| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563 |
- /* Vectorizer
- Copyright (C) 2003-2018 Free Software Foundation, Inc.
- Contributed by Dorit Naishlos <dorit@il.ibm.com>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #ifndef GCC_TREE_VECTORIZER_H
- #define GCC_TREE_VECTORIZER_H
- #include "tree-data-ref.h"
- #include "tree-hash-traits.h"
- #include "target.h"
- /* Used for naming of new temporaries. */
- enum vect_var_kind {
- vect_simple_var,
- vect_pointer_var,
- vect_scalar_var,
- vect_mask_var
- };
- /* Defines type of operation. */
- enum operation_type {
- unary_op = 1,
- binary_op,
- ternary_op
- };
- /* Define type of available alignment support. */
- enum dr_alignment_support {
- dr_unaligned_unsupported,
- dr_unaligned_supported,
- dr_explicit_realign,
- dr_explicit_realign_optimized,
- dr_aligned
- };
- /* Define type of def-use cross-iteration cycle. */
- enum vect_def_type {
- vect_uninitialized_def = 0,
- vect_constant_def = 1,
- vect_external_def,
- vect_internal_def,
- vect_induction_def,
- vect_reduction_def,
- vect_double_reduction_def,
- vect_nested_cycle,
- vect_unknown_def_type
- };
- /* Define type of reduction. */
- enum vect_reduction_type {
- TREE_CODE_REDUCTION,
- COND_REDUCTION,
- INTEGER_INDUC_COND_REDUCTION,
- CONST_COND_REDUCTION,
- /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
- to implement:
- for (int i = 0; i < VF; ++i)
- res = cond[i] ? val[i] : res; */
- EXTRACT_LAST_REDUCTION,
- /* Use a folding reduction within the loop to implement:
- for (int i = 0; i < VF; ++i)
- res = res OP val[i];
- (with no reassocation). */
- FOLD_LEFT_REDUCTION
- };
- #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
- || ((D) == vect_double_reduction_def) \
- || ((D) == vect_nested_cycle))
- /* Structure to encapsulate information about a group of like
- instructions to be presented to the target cost model. */
- struct stmt_info_for_cost {
- int count;
- enum vect_cost_for_stmt kind;
- gimple *stmt;
- int misalign;
- };
- typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
- /* Maps base addresses to an innermost_loop_behavior that gives the maximum
- known alignment for that base. */
- typedef hash_map<tree_operand_hash,
- innermost_loop_behavior *> vec_base_alignments;
- /************************************************************************
- SLP
- ************************************************************************/
- typedef struct _slp_tree *slp_tree;
- /* A computation tree of an SLP instance. Each node corresponds to a group of
- stmts to be packed in a SIMD stmt. */
- struct _slp_tree {
- /* Nodes that contain def-stmts of this node statements operands. */
- vec<slp_tree> children;
- /* A group of scalar stmts to be vectorized together. */
- vec<gimple *> stmts;
- /* Load permutation relative to the stores, NULL if there is no
- permutation. */
- vec<unsigned> load_permutation;
- /* Vectorized stmt/s. */
- vec<gimple *> vec_stmts;
- /* Number of vector stmts that are created to replace the group of scalar
- stmts. It is calculated during the transformation phase as the number of
- scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
- divided by vector size. */
- unsigned int vec_stmts_size;
- /* Whether the scalar computations use two different operators. */
- bool two_operators;
- /* The DEF type of this node. */
- enum vect_def_type def_type;
- };
- /* SLP instance is a sequence of stmts in a loop that can be packed into
- SIMD stmts. */
- typedef struct _slp_instance {
- /* The root of SLP tree. */
- slp_tree root;
- /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
- unsigned int group_size;
- /* The unrolling factor required to vectorized this SLP instance. */
- poly_uint64 unrolling_factor;
- /* The group of nodes that contain loads of this SLP instance. */
- vec<slp_tree> loads;
- /* The SLP node containing the reduction PHIs. */
- slp_tree reduc_phis;
- } *slp_instance;
- /* Access Functions. */
- #define SLP_INSTANCE_TREE(S) (S)->root
- #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
- #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
- #define SLP_INSTANCE_LOADS(S) (S)->loads
- #define SLP_TREE_CHILDREN(S) (S)->children
- #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
- #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
- #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
- #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
- #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
- #define SLP_TREE_DEF_TYPE(S) (S)->def_type
- /* Describes two objects whose addresses must be unequal for the vectorized
- loop to be valid. */
- typedef std::pair<tree, tree> vec_object_pair;
- /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
- UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
- struct vec_lower_bound {
- vec_lower_bound () {}
- vec_lower_bound (tree e, bool u, poly_uint64 m)
- : expr (e), unsigned_p (u), min_value (m) {}
- tree expr;
- bool unsigned_p;
- poly_uint64 min_value;
- };
- /* Vectorizer state common between loop and basic-block vectorization. */
- struct vec_info {
- enum vec_kind { bb, loop };
- vec_info (vec_kind, void *);
- ~vec_info ();
- /* The type of vectorization. */
- vec_kind kind;
- /* All SLP instances. */
- auto_vec<slp_instance> slp_instances;
- /* All data references. Freed by free_data_refs, so not an auto_vec. */
- vec<data_reference_p> datarefs;
- /* Maps base addresses to an innermost_loop_behavior that gives the maximum
- known alignment for that base. */
- vec_base_alignments base_alignments;
- /* All data dependences. Freed by free_dependence_relations, so not
- an auto_vec. */
- vec<ddr_p> ddrs;
- /* All interleaving chains of stores, represented by the first
- stmt in the chain. */
- auto_vec<gimple *> grouped_stores;
- /* Cost data used by the target cost model. */
- void *target_cost_data;
- };
- struct _loop_vec_info;
- struct _bb_vec_info;
- template<>
- template<>
- inline bool
- is_a_helper <_loop_vec_info *>::test (vec_info *i)
- {
- return i->kind == vec_info::loop;
- }
- template<>
- template<>
- inline bool
- is_a_helper <_bb_vec_info *>::test (vec_info *i)
- {
- return i->kind == vec_info::bb;
- }
- /* In general, we can divide the vector statements in a vectorized loop
- into related groups ("rgroups") and say that for each rgroup there is
- some nS such that the rgroup operates on nS values from one scalar
- iteration followed by nS values from the next. That is, if VF is the
- vectorization factor of the loop, the rgroup operates on a sequence:
- (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
- where (i,j) represents a scalar value with index j in a scalar
- iteration with index i.
