| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451234522345323454234552345623457234582345923460234612346223463234642346523466234672346823469234702347123472234732347423475234762347723478234792348023481234822348323484234852348623487234882348923490234912349223493234942349523496234972349823499235002350123502235032350423505235062350723508235092351023511235122351323514235152351623517235182351923520235212352223523235242352523526235272352823529235302353123532235332353423535235362353723538235392354023541235422354323544235452354623547235482354923550235512355223553235542355523556235572355823559235602356123562235632356423565235662356723568235692357023571235722357323574235752357623577235782357923580235812358223583235842358523586235872358823589235902359123592235932359423595235962359723598235992360023601236022360323604236052360623607236082360923610236112361223613236142361523616236172361823619236202362123622236232362423625236262362723628236292363023631236322363323634236352363623637236382363923640236412364223643236442364523646236472364823649236502365123652236532365423655236562365723658236592366023661236622366323664236652366623667236682366923670236712367223673236742367523676236772367823679236802368123682236832368423685236862368723688236892369023691236922369323694236952369623697236982369923700237012370223703237042370523706237072370823709237102371123712237132371423715237162371723718237192372023721237222372323724237252372623727237282372923730237312373223733237342373523736237372373823739237402374123742237432374423745237462374723748237492375023751237522375323754237552375623757237582375923760237612376223763237642376523766237672376823769237702377123772237732377423775237762377723778237792378023781237822378323784237852378623787237882378923790237912379223793237942379523796237972379823799238002380123802238032380423805238062380723808238092381023811238122381323814238152381623817238182381923820238212382223823238242382523826238272382823829238302383123832238332383423835238362383723838238392384023841238422384323844238452384623847238482384923850238512385223853238542385523856238572385823859238602386123862238632386423865238662386723868238692387023871238722387323874238752387623877238782387923880238812388223883238842388523886238872388823889238902389123892238932389423895238962389723898238992390023901239022390323904239052390623907239082390923910239112391223913239142391523916239172391823919239202392123922239232392423925239262392723928239292393023931239322393323934239352393623937239382393923940239412394223943239442394523946239472394823949239502395123952239532395423955239562395723958239592396023961239622396323964239652396623967239682396923970239712397223973239742397523976239772397823979239802398123982239832398423985239862398723988239892399023991239922399323994239952399623997239982399924000240012400224003240042400524006240072400824009240102401124012240132401424015240162401724018240192402024021240222402324024240252402624027240282402924030240312403224033240342403524036240372403824039240402404124042240432404424045240462404724048240492405024051240522405324054240552405624057240582405924060240612406224063240642406524066240672406824069240702407124072240732407424075240762407724078240792408024081240822408324084240852408624087240882408924090240912409224093240942409524096240972409824099241002410124102241032410424105241062410724108241092411024111241122411324114241152411624117241182411924120241212412224123241242412524126241272412824129241302413124132241332413424135241362413724138241392414024141241422414324144241452414624147241482414924150241512415224153241542415524156241572415824159241602416124162241632416424165241662416724168241692417024171241722417324174241752417624177241782417924180241812418224183241842418524186241872418824189241902419124192241932419424195241962419724198241992420024201242022420324204242052420624207242082420924210242112421224213242142421524216242172421824219242202422124222242232422424225242262422724228242292423024231242322423324234242352423624237242382423924240242412424224243242442424524246242472424824249242502425124252242532425424255242562425724258242592426024261242622426324264242652426624267242682426924270242712427224273242742427524276242772427824279242802428124282242832428424285242862428724288242892429024291242922429324294242952429624297242982429924300243012430224303243042430524306243072430824309243102431124312243132431424315243162431724318243192432024321243222432324324243252432624327243282432924330243312433224333243342433524336243372433824339243402434124342243432434424345243462434724348243492435024351243522435324354243552435624357243582435924360243612436224363243642436524366243672436824369243702437124372243732437424375243762437724378243792438024381243822438324384243852438624387243882438924390243912439224393243942439524396243972439824399244002440124402244032440424405244062440724408244092441024411244122441324414244152441624417244182441924420244212442224423244242442524426244272442824429244302443124432244332443424435244362443724438244392444024441244422444324444244452444624447244482444924450244512445224453244542445524456244572445824459244602446124462244632446424465244662446724468244692447024471244722447324474244752447624477244782447924480244812448224483244842448524486244872448824489244902449124492244932449424495244962449724498244992450024501245022450324504245052450624507245082450924510245112451224513245142451524516245172451824519245202452124522245232452424525245262452724528245292453024531245322453324534245352453624537245382453924540245412454224543245442454524546245472454824549245502455124552245532455424555245562455724558245592456024561245622456324564245652456624567245682456924570245712457224573245742457524576245772457824579245802458124582245832458424585245862458724588245892459024591245922459324594245952459624597245982459924600246012460224603246042460524606246072460824609246102461124612246132461424615246162461724618246192462024621246222462324624246252462624627246282462924630246312463224633246342463524636246372463824639246402464124642246432464424645246462464724648246492465024651246522465324654246552465624657246582465924660246612466224663246642466524666246672466824669246702467124672246732467424675246762467724678246792468024681246822468324684246852468624687246882468924690246912469224693246942469524696246972469824699247002470124702247032470424705247062470724708247092471024711247122471324714247152471624717247182471924720247212472224723247242472524726247272472824729247302473124732247332473424735247362473724738247392474024741247422474324744247452474624747247482474924750247512475224753247542475524756247572475824759247602476124762247632476424765247662476724768247692477024771247722477324774247752477624777247782477924780247812478224783247842478524786247872478824789247902479124792247932479424795247962479724798247992480024801248022480324804248052480624807248082480924810248112481224813248142481524816248172481824819248202482124822248232482424825248262482724828248292483024831248322483324834248352483624837248382483924840248412484224843248442484524846248472484824849248502485124852248532485424855248562485724858248592486024861248622486324864248652486624867248682486924870248712487224873248742487524876248772487824879248802488124882248832488424885248862488724888248892489024891248922489324894248952489624897248982489924900249012490224903249042490524906249072490824909249102491124912249132491424915249162491724918249192492024921249222492324924249252492624927249282492924930249312493224933249342493524936249372493824939249402494124942249432494424945249462494724948249492495024951249522495324954249552495624957249582495924960249612496224963249642496524966249672496824969249702497124972249732497424975249762497724978249792498024981249822498324984249852498624987249882498924990249912499224993249942499524996249972499824999250002500125002250032500425005250062500725008250092501025011250122501325014250152501625017250182501925020250212502225023250242502525026250272502825029250302503125032250332503425035250362503725038250392504025041250422504325044250452504625047250482504925050250512505225053250542505525056250572505825059250602506125062250632506425065250662506725068250692507025071250722507325074250752507625077250782507925080250812508225083250842508525086250872508825089250902509125092250932509425095250962509725098250992510025101251022510325104251052510625107251082510925110251112511225113251142511525116251172511825119251202512125122251232512425125251262512725128251292513025131251322513325134251352513625137251382513925140251412514225143251442514525146251472514825149251502515125152251532515425155251562515725158251592516025161251622516325164251652516625167251682516925170251712517225173251742517525176251772517825179251802518125182251832518425185251862518725188251892519025191251922519325194251952519625197251982519925200252012520225203252042520525206252072520825209252102521125212252132521425215252162521725218252192522025221252222522325224252252522625227252282522925230252312523225233252342523525236252372523825239252402524125242252432524425245252462524725248252492525025251252522525325254252552525625257252582525925260252612526225263252642526525266252672526825269252702527125272252732527425275252762527725278252792528025281252822528325284252852528625287252882528925290252912529225293252942529525296252972529825299253002530125302253032530425305253062530725308253092531025311253122531325314253152531625317253182531925320253212532225323253242532525326253272532825329253302533125332253332533425335253362533725338253392534025341253422534325344253452534625347253482534925350253512535225353253542535525356253572535825359253602536125362253632536425365253662536725368253692537025371253722537325374253752537625377253782537925380253812538225383253842538525386253872538825389253902539125392253932539425395253962539725398253992540025401254022540325404254052540625407254082540925410254112541225413254142541525416254172541825419254202542125422254232542425425254262542725428254292543025431254322543325434254352543625437254382543925440254412544225443254442544525446254472544825449254502545125452254532545425455254562545725458254592546025461254622546325464254652546625467254682546925470254712547225473254742547525476254772547825479254802548125482254832548425485254862548725488254892549025491254922549325494254952549625497254982549925500255012550225503255042550525506255072550825509255102551125512255132551425515255162551725518255192552025521255222552325524255252552625527255282552925530255312553225533255342553525536255372553825539255402554125542255432554425545255462554725548255492555025551255522555325554255552555625557255582555925560255612556225563255642556525566255672556825569255702557125572255732557425575255762557725578255792558025581255822558325584255852558625587255882558925590255912559225593255942559525596255972559825599256002560125602256032560425605256062560725608256092561025611256122561325614256152561625617256182561925620256212562225623256242562525626256272562825629256302563125632256332563425635256362563725638256392564025641256422564325644256452564625647256482564925650256512565225653256542565525656256572565825659256602566125662256632566425665256662566725668256692567025671256722567325674256752567625677256782567925680256812568225683256842568525686256872568825689256902569125692256932569425695256962569725698256992570025701257022570325704257052570625707257082570925710257112571225713257142571525716257172571825719257202572125722257232572425725257262572725728257292573025731257322573325734257352573625737257382573925740257412574225743257442574525746257472574825749257502575125752257532575425755257562575725758257592576025761257622576325764257652576625767257682576925770257712577225773257742577525776257772577825779257802578125782257832578425785257862578725788257892579025791257922579325794257952579625797257982579925800258012580225803258042580525806258072580825809258102581125812258132581425815258162581725818258192582025821258222582325824258252582625827258282582925830258312583225833258342583525836258372583825839258402584125842258432584425845258462584725848258492585025851258522585325854258552585625857258582585925860258612586225863258642586525866258672586825869258702587125872258732587425875258762587725878258792588025881258822588325884258852588625887258882588925890258912589225893258942589525896258972589825899259002590125902259032590425905259062590725908259092591025911259122591325914259152591625917259182591925920259212592225923259242592525926259272592825929259302593125932259332593425935259362593725938259392594025941259422594325944259452594625947259482594925950259512595225953259542595525956259572595825959259602596125962259632596425965259662596725968259692597025971259722597325974259752597625977259782597925980259812598225983259842598525986259872598825989259902599125992259932599425995259962599725998259992600026001260022600326004260052600626007260082600926010260112601226013260142601526016260172601826019260202602126022260232602426025260262602726028260292603026031260322603326034260352603626037260382603926040260412604226043260442604526046260472604826049260502605126052260532605426055260562605726058260592606026061260622606326064260652606626067260682606926070260712607226073260742607526076260772607826079260802608126082260832608426085260862608726088260892609026091260922609326094260952609626097260982609926100261012610226103261042610526106261072610826109261102611126112261132611426115261162611726118261192612026121261222612326124261252612626127261282612926130261312613226133261342613526136261372613826139261402614126142261432614426145261462614726148261492615026151261522615326154261552615626157261582615926160261612616226163261642616526166261672616826169261702617126172261732617426175261762617726178261792618026181261822618326184261852618626187261882618926190261912619226193261942619526196261972619826199262002620126202262032620426205262062620726208262092621026211262122621326214262152621626217262182621926220262212622226223262242622526226262272622826229262302623126232262332623426235262362623726238262392624026241262422624326244262452624626247262482624926250262512625226253262542625526256262572625826259262602626126262262632626426265262662626726268262692627026271262722627326274262752627626277262782627926280262812628226283262842628526286262872628826289262902629126292262932629426295262962629726298262992630026301263022630326304263052630626307263082630926310263112631226313263142631526316263172631826319263202632126322263232632426325263262632726328263292633026331263322633326334263352633626337263382633926340263412634226343263442634526346263472634826349263502635126352263532635426355263562635726358263592636026361263622636326364263652636626367263682636926370263712637226373263742637526376263772637826379263802638126382263832638426385263862638726388263892639026391263922639326394263952639626397263982639926400264012640226403264042640526406264072640826409264102641126412264132641426415264162641726418264192642026421264222642326424264252642626427264282642926430264312643226433264342643526436264372643826439264402644126442264432644426445264462644726448264492645026451264522645326454264552645626457264582645926460264612646226463264642646526466264672646826469264702647126472264732647426475264762647726478264792648026481264822648326484264852648626487264882648926490264912649226493264942649526496264972649826499265002650126502265032650426505265062650726508265092651026511265122651326514265152651626517265182651926520265212652226523265242652526526265272652826529265302653126532265332653426535265362653726538265392654026541265422654326544265452654626547265482654926550265512655226553265542655526556265572655826559265602656126562265632656426565265662656726568265692657026571265722657326574265752657626577265782657926580265812658226583265842658526586265872658826589265902659126592265932659426595265962659726598265992660026601266022660326604266052660626607266082660926610266112661226613266142661526616266172661826619266202662126622266232662426625266262662726628266292663026631266322663326634266352663626637266382663926640266412664226643266442664526646266472664826649266502665126652266532665426655266562665726658266592666026661266622666326664266652666626667266682666926670266712667226673266742667526676266772667826679266802668126682266832668426685266862668726688266892669026691266922669326694266952669626697266982669926700267012670226703267042670526706267072670826709267102671126712267132671426715267162671726718267192672026721267222672326724267252672626727267282672926730267312673226733267342673526736267372673826739267402674126742267432674426745267462674726748267492675026751267522675326754267552675626757267582675926760267612676226763267642676526766267672676826769267702677126772267732677426775267762677726778267792678026781267822678326784267852678626787267882678926790267912679226793267942679526796267972679826799268002680126802268032680426805268062680726808268092681026811268122681326814268152681626817268182681926820268212682226823268242682526826268272682826829268302683126832268332683426835268362683726838268392684026841268422684326844268452684626847268482684926850268512685226853268542685526856268572685826859268602686126862268632686426865268662686726868268692687026871268722687326874268752687626877268782687926880268812688226883268842688526886268872688826889268902689126892268932689426895268962689726898268992690026901269022690326904269052690626907269082690926910269112691226913269142691526916269172691826919269202692126922269232692426925269262692726928269292693026931269322693326934269352693626937269382693926940269412694226943269442694526946269472694826949269502695126952269532695426955269562695726958269592696026961269622696326964269652696626967269682696926970269712697226973269742697526976269772697826979269802698126982269832698426985269862698726988269892699026991269922699326994269952699626997269982699927000270012700227003270042700527006270072700827009270102701127012270132701427015270162701727018270192702027021270222702327024270252702627027270282702927030270312703227033270342703527036270372703827039270402704127042270432704427045270462704727048270492705027051270522705327054270552705627057270582705927060270612706227063270642706527066270672706827069270702707127072270732707427075270762707727078270792708027081270822708327084270852708627087270882708927090270912709227093270942709527096270972709827099271002710127102271032710427105271062710727108271092711027111271122711327114271152711627117271182711927120271212712227123271242712527126271272712827129271302713127132271332713427135271362713727138271392714027141271422714327144271452714627147271482714927150271512715227153271542715527156271572715827159271602716127162271632716427165271662716727168271692717027171271722717327174271752717627177271782717927180271812718227183271842718527186271872718827189271902719127192271932719427195271962719727198271992720027201272022720327204272052720627207272082720927210272112721227213272142721527216272172721827219272202722127222272232722427225272262722727228272292723027231272322723327234272352723627237272382723927240272412724227243272442724527246272472724827249272502725127252272532725427255272562725727258272592726027261272622726327264272652726627267272682726927270272712727227273272742727527276272772727827279272802728127282272832728427285272862728727288272892729027291272922729327294272952729627297272982729927300273012730227303273042730527306273072730827309273102731127312273132731427315273162731727318273192732027321273222732327324273252732627327273282732927330273312733227333273342733527336273372733827339273402734127342273432734427345273462734727348273492735027351273522735327354273552735627357273582735927360273612736227363273642736527366273672736827369273702737127372273732737427375273762737727378273792738027381273822738327384273852738627387273882738927390273912739227393273942739527396273972739827399274002740127402274032740427405274062740727408274092741027411274122741327414274152741627417274182741927420274212742227423274242742527426274272742827429274302743127432274332743427435274362743727438274392744027441274422744327444274452744627447274482744927450274512745227453274542745527456274572745827459274602746127462274632746427465274662746727468274692747027471274722747327474274752747627477274782747927480274812748227483274842748527486274872748827489274902749127492274932749427495274962749727498274992750027501275022750327504275052750627507275082750927510275112751227513275142751527516275172751827519275202752127522275232752427525275262752727528275292753027531275322753327534275352753627537275382753927540275412754227543275442754527546275472754827549275502755127552275532755427555275562755727558275592756027561275622756327564275652756627567275682756927570275712757227573275742757527576275772757827579275802758127582275832758427585275862758727588275892759027591275922759327594275952759627597275982759927600276012760227603276042760527606276072760827609276102761127612276132761427615276162761727618276192762027621276222762327624276252762627627276282762927630276312763227633276342763527636276372763827639276402764127642276432764427645276462764727648276492765027651276522765327654276552765627657276582765927660276612766227663276642766527666276672766827669276702767127672276732767427675276762767727678276792768027681276822768327684276852768627687276882768927690276912769227693276942769527696276972769827699277002770127702277032770427705277062770727708277092771027711277122771327714277152771627717277182771927720277212772227723277242772527726277272772827729277302773127732277332773427735277362773727738277392774027741277422774327744277452774627747277482774927750277512775227753277542775527756277572775827759277602776127762277632776427765277662776727768277692777027771277722777327774277752777627777277782777927780277812778227783277842778527786277872778827789277902779127792277932779427795277962779727798277992780027801278022780327804278052780627807278082780927810278112781227813278142781527816278172781827819278202782127822278232782427825278262782727828278292783027831278322783327834278352783627837278382783927840278412784227843278442784527846278472784827849278502785127852278532785427855278562785727858278592786027861278622786327864278652786627867278682786927870278712787227873278742787527876278772787827879278802788127882278832788427885278862788727888278892789027891278922789327894278952789627897278982789927900279012790227903279042790527906279072790827909279102791127912279132791427915279162791727918279192792027921279222792327924279252792627927279282792927930279312793227933279342793527936279372793827939279402794127942279432794427945279462794727948279492795027951279522795327954279552795627957279582795927960279612796227963279642796527966279672796827969279702797127972279732797427975279762797727978279792798027981279822798327984279852798627987279882798927990279912799227993279942799527996279972799827999280002800128002280032800428005280062800728008280092801028011280122801328014280152801628017280182801928020280212802228023280242802528026280272802828029280302803128032280332803428035280362803728038280392804028041280422804328044280452804628047280482804928050280512805228053280542805528056280572805828059280602806128062280632806428065280662806728068280692807028071280722807328074280752807628077280782807928080280812808228083280842808528086280872808828089280902809128092280932809428095280962809728098280992810028101281022810328104281052810628107281082810928110281112811228113281142811528116281172811828119281202812128122281232812428125281262812728128281292813028131281322813328134281352813628137281382813928140281412814228143281442814528146281472814828149281502815128152281532815428155281562815728158281592816028161281622816328164281652816628167281682816928170281712817228173281742817528176281772817828179281802818128182281832818428185281862818728188281892819028191281922819328194281952819628197281982819928200282012820228203282042820528206282072820828209282102821128212282132821428215282162821728218282192822028221282222822328224282252822628227282282822928230282312823228233282342823528236282372823828239282402824128242282432824428245282462824728248282492825028251282522825328254282552825628257282582825928260282612826228263282642826528266282672826828269282702827128272282732827428275282762827728278282792828028281282822828328284282852828628287282882828928290282912829228293282942829528296282972829828299283002830128302283032830428305283062830728308283092831028311283122831328314283152831628317283182831928320283212832228323283242832528326283272832828329283302833128332283332833428335283362833728338283392834028341283422834328344283452834628347283482834928350283512835228353283542835528356283572835828359283602836128362283632836428365283662836728368283692837028371283722837328374283752837628377283782837928380283812838228383283842838528386283872838828389283902839128392283932839428395283962839728398283992840028401284022840328404284052840628407284082840928410284112841228413284142841528416284172841828419284202842128422284232842428425284262842728428284292843028431284322843328434284352843628437284382843928440284412844228443284442844528446284472844828449284502845128452284532845428455284562845728458284592846028461284622846328464284652846628467284682846928470284712847228473284742847528476284772847828479284802848128482284832848428485284862848728488284892849028491284922849328494284952849628497284982849928500285012850228503285042850528506285072850828509285102851128512285132851428515285162851728518285192852028521285222852328524285252852628527285282852928530285312853228533285342853528536285372853828539285402854128542285432854428545285462854728548285492855028551285522855328554285552855628557285582855928560285612856228563285642856528566285672856828569285702857128572285732857428575285762857728578285792858028581285822858328584285852858628587285882858928590285912859228593285942859528596285972859828599286002860128602286032860428605286062860728608286092861028611286122861328614286152861628617286182861928620286212862228623286242862528626286272862828629286302863128632286332863428635286362863728638286392864028641286422864328644286452864628647286482864928650286512865228653286542865528656286572865828659286602866128662286632866428665286662866728668286692867028671286722867328674286752867628677286782867928680286812868228683286842868528686286872868828689286902869128692286932869428695286962869728698286992870028701287022870328704287052870628707287082870928710287112871228713287142871528716287172871828719287202872128722287232872428725287262872728728287292873028731287322873328734287352873628737287382873928740287412874228743287442874528746287472874828749287502875128752287532875428755287562875728758287592876028761287622876328764287652876628767287682876928770287712877228773287742877528776287772877828779287802878128782287832878428785287862878728788287892879028791287922879328794287952879628797287982879928800288012880228803288042880528806288072880828809288102881128812288132881428815288162881728818288192882028821288222882328824288252882628827288282882928830288312883228833288342883528836288372883828839288402884128842288432884428845288462884728848288492885028851288522885328854288552885628857288582885928860288612886228863288642886528866288672886828869288702887128872288732887428875288762887728878288792888028881288822888328884288852888628887288882888928890288912889228893288942889528896288972889828899289002890128902289032890428905289062890728908289092891028911289122891328914289152891628917289182891928920289212892228923289242892528926289272892828929289302893128932289332893428935289362893728938289392894028941289422894328944289452894628947289482894928950289512895228953289542895528956289572895828959289602896128962289632896428965289662896728968289692897028971289722897328974289752897628977289782897928980289812898228983289842898528986289872898828989289902899128992289932899428995289962899728998289992900029001290022900329004290052900629007290082900929010290112901229013290142901529016290172901829019290202902129022290232902429025290262902729028290292903029031290322903329034290352903629037290382903929040290412904229043290442904529046290472904829049290502905129052290532905429055290562905729058290592906029061290622906329064290652906629067290682906929070290712907229073290742907529076290772907829079290802908129082290832908429085290862908729088290892909029091290922909329094290952909629097290982909929100291012910229103291042910529106291072910829109291102911129112291132911429115291162911729118291192912029121291222912329124291252912629127291282912929130291312913229133291342913529136291372913829139291402914129142291432914429145291462914729148291492915029151291522915329154291552915629157291582915929160291612916229163291642916529166291672916829169291702917129172291732917429175291762917729178291792918029181291822918329184291852918629187291882918929190291912919229193291942919529196291972919829199292002920129202292032920429205292062920729208292092921029211292122921329214292152921629217292182921929220292212922229223292242922529226292272922829229292302923129232292332923429235292362923729238292392924029241292422924329244292452924629247292482924929250292512925229253292542925529256292572925829259292602926129262292632926429265292662926729268292692927029271292722927329274292752927629277292782927929280292812928229283292842928529286292872928829289292902929129292292932929429295292962929729298292992930029301293022930329304293052930629307293082930929310293112931229313293142931529316293172931829319293202932129322293232932429325293262932729328293292933029331293322933329334293352933629337293382933929340293412934229343293442934529346293472934829349293502935129352293532935429355293562935729358293592936029361293622936329364293652936629367293682936929370293712937229373293742937529376293772937829379293802938129382293832938429385293862938729388293892939029391293922939329394293952939629397293982939929400294012940229403294042940529406294072940829409294102941129412294132941429415294162941729418294192942029421294222942329424294252942629427294282942929430294312943229433294342943529436294372943829439294402944129442294432944429445294462944729448294492945029451294522945329454294552945629457294582945929460294612946229463294642946529466294672946829469294702947129472294732947429475294762947729478294792948029481294822948329484294852948629487294882948929490294912949229493294942949529496294972949829499295002950129502295032950429505295062950729508295092951029511295122951329514295152951629517295182951929520295212952229523295242952529526295272952829529295302953129532295332953429535295362953729538295392954029541295422954329544295452954629547295482954929550295512955229553295542955529556295572955829559295602956129562295632956429565295662956729568295692957029571295722957329574295752957629577295782957929580295812958229583295842958529586295872958829589295902959129592295932959429595295962959729598295992960029601296022960329604296052960629607296082960929610296112961229613296142961529616296172961829619296202962129622296232962429625296262962729628296292963029631296322963329634296352963629637296382963929640296412964229643296442964529646296472964829649296502965129652296532965429655296562965729658296592966029661296622966329664296652966629667296682966929670296712967229673296742967529676296772967829679296802968129682296832968429685296862968729688296892969029691296922969329694296952969629697296982969929700297012970229703297042970529706297072970829709297102971129712297132971429715297162971729718297192972029721297222972329724297252972629727297282972929730297312973229733297342973529736297372973829739297402974129742297432974429745297462974729748297492975029751297522975329754297552975629757297582975929760297612976229763297642976529766297672976829769297702977129772297732977429775297762977729778297792978029781297822978329784297852978629787297882978929790297912979229793297942979529796297972979829799298002980129802298032980429805298062980729808298092981029811298122981329814298152981629817298182981929820298212982229823298242982529826298272982829829298302983129832298332983429835298362983729838298392984029841298422984329844298452984629847298482984929850298512985229853298542985529856298572985829859298602986129862298632986429865298662986729868298692987029871298722987329874298752987629877298782987929880298812988229883298842988529886298872988829889298902989129892298932989429895298962989729898298992990029901299022990329904299052990629907299082990929910299112991229913299142991529916299172991829919299202992129922299232992429925299262992729928299292993029931299322993329934299352993629937299382993929940299412994229943299442994529946299472994829949299502995129952299532995429955299562995729958299592996029961299622996329964299652996629967299682996929970299712997229973299742997529976299772997829979299802998129982299832998429985299862998729988299892999029991299922999329994299952999629997299982999930000300013000230003300043000530006300073000830009300103001130012300133001430015300163001730018300193002030021300223002330024300253002630027300283002930030300313003230033300343003530036300373003830039300403004130042300433004430045300463004730048300493005030051300523005330054300553005630057300583005930060300613006230063300643006530066300673006830069300703007130072300733007430075300763007730078300793008030081300823008330084300853008630087300883008930090300913009230093300943009530096300973009830099301003010130102301033010430105301063010730108301093011030111301123011330114301153011630117301183011930120301213012230123301243012530126301273012830129301303013130132301333013430135301363013730138301393014030141301423014330144301453014630147301483014930150301513015230153301543015530156301573015830159301603016130162301633016430165301663016730168301693017030171301723017330174301753017630177301783017930180301813018230183301843018530186301873018830189301903019130192301933019430195301963019730198301993020030201302023020330204302053020630207302083020930210302113021230213302143021530216302173021830219302203022130222302233022430225302263022730228302293023030231302323023330234302353023630237302383023930240302413024230243302443024530246302473024830249302503025130252302533025430255302563025730258302593026030261302623026330264302653026630267302683026930270302713027230273302743027530276302773027830279302803028130282302833028430285302863028730288302893029030291302923029330294302953029630297302983029930300303013030230303303043030530306303073030830309303103031130312303133031430315303163031730318303193032030321303223032330324303253032630327303283032930330303313033230333303343033530336303373033830339303403034130342303433034430345303463034730348303493035030351303523035330354303553035630357303583035930360303613036230363303643036530366303673036830369303703037130372303733037430375303763037730378303793038030381303823038330384303853038630387303883038930390303913039230393303943039530396303973039830399304003040130402304033040430405304063040730408304093041030411304123041330414304153041630417304183041930420304213042230423304243042530426304273042830429304303043130432304333043430435304363043730438304393044030441304423044330444304453044630447304483044930450304513045230453304543045530456304573045830459304603046130462304633046430465304663046730468304693047030471304723047330474304753047630477304783047930480304813048230483304843048530486304873048830489304903049130492304933049430495304963049730498304993050030501305023050330504305053050630507305083050930510305113051230513305143051530516305173051830519305203052130522305233052430525305263052730528305293053030531305323053330534305353053630537305383053930540305413054230543305443054530546305473054830549305503055130552305533055430555305563055730558305593056030561305623056330564305653056630567305683056930570305713057230573305743057530576305773057830579305803058130582305833058430585305863058730588305893059030591305923059330594305953059630597305983059930600306013060230603306043060530606306073060830609306103061130612306133061430615306163061730618306193062030621306223062330624306253062630627306283062930630306313063230633306343063530636306373063830639306403064130642306433064430645306463064730648306493065030651306523065330654306553065630657306583065930660306613066230663306643066530666306673066830669306703067130672306733067430675306763067730678306793068030681306823068330684306853068630687306883068930690306913069230693306943069530696306973069830699307003070130702307033070430705307063070730708307093071030711307123071330714307153071630717307183071930720307213072230723307243072530726307273072830729307303073130732307333073430735307363073730738307393074030741307423074330744307453074630747307483074930750307513075230753307543075530756307573075830759307603076130762307633076430765307663076730768307693077030771307723077330774307753077630777307783077930780307813078230783307843078530786307873078830789307903079130792307933079430795307963079730798307993080030801308023080330804308053080630807308083080930810308113081230813308143081530816308173081830819308203082130822308233082430825308263082730828308293083030831308323083330834308353083630837308383083930840308413084230843308443084530846308473084830849308503085130852308533085430855308563085730858308593086030861308623086330864308653086630867308683086930870308713087230873308743087530876308773087830879308803088130882308833088430885308863088730888308893089030891308923089330894308953089630897308983089930900309013090230903309043090530906309073090830909309103091130912309133091430915309163091730918309193092030921309223092330924309253092630927309283092930930309313093230933309343093530936309373093830939309403094130942309433094430945309463094730948309493095030951309523095330954309553095630957309583095930960309613096230963309643096530966309673096830969309703097130972309733097430975309763097730978309793098030981309823098330984309853098630987309883098930990309913099230993309943099530996309973099830999310003100131002310033100431005310063100731008310093101031011310123101331014310153101631017310183101931020310213102231023310243102531026310273102831029310303103131032310333103431035310363103731038310393104031041310423104331044310453104631047310483104931050310513105231053310543105531056310573105831059310603106131062310633106431065310663106731068310693107031071310723107331074310753107631077310783107931080310813108231083310843108531086310873108831089310903109131092310933109431095310963109731098310993110031101311023110331104311053110631107311083110931110311113111231113311143111531116311173111831119311203112131122311233112431125311263112731128311293113031131311323113331134311353113631137311383113931140311413114231143311443114531146311473114831149311503115131152311533115431155311563115731158311593116031161311623116331164311653116631167311683116931170311713117231173311743117531176311773117831179311803118131182311833118431185311863118731188311893119031191311923119331194311953119631197311983119931200312013120231203312043120531206312073120831209312103121131212312133121431215312163121731218312193122031221312223122331224312253122631227312283122931230312313123231233312343123531236312373123831239312403124131242312433124431245312463124731248312493125031251312523125331254312553125631257312583125931260312613126231263312643126531266312673126831269312703127131272312733127431275312763127731278312793128031281312823128331284312853128631287312883128931290312913129231293312943129531296312973129831299313003130131302313033130431305313063130731308313093131031311313123131331314313153131631317313183131931320313213132231323313243132531326313273132831329313303133131332313333133431335313363133731338313393134031341313423134331344313453134631347313483134931350313513135231353313543135531356313573135831359313603136131362313633136431365313663136731368313693137031371313723137331374313753137631377313783137931380313813138231383313843138531386313873138831389313903139131392313933139431395313963139731398313993140031401314023140331404314053140631407314083140931410314113141231413314143141531416314173141831419314203142131422314233142431425314263142731428314293143031431314323143331434314353143631437314383143931440314413144231443314443144531446314473144831449314503145131452314533145431455314563145731458314593146031461314623146331464314653146631467314683146931470314713147231473314743147531476314773147831479314803148131482314833148431485314863148731488314893149031491314923149331494314953149631497314983149931500315013150231503315043150531506315073150831509315103151131512315133151431515315163151731518315193152031521315223152331524315253152631527315283152931530315313153231533315343153531536315373153831539315403154131542315433154431545315463154731548315493155031551315523155331554315553155631557315583155931560315613156231563315643156531566315673156831569315703157131572315733157431575315763157731578315793158031581315823158331584315853158631587315883158931590315913159231593315943159531596315973159831599316003160131602316033160431605316063160731608316093161031611316123161331614316153161631617316183161931620316213162231623316243162531626316273162831629316303163131632316333163431635316363163731638316393164031641316423164331644316453164631647316483164931650316513165231653316543165531656316573165831659316603166131662316633166431665316663166731668316693167031671316723167331674316753167631677316783167931680316813168231683316843168531686316873168831689316903169131692316933169431695316963169731698316993170031701317023170331704317053170631707317083170931710317113171231713317143171531716317173171831719317203172131722317233172431725317263172731728317293173031731317323173331734317353173631737317383173931740317413174231743317443174531746317473174831749317503175131752317533175431755317563175731758317593176031761317623176331764317653176631767317683176931770317713177231773317743177531776317773177831779317803178131782317833178431785317863178731788317893179031791317923179331794317953179631797317983179931800318013180231803318043180531806318073180831809318103181131812318133181431815318163181731818318193182031821318223182331824318253182631827318283182931830318313183231833318343183531836318373183831839318403184131842318433184431845318463184731848318493185031851318523185331854318553185631857318583185931860318613186231863318643186531866318673186831869318703187131872318733187431875318763187731878318793188031881318823188331884318853188631887318883188931890318913189231893318943189531896318973189831899319003190131902319033190431905319063190731908319093191031911319123191331914319153191631917319183191931920319213192231923319243192531926319273192831929319303193131932319333193431935319363193731938319393194031941319423194331944319453194631947319483194931950319513195231953319543195531956319573195831959319603196131962319633196431965319663196731968319693197031971319723197331974319753197631977319783197931980319813198231983319843198531986319873198831989319903199131992319933199431995319963199731998319993200032001320023200332004320053200632007320083200932010320113201232013320143201532016320173201832019320203202132022320233202432025320263202732028320293203032031320323203332034320353203632037320383203932040320413204232043320443204532046320473204832049320503205132052320533205432055320563205732058320593206032061320623206332064320653206632067320683206932070320713207232073320743207532076320773207832079320803208132082320833208432085320863208732088320893209032091320923209332094320953209632097320983209932100321013210232103321043210532106321073210832109321103211132112321133211432115321163211732118321193212032121321223212332124321253212632127321283212932130321313213232133321343213532136321373213832139321403214132142321433214432145321463214732148321493215032151321523215332154321553215632157321583215932160321613216232163321643216532166321673216832169321703217132172321733217432175321763217732178321793218032181321823218332184321853218632187321883218932190321913219232193321943219532196321973219832199322003220132202322033220432205322063220732208322093221032211322123221332214322153221632217322183221932220322213222232223322243222532226322273222832229322303223132232322333223432235322363223732238322393224032241322423224332244322453224632247322483224932250322513225232253322543225532256322573225832259322603226132262322633226432265322663226732268322693227032271322723227332274322753227632277322783227932280322813228232283322843228532286322873228832289322903229132292322933229432295322963229732298322993230032301323023230332304323053230632307323083230932310323113231232313323143231532316323173231832319323203232132322323233232432325323263232732328323293233032331323323233332334323353233632337323383233932340323413234232343323443234532346323473234832349323503235132352323533235432355323563235732358323593236032361323623236332364323653236632367323683236932370323713237232373323743237532376323773237832379323803238132382323833238432385323863238732388323893239032391323923239332394323953239632397323983239932400324013240232403324043240532406324073240832409324103241132412324133241432415324163241732418324193242032421324223242332424324253242632427324283242932430324313243232433324343243532436324373243832439324403244132442324433244432445324463244732448324493245032451324523245332454324553245632457324583245932460324613246232463324643246532466324673246832469324703247132472324733247432475324763247732478324793248032481324823248332484324853248632487324883248932490324913249232493324943249532496324973249832499325003250132502325033250432505325063250732508325093251032511325123251332514325153251632517325183251932520325213252232523325243252532526325273252832529325303253132532325333253432535325363253732538325393254032541325423254332544325453254632547325483254932550325513255232553325543255532556325573255832559325603256132562325633256432565325663256732568325693257032571325723257332574325753257632577325783257932580325813258232583325843258532586325873258832589325903259132592325933259432595325963259732598325993260032601326023260332604326053260632607326083260932610326113261232613326143261532616326173261832619326203262132622326233262432625326263262732628326293263032631326323263332634326353263632637326383263932640326413264232643326443264532646326473264832649326503265132652326533265432655326563265732658326593266032661326623266332664326653266632667326683266932670326713267232673326743267532676326773267832679326803268132682326833268432685326863268732688326893269032691326923269332694326953269632697326983269932700327013270232703327043270532706327073270832709327103271132712327133271432715327163271732718327193272032721327223272332724327253272632727327283272932730327313273232733327343273532736327373273832739327403274132742327433274432745327463274732748327493275032751327523275332754327553275632757327583275932760327613276232763327643276532766327673276832769327703277132772327733277432775327763277732778327793278032781327823278332784327853278632787327883278932790327913279232793327943279532796327973279832799328003280132802328033280432805328063280732808328093281032811328123281332814328153281632817328183281932820328213282232823328243282532826328273282832829328303283132832328333283432835328363283732838328393284032841328423284332844328453284632847328483284932850328513285232853328543285532856328573285832859328603286132862328633286432865328663286732868328693287032871328723287332874328753287632877328783287932880328813288232883328843288532886328873288832889328903289132892328933289432895328963289732898328993290032901329023290332904329053290632907329083290932910329113291232913329143291532916329173291832919329203292132922329233292432925329263292732928329293293032931329323293332934329353293632937329383293932940329413294232943329443294532946329473294832949329503295132952329533295432955329563295732958329593296032961329623296332964329653296632967329683296932970329713297232973329743297532976329773297832979329803298132982329833298432985329863298732988329893299032991329923299332994329953299632997329983299933000330013300233003330043300533006330073300833009330103301133012330133301433015330163301733018330193302033021330223302333024330253302633027330283302933030330313303233033330343303533036330373303833039330403304133042330433304433045330463304733048330493305033051330523305333054330553305633057330583305933060330613306233063330643306533066330673306833069330703307133072330733307433075330763307733078330793308033081330823308333084330853308633087330883308933090330913309233093330943309533096330973309833099331003310133102331033310433105331063310733108331093311033111331123311333114331153311633117331183311933120331213312233123331243312533126331273312833129331303313133132331333313433135331363313733138331393314033141331423314333144331453314633147331483314933150331513315233153331543315533156331573315833159331603316133162331633316433165331663316733168331693317033171331723317333174331753317633177331783317933180331813318233183331843318533186331873318833189331903319133192331933319433195331963319733198331993320033201332023320333204332053320633207332083320933210332113321233213332143321533216332173321833219332203322133222332233322433225332263322733228332293323033231332323323333234332353323633237332383323933240332413324233243332443324533246332473324833249332503325133252332533325433255332563325733258332593326033261332623326333264332653326633267332683326933270332713327233273332743327533276332773327833279332803328133282332833328433285332863328733288332893329033291332923329333294332953329633297332983329933300333013330233303333043330533306333073330833309333103331133312333133331433315333163331733318333193332033321333223332333324333253332633327333283332933330333313333233333333343333533336333373333833339333403334133342333433334433345333463334733348333493335033351333523335333354333553335633357333583335933360333613336233363333643336533366333673336833369333703337133372333733337433375333763337733378333793338033381333823338333384333853338633387333883338933390333913339233393333943339533396333973339833399334003340133402334033340433405334063340733408334093341033411334123341333414334153341633417334183341933420334213342233423334243342533426334273342833429334303343133432334333343433435334363343733438334393344033441334423344333444334453344633447334483344933450334513345233453334543345533456334573345833459334603346133462334633346433465334663346733468334693347033471334723347333474334753347633477334783347933480334813348233483334843348533486334873348833489334903349133492334933349433495334963349733498334993350033501335023350333504335053350633507335083350933510335113351233513335143351533516335173351833519335203352133522335233352433525335263352733528335293353033531335323353333534335353353633537335383353933540335413354233543335443354533546335473354833549335503355133552335533355433555335563355733558335593356033561335623356333564335653356633567335683356933570335713357233573335743357533576335773357833579335803358133582335833358433585335863358733588335893359033591335923359333594335953359633597335983359933600336013360233603336043360533606336073360833609336103361133612336133361433615336163361733618336193362033621336223362333624336253362633627336283362933630336313363233633336343363533636336373363833639336403364133642336433364433645336463364733648336493365033651336523365333654336553365633657336583365933660336613366233663336643366533666336673366833669336703367