrant and non-reentrant versions.

Equivalent for errno variable:
_errno_r

Locale functions:
_localeconv_r _setlocale_r

Equivalents for stdio variables:
_stdin_r _stdout_r _stderr_r

312 Red Hat newlib C Library, Full

Stdio functions:

_fdopen_r _perror_r _tempnam_r
_fopen_r _putchar_r _tmpnam_r
_getchar_r _puts_r _tmpfile_r
_gets_r _remove_r _viprintf_r
_iprintf_r _rename_r _vsnprintf_r
_mkstemp_r _snprintf_r _vsprintf_r
_mktemp_t _sprintf_r

Signal functions:
_init_signal_r _signal_r
_kill r __sigtramp_r
_raise_r

Stdlib functions:

_calloc_r _mblen_r _setenv_r
_dtoa_r _mbstowcs_r _srand_r
_free_r _mbtowc_r _strtod_r
_getenv_r _memalign_r _strtol_r
_mallinfo_r _mstats_r _strtoul_r
_malloc_r _putenv_r _system_r
_malloc_r _rand_r _wcstombs_r
_malloc_stats_r _realloc_r _wctomb_r

String functions:
_strdup_r _strtok_r

System functions:

_close_r _link_r _unlink_r
_execve_r _lseek_r _wait_r
_fentl r _open_r _write_r
_fork_r _read_r

_fstat_r _sbrk_r

_gettimeofday_r _stat_r

_getpid_r _times_r

Time function:
_asctime_r

313

11 Miscellaneous Macros and Functions

This chapter describes miscellaneous routines not covered elsewhere.

314 Red Hat newlib C Library, Full

11.1 ffs—find first bit set in a word
Synopsis

#include <strings.h>
int ffs(int word) ;

Description
ffs returns the first bit set in a word.

Returns
ffs returns 0 if ¢ is 0, 1 if ¢ is odd, 2 if ¢ is a multiple of 2, etc.

Portability
ffs is not ANSI C.

No supporting OS subroutines are required.

Chapter 11: Miscellaneous Macros and Functions

315

11.2 __retarget_lock_init, __retarget_lock_init_recursive,

__retarget_lock_close,

acquire_recursive,

__retarget_lock_close_
recursive, __retarget_lock_acquire, __retarget_lock_
__retarget_lock_try_acquire, _

retarget_lock_try_acquire_recursive, __retarget_lock_

__retarget_lock_release_recursive—Ilocking

_lock___sinit_recursive_mutex;

__lock___sfp_recursive_mutex;

_lock___atexit_recursive_mutex;
_lock___at_quick_exit_mutex;
_lock___malloc_recursive_mutex;

__lock___env_recursive_mutex;

_lock___tz_mutex;
_lock___dd_hash_mutex;
_lock___arc4random_mutex;

__retarget_lock_init (_LOCK_T * lock_ptr);

__retarget_lock_init_recursive (_LOCK_T * lock_ptr);
__retarget_lock_close (_LOCK_T lock);
__retarget_lock_close_recursive (_LOCK_T lock);
__retarget_lock_acquire (_LOCK_T lock);

release,
routines
Synopsis
#include <lock.h>
struct __lock
struct __lock
struct __lock
struct __lock
struct __lock
struct __lock
struct __lock _
struct __lock _
struct __lock
void
void
void
void
void
void

__retarget_lock_acquire_recursive (_LOCK_T lock);
int __retarget_lock_try_acquire (_LOCK_T lock);
int __retarget_lock_try_acquire_recursive (_LOCK_T lock);

void __retarget_lock_release (_LOCK_T lock) ;

void __retarget_lock_release_recursive (_LOCK_T Iock);

Description

Newlib was configured to allow the target platform to provide the locking routines and
static locks at link time. As such, a dummy default implementation of these routines and
static locks is provided for single-threaded application to link successfully out of the box on
bare-metal systems.

For multi-threaded applications the target platform is required to provide an implementa-
tion for all these routines and static locks. If some routines or static locks are missing, the
link will fail with doubly defined symbols.

Portability

These locking routines and static lock are newlib-specific. Supporting OS subroutines are
required for linking multi-threaded applications.

316 Red Hat newlib C Library, Full

11.3 unctrl—get printable representation of a character
Synopsis
#include <unctrl.h>

char *unctrl(int c);
int unctrllen(int c);

Description
unctrl is a macro which returns the printable representation of ¢ as a string. unctrllen
is a macro which returns the length of the printable representation of c.

Returns
unctrl returns a string of the printable representation of c.

unctrllen returns the length of the string which is the printable representation of c.

Portability
unctrl and unctrllen are not ANSI C.

No supporting OS subroutines are required.

12 Overflow Protection

12.1 Stack Smashing Protection

Stack Smashing Protection is a compiler feature which emits extra code to check for stack
smashing attacks. It depends on a canary, which is initialized with the process, and func-
tions for process termination when an overflow is detected. These are private entry points
intended solely for use by the compiler, and are used when any of the —~fstack-protector,
-fstack-protector-all, -fstack-protector-explicit, or -fstack-protector-strong
compiler flags are enabled.

12.2 Object Size Checking

Object Size Checking is a feature which wraps certain functions with checks to prevent
buffer overflows. These are enabled when compiling with optimization (-01 and higher)

and _FORTIFY_SOURCE defined to 1, or for stricter checks, to 2.

317

The following functions use object size checking to detect buffer overflows when enabled:

String functions:
bcopy
bzero

explicit_bzero

memcpy

memmove

mempcpy
memset

stpcpy

Wide Character String functions:

fgetws

fgetws_unlocked

mbsnrtowcs
mbsrtowcs
wCcpepy
wCpncpy

Stdio functions:
fgets

fgets_unlocked

fread

Stdlib functions:
mbstowcs

System functions:
getcwd
pread

wcrtomb
wcscat
WwCSCpy
wcsncat
wcsnepy
wcsnrtombs

fread_unlocked
gets
snprintf

wcstombs

read
readlink

strcpy
strcat
strncat
strncpy

wcsrtombs
wmemcpy
wmemmove
wmempcpy
wmemset

sprintf
vsnprintf
vsprintf

wctomb

ttyname_r

319

13 System Calls

The C subroutine library depends on a handful of subroutine calls for operating system
services. If you use the C library on a system that complies with the POSIX.1 standard
(also known as IEEE 1003.1), most of these subroutines are supplied with your operating
system.

If some of these subroutines are not provided with your system—in the extreme case, if
you are developing software for a “bare board” system, without an OS—you will at least
need to provide do-nothing stubs (or subroutines with minimal functionality) to allow your
programs to link with the subroutines in libc.a.

13.1 Definitions for OS interface

This is the complete set of system definitions (primarily subroutines) required; the examples
shown implement the minimal functionality required to allow 1ibc to link, and fail gracefully
where OS services are not available.

Graceful failure is permitted by returning an error code. A minor complication arises
here: the C library must be compatible with development environments that supply fully
functional versions of these subroutines. Such environments usually return error codes in a
global errno. However, the Red Hat newlib C library provides a macro definition for errno
in the header file errno.h, as part of its support for reentrant routines (see Chapter 10
[Reentrancy], page 311).