- [ We use the term "rgroup" to emphasise that this grouping isn't
- necessarily the same as the grouping of statements used elsewhere.
- For example, if we implement a group of scalar loads using gather
- loads, we'll use a separate gather load for each scalar load, and
- thus each gather load will belong to its own rgroup. ]
- In general this sequence will occupy nV vectors concatenated
- together. If these vectors have nL lanes each, the total number
- of scalar values N is given by:
- N = nS * VF = nV * nL
- None of nS, VF, nV and nL are required to be a power of 2. nS and nV
- are compile-time constants but VF and nL can be variable (if the target
- supports variable-length vectors).
- In classical vectorization, each iteration of the vector loop would
- handle exactly VF iterations of the original scalar loop. However,
- in a fully-masked loop, a particular iteration of the vector loop
- might handle fewer than VF iterations of the scalar loop. The vector
- lanes that correspond to iterations of the scalar loop are said to be
- "active" and the other lanes are said to be "inactive".
- In a fully-masked loop, many rgroups need to be masked to ensure that
- they have no effect for the inactive lanes. Each such rgroup needs a
- sequence of booleans in the same order as above, but with each (i,j)
- replaced by a boolean that indicates whether iteration i is active.
- This sequence occupies nV vector masks that again have nL lanes each.
- Thus the mask sequence as a whole consists of VF independent booleans
- that are each repeated nS times.
- We make the simplifying assumption that if a sequence of nV masks is
- suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
- VIEW_CONVERTing it. This holds for all current targets that support
- fully-masked loops. For example, suppose the scalar loop is:
- float *f;
- double *d;
- for (int i = 0; i < n; ++i)
- {
- f[i * 2 + 0] += 1.0f;
- f[i * 2 + 1] += 2.0f;
- d[i] += 3.0;
- }
- and suppose that vectors have 256 bits. The vectorized f accesses
- will belong to one rgroup and the vectorized d access to another:
- f rgroup: nS = 2, nV = 1, nL = 8
- d rgroup: nS = 1, nV = 1, nL = 4
- VF = 4
- [ In this simple example the rgroups do correspond to the normal
- SLP grouping scheme. ]
- If only the first three lanes are active, the masks we need are:
- f rgroup: 1 1 | 1 1 | 1 1 | 0 0
- d rgroup: 1 | 1 | 1 | 0
- Here we can use a mask calculated for f's rgroup for d's, but not
- vice versa.
- Thus for each value of nV, it is enough to provide nV masks, with the
- mask being calculated based on the highest nL (or, equivalently, based
- on the highest nS) required by any rgroup with that nV. We therefore
- represent the entire collection of masks as a two-level table, with the
- first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
- the second being indexed by the mask index 0 <= i < nV. */
- /* The masks needed by rgroups with nV vectors, according to the
- description above. */
- struct rgroup_masks {
- /* The largest nS for all rgroups that use these masks. */
- unsigned int max_nscalars_per_iter;
- /* The type of mask to use, based on the highest nS recorded above. */
- tree mask_type;
- /* A vector of nV masks, in iteration order. */
- vec<tree> masks;
- };
- typedef auto_vec<rgroup_masks> vec_loop_masks;
- /*-----------------------------------------------------------------*/
- /* Info on vectorized loops. */
- /*-----------------------------------------------------------------*/
- typedef struct _loop_vec_info : public vec_info {
- _loop_vec_info (struct loop *);
- ~_loop_vec_info ();
- /* The loop to which this info struct refers to. */
- struct loop *loop;
- /* The loop basic blocks. */
- basic_block *bbs;
- /* Number of latch executions. */
- tree num_itersm1;
- /* Number of iterations. */
- tree num_iters;
- /* Number of iterations of the original loop. */
- tree num_iters_unchanged;
- /* Condition under which this loop is analyzed and versioned. */
- tree num_iters_assumptions;
- /* Threshold of number of iterations below which vectorzation will not be
- performed. It is calculated from MIN_PROFITABLE_ITERS and
- PARAM_MIN_VECT_LOOP_BOUND. */
- unsigned int th;
- /* When applying loop versioning, the vector form should only be used
- if the number of scalar iterations is >= this value, on top of all
- the other requirements. Ignored when loop versioning is not being
- used. */
- poly_uint64 versioning_threshold;
- /* Unrolling factor */
- poly_uint64 vectorization_factor;
- /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
- if there is no particular limit. */
- unsigned HOST_WIDE_INT max_vectorization_factor;
- /* The masks that a fully-masked loop should use to avoid operating
- on inactive scalars. */
- vec_loop_masks masks;
- /* If we are using a loop mask to align memory addresses, this variable
- contains the number of vector elements that we should skip in the
- first iteration of the vector loop (i.e. the number of leading
- elements that should be false in the first mask). */
- tree mask_skip_niters;
- /* Type of the variables to use in the WHILE_ULT call for fully-masked
- loops. */
- tree mask_compare_type;
- /* Unknown DRs according to which loop was peeled. */
- struct data_reference *unaligned_dr;
- /* peeling_for_alignment indicates whether peeling for alignment will take
- place, and what the peeling factor should be:
- peeling_for_alignment = X means:
- If X=0: Peeling for alignment will not be applied.
- If X>0: Peel first X iterations.