133672336733367433675336763367733678336793368033681336823368333684336853368633687336883368933690336913369233693336943369533696336973369833699337003370133702337033370433705337063370733708337093371033711337123371333714337153371633717337183371933720337213372233723337243372533726337273372833729337303373133732337333373433735337363373733738337393374033741337423374333744337453374633747337483374933750337513375233753337543375533756337573375833759337603376133762337633376433765337663376733768337693377033771337723377333774337753377633777337783377933780337813378233783337843378533786337873378833789337903379133792337933379433795337963379733798337993380033801338023380333804338053380633807338083380933810338113381233813338143381533816338173381833819338203382133822338233382433825338263382733828338293383033831338323383333834338353383633837338383383933840338413384233843338443384533846338473384833849338503385133852338533385433855338563385733858338593386033861338623386333864338653386633867338683386933870338713387233873338743387533876338773387833879338803388133882338833388433885338863388733888338893389033891338923389333894338953389633897338983389933900339013390233903339043390533906339073390833909339103391133912339133391433915339163391733918339193392033921339223392333924339253392633927339283392933930339313393233933339343393533936339373393833939339403394133942339433394433945339463394733948339493395033951339523395333954339553395633957339583395933960339613396233963339643396533966339673396833969339703397133972339733397433975339763397733978339793398033981339823398333984339853398633987339883398933990339913399233993339943399533996339973399833999340003400134002340033400434005340063400734008340093401034011340123401334014340153401634017340183401934020340213402234023340243402534026340273402834029340303403134032340333403434035340363403734038340393404034041340423404334044340453404634047340483404934050340513405234053340543405534056340573405834059340603406134062340633406434065340663406734068340693407034071340723407334074340753407634077340783407934080340813408234083340843408534086340873408834089340903409134092340933409434095340963409734098340993410034101341023410334104341053410634107341083410934110341113411234113341143411534116341173411834119341203412134122341233412434125341263412734128341293413034131341323413334134341353413634137341383413934140341413414234143341443414534146341473414834149341503415134152341533415434155341563415734158341593416034161341623416334164341653416634167341683416934170341713417234173341743417534176341773417834179341803418134182341833418434185341863418734188341893419034191341923419334194341953419634197341983419934200342013420234203342043420534206342073420834209342103421134212342133421434215342163421734218342193422034221342223422334224342253422634227342283422934230342313423234233342343423534236342373423834239342403424134242342433424434245342463424734248342493425034251342523425334254342553425634257342583425934260342613426234263342643426534266342673426834269342703427134272342733427434275342763427734278342793428034281342823428334284342853428634287342883428934290342913429234293342943429534296342973429834299343003430134302343033430434305343063430734308343093431034311343123431334314343153431634317343183431934320343213432234323343243432534326343273432834329343303433134332343333433434335343363433734338343393434034341343423434334344343453434634347343483434934350343513435234353343543435534356343573435834359343603436134362343633436434365343663436734368343693437034371343723437334374343753437634377343783437934380343813438234383343843438534386343873438834389343903439134392343933439434395343963439734398343993440034401344023440334404344053440634407344083440934410344113441234413344143441534416344173441834419344203442134422344233442434425344263442734428344293443034431344323443334434344353443634437344383443934440344413444234443344443444534446344473444834449344503445134452344533445434455344563445734458344593446034461344623446334464344653446634467344683446934470344713447234473344743447534476344773447834479344803448134482344833448434485344863448734488344893449034491344923449334494344953449634497344983449934500345013450234503345043450534506345073450834509345103451134512345133451434515345163451734518345193452034521345223452334524345253452634527345283452934530345313453234533345343453534536345373453834539345403454134542345433454434545345463454734548345493455034551345523455334554345553455634557345583455934560345613456234563345643456534566345673456834569345703457134572345733457434575345763457734578345793458034581345823458334584345853458634587345883458934590345913459234593345943459534596345973459834599346003460134602346033460434605346063460734608346093461034611346123461334614346153461634617346183461934620346213462234623346243462534626346273462834629346303463134632346333463434635346363463734638346393464034641346423464334644346453464634647346483464934650346513465234653346543465534656346573465834659346603466134662346633466434665346663466734668346693467034671346723467334674346753467634677346783467934680346813468234683346843468534686346873468834689346903469134692346933469434695346963469734698346993470034701347023470334704347053470634707347083470934710347113471234713347143471534716347173471834719347203472134722347233472434725347263472734728347293473034731347323473334734347353473634737347383473934740347413474234743347443474534746347473474834749347503475134752347533475434755347563475734758347593476034761347623476334764347653476634767347683476934770347713477234773347743477534776347773477834779347803478134782347833478434785347863478734788347893479034791347923479334794347953479634797347983479934800348013480234803348043480534806348073480834809348103481134812348133481434815348163481734818348193482034821348223482334824348253482634827348283482934830348313483234833348343483534836348373483834839348403484134842348433484434845348463484734848348493485034851348523485334854348553485634857348583485934860348613486234863348643486534866348673486834869348703487134872348733487434875348763487734878348793488034881348823488334884348853488634887348883488934890348913489234893348943489534896348973489834899349003490134902349033490434905349063490734908349093491034911349123491334914349153491634917349183491934920349213492234923349243492534926349273492834929349303493134932349333493434935349363493734938349393494034941349423494334944349453494634947349483494934950349513495234953349543495534956349573495834959349603496134962349633496434965349663496734968349693497034971349723497334974349753497634977349783497934980349813498234983349843498534986349873498834989349903499134992349933499434995349963499734998349993500035001350023500335004350053500635007350083500935010350113501235013350143501535016350173501835019350203502135022350233502435025350263502735028350293503035031350323503335034350353503635037350383503935040350413504235043350443504535046350473504835049350503505135052350533505435055350563505735058350593506035061350623506335064350653506635067350683506935070350713507235073350743507535076350773507835079350803508135082350833508435085350863508735088350893509035091350923509335094350953509635097350983509935100351013510235103351043510535106351073510835109351103511135112351133511435115351163511735118351193512035121351223512335124351253512635127351283512935130351313513235133351343513535136351373513835139351403514135142351433514435145351463514735148351493515035151351523515335154351553515635157351583515935160351613516235163351643516535166351673516835169351703517135172351733517435175351763517735178351793518035181351823518335184351853518635187351883518935190351913519235193351943519535196351973519835199352003520135202352033520435205352063520735208352093521035211352123521335214352153521635217352183521935220352213522235223352243522535226352273522835229352303523135232352333523435235352363523735238352393524035241352423524335244352453524635247352483524935250352513525235253352543525535256352573525835259352603526135262352633526435265352663526735268352693527035271352723527335274352753527635277352783527935280352813528235283352843528535286352873528835289352903529135292352933529435295352963529735298352993530035301353023530335304353053530635307353083530935310353113531235313353143531535316353173531835319353203532135322353233532435325353263532735328353293533035331353323533335334353353533635337353383533935340353413534235343353443534535346353473534835349353503535135352353533535435355353563535735358353593536035361353623536335364353653536635367353683536935370353713537235373353743537535376353773537835379353803538135382353833538435385353863538735388353893539035391353923539335394353953539635397353983539935400354013540235403354043540535406354073540835409354103541135412354133541435415354163541735418354193542035421354223542335424354253542635427354283542935430354313543235433354343543535436354373543835439354403544135442354433544435445354463544735448354493545035451354523545335454354553545635457354583545935460354613546235463354643546535466354673546835469354703547135472354733547435475354763547735478354793548035481354823548335484354853548635487354883548935490354913549235493354943549535496354973549835499355003550135502355033550435505355063550735508355093551035511355123551335514355153551635517355183551935520355213552235523355243552535526355273552835529355303553135532355333553435535355363553735538355393554035541355423554335544355453554635547355483554935550355513555235553355543555535556355573555835559355603556135562355633556435565355663556735568355693557035571355723557335574355753557635577355783557935580355813558235583355843558535586355873558835589355903559135592355933559435595355963559735598355993560035601356023560335604356053560635607356083560935610356113561235613356143561535616356173561835619356203562135622356233562435625356263562735628356293563035631356323563335634356353563635637356383563935640356413564235643356443564535646356473564835649356503565135652356533565435655356563565735658356593566035661356623566335664356653566635667356683566935670356713567235673356743567535676356773567835679356803568135682356833568435685356863568735688356893569035691356923569335694356953569635697356983569935700357013570235703357043570535706357073570835709357103571135712357133571435715357163571735718357193572035721357223572335724357253572635727357283572935730357313573235733357343573535736357373573835739357403574135742357433574435745357463574735748357493575035751357523575335754357553575635757357583575935760357613576235763357643576535766357673576835769357703577135772357733577435775357763577735778357793578035781357823578335784357853578635787357883578935790357913579235793357943579535796357973579835799358003580135802358033580435805358063580735808358093581035811358123581335814358153581635817358183581935820358213582235823358243582535826358273582835829358303583135832358333583435835358363583735838358393584035841358423584335844358453584635847358483584935850358513585235853358543585535856358573585835859358603586135862358633586435865358663586735868358693587035871358723587335874358753587635877358783587935880358813588235883358843588535886358873588835889358903589135892358933589435895358963589735898358993590035901359023590335904359053590635907359083590935910359113591235913359143591535916359173591835919359203592135922359233592435925359263592735928359293593035931359323593335934359353593635937359383593935940359413594235943359443594535946359473594835949359503595135952359533595435955359563595735958359593596035961359623596335964359653596635967359683596935970359713597235973359743597535976359773597835979359803598135982359833598435985359863598735988359893599035991359923599335994359953599635997359983599936000360013600236003360043600536006360073600836009360103601136012360133601436015360163601736018360193602036021360223602336024360253602636027360283602936030360313603236033360343603536036360373603836039360403604136042360433604436045360463604736048360493605036051360523605336054360553605636057360583605936060360613606236063360643606536066360673606836069360703607136072360733607436075360763607736078360793608036081360823608336084360853608636087360883608936090360913609236093360943609536096360973609836099361003610136102361033610436105361063610736108361093611036111361123611336114361153611636117361183611936120361213612236123361243612536126361273612836129361303613136132361333613436135361363613736138361393614036141361423614336144361453614636147361483614936150361513615236153361543615536156361573615836159361603616136162361633616436165361663616736168361693617036171361723617336174361753617636177361783617936180361813618236183361843618536186361873618836189361903619136192361933619436195361963619736198361993620036201362023620336204362053620636207362083620936210362113621236213362143621536216362173621836219362203622136222362233622436225362263622736228362293623036231362323623336234362353623636237362383623936240362413624236243362443624536246362473624836249362503625136252362533625436255362563625736258362593626036261362623626336264362653626636267362683626936270362713627236273362743627536276362773627836279362803628136282362833628436285362863628736288362893629036291362923629336294362953629636297362983629936300363013630236303363043630536306363073630836309363103631136312363133631436315363163631736318363193632036321363223632336324363253632636327363283632936330363313633236333363343633536336363373633836339363403634136342363433634436345363463634736348363493635036351363523635336354363553635636357363583635936360363613636236363363643636536366363673636836369363703637136372363733637436375363763637736378363793638036381363823638336384363853638636387363883638936390363913639236393363943639536396363973639836399364003640136402364033640436405364063640736408364093641036411364123641336414364153641636417364183641936420364213642236423364243642536426364273642836429364303643136432364333643436435364363643736438364393644036441364423644336444364453644636447364483644936450364513645236453364543645536456364573645836459364603646136462364633646436465364663646736468364693647036471364723647336474364753647636477364783647936480364813648236483364843648536486364873648836489364903649136492364933649436495364963649736498364993650036501365023650336504365053650636507365083650936510365113651236513365143651536516365173651836519365203652136522365233652436525365263652736528365293653036531365323653336534365353653636537365383653936540365413654236543365443654536546365473654836549365503655136552365533655436555365563655736558365593656036561365623656336564365653656636567365683656936570365713657236573365743657536576365773657836579365803658136582365833658436585365863658736588365893659036591365923659336594365953659636597365983659936600366013660236603366043660536606366073660836609366103661136612366133661436615366163661736618366193662036621366223662336624366253662636627366283662936630366313663236633366343663536636366373663836639366403664136642366433664436645366463664736648366493665036651366523665336654366553665636657366583665936660366613666236663366643666536666366673666836669366703667136672366733667436675366763667736678366793668036681366823668336684366853668636687366883668936690366913669236693366943669536696366973669836699367003670136702367033670436705367063670736708367093671036711367123671336714367153671636717367183671936720367213672236723367243672536726367273672836729367303673136732367333673436735367363673736738367393674036741367423674336744367453674636747367483674936750367513675236753367543675536756367573675836759367603676136762367633676436765367663676736768367693677036771367723677336774367753677636777367783677936780367813678236783367843678536786367873678836789367903679136792367933679436795367963679736798367993680036801368023680336804368053680636807368083680936810368113681236813368143681536816368173681836819368203682136822368233682436825368263682736828368293683036831368323683336834368353683636837368383683936840368413684236843368443684536846368473684836849368503685136852368533685436855368563685736858368593686036861368623686336864368653686636867368683686936870368713687236873368743687536876368773687836879368803688136882368833688436885368863688736888368893689036891368923689336894368953689636897368983689936900369013690236903369043690536906369073690836909369103691136912369133691436915369163691736918369193692036921369223692336924369253692636927369283692936930369313693236933369343693536936369373693836939369403694136942369433694436945369463694736948369493695036951369523695336954369553695636957369583695936960369613696236963369643696536966369673696836969369703697136972369733697436975369763697736978369793698036981369823698336984369853698636987369883698936990369913699236993369943699536996369973699836999370003700137002370033700437005370063700737008370093701037011370123701337014370153701637017370183701937020370213702237023370243702537026370273702837029370303703137032370333703437035370363703737038370393704037041370423704337044370453704637047370483704937050370513705237053370543705537056370573705837059370603706137062370633706437065370663706737068370693707037071370723707337074370753707637077370783707937080370813708237083370843708537086370873708837089370903709137092370933709437095370963709737098370993710037101371023710337104371053710637107371083710937110371113711237113371143711537116371173711837119371203712137122371233712437125371263712737128371293713037131371323713337134371353713637137371383713937140371413714237143371443714537146371473714837149371503715137152371533715437155371563715737158371593716037161371623716337164371653716637167371683716937170371713717237173371743717537176371773717837179371803718137182371833718437185371863718737188371893719037191371923719337194371953719637197371983719937200372013720237203372043720537206372073720837209372103721137212372133721437215372163721737218372193722037221372223722337224372253722637227372283722937230372313723237233372343723537236372373723837239372403724137242372433724437245372463724737248372493725037251372523725337254372553725637257372583725937260372613726237263372643726537266372673726837269372703727137272372733727437275372763727737278372793728037281372823728337284372853728637287372883728937290372913729237293372943729537296372973729837299373003730137302373033730437305373063730737308373093731037311373123731337314373153731637317373183731937320373213732237323373243732537326373273732837329373303733137332373333733437335373363733737338373393734037341373423734337344373453734637347373483734937350373513735237353373543735537356373573735837359373603736137362373633736437365373663736737368373693737037371373723737337374373753737637377373783737937380373813738237383373843738537386373873738837389373903739137392373933739437395373963739737398373993740037401374023740337404374053740637407374083740937410374113741237413374143741537416374173741837419374203742137422374233742437425374263742737428374293743037431374323743337434374353743637437374383743937440374413744237443374443744537446374473744837449374503745137452374533745437455374563745737458374593746037461374623746337464374653746637467374683746937470374713747237473374743747537476374773747837479374803748137482374833748437485374863748737488374893749037491374923749337494374953749637497374983749937500375013750237503375043750537506375073750837509375103751137512375133751437515375163751737518375193752037521375223752337524375253752637527375283752937530375313753237533375343753537536375373753837539375403754137542375433754437545375463754737548375493755037551375523755337554375553755637557375583755937560375613756237563375643756537566375673756837569375703757137572375733757437575375763757737578375793758037581375823758337584375853758637587375883758937590375913759237593375943759537596375973759837599376003760137602376033760437605376063760737608376093761037611376123761337614376153761637617376183761937620376213762237623376243762537626376273762837629376303763137632376333763437635376363763737638376393764037641376423764337644376453764637647376483764937650376513765237653376543765537656376573765837659376603766137662376633766437665376663766737668376693767037671376723767337674376753767637677376783767937680376813768237683376843768537686376873768837689376903769137692376933769437695376963769737698376993770037701377023770337704377053770637707377083770937710377113771237713377143771537716377173771837719377203772137722377233772437725377263772737728377293773037731377323773337734377353773637737377383773937740377413774237743377443774537746377473774837749377503775137752377533775437755377563775737758377593776037761377623776337764377653776637767377683776937770377713777237773377743777537776377773777837779377803778137782377833778437785377863778737788377893779037791377923779337794377953779637797377983779937800378013780237803378043780537806378073780837809378103781137812378133781437815378163781737818378193782037821378223782337824378253782637827378283782937830378313783237833378343783537836378373783837839378403784137842378433784437845378463784737848378493785037851378523785337854378553785637857378583785937860378613786237863378643786537866378673786837869378703787137872378733787437875378763787737878378793788037881378823788337884378853788637887378883788937890378913789237893378943789537896378973789837899379003790137902379033790437905379063790737908379093791037911379123791337914379153791637917379183791937920379213792237923379243792537926379273792837929379303793137932379333793437935379363793737938379393794037941379423794337944379453794637947379483794937950379513795237953379543795537956379573795837959379603796137962379633796437965379663796737968379693797037971379723797337974379753797637977379783797937980379813798237983379843798537986379873798837989379903799137992379933799437995379963799737998379993800038001380023800338004380053800638007380083800938010380113801238013380143801538016380173801838019380203802138022380233802438025380263802738028380293803038031380323803338034380353803638037380383803938040380413804238043380443804538046380473804838049380503805138052380533805438055380563805738058380593806038061380623806338064380653806638067380683806938070380713807238073380743807538076380773807838079380803808138082380833808438085380863808738088380893809038091380923809338094380953809638097380983809938100381013810238103381043810538106381073810838109381103811138112381133811438115381163811738118381193812038121381223812338124381253812638127381283812938130381313813238133381343813538136381373813838139381403814138142381433814438145381463814738148381493815038151381523815338154381553815638157381583815938160381613816238163381643816538166381673816838169381703817138172381733817438175381763817738178381793818038181381823818338184381853818638187381883818938190381913819238193381943819538196381973819838199382003820138202382033820438205382063820738208382093821038211382123821338214382153821638217382183821938220382213822238223382243822538226382273822838229382303823138232382333823438235382363823738238382393824038241382423824338244382453824638247382483824938250382513825238253382543825538256382573825838259382603826138262382633826438265382663826738268382693827038271382723827338274382753827638277382783827938280382813828238283382843828538286382873828838289382903829138292382933829438295382963829738298382993830038301383023830338304383053830638307383083830938310383113831238313383143831538316383173831838319383203832138322383233832438325383263832738328383293833038331383323833338334383353833638337383383833938340383413834238343383443834538346383473834838349383503835138352383533835438355383563835738358383593836038361383623836338364383653836638367383683836938370383713837238373383743837538376383773837838379383803838138382383833838438385383863838738388383893839038391383923839338394383953839638397383983839938400384013840238403384043840538406384073840838409384103841138412384133841438415384163841738418384193842038421384223842338424384253842638427384283842938430384313843238433384343843538436384373843838439384403844138442384433844438445384463844738448384493845038451384523845338454384553845638457384583845938460384613846238463384643846538466384673846838469384703847138472384733847438475384763847738478384793848038481384823848338484384853848638487384883848938490384913849238493384943849538496384973849838499385003850138502385033850438505385063850738508385093851038511385123851338514385153851638517385183851938520385213852238523385243852538526385273852838529385303853138532385333853438535385363853738538385393854038541385423854338544385453854638547385483854938550385513855238553385543855538556385573855838559385603856138562385633856438565385663856738568385693857038571385723857338574385753857638577385783857938580385813858238583385843858538586385873858838589385903859138592385933859438595385963859738598385993860038601386023860338604386053860638607386083860938610386113861238613386143861538616386173861838619386203862138622386233862438625386263862738628386293863038631386323863338634386353863638637386383863938640386413864238643386443864538646386473864838649386503865138652386533865438655386563865738658386593866038661386623866338664386653866638667386683866938670386713867238673386743867538676386773867838679386803868138682386833868438685386863868738688386893869038691386923869338694386953869638697386983869938700387013870238703387043870538706387073870838709387103871138712387133871438715387163871738718387193872038721387223872338724387253872638727387283872938730387313873238733387343873538736387373873838739387403874138742387433874438745387463874738748387493875038751387523875338754387553875638757387583875938760387613876238763387643876538766387673876838769387703877138772387733877438775387763877738778387793878038781387823878338784387853878638787387883878938790387913879238793387943879538796387973879838799388003880138802388033880438805388063880738808388093881038811388123881338814388153881638817388183881938820388213882238823388243882538826388273882838829388303883138832388333883438835388363883738838388393884038841388423884338844388453884638847388483884938850388513885238853388543885538856388573885838859388603886138862388633886438865388663886738868388693887038871388723887338874388753887638877388783887938880388813888238883388843888538886388873888838889388903889138892388933889438895388963889738898388993890038901389023890338904389053890638907389083890938910389113891238913389143891538916389173891838919389203892138922389233892438925389263892738928389293893038931389323893338934389353893638937389383893938940389413894238943389443894538946389473894838949389503895138952389533895438955389563895738958389593896038961389623896338964389653896638967389683896938970389713897238973389743897538976389773897838979389803898138982389833898438985389863898738988389893899038991389923899338994389953899638997389983899939000390013900239003390043900539006390073900839009390103901139012390133901439015390163901739018390193902039021390223902339024390253902639027390283902939030390313903239033390343903539036390373903839039390403904139042390433904439045390463904739048390493905039051390523905339054390553905639057390583905939060390613906239063390643906539066390673906839069390703907139072390733907439075390763907739078390793908039081390823908339084390853908639087390883908939090390913909239093390943909539096390973909839099391003910139102391033910439105391063910739108391093911039111391123911339114391153911639117391183911939120391213912239123391243912539126391273912839129391303913139132391333913439135391363913739138391393914039141391423914339144391453914639147391483914939150391513915239153391543915539156391573915839159391603916139162391633916439165391663916739168391693917039171391723917339174391753917639177391783917939180391813918239183391843918539186391873918839189391903919139192391933919439195391963919739198391993920039201392023920339204392053920639207392083920939210392113921239213392143921539216392173921839219392203922139222392233922439225392263922739228392293923039231392323923339234392353923639237392383923939240392413924239243392443924539246392473924839249392503925139252392533925439255392563925739258392593926039261392623926339264392653926639267392683926939270392713927239273392743927539276392773927839279392803928139282392833928439285392863928739288392893929039291392923929339294392953929639297392983929939300393013930239303393043930539306393073930839309393103931139312393133931439315393163931739318393193932039321393223932339324393253932639327393283932939330393313933239333393343933539336393373933839339393403934139342393433934439345393463934739348393493935039351393523935339354393553935639357393583935939360393613936239363393643936539366393673936839369393703937139372393733937439375393763937739378393793938039381393823938339384393853938639387393883938939390393913939239393393943939539396393973939839399394003940139402394033940439405394063940739408394093941039411394123941339414394153941639417394183941939420394213942239423394243942539426394273942839429394303943139432394333943439435394363943739438394393944039441394423944339444394453944639447394483944939450394513945239453394543945539456394573945839459394603946139462394633946439465394663946739468394693947039471394723947339474394753947639477394783947939480394813948239483394843948539486394873948839489394903949139492394933949439495394963949739498394993950039501395023950339504395053950639507395083950939510395113951239513395143951539516395173951839519395203952139522395233952439525395263952739528395293953039531395323953339534395353953639537395383953939540395413954239543395443954539546395473954839549395503955139552395533955439555395563955739558395593956039561395623956339564395653956639567395683956939570395713957239573395743957539576395773957839579395803958139582395833958439585395863958739588395893959039591395923959339594395953959639597395983959939600396013960239603396043960539606396073960839609396103961139612396133961439615396163961739618396193962039621396223962339624396253962639627396283962939630396313963239633396343963539636396373963839639396403964139642396433964439645396463964739648396493965039651396523965339654396553965639657396583965939660396613966239663396643966539666396673966839669396703967139672396733967439675396763967739678396793968039681396823968339684396853968639687396883968939690396913969239693396943969539696396973969839699397003970139702397033970439705397063970739708397093971039711397123971339714397153971639717397183971939720397213972239723397243972539726397273972839729397303973139732397333973439735397363973739738397393974039741397423974339744397453974639747397483974939750397513975239753397543975539756397573975839759397603976139762397633976439765397663976739768397693977039771397723977339774397753977639777397783977939780397813978239783397843978539786397873978839789397903979139792397933979439795397963979739798397993980039801398023980339804398053980639807398083980939810398113981239813398143981539816398173981839819398203982139822398233982439825398263982739828398293983039831398323983339834398353983639837398383983939840398413984239843398443984539846398473984839849398503985139852398533985439855398563985739858398593986039861398623986339864398653986639867398683986939870398713987239873398743987539876398773987839879398803988139882398833988439885398863988739888398893989039891398923989339894398953989639897398983989939900399013990239903399043990539906399073990839909399103991139912399133991439915399163991739918399193992039921399223992339924399253992639927399283992939930399313993239933399343993539936399373993839939399403994139942399433994439945399463994739948399493995039951399523995339954399553995639957399583995939960399613996239963399643996539966399673996839969399703997139972399733997439975399763997739978399793998039981399823998339984399853998639987399883998939990399913999239993399943999539996399973999839999400004000140002400034000440005400064000740008400094001040011400124001340014400154001640017400184001940020400214002240023400244002540026400274002840029400304003140032400334003440035400364003740038400394004040041400424004340044400454004640047400484004940050400514005240053400544005540056400574005840059400604006140062400634006440065400664006740068400694007040071400724007340074400754007640077400784007940080400814008240083400844008540086400874008840089400904009140092400934009440095400964009740098400994010040101401024010340104401054010640107401084010940110401114011240113401144011540116401174011840119401204012140122401234012440125401264012740128401294013040131401324013340134401354013640137401384013940140401414014240143401444014540146401474014840149401504015140152401534015440155401564015740158401594016040161401624016340164401654016640167401684016940170401714017240173401744017540176401774017840179401804018140182401834018440185401864018740188401894019040191401924019340194401954019640197401984019940200402014020240203402044020540206402074020840209402104021140212402134021440215402164021740218402194022040221402224022340224402254022640227402284022940230402314023240233402344023540236402374023840239402404024140242402434024440245402464024740248402494025040251402524025340254402554025640257402584025940260402614026240263402644026540266402674026840269402704027140272402734027440275402764027740278402794028040281402824028340284402854028640287402884028940290402914029240293402944029540296402974029840299403004030140302403034030440305403064030740308403094031040311403124031340314403154031640317403184031940320403214032240323403244032540326403274032840329403304033140332403334033440335403364033740338403394034040341403424034340344403454034640347403484034940350403514035240353403544035540356403574035840359403604036140362403634036440365403664036740368403694037040371403724037340374403754037640377403784037940380403814038240383403844038540386403874038840389403904039140392403934039440395403964039740398403994040040401404024040340404404054040640407404084040940410404114041240413404144041540416404174041840419404204042140422404234042440425404264042740428404294043040431404324043340434404354043640437404384043940440404414044240443404444044540446404474044840449404504045140452404534045440455404564045740458404594046040461404624046340464404654046640467404684046940470404714047240473404744047540476404774047840479404804048140482404834048440485404864048740488404894049040491404924049340494404954049640497404984049940500405014050240503405044050540506405074050840509405104051140512405134051440515405164051740518405194052040521405224052340524405254052640527405284052940530405314053240533405344053540536405374053840539405404054140542405434054440545405464054740548405494055040551405524055340554405554055640557405584055940560405614056240563405644056540566405674056840569405704057140572405734057440575405764057740578405794058040581405824058340584405854058640587405884058940590405914059240593405944059540596405974059840599406004060140602406034060440605406064060740608406094061040611406124061340614406154061640617406184061940620406214062240623406244062540626406274062840629406304063140632406334063440635406364063740638406394064040641406424064340644406454064640647406484064940650406514065240653406544065540656406574065840659406604066140662406634066440665406664066740668406694067040671406724067340674406754067640677406784067940680406814068240683406844068540686406874068840689406904069140692406934069440695406964069740698406994070040701407024070340704407054070640707407084070940710407114071240713407144071540716407174071840719407204072140722407234072440725407264072740728407294073040731407324073340734407354073640737407384073940740407414074240743407444074540746407474074840749407504075140752407534075440755407564075740758407594076040761407624076340764407654076640767407684076940770407714077240773407744077540776407774077840779407804078140782407834078440785407864078740788407894079040791407924079340794407954079640797407984079940800408014080240803408044080540806408074080840809408104081140812408134081440815408164081740818408194082040821408224082340824408254082640827408284082940830408314083240833408344083540836408374083840839408404084140842408434084440845408464084740848408494085040851408524085340854408554085640857408584085940860408614086240863408644086540866408674086840869408704087140872408734087440875408764087740878408794088040881408824088340884408854088640887408884088940890408914089240893408944089540896408974089840899409004090140902409034090440905409064090740908409094091040911409124091340914409154091640917409184091940920409214092240923409244092540926409274092840929409304093140932409334093440935409364093740938409394094040941409424094340944409454094640947409484094940950409514095240953409544095540956409574095840959409604096140962409634096440965409664096740968409694097040971409724097340974409754097640977409784097940980409814098240983409844098540986409874098840989409904099140992409934099440995409964099740998409994100041001410024100341004410054100641007410084100941010410114101241013410144101541016410174101841019410204102141022410234102441025410264102741028410294103041031410324103341034410354103641037410384103941040410414104241043410444104541046410474104841049410504105141052410534105441055410564105741058410594106041061410624106341064410654106641067410684106941070410714107241073410744107541076410774107841079410804108141082410834108441085410864108741088410894109041091410924109341094410954109641097410984109941100411014110241103411044110541106411074110841109411104111141112411134111441115411164111741118411194112041121411224112341124411254112641127411284112941130411314113241133411344113541136411374113841139411404114141142411434114441145411464114741148411494115041151411524115341154411554115641157411584115941160411614116241163411644116541166411674116841169411704117141172411734117441175411764117741178411794118041181411824118341184411854118641187411884118941190411914119241193411944119541196411974119841199412004120141202412034120441205412064120741208412094121041211412124121341214412154121641217412184121941220412214122241223412244122541226412274122841229412304123141232412334123441235412364123741238412394124041241412424124341244412454124641247412484124941250412514125241253412544125541256412574125841259412604126141262412634126441265412664126741268412694127041271412724127341274412754127641277412784127941280412814128241283412844128541286412874128841289412904129141292412934129441295412964129741298412994130041301413024130341304413054130641307413084130941310413114131241313413144131541316413174131841319413204132141322413234132441325413264132741328413294133041331413324133341334413354133641337413384133941340413414134241343413444134541346413474134841349413504135141352413534135441355413564135741358413594136041361413624136341364413654136641367413684136941370413714137241373413744137541376413774137841379413804138141382413834138441385413864138741388413894139041391413924139341394413954139641397413984139941400414014140241403414044140541406414074140841409414104141141412414134141441415414164141741418414194142041421414224142341424414254142641427414284142941430414314143241433414344143541436414374143841439414404144141442414434144441445414464144741448414494145041451414524145341454414554145641457414584145941460414614146241463414644146541466414674146841469414704147141472414734147441475414764147741478414794148041481414824148341484414854148641487414884148941490414914149241493414944149541496414974149841499415004150141502415034150441505415064150741508415094151041511415124151341514415154151641517415184151941520415214152241523415244152541526415274152841529415304153141532415334153441535415364153741538415394154041541415424154341544415454154641547415484154941550415514155241553415544155541556415574155841559415604156141562415634156441565415664156741568415694157041571415724157341574415754157641577415784157941580415814158241583415844158541586415874158841589415904159141592415934159441595415964159741598415994160041601416024160341604416054160641607416084160941610416114161241613416144161541616416174161841619416204162141622416234162441625416264162741628416294163041631416324163341634416354163641637416384163941640416414164241643416444164541646416474164841649416504165141652416534165441655416564165741658416594166041661416624166341664416654166641667416684166941670416714167241673416744167541676416774167841679416804168141682416834168441685416864168741688416894169041691416924169341694416954169641697416984169941700417014170241703417044170541706417074170841709417104171141712417134171441715417164171741718417194172041721417224172341724417254172641727417284172941730417314173241733417344173541736417374173841739417404174141742417434174441745417464174741748417494175041751417524175341754417554175641757417584175941760417614176241763417644176541766417674176841769417704177141772417734177441775417764177741778417794178041781417824178341784417854178641787417884178941790417914179241793417944179541796417974179841799418004180141802418034180441805418064180741808418094181041811418124181341814418154181641817418184181941820418214182241823418244182541826418274182841829418304183141832418334183441835418364183741838418394184041841418424184341844418454184641847418484184941850418514185241853418544185541856418574185841859418604186141862418634186441865418664186741868418694187041871418724187341874418754187641877418784187941880418814188241883418844188541886418874188841889418904189141892418934189441895418964189741898418994190041901419024190341904419054190641907419084190941910419114191241913419144191541916419174191841919419204192141922419234192441925419264192741928419294193041931419324193341934419354193641937419384193941940419414194241943419444194541946419474194841949419504195141952419534195441955419564195741958419594196041961419624196341964419654196641967419684196941970419714197241973419744197541976419774197841979419804198141982419834198441985419864198741988419894199041991419924199341994419954199641997419984199942000420014200242003420044200542006420074200842009420104201142012420134201442015420164201742018420194202042021420224202342024420254202642027420284202942030420314203242033420344203542036420374203842039420404204142042420434204442045420464204742048420494205042051420524205342054420554205642057420584205942060420614206242063420644206542066420674206842069420704207142072420734207442075420764207742078420794208042081420824208342084420854208642087420884208942090420914209242093420944209542096420974209842099421004210142102421034210442105421064210742108421094211042111421124211342114421154211642117421184211942120421214212242123421244212542126421274212842129421304213142132421334213442135421364213742138421394214042141421424214342144421454214642147421484214942150421514215242153421544215542156421574215842159421604216142162421634216442165421664216742168421694217042171421724217342174421754217642177421784217942180421814218242183421844218542186421874218842189421904219142192421934219442195421964219742198421994220042201422024220342204422054220642207422084220942210422114221242213422144221542216422174221842219422204222142222422234222442225422264222742228422294223042231422324223342234422354223642237422384223942240422414224242243422444224542246422474224842249422504225142252422534225442255422564225742258422594226042261422624226342264422654226642267422684226942270422714227242273422744227542276422774227842279422804228142282422834228442285422864228742288422894229042291422924229342294422954229642297422984229942300423014230242303423044230542306423074230842309423104231142312423134231442315423164231742318423194232042321423224232342324423254232642327423284232942330423314233242333423344233542336423374233842339423404234142342423434234442345423464234742348423494235042351423524235342354423554235642357423584235942360423614236242363423644236542366423674236842369423704237142372423734237442375423764237742378423794238042381423824238342384423854238642387423884238942390423914239242393423944239542396423974239842399424004240142402424034240442405424064240742408424094241042411424124241342414424154241642417424184241942420424214242242423424244242542426424274242842429424304243142432424334243442435424364243742438424394244042441424424244342444424454244642447424484244942450424514245242453424544245542456424574245842459424604246142462424634246442465424664246742468424694247042471424724247342474424754247642477424784247942480424814248242483424844248542486424874248842489424904249142492424934249442495424964249742498424994250042501425024250342504425054250642507425084250942510425114251242513425144251542516425174251842519425204252142522425234252442525425264252742528425294253042531425324253342534425354253642537425384253942540425414254242543425444254542546425474254842549425504255142552425534255442555425564255742558425594256042561425624256342564425654256642567425684256942570425714257242573425744257542576425774257842579425804258142582425834258442585425864258742588425894259042591425924259342594425954259642597425984259942600426014260242603426044260542606426074260842609426104261142612426134261442615426164261742618426194262042621426224262342624426254262642627426284262942630426314263242633426344263542636426374263842639426404264142642426434264442645426464264742648426494265042651426524265342654426554265642657426584265942660426614266242663426644266542666426674266842669426704267142672426734267442675426764267742678426794268042681426824268342684426854268642687426884268942690426914269242693426944269542696426974269842699427004270142702427034270442705427064270742708427094271042711427124271342714427154271642717427184271942720427214272242723427244272542726427274272842729427304273142732427334273442735427364273742738427394274042741427424274342744427454274642747427484274942750427514275242753427544275542756427574275842759427604276142762427634276442765427664276742768427694277042771427724277342774427754277642777427784277942780427814278242783427844278542786427874278842789427904279142792427934279442795427964279742798427994280042801428024280342804428054280642807428084280942810428114281242813428144281542816428174281842819428204282142822428234282442825428264282742828428294283042831428324283342834428354283642837428384283942840428414284242843428444284542846428474284842849428504285142852428534285442855428564285742858428594286042861428624286342864428654286642867428684286942870428714287242873428744287542876428774287842879428804288142882428834288442885428864288742888428894289042891428924289342894428954289642897428984289942900429014290242903429044290542906429074290842909429104291142912429134291442915429164291742918429194292042921429224292342924429254292642927429284292942930429314293242933429344293542936429374293842939429404294142942429434294442945429464294742948429494295042951429524295342954429554295642957429584295942960429614296242963429644296542966429674296842969429704297142972429734297442975429764297742978429794298042981429824298342984429854298642987429884298942990429914299242993429944299542996429974299842999430004300143002430034300443005430064300743008430094301043011430124301343014430154301643017430184301943020430214302243023430244302543026430274302843029430304303143032430334303443035430364303743038430394304043041430424304343044430454304643047430484304943050430514305243053430544305543056430574305843059430604306143062430634306443065430664306743068430694307043071430724307343074430754307643077430784307943080430814308243083430844308543086430874308843089430904309143092430934309443095430964309743098430994310043101431024310343104431054310643107431084310943110431114311243113431144311543116431174311843119431204312143122431234312443125431264312743128431294313043131431324313343134431354313643137431384313943140431414314243143431444314543146431474314843149431504315143152431534315443155431564315743158431594316043161431624316343164431654316643167431684316943170431714317243173431744317543176431774317843179431804318143182431834318443185431864318743188431894319043191431924319343194431954319643197431984319943200432014320243203432044320543206432074320843209432104321143212432134321443215432164321743218432194322043221432224322343224432254322643227432284322943230432314323243233432344323543236432374323843239432404324143242432434324443245432464324743248432494325043251432524325343254432554325643257432584325943260432614326243263432644326543266432674326843269432704327143272432734327443275432764327743278432794328043281432824328343284432854328643287432884328943290432914329243293432944329543296432974329843299433004330143302433034330443305433064330743308433094331043311433124331343314433154331643317433184331943320433214332243323433244332543326433274332843329433304333143332433334333443335433364333743338433394334043341433424334343344433454334643347433484334943350433514335243353433544335543356433574335843359433604336143362433634336443365433664336743368433694337043371433724337343374433754337643377433784337943380433814338243383433844338543386433874338843389433904339143392433934339443395433964339743398433994340043401434024340343404434054340643407434084340943410434114341243413434144341543416434174341843419434204342143422434234342443425434264342743428434294343043431434324343343434434354343643437434384343943440434414344243443434444344543446434474344843449434504345143452434534345443455434564345743458434594346043461434624346343464434654346643467434684346943470434714347243473434744347543476434774347843479434804348143482434834348443485434864348743488434894349043491434924349343494434954349643497434984349943500435014350243503435044350543506435074350843509435104351143512435134351443515435164351743518435194352043521435224352343524435254352643527435284352943530435314353243533435344353543536435374353843539435404354143542435434354443545435464354743548435494355043551435524355343554435554355643557435584355943560435614356243563435644356543566435674356843569435704357143572435734357443575435764357743578435794358043581435824358343584435854358643587435884358943590435914359243593435944359543596435974359843599436004360143602436034360443605436064360743608436094361043611436124361343614436154361643617436184361943620436214362243623436244362543626436274362843629436304363143632436334363443635436364363743638436394364043641436424364343644436454364643647436484364943650436514365243653436544365543656436574365843659436604366143662436634366443665436664366743668436694367043671436724367343674436754367643677436784367943680436814368243683436844368543686436874368843689436904369143692436934369443695436964369743698436994370043701437024370343704437054370643707437084370943710437114371243713437144371543716437174371843719437204372143722437234372443725437264372743728437294373043731437324373343734437354373643737437384373943740437414374243743437444374543746437474374843749437504375143752437534375443755437564375743758437594376043761437624376343764437654376643767437684376943770437714377243773437744377543776437774377843779437804378143782437834378443785437864378743788437894379043791437924379343794437954379643797437984379943800438014380243803438044380543806438074380843809438104381143812438134381443815438164381743818438194382043821438224382343824438254382643827438284382943830438314383243833438344383543836438374383843839438404384143842438434384443845438464384743848438494385043851438524385343854438554385643857438584385943860438614386243863438644386543866438674386843869438704387143872438734387443875438764387743878438794388043881438824388343884438854388643887438884388943890438914389243893438944389543896438974389843899439004390143902