The bridge between these two interpretations of errno is straightforward: the C library
routines with OS interface calls capture the errno values returned globally, and record
them in the appropriate field of the reentrancy structure (so that you can query them using
the errno macro from errno.h).

This mechanism becomes visible when you write stub routines for OS interfaces. You must
include errno.h, then disable the macro, like this:

#include <errno.h>
#undef errno
extern int errno;

The examples in this chapter include this treatment of errno.

_exit Exit a program without cleaning up files. If your system doesn’t provide this,
it is best to avoid linking with subroutines that require it (exit, system).

close Close a file. Minimal implementation:

int close(int file) {
return -1;

}

environ A pointer to a list of environment variables and their values. For a minimal
environment, this empty list is adequate:

char *__env[1] {013
char **environ = __env;

320

execve

fork

fstat

getpid

isatty

kill

Red Hat newlib C Library, Full

Transfer control to a new process. Minimal implementation (for a system with-
out processes):

#include <errno.h>

#undef errno

extern int errno;

int execve(char #*name, char **argv, char **env) {
errno = ENOMEM;
return -1;

}

Create a new process. Minimal implementation (for a system without pro-
cesses):

#include <errno.h>
#undef errmno
extern int errno;
int fork(void) {
errno = EAGAIN;
return -1;

3

Status of an open file. For consistency with other minimal implementations
in these examples, all files are regarded as character special devices. The
sys/stat.h header file required is distributed in the include subdirectory for
this C library.

#include <sys/stat.h>

int fstat(int file, struct stat *st) {
st->st_mode = S_IFCHR;
return O;

¥

Process-1D; this is sometimes used to generate strings unlikely to conflict with
other processes. Minimal implementation, for a system without processes:
int getpid(void) {
return 1;

¥

Query whether output stream is a terminal. For consistency with the other
minimal implementations, which only support output to stdout, this minimal
implementation is suggested:

int isatty(int file) {
return 1;

¥

Send a signal. Minimal implementation:

#include <errno.h>

#undef errno

extern int errno;

int kill(int pid, int sig) {

Chapter 13: System Calls 321

link

1lseek

open

read

sbrk

errno = EINVAL;
return -1;

¥

Establish a new name for an existing file. Minimal implementation:

#include <errno.h>

#undef errmno

extern int errno;

int link(char *old, char *new) {
errno = EMLINK;
return -1;

¥

Set position in a file. Minimal implementation:

int 1seek(int file, int ptr, int dir) {
return O;

}

Open a file. Minimal implementation:

int open(const char *name, int flags, int mode) {
return -1;

¥

Read from a file. Minimal implementation:

int read(int file, char *ptr, int len) {
return O;

}

Increase program data space. As malloc and related functions depend on this,
it is useful to have a working implementation. The following suffices for a
standalone system; it exploits the symbol _end automatically defined by the
GNU linker.

caddr_t sbrk(int incr) {
extern char _end; /* Defined by the linker */
static char *heap_end;
char *prev_heap_end;

if (heap_end == 0) {
heap_end = &_end;

}

prev_heap_end = heap_end;

if (heap_end + incr > stack_ptr) {
write (1, "Heap and stack collision\n", 25);
abort ();

}

heap_end += incr;
return (caddr_t) prev_heap_end;

322

stat

times

unlink

wait

write

Red Hat newlib C Library, Full

Status of a file (by name). Minimal implementation:

int stat(char *file, struct stat *st) {
st->st_mode = S_IFCHR;
return O;

¥

Timing information for current process. Minimal implementation:

int times(struct tms *buf) {
return -1;

}

Remove a file’s directory entry. Minimal implementation:

#include <errno.h>
#undef errno
extern int errno;
int unlink(char *name) {
errno = ENOENT;
return -1;

}

Wait for a child process. Minimal implementation:

#include <errno.h>

#undef errmno

extern int errno;

int wait(int *status) {
errno = ECHILD;
return -1;

¥

Write to a file. 1ibc subroutines will use this system routine for output to all
files, including stdout—so if you need to generate any output, for example to
a serial port for debugging, you should make your minimal write capable of
doing this. The following minimal implementation is an incomplete example;
it relies on a outbyte subroutine (not shown; typically, you must write this in
assembler from examples provided by your hardware manufacturer) to actually
perform the output.

int write(int file, char #*ptr, int len) {
int todo;

for (todo = 0; todo < len; todo++) {
outbyte (kptr++);
}

return len;

}

Chapter 13: System Calls 323

13.2 Reentrant covers for OS subroutines

Since the system subroutines are used by other library routines that require reentrancy,
libc.a provides cover routines (for example, the reentrant version of fork is _fork_r).
These cover routines are consistent with the other reentrant subroutines in this library,
and achieve reentrancy by using a reserved global data block (see Chapter 10 [Reentrancy],
page 311).

324 Red Hat newlib C Library, Full

13.2.1 _close_r—Reentrant version of close
Synopsis

#include <reent.h>

int _close_r(struct _reent *ptr, int fd);

Description
This is a reentrant version of close. It takes a pointer to the global data block, which holds
errno.

Chapter 13: System Calls 325

13.2.2 _execve_r—Reentrant version of execve
Synopsis
#include <reent.h>

int _execve_r(struct _reent *ptr, const char *name,
char *const argv[], char *const env[]);

Description
This is a reentrant version of execve. It takes a pointer to the global data block, which
holds errno.

326 Red Hat newlib C Library, Full

13.2.3 _fork_r—Reentrant version of fork
Synopsis

#include <reent.h>

int _fork_r(struct _reent *ptr);

Description
This is a reentrant version of fork. It takes a pointer to the global data block, which holds
errno.

Chapter 13: System Calls 327

13.2.4 _wait_r—Reentrant version of wait
Synopsis

#include <reent.h>
int _wait_r(struct _reent *ptr, int *status);

Description
This is a reentrant version of wait. It takes a pointer to the global data block, which holds
errno.

328 Red Hat newlib C Library, Full

13.2.5 _fstat_r—Reentrant version of fstat
Synopsis
#include <reent.h>

int _fstat_r(struct _reent *ptr,
int fd, struct stat *pstat);

Description
This is a reentrant version of £stat. It takes a pointer to the global data block, which holds
errno.

Chapter 13: System Calls 329

13.2.6 _link_r—Reentrant version of link
Synopsis
#include <reent.h>

int _link_r(struct _reent *ptr,
const char *old, const char *new);

Description
This is a reentrant version of link. It takes a pointer to the global data block, which holds
errno.

330 Red Hat newlib C Library, Full

13.2.7 _1seek_r—Reentrant version of lseek
Synopsis
#include <reent.h>

off_t _lseek_r(struct _reent *ptr,
int fd, off_t pos, int whence);

Description
This is a reentrant version of 1seek. It takes a pointer to the global data block, which holds
errno.

Chapter 13: System Calls 331

13.2.8 _open_r—Reentrant version of open
Synopsis
#include <reent.h>

int _open_r(struct _reent *ptr,
const char *file, int flags, int mode);

Description
This is a reentrant version of open. It takes a pointer to the global data block, which holds
errno.