- If X=-1: Generate a runtime test to calculate the number of iterations
- to be peeled, using the dataref recorded in the field
- unaligned_dr. */
- int peeling_for_alignment;
- /* The mask used to check the alignment of pointers or arrays. */
- int ptr_mask;
- /* The loop nest in which the data dependences are computed. */
- auto_vec<loop_p> loop_nest;
- /* Data Dependence Relations defining address ranges that are candidates
- for a run-time aliasing check. */
- auto_vec<ddr_p> may_alias_ddrs;
- /* Data Dependence Relations defining address ranges together with segment
- lengths from which the run-time aliasing check is built. */
- auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
- /* Check that the addresses of each pair of objects is unequal. */
- auto_vec<vec_object_pair> check_unequal_addrs;
- /* List of values that are required to be nonzero. This is used to check
- whether things like "x[i * n] += 1;" are safe and eventually gets added
- to the checks for lower bounds below. */
- auto_vec<tree> check_nonzero;
- /* List of values that need to be checked for a minimum value. */
- auto_vec<vec_lower_bound> lower_bounds;
- /* Statements in the loop that have data references that are candidates for a
- runtime (loop versioning) misalignment check. */
- auto_vec<gimple *> may_misalign_stmts;
- /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
- auto_vec<gimple *> reductions;
- /* All reduction chains in the loop, represented by the first
- stmt in the chain. */
- auto_vec<gimple *> reduction_chains;
- /* Cost vector for a single scalar iteration. */
- auto_vec<stmt_info_for_cost> scalar_cost_vec;
- /* Map of IV base/step expressions to inserted name in the preheader. */
- hash_map<tree_operand_hash, tree> *ivexpr_map;
- /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
- applied to the loop, i.e., no unrolling is needed, this is 1. */
- poly_uint64 slp_unrolling_factor;
- /* Cost of a single scalar iteration. */
- int single_scalar_iteration_cost;
- /* Is the loop vectorizable? */
- bool vectorizable;
- /* Records whether we still have the option of using a fully-masked loop. */
- bool can_fully_mask_p;
- /* True if have decided to use a fully-masked loop. */
- bool fully_masked_p;
- /* When we have grouped data accesses with gaps, we may introduce invalid
- memory accesses. We peel the last iteration of the loop to prevent
- this. */
- bool peeling_for_gaps;
- /* When the number of iterations is not a multiple of the vector size
- we need to peel off iterations at the end to form an epilogue loop. */
- bool peeling_for_niter;
- /* Reductions are canonicalized so that the last operand is the reduction
- operand. If this places a constant into RHS1, this decanonicalizes
- GIMPLE for other phases, so we must track when this has occurred and
- fix it up. */
- bool operands_swapped;
- /* True if there are no loop carried data dependencies in the loop.
- If loop->safelen <= 1, then this is always true, either the loop
- didn't have any loop carried data dependencies, or the loop is being
- vectorized guarded with some runtime alias checks, or couldn't
- be vectorized at all, but then this field shouldn't be used.
- For loop->safelen >= 2, the user has asserted that there are no
- backward dependencies, but there still could be loop carried forward
- dependencies in such loops. This flag will be false if normal
- vectorizer data dependency analysis would fail or require versioning
- for alias, but because of loop->safelen >= 2 it has been vectorized
- even without versioning for alias. E.g. in:
- #pragma omp simd
- for (int i = 0; i < m; i++)
- a[i] = a[i + k] * c;
- (or #pragma simd or #pragma ivdep) we can vectorize this and it will
- DTRT even for k > 0 && k < m, but without safelen we would not
- vectorize this, so this field would be false. */
- bool no_data_dependencies;
- /* Mark loops having masked stores. */
- bool has_mask_store;
- /* If if-conversion versioned this loop before conversion, this is the
- loop version without if-conversion. */
- struct loop *scalar_loop;
- /* For loops being epilogues of already vectorized loops
- this points to the original vectorized loop. Otherwise NULL. */
- _loop_vec_info *orig_loop_info;
- } *loop_vec_info;
- /* Access Functions. */
- #define LOOP_VINFO_LOOP(L) (L)->loop
- #define LOOP_VINFO_BBS(L) (L)->bbs
- #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
- #define LOOP_VINFO_NITERS(L) (L)->num_iters
- /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
- prologue peeling retain total unchanged scalar loop iterations for
- cost model. */
- #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
- #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
- #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
- #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
- #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
- #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
- #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
- #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
- #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
- #define LOOP_VINFO_MASKS(L) (L)->masks
- #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
- #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
- #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
- #define LOOP_VINFO_LOOP_NEST(L) (L)->loop_nest
- #define LOOP_VINFO_DATAREFS(L) (L)->datarefs
- #define LOOP_VINFO_DDRS(L) (L)->ddrs
- #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
- #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
- #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
- #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
- #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
- #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
- #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
- #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
- #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
- #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
- #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
- #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
- #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
- #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
- #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
- #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
- #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
- #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
- #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
- #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
- #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
- #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
- #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
- #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
- #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
- ((L)->may_misalign_stmts.length () > 0)
- #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
- ((L)->comp_alias_ddrs.length () > 0 \
- || (L)->check_unequal_addrs.length () > 0 \
- || (L)->lower_bounds.length () > 0)
- #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
- (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
- #define LOOP_REQUIRES_VERSIONING(L) \
- (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
- || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
- || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
- #define LOOP_VINFO_NITERS_KNOWN_P(L) \
- (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
- #define LOOP_VINFO_EPILOGUE_P(L) \
- (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
- #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
- (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
- static inline loop_vec_info
- loop_vec_info_for_loop (struct loop *loop)
- {
- return (loop_vec_info) loop->aux;
- }
- static inline bool
- nested_in_vect_loop_p (struct loop *loop, gimple *stmt)
- {
- return (loop->inner
- && (loop->inner == (gimple_bb (stmt))->loop_father));
- }
- typedef struct _bb_vec_info : public vec_info
- {
- _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator);
- ~_bb_vec_info ();
- basic_block bb;
- gimple_stmt_iterator region_begin;
- gimple_stmt_iterator region_end;
- } *bb_vec_info;
- #define BB_VINFO_BB(B) (B)->bb
- #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
- #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
- #define BB_VINFO_DATAREFS(B) (B)->datarefs
- #define BB_VINFO_DDRS(B) (B)->ddrs
- #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
- static inline bb_vec_info
- vec_info_for_bb (basic_block bb)
- {
- return (bb_vec_info) bb->aux;
- }
- /*-----------------------------------------------------------------*/
- /* Info on vectorized defs. */
- /*-----------------------------------------------------------------*/
- enum stmt_vec_info_type {
- undef_vec_info_type = 0,
- load_vec_info_type,
- store_vec_info_type,
- shift_vec_info_type,
- op_vec_info_type,
- call_vec_info_type,
- call_simd_clone_vec_info_type,
- assignment_vec_info_type,
- condition_vec_info_type,
- comparison_vec_info_type,
- reduc_vec_info_type,
- induc_vec_info_type,
- type_promotion_vec_info_type,
- type_demotion_vec_info_type,
- type_conversion_vec_info_type,
- loop_exit_ctrl_vec_info_type
- };
- /* Indicates whether/how a variable is used in the scope of loop/basic
- block. */
- enum vect_relevant {
- vect_unused_in_scope = 0,
- /* The def is only used outside the loop. */
- vect_used_only_live,
- /* The def is in the inner loop, and the use is in the outer loop, and the
- use is a reduction stmt. */
- vect_used_in_outer_by_reduction,
- /* The def is in the inner loop, and the use is in the outer loop (and is
- not part of reduction). */
- vect_used_in_outer,
- /* defs that feed computations that end up (only) in a reduction. These
- defs may be used by non-reduction stmts, but eventually, any
- computations/values that are affected by these defs are used to compute
- a reduction (i.e. don't get stored to memory, for example). We use this
- to identify computations that we can change the order in which they are
- computed. */
- vect_used_by_reduction,
- vect_used_in_scope
- };
- /* The type of vectorization that can be applied to the stmt: regular loop-based
- vectorization; pure SLP - the stmt is a part of SLP instances and does not
- have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
- a part of SLP instance and also must be loop-based vectorized, since it has
- uses outside SLP sequences.
- In the loop context the meanings of pure and hybrid SLP are slightly
- different. By saying that pure SLP is applied to the loop, we mean that we
- exploit only intra-iteration parallelism in the loop; i.e., the loop can be
- vectorized without doing any conceptual unrolling, cause we don't pack
- together stmts from different iterations, only within a single iteration.
- Loop hybrid SLP means that we exploit both intra-iteration and
- inter-iteration parallelism (e.g., number of elements in the vector is 4
- and the slp-group-size is 2, in which case we don't have enough parallelism
- within an iteration, so we obtain the rest of the parallelism from subsequent
- iterations by unrolling the loop by 2). */
- enum slp_vect_type {
- loop_vect = 0,
- pure_slp,
- hybrid
- };
- /* Says whether a statement is a load, a store of a vectorized statement
- result, or a store of an invariant value. */
- enum vec_load_store_type {
- VLS_LOAD,
- VLS_STORE,
- VLS_STORE_INVARIANT
- };
- /* Describes how we're going to vectorize an individual load or store,
- or a group of loads or stores. */
- enum vect_memory_access_type {
- /* An access to an invariant address. This is used only for loads. */
- VMAT_INVARIANT,
- /* A simple contiguous access. */
- VMAT_CONTIGUOUS,
- /* A contiguous access that goes down in memory rather than up,
- with no additional permutation. This is used only for stores
- of invariants. */
- VMAT_CONTIGUOUS_DOWN,
- /* A simple contiguous access in which the elements need to be permuted
- after loading or before storing. Only used for loop vectorization;
- SLP uses separate permutes. */
- VMAT_CONTIGUOUS_PERMUTE,
- /* A simple contiguous access in which the elements need to be reversed
- after loading or before storing. */
- VMAT_CONTIGUOUS_REVERSE,
- /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
- VMAT_LOAD_STORE_LANES,
- /* An access in which each scalar element is loaded or stored
- individually. */
- VMAT_ELEMENTWISE,
- /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
- SLP accesses. Each unrolled iteration uses a contiguous load
- or store for the whole group, but the groups from separate iterations
- are combined in the same way as for VMAT_ELEMENTWISE. */
- VMAT_STRIDED_SLP,
- /* The access uses gather loads or scatter stores. */
- VMAT_GATHER_SCATTER
- };
- typedef struct data_reference *dr_p;
- typedef struct _stmt_vec_info {
- enum stmt_vec_info_type type;
- /* Indicates whether this stmts is part of a computation whose result is
- used outside the loop. */
- bool live;
- /* Stmt is part of some pattern (computation idiom) */
- bool in_pattern_p;
- /* Is this statement vectorizable or should it be skipped in (partial)
- vectorization. */
- bool vectorizable;
- /* The stmt to which this info struct refers to. */
- gimple *stmt;
- /* The vec_info with respect to which STMT is vectorized. */
- vec_info *vinfo;
- /* The vector type to be used for the LHS of this statement. */
- tree vectype;
- /* The vectorized version of the stmt. */
- gimple *vectorized_stmt;
- /* The following is relevant only for stmts that contain a non-scalar
- data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
- at most one such data-ref. */
- /* Information about the data-ref (access function, etc),
- relative to the inner-most containing loop. */
- struct data_reference *data_ref_info;
- /* Information about the data-ref relative to this loop
- nest (the loop that is being considered for vectorization). */
- innermost_loop_behavior dr_wrt_vec_loop;
- /* For loop PHI nodes, the base and evolution part of it. This makes sure
- this information is still available in vect_update_ivs_after_vectorizer
- where we may not be able to re-analyze the PHI nodes evolution as
- peeling for the prologue loop can make it unanalyzable. The evolution
- part is still correct after peeling, but the base may have changed from
- the version here. */
- tree loop_phi_evolution_base_unchanged;
- tree loop_phi_evolution_part;
- /* Used for various bookkeeping purposes, generally holding a pointer to
- some other stmt S that is in some way "related" to this stmt.