439034390443905439064390743908439094391043911439124391343914439154391643917439184391943920439214392243923439244392543926439274392843929439304393143932439334393443935439364393743938439394394043941439424394343944439454394643947439484394943950439514395243953439544395543956439574395843959439604396143962439634396443965439664396743968439694397043971439724397343974439754397643977439784397943980439814398243983439844398543986439874398843989439904399143992439934399443995439964399743998439994400044001440024400344004440054400644007440084400944010440114401244013440144401544016440174401844019440204402144022440234402444025440264402744028440294403044031440324403344034440354403644037440384403944040440414404244043440444404544046440474404844049440504405144052440534405444055440564405744058440594406044061440624406344064440654406644067440684406944070440714407244073440744407544076440774407844079440804408144082440834408444085440864408744088440894409044091440924409344094440954409644097440984409944100441014410244103441044410544106441074410844109441104411144112441134411444115441164411744118441194412044121441224412344124441254412644127441284412944130441314413244133441344413544136441374413844139441404414144142441434414444145441464414744148441494415044151441524415344154441554415644157441584415944160441614416244163441644416544166441674416844169441704417144172441734417444175441764417744178441794418044181441824418344184441854418644187441884418944190441914419244193441944419544196441974419844199442004420144202442034420444205442064420744208442094421044211442124421344214442154421644217442184421944220442214422244223442244422544226442274422844229442304423144232442334423444235442364423744238442394424044241442424424344244442454424644247442484424944250442514425244253442544425544256442574425844259442604426144262442634426444265442664426744268442694427044271442724427344274442754427644277442784427944280442814428244283442844428544286442874428844289442904429144292442934429444295442964429744298442994430044301443024430344304443054430644307443084430944310443114431244313443144431544316443174431844319443204432144322443234432444325443264432744328443294433044331443324433344334443354433644337443384433944340443414434244343443444434544346443474434844349443504435144352443534435444355443564435744358443594436044361443624436344364443654436644367443684436944370443714437244373443744437544376443774437844379443804438144382443834438444385443864438744388443894439044391443924439344394443954439644397443984439944400444014440244403444044440544406444074440844409444104441144412444134441444415444164441744418444194442044421444224442344424444254442644427444284442944430444314443244433444344443544436444374443844439444404444144442444434444444445444464444744448444494445044451444524445344454444554445644457444584445944460444614446244463444644446544466444674446844469444704447144472444734447444475444764447744478444794448044481444824448344484444854448644487444884448944490444914449244493444944449544496444974449844499445004450144502445034450444505445064450744508445094451044511445124451344514445154451644517445184451944520445214452244523445244452544526445274452844529445304453144532445334453444535445364453744538445394454044541445424454344544445454454644547445484454944550445514455244553445544455544556445574455844559445604456144562445634456444565445664456744568445694457044571445724457344574445754457644577445784457944580445814458244583445844458544586445874458844589445904459144592445934459444595445964459744598445994460044601446024460344604446054460644607446084460944610446114461244613446144461544616446174461844619446204462144622446234462444625446264462744628446294463044631446324463344634446354463644637446384463944640446414464244643446444464544646446474464844649446504465144652446534465444655446564465744658446594466044661446624466344664446654466644667446684466944670446714467244673446744467544676446774467844679446804468144682446834468444685446864468744688446894469044691446924469344694446954469644697446984469944700447014470244703447044470544706447074470844709447104471144712447134471444715447164471744718447194472044721447224472344724447254472644727447284472944730447314473244733447344473544736447374473844739447404474144742447434474444745447464474744748447494475044751447524475344754447554475644757447584475944760447614476244763447644476544766447674476844769447704477144772447734477444775447764477744778447794478044781447824478344784447854478644787447884478944790447914479244793447944479544796447974479844799448004480144802448034480444805448064480744808448094481044811448124481344814448154481644817448184481944820448214482244823448244482544826448274482844829448304483144832448334483444835448364483744838448394484044841448424484344844448454484644847448484484944850448514485244853448544485544856448574485844859448604486144862448634486444865448664486744868448694487044871448724487344874448754487644877448784487944880448814488244883448844488544886448874488844889448904489144892448934489444895448964489744898448994490044901449024490344904449054490644907449084490944910449114491244913449144491544916449174491844919449204492144922449234492444925449264492744928449294493044931449324493344934449354493644937449384493944940449414494244943449444494544946449474494844949449504495144952449534495444955449564495744958449594496044961449624496344964449654496644967449684496944970449714497244973449744497544976449774497844979449804498144982449834498444985449864498744988449894499044991449924499344994449954499644997449984499945000450014500245003450044500545006450074500845009450104501145012450134501445015450164501745018450194502045021450224502345024450254502645027450284502945030450314503245033450344503545036450374503845039450404504145042450434504445045450464504745048450494505045051450524505345054450554505645057450584505945060450614506245063450644506545066450674506845069450704507145072450734507445075450764507745078450794508045081450824508345084450854508645087450884508945090450914509245093450944509545096450974509845099451004510145102451034510445105451064510745108451094511045111451124511345114451154511645117451184511945120451214512245123451244512545126451274512845129451304513145132451334513445135451364513745138451394514045141451424514345144451454514645147451484514945150451514515245153451544515545156451574515845159451604516145162451634516445165451664516745168451694517045171451724517345174451754517645177451784517945180451814518245183451844518545186451874518845189451904519145192451934519445195451964519745198451994520045201452024520345204452054520645207452084520945210452114521245213452144521545216452174521845219452204522145222452234522445225452264522745228452294523045231452324523345234452354523645237452384523945240452414524245243452444524545246452474524845249452504525145252452534525445255452564525745258452594526045261452624526345264452654526645267452684526945270452714527245273452744527545276452774527845279452804528145282452834528445285452864528745288452894529045291452924529345294452954529645297452984529945300453014530245303453044530545306453074530845309453104531145312453134531445315453164531745318453194532045321453224532345324453254532645327453284532945330453314533245333453344533545336453374533845339453404534145342453434534445345453464534745348453494535045351453524535345354453554535645357453584535945360453614536245363453644536545366453674536845369453704537145372453734537445375453764537745378453794538045381453824538345384453854538645387453884538945390453914539245393453944539545396453974539845399454004540145402454034540445405454064540745408454094541045411454124541345414454154541645417454184541945420454214542245423454244542545426454274542845429454304543145432454334543445435454364543745438454394544045441454424544345444454454544645447454484544945450454514545245453454544545545456454574545845459454604546145462454634546445465454664546745468454694547045471454724547345474454754547645477454784547945480454814548245483454844548545486454874548845489454904549145492454934549445495454964549745498454994550045501455024550345504455054550645507455084550945510455114551245513455144551545516455174551845519455204552145522455234552445525455264552745528455294553045531455324553345534455354553645537455384553945540455414554245543455444554545546455474554845549455504555145552455534555445555455564555745558455594556045561455624556345564455654556645567455684556945570455714557245573455744557545576455774557845579455804558145582455834558445585455864558745588455894559045591455924559345594455954559645597455984559945600456014560245603456044560545606456074560845609456104561145612456134561445615456164561745618456194562045621456224562345624456254562645627456284562945630456314563245633456344563545636456374563845639456404564145642456434564445645456464564745648456494565045651456524565345654456554565645657456584565945660456614566245663456644566545666456674566845669456704567145672456734567445675456764567745678456794568045681456824568345684456854568645687456884568945690456914569245693456944569545696456974569845699457004570145702457034570445705457064570745708457094571045711457124571345714457154571645717457184571945720457214572245723457244572545726457274572845729457304573145732457334573445735457364573745738457394574045741457424574345744457454574645747457484574945750457514575245753457544575545756457574575845759457604576145762457634576445765457664576745768457694577045771457724577345774457754577645777457784577945780457814578245783457844578545786457874578845789457904579145792457934579445795457964579745798457994580045801458024580345804458054580645807458084580945810458114581245813458144581545816458174581845819458204582145822458234582445825458264582745828458294583045831458324583345834458354583645837458384583945840458414584245843458444584545846458474584845849458504585145852458534585445855458564585745858458594586045861458624586345864458654586645867458684586945870458714587245873458744587545876458774587845879458804588145882458834588445885458864588745888458894589045891458924589345894458954589645897458984589945900459014590245903459044590545906459074590845909459104591145912459134591445915459164591745918459194592045921459224592345924459254592645927459284592945930459314593245933459344593545936459374593845939459404594145942459434594445945459464594745948459494595045951459524595345954459554595645957459584595945960459614596245963459644596545966459674596845969459704597145972459734597445975459764597745978459794598045981459824598345984459854598645987459884598945990459914599245993459944599545996459974599845999460004600146002460034600446005460064600746008460094601046011460124601346014460154601646017460184601946020460214602246023460244602546026460274602846029460304603146032460334603446035460364603746038460394604046041460424604346044460454604646047460484604946050460514605246053460544605546056460574605846059460604606146062460634606446065460664606746068460694607046071460724607346074460754607646077460784607946080460814608246083460844608546086460874608846089460904609146092460934609446095460964609746098460994610046101461024610346104461054610646107461084610946110461114611246113461144611546116461174611846119461204612146122461234612446125461264612746128461294613046131461324613346134461354613646137461384613946140461414614246143461444614546146461474614846149461504615146152461534615446155461564615746158461594616046161461624616346164461654616646167461684616946170461714617246173461744617546176461774617846179461804618146182461834618446185461864618746188461894619046191461924619346194461954619646197461984619946200462014620246203462044620546206462074620846209462104621146212462134621446215462164621746218462194622046221462224622346224462254622646227462284622946230462314623246233462344623546236462374623846239462404624146242462434624446245462464624746248462494625046251462524625346254462554625646257462584625946260462614626246263462644626546266462674626846269462704627146272462734627446275462764627746278462794628046281462824628346284462854628646287462884628946290462914629246293462944629546296462974629846299463004630146302463034630446305463064630746308463094631046311463124631346314463154631646317463184631946320463214632246323463244632546326463274632846329463304633146332463334633446335463364633746338463394634046341463424634346344463454634646347463484634946350463514635246353463544635546356463574635846359463604636146362463634636446365463664636746368463694637046371463724637346374463754637646377463784637946380463814638246383463844638546386463874638846389463904639146392463934639446395463964639746398463994640046401464024640346404464054640646407464084640946410464114641246413464144641546416464174641846419464204642146422464234642446425464264642746428464294643046431464324643346434464354643646437464384643946440464414644246443464444644546446464474644846449464504645146452464534645446455464564645746458464594646046461464624646346464464654646646467464684646946470464714647246473464744647546476464774647846479464804648146482464834648446485464864648746488464894649046491464924649346494464954649646497464984649946500465014650246503465044650546506465074650846509465104651146512465134651446515465164651746518465194652046521465224652346524465254652646527465284652946530465314653246533465344653546536465374653846539465404654146542465434654446545465464654746548465494655046551465524655346554465554655646557465584655946560465614656246563465644656546566465674656846569465704657146572465734657446575465764657746578465794658046581465824658346584465854658646587465884658946590465914659246593465944659546596465974659846599466004660146602466034660446605466064660746608466094661046611466124661346614466154661646617466184661946620466214662246623466244662546626466274662846629466304663146632466334663446635466364663746638466394664046641466424664346644466454664646647466484664946650466514665246653466544665546656466574665846659466604666146662466634666446665466664666746668466694667046671466724667346674466754667646677466784667946680466814668246683466844668546686466874668846689466904669146692466934669446695466964669746698466994670046701467024670346704467054670646707467084670946710467114671246713467144671546716467174671846719467204672146722467234672446725467264672746728467294673046731467324673346734467354673646737467384673946740467414674246743467444674546746467474674846749467504675146752467534675446755467564675746758467594676046761467624676346764467654676646767467684676946770467714677246773467744677546776467774677846779467804678146782467834678446785467864678746788467894679046791467924679346794467954679646797467984679946800468014680246803468044680546806468074680846809468104681146812468134681446815468164681746818468194682046821468224682346824468254682646827468284682946830468314683246833468344683546836468374683846839468404684146842468434684446845468464684746848468494685046851468524685346854468554685646857468584685946860468614686246863468644686546866468674686846869468704687146872468734687446875468764687746878468794688046881468824688346884468854688646887468884688946890468914689246893468944689546896468974689846899469004690146902469034690446905469064690746908469094691046911469124691346914469154691646917469184691946920469214692246923469244692546926469274692846929469304693146932469334693446935469364693746938469394694046941469424694346944469454694646947469484694946950469514695246953469544695546956469574695846959469604696146962469634696446965469664696746968469694697046971469724697346974469754697646977469784697946980469814698246983469844698546986469874698846989469904699146992469934699446995469964699746998469994700047001470024700347004470054700647007470084700947010470114701247013470144701547016470174701847019470204702147022470234702447025470264702747028470294703047031470324703347034470354703647037470384703947040470414704247043470444704547046470474704847049470504705147052470534705447055470564705747058470594706047061470624706347064470654706647067470684706947070470714707247073470744707547076470774707847079470804708147082470834708447085470864708747088470894709047091470924709347094470954709647097470984709947100471014710247103471044710547106471074710847109471104711147112471134711447115471164711747118471194712047121471224712347124471254712647127471284712947130471314713247133471344713547136471374713847139471404714147142471434714447145471464714747148471494715047151471524715347154471554715647157471584715947160471614716247163471644716547166471674716847169471704717147172471734717447175471764717747178471794718047181471824718347184471854718647187471884718947190471914719247193471944719547196471974719847199472004720147202472034720447205472064720747208472094721047211472124721347214472154721647217472184721947220472214722247223472244722547226472274722847229472304723147232472334723447235472364723747238472394724047241472424724347244472454724647247472484724947250472514725247253472544725547256472574725847259472604726147262472634726447265472664726747268472694727047271472724727347274472754727647277472784727947280472814728247283472844728547286472874728847289472904729147292472934729447295472964729747298472994730047301473024730347304473054730647307473084730947310473114731247313473144731547316473174731847319473204732147322473234732447325473264732747328473294733047331473324733347334473354733647337473384733947340473414734247343473444734547346473474734847349473504735147352473534735447355473564735747358473594736047361473624736347364473654736647367473684736947370473714737247373473744737547376473774737847379473804738147382473834738447385473864738747388473894739047391473924739347394473954739647397473984739947400474014740247403474044740547406474074740847409474104741147412474134741447415474164741747418474194742047421474224742347424474254742647427474284742947430474314743247433474344743547436474374743847439474404744147442474434744447445474464744747448474494745047451474524745347454474554745647457474584745947460474614746247463474644746547466474674746847469474704747147472474734747447475474764747747478474794748047481474824748347484474854748647487474884748947490474914749247493474944749547496474974749847499475004750147502475034750447505475064750747508475094751047511475124751347514475154751647517475184751947520475214752247523475244752547526475274752847529475304753147532475334753447535475364753747538475394754047541475424754347544475454754647547475484754947550475514755247553475544755547556475574755847559475604756147562475634756447565475664756747568475694757047571475724757347574475754757647577475784757947580475814758247583475844758547586475874758847589475904759147592475934759447595475964759747598475994760047601476024760347604476054760647607476084760947610476114761247613476144761547616476174761847619476204762147622476234762447625476264762747628476294763047631476324763347634476354763647637476384763947640476414764247643476444764547646476474764847649476504765147652476534765447655476564765747658476594766047661476624766347664476654766647667476684766947670476714767247673476744767547676476774767847679476804768147682476834768447685476864768747688476894769047691476924769347694476954769647697476984769947700477014770247703477044770547706477074770847709477104771147712477134771447715477164771747718477194772047721477224772347724477254772647727477284772947730477314773247733477344773547736477374773847739477404774147742477434774447745477464774747748477494775047751477524775347754477554775647757477584775947760477614776247763477644776547766477674776847769477704777147772477734777447775477764777747778477794778047781477824778347784477854778647787477884778947790477914779247793477944779547796477974779847799478004780147802478034780447805478064780747808478094781047811478124781347814478154781647817478184781947820478214782247823478244782547826478274782847829478304783147832478334783447835478364783747838478394784047841478424784347844478454784647847478484784947850478514785247853478544785547856478574785847859478604786147862478634786447865478664786747868478694787047871478724787347874478754787647877478784787947880478814788247883478844788547886478874788847889478904789147892478934789447895478964789747898478994790047901479024790347904479054790647907479084790947910479114791247913479144791547916479174791847919479204792147922479234792447925479264792747928479294793047931479324793347934479354793647937479384793947940479414794247943479444794547946479474794847949479504795147952479534795447955479564795747958479594796047961479624796347964479654796647967479684796947970479714797247973479744797547976479774797847979479804798147982479834798447985479864798747988479894799047991479924799347994479954799647997479984799948000480014800248003480044800548006480074800848009480104801148012480134801448015480164801748018480194802048021480224802348024480254802648027480284802948030480314803248033480344803548036480374803848039480404804148042480434804448045480464804748048480494805048051480524805348054480554805648057480584805948060480614806248063480644806548066480674806848069480704807148072480734807448075480764807748078480794808048081480824808348084480854808648087480884808948090480914809248093480944809548096480974809848099481004810148102481034810448105481064810748108481094811048111481124811348114481154811648117481184811948120481214812248123481244812548126481274812848129481304813148132481334813448135481364813748138481394814048141481424814348144481454814648147481484814948150481514815248153481544815548156481574815848159481604816148162481634816448165481664816748168481694817048171481724817348174481754817648177481784817948180481814818248183481844818548186481874818848189481904819148192481934819448195481964819748198481994820048201482024820348204482054820648207482084820948210482114821248213482144821548216482174821848219482204822148222482234822448225482264822748228482294823048231482324823348234482354823648237482384823948240482414824248243482444824548246482474824848249482504825148252482534825448255482564825748258482594826048261482624826348264482654826648267482684826948270482714827248273482744827548276482774827848279482804828148282482834828448285482864828748288482894829048291482924829348294482954829648297482984829948300483014830248303483044830548306483074830848309483104831148312483134831448315483164831748318483194832048321483224832348324483254832648327483284832948330483314833248333483344833548336483374833848339483404834148342483434834448345483464834748348483494835048351483524835348354483554835648357483584835948360483614836248363483644836548366483674836848369483704837148372483734837448375483764837748378483794838048381483824838348384483854838648387483884838948390483914839248393483944839548396483974839848399484004840148402484034840448405484064840748408484094841048411484124841348414484154841648417484184841948420484214842248423484244842548426484274842848429484304843148432484334843448435484364843748438484394844048441484424844348444484454844648447484484844948450484514845248453484544845548456484574845848459484604846148462484634846448465484664846748468484694847048471484724847348474484754847648477484784847948480484814848248483484844848548486484874848848489484904849148492484934849448495484964849748498484994850048501485024850348504485054850648507485084850948510485114851248513485144851548516485174851848519485204852148522485234852448525485264852748528485294853048531485324853348534485354853648537485384853948540485414854248543485444854548546485474854848549485504855148552485534855448555485564855748558485594856048561485624856348564485654856648567485684856948570485714857248573485744857548576485774857848579485804858148582485834858448585485864858748588485894859048591485924859348594485954859648597485984859948600486014860248603486044860548606486074860848609486104861148612486134861448615486164861748618486194862048621486224862348624486254862648627486284862948630486314863248633486344863548636486374863848639486404864148642486434864448645486464864748648486494865048651486524865348654486554865648657486584865948660486614866248663486644866548666486674866848669486704867148672486734867448675486764867748678486794868048681486824868348684486854868648687486884868948690486914869248693486944869548696486974869848699487004870148702487034870448705487064870748708487094871048711487124871348714487154871648717487184871948720487214872248723487244872548726487274872848729487304873148732487334873448735487364873748738487394874048741487424874348744487454874648747487484874948750487514875248753487544875548756487574875848759487604876148762487634876448765487664876748768487694877048771487724877348774487754877648777487784877948780487814878248783487844878548786487874878848789487904879148792487934879448795487964879748798487994880048801488024880348804488054880648807488084880948810488114881248813488144881548816488174881848819488204882148822488234882448825488264882748828488294883048831488324883348834488354883648837488384883948840488414884248843488444884548846488474884848849488504885148852488534885448855488564885748858488594886048861488624886348864488654886648867488684886948870488714887248873488744887548876488774887848879488804888148882488834888448885488864888748888488894889048891488924889348894488954889648897488984889948900489014890248903489044890548906489074890848909489104891148912489134891448915489164891748918489194892048921489224892348924489254892648927489284892948930489314893248933489344893548936489374893848939489404894148942489434894448945489464894748948489494895048951489524895348954489554895648957489584895948960489614896248963489644896548966489674896848969489704897148972489734897448975489764897748978489794898048981489824898348984489854898648987489884898948990489914899248993489944899548996489974899848999490004900149002490034900449005490064900749008490094901049011490124901349014490154901649017490184901949020490214902249023490244902549026490274902849029490304903149032490334903449035490364903749038490394904049041490424904349044490454904649047490484904949050490514905249053490544905549056490574905849059490604906149062490634906449065490664906749068490694907049071490724907349074490754907649077490784907949080490814908249083490844908549086490874908849089490904909149092490934909449095490964909749098490994910049101491024910349104491054910649107491084910949110491114911249113491144911549116491174911849119491204912149122491234912449125491264912749128491294913049131491324913349134491354913649137491384913949140491414914249143491444914549146491474914849149491504915149152491534915449155491564915749158491594916049161491624916349164491654916649167491684916949170491714917249173491744917549176491774917849179491804918149182491834918449185491864918749188491894919049191491924919349194491954919649197491984919949200492014920249203492044920549206492074920849209492104921149212492134921449215492164921749218492194922049221492224922349224492254922649227492284922949230492314923249233492344923549236492374923849239492404924149242492434924449245492464924749248492494925049251492524925349254492554925649257492584925949260492614926249263492644926549266492674926849269492704927149272492734927449275492764927749278492794928049281492824928349284492854928649287492884928949290492914929249293492944929549296492974929849299493004930149302493034930449305493064930749308493094931049311493124931349314493154931649317493184931949320493214932249323493244932549326493274932849329493304933149332493334933449335493364933749338493394934049341493424934349344493454934649347493484934949350493514935249353493544935549356493574935849359493604936149362493634936449365493664936749368493694937049371493724937349374493754937649377493784937949380493814938249383493844938549386493874938849389493904939149392493934939449395493964939749398493994940049401494024940349404494054940649407494084940949410494114941249413494144941549416494174941849419494204942149422494234942449425494264942749428494294943049431494324943349434494354943649437494384943949440494414944249443494444944549446494474944849449494504945149452494534945449455494564945749458494594946049461494624946349464494654946649467494684946949470494714947249473494744947549476494774947849479494804948149482494834948449485494864948749488494894949049491494924949349494494954949649497494984949949500495014950249503495044950549506495074950849509495104951149512495134951449515495164951749518495194952049521495224952349524495254952649527495284952949530495314953249533495344953549536495374953849539495404954149542495434954449545495464954749548495494955049551495524955349554495554955649557495584955949560495614956249563495644956549566495674956849569495704957149572495734957449575495764957749578495794958049581495824958349584495854958649587495884958949590495914959249593495944959549596495974959849599496004960149602496034960449605496064960749608496094961049611496124961349614496154961649617496184961949620496214962249623496244962549626496274962849629496304963149632496334963449635496364963749638496394964049641496424964349644496454964649647496484964949650496514965249653496544965549656496574965849659496604966149662496634966449665496664966749668496694967049671496724967349674496754967649677496784967949680496814968249683496844968549686496874968849689496904969149692496934969449695496964969749698496994970049701497024970349704497054970649707497084970949710497114971249713497144971549716497174971849719497204972149722497234972449725497264972749728497294973049731497324973349734497354973649737497384973949740497414974249743497444974549746497474974849749497504975149752497534975449755497564975749758497594976049761497624976349764497654976649767497684976949770497714977249773497744977549776497774977849779497804978149782497834978449785497864978749788497894979049791497924979349794497954979649797497984979949800498014980249803498044980549806498074980849809498104981149812498134981449815498164981749818498194982049821498224982349824498254982649827498284982949830498314983249833498344983549836498374983849839498404984149842498434984449845498464984749848498494985049851498524985349854498554985649857498584985949860498614986249863498644986549866498674986849869498704987149872498734987449875498764987749878498794988049881498824988349884498854988649887498884988949890498914989249893498944989549896498974989849899499004990149902499034990449905499064990749908499094991049911499124991349914499154991649917499184991949920499214992249923499244992549926499274992849929499304993149932499334993449935499364993749938499394994049941499424994349944499454994649947499484994949950499514995249953499544995549956499574995849959499604996149962499634996449965499664996749968499694997049971499724997349974499754997649977499784997949980499814998249983499844998549986499874998849989499904999149992499934999449995499964999749998499995000050001500025000350004500055000650007500085000950010500115001250013500145001550016500175001850019500205002150022500235002450025500265002750028500295003050031500325003350034500355003650037500385003950040500415004250043500445004550046500475004850049500505005150052500535005450055500565005750058500595006050061500625006350064500655006650067500685006950070500715007250073500745007550076500775007850079500805008150082500835008450085500865008750088500895009050091500925009350094500955009650097500985009950100501015010250103501045010550106501075010850109501105011150112501135011450115501165011750118501195012050121501225012350124501255012650127501285012950130501315013250133501345013550136501375013850139501405014150142501435014450145501465014750148501495015050151501525015350154501555015650157501585015950160501615016250163501645016550166501675016850169501705017150172501735017450175501765017750178501795018050181501825018350184501855018650187501885018950190501915019250193501945019550196501975019850199502005020150202502035020450205502065020750208502095021050211502125021350214502155021650217502185021950220502215022250223502245022550226502275022850229502305023150232502335023450235502365023750238502395024050241502425024350244502455024650247502485024950250502515025250253502545025550256502575025850259502605026150262502635026450265502665026750268502695027050271502725027350274502755027650277502785027950280502815028250283502845028550286502875028850289502905029150292502935029450295502965029750298502995030050301503025030350304503055030650307503085030950310503115031250313503145031550316503175031850319503205032150322503235032450325503265032750328503295033050331503325033350334503355033650337503385033950340503415034250343503445034550346503475034850349503505035150352503535035450355503565035750358503595036050361503625036350364503655036650367503685036950370503715037250373503745037550376503775037850379503805038150382503835038450385503865038750388503895039050391503925039350394503955039650397503985039950400504015040250403504045040550406504075040850409504105041150412504135041450415504165041750418504195042050421504225042350424504255042650427504285042950430504315043250433504345043550436504375043850439504405044150442504435044450445504465044750448504495045050451504525045350454504555045650457504585045950460504615046250463504645046550466504675046850469504705047150472504735047450475504765047750478504795048050481504825048350484504855048650487504885048950490504915049250493504945049550496504975049850499505005050150502505035050450505505065050750508505095051050511505125051350514505155051650517505185051950520505215052250523505245052550526505275052850529505305053150532505335053450535505365053750538505395054050541505425054350544505455054650547505485054950550505515055250553505545055550556505575055850559505605056150562505635056450565505665056750568505695057050571505725057350574505755057650577505785057950580505815058250583505845058550586505875058850589505905059150592505935059450595505965059750598505995060050601506025060350604506055060650607506085060950610506115061250613506145061550616506175061850619506205062150622506235062450625506265062750628506295063050631506325063350634506355063650637506385063950640506415064250643506445064550646506475064850649506505065150652506535065450655506565065750658506595066050661506625066350664506655066650667506685066950670506715067250673506745067550676506775067850679506805068150682506835068450685506865068750688506895069050691506925069350694506955069650697506985069950700507015070250703507045070550706507075070850709507105071150712507135071450715507165071750718507195072050721507225072350724507255072650727507285072950730507315073250733507345073550736507375073850739507405074150742507435074450745507465074750748507495075050751507525075350754507555075650757507585075950760507615076250763507645076550766507675076850769507705077150772507735077450775507765077750778507795078050781507825078350784507855078650787507885078950790507915079250793507945079550796507975079850799508005080150802508035080450805508065080750808508095081050811508125081350814508155081650817508185081950820508215082250823508245082550826508275082850829508305083150832508335083450835508365083750838508395084050841508425084350844508455084650847508485084950850508515085250853508545085550856508575085850859508605086150862508635086450865508665086750868508695087050871508725087350874508755087650877508785087950880508815088250883508845088550886508875088850889508905089150892508935089450895508965089750898508995090050901509025090350904509055090650907509085090950910509115091250913509145091550916509175091850919509205092150922509235092450925509265092750928509295093050931509325093350934509355093650937509385093950940509415094250943509445094550946509475094850949509505095150952509535095450955509565095750958509595096050961509625096350964509655096650967509685096950970509715097250973509745097550976509775097850979509805098150982509835098450985509865098750988509895099050991509925099350994509955099650997509985099951000510015100251003510045100551006510075100851009510105101151012510135101451015510165101751018510195102051021510225102351024510255102651027510285102951030510315103251033510345103551036510375103851039510405104151042510435104451045510465104751048510495105051051510525105351054510555105651057510585105951060510615106251063510645106551066510675106851069510705107151072510735107451075510765107751078510795108051081510825108351084510855108651087510885108951090510915109251093510945109551096510975109851099511005110151102511035110451105511065110751108511095111051111511125111351114511155111651117511185111951120511215112251123511245112551126511275112851129511305113151132511335113451135511365113751138511395114051141511425114351144511455114651147511485114951150511515115251153511545115551156511575115851159511605116151162511635116451165511665116751168511695117051171511725117351174511755117651177511785117951180511815118251183511845118551186511875118851189511905119151192511935119451195511965119751198511995120051201512025120351204512055120651207512085120951210512115121251213512145121551216512175121851219512205122151222512235122451225512265122751228512295123051231512325123351234512355123651237512385123951240512415124251243512445124551246512475124851249512505125151252512535125451255512565125751258512595126051261512625126351264512655126651267512685126951270512715127251273512745127551276512775127851279512805128151282512835128451285512865128751288512895129051291512925129351294512955129651297512985129951300513015130251303513045130551306513075130851309513105131151312513135131451315513165131751318513195132051321513225132351324513255132651327513285132951330513315133251333513345133551336513375133851339513405134151342513435134451345513465134751348513495135051351513525135351354513555135651357513585135951360513615136251363513645136551366513675136851369513705137151372513735137451375513765137751378513795138051381513825138351384513855138651387513885138951390513915139251393513945139551396513975139851399514005140151402514035140451405514065140751408514095141051411514125141351414514155141651417514185141951420514215142251423514245142551426514275142851429514305143151432514335143451435514365143751438514395144051441514425144351444514455144651447514485144951450514515145251453514545145551456514575145851459514605146151462514635146451465514665146751468514695147051471514725147351474514755147651477514785147951480514815148251483514845148551486514875148851489514905149151492514935149451495514965149751498514995150051501515025150351504515055150651507515085150951510515115151251513515145151551516515175151851519515205152151522515235152451525515265152751528515295153051531515325153351534515355153651537515385153951540515415154251543515445154551546515475154851549515505155151552515535155451555515565155751558515595156051561515625156351564515655156651567515685156951570515715157251573515745157551576515775157851579515805158151582515835158451585515865158751588515895159051591515925159351594515955159651597515985159951600516015160251603516045160551606516075160851609516105161151612516135161451615516165161751618516195162051621516225162351624516255162651627516285162951630516315163251633516345163551636516375163851639516405164151642516435164451645516465164751648516495165051651516525165351654516555165651657516585165951660516615166251663516645166551666516675166851669516705167151672516735167451675516765167751678516795168051681516825168351684516855168651687516885168951690516915169251693516945169551696516975169851699517005170151702517035170451705517065170751708517095171051711517125171351714517155171651717517185171951720517215172251723517245172551726517275172851729517305173151732517335173451735517365173751738517395174051741517425174351744517455174651747517485174951750517515175251753517545175551756517575175851759517605176151762517635176451765517665176751768517695177051771517725177351774517755177651777517785177951780517815178251783517845178551786517875178851789517905179151792517935179451795517965179751798517995180051801518025180351804518055180651807518085180951810518115181251813518145181551816518175181851819518205182151822518235182451825518265182751828518295183051831518325183351834518355183651837518385183951840518415184251843518445184551846518475184851849518505185151852518535185451855518565185751858518595186051861518625186351864518655186651867518685186951870518715187251873518745187551876518775187851879518805188151882518835188451885518865188751888518895189051891518925189351894518955189651897518985189951900519015190251903519045190551906519075190851909519105191151912519135191451915519165191751918519195192051921519225192351924519255192651927519285192951930519315193251933519345193551936519375193851939519405194151942519435194451945519465194751948519495195051951519525195351954519555195651957519585195951960519615196251963519645196551966519675196851969519705197151972519735197451975519765197751978519795198051981519825198351984519855198651987519885198951990519915199251993519945199551996519975199851999520005200152002520035200452005520065200752008520095201052011520125201352014520155201652017520185201952020520215202252023520245202552026520275202852029520305203152032520335203452035520365203752038520395204052041520425204352044520455204652047520485204952050520515205252053520545205552056520575205852059520605206152062520635206452065520665206752068520695207052071520725207352074520755207652077520785207952080520815208252083520845208552086520875208852089520905209152092520935209452095520965209752098520995210052101521025210352104521055210652107521085210952110521115211252113521145211552116521175211852119521205212152122521235212452125521265212752128521295213052131521325213352134521355213652137521385213952140521415214252143521445214552146521475214852149521505215152152521535215452155521565215752158521595216052161521625216352164521655216652167521685216952170521715217252173521745217552176521775217852179521805218152182521835218452185521865218752188521895219052191521925219352194521955219652197521985219952200522015220252203522045220552206522075220852209522105221152212522135221452215522165221752218522195222052221522225222352224522255222652227522285222952230522315223252233522345223552236522375223852239522405224152242522435224452245522465224752248522495225052251522525225352254522555225652257522585225952260522615226252263522645226552266522675226852269522705227152272522735227452275522765227752278522795228052281522825228352284522855228652287522885228952290522915229252293522945229552296522975229852299523005230152302523035230452305523065230752308523095231052311523125231352314523155231652317523185231952320523215232252323523245232552326523275232852329523305233152332523335233452335523365233752338523395234052341523425234352344523455234652347523485234952350523515235252353523545235552356523575235852359523605236152362523635236452365523665236752368523695237052371523725237352374523755237652377523785237952380523815238252383523845238552386523875238852389523905239152392523935239452395523965239752398523995240052401524025240352404524055240652407524085240952410524115241252413524145241552416524175241852419524205242152422524235242452425524265242752428524295243052431524325243352434524355243652437524385243952440524415244252443524445244552446524475244852449524505245152452524535245452455524565245752458524595246052461524625246352464524655246652467524685246952470524715247252473524745247552476524775247852479524805248152482524835248452485524865248752488524895249052491524925249352494524955249652497524985249952500525015250252503525045250552506525075250852509525105251152512525135251452515525165251752518525195252052521525225252352524525255252652527525285252952530525315253252533525345253552536525375253852539525405254152542525435254452545525465254752548525495255052551525525255352554525555255652557525585255952560525615256252563525645256552566525675256852569525705257152572525735257452575525765257752578525795258052581525825258352584525855258652587525885258952590525915259252593525945259552596525975259852599526005260152602526035260452605526065260752608526095261052611526125261352614526155261652617526185261952620526215262252623526245262552626526275262852629526305263152632526335263452635526365263752638526395264052641526425264352644526455264652647526485264952650526515265252653526545265552656526575265852659526605266152662526635266452665526665266752668526695267052671526725267352674526755267652677526785267952680526815268252683526845268552686526875268852689526905269152692526935269452695526965269752698526995270052701527025270352704527055270652707527085270952710527115271252713527145271552716527175271852719527205272152722527235272452725527265272752728527295273052731527325273352734527355273652737527385273952740527415274252743527445274552746527475274852749527505275152752527535275452755527565275752758527595276052761527625276352764527655276652767527685276952770527715277252773527745277552776527775277852779527805278152782527835278452785527865278752788527895279052791527925279352794527955279652797527985279952800528015280252803528045280552806528075280852809528105281152812528135281452815528165281752818528195282052821528225282352824528255282652827528285282952830528315283252833528345283552836528375283852839528405284152842528435284452845528465284752848528495285052851528525285352854528555285652857528585285952860528615286252863528645286552866528675286852869528705287152872528735287452875528765287752878528795288052881528825288352884528855288652887528885288952890528915289252893528945289552896528975289852899529005290152902529035290452905529065290752908529095291052911529125291352914529155291652917529185291952920529215292252923529245292552926529275292852929529305293152932529335293452935529365293752938529395294052941529425294352944529455294652947529485294952950529515295252953529545295552956529575295852959529605296152962529635296452965529665296752968529695297052971529725297352974529755297652977529785297952980529815298252983529845298552986529875298852989529905299152992529935299452995529965299752998529995300053001530025300353004530055300653007530085300953010530115301253013530145301553016530175301853019530205302153022530235302453025530265302753028530295303053031530325303353034530355303653037530385303953040530415304253043530445304553046530475304853049530505305153052530535305453055530565305753058530595306053061530625306353064530655306653067530685306953070530715307253073530745307553076530775307853079530805308153082530835308453085530865308753088530895309053091530925309353094530955309653097530985309953100531015310253103531045310553106531075310853109531105311153112531135311453115531165311753118531195312053121531225312353124531255312653127531285312953130531315313253133531345313553136531375313853139531405314153142531435314453145531465314753148531495315053151531525315353154531555315653157531585315953160531615316253163531645316553166531675316853169531705317153172531735317453175531765317753178531795318053181531825318353184531855318653187531885318953190531915319253193531945319553196531975319853199532005320153202532035320453205532065320753208532095321053211532125321353214532155321653217532185321953220532215322253223532245322553226532275322853229532305323153232532335323453235532365323753238532395324053241532425324353244532455324653247532485324953250532515325253253532545325553256532575325853259532605326153262532635326453265532665326753268532695327053271532725327353274532755327653277532785327953280532815328253283532845328553286532875328853289532905329153292532935329453295532965329753298532995330053301533025330353304533055330653307533085330953310533115331253313533145331553316533175331853319533205332153322533235332453325533265332753328533295333053331533325333353334533355333653337533385333953340533415334253343533445334553346533475334853349533505335153352533535335453355533565335753358533595336053361533625336353364533655336653367533685336953370533715337253373533745337553376533775337853379533805338153382533835338453385533865338753388533895339053391533925339353394533955339653397533985339953400534015340253403534045340553406534075340853409534105341153412534135341453415534165341753418534195342053421534225342353424534255342653427534285342953430534315343253433534345343553436534375343853439534405344153442534435344453445534465344753448534495345053451534525345353454534555345653457534585345953460534615346253463534645346553466534675346853469534705347153472534735347453475534765347753478534795348053481534825348353484534855348653487534885348953490534915349253493534945349553496534975349853499535005350153502535035350453505535065350753508535095351053511535125351353514535155351653517535185351953520535215352253523535245352553526535275352853529535305353153532535335353453535535365353753538535395354053541535425354353544535455354653547535485354953550535515355253553535545355553556535575355853559535605356153562535635356453565535665356753568535695357053571535725357353574535755357653577535785357953580535815358253583535845358553586535875358853589535905359153592535935359453595535965359753598535995360053601536025360353604536055360653607536085360953610536115361253613536145361553616536175361853619536205362153622536235362453625536265362753628536295363053631536325363353634536355363653637536385363953640536415364253643536445364553646536475364853649536505365153652536535365453655536565365753658536595366053661536625366353664536655366653667536685366953670536715367253673536745367553676536775367853679536805368153682536835368453685536865368753688536895369053691536925369353694536955369653697536985369953700537015370253703537045370553706537075370853709537105371153712537135371453715537165371753718537195372053721537225372353724537255372653727537285372953730537315373253733537345373553736537375373853739537405374153742537435374453745537465374753748537495375053751537525375353754537555375653757537585375953760537615376253763537645376553766537675376853769537705377153772537735377453775537765377753778537795378053781537825378353784537855378653787537885378953790537915379253793537945379553796537975379853799538005380153802538035380453805538065380753808538095381053811538125381353814538155381653817538185381953820538215382253823538245382553826538275382853829538305383153832538335383453835538365383753838538395384053841538425384353844538455384653847538485384953850538515385253853538545385553856538575385853859538605386153862538635386453865538665386753868538695387053871538725387353874538755387653877538785387953880538815388253883538845388553886538875388853889538905389153892538935389453895538965389753898538995390053901539025390353904539055390653907539085390953910539115391253913539145391553916539175391853919539205392153922539235392453925539265392753928539295393053931539325393353934539355393653937539385393953940539415394253943539445394553946539475394853949539505395153952539535395453955539565395753958539595396053961539625396353964539655396653967539685396953970539715397253973539745397553976539775397853979539805398153982539835398453985539865398753988539895399053991539925399353994539955399653997539985399954000540015400254003540045400554006540075400854009540105401154012540135401454015540165401754018540195402054021540225402354024540255402654027540285402954030540315403254033540345403554036540375403854039540405404154042540435404454045540465404754048540495405054051540525405354054540555405654057540585405954060540615406254063540645406554066540675406854069540705407154072540735407454075540765407754078540795408054081540825408354084540855408654087540885408954090540915409254093540945409554096540975409854099541005410154102541035410454105541065410754108541095411054111541125411354114541155411654117541185411954120541215412254123541245412554126541275412854129541305413154132541335