332 Red Hat newlib C Library, Full

13.2.9 _read_r—Reentrant version of read
Synopsis
#include <reent.h>

_ssize_t _read_r(struct _reent *ptr,
int fd, void *buf, size_t cnt);

Description
This is a reentrant version of read. It takes a pointer to the global data block, which holds
errno.

Chapter 13: System Calls 333

13.2.10 _sbrk_r—Reentrant version of sbrk
Synopsis

#include <reent.h>
void *_sbrk_r(struct _reent *ptr, ptrdiff_t incr);

Description
This is a reentrant version of sbrk. It takes a pointer to the global data block, which holds
errno.

334 Red Hat newlib C Library, Full

13.2.11 _kill_r—Reentrant version of kill
Synopsis

#include <reent.h>

int _kill_r(struct _reent *ptr, int pid, int sig);

Description
This is a reentrant version of kill. It takes a pointer to the global data block, which holds
errno.

Chapter 13: System Calls 335

13.2.12 _getpid_r—Reentrant version of getpid
Synopsis

#include <reent.h>

int _getpid_r(struct _reent *ptr);

Description
This is a reentrant version of getpid. It takes a pointer to the global data block, which
holds errno.

We never need errno, of course, but for consistency we still must have the reentrant pointer
argument.

336 Red Hat newlib C Library, Full

13.2.13 _stat_r—Reentrant version of stat
Synopsis
#include <reent.h>

int _stat_r(struct _reent *ptr,
const char *file, struct stat *pstat);

Description
This is a reentrant version of stat. It takes a pointer to the global data block, which holds
errno.

Chapter 13: System Calls 337

13.2.14 _times_r—Reentrant version of times
Synopsis
#include <reent.h>

#include <sys/times.h>
clock_t _times_r(struct _reent *ptr, struct tms *ptms);

Description
This is a reentrant version of times. It takes a pointer to the global data block, which holds
errno.

338 Red Hat newlib C Library, Full

13.2.15 _unlink_r—Reentrant version of unlink
Synopsis

#include <reent.h>
int _unlink r(struct _reent *ptr, const char *file);

Description
This is a reentrant version of unlink. It takes a pointer to the global data block, which
holds errno.

Chapter 13: System Calls 339

13.2.16 _write_r—Reentrant version of write
Synopsis
#include <reent.h>

_ssize_t _write_r(struct _reent *ptr,
int fd, const void *buf, size_t cnt);

Description
This is a reentrant version of write. It takes a pointer to the global data block, which holds
errno.

341

14 Variable Argument Lists

The printf family of functions is defined to accept a variable number of arguments, rather
than a fixed argument list. You can define your own functions with a variable argument
list, by using macro definitions from either stdarg.h (for compatibility with ANSI C) or
from varargs.h (for compatibility with a popular convention prior to ANSI C).

14.1 ANSI-standard macros, stdarg.h

In ANSI C, a function has a variable number of arguments when its parameter list ends
in an ellipsis (...). The parameter list must also include at least one explicitly named
argument; that argument is used to initialize the variable list data structure.

ANSI C defines three macros (va_start, va_arg, and va_end) to operate on variable argu-

ment lists. stdarg.h also defines a special type to represent variable argument lists: this
type is called va_list.

342 Red Hat newlib C Library, Full

14.1.1 Initialize variable argument list
Synopsis

#include <stdarg.h>

void va_start(va_list ap, rightmost);
Description
Use va_start to initialize the variable argument list ap, so that va_arg can extract values
from it. rightmost is the name of the last explicit argument in the parameter list (the
argument immediately preceding the ellipsis ‘. ..’ that flags variable arguments in an ANSI
C function header). You can only use va_start in a function declared using this ellipsis
notation (not, for example, in one of its subfunctions).
Returns
va_start does not return a result.
Portability
ANSI C requires va_start.

Chapter 14: Variable Argument Lists 343

14.1.2 Extract a value from argument list
Synopsis
#include <stdarg.h>
type va_arg(va_list ap, type);
Description
va_arg returns the next unprocessed value from a variable argument list ap (which you must

previously create with va_start). Specify the type for the value as the second parameter to
the macro, type.

You may pass a va_list object ap to a subfunction, and use va_arg from the subfunction
rather than from the function actually declared with an ellipsis in the header; however,
in that case you may only use va_arg from the subfunction. ANSI C does not permit
extracting successive values from a single variable-argument list from different levels of the
calling stack.

There is no mechanism for testing whether there is actually a next argument available; you
might instead pass an argument count (or some other data that implies an argument count)
as one of the fixed arguments in your function call.

Returns
va_arg returns the next argument, an object of type type.

Portability
ANSI C requires va_arg.

344 Red Hat newlib C Library, Full

14.1.3 Abandon a variable argument list
Synopsis
#include <stdarg.h>
void va_end(va_list ap);
Description
Use va_end to declare that your program will not use the variable argument list ap any
further.
Returns
va_end does not return a result.

Portability
ANSI C requires va_end.

14.2 Traditional macros, varargs.h

If your C compiler predates ANSI C, you may still be able to use variable argument lists
using the macros from the varargs.h header file. These macros resemble their ANSI
counterparts, but have important differences in usage. In particular, since traditional C has
no declaration mechanism for variable argument lists, two additional macros are provided
simply for the purpose of defining functions with variable argument lists.

As with stdarg.h, the type va_list is used to hold a data structure representing a variable
argument list.

Chapter 14: Variable Argument Lists 345

14.2.1 Declare variable arguments
Synopsis
#include <varargs.h>

function(va_alist)
va_dcl

Description

To use the varargs.h version of variable argument lists, you must declare your function
with a call to the macro va_alist as its argument list, and use va_dcl as the declaration.
Do not use a semicolon after va_dcl.

Returns
These macros cannot be used in a context where a return is syntactically possible.

Portability
va_alist and va_dcl were the most widespread method of declaring variable argument lists
prior to ANSI C.

346 Red Hat newlib C Library, Full

14.2.2 Initialize variable argument list
Synopsis

#include <varargs.h>

va_list ap;

va_start(ap);
Description

With the varargs.h macros, use va_start to initialize a data structure ap to permit
manipulating a variable argument list. ap must have the type va_alist.

Returns
va_start does not return a result.

Portability
va_start is also defined as a macro in ANSI C, but the definitions are incompatible; the
ANSI version has another parameter besides ap.

Chapter 14: Variable Argument Lists 347

14.2.3 Extract a value from argument list
Synopsis
#include <varargs.h>
type va_arg(va_list ap, type);
Description
va_arg returns the next unprocessed value from a variable argument list ap (which you must
previously create with va_start). Specify the type for the value as the second parameter to
the macro, type.
Returns
va_arg returns the next argument, an object of type type.
Portability
The va_arg defined in varargs.h has the same syntax and usage as the ANSI C version
from stdarg.h.

