| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452 |
- // Special functions -*- C++ -*-
- // Copyright (C) 2006-2018 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- //
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
- /** @file tr1/modified_bessel_func.tcc
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{tr1/cmath}
- */
- //
- // ISO C++ 14882 TR1: 5.2 Special functions
- //
- // Written by Edward Smith-Rowland.
- //
- // References:
- // (1) Handbook of Mathematical Functions,
- // Ed. Milton Abramowitz and Irene A. Stegun,
- // Dover Publications,
- // Section 9, pp. 355-434, Section 10 pp. 435-478
- // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
- // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
- // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
- // 2nd ed, pp. 246-249.
- #ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
- #define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1
- #include "special_function_util.h"
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
- #if _GLIBCXX_USE_STD_SPEC_FUNCS
- #elif defined(_GLIBCXX_TR1_CMATH)
- namespace tr1
- {
- #else
- # error do not include this header directly, use <cmath> or <tr1/cmath>
- #endif
- // [5.2] Special functions
- // Implementation-space details.
- namespace __detail
- {
- /**
- * @brief Compute the modified Bessel functions @f$ I_\nu(x) @f$ and
- * @f$ K_\nu(x) @f$ and their first derivatives
- * @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively.
- * These four functions are computed together for numerical
- * stability.
- *
- * @param __nu The order of the Bessel functions.
- * @param __x The argument of the Bessel functions.
- * @param __Inu The output regular modified Bessel function.
- * @param __Knu The output irregular modified Bessel function.
- * @param __Ipnu The output derivative of the regular
- * modified Bessel function.
- * @param __Kpnu The output derivative of the irregular
- * modified Bessel function.
- */
- template <typename _Tp>
- void
- __bessel_ik(_Tp __nu, _Tp __x,
- _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu)
- {
- if (__x == _Tp(0))
- {
- if (__nu == _Tp(0))
- {
- __Inu = _Tp(1);
- __Ipnu = _Tp(0);
- }
- else if (__nu == _Tp(1))
- {
- __Inu = _Tp(0);
- __Ipnu = _Tp(0.5L);
- }
- else
- {
- __Inu = _Tp(0);
- __Ipnu = _Tp(0);
- }
- __Knu = std::numeric_limits<_Tp>::infinity();
- __Kpnu = -std::numeric_limits<_Tp>::infinity();
- return;
- }
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
- const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon();
- const int __max_iter = 15000;
- const _Tp __x_min = _Tp(2);
- const int __nl = static_cast<int>(__nu + _Tp(0.5L));
- const _Tp __mu = __nu - __nl;
- const _Tp __mu2 = __mu * __mu;
- const _Tp __xi = _Tp(1) / __x;
- const _Tp __xi2 = _Tp(2) * __xi;
- _Tp __h = __nu * __xi;
- if ( __h < __fp_min )
- __h = __fp_min;
- _Tp __b = __xi2 * __nu;
- _Tp __d = _Tp(0);
- _Tp __c = __h;
- int __i;
- for ( __i = 1; __i <= __max_iter; ++__i )
- {
- __b += __xi2;
- __d = _Tp(1) / (__b + __d);
- __c = __b + _Tp(1) / __c;
- const _Tp __del = __c * __d;
- __h *= __del;
- if (std::abs(__del - _Tp(1)) < __eps)
- break;
- }
- if (__i > __max_iter)
- std::__throw_runtime_error(__N("Argument x too large "
- "in __bessel_ik; "
- "try asymptotic expansion."));
- _Tp __Inul = __fp_min;
- _Tp __Ipnul = __h * __Inul;
- _Tp __Inul1 = __Inul;
- _Tp __Ipnu1 = __Ipnul;
- _Tp __fact = __nu * __xi;
- for (int __l = __nl; __l >= 1; --__l)
- {
- const _Tp __Inutemp = __fact * __Inul + __Ipnul;
- __fact -= __xi;
- __Ipnul = __fact * __Inutemp + __Inul;
- __Inul = __Inutemp;
- }
- _Tp __f = __Ipnul / __Inul;
- _Tp __Kmu, __Knu1;
- if (__x < __x_min)
- {