413454135541365413754138541395414054141541425414354144541455414654147541485414954150541515415254153541545415554156541575415854159541605416154162541635416454165541665416754168541695417054171541725417354174541755417654177541785417954180541815418254183541845418554186541875418854189541905419154192541935419454195541965419754198541995420054201542025420354204542055420654207542085420954210542115421254213542145421554216542175421854219542205422154222542235422454225542265422754228542295423054231542325423354234542355423654237542385423954240542415424254243542445424554246542475424854249542505425154252542535425454255542565425754258542595426054261542625426354264542655426654267542685426954270542715427254273542745427554276542775427854279542805428154282542835428454285542865428754288542895429054291542925429354294542955429654297542985429954300543015430254303543045430554306543075430854309543105431154312543135431454315543165431754318543195432054321543225432354324543255432654327543285432954330543315433254333543345433554336543375433854339543405434154342543435434454345543465434754348543495435054351543525435354354543555435654357543585435954360543615436254363543645436554366543675436854369543705437154372543735437454375543765437754378543795438054381543825438354384543855438654387543885438954390543915439254393543945439554396543975439854399544005440154402544035440454405544065440754408544095441054411544125441354414544155441654417544185441954420544215442254423544245442554426544275442854429544305443154432544335443454435544365443754438544395444054441544425444354444544455444654447544485444954450544515445254453544545445554456544575445854459544605446154462544635446454465544665446754468544695447054471544725447354474544755447654477544785447954480544815448254483544845448554486544875448854489544905449154492544935449454495544965449754498544995450054501545025450354504545055450654507545085450954510545115451254513545145451554516545175451854519545205452154522545235452454525545265452754528545295453054531545325453354534545355453654537545385453954540545415454254543545445454554546545475454854549545505455154552545535455454555545565455754558545595456054561545625456354564545655456654567545685456954570545715457254573545745457554576545775457854579545805458154582545835458454585545865458754588545895459054591545925459354594545955459654597545985459954600546015460254603546045460554606546075460854609546105461154612546135461454615546165461754618546195462054621546225462354624546255462654627546285462954630546315463254633546345463554636546375463854639546405464154642546435464454645546465464754648546495465054651546525465354654546555465654657546585465954660546615466254663546645466554666546675466854669546705467154672546735467454675546765467754678546795468054681546825468354684546855468654687546885468954690546915469254693546945469554696546975469854699547005470154702547035470454705547065470754708547095471054711547125471354714547155471654717547185471954720547215472254723547245472554726547275472854729547305473154732547335473454735547365473754738547395474054741547425474354744547455474654747547485474954750547515475254753547545475554756547575475854759547605476154762547635476454765547665476754768547695477054771547725477354774547755477654777547785477954780547815478254783547845478554786547875478854789547905479154792547935479454795547965479754798547995480054801548025480354804548055480654807548085480954810548115481254813548145481554816548175481854819548205482154822548235482454825548265482754828548295483054831548325483354834548355483654837548385483954840548415484254843548445484554846548475484854849548505485154852548535485454855548565485754858548595486054861548625486354864548655486654867548685486954870548715487254873548745487554876548775487854879548805488154882548835488454885548865488754888548895489054891548925489354894548955489654897548985489954900549015490254903549045490554906549075490854909549105491154912549135491454915549165491754918549195492054921549225492354924549255492654927549285492954930549315493254933549345493554936549375493854939549405494154942549435494454945549465494754948549495495054951549525495354954549555495654957549585495954960549615496254963549645496554966549675496854969549705497154972549735497454975549765497754978549795498054981549825498354984549855498654987549885498954990549915499254993549945499554996549975499854999550005500155002550035500455005550065500755008550095501055011550125501355014550155501655017550185501955020550215502255023550245502555026550275502855029550305503155032550335503455035550365503755038550395504055041550425504355044550455504655047550485504955050550515505255053550545505555056550575505855059550605506155062550635506455065550665506755068550695507055071550725507355074550755507655077550785507955080550815508255083550845508555086550875508855089550905509155092550935509455095550965509755098550995510055101551025510355104551055510655107551085510955110551115511255113551145511555116551175511855119551205512155122551235512455125551265512755128551295513055131551325513355134551355513655137551385513955140551415514255143551445514555146551475514855149551505515155152551535515455155551565515755158551595516055161551625516355164551655516655167551685516955170551715517255173551745517555176551775517855179551805518155182551835518455185551865518755188551895519055191551925519355194551955519655197551985519955200552015520255203552045520555206552075520855209552105521155212552135521455215552165521755218552195522055221552225522355224552255522655227552285522955230552315523255233552345523555236552375523855239552405524155242552435524455245552465524755248552495525055251552525525355254552555525655257552585525955260552615526255263552645526555266552675526855269552705527155272552735527455275552765527755278552795528055281552825528355284552855528655287552885528955290552915529255293552945529555296552975529855299553005530155302553035530455305553065530755308553095531055311553125531355314553155531655317553185531955320553215532255323553245532555326553275532855329553305533155332553335533455335553365533755338553395534055341553425534355344553455534655347553485534955350553515535255353553545535555356553575535855359553605536155362553635536455365553665536755368553695537055371553725537355374553755537655377553785537955380553815538255383553845538555386553875538855389553905539155392553935539455395553965539755398553995540055401554025540355404554055540655407554085540955410554115541255413554145541555416554175541855419554205542155422554235542455425554265542755428554295543055431554325543355434554355543655437554385543955440554415544255443554445544555446554475544855449554505545155452554535545455455554565545755458554595546055461554625546355464554655546655467554685546955470554715547255473554745547555476554775547855479554805548155482554835548455485554865548755488554895549055491554925549355494554955549655497554985549955500555015550255503555045550555506555075550855509555105551155512555135551455515555165551755518555195552055521555225552355524555255552655527555285552955530555315553255533555345553555536555375553855539555405554155542555435554455545555465554755548555495555055551555525555355554555555555655557555585555955560555615556255563555645556555566555675556855569555705557155572555735557455575555765557755578555795558055581555825558355584555855558655587555885558955590555915559255593555945559555596555975559855599556005560155602556035560455605556065560755608556095561055611556125561355614556155561655617556185561955620556215562255623556245562555626556275562855629556305563155632556335563455635556365563755638556395564055641556425564355644556455564655647556485564955650556515565255653556545565555656556575565855659556605566155662556635566455665556665566755668556695567055671556725567355674556755567655677556785567955680556815568255683556845568555686556875568855689556905569155692556935569455695556965569755698556995570055701557025570355704557055570655707557085570955710557115571255713557145571555716557175571855719557205572155722557235572455725557265572755728557295573055731557325573355734557355573655737557385573955740557415574255743557445574555746557475574855749557505575155752557535575455755557565575755758557595576055761557625576355764557655576655767557685576955770557715577255773557745577555776557775577855779557805578155782557835578455785557865578755788557895579055791557925579355794557955579655797557985579955800558015580255803558045580555806558075580855809558105581155812558135581455815558165581755818558195582055821558225582355824558255582655827558285582955830558315583255833558345583555836558375583855839558405584155842558435584455845558465584755848558495585055851558525585355854558555585655857558585585955860558615586255863558645586555866558675586855869558705587155872558735587455875558765587755878558795588055881558825588355884558855588655887558885588955890558915589255893558945589555896558975589855899559005590155902559035590455905559065590755908559095591055911559125591355914559155591655917559185591955920559215592255923559245592555926559275592855929559305593155932559335593455935559365593755938559395594055941559425594355944559455594655947559485594955950559515595255953559545595555956559575595855959559605596155962559635596455965559665596755968559695597055971559725597355974559755597655977559785597955980559815598255983559845598555986559875598855989559905599155992559935599455995559965599755998559995600056001560025600356004560055600656007560085600956010560115601256013560145601556016560175601856019560205602156022560235602456025560265602756028560295603056031560325603356034560355603656037560385603956040560415604256043560445604556046560475604856049560505605156052560535605456055560565605756058560595606056061560625606356064560655606656067560685606956070560715607256073560745607556076560775607856079560805608156082560835608456085560865608756088560895609056091560925609356094560955609656097560985609956100561015610256103561045610556106561075610856109561105611156112561135611456115561165611756118561195612056121561225612356124561255612656127561285612956130561315613256133561345613556136561375613856139561405614156142561435614456145561465614756148561495615056151561525615356154561555615656157561585615956160561615616256163561645616556166561675616856169561705617156172561735617456175561765617756178561795618056181561825618356184561855618656187561885618956190561915619256193561945619556196561975619856199562005620156202562035620456205562065620756208562095621056211562125621356214562155621656217562185621956220562215622256223562245622556226562275622856229562305623156232562335623456235562365623756238562395624056241562425624356244562455624656247562485624956250562515625256253562545625556256562575625856259562605626156262562635626456265562665626756268562695627056271562725627356274562755627656277562785627956280562815628256283562845628556286562875628856289562905629156292562935629456295562965629756298562995630056301563025630356304563055630656307563085630956310563115631256313563145631556316563175631856319563205632156322563235632456325563265632756328563295633056331563325633356334563355633656337563385633956340563415634256343563445634556346563475634856349563505635156352563535635456355563565635756358563595636056361563625636356364563655636656367563685636956370563715637256373563745637556376563775637856379563805638156382563835638456385563865638756388563895639056391563925639356394563955639656397563985639956400564015640256403564045640556406564075640856409564105641156412564135641456415564165641756418564195642056421564225642356424564255642656427564285642956430564315643256433564345643556436564375643856439564405644156442564435644456445564465644756448564495645056451564525645356454564555645656457564585645956460564615646256463564645646556466564675646856469564705647156472564735647456475564765647756478564795648056481564825648356484564855648656487564885648956490564915649256493564945649556496564975649856499565005650156502565035650456505565065650756508565095651056511565125651356514565155651656517565185651956520565215652256523565245652556526565275652856529565305653156532565335653456535565365653756538565395654056541565425654356544565455654656547565485654956550565515655256553565545655556556565575655856559565605656156562565635656456565565665656756568565695657056571565725657356574565755657656577565785657956580565815658256583565845658556586565875658856589565905659156592565935659456595565965659756598565995660056601566025660356604566055660656607566085660956610566115661256613566145661556616566175661856619566205662156622566235662456625566265662756628566295663056631566325663356634566355663656637566385663956640566415664256643566445664556646566475664856649566505665156652566535665456655566565665756658566595666056661566625666356664566655666656667566685666956670566715667256673566745667556676566775667856679566805668156682566835668456685566865668756688566895669056691566925669356694566955669656697566985669956700567015670256703567045670556706567075670856709567105671156712567135671456715567165671756718567195672056721567225672356724567255672656727567285672956730567315673256733567345673556736567375673856739567405674156742567435674456745567465674756748567495675056751567525675356754567555675656757567585675956760567615676256763567645676556766567675676856769567705677156772567735677456775567765677756778567795678056781567825678356784567855678656787567885678956790567915679256793567945679556796567975679856799568005680156802568035680456805568065680756808568095681056811568125681356814568155681656817568185681956820568215682256823568245682556826568275682856829568305683156832568335683456835568365683756838568395684056841568425684356844568455684656847568485684956850568515685256853568545685556856568575685856859568605686156862568635686456865568665686756868568695687056871568725687356874568755687656877568785687956880568815688256883568845688556886568875688856889568905689156892568935689456895568965689756898568995690056901569025690356904569055690656907569085690956910569115691256913569145691556916569175691856919569205692156922569235692456925569265692756928569295693056931569325693356934569355693656937569385693956940569415694256943569445694556946569475694856949569505695156952569535695456955569565695756958569595696056961569625696356964569655696656967569685696956970569715697256973569745697556976569775697856979569805698156982569835698456985569865698756988569895699056991569925699356994569955699656997569985699957000570015700257003570045700557006570075700857009570105701157012570135701457015570165701757018570195702057021570225702357024570255702657027570285702957030570315703257033570345703557036570375703857039570405704157042570435704457045570465704757048570495705057051570525705357054570555705657057570585705957060570615706257063570645706557066570675706857069570705707157072570735707457075570765707757078570795708057081570825708357084570855708657087570885708957090570915709257093570945709557096570975709857099571005710157102571035710457105571065710757108571095711057111571125711357114571155711657117571185711957120571215712257123571245712557126571275712857129571305713157132571335713457135571365713757138571395714057141571425714357144571455714657147571485714957150571515715257153571545715557156571575715857159571605716157162571635716457165571665716757168571695717057171571725717357174571755717657177571785717957180571815718257183571845718557186571875718857189571905719157192571935719457195571965719757198571995720057201572025720357204572055720657207572085720957210572115721257213572145721557216572175721857219572205722157222572235722457225572265722757228572295723057231572325723357234572355723657237572385723957240572415724257243572445724557246572475724857249572505725157252572535725457255572565725757258572595726057261572625726357264572655726657267572685726957270572715727257273572745727557276572775727857279572805728157282572835728457285572865728757288572895729057291572925729357294572955729657297572985729957300573015730257303573045730557306573075730857309573105731157312573135731457315573165731757318573195732057321573225732357324573255732657327573285732957330573315733257333573345733557336573375733857339573405734157342573435734457345573465734757348573495735057351573525735357354573555735657357573585735957360573615736257363573645736557366573675736857369573705737157372573735737457375573765737757378573795738057381573825738357384573855738657387573885738957390573915739257393573945739557396573975739857399574005740157402574035740457405574065740757408574095741057411574125741357414574155741657417574185741957420574215742257423574245742557426574275742857429574305743157432574335743457435574365743757438574395744057441574425744357444574455744657447574485744957450574515745257453574545745557456574575745857459574605746157462574635746457465574665746757468574695747057471574725747357474574755747657477574785747957480574815748257483574845748557486574875748857489574905749157492574935749457495574965749757498574995750057501575025750357504575055750657507575085750957510575115751257513575145751557516575175751857519575205752157522575235752457525575265752757528575295753057531575325753357534575355753657537575385753957540575415754257543575445754557546575475754857549575505755157552575535755457555575565755757558575595756057561575625756357564575655756657567575685756957570575715757257573575745757557576575775757857579575805758157582575835758457585575865758757588575895759057591575925759357594575955759657597575985759957600576015760257603576045760557606576075760857609576105761157612576135761457615576165761757618576195762057621576225762357624576255762657627576285762957630576315763257633576345763557636576375763857639576405764157642576435764457645576465764757648576495765057651576525765357654576555765657657576585765957660576615766257663576645766557666576675766857669576705767157672576735767457675576765767757678576795768057681576825768357684576855768657687576885768957690576915769257693576945769557696576975769857699577005770157702577035770457705577065770757708577095771057711577125771357714577155771657717577185771957720577215772257723577245772557726577275772857729577305773157732577335773457735577365773757738577395774057741577425774357744577455774657747577485774957750577515775257753577545775557756577575775857759577605776157762577635776457765577665776757768577695777057771577725777357774577755777657777577785777957780577815778257783577845778557786577875778857789577905779157792577935779457795577965779757798577995780057801578025780357804578055780657807578085780957810578115781257813578145781557816578175781857819578205782157822578235782457825578265782757828578295783057831578325783357834578355783657837578385783957840578415784257843578445784557846578475784857849578505785157852578535785457855578565785757858578595786057861578625786357864578655786657867578685786957870578715787257873578745787557876578775787857879578805788157882578835788457885578865788757888578895789057891578925789357894578955789657897578985789957900579015790257903579045790557906579075790857909579105791157912579135791457915579165791757918579195792057921579225792357924579255792657927579285792957930579315793257933579345793557936579375793857939579405794157942579435794457945579465794757948579495795057951579525795357954579555795657957579585795957960579615796257963579645796557966579675796857969579705797157972579735797457975579765797757978579795798057981579825798357984579855798657987579885798957990579915799257993579945799557996579975799857999580005800158002580035800458005580065800758008580095801058011580125801358014580155801658017580185801958020580215802258023580245802558026580275802858029580305803158032580335803458035580365803758038580395804058041580425804358044580455804658047580485804958050580515805258053580545805558056580575805858059580605806158062580635806458065580665806758068580695807058071580725807358074580755807658077580785807958080580815808258083580845808558086580875808858089580905809158092580935809458095580965809758098580995810058101581025810358104581055810658107581085810958110581115811258113581145811558116581175811858119581205812158122581235812458125581265812758128581295813058131581325813358134581355813658137581385813958140581415814258143581445814558146581475814858149581505815158152581535815458155581565815758158581595816058161581625816358164581655816658167581685816958170581715817258173581745817558176581775817858179581805818158182581835818458185581865818758188581895819058191581925819358194581955819658197581985819958200582015820258203582045820558206582075820858209582105821158212582135821458215582165821758218582195822058221582225822358224582255822658227582285822958230582315823258233582345823558236582375823858239582405824158242582435824458245582465824758248582495825058251582525825358254582555825658257582585825958260582615826258263582645826558266582675826858269582705827158272582735827458275582765827758278582795828058281582825828358284582855828658287582885828958290582915829258293582945829558296582975829858299583005830158302583035830458305583065830758308583095831058311583125831358314583155831658317583185831958320583215832258323583245832558326583275832858329583305833158332583335833458335583365833758338583395834058341583425834358344583455834658347583485834958350583515835258353583545835558356583575835858359583605836158362583635836458365583665836758368583695837058371583725837358374583755837658377583785837958380583815838258383583845838558386583875838858389583905839158392583935839458395583965839758398583995840058401584025840358404584055840658407584085840958410584115841258413584145841558416584175841858419584205842158422584235842458425584265842758428584295843058431584325843358434584355843658437584385843958440584415844258443584445844558446584475844858449584505845158452584535845458455584565845758458584595846058461584625846358464584655846658467584685846958470584715847258473584745847558476584775847858479584805848158482584835848458485584865848758488584895849058491584925849358494584955849658497584985849958500585015850258503585045850558506585075850858509585105851158512585135851458515585165851758518585195852058521585225852358524585255852658527585285852958530585315853258533585345853558536585375853858539585405854158542585435854458545585465854758548585495855058551585525855358554585555855658557585585855958560585615856258563585645856558566585675856858569585705857158572585735857458575585765857758578585795858058581585825858358584585855858658587585885858958590585915859258593585945859558596585975859858599586005860158602586035860458605586065860758608586095861058611586125861358614586155861658617586185861958620586215862258623586245862558626586275862858629586305863158632586335863458635586365863758638586395864058641586425864358644586455864658647586485864958650586515865258653586545865558656586575865858659586605866158662586635866458665586665866758668586695867058671586725867358674586755867658677586785867958680586815868258683586845868558686586875868858689586905869158692586935869458695586965869758698586995870058701587025870358704587055870658707587085870958710587115871258713587145871558716587175871858719587205872158722587235872458725587265872758728587295873058731587325873358734587355873658737587385873958740587415874258743587445874558746587475874858749587505875158752587535875458755587565875758758587595876058761587625876358764587655876658767587685876958770587715877258773587745877558776587775877858779587805878158782587835878458785587865878758788587895879058791587925879358794587955879658797587985879958800588015880258803588045880558806588075880858809588105881158812588135881458815588165881758818588195882058821588225882358824588255882658827588285882958830588315883258833588345883558836588375883858839588405884158842588435884458845588465884758848588495885058851588525885358854588555885658857588585885958860588615886258863588645886558866588675886858869588705887158872588735887458875588765887758878588795888058881588825888358884588855888658887588885888958890588915889258893588945889558896588975889858899589005890158902589035890458905589065890758908589095891058911589125891358914589155891658917589185891958920589215892258923589245892558926589275892858929589305893158932589335893458935589365893758938589395894058941589425894358944589455894658947589485894958950589515895258953589545895558956589575895858959589605896158962589635896458965589665896758968589695897058971589725897358974589755897658977589785897958980589815898258983589845898558986589875898858989589905899158992589935899458995589965899758998589995900059001590025900359004590055900659007590085900959010590115901259013590145901559016590175901859019590205902159022590235902459025590265902759028590295903059031590325903359034590355903659037590385903959040590415904259043590445904559046590475904859049590505905159052590535905459055590565905759058590595906059061590625906359064590655906659067590685906959070590715907259073590745907559076590775907859079590805908159082590835908459085590865908759088590895909059091590925909359094590955909659097590985909959100591015910259103591045910559106591075910859109591105911159112591135911459115591165911759118591195912059121591225912359124591255912659127591285912959130591315913259133591345913559136591375913859139591405914159142591435914459145591465914759148591495915059151591525915359154591555915659157591585915959160591615916259163591645916559166591675916859169591705917159172591735917459175591765917759178591795918059181591825918359184591855918659187591885918959190591915919259193591945919559196591975919859199592005920159202592035920459205592065920759208592095921059211592125921359214592155921659217592185921959220592215922259223592245922559226592275922859229592305923159232592335923459235592365923759238592395924059241592425924359244592455924659247592485924959250592515925259253592545925559256592575925859259592605926159262592635926459265592665926759268592695927059271592725927359274592755927659277592785927959280592815928259283592845928559286592875928859289592905929159292592935929459295592965929759298592995930059301593025930359304593055930659307593085930959310593115931259313593145931559316593175931859319593205932159322593235932459325593265932759328593295933059331593325933359334593355933659337593385933959340593415934259343593445934559346593475934859349593505935159352593535935459355593565935759358593595936059361593625936359364593655936659367593685936959370593715937259373593745937559376593775937859379593805938159382593835938459385593865938759388593895939059391593925939359394593955939659397593985939959400594015940259403594045940559406594075940859409594105941159412594135941459415594165941759418594195942059421594225942359424594255942659427594285942959430594315943259433594345943559436594375943859439594405944159442594435944459445594465944759448594495945059451594525945359454594555945659457594585945959460594615946259463594645946559466594675946859469594705947159472594735947459475594765947759478594795948059481594825948359484594855948659487594885948959490594915949259493594945949559496594975949859499595005950159502595035950459505595065950759508595095951059511595125951359514595155951659517595185951959520595215952259523595245952559526595275952859529595305953159532595335953459535595365953759538595395954059541595425954359544595455954659547595485954959550595515955259553595545955559556595575955859559595605956159562595635956459565595665956759568595695957059571595725957359574595755957659577595785957959580595815958259583595845958559586595875958859589595905959159592595935959459595595965959759598595995960059601596025960359604596055960659607596085960959610596115961259613596145961559616596175961859619596205962159622596235962459625596265962759628596295963059631596325963359634596355963659637596385963959640596415964259643596445964559646596475964859649596505965159652596535965459655596565965759658596595966059661596625966359664596655966659667596685966959670596715967259673596745967559676596775967859679596805968159682596835968459685596865968759688596895969059691596925969359694596955969659697596985969959700597015970259703597045970559706597075970859709597105971159712597135971459715597165971759718597195972059721597225972359724597255972659727597285972959730597315973259733597345973559736597375973859739597405974159742597435974459745597465974759748597495975059751597525975359754597555975659757597585975959760597615976259763597645976559766597675976859769597705977159772597735977459775597765977759778597795978059781597825978359784597855978659787597885978959790597915979259793597945979559796597975979859799598005980159802598035980459805598065980759808598095981059811598125981359814598155981659817598185981959820598215982259823598245982559826598275982859829598305983159832598335983459835598365983759838598395984059841598425984359844598455984659847598485984959850598515985259853598545985559856598575985859859598605986159862598635986459865598665986759868598695987059871598725987359874598755987659877598785987959880598815988259883598845988559886598875988859889598905989159892598935989459895598965989759898598995990059901599025990359904599055990659907599085990959910599115991259913599145991559916599175991859919599205992159922599235992459925599265992759928599295993059931599325993359934599355993659937599385993959940599415994259943599445994559946599475994859949599505995159952599535995459955599565995759958599595996059961599625996359964599655996659967599685996959970599715997259973599745997559976599775997859979599805998159982599835998459985599865998759988599895999059991599925999359994599955999659997599985999960000600016000260003600046000560006600076000860009600106001160012600136001460015600166001760018600196002060021600226002360024600256002660027600286002960030600316003260033600346003560036600376003860039600406004160042600436004460045600466004760048600496005060051600526005360054600556005660057600586005960060600616006260063600646006560066600676006860069600706007160072600736007460075600766007760078600796008060081600826008360084600856008660087600886008960090600916009260093600946009560096600976009860099601006010160102601036010460105601066010760108601096011060111601126011360114601156011660117601186011960120601216012260123601246012560126601276012860129601306013160132601336013460135601366013760138601396014060141601426014360144601456014660147601486014960150601516015260153601546015560156601576015860159601606016160162601636016460165601666016760168601696017060171601726017360174601756017660177601786017960180601816018260183601846018560186601876018860189601906019160192601936019460195601966019760198601996020060201602026020360204602056020660207602086020960210602116021260213602146021560216602176021860219602206022160222602236022460225602266022760228602296023060231602326023360234602356023660237602386023960240602416024260243602446024560246602476024860249602506025160252602536025460255602566025760258602596026060261602626026360264602656026660267602686026960270602716027260273602746027560276602776027860279602806028160282602836028460285602866028760288602896029060291602926029360294602956029660297602986029960300603016030260303603046030560306603076030860309603106031160312603136031460315603166031760318603196032060321603226032360324603256032660327603286032960330603316033260333603346033560336603376033860339603406034160342603436034460345603466034760348603496035060351603526035360354603556035660357603586035960360603616036260363603646036560366603676036860369603706037160372603736037460375603766037760378603796038060381603826038360384603856038660387603886038960390603916039260393603946039560396603976039860399604006040160402604036040460405604066040760408604096041060411604126041360414604156041660417604186041960420604216042260423604246042560426604276042860429604306043160432604336043460435604366043760438604396044060441604426044360444604456044660447604486044960450604516045260453604546045560456604576045860459604606046160462604636046460465604666046760468604696047060471604726047360474604756047660477604786047960480604816048260483604846048560486604876048860489604906049160492604936049460495604966049760498604996050060501605026050360504605056050660507605086050960510605116051260513605146051560516605176051860519605206052160522605236052460525605266052760528605296053060531605326053360534605356053660537605386053960540605416054260543605446054560546605476054860549605506055160552605536055460555605566055760558605596056060561605626056360564605656056660567605686056960570605716057260573605746057560576605776057860579605806058160582605836058460585605866058760588605896059060591605926059360594605956059660597605986059960600606016060260603606046060560606606076060860609606106061160612606136061460615606166061760618606196062060621606226062360624606256062660627606286062960630606316063260633606346063560636606376063860639606406064160642606436064460645606466064760648606496065060651606526065360654606556065660657606586065960660606616066260663606646066560666606676066860669606706067160672606736067460675606766067760678606796068060681606826068360684606856068660687606886068960690606916069260693606946069560696606976069860699607006070160702607036070460705607066070760708607096071060711607126071360714607156071660717607186071960720607216072260723607246072560726607276072860729607306073160732607336073460735607366073760738607396074060741607426074360744607456074660747607486074960750607516075260753607546075560756607576075860759607606076160762607636076460765607666076760768607696077060771607726077360774607756077660777607786077960780607816078260783607846078560786607876078860789607906079160792607936079460795607966079760798607996080060801608026080360804608056080660807608086080960810608116081260813608146081560816608176081860819608206082160822608236082460825608266082760828608296083060831608326083360834608356083660837608386083960840608416084260843608446084560846608476084860849608506085160852608536085460855608566085760858608596086060861608626086360864608656086660867608686086960870608716087260873608746087560876608776087860879608806088160882608836088460885608866088760888608896089060891608926089360894608956089660897608986089960900609016090260903609046090560906609076090860909609106091160912609136091460915609166091760918609196092060921609226092360924609256092660927609286092960930609316093260933609346093560936609376093860939609406094160942609436094460945609466094760948609496095060951609526095360954609556095660957609586095960960609616096260963609646096560966609676096860969609706097160972609736097460975609766097760978609796098060981609826098360984609856098660987609886098960990609916099260993609946099560996609976099860999610006100161002610036100461005610066100761008610096101061011610126101361014610156101661017610186101961020610216102261023610246102561026610276102861029610306103161032610336103461035610366103761038610396104061041610426104361044610456104661047610486104961050610516105261053610546105561056610576105861059610606106161062610636106461065610666106761068610696107061071610726107361074610756107661077610786107961080610816108261083610846108561086610876108861089610906109161092610936109461095610966109761098610996110061101611026110361104611056110661107611086110961110611116111261113611146111561116611176111861119611206112161122611236112461125611266112761128611296113061131611326113361134611356113661137611386113961140611416114261143611446114561146611476114861149611506115161152611536115461155611566115761158611596116061161611626116361164611656116661167611686116961170611716117261173611746117561176611776117861179611806118161182611836118461185611866118761188611896119061191611926119361194611956119661197611986119961200612016120261203612046120561206612076120861209612106121161212612136121461215612166121761218612196122061221612226122361224612256122661227612286122961230612316123261233612346123561236612376123861239612406124161242612436124461245612466124761248612496125061251612526125361254612556125661257612586125961260612616126261263612646126561266612676126861269612706127161272612736127461275612766127761278612796128061281612826128361284612856128661287612886128961290612916129261293612946129561296612976129861299613006130161302613036130461305613066130761308613096131061311613126131361314613156131661317613186131961320613216132261323613246132561326613276132861329613306133161332613336133461335613366133761338613396134061341613426134361344613456134661347613486134961350613516135261353613546135561356613576135861359613606136161362613636136461365613666136761368613696137061371613726137361374613756137661377613786137961380613816138261383613846138561386613876138861389613906139161392613936139461395613966139761398613996140061401614026140361404614056140661407614086140961410614116141261413614146141561416614176141861419614206142161422614236142461425614266142761428614296143061431614326143361434614356143661437614386143961440614416144261443614446144561446614476144861449614506145161452614536145461455614566145761458614596146061461614626146361464614656146661467614686146961470614716147261473614746147561476614776147861479614806148161482614836148461485614866148761488614896149061491614926149361494614956149661497614986149961500615016150261503615046150561506615076150861509615106151161512615136151461515615166151761518615196152061521615226152361524615256152661527615286152961530615316153261533615346153561536615376153861539615406154161542615436154461545615466154761548615496155061551615526155361554615556155661557615586155961560615616156261563615646156561566615676156861569615706157161572615736157461575615766157761578615796158061581615826158361584615856158661587615886158961590615916159261593615946159561596615976159861599616006160161602616036160461605616066160761608616096161061611616126161361614616156161661617616186161961620616216162261623616246162561626616276162861629616306163161632616336163461635616366163761638616396164061641616426164361644616456164661647616486164961650616516165261653616546165561656616576165861659616606166161662616636166461665616666166761668616696167061671616726167361674616756167661677616786167961680616816168261683616846168561686616876168861689616906169161692616936169461695616966169761698616996170061701617026170361704617056170661707617086170961710617116171261713617146171561716617176171861719617206172161722617236172461725617266172761728617296173061731617326173361734617356173661737617386173961740617416174261743617446174561746617476174861749617506175161752617536175461755617566175761758617596176061761617626176361764617656176661767617686176961770617716177261773617746177561776617776177861779617806178161782617836178461785617866178761788617896179061791617926179361794617956179661797617986179961800618016180261803618046180561806618076180861809618106181161812618136181461815618166181761818618196182061821618226182361824618256182661827618286182961830618316183261833618346183561836618376183861839618406184161842618436184461845618466184761848618496185061851618526185361854618556185661857618586185961860618616186261863618646186561866618676186861869618706187161872618736187461875618766187761878618796188061881618826188361884618856188661887618886188961890618916189261893618946189561896618976189861899619006190161902619036190461905619066190761908619096191061911619126191361914619156191661917619186191961920619216192261923619246192561926619276192861929619306193161932619336193461935619366193761938619396194061941619426194361944619456194661947619486194961950619516195261953619546195561956619576195861959619606196161962619636196461965619666196761968619696197061971619726197361974619756197661977619786197961980619816198261983619846198561986619876198861989619906199161992619936199461995619966199761998619996200062001620026200362004620056200662007620086200962010620116201262013620146201562016620176201862019620206202162022620236202462025620266202762028620296203062031620326203362034620356203662037620386203962040620416204262043620446204562046620476204862049620506205162052620536205462055620566205762058620596206062061620626206362064620656206662067620686206962070620716207262073620746207562076620776207862079620806208162082620836208462085620866208762088620896209062091620926209362094620956209662097620986209962100621016210262103621046210562106621076210862109621106211162112621136211462115621166211762118621196212062121621226212362124621256212662127621286212962130621316213262133621346213562136621376213862139621406214162142621436214462145621466214762148621496215062151621526215362154621556215662157621586215962160621616216262163621646216562166621676216862169621706217162172621736217462175621766217762178621796218062181621826218362184621856218662187621886218962190621916219262193621946219562196621976219862199622006220162202622036220462205622066220762208622096221062211622126221362214622156221662217622186221962220622216222262223622246222562226622276222862229622306223162232622336223462235622366223762238622396224062241622426224362244622456224662247622486224962250622516225262253622546225562256622576225862259622606226162262622636226462265622666226762268622696227062271622726227362274622756227662277622786227962280622816228262283622846228562286622876228862289622906229162292622936229462295622966229762298622996230062301623026230362304623056230662307623086230962310623116231262313623146231562316623176231862319623206232162322623236232462325623266232762328623296233062331623326233362334623356233662337623386233962340623416234262343623446234562346623476234862349623506235162352623536235462355623566235762358623596236062361623626236362364623656236662367623686236962370623716237262373623746237562376623776237862379623806238162382623836238462385623866238762388623896239062391623926239362394623956239662397623986239962400624016240262403624046240562406624076240862409624106241162412624136241462415624166241762418624196242062421624226242362424624256242662427624286242962430624316243262433624346243562436624376243862439624406244162442624436244462445624466244762448624496245062451624526245362454624556245662457624586245962460624616246262463624646246562466624676246862469624706247162472624736247462475624766247762478624796248062481624826248362484624856248662487624886248962490624916249262493624946249562496624976249862499625006250162502625036250462505625066250762508625096251062511625126251362514625156251662517625186251962520625216252262523625246252562526625276252862529625306253162532625336253462535625366253762538625396254062541625426254362544625456254662547625486254962550625516255262553625546255562556625576255862559625606256162562625636256462565625666256762568625696257062571625726257362574625756257662577625786257962580625816258262583625846258562586625876258862589625906259162592625936259462595625966259762598625996260062601626026260362604626056260662607626086260962610626116261262613626146261562616626176261862619626206262162622626236262462625626266262762628626296263062631626326263362634626356263662637626386263962640626416264262643626446264562646626476264862649626506265162652626536265462655626566265762658626596266062661626626266362664626656266662667626686266962670626716267262673626746267562676626776267862679626806268162682626836268462685626866268762688626896269062691626926269362694626956269662697626986269962700627016270262703627046270562706627076270862709627106271162712627136271462715627166271762718627196272062721627226272362724627256272662727627286272962730627316273262733627346273562736627376273862739627406274162742627436274462745627466274762748627496275062751627526275362754627556275662757627586275962760627616276262763627646276562766627676276862769627706277162772627736277462775627766277762778627796278062781627826278362784627856278662787627886278962790627916279262793627946279562796627976279862799628006280162802628036280462805628066280762808628096281062811628126281362814628156281662817628186281962820628216282262823628246282562826628276282862829628306283162832628336283462835628366283762838628396284062841628426284362844628456284662847628486284962850628516285262853628546285562856628576285862859628606286162862628636286462865628666286762868628696287062871628726287362874628756287662877628786287962880628816288262883628846288562886628876288862889628906289162892628936289462895628966289762898628996290062901629026290362904629056290662907629086290962910629116291262913629146291562916629176291862919629206292162922629236292462925629266292762928629296293062931629326293362934629356293662937629386293962940629416294262943629446294562946629476294862949629506295162952629536295462955629566295762958629596296062961629626296362964629656296662967629686296962970629716297262973629746297562976629776297862979629806298162982629836298462985629866298762988629896299062991629926299362994629956299662997629986299963000630016300263003630046300563006630076300863009630106301163012630136301463015630166301763018630196302063021630226302363024630256302663027630286302963030630316303263033630346303563036630376303863039630406304163042630436304463045630466304763048630496305063051630526305363054630556305663057630586305963060630616306263063630646306563066630676306863069630706307163072630736307463075630766307763078630796308063081630826308363084630856308663087630886308963090630916309263093630946309563096630976309863099631006310163102631036310463105631066310763108631096311063111631126311363114631156311663117631186311963120631216312263123631246312563126631276312863129631306313163132631336313463135631366313763138631396314063141631426314363144631456314663147631486314963150631516315263153631546315563156631576315863159631606316163162631636316463165631666316763168631696317063171631726317363174631756317663177631786317963180631816318263183631846318563186631876318863189631906319163192631936319463195631966319763198631996320063201632026320363204632056320663207632086320963210632116321263213632146321563216632176321863219632206322163222632236322463225632266322763228632296323063231632326323363234632356323663237632386323963240632416324263243632446324563246632476324863249632506325163252632536325463255632566325763258632596326063261632626326363264632656326663267632686326963270632716327263273632746327563276632776327863279632806328163282632836328463285632866328763288632896329063291632926329363294632956329663297632986329963300633016330263303633046330563306633076330863309633106331163312633136331463315633166331763318633196332063321633226332363324633256332663327633286332963330633316333263333633346333563336633376333863339633406334163342633436334463345633466334763348633496335063351633526335363354633556335663357633586335963360633616336263363633646336563366633676336863369633706337163372633736337463375633766337763378633796338063381633826338363384633856338663387633886338963390633916339263393633946339563396633976339863399634006340163402634036340463405634066340763408634096341063411634126341363414634156341663417634186341963420634216342263423634246342563426634276342863429634306343163432634336343463435634366343763438634396344063441634426344363444634456344663447634486344963450634516345263453634546345563456634576345863459634606346163462634636346463465634666346763468634696347063471634726347363474634756347663477634786347963480634816348263483634846348563486634876348863489634906349163492634936349463495634966349763498634996350063501635026350363504635056350663507635086350963510635116351263513635146351563516635176351863519635206352163522635236352463525635266352763528635296353063531635326353363534635356353663537635386353963540635416354263543635446354563546635476354863549635506355163552635536355463555635566355763558635596356063561635626356363564635656356663567635686356963570635716357263573635746357563576635776357863579635806358163582635836358463585635866358763588635896359063591635926359363594635956359663597635986359963600636016360263603636046360563606636076360863609636106361163612636136361463615636166361763618636196362063621636226362363624636256362663627636286362963630636316363263633636346363563636636376363863639636406364163642636436364463645636466364763648636496365063651636526365363654636556365663657636586365963660636616366263663636646366563666636676366863669636706367163672636736367463675636766367763678636796368063681636826368363684636856368663687636886368963690636916369263693636946369563696636976369863699637006370163702637036370463705637066370763708637096371063711637126371363714637156371663717637186371963720637216372263723637246372563726637276372863729637306373163732637336373463735637366373763738637396374063741637426374363744637456374663747637486374963750637516375263753637546375563756637576375863759637606376163762637636376463765637666376763768637696377063771637726377363774637756377663777637786377963780637816378263783637846378563786637876378863789637906379163792637936379463795637966379763798637996380063801638026380363804638056380663807638086380963810638116381263813638146381563816638176381863819638206382163822638236382463825638266382763828638296383063831638326383363834638356383663837638386383963840638416384263843638446384563846638476384863849638506385163852638536385463855638566385763858638596386063861638626386363864638656386663867638686386963870638716387263873638746387563876638776387863879638806388163882638836388463885638866388763888638896389063891638926389363894638956389663897638986389963900639016390263903639046390563906639076390863909639106391163912639136391463915639166391763918639196392063921639226392363924639256392663927639286392963930639316393263933639346393563936639376393863939639406394163942639436394463945639466394763948639496395063951639526395363954639556395663957639586395963960639616396263963639646396563966639676396863969639706397163972639736397463975639766397763978639796398063981639826398363984639856398663987639886398963990639916399263993639946399563996639976399863999640006400164002640036400464005640066400764008640096401064011640126401364014640156401664017640186401964020640216402264023640246402564026640276402864029640306403164032640336403464035640366403764038640396404064041640426404364044640456404664047640486404964050640516405264053640546405564056640576405864059640606406164062640636406464065640666406764068640696407064071640726407364074640756407664077640786407964080640816408264083640846408564086640876408864089640906409164092640936409464095640966409764098640996410064101641026410364104641056410664107641086410964110641116411264113641146411564116641176411864119641206412164122641236412464125641266412764128641296413064131641326413364134641356413664137641386413964140641416414264143641446414564146641476414864149641506415164152641536415464155641566415764158641596416064161641626416364164641656416664167641686416964170641716417264173641746417564176641776417864179641806418164182641836418464185641866418764188641896419064191641926419364194641956419664197641986419964200642016420264203642046420564206642076420864209642106421164212642136421464215642166421764218642196422064221642226422364224642256422664227642286422964230642316423264233642346423564236642376423864239642406424164242642436424464245642466424764248642496425064251642526425364254642556425664257642586425964260642616426264263642646426564266642676426864269642706427164272642736427464275642766427764278642796428064281642826428364284642856428664287642886428964290642916429264293642946429564296642976429864299643006430164302643036430464305643066430764308643096431064311643126431364314643156431664317643186431964320643216432264323643246432564326643276432864329643306433164332643336433464335643366433764338643396434064341643426434364344643456434664347643486434964350 |
- This is gcc.info, produced by makeinfo version 6.7 from gcc.texi.