348 Red Hat newlib C Library, Full

14.2.4 Abandon a variable argument list
Synopsis
#include <varargs.h>
va_end(va_list ap);
Description
Use va_end to declare that your program will not use the variable argument list ap any
further.

Returns
va_end does not return a result.

Portability
The va_end defined in varargs.h has the same syntax and usage as the ANSI C version
from stdarg.h.

Document Index

E

errno global vs macro............... 319
extra argument, reentrant fns................. 311

G

global reentrancy structure.................... 311

L

linking the C library 319
list of overflow protected functions............ 317
list of reentrant functions 311

349

o

OS interface subroutines...................... 319

R

TEENETANCY . oottt 311
reentrancy structureo 311
reentrant function list......................... 311

350 Red Hat newlib C Library, Full

The body of this manual is set in
cmrl0,
with headings in cmbx10
and examples in cmtt10.
emitil0 and
cmsl10
are used for emphasis.

Table of Contents

1 Introduction.................. 1
2 Standard Utility Functions (stdlib.h)......... 3
2.1 _Exit—end program execution with no cleanup processing...... 4
2.2 ab4l, 164a—convert between radix-64 ASCII string and long.... 5
2.3 abort—abnormal termination of a program..................... 6
2.4 abs—integer absolute value (magnitude)........................ 7
2.5 assert—macro for debugging diagnostics....................... 8
2.6 atexit—request execution of functions at program exit......... 9
2.7 atof, atoff—string to double or float, 10
2.8 atoi, atol—string tointeger...........l 11
2.9 atoll—convert a string to a long long integer.................. 12
2.10 bsearch—binary search.............. .o i it 13
2.11 calloc—allocate space for arrays.............ccooviiiiii... 14
2.12 div—divide two Integers.ttt 15
2.13 ecvt, ecvtf, fcvt, fcvtf—double or float to string........... 16
2.14 gcvt, gcvtf—format double or float as string................. 17
2.15 ecvtbuf, fcvtbuf—double or float to string.................. 18
2.16 __env_lock, __env_unlock—lock environ variable............ 19
2.17 exit—end program executiono, 20
2.18 getenv—Ilook up environment variable............., 21
2.19 itoa—integer tostring........... ... i 22
2.20 labs—long integer absolute value...................... 23
2.21 1ldiv—divide two long integersl 24
2.22 1labs—compute the absolute value of an long long integer. ... 25
2.23 1ldiv—divide two long long integers 26
2.24 malloc, realloc, free—manage MeMOTy.........c.vueeeenn... 27
2.25 mallinfo, malloc_stats, mallopt—malloc support.......... 29
2.26 __malloc_lock, __malloc_unlock—Ilock malloc pool......... 30
2.27 mblen—minimal multibyte length function.................... 31
2.28 mbsrtowcs, mbsnrtowcs—convert a character
string to a wide-character string........... il 32
2.29 mbstowcs—minimal multibyte string to wide char converter... 33
2.30 mbtowc—minimal multibyte to wide char converter............ 34
2.31 on_exit—request execution of function with
argument at program exit i i i i 35
2.32 gSOTt—-50Tt AN AITAYo oottt 36
2.33 rand, srand—pseudo-random numbers, 37
2.34 random, srandom—pseudo-random numbers................... 38

2.35 rand48, drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand43,
seed48, 1cong48—pseudo-random number generators and
initialization routines.ooiiiiiiiiiiii 39

ii

Red Hat newlib C Library, Full

2.36 rpmatch—determine whether response to

question is affirmative or negative ool 41
2.37 strtod, strtof, strtold, strtod_1, strtof_1,

strtold_l—string to double or float 42
2.38 strtol, strtol_l—stringtolong............... 44
2.39 strtoll, strtoll_l—string tolonglong..................... 46
2.40 strtoul, strtoul_l—string to unsigned long................. 48
2.41 strtoull, strtoull_l—string to unsigned long long 50
2.42 wcsrtombs, wcsnrtombs—convert a

wide-character string to a character string 52
2.43 wcstod, wcstof, westold, westod_1, westof _1,

wcstold_l—wide char string to double or float 53
2.44 wcstol, westol_l—wide string tolong 55
2.45 wcstoll, westoll_l1—wide string to long long................ 57
2.46 wcstoul, westoul_l—wide string to unsigned long 59
2.47 wcstoull, wcstoull_l—wide string to unsigned long long 61
2.48 system—execute command string................ ...l 63
2.49 utoa—unsigned integer to string..............l 64
2.50 wcstombs—minimal wide char string to

multibyte string converter i 65
2.51 wctomb—minimal wide char to multibyte converter............ 66

Character Type Macros and

Functions (ctype.h).......... ..., 67
3.1 isalnum, isalnum_l—alphanumeric character predicate........ 68
3.2 isalpha, isalpha_l—alphabetic character predicate........... 69
3.3 isascii, isascii_1—ASCII character predicate............... 70
3.4 isblank, isblank_l—blank character predicate 71
3.5 iscntrl, iscntrl_l-—control character predicate.............. 72
3.6 isdigit, isdigit_l—decimal digit predicate.................. 73
3.7 islower, islower_l—Tlowercase character predicate............ 74
3.8 isprint, isgraph, isprint_1,

isgraph_l—printable character predicates........................ 75
3.9 ispunct, ispunct_l—punctuation character predicate......... 76
3.10 isspace, isspace_l—whitespace character predicate......... 7
3.11 isupper, isupper_l—uppercase character predicate.......... 78
3.12 isxdigit, isxdigit_l—hexadecimal digit predicate.......... 79
3.13 toascii, toascii_l—force integers to ASCII range 80
3.14 tolower, tolower_l—translate characters to lowercase 81
3.15 toupper, toupper_l—translate characters to uppercase....... 82
3.16 iswalnum, iswalnum_l—alphanumeric wide character test 83
3.17 iswalpha, iswalpha_l—alphabetic wide character test 84
3.18 iswcntrl, iswentrl_l—control wide character test........... 85
3.19 iswblank, iswblank_l—blank wide character test............ 86
3.20 iswdigit, iswdigit_l—decimal digit wide character test..... 87
3.21 iswgraph, iswgraph_l—graphic wide character test.......... 88
3.22 iswlower, iswlower_l—lowercase wide character test 89

3.23 iswprint, iswprint_l—printable wide character test......... 90

3.24 iswpunct, iswpunct_l—punctuation wide character test...... 91

3.25 1iswspace, iswspace_l—whitespace wide character test....... 92
3.26 iswupper, iswupper_l—uppercase wide character test........ 93
3.27 iswxdigit, iswxdigit_l—hexadecimal digit wide character test..94
3.28 iswctype, iswctype_l—extensible wide-character test........ 95
3.29 wctype, wctype_l—get wide-character classification type 96

3.30 towlower, towlower_l—translate wide characters to lowercase.. 97
3.31 towupper, towupper_l—translate wide characters to uppercase.. 98
3.32 towctrans, towctrans_l—extensible wide-character translation.. 99