- const _Tp __x2 = __x / _Tp(2);
- const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
- const _Tp __fact = (std::abs(__pimu) < __eps
- ? _Tp(1) : __pimu / std::sin(__pimu));
- _Tp __d = -std::log(__x2);
- _Tp __e = __mu * __d;
- const _Tp __fact2 = (std::abs(__e) < __eps
- ? _Tp(1) : std::sinh(__e) / __e);
- _Tp __gam1, __gam2, __gampl, __gammi;
- __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
- _Tp __ff = __fact
- * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
- _Tp __sum = __ff;
- __e = std::exp(__e);
- _Tp __p = __e / (_Tp(2) * __gampl);
- _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi);
- _Tp __c = _Tp(1);
- __d = __x2 * __x2;
- _Tp __sum1 = __p;
- int __i;
- for (__i = 1; __i <= __max_iter; ++__i)
- {
- __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
- __c *= __d / __i;
- __p /= __i - __mu;
- __q /= __i + __mu;
- const _Tp __del = __c * __ff;
- __sum += __del;
- const _Tp __del1 = __c * (__p - __i * __ff);
- __sum1 += __del1;
- if (std::abs(__del) < __eps * std::abs(__sum))
- break;
- }
- if (__i > __max_iter)
- std::__throw_runtime_error(__N("Bessel k series failed to converge "
- "in __bessel_ik."));
- __Kmu = __sum;
- __Knu1 = __sum1 * __xi2;
- }
- else
- {
- _Tp __b = _Tp(2) * (_Tp(1) + __x);
- _Tp __d = _Tp(1) / __b;
- _Tp __delh = __d;
- _Tp __h = __delh;
- _Tp __q1 = _Tp(0);
- _Tp __q2 = _Tp(1);
- _Tp __a1 = _Tp(0.25L) - __mu2;
- _Tp __q = __c = __a1;
- _Tp __a = -__a1;
- _Tp __s = _Tp(1) + __q * __delh;
- int __i;
- for (__i = 2; __i <= __max_iter; ++__i)
- {
- __a -= 2 * (__i - 1);
- __c = -__a * __c / __i;
- const _Tp __qnew = (__q1 - __b * __q2) / __a;
- __q1 = __q2;
- __q2 = __qnew;
- __q += __c * __qnew;
- __b += _Tp(2);
- __d = _Tp(1) / (__b + __a * __d);
- __delh = (__b * __d - _Tp(1)) * __delh;
- __h += __delh;
- const _Tp __dels = __q * __delh;
- __s += __dels;
- if ( std::abs(__dels / __s) < __eps )
- break;
- }
- if (__i > __max_iter)
- std::__throw_runtime_error(__N("Steed's method failed "
- "in __bessel_ik."));
- __h = __a1 * __h;
- __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x))
- * std::exp(-__x) / __s;
- __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi;
- }
- _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1;
- _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu);
- __Inu = __Inumu * __Inul1 / __Inul;
- __Ipnu = __Inumu * __Ipnu1 / __Inul;
- for ( __i = 1; __i <= __nl; ++__i )
- {
- const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu;
- __Kmu = __Knu1;
- __Knu1 = __Knutemp;
- }
- __Knu = __Kmu;
- __Kpnu = __nu * __xi * __Kmu - __Knu1;
-
- return;
- }
- /**
- * @brief Return the regular modified Bessel function of order
- * \f$ \nu \f$: \f$ I_{\nu}(x) \f$.
- *
- * The regular modified cylindrical Bessel function is:
- * @f[
- * I_{\nu}(x) = \sum_{k=0}^{\infty}
- * \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
- * @f]
- *
- * @param __nu The order of the regular modified Bessel function.
- * @param __x The argument of the regular modified Bessel function.
- * @return The output regular modified Bessel function.
- */
- template<typename _Tp>
- _Tp
- __cyl_bessel_i(_Tp __nu, _Tp __x)
- {
- if (__nu < _Tp(0) || __x < _Tp(0))
- std::__throw_domain_error(__N("Bad argument "
- "in __cyl_bessel_i."));
- else if (__isnan(__nu) || __isnan(__x))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
- return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200);
- else
- {
- _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
- __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
- return __I_nu;
- }
- }
- /**
- * @brief Return the irregular modified Bessel function
- * \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$.