- Copyright (C) 1988-2018 Free Software Foundation, Inc.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover Texts
- being (a) (see below), and with the Back-Cover Texts being (b) (see
- below). A copy of the license is included in the section entitled "GNU
- Free Documentation License".
- (a) The FSF's Front-Cover Text is:
- A GNU Manual
- (b) The FSF's Back-Cover Text is:
- You have freedom to copy and modify this GNU Manual, like GNU software.
- Copies published by the Free Software Foundation raise funds for GNU
- development.
- INFO-DIR-SECTION Software development
- START-INFO-DIR-ENTRY
- * gcc: (gcc). The GNU Compiler Collection.
- * g++: (gcc). The GNU C++ compiler.
- * gcov: (gcc) Gcov. 'gcov'--a test coverage program.
- * gcov-tool: (gcc) Gcov-tool. 'gcov-tool'--an offline gcda profile processing program.
- * gcov-dump: (gcc) Gcov-dump. 'gcov-dump'--an offline gcda and gcno profile dump tool.
- END-INFO-DIR-ENTRY
- This file documents the use of the GNU compilers.
- Copyright (C) 1988-2018 Free Software Foundation, Inc.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3 or
- any later version published by the Free Software Foundation; with the
- Invariant Sections being "Funding Free Software", the Front-Cover Texts
- being (a) (see below), and with the Back-Cover Texts being (b) (see
- below). A copy of the license is included in the section entitled "GNU
- Free Documentation License".
- (a) The FSF's Front-Cover Text is:
- A GNU Manual
- (b) The FSF's Back-Cover Text is:
- You have freedom to copy and modify this GNU Manual, like GNU software.
- Copies published by the Free Software Foundation raise funds for GNU
- development.
- File: gcc.info, Node: Top, Next: G++ and GCC, Up: (dir)
- Introduction
- ************
- This manual documents how to use the GNU compilers, as well as their
- features and incompatibilities, and how to report bugs. It corresponds
- to the compilers (xPack GNU RISC-V Embedded GCC\x2C 64-bit) version
- 8.3.0. The internals of the GNU compilers, including how to port them
- to new targets and some information about how to write front ends for
- new languages, are documented in a separate manual. *Note Introduction:
- (gccint)Top.
- * Menu:
- * G++ and GCC:: You can compile C or C++ programs.
- * Standards:: Language standards supported by GCC.
- * Invoking GCC:: Command options supported by 'gcc'.
- * C Implementation:: How GCC implements the ISO C specification.
- * C++ Implementation:: How GCC implements the ISO C++ specification.
- * C Extensions:: GNU extensions to the C language family.
- * C++ Extensions:: GNU extensions to the C++ language.
- * Objective-C:: GNU Objective-C runtime features.
- * Compatibility:: Binary Compatibility
- * Gcov:: 'gcov'--a test coverage program.
- * Gcov-tool:: 'gcov-tool'--an offline gcda profile processing program.
- * Gcov-dump:: 'gcov-dump'--an offline gcda and gcno profile dump tool.
- * Trouble:: If you have trouble using GCC.
- * Bugs:: How, why and where to report bugs.
- * Service:: How To Get Help with GCC
- * Contributing:: How to contribute to testing and developing GCC.
- * Funding:: How to help assure funding for free software.
- * GNU Project:: The GNU Project and GNU/Linux.
- * Copying:: GNU General Public License says
- how you can copy and share GCC.
- * GNU Free Documentation License:: How you can copy and share this manual.
- * Contributors:: People who have contributed to GCC.
- * Option Index:: Index to command line options.
- * Keyword Index:: Index of concepts and symbol names.
- File: gcc.info, Node: G++ and GCC, Next: Standards, Up: Top
- 1 Programming Languages Supported by GCC
- ****************************************
- GCC stands for "GNU Compiler Collection". GCC is an integrated
- distribution of compilers for several major programming languages.
- These languages currently include C, C++, Objective-C, Objective-C++,
- Fortran, Ada, Go, and BRIG (HSAIL).
- The abbreviation "GCC" has multiple meanings in common use. The
- current official meaning is "GNU Compiler Collection", which refers
- generically to the complete suite of tools. The name historically stood
- for "GNU C Compiler", and this usage is still common when the emphasis
- is on compiling C programs. Finally, the name is also used when
- speaking of the "language-independent" component of GCC: code shared
- among the compilers for all supported languages.
- The language-independent component of GCC includes the majority of the
- optimizers, as well as the "back ends" that generate machine code for
- various processors.
- The part of a compiler that is specific to a particular language is
- called the "front end". In addition to the front ends that are
- integrated components of GCC, there are several other front ends that
- are maintained separately. These support languages such as Pascal,
- Mercury, and COBOL. To use these, they must be built together with GCC
- proper.
- Most of the compilers for languages other than C have their own names.
- The C++ compiler is G++, the Ada compiler is GNAT, and so on. When we
- talk about compiling one of those languages, we might refer to that
- compiler by its own name, or as GCC. Either is correct.
- Historically, compilers for many languages, including C++ and Fortran,
- have been implemented as "preprocessors" which emit another high level
- language such as C. None of the compilers included in GCC are
- implemented this way; they all generate machine code directly. This
- sort of preprocessor should not be confused with the "C preprocessor",
- which is an integral feature of the C, C++, Objective-C and
- Objective-C++ languages.
- File: gcc.info, Node: Standards, Next: Invoking GCC, Prev: G++ and GCC, Up: Top
- 2 Language Standards Supported by GCC
- *************************************
- For each language compiled by GCC for which there is a standard, GCC
- attempts to follow one or more versions of that standard, possibly with
- some exceptions, and possibly with some extensions.
- 2.1 C Language
- ==============
- The original ANSI C standard (X3.159-1989) was ratified in 1989 and
- published in 1990. This standard was ratified as an ISO standard
- (ISO/IEC 9899:1990) later in 1990. There were no technical differences
- between these publications, although the sections of the ANSI standard
- were renumbered and became clauses in the ISO standard. The ANSI
- standard, but not the ISO standard, also came with a Rationale document.
- This standard, in both its forms, is commonly known as "C89", or
- occasionally as "C90", from the dates of ratification. To select this
- standard in GCC, use one of the options '-ansi', '-std=c90' or
- '-std=iso9899:1990'; to obtain all the diagnostics required by the
- standard, you should also specify '-pedantic' (or '-pedantic-errors' if
- you want them to be errors rather than warnings). *Note Options
- Controlling C Dialect: C Dialect Options.
- Errors in the 1990 ISO C standard were corrected in two Technical
- Corrigenda published in 1994 and 1996. GCC does not support the
- uncorrected version.
- An amendment to the 1990 standard was published in 1995. This
- amendment added digraphs and '__STDC_VERSION__' to the language, but
- otherwise concerned the library. This amendment is commonly known as
- "AMD1"; the amended standard is sometimes known as "C94" or "C95". To
- select this standard in GCC, use the option '-std=iso9899:199409' (with,
- as for other standard versions, '-pedantic' to receive all required
- diagnostics).
- A new edition of the ISO C standard was published in 1999 as ISO/IEC
- 9899:1999, and is commonly known as "C99". (While in development,
- drafts of this standard version were referred to as "C9X".) GCC has
- substantially complete support for this standard version; see
- <http://gcc.gnu.org/c99status.html> for details. To select this
- standard, use '-std=c99' or '-std=iso9899:1999'.
- Errors in the 1999 ISO C standard were corrected in three Technical
- Corrigenda published in 2001, 2004 and 2007. GCC does not support the
- uncorrected version.
- A fourth version of the C standard, known as "C11", was published in
- 2011 as ISO/IEC 9899:2011. (While in development, drafts of this
- standard version were referred to as "C1X".) GCC has substantially
- complete support for this standard, enabled with '-std=c11' or
- '-std=iso9899:2011'. A version with corrections integrated is known as
- "C17" and is supported with '-std=c17' or '-std=iso9899:2017'; the
- corrections are also applied with '-std=c11', and the only difference
- between the options is the value of '__STDC_VERSION__'.
- By default, GCC provides some extensions to the C language that, on
- rare occasions conflict with the C standard. *Note Extensions to the C
- Language Family: C Extensions. Some features that are part of the C99
- standard are accepted as extensions in C90 mode, and some features that
- are part of the C11 standard are accepted as extensions in C90 and C99
- modes. Use of the '-std' options listed above disables these extensions
- where they conflict with the C standard version selected. You may also
- select an extended version of the C language explicitly with
- '-std=gnu90' (for C90 with GNU extensions), '-std=gnu99' (for C99 with
- GNU extensions) or '-std=gnu11' (for C11 with GNU extensions).
- The default, if no C language dialect options are given, is
- '-std=gnu11'.
- The ISO C standard defines (in clause 4) two classes of conforming
- implementation. A "conforming hosted implementation" supports the whole
- standard including all the library facilities; a "conforming
- freestanding implementation" is only required to provide certain library
- facilities: those in '<float.h>', '<limits.h>', '<stdarg.h>', and
- '<stddef.h>'; since AMD1, also those in '<iso646.h>'; since C99, also
- those in '<stdbool.h>' and '<stdint.h>'; and since C11, also those in
- '<stdalign.h>' and '<stdnoreturn.h>'. In addition, complex types, added
- in C99, are not required for freestanding implementations.
- The standard also defines two environments for programs, a
- "freestanding environment", required of all implementations and which
- may not have library facilities beyond those required of freestanding
- implementations, where the handling of program startup and termination
- are implementation-defined; and a "hosted environment", which is not
- required, in which all the library facilities are provided and startup
- is through a function 'int main (void)' or 'int main (int, char *[])'.
- An OS kernel is an example of a program running in a freestanding
- environment; a program using the facilities of an operating system is an
- example of a program running in a hosted environment.
- GCC aims towards being usable as a conforming freestanding
- implementation, or as the compiler for a conforming hosted
- implementation. By default, it acts as the compiler for a hosted
- implementation, defining '__STDC_HOSTED__' as '1' and presuming that
- when the names of ISO C functions are used, they have the semantics
- defined in the standard. To make it act as a conforming freestanding
- implementation for a freestanding environment, use the option
- '-ffreestanding'; it then defines '__STDC_HOSTED__' to '0' and does not
- make assumptions about the meanings of function names from the standard
- library, with exceptions noted below. To build an OS kernel, you may
- well still need to make your own arrangements for linking and startup.
- *Note Options Controlling C Dialect: C Dialect Options.
- GCC does not provide the library facilities required only of hosted
- implementations, nor yet all the facilities required by C99 of
- freestanding implementations on all platforms. To use the facilities of
- a hosted environment, you need to find them elsewhere (for example, in
- the GNU C library). *Note Standard Libraries: Standard Libraries.
- Most of the compiler support routines used by GCC are present in
- 'libgcc', but there are a few exceptions. GCC requires the freestanding
- environment provide 'memcpy', 'memmove', 'memset' and 'memcmp'.
- Finally, if '__builtin_trap' is used, and the target does not implement
- the 'trap' pattern, then GCC emits a call to 'abort'.
- For references to Technical Corrigenda, Rationale documents and
- information concerning the history of C that is available online, see
- <http://gcc.gnu.org/readings.html>
- 2.2 C++ Language
- ================
- GCC supports the original ISO C++ standard published in 1998, and the
- 2011 and 2014 revisions.
- The original ISO C++ standard was published as the ISO standard
- (ISO/IEC 14882:1998) and amended by a Technical Corrigenda published in
- 2003 (ISO/IEC 14882:2003). These standards are referred to as C++98 and
- C++03, respectively. GCC implements the majority of C++98 ('export' is
- a notable exception) and most of the changes in C++03. To select this
- standard in GCC, use one of the options '-ansi', '-std=c++98', or
- '-std=c++03'; to obtain all the diagnostics required by the standard,
- you should also specify '-pedantic' (or '-pedantic-errors' if you want
- them to be errors rather than warnings).
- A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011,
- and is referred to as C++11; before its publication it was commonly
- referred to as C++0x. C++11 contains several changes to the C++
- language, all of which have been implemented in GCC. For details see
- <https://gcc.gnu.org/projects/cxx-status.html#cxx11>. To select this
- standard in GCC, use the option '-std=c++11'.
- Another revised ISO C++ standard was published in 2014 as ISO/IEC
- 14882:2014, and is referred to as C++14; before its publication it was
- sometimes referred to as C++1y. C++14 contains several further changes
- to the C++ language, all of which have been implemented in GCC. For
- details see <https://gcc.gnu.org/projects/cxx-status.html#cxx14>. To
- select this standard in GCC, use the option '-std=c++14'.
- The C++ language was further revised in 2017 and ISO/IEC 14882:2017 was
- published. This is referred to as C++17, and before publication was
- often referred to as C++1z. GCC supports all the changes in the new
- specification. For further details see
- <https://gcc.gnu.org/projects/cxx-status.html#cxx1z>. Use the option
- '-std=c++17' to select this variant of C++.
- More information about the C++ standards is available on the ISO C++
- committee's web site at <http://www.open-std.org/jtc1/sc22/wg21/>.
- To obtain all the diagnostics required by any of the standard versions
- described above you should specify '-pedantic' or '-pedantic-errors',
- otherwise GCC will allow some non-ISO C++ features as extensions. *Note
- Warning Options::.
- By default, GCC also provides some additional extensions to the C++
- language that on rare occasions conflict with the C++ standard. *Note
- Options Controlling C++ Dialect: C++ Dialect Options. Use of the '-std'
- options listed above disables these extensions where they they conflict
- with the C++ standard version selected. You may also select an extended
- version of the C++ language explicitly with '-std=gnu++98' (for C++98
- with GNU extensions), or '-std=gnu++11' (for C++11 with GNU extensions),
- or '-std=gnu++14' (for C++14 with GNU extensions), or '-std=gnu++17'
- (for C++17 with GNU extensions).
- The default, if no C++ language dialect options are given, is
- '-std=gnu++14'.
- 2.3 Objective-C and Objective-C++ Languages
- ===========================================
- GCC supports "traditional" Objective-C (also known as "Objective-C 1.0")
- and contains support for the Objective-C exception and synchronization
- syntax. It has also support for a number of "Objective-C 2.0" language
- extensions, including properties, fast enumeration (only for
- Objective-C), method attributes and the @optional and @required keywords
- in protocols. GCC supports Objective-C++ and features available in
- Objective-C are also available in Objective-C++.
- GCC by default uses the GNU Objective-C runtime library, which is part
- of GCC and is not the same as the Apple/NeXT Objective-C runtime library
- used on Apple systems. There are a number of differences documented in
- this manual. The options '-fgnu-runtime' and '-fnext-runtime' allow you
- to switch between producing output that works with the GNU Objective-C
- runtime library and output that works with the Apple/NeXT Objective-C
- runtime library.
- There is no formal written standard for Objective-C or Objective-C++.
- The authoritative manual on traditional Objective-C (1.0) is
- "Object-Oriented Programming and the Objective-C Language":
- <http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf> is
- the original NeXTstep document.
- The Objective-C exception and synchronization syntax (that is, the
- keywords '@try', '@throw', '@catch', '@finally' and '@synchronized') is
- supported by GCC and is enabled with the option '-fobjc-exceptions'.
- The syntax is briefly documented in this manual and in the Objective-C
- 2.0 manuals from Apple.
- The Objective-C 2.0 language extensions and features are automatically
- enabled; they include properties (via the '@property', '@synthesize' and
- '@dynamic keywords'), fast enumeration (not available in Objective-C++),
- attributes for methods (such as 'deprecated', 'noreturn', 'sentinel',
- 'format'), the 'unused' attribute for method arguments, the '@package'
- keyword for instance variables and the '@optional' and '@required'
- keywords in protocols. You can disable all these Objective-C 2.0
- language extensions with the option '-fobjc-std=objc1', which causes the
- compiler to recognize the same Objective-C language syntax recognized by
- GCC 4.0, and to produce an error if one of the new features is used.
- GCC has currently no support for non-fragile instance variables.
- The authoritative manual on Objective-C 2.0 is available from Apple:
- *
- <https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html>
- For more information concerning the history of Objective-C that is
- available online, see <http://gcc.gnu.org/readings.html>
- 2.4 Go Language
- ===============
- As of the GCC 4.7.1 release, GCC supports the Go 1 language standard,
- described at <https://golang.org/doc/go1>.
- 2.5 HSA Intermediate Language (HSAIL)
- =====================================
- GCC can compile the binary representation (BRIG) of the HSAIL text
- format as described in HSA Programmer's Reference Manual version 1.0.1.
- This capability is typically utilized to implement the HSA runtime API's
- HSAIL finalization extension for a gcc supported processor. HSA
- standards are freely available at
- <http://www.hsafoundation.com/standards/>.
- 2.6 References for Other Languages
- ==================================
- *Note GNAT Reference Manual: (gnat_rm)Top, for information on standard
- conformance and compatibility of the Ada compiler.
- *Note Standards: (gfortran)Standards, for details of standards
- supported by GNU Fortran.
- File: gcc.info, Node: Invoking GCC, Next: C Implementation, Prev: Standards, Up: Top
- 3 GCC Command Options
- *********************
- When you invoke GCC, it normally does preprocessing, compilation,
- assembly and linking. The "overall options" allow you to stop this
- process at an intermediate stage. For example, the '-c' option says not
- to run the linker. Then the output consists of object files output by
- the assembler. *Note Options Controlling the Kind of Output: Overall
- Options.
- Other options are passed on to one or more stages of processing. Some
- options control the preprocessor and others the compiler itself. Yet
- other options control the assembler and linker; most of these are not
- documented here, since you rarely need to use any of them.
- Most of the command-line options that you can use with GCC are useful
- for C programs; when an option is only useful with another language
- (usually C++), the explanation says so explicitly. If the description
- for a particular option does not mention a source language, you can use
- that option with all supported languages.
- The usual way to run GCC is to run the executable called 'gcc', or
- 'MACHINE-gcc' when cross-compiling, or 'MACHINE-gcc-VERSION' to run a
- specific version of GCC. When you compile C++ programs, you should
- invoke GCC as 'g++' instead. *Note Compiling C++ Programs: Invoking
- G++, for information about the differences in behavior between 'gcc' and
- 'g++' when compiling C++ programs.
- The 'gcc' program accepts options and file names as operands. Many
- options have multi-letter names; therefore multiple single-letter
- options may _not_ be grouped: '-dv' is very different from '-d -v'.
- You can mix options and other arguments. For the most part, the order
- you use doesn't matter. Order does matter when you use several options
- of the same kind; for example, if you specify '-L' more than once, the
- directories are searched in the order specified. Also, the placement of
- the '-l' option is significant.
- Many options have long names starting with '-f' or with '-W'--for
- example, '-fmove-loop-invariants', '-Wformat' and so on. Most of these
- have both positive and negative forms; the negative form of '-ffoo' is
- '-fno-foo'. This manual documents only one of these two forms,
- whichever one is not the default.
- *Note Option Index::, for an index to GCC's options.
- * Menu:
- * Option Summary:: Brief list of all options, without explanations.
- * Overall Options:: Controlling the kind of output:
- an executable, object files, assembler files,
- or preprocessed source.
- * Invoking G++:: Compiling C++ programs.
- * C Dialect Options:: Controlling the variant of C language compiled.
- * C++ Dialect Options:: Variations on C++.
- * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
- and Objective-C++.
- * Diagnostic Message Formatting Options:: Controlling how diagnostics should
- be formatted.
- * Warning Options:: How picky should the compiler be?
- * Debugging Options:: Producing debuggable code.
- * Optimize Options:: How much optimization?
- * Instrumentation Options:: Enabling profiling and extra run-time error checking.
- * Preprocessor Options:: Controlling header files and macro definitions.
- Also, getting dependency information for Make.
- * Assembler Options:: Passing options to the assembler.
- * Link Options:: Specifying libraries and so on.
- * Directory Options:: Where to find header files and libraries.
- Where to find the compiler executable files.
- * Code Gen Options:: Specifying conventions for function calls, data layout
- and register usage.
- * Developer Options:: Printing GCC configuration info, statistics, and
- debugging dumps.
- * Submodel Options:: Target-specific options, such as compiling for a
- specific processor variant.
- * Spec Files:: How to pass switches to sub-processes.
- * Environment Variables:: Env vars that affect GCC.
- * Precompiled Headers:: Compiling a header once, and using it many times.
- File: gcc.info, Node: Option Summary, Next: Overall Options, Up: Invoking GCC
- 3.1 Option Summary
- ==================
- Here is a summary of all the options, grouped by type. Explanations are
- in the following sections.
- _Overall Options_
- *Note Options Controlling the Kind of Output: Overall Options.
- -c -S -E -o FILE -x LANGUAGE
- -v -### --help[=CLASS[,...]] --target-help --version
- -pass-exit-codes -pipe -specs=FILE -wrapper
- @FILE -ffile-prefix-map=OLD=NEW
- -fplugin=FILE -fplugin-arg-NAME=ARG
- -fdump-ada-spec[-slim] -fada-spec-parent=UNIT -fdump-go-spec=FILE
- _C Language Options_
- *Note Options Controlling C Dialect: C Dialect Options.
- -ansi -std=STANDARD -fgnu89-inline
- -fpermitted-flt-eval-methods=STANDARD
- -aux-info FILENAME -fallow-parameterless-variadic-functions
- -fno-asm -fno-builtin -fno-builtin-FUNCTION -fgimple
- -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd
- -fms-extensions -fplan9-extensions -fsso-struct=ENDIANNESS
- -fallow-single-precision -fcond-mismatch -flax-vector-conversions
- -fsigned-bitfields -fsigned-char
- -funsigned-bitfields -funsigned-char
- _C++ Language Options_
- *Note Options Controlling C++ Dialect: C++ Dialect Options.
- -fabi-version=N -fno-access-control
- -faligned-new=N -fargs-in-order=N -fcheck-new
- -fconstexpr-depth=N -fconstexpr-loop-limit=N
- -ffriend-injection
- -fno-elide-constructors
- -fno-enforce-eh-specs
- -ffor-scope -fno-for-scope -fno-gnu-keywords
- -fno-implicit-templates
- -fno-implicit-inline-templates
- -fno-implement-inlines -fms-extensions
- -fnew-inheriting-ctors
- -fnew-ttp-matching
- -fno-nonansi-builtins -fnothrow-opt -fno-operator-names
- -fno-optional-diags -fpermissive
- -fno-pretty-templates
- -frepo -fno-rtti -fsized-deallocation
- -ftemplate-backtrace-limit=N
- -ftemplate-depth=N
- -fno-threadsafe-statics -fuse-cxa-atexit
- -fno-weak -nostdinc++
- -fvisibility-inlines-hidden
- -fvisibility-ms-compat
- -fext-numeric-literals
- -Wabi=N -Wabi-tag -Wconversion-null -Wctor-dtor-privacy
- -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance
- -Wnamespaces -Wnarrowing
- -Wnoexcept -Wnoexcept-type -Wclass-memaccess
- -Wnon-virtual-dtor -Wreorder -Wregister
- -Weffc++ -Wstrict-null-sentinel -Wtemplates
- -Wno-non-template-friend -Wold-style-cast
- -Woverloaded-virtual -Wno-pmf-conversions
- -Wsign-promo -Wvirtual-inheritance
- _Objective-C and Objective-C++ Language Options_
- *Note Options Controlling Objective-C and Objective-C++ Dialects:
- Objective-C and Objective-C++ Dialect Options.
- -fconstant-string-class=CLASS-NAME
- -fgnu-runtime -fnext-runtime
- -fno-nil-receivers
- -fobjc-abi-version=N
- -fobjc-call-cxx-cdtors
- -fobjc-direct-dispatch
- -fobjc-exceptions
- -fobjc-gc
- -fobjc-nilcheck
- -fobjc-std=objc1
- -fno-local-ivars
- -fivar-visibility=[public|protected|private|package]
- -freplace-objc-classes
- -fzero-link
- -gen-decls
- -Wassign-intercept
- -Wno-protocol -Wselector
- -Wstrict-selector-match
- -Wundeclared-selector
- _Diagnostic Message Formatting Options_
- *Note Options to Control Diagnostic Messages Formatting: Diagnostic
- Message Formatting Options.
- -fmessage-length=N
- -fdiagnostics-show-location=[once|every-line]
- -fdiagnostics-color=[auto|never|always]
- -fno-diagnostics-show-option -fno-diagnostics-show-caret
- -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch
- -fdiagnostics-show-template-tree -fno-elide-type
- -fno-show-column
- _Warning Options_
- *Note Options to Request or Suppress Warnings: Warning Options.
- -fsyntax-only -fmax-errors=N -Wpedantic
- -pedantic-errors
- -w -Wextra -Wall -Waddress -Waggregate-return -Waligned-new
- -Walloc-zero -Walloc-size-larger-than=N
- -Walloca -Walloca-larger-than=N
- -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=N
- -Wno-attributes -Wbool-compare -Wbool-operation
- -Wno-builtin-declaration-mismatch
- -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat
- -Wc++-compat -Wc++11-compat -Wc++14-compat
- -Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual
- -Wchar-subscripts -Wchkp -Wcatch-value -Wcatch-value=N
- -Wclobbered -Wcomment -Wconditionally-supported
- -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time
- -Wdelete-incomplete
- -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init
- -Wdisabled-optimization
- -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers
- -Wno-div-by-zero -Wdouble-promotion
- -Wduplicated-branches -Wduplicated-cond
- -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined
- -Werror -Werror=* -Wextra-semi -Wfatal-errors
- -Wfloat-equal -Wformat -Wformat=2
- -Wno-format-contains-nul -Wno-format-extra-args
- -Wformat-nonliteral -Wformat-overflow=N
- -Wformat-security -Wformat-signedness -Wformat-truncation=N
- -Wformat-y2k -Wframe-address
- -Wframe-larger-than=LEN -Wno-free-nonheap-object -Wjump-misses-init
- -Wif-not-aligned
- -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types
- -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=N
- -Wimplicit-function-declaration -Wimplicit-int
- -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context
- -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof
- -Winvalid-pch -Wlarger-than=LEN
- -Wlogical-op -Wlogical-not-parentheses -Wlong-long
- -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args
- -Wmisleading-indentation -Wmissing-attributes -Wmissing-braces
- -Wmissing-field-initializers -Wmissing-include-dirs
- -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare
- -Wnormalized=[none|id|nfc|nfkc]
- -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd
- -Woverride-init-side-effects -Woverlength-strings
- -Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded
- -Wparentheses -Wno-pedantic-ms-format
- -Wplacement-new -Wplacement-new=N
- -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast
- -Wno-pragmas -Wredundant-decls -Wrestrict -Wno-return-local-addr
- -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar
- -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local
- -Wshift-overflow -Wshift-overflow=N
- -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value
- -Wsign-compare -Wsign-conversion -Wfloat-conversion
- -Wno-scalar-storage-order -Wsizeof-pointer-div
- -Wsizeof-pointer-memaccess -Wsizeof-array-argument
- -Wstack-protector -Wstack-usage=LEN -Wstrict-aliasing
- -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=N
- -Wstringop-overflow=N -Wstringop-truncation
- -Wsuggest-attribute=[pure|const|noreturn|format|malloc]
- -Wsuggest-final-types -Wsuggest-final-methods -Wsuggest-override
- -Wmissing-format-attribute -Wsubobject-linkage
- -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum
- -Wswitch-unreachable -Wsync-nand
- -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs
- -Wtype-limits -Wundef
- -Wuninitialized -Wunknown-pragmas
- -Wunsuffixed-float-constants -Wunused -Wunused-function
- -Wunused-label -Wunused-local-typedefs -Wunused-macros
- -Wunused-parameter -Wno-unused-result
- -Wunused-value -Wunused-variable
- -Wunused-const-variable -Wunused-const-variable=N
- -Wunused-but-set-parameter -Wunused-but-set-variable
- -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance
- -Wvla -Wvla-larger-than=N -Wvolatile-register-var -Wwrite-strings
- -Wzero-as-null-pointer-constant -Whsa
- _C and Objective-C-only Warning Options_
- -Wbad-function-cast -Wmissing-declarations
- -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
- -Wold-style-declaration -Wold-style-definition
- -Wstrict-prototypes -Wtraditional -Wtraditional-conversion
- -Wdeclaration-after-statement -Wpointer-sign
- _Debugging Options_
- *Note Options for Debugging Your Program: Debugging Options.
- -g -gLEVEL -gdwarf -gdwarf-VERSION
- -ggdb -grecord-gcc-switches -gno-record-gcc-switches
- -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf
- -gas-loc-support -gno-as-loc-support
- -gas-locview-support -gno-as-locview-support
- -gcolumn-info -gno-column-info
- -gstatement-frontiers -gno-statement-frontiers
- -gvariable-location-views -gno-variable-location-views
- -ginternal-reset-location-views -gno-internal-reset-location-views
- -ginline-points -gno-inline-points
- -gvms -gxcoff -gxcoff+ -gz[=TYPE]
- -fdebug-prefix-map=OLD=NEW -fdebug-types-section
- -fno-eliminate-unused-debug-types
- -femit-struct-debug-baseonly -femit-struct-debug-reduced
- -femit-struct-debug-detailed[=SPEC-LIST]
- -feliminate-unused-debug-symbols -femit-class-debug-always
- -fno-merge-debug-strings -fno-dwarf2-cfi-asm
- -fvar-tracking -fvar-tracking-assignments
- _Optimization Options_
- *Note Options that Control Optimization: Optimize Options.
- -faggressive-loop-optimizations -falign-functions[=N]
- -falign-jumps[=N]
- -falign-labels[=N] -falign-loops[=N]
- -fassociative-math -fauto-profile -fauto-profile[=PATH]
- -fauto-inc-dec -fbranch-probabilities
- -fbranch-target-load-optimize -fbranch-target-load-optimize2
- -fbtr-bb-exclusive -fcaller-saves
- -fcombine-stack-adjustments -fconserve-stack
- -fcompare-elim -fcprop-registers -fcrossjumping
- -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
- -fcx-limited-range
- -fdata-sections -fdce -fdelayed-branch
- -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively
- -fdevirtualize-at-ltrans -fdse
- -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects
- -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=STYLE
- -fforward-propagate -ffp-contract=STYLE -ffunction-sections
- -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity
- -fgcse-sm -fhoist-adjacent-loads -fif-conversion
- -fif-conversion2 -findirect-inlining
- -finline-functions -finline-functions-called-once -finline-limit=N
- -finline-small-functions -fipa-cp -fipa-cp-clone
- -fipa-bit-cp -fipa-vrp
- -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf
- -fira-algorithm=ALGORITHM
- -fira-region=REGION -fira-hoist-pressure
- -fira-loop-pressure -fno-ira-share-save-slots
- -fno-ira-share-spill-slots
- -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute
- -fivopts -fkeep-inline-functions -fkeep-static-functions
- -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage
- -floop-block -floop-interchange -floop-strip-mine
- -floop-unroll-and-jam -floop-nest-optimize
- -floop-parallelize-all -flra-remat -flto -flto-compression-level
- -flto-partition=ALG -fmerge-all-constants
- -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
- -fmove-loop-invariants -fno-branch-count-reg
- -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse
- -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole
- -fno-peephole2 -fno-printf-return-value -fno-sched-interblock
- -fno-sched-spec -fno-signed-zeros
- -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
- -fomit-frame-pointer -foptimize-sibling-calls
- -fpartial-inlining -fpeel-loops -fpredictive-commoning
- -fprefetch-loop-arrays
- -fprofile-correction
- -fprofile-use -fprofile-use=PATH -fprofile-values
- -fprofile-reorder-functions
- -freciprocal-math -free -frename-registers -freorder-blocks
- -freorder-blocks-algorithm=ALGORITHM
- -freorder-blocks-and-partition -freorder-functions
- -frerun-cse-after-loop -freschedule-modulo-scheduled-loops
- -frounding-math -fsched2-use-superblocks -fsched-pressure
- -fsched-spec-load -fsched-spec-load-dangerous
- -fsched-stalled-insns-dep[=N] -fsched-stalled-insns[=N]
- -fsched-group-heuristic -fsched-critical-path-heuristic
- -fsched-spec-insn-heuristic -fsched-rank-heuristic
- -fsched-last-insn-heuristic -fsched-dep-count-heuristic
- -fschedule-fusion
- -fschedule-insns -fschedule-insns2 -fsection-anchors
- -fselective-scheduling -fselective-scheduling2
- -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
- -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate
- -fsignaling-nans
- -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops
- -fsplit-paths
- -fsplit-wide-types -fssa-backprop -fssa-phiopt
- -fstdarg-opt -fstore-merging -fstrict-aliasing
- -fthread-jumps -ftracer -ftree-bit-ccp
- -ftree-builtin-call-dce -ftree-ccp -ftree-ch
- -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts
- -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting
- -ftree-loop-if-convert -ftree-loop-im
- -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
- -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
- -ftree-loop-vectorize
- -ftree-parallelize-loops=N -ftree-pre -ftree-partial-pre -ftree-pta
- -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra
- -ftree-switch-conversion -ftree-tail-merge
- -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons
- -funit-at-a-time -funroll-all-loops -funroll-loops
- -funsafe-math-optimizations -funswitch-loops
- -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt
- -fweb -fwhole-program -fwpa -fuse-linker-plugin
- --param NAME=VALUE
- -O -O0 -O1 -O2 -O3 -Os -Ofast -Og
- _Program Instrumentation Options_
- *Note Program Instrumentation Options: Instrumentation Options.
- -p -pg -fprofile-arcs --coverage -ftest-coverage
- -fprofile-abs-path
- -fprofile-dir=PATH -fprofile-generate -fprofile-generate=PATH
- -fsanitize=STYLE -fsanitize-recover -fsanitize-recover=STYLE
- -fasan-shadow-offset=NUMBER -fsanitize-sections=S1,S2,...
- -fsanitize-undefined-trap-on-error -fbounds-check
- -fcheck-pointer-bounds -fchkp-check-incomplete-type
- -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds
- -fchkp-narrow-to-innermost-array -fchkp-optimize
- -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions
- -fchkp-use-static-bounds -fchkp-use-static-const-bounds
- -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read
- -fchkp-check-read -fchkp-check-write -fchkp-store-bounds
- -fchkp-instrument-calls -fchkp-instrument-marked-only
- -fchkp-use-wrappers -fchkp-flexible-struct-trailing-arrays
- -fcf-protection=[full|branch|return|none]
- -fstack-protector -fstack-protector-all -fstack-protector-strong
- -fstack-protector-explicit -fstack-check
- -fstack-limit-register=REG -fstack-limit-symbol=SYM
- -fno-stack-limit -fsplit-stack
- -fvtable-verify=[std|preinit|none]
- -fvtv-counts -fvtv-debug
- -finstrument-functions
- -finstrument-functions-exclude-function-list=SYM,SYM,...
- -finstrument-functions-exclude-file-list=FILE,FILE,...
- _Preprocessor Options_
- *Note Options Controlling the Preprocessor: Preprocessor Options.
- -AQUESTION=ANSWER
- -A-QUESTION[=ANSWER]
- -C -CC -DMACRO[=DEFN]
- -dD -dI -dM -dN -dU
- -fdebug-cpp -fdirectives-only -fdollars-in-identifiers
- -fexec-charset=CHARSET -fextended-identifiers
- -finput-charset=CHARSET -fmacro-prefix-map=OLD=NEW
- -fno-canonical-system-headers -fpch-deps -fpch-preprocess
- -fpreprocessed -ftabstop=WIDTH -ftrack-macro-expansion
- -fwide-exec-charset=CHARSET -fworking-directory
- -H -imacros FILE -include FILE
- -M -MD -MF -MG -MM -MMD -MP -MQ -MT
- -no-integrated-cpp -P -pthread -remap
- -traditional -traditional-cpp -trigraphs
- -UMACRO -undef
- -Wp,OPTION -Xpreprocessor OPTION
- _Assembler Options_
- *Note Passing Options to the Assembler: Assembler Options.
- -Wa,OPTION -Xassembler OPTION
- _Linker Options_
- *Note Options for Linking: Link Options.
- OBJECT-FILE-NAME -fuse-ld=LINKER -lLIBRARY
- -nostartfiles -nodefaultlibs -nostdlib -pie -pthread -rdynamic
- -s -static -static-pie -static-libgcc -static-libstdc++
- -static-libasan -static-libtsan -static-liblsan -static-libubsan
- -static-libmpx -static-libmpxwrappers
- -shared -shared-libgcc -symbolic
- -T SCRIPT -Wl,OPTION -Xlinker OPTION
- -u SYMBOL -z KEYWORD
- _Directory Options_
- *Note Options for Directory Search: Directory Options.
- -BPREFIX -IDIR -I-
- -idirafter DIR
- -imacros FILE -imultilib DIR
- -iplugindir=DIR -iprefix FILE
- -iquote DIR -isysroot DIR -isystem DIR
- -iwithprefix DIR -iwithprefixbefore DIR
- -LDIR -no-canonical-prefixes --no-sysroot-suffix
- -nostdinc -nostdinc++ --sysroot=DIR
- _Code Generation Options_
- *Note Options for Code Generation Conventions: Code Gen Options.
- -fcall-saved-REG -fcall-used-REG
- -ffixed-REG -fexceptions
- -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables
- -fasynchronous-unwind-tables
- -fno-gnu-unique
- -finhibit-size-directive -fno-common -fno-ident
- -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt
- -fno-jump-tables
- -frecord-gcc-switches
- -freg-struct-return -fshort-enums -fshort-wchar
- -fverbose-asm -fpack-struct[=N]
- -fleading-underscore -ftls-model=MODEL
- -fstack-reuse=REUSE_LEVEL
- -ftrampolines -ftrapv -fwrapv
- -fvisibility=[default|internal|hidden|protected]
- -fstrict-volatile-bitfields -fsync-libcalls
- _Developer Options_
- *Note GCC Developer Options: Developer Options.
- -dLETTERS -dumpspecs -dumpmachine -dumpversion
- -dumpfullversion -fchecking -fchecking=N -fdbg-cnt-list
- -fdbg-cnt=COUNTER-VALUE-LIST
- -fdisable-ipa-PASS_NAME
- -fdisable-rtl-PASS_NAME
- -fdisable-rtl-PASS-NAME=RANGE-LIST
- -fdisable-tree-PASS_NAME
- -fdisable-tree-PASS-NAME=RANGE-LIST
- -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
- -fdump-class-hierarchy[-N]
- -fdump-final-insns[=FILE]
- -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
- -fdump-lang-all
- -fdump-lang-SWITCH
- -fdump-lang-SWITCH-OPTIONS
- -fdump-lang-SWITCH-OPTIONS=FILENAME
- -fdump-passes
- -fdump-rtl-PASS -fdump-rtl-PASS=FILENAME
- -fdump-statistics
- -fdump-tree-all
- -fdump-tree-SWITCH
- -fdump-tree-SWITCH-OPTIONS
- -fdump-tree-SWITCH-OPTIONS=FILENAME
- -fcompare-debug[=OPTS] -fcompare-debug-second
- -fenable-KIND-PASS
- -fenable-KIND-PASS=RANGE-LIST
- -fira-verbose=N
- -flto-report -flto-report-wpa -fmem-report-wpa
- -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report
- -fopt-info -fopt-info-OPTIONS[=FILE]
- -fprofile-report
- -frandom-seed=STRING -fsched-verbose=N
- -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
- -fstats -fstack-usage -ftime-report -ftime-report-details
- -fvar-tracking-assignments-toggle -gtoggle
- -print-file-name=LIBRARY -print-libgcc-file-name
- -print-multi-directory -print-multi-lib -print-multi-os-directory
- -print-prog-name=PROGRAM -print-search-dirs -Q
- -print-sysroot -print-sysroot-headers-suffix
- -save-temps -save-temps=cwd -save-temps=obj -time[=FILE]
- _Machine-Dependent Options_
- *Note Machine-Dependent Options: Submodel Options.