3.33 wctrans, wctrans_1—get wide-character translation type.... 100

Input and Output (stdio.h).................. 101
4.1 clearerr, clearerr_unlocked——clear file

or stream error indicator i i 102
4.2 diprintf, vdiprintf—oprint to a file descriptor (integer only).. 103
4.3 dprintf, vdprintf—print to a file descriptor................. 104
4.4 fclose—=closeafile.........co i 105
4.5 fcloseall—close allfiles..........., 106
4.6 fdopen—turn open file into a stream, 107
4.7 feof, feof_unlocked—test for end of file..................... 108
4.8 ferror, ferror_unlocked—test whether

read/write error has occurred.............. oo 109
4.9 fflush, fflush_unlocked—flush buffered file output......... 110
4.10 fgetc, fgetc_unlocked—get a character from a file or stream.. 111
4.11 fgetpos—record position in a stream or file................. 112
4.12 fgets, fgets_unlocked—get character

string from a file or stream it 113
4.13 fgetwc, getwc, fgetwc_unlocked, getwc_unlocked—get a

wide character from a file or stream 114
4.14 fgetws, fgetws_unlocked—get wide character

string from a file or stream i 116
4.15 fileno, fileno_unlocked—return file

descriptor associated with stream................................ 117
4.16 fmemopen—open a stream around a fixed-length string....... 118
4.17 fopen—openafile..... 119
4.18 fopencookie—open a stream with custom callbacks......... 121
4.19 fpurge—discard pending file I/O......... 123

4.20 fputc, fputc_unlocked—write a character on a stream or file.. 124
4.21 fputs, fputs_unlocked—write a

character string in a file or stream L 125
4.22 fputwc, putwc, fputwc_unlocked, putwc_unlocked—write a

wide character on a stream or file........... 126
4.23 fputws, fputws_unlocked—write a wide

character string in a file or stream 128
4.24 fread, fread_unlocked—read array elements from a file 129
4.25 freopen—open a file using an existing file descriptor......... 130
4.26 fseek, fseeko—set file position 131

4.27 __fsetlocking—set or query locking mode on FILE stream.. 132

iv

4.28 fsetpos—restore position of a stream or file................. 133
4.29 ftell, ftello—return position in a stream or file........... 134
4.30 funopen, fropen, fwopen—open a

stream with custom callbacks.......... L 135
4.31 fwide—set and determine the orientation of a FILE stream.. 137
4.32 fwrite, fwrite_unlocked—write array elements............ 138
4.33 getc—read a character (macro)oo..L 139
4.34 getc_unlocked—non-thread-safe version of getc (macro) 140
4.35 getchar—read a character (macro).......................... 141
4.36 getchar_unlocked—non-thread-safe version of getchar (macro).. 142
4.37 getdelim—read a line up to a specified line delimiter........ 143
4.38 getline—read alinefromafile..................... 144
4.39 gets—get character string (obsolete, use fgets instead) 145
440 getw—read a word (Int)..........oooeiiiiiiiiiiiiiiiian., 146
4.41 getwchar, getwchar_unlocked—read a wide

character from standard input............. i i 147
4.42 mktemp, mkstemp, mkostemp, mkstemps,................o..n. 148
4.43 open_memstream, open_wmemstream—open a write stream

around an arbitrary-length string..............o 150
4.44 perror—oprint an error message on standard error........... 151
4.45 putc—write a character (macro)...................cooiio... 152
4.46 putc_unlocked—non-thread-safe version of putc (macro).... 153
4.47 putchar—write a character (macro)......................... 154
4.48 putchar_unlocked—non-thread-safe version of putchar (macro) .. 155
4.49 puts—write a character string..................... 156
4.50 putw—write a word (int)o, 157
4.51 putwchar, putwchar_unlocked—write a wide

character to standard output L. 158
4.52 remove—delete a file’sname...........ol 159
4.53 rename—rename afile....... oL 160
4.54 rewind—reinitialize a file or stream L 161
4.55 setbuf—specify full buffering for a file or stream 162
4.56 setbuffer—specify full buffering for a file or stream with size.. 163
4.57 setlinebuf—specify line buffering for a file or stream....... 164
4.58 setvbuf—specify file or stream buffering 165
4.59 siprintf, fiprintf, iprintf, sniprintf, asiprintf,

asniprintf—format output (integer only)....................... 166
4.60 siscanf, fiscanf, iscanf—scan and format non-floating input .. 167
4.61 sprintf, fprintf, printf, snprintf,

asprintf, asnprintf—format output............ 168
4.62 sscanf, fscanf, scanf-—scan and format input.............. 175
4.63 stdio_ext,__fbufsize, _fpending, _flbf, _freadable, _fwritable, _

freading, _fwriting—access internals of FILE structure....... 179
4.64 swprintf, fwprintf, wprintf—wide character format output.. 180
4.65 swscanf, fwscanf, wscanf—scan and

format wide character input............ L. 186
4.66 tmpfile—create a temporary file............. 190
4.67 tmpnam, tempnam—name for a temporary file................. 191

Red Hat newlib C Library, Full

4.68 ungetc—push data back into a stream................... ..., 192

4.69 ungetwc—push wide character data back into a stream 193
4.70 vfprintf, vprintf, vsprintf, vsnprintf, vasprintf,

vasnprintf—format argument list oL 194
4.71 vfscanf, vscanf, vsscanf—format argument list............ 195
4.72 vfwprintf, vwprintf, vswprintf—wide

character format argument list L. 196
4.73 vfuscanf, vwscanf, vswscanf—scan and format

argument list from wide character input 197
4.74 viprintf, vfiprintf, vsiprintf, vsniprintf, vasiprintf,

vasniprintf—format argument list (integer only)............... 198
4.75 viscanf, vfiscanf, vsiscanf—format argument list 199

Strings and Memory (string.h) 201
5.1 bcmp—compare tWo IMEemMOTY AT€aS ...« .vuurunnreeeeeeeeennnn. 202
5.2 bCOPY—COPY MEMOLY T€CIONS .+« vt vvteeeee et ettt 203
5.3 bzero—initialize memory to zero i 204
5.4 index—search for character in string 205
5.5 memccpy—copy memory regions with end-token check......... 206
5.6 memchr—find character in memory............................ 207
5.7 memcmp—compare tWO MEMOTY AT€AS.vvveeeeeeeeennnnnnn. 208
5.8 Memcpy——COPY MEMOTY TeZIOMS . .. vvveeetteeeeennnineeenn. 209
5.9 memmem—find memory segment i 210
5.10 memmove—move possibly overlapping memory................ 211
5.11 mempcpy—copy memory regions and return end pointer...... 212
5.12 memrchr—reverse search for character in memory............ 213
5.13 memset—set an area of memory oL, 214
5.14 rawmemchr—find character in memory....................... 215
5.15 rindex—reverse search for character in string 216
5.16 stpcpy—copy string returning a pointer to itsend........... 217
5.17 stpncpy—counted copy string returning a pointer to its end.. 218
5.18 strcasecmp—case-insensitive character string compare. 219
5.19 strcasestr—case-insensitive character string search......... 220
5.20 strcat—concatenate strings o o i 221
5.21 strchr—search for character in string....................... 222
5.22 strchrnul—search for character in string 223
5.23 strcmp—character string compare............. 224
5.24 strcoll—Ilocale-specific character string compare............ 225
0.25 strcpy—copy string ... 226
5.26 strcspn—count characters not in string..................... 227
5.27 strerror, strerror_l-—convert error number to string...... 228
5.28 strerror_r—convert error number to string and copy to buffer.. 233
5.29 strlen——character string length............ 234
5.30 strlwr—force string to lowercase............ ..., 235
5.31 strncasecmp—case-insensitive character string compare 236
5.32 strncat—concatenate strings oo i, 237
5.33 strncmp—character string compare................., 238