- Current use of this field is:
- If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
- true): S is the "pattern stmt" that represents (and replaces) the
- sequence of stmts that constitutes the pattern. Similarly, the
- related_stmt of the "pattern stmt" points back to this stmt (which is
- the last stmt in the original sequence of stmts that constitutes the
- pattern). */
- gimple *related_stmt;
- /* Used to keep a sequence of def stmts of a pattern stmt if such exists. */
- gimple_seq pattern_def_seq;
- /* List of datarefs that are known to have the same alignment as the dataref
- of this stmt. */
- vec<dr_p> same_align_refs;
- /* Selected SIMD clone's function info. First vector element
- is SIMD clone's function decl, followed by a pair of trees (base + step)
- for linear arguments (pair of NULLs for other arguments). */
- vec<tree> simd_clone_info;
- /* Classify the def of this stmt. */
- enum vect_def_type def_type;
- /* Whether the stmt is SLPed, loop-based vectorized, or both. */
- enum slp_vect_type slp_type;
- /* Interleaving and reduction chains info. */
- /* First element in the group. */
- gimple *first_element;
- /* Pointer to the next element in the group. */
- gimple *next_element;
- /* For data-refs, in case that two or more stmts share data-ref, this is the
- pointer to the previously detected stmt with the same dr. */
- gimple *same_dr_stmt;
- /* The size of the group. */
- unsigned int size;
- /* For stores, number of stores from this group seen. We vectorize the last
- one. */
- unsigned int store_count;
- /* For loads only, the gap from the previous load. For consecutive loads, GAP
- is 1. */
- unsigned int gap;
- /* The minimum negative dependence distance this stmt participates in
- or zero if none. */
- unsigned int min_neg_dist;
- /* Not all stmts in the loop need to be vectorized. e.g, the increment
- of the loop induction variable and computation of array indexes. relevant
- indicates whether the stmt needs to be vectorized. */
- enum vect_relevant relevant;
- /* For loads if this is a gather, for stores if this is a scatter. */
- bool gather_scatter_p;
- /* True if this is an access with loop-invariant stride. */
- bool strided_p;
- /* For both loads and stores. */
- bool simd_lane_access_p;
- /* Classifies how the load or store is going to be implemented
- for loop vectorization. */
- vect_memory_access_type memory_access_type;
- /* For reduction loops, this is the type of reduction. */
- enum vect_reduction_type v_reduc_type;
- /* For CONST_COND_REDUCTION, record the reduc code. */
- enum tree_code const_cond_reduc_code;
- /* On a reduction PHI the reduction type as detected by
- vect_force_simple_reduction. */
- enum vect_reduction_type reduc_type;
- /* On a reduction PHI the def returned by vect_force_simple_reduction.
- On the def returned by vect_force_simple_reduction the
- corresponding PHI. */
- gimple *reduc_def;
- /* The number of scalar stmt references from active SLP instances. */
- unsigned int num_slp_uses;
- } *stmt_vec_info;
- /* Information about a gather/scatter call. */
- struct gather_scatter_info {
- /* The internal function to use for the gather/scatter operation,
- or IFN_LAST if a built-in function should be used instead. */
- internal_fn ifn;
- /* The FUNCTION_DECL for the built-in gather/scatter function,
- or null if an internal function should be used instead. */
- tree decl;
- /* The loop-invariant base value. */
- tree base;
- /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
- tree offset;
- /* Each offset element should be multiplied by this amount before
- being added to the base. */
- int scale;
- /* The definition type for the vectorized offset. */
- enum vect_def_type offset_dt;
- /* The type of the vectorized offset. */
- tree offset_vectype;
- /* The type of the scalar elements after loading or before storing. */
- tree element_type;
- /* The type of the scalar elements being loaded or stored. */
- tree memory_type;
- };
- /* Access Functions. */
- #define STMT_VINFO_TYPE(S) (S)->type
- #define STMT_VINFO_STMT(S) (S)->stmt
- inline loop_vec_info
- STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
- {
- if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
- return loop_vinfo;
- return NULL;
- }
- inline bb_vec_info
- STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
- {
- if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
- return bb_vinfo;
- return NULL;
- }
- #define STMT_VINFO_RELEVANT(S) (S)->relevant
- #define STMT_VINFO_LIVE_P(S) (S)->live
- #define STMT_VINFO_VECTYPE(S) (S)->vectype
- #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
- #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
- #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
- #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
- #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
- #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
- #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
- #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
- #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
- #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
- #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
- #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
- #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
- #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
- #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
- #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
- (S)->dr_wrt_vec_loop.base_misalignment
- #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
- (S)->dr_wrt_vec_loop.offset_alignment
- #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
- (S)->dr_wrt_vec_loop.step_alignment
- #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
- #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
- #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
- #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
- #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
- #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
- #define STMT_VINFO_GROUP_FIRST_ELEMENT(S) (S)->first_element
- #define STMT_VINFO_GROUP_NEXT_ELEMENT(S) (S)->next_element
- #define STMT_VINFO_GROUP_SIZE(S) (S)->size
- #define STMT_VINFO_GROUP_STORE_COUNT(S) (S)->store_count
- #define STMT_VINFO_GROUP_GAP(S) (S)->gap
- #define STMT_VINFO_GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
- #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->first_element != NULL && (S)->data_ref_info)
- #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
- #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
- #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
- #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
- #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
- #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