- _AArch64 Options_
- -mabi=NAME -mbig-endian -mlittle-endian
- -mgeneral-regs-only
- -mcmodel=tiny -mcmodel=small -mcmodel=large
- -mstrict-align
- -momit-leaf-frame-pointer
- -mtls-dialect=desc -mtls-dialect=traditional
- -mtls-size=SIZE
- -mfix-cortex-a53-835769 -mfix-cortex-a53-843419
- -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div
- -mpc-relative-literal-loads
- -msign-return-address=SCOPE
- -march=NAME -mcpu=NAME -mtune=NAME
- -moverride=STRING -mverbose-cost-dump
- _Adapteva Epiphany Options_
- -mhalf-reg-file -mprefer-short-insn-regs
- -mbranch-cost=NUM -mcmove -mnops=NUM -msoft-cmpsf
- -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=NUM
- -mround-nearest -mlong-calls -mshort-calls -msmall16
- -mfp-mode=MODE -mvect-double -max-vect-align=NUM
- -msplit-vecmove-early -m1reg-REG
- _ARC Options_
- -mbarrel-shifter -mjli-always
- -mcpu=CPU -mA6 -mARC600 -mA7 -mARC700
- -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr
- -mea -mno-mpy -mmul32x16 -mmul64 -matomic
- -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap
- -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape
- -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof
- -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved
- -mrgf-banked-regs -mlpc-width=WIDTH -G NUM
- -mvolatile-cache -mtp-regno=REGNO
- -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc
- -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi
- -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none
- -mlra-priority-compact mlra-priority-noncompact -mno-millicode
- -mmixed-code -mq-class -mRcq -mRcw -msize-level=LEVEL
- -mtune=CPU -mmultcost=NUM
- -munalign-prob-threshold=PROBABILITY -mmpy-option=MULTO
- -mdiv-rem -mcode-density -mll64 -mfpu=FPU -mrf16
- _ARM Options_
- -mapcs-frame -mno-apcs-frame
- -mabi=NAME
- -mapcs-stack-check -mno-apcs-stack-check
- -mapcs-reentrant -mno-apcs-reentrant
- -msched-prolog -mno-sched-prolog
- -mlittle-endian -mbig-endian
- -mbe8 -mbe32
- -mfloat-abi=NAME
- -mfp16-format=NAME
- -mthumb-interwork -mno-thumb-interwork
- -mcpu=NAME -march=NAME -mfpu=NAME
- -mtune=NAME -mprint-tune-info
- -mstructure-size-boundary=N
- -mabort-on-noreturn
- -mlong-calls -mno-long-calls
- -msingle-pic-base -mno-single-pic-base
- -mpic-register=REG
- -mnop-fun-dllimport
- -mpoke-function-name
- -mthumb -marm -mflip-thumb
- -mtpcs-frame -mtpcs-leaf-frame
- -mcaller-super-interworking -mcallee-super-interworking
- -mtp=NAME -mtls-dialect=DIALECT
- -mword-relocations
- -mfix-cortex-m3-ldrd
- -munaligned-access
- -mneon-for-64bits
- -mslow-flash-data
- -masm-syntax-unified
- -mrestrict-it
- -mverbose-cost-dump
- -mpure-code
- -mcmse
- _AVR Options_
- -mmcu=MCU -mabsdata -maccumulate-args
- -mbranch-cost=COST
- -mcall-prologues -mgas-isr-prologues -mint8
- -mn_flash=SIZE -mno-interrupts
- -mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack
- -mfract-convert-truncate
- -mshort-calls -nodevicelib
- -Waddr-space-convert -Wmisspelled-isr
- _Blackfin Options_
- -mcpu=CPU[-SIREVISION]
- -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
- -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
- -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library
- -mno-id-shared-library -mshared-library-id=N
- -mleaf-id-shared-library -mno-leaf-id-shared-library
- -msep-data -mno-sep-data -mlong-calls -mno-long-calls
- -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
- -micplb
- _C6X Options_
- -mbig-endian -mlittle-endian -march=CPU
- -msim -msdata=SDATA-TYPE
- _CRIS Options_
- -mcpu=CPU -march=CPU -mtune=CPU
- -mmax-stack-frame=N -melinux-stacksize=N
- -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects
- -mstack-align -mdata-align -mconst-align
- -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
- -melf -maout -melinux -mlinux -sim -sim2
- -mmul-bug-workaround -mno-mul-bug-workaround
- _CR16 Options_
- -mmac
- -mcr16cplus -mcr16c
- -msim -mint32 -mbit-ops
- -mdata-model=MODEL
- _Darwin Options_
- -all_load -allowable_client -arch -arch_errors_fatal
- -arch_only -bind_at_load -bundle -bundle_loader
- -client_name -compatibility_version -current_version
- -dead_strip
- -dependency-file -dylib_file -dylinker_install_name
- -dynamic -dynamiclib -exported_symbols_list
- -filelist -flat_namespace -force_cpusubtype_ALL
- -force_flat_namespace -headerpad_max_install_names
- -iframework
- -image_base -init -install_name -keep_private_externs
- -multi_module -multiply_defined -multiply_defined_unused
- -noall_load -no_dead_strip_inits_and_terms
- -nofixprebinding -nomultidefs -noprebind -noseglinkedit
- -pagezero_size -prebind -prebind_all_twolevel_modules
- -private_bundle -read_only_relocs -sectalign
- -sectobjectsymbols -whyload -seg1addr
- -sectcreate -sectobjectsymbols -sectorder
- -segaddr -segs_read_only_addr -segs_read_write_addr
- -seg_addr_table -seg_addr_table_filename -seglinkedit
- -segprot -segs_read_only_addr -segs_read_write_addr
- -single_module -static -sub_library -sub_umbrella
- -twolevel_namespace -umbrella -undefined
- -unexported_symbols_list -weak_reference_mismatches
- -whatsloaded -F -gused -gfull -mmacosx-version-min=VERSION
- -mkernel -mone-byte-bool
- _DEC Alpha Options_
- -mno-fp-regs -msoft-float
- -mieee -mieee-with-inexact -mieee-conformant
- -mfp-trap-mode=MODE -mfp-rounding-mode=MODE
- -mtrap-precision=MODE -mbuild-constants
- -mcpu=CPU-TYPE -mtune=CPU-TYPE
- -mbwx -mmax -mfix -mcix
- -mfloat-vax -mfloat-ieee
- -mexplicit-relocs -msmall-data -mlarge-data
- -msmall-text -mlarge-text
- -mmemory-latency=TIME
- _FR30 Options_
- -msmall-model -mno-lsim
- _FT32 Options_
- -msim -mlra -mnodiv -mft32b -mcompress -mnopm
- _FRV Options_
- -mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
- -mhard-float -msoft-float
- -malloc-cc -mfixed-cc -mdword -mno-dword
- -mdouble -mno-double
- -mmedia -mno-media -mmuladd -mno-muladd
- -mfdpic -minline-plt -mgprel-ro -multilib-library-pic
- -mlinked-fp -mlong-calls -malign-labels
- -mlibrary-pic -macc-4 -macc-8
- -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
- -moptimize-membar -mno-optimize-membar
- -mscc -mno-scc -mcond-exec -mno-cond-exec
- -mvliw-branch -mno-vliw-branch
- -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
- -mno-nested-cond-exec -mtomcat-stats
- -mTLS -mtls
- -mcpu=CPU
- _GNU/Linux Options_
- -mglibc -muclibc -mmusl -mbionic -mandroid
- -tno-android-cc -tno-android-ld
- _H8/300 Options_
- -mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300
- _HPPA Options_
- -march=ARCHITECTURE-TYPE
- -mcaller-copies -mdisable-fpregs -mdisable-indexing
- -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld
- -mfixed-range=REGISTER-RANGE
- -mjump-in-delay -mlinker-opt -mlong-calls
- -mlong-load-store -mno-disable-fpregs
- -mno-disable-indexing -mno-fast-indirect-calls -mno-gas
- -mno-jump-in-delay -mno-long-load-store
- -mno-portable-runtime -mno-soft-float
- -mno-space-regs -msoft-float -mpa-risc-1-0
- -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
- -mschedule=CPU-TYPE -mspace-regs -msio -mwsio
- -munix=UNIX-STD -nolibdld -static -threads
- _IA-64 Options_
- -mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
- -mvolatile-asm-stop -mregister-names -msdata -mno-sdata
- -mconstant-gp -mauto-pic -mfused-madd
- -minline-float-divide-min-latency
- -minline-float-divide-max-throughput
- -mno-inline-float-divide
- -minline-int-divide-min-latency
- -minline-int-divide-max-throughput
- -mno-inline-int-divide
- -minline-sqrt-min-latency -minline-sqrt-max-throughput
- -mno-inline-sqrt
- -mdwarf2-asm -mearly-stop-bits
- -mfixed-range=REGISTER-RANGE -mtls-size=TLS-SIZE
- -mtune=CPU-TYPE -milp32 -mlp64
- -msched-br-data-spec -msched-ar-data-spec -msched-control-spec
- -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
- -msched-spec-ldc -msched-spec-control-ldc
- -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
- -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
- -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
- -msched-max-memory-insns-hard-limit -msched-max-memory-insns=MAX-INSNS
- _LM32 Options_
- -mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
- -msign-extend-enabled -muser-enabled
- _M32R/D Options_
- -m32r2 -m32rx -m32r
- -mdebug
- -malign-loops -mno-align-loops
- -missue-rate=NUMBER
- -mbranch-cost=NUMBER
- -mmodel=CODE-SIZE-MODEL-TYPE
- -msdata=SDATA-TYPE
- -mno-flush-func -mflush-func=NAME
- -mno-flush-trap -mflush-trap=NUMBER
- -G NUM
- _M32C Options_
- -mcpu=CPU -msim -memregs=NUMBER
- _M680x0 Options_
- -march=ARCH -mcpu=CPU -mtune=TUNE
- -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
- -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407
- -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020
- -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort
- -mno-short -mhard-float -m68881 -msoft-float -mpcrel
- -malign-int -mstrict-align -msep-data -mno-sep-data
- -mshared-library-id=n -mid-shared-library -mno-id-shared-library
- -mxgot -mno-xgot -mlong-jump-table-offsets
- _MCore Options_
- -mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
- -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
- -m4byte-functions -mno-4byte-functions -mcallgraph-data
- -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
- -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment
- _MeP Options_
- -mabsdiff -mall-opts -maverage -mbased=N -mbitops
- -mc=N -mclip -mconfig=NAME -mcop -mcop32 -mcop64 -mivc2
- -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax
- -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
- -mtiny=N
- _MicroBlaze Options_
- -msoft-float -mhard-float -msmall-divides -mcpu=CPU
- -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
- -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
- -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
- -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-APP-MODEL
- _MIPS Options_
- -EL -EB -march=ARCH -mtune=ARCH
- -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5
- -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6
- -mips16 -mno-mips16 -mflip-mips16
- -minterlink-compressed -mno-interlink-compressed
- -minterlink-mips16 -mno-interlink-mips16
- -mabi=ABI -mabicalls -mno-abicalls
- -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot
- -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float
- -mno-float -msingle-float -mdouble-float
- -modd-spreg -mno-odd-spreg
- -mabs=MODE -mnan=ENCODING
- -mdsp -mno-dsp -mdspr2 -mno-dspr2
- -mmcu -mmno-mcu
- -meva -mno-eva
- -mvirt -mno-virt
- -mxpa -mno-xpa
- -mmicromips -mno-micromips
- -mmsa -mno-msa
- -mfpu=FPU-TYPE
- -msmartmips -mno-smartmips
- -mpaired-single -mno-paired-single -mdmx -mno-mdmx
- -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
- -mlong64 -mlong32 -msym32 -mno-sym32
- -GNUM -mlocal-sdata -mno-local-sdata
- -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
- -membedded-data -mno-embedded-data
- -muninit-const-in-rodata -mno-uninit-const-in-rodata
- -mcode-readable=SETTING
- -msplit-addresses -mno-split-addresses
- -mexplicit-relocs -mno-explicit-relocs
- -mcheck-zero-division -mno-check-zero-division
- -mdivide-traps -mdivide-breaks
- -mload-store-pairs -mno-load-store-pairs
- -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
- -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp
- -mfix-24k -mno-fix-24k
- -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
- -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000
- -mfix-vr4120 -mno-fix-vr4120
- -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1
- -mflush-func=FUNC -mno-flush-func
- -mbranch-cost=NUM -mbranch-likely -mno-branch-likely
- -mcompact-branches=POLICY
- -mfp-exceptions -mno-fp-exceptions
- -mvr4130-align -mno-vr4130-align -msynci -mno-synci
- -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4
- -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address
- -mframe-header-opt -mno-frame-header-opt
- _MMIX Options_
- -mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
- -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
- -melf -mbranch-predict -mno-branch-predict -mbase-addresses
- -mno-base-addresses -msingle-exit -mno-single-exit
- _MN10300 Options_
- -mmult-bug -mno-mult-bug
- -mno-am33 -mam33 -mam33-2 -mam34
- -mtune=CPU-TYPE
- -mreturn-pointer-on-d0
- -mno-crt0 -mrelax -mliw -msetlb
- _Moxie Options_
- -meb -mel -mmul.x -mno-crt0
- _MSP430 Options_
- -msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax
- -mwarn-mcu
- -mcode-region= -mdata-region=
- -msilicon-errata= -msilicon-errata-warn=
- -mhwmult= -minrt
- _NDS32 Options_
- -mbig-endian -mlittle-endian
- -mreduced-regs -mfull-regs
- -mcmov -mno-cmov
- -mext-perf -mno-ext-perf
- -mext-perf2 -mno-ext-perf2
- -mext-string -mno-ext-string
- -mv3push -mno-v3push
- -m16bit -mno-16bit
- -misr-vector-size=NUM
- -mcache-block-size=NUM
- -march=ARCH
- -mcmodel=CODE-MODEL
- -mctor-dtor -mrelax
- _Nios II Options_
- -G NUM -mgpopt=OPTION -mgpopt -mno-gpopt
- -mgprel-sec=REGEXP -mr0rel-sec=REGEXP
- -mel -meb
- -mno-bypass-cache -mbypass-cache
- -mno-cache-volatile -mcache-volatile
- -mno-fast-sw-div -mfast-sw-div
- -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div
- -mcustom-INSN=N -mno-custom-INSN
- -mcustom-fpu-cfg=NAME
- -mhal -msmallc -msys-crt0=NAME -msys-lib=NAME
- -march=ARCH -mbmx -mno-bmx -mcdx -mno-cdx
- _Nvidia PTX Options_
- -m32 -m64 -mmainkernel -moptimize
- _PDP-11 Options_
- -mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10
- -mbcopy -mbcopy-builtin -mint32 -mno-int16
- -mint16 -mno-int32 -mfloat32 -mno-float64
- -mfloat64 -mno-float32 -mabshi -mno-abshi
- -mbranch-expensive -mbranch-cheap
- -munix-asm -mdec-asm
- _picoChip Options_
- -mae=AE_TYPE -mvliw-lookahead=N
- -msymbol-as-address -mno-inefficient-warnings
- _PowerPC Options_ See RS/6000 and PowerPC Options.
- _PowerPC SPE Options_
- -mcpu=CPU-TYPE
- -mtune=CPU-TYPE
- -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb
- -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
- -m32 -mxl-compat -mno-xl-compat
- -malign-power -malign-natural
- -msoft-float -mhard-float -mmultiple -mno-multiple
- -msingle-float -mdouble-float
- -mupdate -mno-update
- -mavoid-indexed-addresses -mno-avoid-indexed-addresses
- -mstrict-align -mno-strict-align -mrelocatable
- -mno-relocatable -mrelocatable-lib -mno-relocatable-lib
- -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
- -msingle-pic-base
- -mprioritize-restricted-insns=PRIORITY
- -msched-costly-dep=DEPENDENCE_TYPE
- -minsert-sched-nops=SCHEME
- -mcall-sysv -mcall-netbsd
- -maix-struct-return -msvr4-struct-return
- -mabi=ABI-TYPE -msecure-plt -mbss-plt
- -mblock-move-inline-limit=NUM
- -misel -mno-isel
- -misel=yes -misel=no
- -mspe -mno-spe
- -mspe=yes -mspe=no
- -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
- -mprototype -mno-prototype
- -msim -mmvme -mads -myellowknife -memb -msdata
- -msdata=OPT -mvxworks -G NUM
- -mrecip -mrecip=OPT -mno-recip -mrecip-precision
- -mno-recip-precision
- -mpointers-to-nested-functions -mno-pointers-to-nested-functions
- -msave-toc-indirect -mno-save-toc-indirect
- -mcompat-align-parm -mno-compat-align-parm
- -mfloat128 -mno-float128
- -mgnu-attribute -mno-gnu-attribute
- -mstack-protector-guard=GUARD -mstack-protector-guard-reg=REG
- -mstack-protector-guard-offset=OFFSET
- _RISC-V Options_
- -mbranch-cost=N-INSTRUCTION
- -mplt -mno-plt
- -mabi=ABI-STRING
- -mfdiv -mno-fdiv
- -mdiv -mno-div
- -march=ISA-STRING
- -mtune=PROCESSOR-STRING
- -mpreferred-stack-boundary=NUM
- -msmall-data-limit=N-BYTES
- -msave-restore -mno-save-restore
- -mstrict-align -mno-strict-align
- -mcmodel=medlow -mcmodel=medany
- -mexplicit-relocs -mno-explicit-relocs
- -mrelax -mno-relax
- -mriscv-attribute -mmo-riscv-attribute
- -malign-data=TYPE
- _RL78 Options_
- -msim -mmul=none -mmul=g13 -mmul=g14 -mallregs
- -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14
- -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts
- _RS/6000 and PowerPC Options_
- -mcpu=CPU-TYPE
- -mtune=CPU-TYPE
- -mcmodel=CODE-MODEL
- -mpowerpc64
- -maltivec -mno-altivec
- -mpowerpc-gpopt -mno-powerpc-gpopt
- -mpowerpc-gfxopt -mno-powerpc-gfxopt
- -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
- -mfprnd -mno-fprnd
- -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp
- -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
- -m64 -m32 -mxl-compat -mno-xl-compat -mpe
- -malign-power -malign-natural
- -msoft-float -mhard-float -mmultiple -mno-multiple
- -msingle-float -mdouble-float -msimple-fpu
- -mupdate -mno-update
- -mavoid-indexed-addresses -mno-avoid-indexed-addresses
- -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
- -mstrict-align -mno-strict-align -mrelocatable
- -mno-relocatable -mrelocatable-lib -mno-relocatable-lib
- -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
- -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base
- -mprioritize-restricted-insns=PRIORITY
- -msched-costly-dep=DEPENDENCE_TYPE
- -minsert-sched-nops=SCHEME
- -mcall-aixdesc -mcall-eabi -mcall-freebsd
- -mcall-linux -mcall-netbsd -mcall-openbsd
- -mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi
- -mtraceback=TRACEBACK_TYPE
- -maix-struct-return -msvr4-struct-return
- -mabi=ABI-TYPE -msecure-plt -mbss-plt
- -mblock-move-inline-limit=NUM
- -mblock-compare-inline-limit=NUM
- -mblock-compare-inline-loop-limit=NUM
- -mstring-compare-inline-limit=NUM
- -misel -mno-isel
- -misel=yes -misel=no
- -mpaired
- -mvrsave -mno-vrsave
- -mmulhw -mno-mulhw
- -mdlmzb -mno-dlmzb
- -mprototype -mno-prototype
- -msim -mmvme -mads -myellowknife -memb -msdata
- -msdata=OPT -mreadonly-in-sdata -mvxworks -G NUM
- -mrecip -mrecip=OPT -mno-recip -mrecip-precision
- -mno-recip-precision
- -mveclibabi=TYPE -mfriz -mno-friz
- -mpointers-to-nested-functions -mno-pointers-to-nested-functions
- -msave-toc-indirect -mno-save-toc-indirect
- -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector
- -mcrypto -mno-crypto -mhtm -mno-htm
- -mquad-memory -mno-quad-memory
- -mquad-memory-atomic -mno-quad-memory-atomic
- -mcompat-align-parm -mno-compat-align-parm
- -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware
- -mgnu-attribute -mno-gnu-attribute
- -mstack-protector-guard=GUARD -mstack-protector-guard-reg=REG
- -mstack-protector-guard-offset=OFFSET
- _RX Options_
- -m64bit-doubles -m32bit-doubles -fpu -nofpu
- -mcpu=
- -mbig-endian-data -mlittle-endian-data
- -msmall-data
- -msim -mno-sim
- -mas100-syntax -mno-as100-syntax
- -mrelax
- -mmax-constant-size=
- -mint-register=
- -mpid
- -mallow-string-insns -mno-allow-string-insns
- -mjsr
- -mno-warn-multiple-fast-interrupts
- -msave-acc-in-interrupts
- _S/390 and zSeries Options_
- -mtune=CPU-TYPE -march=CPU-TYPE
- -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
- -mlong-double-64 -mlong-double-128
- -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
- -msmall-exec -mno-small-exec -mmvcle -mno-mvcle
- -m64 -m31 -mdebug -mno-debug -mesa -mzarch
- -mhtm -mvx -mzvector
- -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
- -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
- -mhotpatch=HALFWORDS,HALFWORDS
- _Score Options_
- -meb -mel
- -mnhwloop
- -muls
- -mmac
- -mscore5 -mscore5u -mscore7 -mscore7d
- _SH Options_
- -m1 -m2 -m2e
- -m2a-nofpu -m2a-single-only -m2a-single -m2a
- -m3 -m3e
- -m4-nofpu -m4-single-only -m4-single -m4
- -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al
- -mb -ml -mdalign -mrelax
- -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave
- -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
- -mprefergot -musermode -multcost=NUMBER -mdiv=STRATEGY
- -mdivsi3_libfunc=NAME -mfixed-range=REGISTER-RANGE
- -maccumulate-outgoing-args
- -matomic-model=ATOMIC-MODEL
- -mbranch-cost=NUM -mzdcbranch -mno-zdcbranch
- -mcbranch-force-delay-slot
- -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra
- -mpretend-cmove -mtas
- _Solaris 2 Options_
- -mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text
- -pthreads
- _SPARC Options_
- -mcpu=CPU-TYPE
- -mtune=CPU-TYPE
- -mcmodel=CODE-MODEL
- -mmemory-model=MEM-MODEL
- -m32 -m64 -mapp-regs -mno-app-regs
- -mfaster-structs -mno-faster-structs -mflat -mno-flat
- -mfpu -mno-fpu -mhard-float -msoft-float
- -mhard-quad-float -msoft-quad-float
- -mstack-bias -mno-stack-bias
- -mstd-struct-return -mno-std-struct-return
- -munaligned-doubles -mno-unaligned-doubles
- -muser-mode -mno-user-mode
- -mv8plus -mno-v8plus -mvis -mno-vis
- -mvis2 -mno-vis2 -mvis3 -mno-vis3
- -mvis4 -mno-vis4 -mvis4b -mno-vis4b
- -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld
- -mpopc -mno-popc -msubxc -mno-subxc
- -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc
- -mlra -mno-lra
- _SPU Options_
- -mwarn-reloc -merror-reloc
- -msafe-dma -munsafe-dma
- -mbranch-hints
- -msmall-mem -mlarge-mem -mstdmain
- -mfixed-range=REGISTER-RANGE
- -mea32 -mea64
- -maddress-space-conversion -mno-address-space-conversion
- -mcache-size=CACHE-SIZE
- -matomic-updates -mno-atomic-updates
- _System V Options_
- -Qy -Qn -YP,PATHS -Ym,DIR
- _TILE-Gx Options_
- -mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian
- -mcmodel=CODE-MODEL
- _TILEPro Options_
- -mcpu=CPU -m32
- _V850 Options_
- -mlong-calls -mno-long-calls -mep -mno-ep
- -mprolog-function -mno-prolog-function -mspace
- -mtda=N -msda=N -mzda=N
- -mapp-regs -mno-app-regs
- -mdisable-callt -mno-disable-callt
- -mv850e2v3 -mv850e2 -mv850e1 -mv850es
- -mv850e -mv850 -mv850e3v5
- -mloop
- -mrelax
- -mlong-jumps
- -msoft-float
- -mhard-float
- -mgcc-abi
- -mrh850-abi
- -mbig-switch
- _VAX Options_
- -mg -mgnu -munix
- _Visium Options_
- -mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float
- -mcpu=CPU-TYPE -mtune=CPU-TYPE -msv-mode -muser-mode
- _VMS Options_
- -mvms-return-codes -mdebug-main=PREFIX -mmalloc64
- -mpointer-size=SIZE
- _VxWorks Options_
- -mrtp -non-static -Bstatic -Bdynamic
- -Xbind-lazy -Xbind-now
- _x86 Options_
- -mtune=CPU-TYPE -march=CPU-TYPE
- -mtune-ctrl=FEATURE-LIST -mdump-tune-features -mno-default
- -mfpmath=UNIT
- -masm=DIALECT -mno-fancy-math-387
- -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float
- -mno-wide-multiply -mrtd -malign-double
- -mpreferred-stack-boundary=NUM
- -mincoming-stack-boundary=NUM
- -mcld -mcx16 -msahf -mmovbe -mcrc32
- -mrecip -mrecip=OPT
- -mvzeroupper -mprefer-avx128 -mprefer-vector-width=OPT
- -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx
- -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl
- -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes
- -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd
- -mprefetchwt1 -mclflushopt -mclwb -mxsavec -mxsaves
- -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop
- -madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx
- -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes
- -mshstk -mforce-indirect-call -mavx512vbmi2
- -mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq
- -mavx5124fmaps -mavx512vnni -mavx5124vnniw -mprfchw -mrdpid
- -mrdseed -msgx
- -mms-bitfields -mno-align-stringops -minline-all-stringops
- -minline-stringops-dynamically -mstringop-strategy=ALG
- -mmemcpy-strategy=STRATEGY -mmemset-strategy=STRATEGY
- -mpush-args -maccumulate-outgoing-args -m128bit-long-double
- -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128
- -mregparm=NUM -msseregparm
- -mveclibabi=TYPE -mvect8-ret-in-mem
- -mpc32 -mpc64 -mpc80 -mstackrealign
- -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
- -mcmodel=CODE-MODEL -mabi=NAME -maddress-mode=MODE
- -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=NUM
- -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv
- -mavx256-split-unaligned-load -mavx256-split-unaligned-store
- -malign-data=TYPE -mstack-protector-guard=GUARD
- -mstack-protector-guard-reg=REG
- -mstack-protector-guard-offset=OFFSET
- -mstack-protector-guard-symbol=SYMBOL -mmitigate-rop
- -mgeneral-regs-only -mcall-ms2sysv-xlogues
- -mindirect-branch=CHOICE -mfunction-return=CHOICE
- -mindirect-branch-register
- _x86 Windows Options_
- -mconsole -mcygwin -mno-cygwin -mdll
- -mnop-fun-dllimport -mthread
- -municode -mwin32 -mwindows -fno-set-stack-executable
- _Xstormy16 Options_
- -msim
- _Xtensa Options_
- -mconst16 -mno-const16
- -mfused-madd -mno-fused-madd
- -mforce-no-pic
- -mserialize-volatile -mno-serialize-volatile
- -mtext-section-literals -mno-text-section-literals
- -mauto-litpools -mno-auto-litpools
- -mtarget-align -mno-target-align
- -mlongcalls -mno-longcalls
- _zSeries Options_ See S/390 and zSeries Options.
- File: gcc.info, Node: Overall Options, Next: Invoking G++, Prev: Option Summary, Up: Invoking GCC
- 3.2 Options Controlling the Kind of Output
- ==========================================
- Compilation can involve up to four stages: preprocessing, compilation
- proper, assembly and linking, always in that order. GCC is capable of
- preprocessing and compiling several files either into several assembler
- input files, or into one assembler input file; then each assembler input
- file produces an object file, and linking combines all the object files
- (those newly compiled, and those specified as input) into an executable
- file.
- For any given input file, the file name suffix determines what kind of
- compilation is done:
- 'FILE.c'
- C source code that must be preprocessed.
- 'FILE.i'
- C source code that should not be preprocessed.
- 'FILE.ii'
- C++ source code that should not be preprocessed.
- 'FILE.m'
- Objective-C source code. Note that you must link with the
- 'libobjc' library to make an Objective-C program work.
- 'FILE.mi'
- Objective-C source code that should not be preprocessed.
- 'FILE.mm'
- 'FILE.M'
- Objective-C++ source code. Note that you must link with the
- 'libobjc' library to make an Objective-C++ program work. Note that
- '.M' refers to a literal capital M.
- 'FILE.mii'
- Objective-C++ source code that should not be preprocessed.
- 'FILE.h'
- C, C++, Objective-C or Objective-C++ header file to be turned into
- a precompiled header (default), or C, C++ header file to be turned
- into an Ada spec (via the '-fdump-ada-spec' switch).
- 'FILE.cc'
- 'FILE.cp'
- 'FILE.cxx'
- 'FILE.cpp'
- 'FILE.CPP'
- 'FILE.c++'
- 'FILE.C'
- C++ source code that must be preprocessed. Note that in '.cxx',
- the last two letters must both be literally 'x'. Likewise, '.C'
- refers to a literal capital C.
- 'FILE.mm'
- 'FILE.M'
- Objective-C++ source code that must be preprocessed.
- 'FILE.mii'
- Objective-C++ source code that should not be preprocessed.
- 'FILE.hh'
- 'FILE.H'
- 'FILE.hp'
- 'FILE.hxx'
- 'FILE.hpp'
- 'FILE.HPP'
- 'FILE.h++'
- 'FILE.tcc'
- C++ header file to be turned into a precompiled header or Ada spec.
- 'FILE.f'
- 'FILE.for'
- 'FILE.ftn'
- Fixed form Fortran source code that should not be preprocessed.
- 'FILE.F'
- 'FILE.FOR'
- 'FILE.fpp'
- 'FILE.FPP'
- 'FILE.FTN'
- Fixed form Fortran source code that must be preprocessed (with the
- traditional preprocessor).
- 'FILE.f90'
- 'FILE.f95'
- 'FILE.f03'
- 'FILE.f08'
- Free form Fortran source code that should not be preprocessed.
- 'FILE.F90'
- 'FILE.F95'
- 'FILE.F03'
- 'FILE.F08'
- Free form Fortran source code that must be preprocessed (with the
- traditional preprocessor).
- 'FILE.go'
- Go source code.
- 'FILE.brig'
- BRIG files (binary representation of HSAIL).
- 'FILE.ads'
- Ada source code file that contains a library unit declaration (a
- declaration of a package, subprogram, or generic, or a generic
- instantiation), or a library unit renaming declaration (a package,
- generic, or subprogram renaming declaration). Such files are also
- called "specs".
- 'FILE.adb'
- Ada source code file containing a library unit body (a subprogram
- or package body). Such files are also called "bodies".
- 'FILE.s'
- Assembler code.
- 'FILE.S'
- 'FILE.sx'
- Assembler code that must be preprocessed.
- 'OTHER'
- An object file to be fed straight into linking. Any file name with
- no recognized suffix is treated this way.
- You can specify the input language explicitly with the '-x' option:
- '-x LANGUAGE'
- Specify explicitly the LANGUAGE for the following input files
- (rather than letting the compiler choose a default based on the
- file name suffix). This option applies to all following input
- files until the next '-x' option. Possible values for LANGUAGE
- are:
- c c-header cpp-output
- c++ c++-header c++-cpp-output
- objective-c objective-c-header objective-c-cpp-output
- objective-c++ objective-c++-header objective-c++-cpp-output
- assembler assembler-with-cpp
- ada
- f77 f77-cpp-input f95 f95-cpp-input
- go
- brig
- '-x none'
- Turn off any specification of a language, so that subsequent files
- are handled according to their file name suffixes (as they are if
- '-x' has not been used at all).
- If you only want some of the stages of compilation, you can use '-x'
- (or filename suffixes) to tell 'gcc' where to start, and one of the
- options '-c', '-S', or '-E' to say where 'gcc' is to stop. Note that
- some combinations (for example, '-x cpp-output -E') instruct 'gcc' to do
- nothing at all.
- '-c'
- Compile or assemble the source files, but do not link. The linking
- stage simply is not done. The ultimate output is in the form of an
- object file for each source file.
- By default, the object file name for a source file is made by
- replacing the suffix '.c', '.i', '.s', etc., with '.o'.
- Unrecognized input files, not requiring compilation or assembly,
- are ignored.
- '-S'
- Stop after the stage of compilation proper; do not assemble. The
- output is in the form of an assembler code file for each
- non-assembler input file specified.
- By default, the assembler file name for a source file is made by
- replacing the suffix '.c', '.i', etc., with '.s'.
- Input files that don't require compilation are ignored.
- '-E'
- Stop after the preprocessing stage; do not run the compiler proper.
- The output is in the form of preprocessed source code, which is
- sent to the standard output.
- Input files that don't require preprocessing are ignored.
- '-o FILE'
- Place output in file FILE. This applies to whatever sort of output
- is being produced, whether it be an executable file, an object
- file, an assembler file or preprocessed C code.
- If '-o' is not specified, the default is to put an executable file
- in 'a.out', the object file for 'SOURCE.SUFFIX' in 'SOURCE.o', its
- assembler file in 'SOURCE.s', a precompiled header file in
- 'SOURCE.SUFFIX.gch', and all preprocessed C source on standard
- output.
- '-v'
- Print (on standard error output) the commands executed to run the
- stages of compilation. Also print the version number of the
- compiler driver program and of the preprocessor and the compiler
- proper.
- '-###'
- Like '-v' except the commands are not executed and arguments are
- quoted unless they contain only alphanumeric characters or './-_'.
- This is useful for shell scripts to capture the driver-generated
- command lines.
- '--help'
- Print (on the standard output) a description of the command-line
- options understood by 'gcc'. If the '-v' option is also specified
- then '--help' is also passed on to the various processes invoked by
- 'gcc', so that they can display the command-line options they
- accept. If the '-Wextra' option has also been specified (prior to
- the '--help' option), then command-line options that have no
- documentation associated with them are also displayed.
- '--target-help'
- Print (on the standard output) a description of target-specific
- command-line options for each tool. For some targets extra
- target-specific information may also be printed.
- '--help={CLASS|[^]QUALIFIER}[,...]'
- Print (on the standard output) a description of the command-line
- options understood by the compiler that fit into all specified
- classes and qualifiers. These are the supported classes:
- 'optimizers'
- Display all of the optimization options supported by the
- compiler.
- 'warnings'
- Display all of the options controlling warning messages
- produced by the compiler.
- 'target'
- Display target-specific options. Unlike the '--target-help'
- option however, target-specific options of the linker and
- assembler are not displayed. This is because those tools do
- not currently support the extended '--help=' syntax.
- 'params'
- Display the values recognized by the '--param' option.
- LANGUAGE
- Display the options supported for LANGUAGE, where LANGUAGE is
- the name of one of the languages supported in this version of
- GCC.
- 'common'
- Display the options that are common to all languages.
- These are the supported qualifiers:
- 'undocumented'
- Display only those options that are undocumented.
- 'joined'
- Display options taking an argument that appears after an equal
- sign in the same continuous piece of text, such as:
- '--help=target'.
- 'separate'
- Display options taking an argument that appears as a separate
- word following the original option, such as: '-o output-file'.
- Thus for example to display all the undocumented target-specific
- switches supported by the compiler, use:
- --help=target,undocumented
- The sense of a qualifier can be inverted by prefixing it with the
- '^' character, so for example to display all binary warning options
- (i.e., ones that are either on or off and that do not take an
- argument) that have a description, use:
- --help=warnings,^joined,^undocumented
- The argument to '--help=' should not consist solely of inverted
- qualifiers.
- Combining several classes is possible, although this usually
- restricts the output so much that there is nothing to display. One
- case where it does work, however, is when one of the classes is
- TARGET. For example, to display all the target-specific
- optimization options, use:
- --help=target,optimizers
- The '--help=' option can be repeated on the command line. Each
- successive use displays its requested class of options, skipping
- those that have already been displayed.
- If the '-Q' option appears on the command line before the '--help='
- option, then the descriptive text displayed by '--help=' is
- changed. Instead of describing the displayed options, an
- indication is given as to whether the option is enabled, disabled
- or set to a specific value (assuming that the compiler knows this
- at the point where the '--help=' option is used).
- Here is a truncated example from the ARM port of 'gcc':
- % gcc -Q -mabi=2 --help=target -c
- The following options are target specific:
- -mabi= 2
- -mabort-on-noreturn [disabled]
- -mapcs [disabled]
- The output is sensitive to the effects of previous command-line
- options, so for example it is possible to find out which
- optimizations are enabled at '-O2' by using:
- -Q -O2 --help=optimizers
- Alternatively you can discover which binary optimizations are
- enabled by '-O3' by using:
- gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
- gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
- diff /tmp/O2-opts /tmp/O3-opts | grep enabled
- '--version'
- Display the version number and copyrights of the invoked GCC.
- '-pass-exit-codes'
- Normally the 'gcc' program exits with the code of 1 if any phase of
- the compiler returns a non-success return code. If you specify
- '-pass-exit-codes', the 'gcc' program instead returns with the
- numerically highest error produced by any phase returning an error
- indication. The C, C++, and Fortran front ends return 4 if an
- internal compiler error is encountered.
- '-pipe'
- Use pipes rather than temporary files for communication between the
- various stages of compilation. This fails to work on some systems
- where the assembler is unable to read from a pipe; but the GNU
- assembler has no trouble.
- '-specs=FILE'
- Process FILE after the compiler reads in the standard 'specs' file,
- in order to override the defaults which the 'gcc' driver program
- uses when determining what switches to pass to 'cc1', 'cc1plus',
- 'as', 'ld', etc. More than one '-specs=FILE' can be specified on
- the command line, and they are processed in order, from left to
- right. *Note Spec Files::, for information about the format of the
- FILE.
- '-wrapper'
- Invoke all subcommands under a wrapper program. The name of the
- wrapper program and its parameters are passed as a comma separated
- list.
- gcc -c t.c -wrapper gdb,--args
- This invokes all subprograms of 'gcc' under 'gdb --args', thus the
- invocation of 'cc1' is 'gdb --args cc1 ...'.
- '-ffile-prefix-map=OLD=NEW'
- When compiling files residing in directory 'OLD', record any
- references to them in the result of the compilation as if the files
- resided in directory 'NEW' instead. Specifying this option is
- equivalent to specifying all the individual '-f*-prefix-map'
- options. This can be used to make reproducible builds that are
- location independent. See also '-fmacro-prefix-map' and
- '-fdebug-prefix-map'.
- '-fplugin=NAME.so'
- Load the plugin code in file NAME.so, assumed to be a shared object
- to be dlopen'd by the compiler. The base name of the shared object
- file is used to identify the plugin for the purposes of argument
- parsing (See '-fplugin-arg-NAME-KEY=VALUE' below). Each plugin
- should define the callback functions specified in the Plugins API.
- '-fplugin-arg-NAME-KEY=VALUE'
- Define an argument called KEY with a value of VALUE for the plugin
- called NAME.
- '-fdump-ada-spec[-slim]'
- For C and C++ source and include files, generate corresponding Ada
- specs. *Note (gnat_ugn)Generating Ada Bindings for C and C++
- headers::, which provides detailed documentation on this feature.
- '-fada-spec-parent=UNIT'
- In conjunction with '-fdump-ada-spec[-slim]' above, generate Ada
- specs as child units of parent UNIT.
- '-fdump-go-spec=FILE'
- For input files in any language, generate corresponding Go
- declarations in FILE. This generates Go 'const', 'type', 'var',
- and 'func' declarations which may be a useful way to start writing
- a Go interface to code written in some other language.
- '@FILE'
- Read command-line options from FILE. The options read are inserted
- in place of the original @FILE option. If FILE does not exist, or
- cannot be read, then the option will be treated literally, and not
- removed.
- Options in FILE are separated by whitespace. A whitespace
- character may be included in an option by surrounding the entire
- option in either single or double quotes. Any character (including
- a backslash) may be included by prefixing the character to be
- included with a backslash. The FILE may itself contain additional
- @FILE options; any such options will be processed recursively.
- File: gcc.info, Node: Invoking G++, Next: C Dialect Options, Prev: Overall Options, Up: Invoking GCC
- 3.3 Compiling C++ Programs
- ==========================
- C++ source files conventionally use one of the suffixes '.C', '.cc',
- '.cpp', '.CPP', '.c++', '.cp', or '.cxx'; C++ header files often use
- '.hh', '.hpp', '.H', or (for shared template code) '.tcc'; and
- preprocessed C++ files use the suffix '.ii'. GCC recognizes files with
- these names and compiles them as C++ programs even if you call the
- compiler the same way as for compiling C programs (usually with the name
- 'gcc').
- However, the use of 'gcc' does not add the C++ library. 'g++' is a
- program that calls GCC and automatically specifies linking against the
- C++ library. It treats '.c', '.h' and '.i' files as C++ source files
- instead of C source files unless '-x' is used. This program is also
- useful when precompiling a C header file with a '.h' extension for use
- in C++ compilations. On many systems, 'g++' is also installed with the
- name 'c++'.
- When you compile C++ programs, you may specify many of the same
- command-line options that you use for compiling programs in any
- language; or command-line options meaningful for C and related
- languages; or options that are meaningful only for C++ programs. *Note
- Options Controlling C Dialect: C Dialect Options, for explanations of
- options for languages related to C. *Note Options Controlling C++
- Dialect: C++ Dialect Options, for explanations of options that are
- meaningful only for C++ programs.
- File: gcc.info, Node: C Dialect Options, Next: C++ Dialect Options, Prev: Invoking G++, Up: Invoking GCC
- 3.4 Options Controlling C Dialect
- =================================
- The following options control the dialect of C (or languages derived
- from C, such as C++, Objective-C and Objective-C++) that the compiler
- accepts:
- '-ansi'
- In C mode, this is equivalent to '-std=c90'. In C++ mode, it is
- equivalent to '-std=c++98'.
- This turns off certain features of GCC that are incompatible with
- ISO C90 (when compiling C code), or of standard C++ (when compiling
- C++ code), such as the 'asm' and 'typeof' keywords, and predefined
- macros such as 'unix' and 'vax' that identify the type of system
- you are using. It also enables the undesirable and rarely used ISO
- trigraph feature. For the C compiler, it disables recognition of
- C++ style '//' comments as well as the 'inline' keyword.
- The alternate keywords '__asm__', '__extension__', '__inline__' and
- '__typeof__' continue to work despite '-ansi'. You would not want
- to use them in an ISO C program, of course, but it is useful to put
- them in header files that might be included in compilations done
- with '-ansi'. Alternate predefined macros such as '__unix__' and
- '__vax__' are also available, with or without '-ansi'.
- The '-ansi' option does not cause non-ISO programs to be rejected
- gratuitously. For that, '-Wpedantic' is required in addition to
- '-ansi'. *Note Warning Options::.