5.34 strncpy—counted copy string........... ..., 239

Red Hat newlib C Library, Full

5.35 strnstr—find string segment 240
5.36 strnlen—character string length.............. 241
5.37 strpbrk—find characters in string............... 242
5.38 strrchr—reverse search for character in string 243
5.39 strsignal—convert signal number to string................. 244
5.40 strspn—find initial matcho ool 245
5.41 strstr—find string segment...........o 246
5.42 strtok, strtok_r, strsep—get next token from a string 247
5.43 strupr—force string to uppercase............. ... il 248
5.44 strverscmp—version string compare 249
5.45 strxfrm—transform string L 250
5.46 swab—swap adjacent bytes...........l 251
5.47 wcscasecmp—case-insensitive wide character string compare. . 252
5.48 wcsdup—wide character string duplicate..................... 253

5.49 wcsncasecmp—case-insensitive wide character string compare. . 254

Wide Character Strings (wchar.h)........... 255
6.1 wmemchr—find a wide character in memory 256
6.2 wmemcmp—compare wide characters in memory................ 257
6.3 wmemcpy—copy wide characters in memory.................... 258
6.4 wmemmove—copy wide characters in

memory with overlapping areas............ ... i i 259
6.5 wmempcpy—copy wide characters in

memory and return end pointer i 260
6.6 wmemset—set wide characters in memory 261
6.7 wcscat—concatenate two wide-character strings 262
6.8 wcschr—wide-character string scanning operation 263
6.9 wcscmp—compare two wide-character strings.................. 264
6.10 wcscoll—locale-specific wide-character string compare 265
6.11 wcscpy—copy a wide-character string........................ 266
6.12 wcpcpy—copy a wide-character string

returning a pointer toitsend.......ol 267
6.13 wcscspn—get length of a complementary wide substring 268
6.14 wcsftime—convert date and time to a

formatted wide-character string........... 269

6.15 wcslcat—concatenate wide-character strings to specified length . . 270
6.16 wcslcpy—copy a wide-character string to specified length. ... 271

6.17 wcslen—get wide-character string length.................... 272
6.18 wcsncat—concatenate part of two wide-character strings. 273
6.19 wcsncmp—compare part of two wide-character strings........ 274
6.20 wcsncpy—copy part of a wide-character string............... 275
6.21 wcpncpy—copy part of a wide-character string

returning a pointer toitsend........... .. .o i 276
6.22 wcsnlen—get fixed-size wide-character string length......... 277
6.23 wcspbrk—-scan wide-character string for a wide-character code. . 278
6.24 wcsrchr—wide-character string scanning operation.......... 279
6.25 wcsspn—get length of a wide substring 280

6.26 wcsstr—find a wide-character substring..................... 281

vii

6.27 wcstok—get next token from a string........................ 282
6.28 wcswidth—number of column positions
of a wide-character string........o i 283

6.29 wcsxfrm—Ilocale-specific wide-character string transformation. . 284
6.30 wcwidth—number of column positions of a wide-character code. . 285

7 Signal Handling (signal.h)................... 287
7.1 psignal—print a signal message on standard error............ 288
7.2 raise—send asignal........ i, 289
7.3 signal—specify handler subroutine for a signal............... 290

8 Time Functions (time.h) 291
8.1 asctime—format time as string 292
8.2 clock—cumulative processor time.................., 293
8.3 ctime—convert time to local and format as string 294
8.4 difftime—subtract two times........... 295
8.5 gmtime—convert time to UTC traditional form 296
8.6 localtime—convert time to local representation.............. 297
8.7 mktime—convert time to arithmetic representation............ 298
8.8 strftime, strftime_l—convert date and

time to a formatted string........... ... i 299
8.9 time—get current calendar time (as single number)........... 303
8.10 __tz_lock, __tz_unlock—Ilock time zone global variables ... 304
8.11 tzset—set timezone characteristics from

T7Z environment variable i 305

9 Locale (locale.h)cooiiiiiiiiiiin ... 307
9.1 setlocale, localeconv—select or query locale............... 309

10 Reentrancy.............. i, 311

11 Miscellaneous Macros and Functions 313
11.1 ffs—find first bit set inaword oo 314

11.2 __retarget_lock_init, __retarget_lock_init_recursive,
__retarget_lock_close, __retarget_lock_close_recursive,
__retarget_lock_acquire, __retarget_lock_acquire_recursive,

__retarget_lock_try_acquire, __retarget_lock_try_acquire_

recursive, __retarget_lock_release,
__retarget_lock_release_recursive—locking routines........ 315
11.3 unctrl—get printable representation of a character.......... 316
12 Overflow Protection......................... 317
12.1 Stack Smashing Protection oL 317

12.2 Object Size Checking....... ..., 317

viii

13

14

Red Hat newlib C Library, Full

System Calls................................. 319
13.1 Definitions for OS interface............ ... 319
13.2 Reentrant covers for OS subroutines......................... 323

13.2.1 _close_r—Reentrant version of close................... 324

13.2.2 _execve_r—Reentrant version of execve................ 325

13.2.3 _fork_r—Reentrant version of fork..................... 326

13.2.4 _wait_r—Reentrant version of wait 327

13.2.5 _fstat_r—Reentrant version of fstat................... 328

13.2.6 _link_r—Reentrant version of link..................... 329

13.2.7 _lseek_r—Reentrant version of Iseek................... 330

13.2.8 _open_r—Reentrant version of open.................... 331

13.2.9 _read_r—Reentrant version ofread 332

13.2.10 _sbrk_r—Reentrant version of sbrk................... 333

13.2.11 _kill_r—Reentrant version of kill 334

13.2.12 _getpid_r—Reentrant version of getpid............... 335

13.2.13 _stat_r—Reentrant version of stat.................... 336

13.2.14 _times_r—Reentrant version of times................. 337

13.2.15 _unlink_r—Reentrant version of unlink............... 338

13.2.16 _write_r—Reentrant version of write 339

Variable Argument Lists.................... 341
14.1 ANSI-standard macros, stdarg.h 341

14.1.1 Initialize variable argument list 342

14.1.2 Extract a value from argument list...................... 343

14.1.3 Abandon a variable argument list....................... 344
14.2 Traditional macros, varargs.h..............cooiiiiia... 344