- *
- * The irregular modified Bessel function is defined by:
- * @f[
- * K_{\nu}(x) = \frac{\pi}{2}
- * \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}
- * @f]
- * where for integral \f$ \nu = n \f$ a limit is taken:
- * \f$ lim_{\nu \to n} \f$.
- *
- * @param __nu The order of the irregular modified Bessel function.
- * @param __x The argument of the irregular modified Bessel function.
- * @return The output irregular modified Bessel function.
- */
- template<typename _Tp>
- _Tp
- __cyl_bessel_k(_Tp __nu, _Tp __x)
- {
- if (__nu < _Tp(0) || __x < _Tp(0))
- std::__throw_domain_error(__N("Bad argument "
- "in __cyl_bessel_k."));
- else if (__isnan(__nu) || __isnan(__x))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else
- {
- _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
- __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
- return __K_nu;
- }
- }
- /**
- * @brief Compute the spherical modified Bessel functions
- * @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first
- * derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$
- * respectively.
- *
- * @param __n The order of the modified spherical Bessel function.
- * @param __x The argument of the modified spherical Bessel function.
- * @param __i_n The output regular modified spherical Bessel function.
- * @param __k_n The output irregular modified spherical
- * Bessel function.
- * @param __ip_n The output derivative of the regular modified
- * spherical Bessel function.
- * @param __kp_n The output derivative of the irregular modified
- * spherical Bessel function.
- */
- template <typename _Tp>
- void
- __sph_bessel_ik(unsigned int __n, _Tp __x,
- _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)
- {
- const _Tp __nu = _Tp(__n) + _Tp(0.5L);
- _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
- __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
- const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
- / std::sqrt(__x);
- __i_n = __factor * __I_nu;
- __k_n = __factor * __K_nu;
- __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x);
- __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x);
- return;
- }
- /**
- * @brief Compute the Airy functions
- * @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first
- * derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$
- * respectively.
- *
- * @param __x The argument of the Airy functions.
- * @param __Ai The output Airy function of the first kind.
- * @param __Bi The output Airy function of the second kind.
- * @param __Aip The output derivative of the Airy function
- * of the first kind.
- * @param __Bip The output derivative of the Airy function
- * of the second kind.
- */
- template <typename _Tp>
- void
- __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip)
- {
- const _Tp __absx = std::abs(__x);
- const _Tp __rootx = std::sqrt(__absx);
- const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3);
- const _Tp _S_NaN = std::numeric_limits<_Tp>::quiet_NaN();
- const _Tp _S_inf = std::numeric_limits<_Tp>::infinity();
- if (__isnan(__x))
- __Bip = __Aip = __Bi = __Ai = std::numeric_limits<_Tp>::quiet_NaN();
- else if (__z == _S_inf)
- {
- __Aip = __Ai = _Tp(0);
- __Bip = __Bi = _S_inf;
- }
- else if (__z == -_S_inf)
- __Bip = __Aip = __Bi = __Ai = _Tp(0);
- else if (__x > _Tp(0))
- {
- _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
- __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
- __Ai = __rootx * __K_nu
- / (__numeric_constants<_Tp>::__sqrt3()
- * __numeric_constants<_Tp>::__pi());
- __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi()
- + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3());
- __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
- __Aip = -__x * __K_nu
- / (__numeric_constants<_Tp>::__sqrt3()
- * __numeric_constants<_Tp>::__pi());
- __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi()
- + _Tp(2) * __I_nu
- / __numeric_constants<_Tp>::__sqrt3());
- }
- else if (__x < _Tp(0))
- {
- _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu;
- __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
- __Ai = __rootx * (__J_nu
- - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
- __Bi = -__rootx * (__N_nu
- + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
- __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
- __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3()
- + __J_nu) / _Tp(2);
- __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3()
- - __N_nu) / _Tp(2);
- }
- else
- {
- // Reference:
- // Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions.
- // The number is Ai(0) = 3^{-2/3}/\Gamma(2/3).
- __Ai = _Tp(0.35502805388781723926L);
- __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3();
- // Reference:
- // Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions.
- // The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3).
- __Aip = -_Tp(0.25881940379280679840L);
- __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3();
- }
- return;
- }
- } // namespace __detail
- #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
- } // namespace tr1
- #endif
- _GLIBCXX_END_NAMESPACE_VERSION
- }
- #endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
|