- The macro '__STRICT_ANSI__' is predefined when the '-ansi' option
- is used. Some header files may notice this macro and refrain from
- declaring certain functions or defining certain macros that the ISO
- standard doesn't call for; this is to avoid interfering with any
- programs that might use these names for other things.
- Functions that are normally built in but do not have semantics
- defined by ISO C (such as 'alloca' and 'ffs') are not built-in
- functions when '-ansi' is used. *Note Other built-in functions
- provided by GCC: Other Builtins, for details of the functions
- affected.
- '-std='
- Determine the language standard. *Note Language Standards
- Supported by GCC: Standards, for details of these standard
- versions. This option is currently only supported when compiling C
- or C++.
- The compiler can accept several base standards, such as 'c90' or
- 'c++98', and GNU dialects of those standards, such as 'gnu90' or
- 'gnu++98'. When a base standard is specified, the compiler accepts
- all programs following that standard plus those using GNU
- extensions that do not contradict it. For example, '-std=c90'
- turns off certain features of GCC that are incompatible with ISO
- C90, such as the 'asm' and 'typeof' keywords, but not other GNU
- extensions that do not have a meaning in ISO C90, such as omitting
- the middle term of a '?:' expression. On the other hand, when a
- GNU dialect of a standard is specified, all features supported by
- the compiler are enabled, even when those features change the
- meaning of the base standard. As a result, some strict-conforming
- programs may be rejected. The particular standard is used by
- '-Wpedantic' to identify which features are GNU extensions given
- that version of the standard. For example '-std=gnu90 -Wpedantic'
- warns about C++ style '//' comments, while '-std=gnu99 -Wpedantic'
- does not.
- A value for this option must be provided; possible values are
- 'c90'
- 'c89'
- 'iso9899:1990'
- Support all ISO C90 programs (certain GNU extensions that
- conflict with ISO C90 are disabled). Same as '-ansi' for C
- code.
- 'iso9899:199409'
- ISO C90 as modified in amendment 1.
- 'c99'
- 'c9x'
- 'iso9899:1999'
- 'iso9899:199x'
- ISO C99. This standard is substantially completely supported,
- modulo bugs and floating-point issues (mainly but not entirely
- relating to optional C99 features from Annexes F and G). See
- <http://gcc.gnu.org/c99status.html> for more information. The
- names 'c9x' and 'iso9899:199x' are deprecated.
- 'c11'
- 'c1x'
- 'iso9899:2011'
- ISO C11, the 2011 revision of the ISO C standard. This
- standard is substantially completely supported, modulo bugs,
- floating-point issues (mainly but not entirely relating to
- optional C11 features from Annexes F and G) and the optional
- Annexes K (Bounds-checking interfaces) and L (Analyzability).
- The name 'c1x' is deprecated.
- 'c17'
- 'c18'
- 'iso9899:2017'
- 'iso9899:2018'
- ISO C17, the 2017 revision of the ISO C standard (expected to
- be published in 2018). This standard is same as C11 except
- for corrections of defects (all of which are also applied with
- '-std=c11') and a new value of '__STDC_VERSION__', and so is
- supported to the same extent as C11.
- 'gnu90'
- 'gnu89'
- GNU dialect of ISO C90 (including some C99 features).
- 'gnu99'
- 'gnu9x'
- GNU dialect of ISO C99. The name 'gnu9x' is deprecated.
- 'gnu11'
- 'gnu1x'
- GNU dialect of ISO C11. The name 'gnu1x' is deprecated.
- 'gnu17'
- 'gnu18'
- GNU dialect of ISO C17. This is the default for C code.
- 'c++98'
- 'c++03'
- The 1998 ISO C++ standard plus the 2003 technical corrigendum
- and some additional defect reports. Same as '-ansi' for C++
- code.
- 'gnu++98'
- 'gnu++03'
- GNU dialect of '-std=c++98'.
- 'c++11'
- 'c++0x'
- The 2011 ISO C++ standard plus amendments. The name 'c++0x'
- is deprecated.
- 'gnu++11'
- 'gnu++0x'
- GNU dialect of '-std=c++11'. The name 'gnu++0x' is
- deprecated.
- 'c++14'
- 'c++1y'
- The 2014 ISO C++ standard plus amendments. The name 'c++1y'
- is deprecated.
- 'gnu++14'
- 'gnu++1y'
- GNU dialect of '-std=c++14'. This is the default for C++
- code. The name 'gnu++1y' is deprecated.
- 'c++17'
- 'c++1z'
- The 2017 ISO C++ standard plus amendments. The name 'c++1z'
- is deprecated.
- 'gnu++17'
- 'gnu++1z'
- GNU dialect of '-std=c++17'. The name 'gnu++1z' is
- deprecated.
- 'c++2a'
- The next revision of the ISO C++ standard, tentatively planned
- for 2020. Support is highly experimental, and will almost
- certainly change in incompatible ways in future releases.
- 'gnu++2a'
- GNU dialect of '-std=c++2a'. Support is highly experimental,
- and will almost certainly change in incompatible ways in
- future releases.
- '-fgnu89-inline'
- The option '-fgnu89-inline' tells GCC to use the traditional GNU
- semantics for 'inline' functions when in C99 mode. *Note An Inline
- Function is As Fast As a Macro: Inline. Using this option is
- roughly equivalent to adding the 'gnu_inline' function attribute to
- all inline functions (*note Function Attributes::).
- The option '-fno-gnu89-inline' explicitly tells GCC to use the C99
- semantics for 'inline' when in C99 or gnu99 mode (i.e., it
- specifies the default behavior). This option is not supported in
- '-std=c90' or '-std=gnu90' mode.
- The preprocessor macros '__GNUC_GNU_INLINE__' and
- '__GNUC_STDC_INLINE__' may be used to check which semantics are in
- effect for 'inline' functions. *Note (cpp)Common Predefined
- Macros::.
- '-fpermitted-flt-eval-methods=STYLE'
- ISO/IEC TS 18661-3 defines new permissible values for
- 'FLT_EVAL_METHOD' that indicate that operations and constants with
- a semantic type that is an interchange or extended format should be
- evaluated to the precision and range of that type. These new
- values are a superset of those permitted under C99/C11, which does
- not specify the meaning of other positive values of
- 'FLT_EVAL_METHOD'. As such, code conforming to C11 may not have
- been written expecting the possibility of the new values.
- '-fpermitted-flt-eval-methods' specifies whether the compiler
- should allow only the values of 'FLT_EVAL_METHOD' specified in
- C99/C11, or the extended set of values specified in ISO/IEC TS
- 18661-3.
- STYLE is either 'c11' or 'ts-18661-3' as appropriate.
- The default when in a standards compliant mode ('-std=c11' or
- similar) is '-fpermitted-flt-eval-methods=c11'. The default when
- in a GNU dialect ('-std=gnu11' or similar) is
- '-fpermitted-flt-eval-methods=ts-18661-3'.
- '-aux-info FILENAME'
- Output to the given filename prototyped declarations for all
- functions declared and/or defined in a translation unit, including
- those in header files. This option is silently ignored in any
- language other than C.
- Besides declarations, the file indicates, in comments, the origin
- of each declaration (source file and line), whether the declaration
- was implicit, prototyped or unprototyped ('I', 'N' for new or 'O'
- for old, respectively, in the first character after the line number
- and the colon), and whether it came from a declaration or a
- definition ('C' or 'F', respectively, in the following character).
- In the case of function definitions, a K&R-style list of arguments
- followed by their declarations is also provided, inside comments,
- after the declaration.
- '-fallow-parameterless-variadic-functions'
- Accept variadic functions without named parameters.
- Although it is possible to define such a function, this is not very
- useful as it is not possible to read the arguments. This is only
- supported for C as this construct is allowed by C++.
- '-fno-asm'
- Do not recognize 'asm', 'inline' or 'typeof' as a keyword, so that
- code can use these words as identifiers. You can use the keywords
- '__asm__', '__inline__' and '__typeof__' instead. '-ansi' implies
- '-fno-asm'.
- In C++, this switch only affects the 'typeof' keyword, since 'asm'
- and 'inline' are standard keywords. You may want to use the
- '-fno-gnu-keywords' flag instead, which has the same effect. In
- C99 mode ('-std=c99' or '-std=gnu99'), this switch only affects the
- 'asm' and 'typeof' keywords, since 'inline' is a standard keyword
- in ISO C99.
- '-fno-builtin'
- '-fno-builtin-FUNCTION'
- Don't recognize built-in functions that do not begin with
- '__builtin_' as prefix. *Note Other built-in functions provided by
- GCC: Other Builtins, for details of the functions affected,
- including those which are not built-in functions when '-ansi' or
- '-std' options for strict ISO C conformance are used because they
- do not have an ISO standard meaning.
- GCC normally generates special code to handle certain built-in
- functions more efficiently; for instance, calls to 'alloca' may
- become single instructions which adjust the stack directly, and
- calls to 'memcpy' may become inline copy loops. The resulting code
- is often both smaller and faster, but since the function calls no
- longer appear as such, you cannot set a breakpoint on those calls,
- nor can you change the behavior of the functions by linking with a
- different library. In addition, when a function is recognized as a
- built-in function, GCC may use information about that function to
- warn about problems with calls to that function, or to generate
- more efficient code, even if the resulting code still contains
- calls to that function. For example, warnings are given with
- '-Wformat' for bad calls to 'printf' when 'printf' is built in and
- 'strlen' is known not to modify global memory.
- With the '-fno-builtin-FUNCTION' option only the built-in function
- FUNCTION is disabled. FUNCTION must not begin with '__builtin_'.
- If a function is named that is not built-in in this version of GCC,
- this option is ignored. There is no corresponding
- '-fbuiltin-FUNCTION' option; if you wish to enable built-in
- functions selectively when using '-fno-builtin' or
- '-ffreestanding', you may define macros such as:
- #define abs(n) __builtin_abs ((n))
- #define strcpy(d, s) __builtin_strcpy ((d), (s))
- '-fgimple'
- Enable parsing of function definitions marked with '__GIMPLE'.
- This is an experimental feature that allows unit testing of GIMPLE
- passes.
- '-fhosted'
- Assert that compilation targets a hosted environment. This implies
- '-fbuiltin'. A hosted environment is one in which the entire
- standard library is available, and in which 'main' has a return
- type of 'int'. Examples are nearly everything except a kernel.
- This is equivalent to '-fno-freestanding'.
- '-ffreestanding'
- Assert that compilation targets a freestanding environment. This
- implies '-fno-builtin'. A freestanding environment is one in which
- the standard library may not exist, and program startup may not
- necessarily be at 'main'. The most obvious example is an OS
- kernel. This is equivalent to '-fno-hosted'.
- *Note Language Standards Supported by GCC: Standards, for details
- of freestanding and hosted environments.
- '-fopenacc'
- Enable handling of OpenACC directives '#pragma acc' in C/C++ and
- '!$acc' in Fortran. When '-fopenacc' is specified, the compiler
- generates accelerated code according to the OpenACC Application
- Programming Interface v2.0 <https://www.openacc.org>. This option
- implies '-pthread', and thus is only supported on targets that have
- support for '-pthread'.
- '-fopenacc-dim=GEOM'
- Specify default compute dimensions for parallel offload regions
- that do not explicitly specify. The GEOM value is a triple of
- ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A
- size can be omitted, to use a target-specific default value.
- '-fopenmp'
- Enable handling of OpenMP directives '#pragma omp' in C/C++ and
- '!$omp' in Fortran. When '-fopenmp' is specified, the compiler
- generates parallel code according to the OpenMP Application Program
- Interface v4.5 <http://www.openmp.org/>. This option implies
- '-pthread', and thus is only supported on targets that have support
- for '-pthread'. '-fopenmp' implies '-fopenmp-simd'.
- '-fopenmp-simd'
- Enable handling of OpenMP's SIMD directives with '#pragma omp' in
- C/C++ and '!$omp' in Fortran. Other OpenMP directives are ignored.
- '-fgnu-tm'
- When the option '-fgnu-tm' is specified, the compiler generates
- code for the Linux variant of Intel's current Transactional Memory
- ABI specification document (Revision 1.1, May 6 2009). This is an
- experimental feature whose interface may change in future versions
- of GCC, as the official specification changes. Please note that
- not all architectures are supported for this feature.
- For more information on GCC's support for transactional memory,
- *Note The GNU Transactional Memory Library: (libitm)Enabling
- libitm.
- Note that the transactional memory feature is not supported with
- non-call exceptions ('-fnon-call-exceptions').
- '-fms-extensions'
- Accept some non-standard constructs used in Microsoft header files.
- In C++ code, this allows member names in structures to be similar
- to previous types declarations.
- typedef int UOW;
- struct ABC {
- UOW UOW;
- };
- Some cases of unnamed fields in structures and unions are only
- accepted with this option. *Note Unnamed struct/union fields
- within structs/unions: Unnamed Fields, for details.
- Note that this option is off for all targets but x86 targets using
- ms-abi.
- '-fplan9-extensions'
- Accept some non-standard constructs used in Plan 9 code.
- This enables '-fms-extensions', permits passing pointers to
- structures with anonymous fields to functions that expect pointers
- to elements of the type of the field, and permits referring to
- anonymous fields declared using a typedef. *Note Unnamed
- struct/union fields within structs/unions: Unnamed Fields, for
- details. This is only supported for C, not C++.
- '-fcond-mismatch'
- Allow conditional expressions with mismatched types in the second
- and third arguments. The value of such an expression is void.
- This option is not supported for C++.
- '-flax-vector-conversions'
- Allow implicit conversions between vectors with differing numbers
- of elements and/or incompatible element types. This option should
- not be used for new code.
- '-funsigned-char'
- Let the type 'char' be unsigned, like 'unsigned char'.
- Each kind of machine has a default for what 'char' should be. It
- is either like 'unsigned char' by default or like 'signed char' by
- default.
- Ideally, a portable program should always use 'signed char' or
- 'unsigned char' when it depends on the signedness of an object.
- But many programs have been written to use plain 'char' and expect
- it to be signed, or expect it to be unsigned, depending on the
- machines they were written for. This option, and its inverse, let
- you make such a program work with the opposite default.
- The type 'char' is always a distinct type from each of 'signed
- char' or 'unsigned char', even though its behavior is always just
- like one of those two.
- '-fsigned-char'
- Let the type 'char' be signed, like 'signed char'.
- Note that this is equivalent to '-fno-unsigned-char', which is the
- negative form of '-funsigned-char'. Likewise, the option
- '-fno-signed-char' is equivalent to '-funsigned-char'.
- '-fsigned-bitfields'
- '-funsigned-bitfields'
- '-fno-signed-bitfields'
- '-fno-unsigned-bitfields'
- These options control whether a bit-field is signed or unsigned,
- when the declaration does not use either 'signed' or 'unsigned'.
- By default, such a bit-field is signed, because this is consistent:
- the basic integer types such as 'int' are signed types.
- '-fsso-struct=ENDIANNESS'
- Set the default scalar storage order of structures and unions to
- the specified endianness. The accepted values are 'big-endian',
- 'little-endian' and 'native' for the native endianness of the
- target (the default). This option is not supported for C++.
- *Warning:* the '-fsso-struct' switch causes GCC to generate code
- that is not binary compatible with code generated without it if the
- specified endianness is not the native endianness of the target.
- File: gcc.info, Node: C++ Dialect Options, Next: Objective-C and Objective-C++ Dialect Options, Prev: C Dialect Options, Up: Invoking GCC
- 3.5 Options Controlling C++ Dialect
- ===================================
- This section describes the command-line options that are only meaningful
- for C++ programs. You can also use most of the GNU compiler options
- regardless of what language your program is in. For example, you might
- compile a file 'firstClass.C' like this:
- g++ -g -fstrict-enums -O -c firstClass.C
- In this example, only '-fstrict-enums' is an option meant only for C++
- programs; you can use the other options with any language supported by
- GCC.
- Some options for compiling C programs, such as '-std', are also
- relevant for C++ programs. *Note Options Controlling C Dialect: C
- Dialect Options.
- Here is a list of options that are _only_ for compiling C++ programs:
- '-fabi-version=N'
- Use version N of the C++ ABI. The default is version 0.
- Version 0 refers to the version conforming most closely to the C++
- ABI specification. Therefore, the ABI obtained using version 0
- will change in different versions of G++ as ABI bugs are fixed.
- Version 1 is the version of the C++ ABI that first appeared in G++
- 3.2.
- Version 2 is the version of the C++ ABI that first appeared in G++
- 3.4, and was the default through G++ 4.9.
- Version 3 corrects an error in mangling a constant address as a
- template argument.
- Version 4, which first appeared in G++ 4.5, implements a standard
- mangling for vector types.
- Version 5, which first appeared in G++ 4.6, corrects the mangling
- of attribute const/volatile on function pointer types, decltype of
- a plain decl, and use of a function parameter in the declaration of
- another parameter.
- Version 6, which first appeared in G++ 4.7, corrects the promotion
- behavior of C++11 scoped enums and the mangling of template
- argument packs, const/static_cast, prefix ++ and -, and a class
- scope function used as a template argument.
- Version 7, which first appeared in G++ 4.8, that treats nullptr_t
- as a builtin type and corrects the mangling of lambdas in default
- argument scope.
- Version 8, which first appeared in G++ 4.9, corrects the
- substitution behavior of function types with
- function-cv-qualifiers.
- Version 9, which first appeared in G++ 5.2, corrects the alignment
- of 'nullptr_t'.
- Version 10, which first appeared in G++ 6.1, adds mangling of
- attributes that affect type identity, such as ia32 calling
- convention attributes (e.g. 'stdcall').
- Version 11, which first appeared in G++ 7, corrects the mangling of
- sizeof... expressions and operator names. For multiple entities
- with the same name within a function, that are declared in
- different scopes, the mangling now changes starting with the
- twelfth occurrence. It also implies '-fnew-inheriting-ctors'.
- Version 12, which first appeared in G++ 8, corrects the calling
- conventions for empty classes on the x86_64 target and for classes
- with only deleted copy/move constructors. It accidentally changes
- the calling convention for classes with a deleted copy constructor
- and a trivial move constructor.
- Version 13, which first appeared in G++ 8.2, fixes the accidental
- change in version 12.
- See also '-Wabi'.
- '-fabi-compat-version=N'
- On targets that support strong aliases, G++ works around mangling
- changes by creating an alias with the correct mangled name when
- defining a symbol with an incorrect mangled name. This switch
- specifies which ABI version to use for the alias.
- With '-fabi-version=0' (the default), this defaults to 11 (GCC 7
- compatibility). If another ABI version is explicitly selected,
- this defaults to 0. For compatibility with GCC versions 3.2
- through 4.9, use '-fabi-compat-version=2'.
- If this option is not provided but '-Wabi=N' is, that version is
- used for compatibility aliases. If this option is provided along
- with '-Wabi' (without the version), the version from this option is
- used for the warning.
- '-fno-access-control'
- Turn off all access checking. This switch is mainly useful for
- working around bugs in the access control code.
- '-faligned-new'
- Enable support for C++17 'new' of types that require more alignment
- than 'void* ::operator new(std::size_t)' provides. A numeric
- argument such as '-faligned-new=32' can be used to specify how much
- alignment (in bytes) is provided by that function, but few users
- will need to override the default of 'alignof(std::max_align_t)'.
- This flag is enabled by default for '-std=c++17'.
- '-fcheck-new'
- Check that the pointer returned by 'operator new' is non-null
- before attempting to modify the storage allocated. This check is
- normally unnecessary because the C++ standard specifies that
- 'operator new' only returns '0' if it is declared 'throw()', in
- which case the compiler always checks the return value even without
- this option. In all other cases, when 'operator new' has a
- non-empty exception specification, memory exhaustion is signalled
- by throwing 'std::bad_alloc'. See also 'new (nothrow)'.
- '-fconcepts'
- Enable support for the C++ Extensions for Concepts Technical
- Specification, ISO 19217 (2015), which allows code like
- template <class T> concept bool Addable = requires (T t) { t + t; };
- template <Addable T> T add (T a, T b) { return a + b; }
- '-fconstexpr-depth=N'
- Set the maximum nested evaluation depth for C++11 constexpr
- functions to N. A limit is needed to detect endless recursion
- during constant expression evaluation. The minimum specified by
- the standard is 512.
- '-fconstexpr-loop-limit=N'
- Set the maximum number of iterations for a loop in C++14 constexpr
- functions to N. A limit is needed to detect infinite loops during
- constant expression evaluation. The default is 262144 (1<<18).
- '-fdeduce-init-list'
- Enable deduction of a template type parameter as
- 'std::initializer_list' from a brace-enclosed initializer list,
- i.e.
- template <class T> auto forward(T t) -> decltype (realfn (t))
- {
- return realfn (t);
- }
- void f()
- {
- forward({1,2}); // call forward<std::initializer_list<int>>
- }
- This deduction was implemented as a possible extension to the
- originally proposed semantics for the C++11 standard, but was not
- part of the final standard, so it is disabled by default. This
- option is deprecated, and may be removed in a future version of
- G++.
- '-ffriend-injection'
- Inject friend functions into the enclosing namespace, so that they
- are visible outside the scope of the class in which they are
- declared. Friend functions were documented to work this way in the
- old Annotated C++ Reference Manual. However, in ISO C++ a friend
- function that is not declared in an enclosing scope can only be
- found using argument dependent lookup. GCC defaults to the
- standard behavior.
- This option is deprecated and will be removed.
- '-fno-elide-constructors'
- The C++ standard allows an implementation to omit creating a
- temporary that is only used to initialize another object of the
- same type. Specifying this option disables that optimization, and
- forces G++ to call the copy constructor in all cases. This option
- also causes G++ to call trivial member functions which otherwise
- would be expanded inline.
- In C++17, the compiler is required to omit these temporaries, but
- this option still affects trivial member functions.
- '-fno-enforce-eh-specs'
- Don't generate code to check for violation of exception
- specifications at run time. This option violates the C++ standard,
- but may be useful for reducing code size in production builds, much
- like defining 'NDEBUG'. This does not give user code permission to
- throw exceptions in violation of the exception specifications; the
- compiler still optimizes based on the specifications, so throwing
- an unexpected exception results in undefined behavior at run time.
- '-fextern-tls-init'
- '-fno-extern-tls-init'
- The C++11 and OpenMP standards allow 'thread_local' and
- 'threadprivate' variables to have dynamic (runtime) initialization.
- To support this, any use of such a variable goes through a wrapper
- function that performs any necessary initialization. When the use
- and definition of the variable are in the same translation unit,
- this overhead can be optimized away, but when the use is in a
- different translation unit there is significant overhead even if
- the variable doesn't actually need dynamic initialization. If the
- programmer can be sure that no use of the variable in a
- non-defining TU needs to trigger dynamic initialization (either
- because the variable is statically initialized, or a use of the
- variable in the defining TU will be executed before any uses in
- another TU), they can avoid this overhead with the
- '-fno-extern-tls-init' option.
- On targets that support symbol aliases, the default is
- '-fextern-tls-init'. On targets that do not support symbol
- aliases, the default is '-fno-extern-tls-init'.
- '-ffor-scope'
- '-fno-for-scope'
- If '-ffor-scope' is specified, the scope of variables declared in a
- for-init-statement is limited to the 'for' loop itself, as
- specified by the C++ standard. If '-fno-for-scope' is specified,
- the scope of variables declared in a for-init-statement extends to
- the end of the enclosing scope, as was the case in old versions of
- G++, and other (traditional) implementations of C++.
- This option is deprecated and the associated non-standard
- functionality will be removed.
- '-fno-gnu-keywords'
- Do not recognize 'typeof' as a keyword, so that code can use this
- word as an identifier. You can use the keyword '__typeof__'
- instead. This option is implied by the strict ISO C++ dialects:
- '-ansi', '-std=c++98', '-std=c++11', etc.
- '-fno-implicit-templates'
- Never emit code for non-inline templates that are instantiated
- implicitly (i.e. by use); only emit code for explicit
- instantiations. *Note Template Instantiation::, for more
- information.
- '-fno-implicit-inline-templates'
- Don't emit code for implicit instantiations of inline templates,
- either. The default is to handle inlines differently so that
- compiles with and without optimization need the same set of
- explicit instantiations.
- '-fno-implement-inlines'
- To save space, do not emit out-of-line copies of inline functions
- controlled by '#pragma implementation'. This causes linker errors
- if these functions are not inlined everywhere they are called.
- '-fms-extensions'
- Disable Wpedantic warnings about constructs used in MFC, such as
- implicit int and getting a pointer to member function via
- non-standard syntax.
- '-fnew-inheriting-ctors'
- Enable the P0136 adjustment to the semantics of C++11 constructor
- inheritance. This is part of C++17 but also considered to be a
- Defect Report against C++11 and C++14. This flag is enabled by
- default unless '-fabi-version=10' or lower is specified.
- '-fnew-ttp-matching'
- Enable the P0522 resolution to Core issue 150, template template
- parameters and default arguments: this allows a template with
- default template arguments as an argument for a template template
- parameter with fewer template parameters. This flag is enabled by
- default for '-std=c++17'.
- '-fno-nonansi-builtins'
- Disable built-in declarations of functions that are not mandated by
- ANSI/ISO C. These include 'ffs', 'alloca', '_exit', 'index',
- 'bzero', 'conjf', and other related functions.
- '-fnothrow-opt'
- Treat a 'throw()' exception specification as if it were a
- 'noexcept' specification to reduce or eliminate the text size
- overhead relative to a function with no exception specification.
- If the function has local variables of types with non-trivial
- destructors, the exception specification actually makes the
- function smaller because the EH cleanups for those variables can be
- optimized away. The semantic effect is that an exception thrown
- out of a function with such an exception specification results in a
- call to 'terminate' rather than 'unexpected'.
- '-fno-operator-names'
- Do not treat the operator name keywords 'and', 'bitand', 'bitor',
- 'compl', 'not', 'or' and 'xor' as synonyms as keywords.
- '-fno-optional-diags'
- Disable diagnostics that the standard says a compiler does not need
- to issue. Currently, the only such diagnostic issued by G++ is the
- one for a name having multiple meanings within a class.
- '-fpermissive'
- Downgrade some diagnostics about nonconformant code from errors to
- warnings. Thus, using '-fpermissive' allows some nonconforming
- code to compile.
- '-fno-pretty-templates'
- When an error message refers to a specialization of a function
- template, the compiler normally prints the signature of the
- template followed by the template arguments and any typedefs or
- typenames in the signature (e.g. 'void f(T) [with T = int]' rather
- than 'void f(int)') so that it's clear which template is involved.
- When an error message refers to a specialization of a class
- template, the compiler omits any template arguments that match the
- default template arguments for that template. If either of these
- behaviors make it harder to understand the error message rather
- than easier, you can use '-fno-pretty-templates' to disable them.
- '-frepo'
- Enable automatic template instantiation at link time. This option
- also implies '-fno-implicit-templates'. *Note Template
- Instantiation::, for more information.
- '-fno-rtti'
- Disable generation of information about every class with virtual
- functions for use by the C++ run-time type identification features
- ('dynamic_cast' and 'typeid'). If you don't use those parts of the
- language, you can save some space by using this flag. Note that
- exception handling uses the same information, but G++ generates it
- as needed. The 'dynamic_cast' operator can still be used for casts
- that do not require run-time type information, i.e. casts to 'void
- *' or to unambiguous base classes.
- '-fsized-deallocation'
- Enable the built-in global declarations
- void operator delete (void *, std::size_t) noexcept;
- void operator delete[] (void *, std::size_t) noexcept;
- as introduced in C++14. This is useful for user-defined
- replacement deallocation functions that, for example, use the size
- of the object to make deallocation faster. Enabled by default
- under '-std=c++14' and above. The flag '-Wsized-deallocation'
- warns about places that might want to add a definition.
- '-fstrict-enums'
- Allow the compiler to optimize using the assumption that a value of
- enumerated type can only be one of the values of the enumeration
- (as defined in the C++ standard; basically, a value that can be
- represented in the minimum number of bits needed to represent all
- the enumerators). This assumption may not be valid if the program
- uses a cast to convert an arbitrary integer value to the enumerated
- type.
- '-fstrong-eval-order'
- Evaluate member access, array subscripting, and shift expressions
- in left-to-right order, and evaluate assignment in right-to-left
- order, as adopted for C++17. Enabled by default with '-std=c++17'.
- '-fstrong-eval-order=some' enables just the ordering of member
- access and shift expressions, and is the default without
- '-std=c++17'.
- '-ftemplate-backtrace-limit=N'
- Set the maximum number of template instantiation notes for a single
- warning or error to N. The default value is 10.
- '-ftemplate-depth=N'
- Set the maximum instantiation depth for template classes to N. A
- limit on the template instantiation depth is needed to detect
- endless recursions during template class instantiation. ANSI/ISO
- C++ conforming programs must not rely on a maximum depth greater
- than 17 (changed to 1024 in C++11). The default value is 900, as
- the compiler can run out of stack space before hitting 1024 in some
- situations.
- '-fno-threadsafe-statics'
- Do not emit the extra code to use the routines specified in the C++
- ABI for thread-safe initialization of local statics. You can use
- this option to reduce code size slightly in code that doesn't need
- to be thread-safe.
- '-fuse-cxa-atexit'
- Register destructors for objects with static storage duration with
- the '__cxa_atexit' function rather than the 'atexit' function.
- This option is required for fully standards-compliant handling of
- static destructors, but only works if your C library supports
- '__cxa_atexit'.
- '-fno-use-cxa-get-exception-ptr'
- Don't use the '__cxa_get_exception_ptr' runtime routine. This
- causes 'std::uncaught_exception' to be incorrect, but is necessary
- if the runtime routine is not available.
- '-fvisibility-inlines-hidden'
- This switch declares that the user does not attempt to compare
- pointers to inline functions or methods where the addresses of the
- two functions are taken in different shared objects.
- The effect of this is that GCC may, effectively, mark inline
- methods with '__attribute__ ((visibility ("hidden")))' so that they
- do not appear in the export table of a DSO and do not require a PLT
- indirection when used within the DSO. Enabling this option can
- have a dramatic effect on load and link times of a DSO as it
- massively reduces the size of the dynamic export table when the
- library makes heavy use of templates.
- The behavior of this switch is not quite the same as marking the
- methods as hidden directly, because it does not affect static
- variables local to the function or cause the compiler to deduce
- that the function is defined in only one shared object.
- You may mark a method as having a visibility explicitly to negate
- the effect of the switch for that method. For example, if you do
- want to compare pointers to a particular inline method, you might
- mark it as having default visibility. Marking the enclosing class
- with explicit visibility has no effect.
- Explicitly instantiated inline methods are unaffected by this
- option as their linkage might otherwise cross a shared library
- boundary. *Note Template Instantiation::.
- '-fvisibility-ms-compat'
- This flag attempts to use visibility settings to make GCC's C++
- linkage model compatible with that of Microsoft Visual Studio.
- The flag makes these changes to GCC's linkage model:
- 1. It sets the default visibility to 'hidden', like
- '-fvisibility=hidden'.
- 2. Types, but not their members, are not hidden by default.
- 3. The One Definition Rule is relaxed for types without explicit
- visibility specifications that are defined in more than one
- shared object: those declarations are permitted if they are
- permitted when this option is not used.
- In new code it is better to use '-fvisibility=hidden' and export
- those classes that are intended to be externally visible.
- Unfortunately it is possible for code to rely, perhaps
- accidentally, on the Visual Studio behavior.
- Among the consequences of these changes are that static data
- members of the same type with the same name but defined in
- different shared objects are different, so changing one does not
- change the other; and that pointers to function members defined in
- different shared objects may not compare equal. When this flag is
- given, it is a violation of the ODR to define types with the same
- name differently.
- '-fno-weak'
- Do not use weak symbol support, even if it is provided by the
- linker. By default, G++ uses weak symbols if they are available.
- This option exists only for testing, and should not be used by
- end-users; it results in inferior code and has no benefits. This
- option may be removed in a future release of G++.
- '-nostdinc++'
- Do not search for header files in the standard directories specific
- to C++, but do still search the other standard directories. (This
- option is used when building the C++ library.)
- In addition, these optimization, warning, and code generation options
- have meanings only for C++ programs:
- '-Wabi (C, Objective-C, C++ and Objective-C++ only)'
- Warn when G++ it generates code that is probably not compatible
- with the vendor-neutral C++ ABI. Since G++ now defaults to
- updating the ABI with each major release, normally '-Wabi' will
- warn only if there is a check added later in a release series for
- an ABI issue discovered since the initial release. '-Wabi' will
- warn about more things if an older ABI version is selected (with
- '-fabi-version=N').
- '-Wabi' can also be used with an explicit version number to warn
- about compatibility with a particular '-fabi-version' level, e.g.
- '-Wabi=2' to warn about changes relative to '-fabi-version=2'.
- If an explicit version number is provided and
- '-fabi-compat-version' is not specified, the version number from
- this option is used for compatibility aliases. If no explicit
- version number is provided with this option, but
- '-fabi-compat-version' is specified, that version number is used
- for ABI warnings.
- Although an effort has been made to warn about all such cases,
- there are probably some cases that are not warned about, even
- though G++ is generating incompatible code. There may also be
- cases where warnings are emitted even though the code that is
- generated is compatible.
- You should rewrite your code to avoid these warnings if you are
- concerned about the fact that code generated by G++ may not be
- binary compatible with code generated by other compilers.
- Known incompatibilities in '-fabi-version=2' (which was the default
- from GCC 3.4 to 4.9) include:
- * A template with a non-type template parameter of reference
- type was mangled incorrectly:
- extern int N;
- template <int &> struct S {};
- void n (S<N>) {2}
- This was fixed in '-fabi-version=3'.
- * SIMD vector types declared using '__attribute ((vector_size))'
- were mangled in a non-standard way that does not allow for
- overloading of functions taking vectors of different sizes.
- The mangling was changed in '-fabi-version=4'.
- * '__attribute ((const))' and 'noreturn' were mangled as type
- qualifiers, and 'decltype' of a plain declaration was folded
- away.
- These mangling issues were fixed in '-fabi-version=5'.
- * Scoped enumerators passed as arguments to a variadic function
- are promoted like unscoped enumerators, causing 'va_arg' to
- complain. On most targets this does not actually affect the
- parameter passing ABI, as there is no way to pass an argument
- smaller than 'int'.
- Also, the ABI changed the mangling of template argument packs,
- 'const_cast', 'static_cast', prefix increment/decrement, and a
- class scope function used as a template argument.
- These issues were corrected in '-fabi-version=6'.
- * Lambdas in default argument scope were mangled incorrectly,
- and the ABI changed the mangling of 'nullptr_t'.
- These issues were corrected in '-fabi-version=7'.
- * When mangling a function type with function-cv-qualifiers, the
- un-qualified function type was incorrectly treated as a
- substitution candidate.
- This was fixed in '-fabi-version=8', the default for GCC 5.1.
- * 'decltype(nullptr)' incorrectly had an alignment of 1, leading
- to unaligned accesses. Note that this did not affect the ABI
- of a function with a 'nullptr_t' parameter, as parameters have
- a minimum alignment.
- This was fixed in '-fabi-version=9', the default for GCC 5.2.
- * Target-specific attributes that affect the identity of a type,
- such as ia32 calling conventions on a function type (stdcall,
- regparm, etc.), did not affect the mangled name, leading to
- name collisions when function pointers were used as template
- arguments.
- This was fixed in '-fabi-version=10', the default for GCC 6.1.
- It also warns about psABI-related changes. The known psABI changes
- at this point include:
- * For SysV/x86-64, unions with 'long double' members are passed
- in memory as specified in psABI. For example:
- union U {
- long double ld;
- int i;
- };
- 'union U' is always passed in memory.
- '-Wabi-tag (C++ and Objective-C++ only)'
- Warn when a type with an ABI tag is used in a context that does not
- have that ABI tag. See *note C++ Attributes:: for more information
- about ABI tags.
- '-Wctor-dtor-privacy (C++ and Objective-C++ only)'
- Warn when a class seems unusable because all the constructors or
- destructors in that class are private, and it has neither friends
- nor public static member functions. Also warn if there are no
- non-private methods, and there's at least one private member
- function that isn't a constructor or destructor.
- '-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)'
- Warn when 'delete' is used to destroy an instance of a class that
- has virtual functions and non-virtual destructor. It is unsafe to
- delete an instance of a derived class through a pointer to a base
- class if the base class does not have a virtual destructor. This
- warning is enabled by '-Wall'.
- '-Wliteral-suffix (C++ and Objective-C++ only)'
- Warn when a string or character literal is followed by a ud-suffix
- which does not begin with an underscore. As a conforming
- extension, GCC treats such suffixes as separate preprocessing
- tokens in order to maintain backwards compatibility with code that
- uses formatting macros from '<inttypes.h>'. For example:
- #define __STDC_FORMAT_MACROS
- #include <inttypes.h>
- #include <stdio.h>
- int main() {
- int64_t i64 = 123;
- printf("My int64: %" PRId64"\n", i64);
- }
- In this case, 'PRId64' is treated as a separate preprocessing
- token.
- Additionally, warn when a user-defined literal operator is declared
- with a literal suffix identifier that doesn't begin with an
- underscore. Literal suffix identifiers that don't begin with an
- underscore are reserved for future standardization.
- This warning is enabled by default.
- '-Wlto-type-mismatch'
- During the link-time optimization warn about type mismatches in
- global declarations from different compilation units. Requires
- '-flto' to be enabled. Enabled by default.
- '-Wno-narrowing (C++ and Objective-C++ only)'
- For C++11 and later standards, narrowing conversions are diagnosed
- by default, as required by the standard. A narrowing conversion
- from a constant produces an error, and a narrowing conversion from
- a non-constant produces a warning, but '-Wno-narrowing' suppresses
- the diagnostic. Note that this does not affect the meaning of
- well-formed code; narrowing conversions are still considered
- ill-formed in SFINAE contexts.
- With '-Wnarrowing' in C++98, warn when a narrowing conversion
- prohibited by C++11 occurs within '{ }', e.g.
- int i = { 2.2 }; // error: narrowing from double to int
- This flag is included in '-Wall' and '-Wc++11-compat'.
- '-Wnoexcept (C++ and Objective-C++ only)'
- Warn when a noexcept-expression evaluates to false because of a
- call to a function that does not have a non-throwing exception
- specification (i.e. 'throw()' or 'noexcept') but is known by the
- compiler to never throw an exception.
- '-Wnoexcept-type (C++ and Objective-C++ only)'
- Warn if the C++17 feature making 'noexcept' part of a function type
- changes the mangled name of a symbol relative to C++14. Enabled by
- '-Wabi' and '-Wc++17-compat'.
- As an example:
- template <class T> void f(T t) { t(); };
- void g() noexcept;
- void h() { f(g); }
- In C++14, 'f' calls 'f<void(*)()>', but in C++17 it calls
- 'f<void(*)()noexcept>'.
- '-Wclass-memaccess (C++ and Objective-C++ only)'
- Warn when the destination of a call to a raw memory function such
- as 'memset' or 'memcpy' is an object of class type, and when
- writing into such an object might bypass the class non-trivial or
- deleted constructor or copy assignment, violate const-correctness
- or encapsulation, or corrupt virtual table pointers. Modifying the
- representation of such objects may violate invariants maintained by
- member functions of the class. For example, the call to 'memset'
- below is undefined because it modifies a non-trivial class object
- and is, therefore, diagnosed. The safe way to either initialize or
- clear the storage of objects of such types is by using the
- appropriate constructor or assignment operator, if one is
- available.
- std::string str = "abc";
- memset (&str, 0, sizeof str);
- The '-Wclass-memaccess' option is enabled by '-Wall'. Explicitly
- casting the pointer to the class object to 'void *' or to a type
- that can be safely accessed by the raw memory function suppresses
- the warning.
- '-Wnon-virtual-dtor (C++ and Objective-C++ only)'
- Warn when a class has virtual functions and an accessible
- non-virtual destructor itself or in an accessible polymorphic base
- class, in which case it is possible but unsafe to delete an
- instance of a derived class through a pointer to the class itself
- or base class. This warning is automatically enabled if '-Weffc++'
- is specified.
- '-Wregister (C++ and Objective-C++ only)'
- Warn on uses of the 'register' storage class specifier, except when
- it is part of the GNU *note Explicit Register Variables::
- extension. The use of the 'register' keyword as storage class
- specifier has been deprecated in C++11 and removed in C++17.
- Enabled by default with '-std=c++17'.
- '-Wreorder (C++ and Objective-C++ only)'
- Warn when the order of member initializers given in the code does
- not match the order in which they must be executed. For instance:
- struct A {
- int i;
- int j;
- A(): j (0), i (1) { }
- };
- The compiler rearranges the member initializers for 'i' and 'j' to
- match the declaration order of the members, emitting a warning to
- that effect. This warning is enabled by '-Wall'.
- '-fext-numeric-literals (C++ and Objective-C++ only)'
- Accept imaginary, fixed-point, or machine-defined literal number
- suffixes as GNU extensions. When this option is turned off these
- suffixes are treated as C++11 user-defined literal numeric
- suffixes. This is on by default for all pre-C++11 dialects and all
- GNU dialects: '-std=c++98', '-std=gnu++98', '-std=gnu++11',
- '-std=gnu++14'. This option is off by default for ISO C++11
- onwards ('-std=c++11', ...).