14.2.1 Declare variable arguments 345

14.2.2 Initialize variable argument list......................... 346

14.2.3 Extract a value from argument list...................... 347

14.2.4 Abandon a variable argument list....................... 348

Document Index 349

	Introduction
	Standard Utility Functions (stdlib.h)
	_Exit---end program execution with no cleanup processing
	a64l, l64a---convert between radix-64 ASCII string and long
	abort---abnormal termination of a program
	abs---integer absolute value (magnitude)
	assert---macro for debugging diagnostics
	atexit---request execution of functions at program exit
	atof, atoff---string to double or float
	atoi, atol---string to integer
	atoll---convert a string to a long long integer
	bsearch---binary search
	calloc---allocate space for arrays
	div---divide two integers
	ecvt, ecvtf, fcvt, fcvtf---double or float to string
	gcvt, gcvtf---format double or float as string
	ecvtbuf, fcvtbuf---double or float to string
	__env_lock, __env_unlock---lock environ variable
	exit---end program execution
	getenv---look up environment variable
	itoa---integer to string
	labs---long integer absolute value
	ldiv---divide two long integers
	llabs---compute the absolute value of an long long integer.
	lldiv---divide two long long integers
	malloc, realloc, free---manage memory
	mallinfo, malloc_stats, mallopt---malloc support
	__malloc_lock, __malloc_unlock---lock malloc pool
	mblen---minimal multibyte length function
	mbsrtowcs, mbsnrtowcs---convert a character string to a wide-character string
	mbstowcs---minimal multibyte string to wide char converter
	mbtowc---minimal multibyte to wide char converter
	on_exit---request execution of function with argument at program exit
	qsort---sort an array
	rand, srand---pseudo-random numbers
	random, srandom---pseudo-random numbers
	rand48, drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48---pseudo-random number generators and initialization routines
	rpmatch---determine whether response to question is affirmative or negative
	strtod, strtof, strtold, strtod_l, strtof_l, strtold_l---string to double or float
	strtol, strtol_l---string to long
	strtoll, strtoll_l---string to long long
	strtoul, strtoul_l---string to unsigned long
	strtoull, strtoull_l---string to unsigned long long
	wcsrtombs, wcsnrtombs---convert a wide-character string to a character string
	wcstod, wcstof, wcstold, wcstod_l, wcstof_l, wcstold_l---wide char string to double or float
	wcstol, wcstol_l---wide string to long
	wcstoll, wcstoll_l---wide string to long long
	wcstoul, wcstoul_l---wide string to unsigned long
	wcstoull, wcstoull_l---wide string to unsigned long long
	system---execute command string
	utoa---unsigned integer to string
	wcstombs---minimal wide char string to multibyte string converter
	wctomb---minimal wide char to multibyte converter

	Character Type Macros and Functions (ctype.h)
	isalnum, isalnum_l---alphanumeric character predicate
	isalpha, isalpha_l---alphabetic character predicate
	isascii, isascii_l---ASCII character predicate
	isblank, isblank_l---blank character predicate
	iscntrl, iscntrl_l---control character predicate
	isdigit, isdigit_l---decimal digit predicate
	islower, islower_l---lowercase character predicate
	isprint, isgraph, isprint_l, isgraph_l---printable character predicates
	ispunct, ispunct_l---punctuation character predicate
	isspace, isspace_l---whitespace character predicate
	isupper, isupper_l---uppercase character predicate
	isxdigit, isxdigit_l---hexadecimal digit predicate
	toascii, toascii_l---force integers to ASCII range
	tolower, tolower_l---translate characters to lowercase
	toupper, toupper_l---translate characters to uppercase
	iswalnum, iswalnum_l---alphanumeric wide character test
	iswalpha, iswalpha_l---alphabetic wide character test
	iswcntrl, iswcntrl_l---control wide character test
	iswblank, iswblank_l---blank wide character test
	iswdigit, iswdigit_l---decimal digit wide character test
	iswgraph, iswgraph_l---graphic wide character test
	iswlower, iswlower_l---lowercase wide character test
	iswprint, iswprint_l---printable wide character test
	iswpunct, iswpunct_l---punctuation wide character test
	iswspace, iswspace_l---whitespace wide character test
	iswupper, iswupper_l---uppercase wide character test
	iswxdigit, iswxdigit_l---hexadecimal digit wide character test
	iswctype, iswctype_l---extensible wide-character test
	wctype, wctype_l---get wide-character classification type
	towlower, towlower_l---translate wide characters to lowercase
	towupper, towupper_l---translate wide characters to uppercase
	towctrans, towctrans_l---extensible wide-character translation
	wctrans, wctrans_l---get wide-character translation type

	Input and Output (stdio.h)
	clearerr, clearerr_unlocked---clear file or stream error indicator
	diprintf, vdiprintf---print to a file descriptor (integer only)
	dprintf, vdprintf---print to a file descriptor
	fclose---close a file
	fcloseall---close all files
	fdopen---turn open file into a stream
	feof, feof_unlocked---test for end of file
	ferror, ferror_unlocked---test whether read/write error has occurred
	fflush, fflush_unlocked---flush buffered file output
	fgetc, fgetc_unlocked---get a character from a file or stream
	fgetpos---record position in a stream or file
	fgets, fgets_unlocked---get character string from a file or stream
	fgetwc, getwc, fgetwc_unlocked, getwc_unlocked---get a wide character from a file or stream
	fgetws, fgetws_unlocked---get wide character string from a file or stream
	fileno, fileno_unlocked---return file descriptor associated with stream
	fmemopen---open a stream around a fixed-length string
	fopen---open a file
	fopencookie---open a stream with custom callbacks
	fpurge---discard pending file I/O
	fputc, fputc_unlocked---write a character on a stream or file
	fputs, fputs_unlocked---write a character string in a file or stream
	fputwc, putwc, fputwc_unlocked, putwc_unlocked---write a wide character on a stream or file
	fputws, fputws_unlocked---write a wide character string in a file or stream
	fread, fread_unlocked---read array elements from a file
	freopen---open a file using an existing file descriptor
	fseek, fseeko---set file position
	__fsetlocking---set or query locking mode on FILE stream
	fsetpos---restore position of a stream or file
	ftell, ftello---return position in a stream or file
	funopen, fropen, fwopen---open a stream with custom callbacks
	fwide---set and determine the orientation of a FILE stream
	fwrite, fwrite_unlocked---write array elements
	getc---read a character (macro)
	getc_unlocked---non-thread-safe version of getc (macro)
	getchar---read a character (macro)
	getchar_unlocked---non-thread-safe version of getchar (macro)
	getdelim---read a line up to a specified line delimiter
	getline---read a line from a file
	gets---get character string (obsolete, use fgets instead)
	getw---read a word (int)
	getwchar, getwchar_unlocked---read a wide character from standard input
	mktemp, mkstemp, mkostemp, mkstemps,
	open_memstream, open_wmemstream---open a write stream around an arbitrary-length string
	perror---print an error message on standard error
	putc---write a character (macro)
	putc_unlocked---non-thread-safe version of putc (macro)
	putchar---write a character (macro)
	putchar_unlocked---non-thread-safe version of putchar (macro)
	puts---write a character string
	putw---write a word (int)
	putwchar, putwchar_unlocked---write a wide character to standard output
	remove---delete a file's name
	rename---rename a file
	rewind---reinitialize a file or stream
	setbuf---specify full buffering for a file or stream
	setbuffer---specify full buffering for a file or stream with size
	setlinebuf---specify line buffering for a file or stream
	setvbuf---specify file or stream buffering
	siprintf, fiprintf, iprintf, sniprintf, asiprintf, asniprintf---format output (integer only)
	siscanf, fiscanf, iscanf---scan and format non-floating input
	sprintf, fprintf, printf, snprintf, asprintf, asnprintf---format output
	sscanf, fscanf, scanf---scan and format input
	stdio_ext,__fbufsize,__fpending,__flbf,__freadable,__fwritable,__freading,__fwriting---access internals of FILE structure
	swprintf, fwprintf, wprintf---wide character format output
	swscanf, fwscanf, wscanf---scan and format wide character input
	tmpfile---create a temporary file
	tmpnam, tempnam---name for a temporary file
	ungetc---push data back into a stream
	ungetwc---push wide character data back into a stream
	vfprintf, vprintf, vsprintf, vsnprintf, vasprintf, vasnprintf---format argument list
	vfscanf, vscanf, vsscanf---format argument list
	vfwprintf, vwprintf, vswprintf---wide character format argument list
	vfwscanf, vwscanf, vswscanf---scan and format argument list from wide character input
	viprintf, vfiprintf, vsiprintf, vsniprintf, vasiprintf, vasniprintf---format argument list (integer only)
	viscanf, vfiscanf, vsiscanf---format argument list