- #define GROUP_FIRST_ELEMENT(S) (S)->first_element
- #define GROUP_NEXT_ELEMENT(S) (S)->next_element
- #define GROUP_SIZE(S) (S)->size
- #define GROUP_STORE_COUNT(S) (S)->store_count
- #define GROUP_GAP(S) (S)->gap
- #define GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
- #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
- #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
- #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
- #define STMT_SLP_TYPE(S) (S)->slp_type
- struct dataref_aux {
- /* The misalignment in bytes of the reference, or -1 if not known. */
- int misalignment;
- /* The byte alignment that we'd ideally like the reference to have,
- and the value that misalignment is measured against. */
- int target_alignment;
- /* If true the alignment of base_decl needs to be increased. */
- bool base_misaligned;
- tree base_decl;
- };
- #define DR_VECT_AUX(dr) ((dataref_aux *)(dr)->aux)
- #define VECT_MAX_COST 1000
- /* The maximum number of intermediate steps required in multi-step type
- conversion. */
- #define MAX_INTERM_CVT_STEPS 3
- #define MAX_VECTORIZATION_FACTOR INT_MAX
- /* Nonzero if TYPE represents a (scalar) boolean type or type
- in the middle-end compatible with it (unsigned precision 1 integral
- types). Used to determine which types should be vectorized as
- VECTOR_BOOLEAN_TYPE_P. */
- #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
- (TREE_CODE (TYPE) == BOOLEAN_TYPE \
- || ((TREE_CODE (TYPE) == INTEGER_TYPE \
- || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
- && TYPE_PRECISION (TYPE) == 1 \
- && TYPE_UNSIGNED (TYPE)))
- extern vec<stmt_vec_info> stmt_vec_info_vec;
- void init_stmt_vec_info_vec (void);
- void free_stmt_vec_info_vec (void);
- /* Return a stmt_vec_info corresponding to STMT. */
- static inline stmt_vec_info
- vinfo_for_stmt (gimple *stmt)
- {
- int uid = gimple_uid (stmt);
- if (uid <= 0)
- return NULL;
- return stmt_vec_info_vec[uid - 1];
- }
- /* Set vectorizer information INFO for STMT. */
- static inline void
- set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
- {
- unsigned int uid = gimple_uid (stmt);
- if (uid == 0)
- {
- gcc_checking_assert (info);
- uid = stmt_vec_info_vec.length () + 1;
- gimple_set_uid (stmt, uid);
- stmt_vec_info_vec.safe_push (info);
- }
- else
- {
- gcc_checking_assert (info == NULL);
- stmt_vec_info_vec[uid - 1] = info;
- }
- }
- /* Return TRUE if a statement represented by STMT_INFO is a part of a
- pattern. */
- static inline bool
- is_pattern_stmt_p (stmt_vec_info stmt_info)
- {
- gimple *related_stmt;
- stmt_vec_info related_stmt_info;
- related_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
- if (related_stmt
- && (related_stmt_info = vinfo_for_stmt (related_stmt))
- && STMT_VINFO_IN_PATTERN_P (related_stmt_info))
- return true;
- return false;
- }
- /* Return the later statement between STMT1 and STMT2. */
- static inline gimple *
- get_later_stmt (gimple *stmt1, gimple *stmt2)
- {
- unsigned int uid1, uid2;
- if (stmt1 == NULL)
- return stmt2;
- if (stmt2 == NULL)
- return stmt1;
- stmt_vec_info stmt_info1 = vinfo_for_stmt (stmt1);
- stmt_vec_info stmt_info2 = vinfo_for_stmt (stmt2);
- uid1 = gimple_uid (is_pattern_stmt_p (stmt_info1)
- ? STMT_VINFO_RELATED_STMT (stmt_info1) : stmt1);
- uid2 = gimple_uid (is_pattern_stmt_p (stmt_info2)
- ? STMT_VINFO_RELATED_STMT (stmt_info2) : stmt2);
- if (uid1 == 0 || uid2 == 0)
- return NULL;
- gcc_assert (uid1 <= stmt_vec_info_vec.length ());
- gcc_assert (uid2 <= stmt_vec_info_vec.length ());
- if (uid1 > uid2)
- return stmt1;
- else
- return stmt2;
- }
- /* Return true if BB is a loop header. */
- static inline bool
- is_loop_header_bb_p (basic_block bb)
- {
- if (bb == (bb->loop_father)->header)
- return true;
- gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
- return false;
- }
- /* Return pow2 (X). */
- static inline int
- vect_pow2 (int x)
- {
- int i, res = 1;
- for (i = 0; i < x; i++)
- res *= 2;
- return res;
- }
- /* Alias targetm.vectorize.builtin_vectorization_cost. */
- static inline int
- builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
- tree vectype, int misalign)
- {
- return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
- vectype, misalign);
- }
- /* Get cost by calling cost target builtin. */
- static inline
- int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
- {
- return builtin_vectorization_cost (type_of_cost, NULL, 0);
- }
- /* Alias targetm.vectorize.init_cost. */
- static inline void *
- init_cost (struct loop *loop_info)
- {
- return targetm.vectorize.init_cost (loop_info);
- }
- /* Alias targetm.vectorize.add_stmt_cost. */
- static inline unsigned
- add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
- stmt_vec_info stmt_info, int misalign,
- enum vect_cost_model_location where)
- {
- return targetm.vectorize.add_stmt_cost (data, count, kind,
- stmt_info, misalign, where);
- }
- /* Alias targetm.vectorize.finish_cost. */
- static inline void
- finish_cost (void *data, unsigned *prologue_cost,
- unsigned *body_cost, unsigned *epilogue_cost)
- {
- targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
- }
- /* Alias targetm.vectorize.destroy_cost_data. */
- static inline void
- destroy_cost_data (void *data)
- {
- targetm.vectorize.destroy_cost_data (data);
- }
- /*-----------------------------------------------------------------*/
- /* Info on data references alignment. */
- /*-----------------------------------------------------------------*/
- inline void
- set_dr_misalignment (struct data_reference *dr, int val)
- {
- dataref_aux *data_aux = DR_VECT_AUX (dr);
- if (!data_aux)
- {
- data_aux = XCNEW (dataref_aux);
- dr->aux = data_aux;
- }
- data_aux->misalignment = val;
- }
- inline int
- dr_misalignment (struct data_reference *dr)
- {
- return DR_VECT_AUX (dr)->misalignment;
- }
- /* Reflects actual alignment of first access in the vectorized loop,
- taking into account peeling/versioning if applied. */
- #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
- #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
- #define DR_MISALIGNMENT_UNKNOWN (-1)
- /* Only defined once DR_MISALIGNMENT is defined. */
- #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment
- /* Return true if data access DR is aligned to its target alignment
- (which may be less than a full vector). */
- static inline bool
- aligned_access_p (struct data_reference *data_ref_info)
- {
- return (DR_MISALIGNMENT (data_ref_info) == 0);
- }
- /* Return TRUE if the alignment of the data access is known, and FALSE
- otherwise. */
- static inline bool
- known_alignment_for_access_p (struct data_reference *data_ref_info)
- {
- return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
- }
- /* Return the minimum alignment in bytes that the vectorized version
- of DR is guaranteed to have. */
- static inline unsigned int