	Strings and Memory (string.h)
	bcmp---compare two memory areas
	bcopy---copy memory regions
	bzero---initialize memory to zero
	index---search for character in string
	memccpy---copy memory regions with end-token check
	memchr---find character in memory
	memcmp---compare two memory areas
	memcpy---copy memory regions
	memmem---find memory segment
	memmove---move possibly overlapping memory
	mempcpy---copy memory regions and return end pointer
	memrchr---reverse search for character in memory
	memset---set an area of memory
	rawmemchr---find character in memory
	rindex---reverse search for character in string
	stpcpy---copy string returning a pointer to its end
	stpncpy---counted copy string returning a pointer to its end
	strcasecmp---case-insensitive character string compare
	strcasestr---case-insensitive character string search
	strcat---concatenate strings
	strchr---search for character in string
	strchrnul---search for character in string
	strcmp---character string compare
	strcoll---locale-specific character string compare
	strcpy---copy string
	strcspn---count characters not in string
	strerror, strerror_l---convert error number to string
	strerror_r---convert error number to string and copy to buffer
	strlen---character string length
	strlwr---force string to lowercase
	strncasecmp---case-insensitive character string compare
	strncat---concatenate strings
	strncmp---character string compare
	strncpy---counted copy string
	strnstr---find string segment
	strnlen---character string length
	strpbrk---find characters in string
	strrchr---reverse search for character in string
	strsignal---convert signal number to string
	strspn---find initial match
	strstr---find string segment
	strtok, strtok_r, strsep---get next token from a string
	strupr---force string to uppercase
	strverscmp---version string compare
	strxfrm---transform string
	swab---swap adjacent bytes
	wcscasecmp---case-insensitive wide character string compare
	wcsdup---wide character string duplicate
	wcsncasecmp---case-insensitive wide character string compare

	Wide Character Strings (wchar.h)
	wmemchr---find a wide character in memory
	wmemcmp---compare wide characters in memory
	wmemcpy---copy wide characters in memory
	wmemmove---copy wide characters in memory with overlapping areas
	wmempcpy---copy wide characters in memory and return end pointer
	wmemset---set wide characters in memory
	wcscat---concatenate two wide-character strings
	wcschr---wide-character string scanning operation
	wcscmp---compare two wide-character strings
	wcscoll---locale-specific wide-character string compare
	wcscpy---copy a wide-character string
	wcpcpy---copy a wide-character string returning a pointer to its end
	wcscspn---get length of a complementary wide substring
	wcsftime---convert date and time to a formatted wide-character string
	wcslcat---concatenate wide-character strings to specified length
	wcslcpy---copy a wide-character string to specified length
	wcslen---get wide-character string length
	wcsncat---concatenate part of two wide-character strings
	wcsncmp---compare part of two wide-character strings
	wcsncpy---copy part of a wide-character string
	wcpncpy---copy part of a wide-character string returning a pointer to its end
	wcsnlen---get fixed-size wide-character string length
	wcspbrk----scan wide-character string for a wide-character code
	wcsrchr---wide-character string scanning operation
	wcsspn---get length of a wide substring
	wcsstr---find a wide-character substring
	wcstok---get next token from a string
	wcswidth---number of column positions of a wide-character string
	wcsxfrm---locale-specific wide-character string transformation
	wcwidth---number of column positions of a wide-character code

	Signal Handling (signal.h)
	psignal---print a signal message on standard error
	raise---send a signal
	signal---specify handler subroutine for a signal

	Time Functions (time.h)
	asctime---format time as string
	clock---cumulative processor time
	ctime---convert time to local and format as string
	difftime---subtract two times
	gmtime---convert time to UTC traditional form
	localtime---convert time to local representation
	mktime---convert time to arithmetic representation
	strftime, strftime_l---convert date and time to a formatted string
	time---get current calendar time (as single number)
	__tz_lock, __tz_unlock---lock time zone global variables
	tzset---set timezone characteristics from TZ environment variable

	Locale (locale.h)
	setlocale, localeconv---select or query locale

	Reentrancy
	Miscellaneous Macros and Functions
	ffs---find first bit set in a word
	__retarget_lock_init, __retarget_lock_init_recursive, __retarget_lock_close, __retarget_lock_close_recursive, __retarget_lock_acquire, __retarget_lock_acquire_recursive, __retarget_lock_try_acquire, __retarget_lock_try_acquire_recursive, __retarget_lock_release, __retarget_lock_release_recursive---locking routines
	unctrl---get printable representation of a character

	Overflow Protection
	Stack Smashing Protection
	Object Size Checking

	System Calls
	Definitions for OS interface
	Reentrant covers for OS subroutines
	_close_r---Reentrant version of close
	_execve_r---Reentrant version of execve
	_fork_r---Reentrant version of fork
	_wait_r---Reentrant version of wait
	_fstat_r---Reentrant version of fstat
	_link_r---Reentrant version of link
	_lseek_r---Reentrant version of lseek
	_open_r---Reentrant version of open
	_read_r---Reentrant version of read
	_sbrk_r---Reentrant version of sbrk
	_kill_r---Reentrant version of kill
	_getpid_r---Reentrant version of getpid
	_stat_r---Reentrant version of stat
	_times_r---Reentrant version of times
	_unlink_r---Reentrant version of unlink
	_write_r---Reentrant version of write

	Variable Argument Lists
	ANSI-standard macros, stdarg.h
	Initialize variable argument list
	Extract a value from argument list
	Abandon a variable argument list

	Traditional macros, varargs.h
	Declare variable arguments
	Initialize variable argument list
	Extract a value from argument list
	Abandon a variable argument list

	Document Index