- vect_known_alignment_in_bytes (struct data_reference *dr)
- {
- if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN)
- return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
- if (DR_MISALIGNMENT (dr) == 0)
- return DR_TARGET_ALIGNMENT (dr);
- return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr);
- }
- /* Return the behavior of DR with respect to the vectorization context
- (which for outer loop vectorization might not be the behavior recorded
- in DR itself). */
- static inline innermost_loop_behavior *
- vect_dr_behavior (data_reference *dr)
- {
- gimple *stmt = DR_STMT (dr);
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- if (loop_vinfo == NULL
- || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt))
- return &DR_INNERMOST (dr);
- else
- return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
- }
- /* Return true if the vect cost model is unlimited. */
- static inline bool
- unlimited_cost_model (loop_p loop)
- {
- if (loop != NULL && loop->force_vectorize
- && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
- return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
- return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
- }
- /* Return true if the loop described by LOOP_VINFO is fully-masked and
- if the first iteration should use a partial mask in order to achieve
- alignment. */
- static inline bool
- vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
- {
- return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
- && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
- }
- /* Return the number of vectors of type VECTYPE that are needed to get
- NUNITS elements. NUNITS should be based on the vectorization factor,
- so it is always a known multiple of the number of elements in VECTYPE. */
- static inline unsigned int
- vect_get_num_vectors (poly_uint64 nunits, tree vectype)
- {
- return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
- }
- /* Return the number of copies needed for loop vectorization when
- a statement operates on vectors of type VECTYPE. This is the
- vectorization factor divided by the number of elements in
- VECTYPE and is always known at compile time. */
- static inline unsigned int
- vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
- {
- return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
- }
- /* Update maximum unit count *MAX_NUNITS so that it accounts for
- the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
- if we haven't yet recorded any vector types. */
- static inline void
- vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
- {
- /* All unit counts have the form current_vector_size * X for some
- rational X, so two unit sizes must have a common multiple.
- Everything is a multiple of the initial value of 1. */
- poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
- *max_nunits = force_common_multiple (*max_nunits, nunits);
- }
- /* Return the vectorization factor that should be used for costing
- purposes while vectorizing the loop described by LOOP_VINFO.
- Pick a reasonable estimate if the vectorization factor isn't
- known at compile time. */
- static inline unsigned int
- vect_vf_for_cost (loop_vec_info loop_vinfo)
- {
- return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
- }
- /* Estimate the number of elements in VEC_TYPE for costing purposes.
- Pick a reasonable estimate if the exact number isn't known at
- compile time. */
- static inline unsigned int
- vect_nunits_for_cost (tree vec_type)
- {
- return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
- }
- /* Return the maximum possible vectorization factor for LOOP_VINFO. */
- static inline unsigned HOST_WIDE_INT
- vect_max_vf (loop_vec_info loop_vinfo)
- {
- unsigned HOST_WIDE_INT vf;
- if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
- return vf;
- return MAX_VECTORIZATION_FACTOR;
- }
- /* Return the size of the value accessed by unvectorized data reference DR.
- This is only valid once STMT_VINFO_VECTYPE has been calculated for the
- associated gimple statement, since that guarantees that DR accesses
- either a scalar or a scalar equivalent. ("Scalar equivalent" here
- includes things like V1SI, which can be vectorized in the same way
- as a plain SI.) */
- inline unsigned int
- vect_get_scalar_dr_size (struct data_reference *dr)
- {
- return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
- }
- /* Source location */
- extern source_location vect_location;
- /*-----------------------------------------------------------------*/
- /* Function prototypes. */
- /*-----------------------------------------------------------------*/
- /* Simple loop peeling and versioning utilities for vectorizer's purposes -
- in tree-vect-loop-manip.c. */
- extern void vect_set_loop_condition (struct loop *, loop_vec_info,
- tree, tree, tree, bool);
- extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
- struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
- struct loop *, edge);
- extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
- poly_uint64);
- extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
- tree *, tree *, tree *, int, bool, bool);
- extern void vect_prepare_for_masked_peels (loop_vec_info);
- extern source_location find_loop_location (struct loop *);
- extern bool vect_can_advance_ivs_p (loop_vec_info);
- /* In tree-vect-stmts.c. */
- extern poly_uint64 current_vector_size;
- extern tree get_vectype_for_scalar_type (tree);
- extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
- extern tree get_mask_type_for_scalar_type (tree);
- extern tree get_same_sized_vectype (tree, tree);
- extern bool vect_get_loop_mask_type (loop_vec_info);
- extern bool vect_is_simple_use (tree, vec_info *, gimple **,
- enum vect_def_type *);
- extern bool vect_is_simple_use (tree, vec_info *, gimple **,
- enum vect_def_type *, tree *);
- extern bool supportable_widening_operation (enum tree_code, gimple *, tree,
- tree, enum tree_code *,
- enum tree_code *, int *,
- vec<tree> *);
- extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
- enum tree_code *,
- int *, vec<tree> *);
- extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
- extern void free_stmt_vec_info (gimple *stmt);
- extern void vect_model_simple_cost (stmt_vec_info, int, enum vect_def_type *,
- int, stmt_vector_for_cost *,
- stmt_vector_for_cost *);
- extern void vect_model_store_cost (stmt_vec_info, int, vect_memory_access_type,
- vec_load_store_type, slp_tree,
- stmt_vector_for_cost *,
- stmt_vector_for_cost *);
- extern void vect_model_load_cost (stmt_vec_info, int, vect_memory_access_type,
- slp_tree, stmt_vector_for_cost *,
- stmt_vector_for_cost *);
- extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
- enum vect_cost_for_stmt, stmt_vec_info,
- int, enum vect_cost_model_location);
- extern void vect_finish_replace_stmt (gimple *, gimple *);
- extern void vect_finish_stmt_generation (gimple *, gimple *,
- gimple_stmt_iterator *);
- extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
- extern tree vect_get_store_rhs (gimple *);
- extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type);
- extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL);
- extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *,
- vec<tree> *, slp_tree);
- extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *,
- vec<tree> *, vec<tree> *);
- extern tree vect_init_vector (gimple *, tree, tree,
- gimple_stmt_iterator *);
- extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
- extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *,
- bool *, slp_tree, slp_instance);
- extern void vect_remove_stores (gimple *);
- extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance);
- extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *,
- gimple **, tree, int, slp_tree);
- extern void vect_get_load_cost (struct data_reference *, int, bool,
- unsigned int *, unsigned int *,
- stmt_vector_for_cost *,
- stmt_vector_for_cost *, bool);
- extern void vect_get_store_cost (struct data_reference *, int,
- unsigned int *, stmt_vector_for_cost *);
- extern bool vect_supportable_shift (enum tree_code, tree);
- extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
- extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
- extern void optimize_mask_stores (struct loop*);
- extern gcall *vect_gen_while (tree, tree, tree);
- extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
- /* In tree-vect-data-refs.c. */
- extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
- extern enum dr_alignment_support vect_supportable_dr_alignment
- (struct data_reference *, bool);
- extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *,
- HOST_WIDE_INT *);
- extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
- extern bool vect_slp_analyze_instance_dependence (slp_instance);
- extern bool vect_enhance_data_refs_alignment (loop_vec_info);
- extern bool vect_analyze_data_refs_alignment (loop_vec_info);
- extern bool vect_verify_datarefs_alignment (loop_vec_info);
- extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
- extern bool vect_analyze_data_ref_accesses (vec_info *);
- extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
- extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
- signop, int, internal_fn *, tree *);
- extern bool vect_check_gather_scatter (gimple *, loop_vec_info,
- gather_scatter_info *);
- extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
- extern void vect_record_base_alignments (vec_info *);
- extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree,
- tree *, gimple_stmt_iterator *,
- gimple **, bool, bool *,
- tree = NULL_TREE, tree = NULL_TREE);
- extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *,
- tree);
- extern void vect_copy_ref_info (tree, tree);
- extern tree vect_create_destination_var (tree, tree);
- extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
- extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
- extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
- extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
- extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *,
- gimple_stmt_iterator *, vec<tree> *);
- extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *,
- enum dr_alignment_support, tree,
- struct loop **);
- extern void vect_transform_grouped_load (gimple *, vec<tree> , int,
- gimple_stmt_iterator *);
- extern void vect_record_grouped_load_vectors (gimple *, vec<tree> );
- extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
- extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
- const char * = NULL);
- extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *,
- tree, tree = NULL_TREE);
- /* In tree-vect-loop.c. */
- /* FORNOW: Used in tree-parloops.c. */
- extern gimple *vect_force_simple_reduction (loop_vec_info, gimple *,
- bool *, bool);
- /* Used in gimple-loop-interchange.c. */
- extern bool check_reduction_path (location_t, loop_p, gphi *, tree,
- enum tree_code);
- /* Drive for loop analysis stage. */
- extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info);
- extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
- extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
- tree *, bool);
- extern tree vect_halve_mask_nunits (tree);
- extern tree vect_double_mask_nunits (tree);
- extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
- unsigned int, tree);
- extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
- unsigned int, tree, unsigned int);
- /* Drive for loop transformation stage. */
- extern struct loop *vect_transform_loop (loop_vec_info);
- extern loop_vec_info vect_analyze_loop_form (struct loop *);
- extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *,
- slp_tree, int, gimple **);
- extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *,
- gimple **, slp_tree, slp_instance);
- extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *,
- gimple **, slp_tree);
- extern tree get_initial_def_for_reduction (gimple *, tree, tree *);
- extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
- extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
- stmt_vector_for_cost *,
- stmt_vector_for_cost *,
- stmt_vector_for_cost *);
- extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
- /* In tree-vect-slp.c. */
- extern void vect_free_slp_instance (slp_instance);
- extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
- gimple_stmt_iterator *, poly_uint64,
- slp_instance, bool, unsigned *);
- extern bool vect_slp_analyze_operations (vec_info *);
- extern bool vect_schedule_slp (vec_info *);
- extern bool vect_analyze_slp (vec_info *, unsigned);
- extern bool vect_make_slp_decision (loop_vec_info);
- extern void vect_detect_hybrid_slp (loop_vec_info);
- extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
- extern bool vect_slp_bb (basic_block);
- extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree);
- extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info);
- extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
- unsigned int * = NULL,
- tree * = NULL, tree * = NULL);
- extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
- unsigned int, vec<tree> &);
- extern int vect_get_place_in_interleaving_chain (gimple *, gimple *);
- /* In tree-vect-patterns.c. */
- /* Pattern recognition functions.
- Additional pattern recognition functions can (and will) be added
- in the future. */
- typedef gimple *(* vect_recog_func_ptr) (vec<gimple *> *, tree *, tree *);
- #define NUM_PATTERNS 15
- void vect_pattern_recog (vec_info *);
- /* In tree-vectorizer.c. */
- unsigned vectorize_loops (void);
- bool vect_stmt_in_region_p (vec_info *, gimple *);
- void vect_free_loop_info_assumptions (struct loop *);
- #endif /* GCC_TREE_VECTORIZER_H */
|