- The following '-W...' options are not affected by '-Wall'.
- '-Weffc++ (C++ and Objective-C++ only)'
- Warn about violations of the following style guidelines from Scott
- Meyers' 'Effective C++' series of books:
- * Define a copy constructor and an assignment operator for
- classes with dynamically-allocated memory.
- * Prefer initialization to assignment in constructors.
- * Have 'operator=' return a reference to '*this'.
- * Don't try to return a reference when you must return an
- object.
- * Distinguish between prefix and postfix forms of increment and
- decrement operators.
- * Never overload '&&', '||', or ','.
- This option also enables '-Wnon-virtual-dtor', which is also one of
- the effective C++ recommendations. However, the check is extended
- to warn about the lack of virtual destructor in accessible
- non-polymorphic bases classes too.
- When selecting this option, be aware that the standard library
- headers do not obey all of these guidelines; use 'grep -v' to
- filter out those warnings.
- '-Wstrict-null-sentinel (C++ and Objective-C++ only)'
- Warn about the use of an uncasted 'NULL' as sentinel. When
- compiling only with GCC this is a valid sentinel, as 'NULL' is
- defined to '__null'. Although it is a null pointer constant rather
- than a null pointer, it is guaranteed to be of the same size as a
- pointer. But this use is not portable across different compilers.
- '-Wno-non-template-friend (C++ and Objective-C++ only)'
- Disable warnings when non-template friend functions are declared
- within a template. In very old versions of GCC that predate
- implementation of the ISO standard, declarations such as 'friend
- int foo(int)', where the name of the friend is an unqualified-id,
- could be interpreted as a particular specialization of a template
- function; the warning exists to diagnose compatibility problems,
- and is enabled by default.
- '-Wold-style-cast (C++ and Objective-C++ only)'
- Warn if an old-style (C-style) cast to a non-void type is used
- within a C++ program. The new-style casts ('dynamic_cast',
- 'static_cast', 'reinterpret_cast', and 'const_cast') are less
- vulnerable to unintended effects and much easier to search for.
- '-Woverloaded-virtual (C++ and Objective-C++ only)'
- Warn when a function declaration hides virtual functions from a
- base class. For example, in:
- struct A {
- virtual void f();
- };
- struct B: public A {
- void f(int);
- };
- the 'A' class version of 'f' is hidden in 'B', and code like:
- B* b;
- b->f();
- fails to compile.
- '-Wno-pmf-conversions (C++ and Objective-C++ only)'
- Disable the diagnostic for converting a bound pointer to member
- function to a plain pointer.
- '-Wsign-promo (C++ and Objective-C++ only)'
- Warn when overload resolution chooses a promotion from unsigned or
- enumerated type to a signed type, over a conversion to an unsigned
- type of the same size. Previous versions of G++ tried to preserve
- unsignedness, but the standard mandates the current behavior.
- '-Wtemplates (C++ and Objective-C++ only)'
- Warn when a primary template declaration is encountered. Some
- coding rules disallow templates, and this may be used to enforce
- that rule. The warning is inactive inside a system header file,
- such as the STL, so one can still use the STL. One may also
- instantiate or specialize templates.
- '-Wmultiple-inheritance (C++ and Objective-C++ only)'
- Warn when a class is defined with multiple direct base classes.
- Some coding rules disallow multiple inheritance, and this may be
- used to enforce that rule. The warning is inactive inside a system
- header file, such as the STL, so one can still use the STL. One may
- also define classes that indirectly use multiple inheritance.
- '-Wvirtual-inheritance'
- Warn when a class is defined with a virtual direct base class.
- Some coding rules disallow multiple inheritance, and this may be
- used to enforce that rule. The warning is inactive inside a system
- header file, such as the STL, so one can still use the STL. One may
- also define classes that indirectly use virtual inheritance.
- '-Wnamespaces'
- Warn when a namespace definition is opened. Some coding rules
- disallow namespaces, and this may be used to enforce that rule.
- The warning is inactive inside a system header file, such as the
- STL, so one can still use the STL. One may also use using
- directives and qualified names.
- '-Wno-terminate (C++ and Objective-C++ only)'
- Disable the warning about a throw-expression that will immediately
- result in a call to 'terminate'.
- File: gcc.info, Node: Objective-C and Objective-C++ Dialect Options, Next: Diagnostic Message Formatting Options, Prev: C++ Dialect Options, Up: Invoking GCC
- 3.6 Options Controlling Objective-C and Objective-C++ Dialects
- ==============================================================
- (NOTE: This manual does not describe the Objective-C and Objective-C++
- languages themselves. *Note Language Standards Supported by GCC:
- Standards, for references.)
- This section describes the command-line options that are only
- meaningful for Objective-C and Objective-C++ programs. You can also use
- most of the language-independent GNU compiler options. For example, you
- might compile a file 'some_class.m' like this:
- gcc -g -fgnu-runtime -O -c some_class.m
- In this example, '-fgnu-runtime' is an option meant only for Objective-C
- and Objective-C++ programs; you can use the other options with any
- language supported by GCC.
- Note that since Objective-C is an extension of the C language,
- Objective-C compilations may also use options specific to the C
- front-end (e.g., '-Wtraditional'). Similarly, Objective-C++
- compilations may use C++-specific options (e.g., '-Wabi').
- Here is a list of options that are _only_ for compiling Objective-C and
- Objective-C++ programs:
- '-fconstant-string-class=CLASS-NAME'
- Use CLASS-NAME as the name of the class to instantiate for each
- literal string specified with the syntax '@"..."'. The default
- class name is 'NXConstantString' if the GNU runtime is being used,
- and 'NSConstantString' if the NeXT runtime is being used (see
- below). The '-fconstant-cfstrings' option, if also present,
- overrides the '-fconstant-string-class' setting and cause '@"..."'
- literals to be laid out as constant CoreFoundation strings.
- '-fgnu-runtime'
- Generate object code compatible with the standard GNU Objective-C
- runtime. This is the default for most types of systems.
- '-fnext-runtime'
- Generate output compatible with the NeXT runtime. This is the
- default for NeXT-based systems, including Darwin and Mac OS X. The
- macro '__NEXT_RUNTIME__' is predefined if (and only if) this option
- is used.
- '-fno-nil-receivers'
- Assume that all Objective-C message dispatches ('[receiver
- message:arg]') in this translation unit ensure that the receiver is
- not 'nil'. This allows for more efficient entry points in the
- runtime to be used. This option is only available in conjunction
- with the NeXT runtime and ABI version 0 or 1.
- '-fobjc-abi-version=N'
- Use version N of the Objective-C ABI for the selected runtime.
- This option is currently supported only for the NeXT runtime. In
- that case, Version 0 is the traditional (32-bit) ABI without
- support for properties and other Objective-C 2.0 additions.
- Version 1 is the traditional (32-bit) ABI with support for
- properties and other Objective-C 2.0 additions. Version 2 is the
- modern (64-bit) ABI. If nothing is specified, the default is
- Version 0 on 32-bit target machines, and Version 2 on 64-bit target
- machines.
- '-fobjc-call-cxx-cdtors'
- For each Objective-C class, check if any of its instance variables
- is a C++ object with a non-trivial default constructor. If so,
- synthesize a special '- (id) .cxx_construct' instance method which
- runs non-trivial default constructors on any such instance
- variables, in order, and then return 'self'. Similarly, check if
- any instance variable is a C++ object with a non-trivial
- destructor, and if so, synthesize a special '- (void)
- .cxx_destruct' method which runs all such default destructors, in
- reverse order.
- The '- (id) .cxx_construct' and '- (void) .cxx_destruct' methods
- thusly generated only operate on instance variables declared in the
- current Objective-C class, and not those inherited from
- superclasses. It is the responsibility of the Objective-C runtime
- to invoke all such methods in an object's inheritance hierarchy.
- The '- (id) .cxx_construct' methods are invoked by the runtime
- immediately after a new object instance is allocated; the '- (void)
- .cxx_destruct' methods are invoked immediately before the runtime
- deallocates an object instance.
- As of this writing, only the NeXT runtime on Mac OS X 10.4 and
- later has support for invoking the '- (id) .cxx_construct' and '-
- (void) .cxx_destruct' methods.
- '-fobjc-direct-dispatch'
- Allow fast jumps to the message dispatcher. On Darwin this is
- accomplished via the comm page.
- '-fobjc-exceptions'
- Enable syntactic support for structured exception handling in
- Objective-C, similar to what is offered by C++. This option is
- required to use the Objective-C keywords '@try', '@throw',
- '@catch', '@finally' and '@synchronized'. This option is available
- with both the GNU runtime and the NeXT runtime (but not available
- in conjunction with the NeXT runtime on Mac OS X 10.2 and earlier).
- '-fobjc-gc'
- Enable garbage collection (GC) in Objective-C and Objective-C++
- programs. This option is only available with the NeXT runtime; the
- GNU runtime has a different garbage collection implementation that
- does not require special compiler flags.
- '-fobjc-nilcheck'
- For the NeXT runtime with version 2 of the ABI, check for a nil
- receiver in method invocations before doing the actual method call.
- This is the default and can be disabled using '-fno-objc-nilcheck'.
- Class methods and super calls are never checked for nil in this way
- no matter what this flag is set to. Currently this flag does
- nothing when the GNU runtime, or an older version of the NeXT
- runtime ABI, is used.
- '-fobjc-std=objc1'
- Conform to the language syntax of Objective-C 1.0, the language
- recognized by GCC 4.0. This only affects the Objective-C additions
- to the C/C++ language; it does not affect conformance to C/C++
- standards, which is controlled by the separate C/C++ dialect option
- flags. When this option is used with the Objective-C or
- Objective-C++ compiler, any Objective-C syntax that is not
- recognized by GCC 4.0 is rejected. This is useful if you need to
- make sure that your Objective-C code can be compiled with older
- versions of GCC.
- '-freplace-objc-classes'
- Emit a special marker instructing 'ld(1)' not to statically link in
- the resulting object file, and allow 'dyld(1)' to load it in at run
- time instead. This is used in conjunction with the
- Fix-and-Continue debugging mode, where the object file in question
- may be recompiled and dynamically reloaded in the course of program
- execution, without the need to restart the program itself.
- Currently, Fix-and-Continue functionality is only available in
- conjunction with the NeXT runtime on Mac OS X 10.3 and later.
- '-fzero-link'
- When compiling for the NeXT runtime, the compiler ordinarily
- replaces calls to 'objc_getClass("...")' (when the name of the
- class is known at compile time) with static class references that
- get initialized at load time, which improves run-time performance.
- Specifying the '-fzero-link' flag suppresses this behavior and
- causes calls to 'objc_getClass("...")' to be retained. This is
- useful in Zero-Link debugging mode, since it allows for individual
- class implementations to be modified during program execution. The
- GNU runtime currently always retains calls to
- 'objc_get_class("...")' regardless of command-line options.
- '-fno-local-ivars'
- By default instance variables in Objective-C can be accessed as if
- they were local variables from within the methods of the class
- they're declared in. This can lead to shadowing between instance
- variables and other variables declared either locally inside a
- class method or globally with the same name. Specifying the
- '-fno-local-ivars' flag disables this behavior thus avoiding
- variable shadowing issues.
- '-fivar-visibility=[public|protected|private|package]'
- Set the default instance variable visibility to the specified
- option so that instance variables declared outside the scope of any
- access modifier directives default to the specified visibility.
- '-gen-decls'
- Dump interface declarations for all classes seen in the source file
- to a file named 'SOURCENAME.decl'.
- '-Wassign-intercept (Objective-C and Objective-C++ only)'
- Warn whenever an Objective-C assignment is being intercepted by the
- garbage collector.
- '-Wno-protocol (Objective-C and Objective-C++ only)'
- If a class is declared to implement a protocol, a warning is issued
- for every method in the protocol that is not implemented by the
- class. The default behavior is to issue a warning for every method
- not explicitly implemented in the class, even if a method
- implementation is inherited from the superclass. If you use the
- '-Wno-protocol' option, then methods inherited from the superclass
- are considered to be implemented, and no warning is issued for
- them.
- '-Wselector (Objective-C and Objective-C++ only)'
- Warn if multiple methods of different types for the same selector
- are found during compilation. The check is performed on the list
- of methods in the final stage of compilation. Additionally, a
- check is performed for each selector appearing in a
- '@selector(...)' expression, and a corresponding method for that
- selector has been found during compilation. Because these checks
- scan the method table only at the end of compilation, these
- warnings are not produced if the final stage of compilation is not
- reached, for example because an error is found during compilation,
- or because the '-fsyntax-only' option is being used.
- '-Wstrict-selector-match (Objective-C and Objective-C++ only)'
- Warn if multiple methods with differing argument and/or return
- types are found for a given selector when attempting to send a
- message using this selector to a receiver of type 'id' or 'Class'.
- When this flag is off (which is the default behavior), the compiler
- omits such warnings if any differences found are confined to types
- that share the same size and alignment.
- '-Wundeclared-selector (Objective-C and Objective-C++ only)'
- Warn if a '@selector(...)' expression referring to an undeclared
- selector is found. A selector is considered undeclared if no
- method with that name has been declared before the '@selector(...)'
- expression, either explicitly in an '@interface' or '@protocol'
- declaration, or implicitly in an '@implementation' section. This
- option always performs its checks as soon as a '@selector(...)'
- expression is found, while '-Wselector' only performs its checks in
- the final stage of compilation. This also enforces the coding
- style convention that methods and selectors must be declared before
- being used.
- '-print-objc-runtime-info'
- Generate C header describing the largest structure that is passed
- by value, if any.
- File: gcc.info, Node: Diagnostic Message Formatting Options, Next: Warning Options, Prev: Objective-C and Objective-C++ Dialect Options, Up: Invoking GCC
- 3.7 Options to Control Diagnostic Messages Formatting
- =====================================================
- Traditionally, diagnostic messages have been formatted irrespective of
- the output device's aspect (e.g. its width, ...). You can use the
- options described below to control the formatting algorithm for
- diagnostic messages, e.g. how many characters per line, how often source
- location information should be reported. Note that some language front
- ends may not honor these options.
- '-fmessage-length=N'
- Try to format error messages so that they fit on lines of about N
- characters. If N is zero, then no line-wrapping is done; each
- error message appears on a single line. This is the default for
- all front ends.
- '-fdiagnostics-show-location=once'
- Only meaningful in line-wrapping mode. Instructs the diagnostic
- messages reporter to emit source location information _once_; that
- is, in case the message is too long to fit on a single physical
- line and has to be wrapped, the source location won't be emitted
- (as prefix) again, over and over, in subsequent continuation lines.
- This is the default behavior.
- '-fdiagnostics-show-location=every-line'
- Only meaningful in line-wrapping mode. Instructs the diagnostic
- messages reporter to emit the same source location information (as
- prefix) for physical lines that result from the process of breaking
- a message which is too long to fit on a single line.
- '-fdiagnostics-color[=WHEN]'
- '-fno-diagnostics-color'
- Use color in diagnostics. WHEN is 'never', 'always', or 'auto'.
- The default depends on how the compiler has been configured, it can
- be any of the above WHEN options or also 'never' if 'GCC_COLORS'
- environment variable isn't present in the environment, and 'auto'
- otherwise. 'auto' means to use color only when the standard error
- is a terminal. The forms '-fdiagnostics-color' and
- '-fno-diagnostics-color' are aliases for
- '-fdiagnostics-color=always' and '-fdiagnostics-color=never',
- respectively.
- The colors are defined by the environment variable 'GCC_COLORS'.
- Its value is a colon-separated list of capabilities and Select
- Graphic Rendition (SGR) substrings. SGR commands are interpreted
- by the terminal or terminal emulator. (See the section in the
- documentation of your text terminal for permitted values and their
- meanings as character attributes.) These substring values are
- integers in decimal representation and can be concatenated with
- semicolons. Common values to concatenate include '1' for bold, '4'
- for underline, '5' for blink, '7' for inverse, '39' for default
- foreground color, '30' to '37' for foreground colors, '90' to '97'
- for 16-color mode foreground colors, '38;5;0' to '38;5;255' for
- 88-color and 256-color modes foreground colors, '49' for default
- background color, '40' to '47' for background colors, '100' to
- '107' for 16-color mode background colors, and '48;5;0' to
- '48;5;255' for 88-color and 256-color modes background colors.
- The default 'GCC_COLORS' is
- error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
- quote=01:fixit-insert=32:fixit-delete=31:\
- diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
- type-diff=01;32
- where '01;31' is bold red, '01;35' is bold magenta, '01;36' is bold
- cyan, '32' is green, '34' is blue, '01' is bold, and '31' is red.
- Setting 'GCC_COLORS' to the empty string disables colors.
- Supported capabilities are as follows.
- 'error='
- SGR substring for error: markers.
- 'warning='
- SGR substring for warning: markers.
- 'note='
- SGR substring for note: markers.
- 'range1='
- SGR substring for first additional range.
- 'range2='
- SGR substring for second additional range.
- 'locus='
- SGR substring for location information, 'file:line' or
- 'file:line:column' etc.
- 'quote='
- SGR substring for information printed within quotes.
- 'fixit-insert='
- SGR substring for fix-it hints suggesting text to be inserted
- or replaced.
- 'fixit-delete='
- SGR substring for fix-it hints suggesting text to be deleted.
- 'diff-filename='
- SGR substring for filename headers within generated patches.
- 'diff-hunk='
- SGR substring for the starts of hunks within generated
- patches.
- 'diff-delete='
- SGR substring for deleted lines within generated patches.
- 'diff-insert='
- SGR substring for inserted lines within generated patches.
- 'type-diff='
- SGR substring for highlighting mismatching types within
- template arguments in the C++ frontend.
- '-fno-diagnostics-show-option'
- By default, each diagnostic emitted includes text indicating the
- command-line option that directly controls the diagnostic (if such
- an option is known to the diagnostic machinery). Specifying the
- '-fno-diagnostics-show-option' flag suppresses that behavior.
- '-fno-diagnostics-show-caret'
- By default, each diagnostic emitted includes the original source
- line and a caret '^' indicating the column. This option suppresses
- this information. The source line is truncated to N characters, if
- the '-fmessage-length=n' option is given. When the output is done
- to the terminal, the width is limited to the width given by the
- 'COLUMNS' environment variable or, if not set, to the terminal
- width.
- '-fdiagnostics-parseable-fixits'
- Emit fix-it hints in a machine-parseable format, suitable for
- consumption by IDEs. For each fix-it, a line will be printed after
- the relevant diagnostic, starting with the string "fix-it:". For
- example:
- fix-it:"test.c":{45:3-45:21}:"gtk_widget_show_all"
- The location is expressed as a half-open range, expressed as a
- count of bytes, starting at byte 1 for the initial column. In the
- above example, bytes 3 through 20 of line 45 of "test.c" are to be
- replaced with the given string:
- 00000000011111111112222222222
- 12345678901234567890123456789
- gtk_widget_showall (dlg);
- ^^^^^^^^^^^^^^^^^^
- gtk_widget_show_all
- The filename and replacement string escape backslash as "\\", tab
- as "\t", newline as "\n", double quotes as "\"", non-printable
- characters as octal (e.g. vertical tab as "\013").
- An empty replacement string indicates that the given range is to be
- removed. An empty range (e.g. "45:3-45:3") indicates that the
- string is to be inserted at the given position.
- '-fdiagnostics-generate-patch'
- Print fix-it hints to stderr in unified diff format, after any
- diagnostics are printed. For example:
- --- test.c
- +++ test.c
- @ -42,5 +42,5 @
- void show_cb(GtkDialog *dlg)
- {
- - gtk_widget_showall(dlg);
- + gtk_widget_show_all(dlg);
- }
- The diff may or may not be colorized, following the same rules as
- for diagnostics (see '-fdiagnostics-color').
- '-fdiagnostics-show-template-tree'
- In the C++ frontend, when printing diagnostics showing mismatching
- template types, such as:
- could not convert 'std::map<int, std::vector<double> >()'
- from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
- the '-fdiagnostics-show-template-tree' flag enables printing a
- tree-like structure showing the common and differing parts of the
- types, such as:
- map<
- [...],
- vector<
- [double != float]>>
- The parts that differ are highlighted with color ("double" and
- "float" in this case).
- '-fno-elide-type'
- By default when the C++ frontend prints diagnostics showing
- mismatching template types, common parts of the types are printed
- as "[...]" to simplify the error message. For example:
- could not convert 'std::map<int, std::vector<double> >()'
- from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
- Specifying the '-fno-elide-type' flag suppresses that behavior.
- This flag also affects the output of the
- '-fdiagnostics-show-template-tree' flag.
- '-fno-show-column'
- Do not print column numbers in diagnostics. This may be necessary
- if diagnostics are being scanned by a program that does not
- understand the column numbers, such as 'dejagnu'.
- File: gcc.info, Node: Warning Options, Next: Debugging Options, Prev: Diagnostic Message Formatting Options, Up: Invoking GCC
- 3.8 Options to Request or Suppress Warnings
- ===========================================
- Warnings are diagnostic messages that report constructions that are not
- inherently erroneous but that are risky or suggest there may have been
- an error.
- The following language-independent options do not enable specific
- warnings but control the kinds of diagnostics produced by GCC.
- '-fsyntax-only'
- Check the code for syntax errors, but don't do anything beyond
- that.
- '-fmax-errors=N'
- Limits the maximum number of error messages to N, at which point
- GCC bails out rather than attempting to continue processing the
- source code. If N is 0 (the default), there is no limit on the
- number of error messages produced. If '-Wfatal-errors' is also
- specified, then '-Wfatal-errors' takes precedence over this option.
- '-w'
- Inhibit all warning messages.
- '-Werror'
- Make all warnings into errors.
- '-Werror='
- Make the specified warning into an error. The specifier for a
- warning is appended; for example '-Werror=switch' turns the
- warnings controlled by '-Wswitch' into errors. This switch takes a
- negative form, to be used to negate '-Werror' for specific
- warnings; for example '-Wno-error=switch' makes '-Wswitch' warnings
- not be errors, even when '-Werror' is in effect.
- The warning message for each controllable warning includes the
- option that controls the warning. That option can then be used
- with '-Werror=' and '-Wno-error=' as described above. (Printing of
- the option in the warning message can be disabled using the
- '-fno-diagnostics-show-option' flag.)
- Note that specifying '-Werror='FOO automatically implies '-W'FOO.
- However, '-Wno-error='FOO does not imply anything.
- '-Wfatal-errors'
- This option causes the compiler to abort compilation on the first
- error occurred rather than trying to keep going and printing
- further error messages.
- You can request many specific warnings with options beginning with
- '-W', for example '-Wimplicit' to request warnings on implicit
- declarations. Each of these specific warning options also has a
- negative form beginning '-Wno-' to turn off warnings; for example,
- '-Wno-implicit'. This manual lists only one of the two forms, whichever
- is not the default. For further language-specific options also refer to
- *note C++ Dialect Options:: and *note Objective-C and Objective-C++
- Dialect Options::.
- Some options, such as '-Wall' and '-Wextra', turn on other options,
- such as '-Wunused', which may turn on further options, such as
- '-Wunused-value'. The combined effect of positive and negative forms is
- that more specific options have priority over less specific ones,
- independently of their position in the command-line. For options of the
- same specificity, the last one takes effect. Options enabled or
- disabled via pragmas (*note Diagnostic Pragmas::) take effect as if they
- appeared at the end of the command-line.
- When an unrecognized warning option is requested (e.g.,
- '-Wunknown-warning'), GCC emits a diagnostic stating that the option is
- not recognized. However, if the '-Wno-' form is used, the behavior is
- slightly different: no diagnostic is produced for '-Wno-unknown-warning'
- unless other diagnostics are being produced. This allows the use of new
- '-Wno-' options with old compilers, but if something goes wrong, the
- compiler warns that an unrecognized option is present.
- '-Wpedantic'
- '-pedantic'
- Issue all the warnings demanded by strict ISO C and ISO C++; reject
- all programs that use forbidden extensions, and some other programs
- that do not follow ISO C and ISO C++. For ISO C, follows the
- version of the ISO C standard specified by any '-std' option used.
- Valid ISO C and ISO C++ programs should compile properly with or
- without this option (though a rare few require '-ansi' or a '-std'
- option specifying the required version of ISO C). However, without
- this option, certain GNU extensions and traditional C and C++
- features are supported as well. With this option, they are
- rejected.
- '-Wpedantic' does not cause warning messages for use of the
- alternate keywords whose names begin and end with '__'. Pedantic
- warnings are also disabled in the expression that follows
- '__extension__'. However, only system header files should use
- these escape routes; application programs should avoid them. *Note
- Alternate Keywords::.
- Some users try to use '-Wpedantic' to check programs for strict ISO
- C conformance. They soon find that it does not do quite what they
- want: it finds some non-ISO practices, but not all--only those for
- which ISO C _requires_ a diagnostic, and some others for which
- diagnostics have been added.
- A feature to report any failure to conform to ISO C might be useful
- in some instances, but would require considerable additional work
- and would be quite different from '-Wpedantic'. We don't have
- plans to support such a feature in the near future.
- Where the standard specified with '-std' represents a GNU extended
- dialect of C, such as 'gnu90' or 'gnu99', there is a corresponding
- "base standard", the version of ISO C on which the GNU extended
- dialect is based. Warnings from '-Wpedantic' are given where they
- are required by the base standard. (It does not make sense for
- such warnings to be given only for features not in the specified
- GNU C dialect, since by definition the GNU dialects of C include
- all features the compiler supports with the given option, and there
- would be nothing to warn about.)
- '-pedantic-errors'
- Give an error whenever the "base standard" (see '-Wpedantic')
- requires a diagnostic, in some cases where there is undefined
- behavior at compile-time and in some other cases that do not
- prevent compilation of programs that are valid according to the
- standard. This is not equivalent to '-Werror=pedantic', since
- there are errors enabled by this option and not enabled by the
- latter and vice versa.
- '-Wall'
- This enables all the warnings about constructions that some users
- consider questionable, and that are easy to avoid (or modify to
- prevent the warning), even in conjunction with macros. This also
- enables some language-specific warnings described in *note C++
- Dialect Options:: and *note Objective-C and Objective-C++ Dialect
- Options::.
- '-Wall' turns on the following warning flags:
- -Waddress
- -Warray-bounds=1 (only with -O2)
- -Wbool-compare
- -Wbool-operation
- -Wc++11-compat -Wc++14-compat
- -Wcatch-value (C++ and Objective-C++ only)
- -Wchar-subscripts
- -Wcomment
- -Wduplicate-decl-specifier (C and Objective-C only)
- -Wenum-compare (in C/ObjC; this is on by default in C++)
- -Wformat
- -Wint-in-bool-context
- -Wimplicit (C and Objective-C only)
- -Wimplicit-int (C and Objective-C only)
- -Wimplicit-function-declaration (C and Objective-C only)
- -Winit-self (only for C++)
- -Wlogical-not-parentheses
- -Wmain (only for C/ObjC and unless -ffreestanding)
- -Wmaybe-uninitialized
- -Wmemset-elt-size
- -Wmemset-transposed-args
- -Wmisleading-indentation (only for C/C++)
- -Wmissing-attributes
- -Wmissing-braces (only for C/ObjC)
- -Wmultistatement-macros
- -Wnarrowing (only for C++)
- -Wnonnull
- -Wnonnull-compare
- -Wopenmp-simd
- -Wparentheses
- -Wpointer-sign
- -Wreorder
- -Wrestrict
- -Wreturn-type
- -Wsequence-point
- -Wsign-compare (only in C++)
- -Wsizeof-pointer-div
- -Wsizeof-pointer-memaccess
- -Wstrict-aliasing
- -Wstrict-overflow=1
- -Wstringop-truncation
- -Wswitch
- -Wtautological-compare
- -Wtrigraphs
- -Wuninitialized
- -Wunknown-pragmas
- -Wunused-function
- -Wunused-label
- -Wunused-value
- -Wunused-variable
- -Wvolatile-register-var
- Note that some warning flags are not implied by '-Wall'. Some of
- them warn about constructions that users generally do not consider
- questionable, but which occasionally you might wish to check for;
- others warn about constructions that are necessary or hard to avoid
- in some cases, and there is no simple way to modify the code to
- suppress the warning. Some of them are enabled by '-Wextra' but
- many of them must be enabled individually.
- '-Wextra'
- This enables some extra warning flags that are not enabled by
- '-Wall'. (This option used to be called '-W'. The older name is
- still supported, but the newer name is more descriptive.)
- -Wclobbered
- -Wcast-function-type
- -Wempty-body
- -Wignored-qualifiers
- -Wimplicit-fallthrough=3
- -Wmissing-field-initializers
- -Wmissing-parameter-type (C only)
- -Wold-style-declaration (C only)
- -Woverride-init
- -Wsign-compare (C only)
- -Wtype-limits
- -Wuninitialized
- -Wshift-negative-value (in C++03 and in C99 and newer)
- -Wunused-parameter (only with -Wunused or -Wall)
- -Wunused-but-set-parameter (only with -Wunused or -Wall)
- The option '-Wextra' also prints warning messages for the following
- cases:
- * A pointer is compared against integer zero with '<', '<=',
- '>', or '>='.
- * (C++ only) An enumerator and a non-enumerator both appear in a
- conditional expression.
- * (C++ only) Ambiguous virtual bases.
- * (C++ only) Subscripting an array that has been declared
- 'register'.
- * (C++ only) Taking the address of a variable that has been
- declared 'register'.
- * (C++ only) A base class is not initialized in the copy
- constructor of a derived class.
- '-Wchar-subscripts'
- Warn if an array subscript has type 'char'. This is a common cause
- of error, as programmers often forget that this type is signed on
- some machines. This warning is enabled by '-Wall'.
- '-Wchkp'
- Warn about an invalid memory access that is found by Pointer Bounds
- Checker ('-fcheck-pointer-bounds').
- '-Wno-coverage-mismatch'
- Warn if feedback profiles do not match when using the
- '-fprofile-use' option. If a source file is changed between
- compiling with '-fprofile-gen' and with '-fprofile-use', the files
- with the profile feedback can fail to match the source file and GCC
- cannot use the profile feedback information. By default, this
- warning is enabled and is treated as an error.
- '-Wno-coverage-mismatch' can be used to disable the warning or
- '-Wno-error=coverage-mismatch' can be used to disable the error.
- Disabling the error for this warning can result in poorly optimized
- code and is useful only in the case of very minor changes such as
- bug fixes to an existing code-base. Completely disabling the
- warning is not recommended.
- '-Wno-cpp'
- (C, Objective-C, C++, Objective-C++ and Fortran only)
- Suppress warning messages emitted by '#warning' directives.
- '-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)'
- Give a warning when a value of type 'float' is implicitly promoted
- to 'double'. CPUs with a 32-bit "single-precision" floating-point
- unit implement 'float' in hardware, but emulate 'double' in
- software. On such a machine, doing computations using 'double'
- values is much more expensive because of the overhead required for
- software emulation.
- It is easy to accidentally do computations with 'double' because
- floating-point literals are implicitly of type 'double'. For
- example, in:
- float area(float radius)
- {
- return 3.14159 * radius * radius;
- }
- the compiler performs the entire computation with 'double' because
- the floating-point literal is a 'double'.
- '-Wduplicate-decl-specifier (C and Objective-C only)'
- Warn if a declaration has duplicate 'const', 'volatile', 'restrict'
- or '_Atomic' specifier. This warning is enabled by '-Wall'.
- '-Wformat'
- '-Wformat=N'
- Check calls to 'printf' and 'scanf', etc., to make sure that the
- arguments supplied have types appropriate to the format string
- specified, and that the conversions specified in the format string
- make sense. This includes standard functions, and others specified
- by format attributes (*note Function Attributes::), in the
- 'printf', 'scanf', 'strftime' and 'strfmon' (an X/Open extension,
- not in the C standard) families (or other target-specific
- families). Which functions are checked without format attributes
- having been specified depends on the standard version selected, and
- such checks of functions without the attribute specified are
- disabled by '-ffreestanding' or '-fno-builtin'.
- The formats are checked against the format features supported by
- GNU libc version 2.2. These include all ISO C90 and C99 features,
- as well as features from the Single Unix Specification and some BSD
- and GNU extensions. Other library implementations may not support
- all these features; GCC does not support warning about features
- that go beyond a particular library's limitations. However, if
- '-Wpedantic' is used with '-Wformat', warnings are given about
- format features not in the selected standard version (but not for
- 'strfmon' formats, since those are not in any version of the C
- standard). *Note Options Controlling C Dialect: C Dialect Options.
- '-Wformat=1'
- '-Wformat'
- Option '-Wformat' is equivalent to '-Wformat=1', and
- '-Wno-format' is equivalent to '-Wformat=0'. Since '-Wformat'
- also checks for null format arguments for several functions,
- '-Wformat' also implies '-Wnonnull'. Some aspects of this
- level of format checking can be disabled by the options:
- '-Wno-format-contains-nul', '-Wno-format-extra-args', and
- '-Wno-format-zero-length'. '-Wformat' is enabled by '-Wall'.
- '-Wno-format-contains-nul'
- If '-Wformat' is specified, do not warn about format strings
- that contain NUL bytes.
- '-Wno-format-extra-args'
- If '-Wformat' is specified, do not warn about excess arguments
- to a 'printf' or 'scanf' format function. The C standard
- specifies that such arguments are ignored.
- Where the unused arguments lie between used arguments that are
- specified with '$' operand number specifications, normally
- warnings are still given, since the implementation could not
- know what type to pass to 'va_arg' to skip the unused
- arguments. However, in the case of 'scanf' formats, this
- option suppresses the warning if the unused arguments are all
- pointers, since the Single Unix Specification says that such
- unused arguments are allowed.
- '-Wformat-overflow'
- '-Wformat-overflow=LEVEL'
- Warn about calls to formatted input/output functions such as
- 'sprintf' and 'vsprintf' that might overflow the destination
- buffer. When the exact number of bytes written by a format
- directive cannot be determined at compile-time it is estimated
- based on heuristics that depend on the LEVEL argument and on
- optimization. While enabling optimization will in most cases
- improve the accuracy of the warning, it may also result in
- false positives.
- '-Wformat-overflow'
- '-Wformat-overflow=1'
- Level 1 of '-Wformat-overflow' enabled by '-Wformat'
- employs a conservative approach that warns only about
- calls that most likely overflow the buffer. At this
- level, numeric arguments to format directives with
- unknown values are assumed to have the value of one, and
- strings of unknown length to be empty. Numeric arguments
- that are known to be bounded to a subrange of their type,
- or string arguments whose output is bounded either by
- their directive's precision or by a finite set of string
- literals, are assumed to take on the value within the
- range that results in the most bytes on output. For
- example, the call to 'sprintf' below is diagnosed because
- even with both A and B equal to zero, the terminating NUL
- character (''\0'') appended by the function to the
- destination buffer will be written past its end.
- Increasing the size of the buffer by a single byte is
- sufficient to avoid the warning, though it may not be
- sufficient to avoid the overflow.
- void f (int a, int b)
- {
- char buf [13];
- sprintf (buf, "a = %i, b = %i\n", a, b);
- }
- '-Wformat-overflow=2'
- Level 2 warns also about calls that might overflow the
- destination buffer given an argument of sufficient length
- or magnitude. At level 2, unknown numeric arguments are
- assumed to have the minimum representable value for
- signed types with a precision greater than 1, and the
- maximum representable value otherwise. Unknown string
- arguments whose length cannot be assumed to be bounded
- either by the directive's precision, or by a finite set
- of string literals they may evaluate to, or the character
- array they may point to, are assumed to be 1 character
- long.
- At level 2, the call in the example above is again
- diagnosed, but this time because with A equal to a 32-bit
- 'INT_MIN' the first '%i' directive will write some of its
- digits beyond the end of the destination buffer. To make
- the call safe regardless of the values of the two
- variables, the size of the destination buffer must be
- increased to at least 34 bytes. GCC includes the minimum
- size of the buffer in an informational note following the
- warning.
- An alternative to increasing the size of the destination
- buffer is to constrain the range of formatted values.
- The maximum length of string arguments can be bounded by
- specifying the precision in the format directive. When
- numeric arguments of format directives can be assumed to
- be bounded by less than the precision of their type,
- choosing an appropriate length modifier to the format
- specifier will reduce the required buffer size. For
- example, if A and B in the example above can be assumed
- to be within the precision of the 'short int' type then
- using either the '%hi' format directive or casting the
- argument to 'short' reduces the maximum required size of
- the buffer to 24 bytes.
- void f (int a, int b)
- {
- char buf [23];
- sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
- }
- '-Wno-format-zero-length'
- If '-Wformat' is specified, do not warn about zero-length
- formats. The C standard specifies that zero-length formats
- are allowed.
- '-Wformat=2'
- Enable '-Wformat' plus additional format checks. Currently
- equivalent to '-Wformat -Wformat-nonliteral -Wformat-security
- -Wformat-y2k'.
- '-Wformat-nonliteral'
- If '-Wformat' is specified, also warn if the format string is
- not a string literal and so cannot be checked, unless the
- format function takes its format arguments as a 'va_list'.
- '-Wformat-security'
- If '-Wformat' is specified, also warn about uses of format
- functions that represent possible security problems. At
- present, this warns about calls to 'printf' and 'scanf'
- functions where the format string is not a string literal and
- there are no format arguments, as in 'printf (foo);'. This
- may be a security hole if the format string came from
- untrusted input and contains '%n'. (This is currently a
- subset of what '-Wformat-nonliteral' warns about, but in
- future warnings may be added to '-Wformat-security' that are
- not included in '-Wformat-nonliteral'.)
- '-Wformat-signedness'
- If '-Wformat' is specified, also warn if the format string
- requires an unsigned argument and the argument is signed and
- vice versa.
- '-Wformat-truncation'
- '-Wformat-truncation=LEVEL'
- Warn about calls to formatted input/output functions such as
- 'snprintf' and 'vsnprintf' that might result in output
- truncation. When the exact number of bytes written by a
- format directive cannot be determined at compile-time it is
- estimated based on heuristics that depend on the LEVEL
- argument and on optimization. While enabling optimization
- will in most cases improve the accuracy of the warning, it may
- also result in false positives. Except as noted otherwise,
- the option uses the same logic '-Wformat-overflow'.
- '-Wformat-truncation'
- '-Wformat-truncation=1'
- Level 1 of '-Wformat-truncation' enabled by '-Wformat'
- employs a conservative approach that warns only about
- calls to bounded functions whose return value is unused
- and that will most likely result in output truncation.
- '-Wformat-truncation=2'
- Level 2 warns also about calls to bounded functions whose
- return value is used and that might result in truncation
- given an argument of sufficient length or magnitude.
- '-Wformat-y2k'
- If '-Wformat' is specified, also warn about 'strftime' formats
- that may yield only a two-digit year.
- '-Wnonnull'
- Warn about passing a null pointer for arguments marked as requiring
- a non-null value by the 'nonnull' function attribute.
- '-Wnonnull' is included in '-Wall' and '-Wformat'. It can be
- disabled with the '-Wno-nonnull' option.
- '-Wnonnull-compare'
- Warn when comparing an argument marked with the 'nonnull' function
- attribute against null inside the function.
- '-Wnonnull-compare' is included in '-Wall'. It can be disabled
- with the '-Wno-nonnull-compare' option.
- '-Wnull-dereference'
- Warn if the compiler detects paths that trigger erroneous or
- undefined behavior due to dereferencing a null pointer. This
- option is only active when '-fdelete-null-pointer-checks' is
- active, which is enabled by optimizations in most targets. The
- precision of the warnings depends on the optimization options used.
- '-Winit-self (C, C++, Objective-C and Objective-C++ only)'
- Warn about uninitialized variables that are initialized with
- themselves. Note this option can only be used with the
- '-Wuninitialized' option.
- For example, GCC warns about 'i' being uninitialized in the
- following snippet only when '-Winit-self' has been specified:
- int f()
- {
- int i = i;
- return i;
- }
- This warning is enabled by '-Wall' in C++.
- '-Wimplicit-int (C and Objective-C only)'
- Warn when a declaration does not specify a type. This warning is
- enabled by '-Wall'.
- '-Wimplicit-function-declaration (C and Objective-C only)'
- Give a warning whenever a function is used before being declared.
- In C99 mode ('-std=c99' or '-std=gnu99'), this warning is enabled
- by default and it is made into an error by '-pedantic-errors'.
- This warning is also enabled by '-Wall'.
- '-Wimplicit (C and Objective-C only)'
- Same as '-Wimplicit-int' and '-Wimplicit-function-declaration'.
- This warning is enabled by '-Wall'.
- '-Wimplicit-fallthrough'
- '-Wimplicit-fallthrough' is the same as '-Wimplicit-fallthrough=3'
- and '-Wno-implicit-fallthrough' is the same as
- '-Wimplicit-fallthrough=0'.
- '-Wimplicit-fallthrough=N'
- Warn when a switch case falls through. For example:
- switch (cond)
- {
- case 1:
- a = 1;
- break;
- case 2:
- a = 2;
- case 3:
- a = 3;
- break;
- }
- This warning does not warn when the last statement of a case cannot
- fall through, e.g. when there is a return statement or a call to
- function declared with the noreturn attribute.
- '-Wimplicit-fallthrough=' also takes into account control flow
- statements, such as ifs, and only warns when appropriate. E.g.
- switch (cond)
- {
- case 1:
- if (i > 3) {
- bar (5);
- break;
- } else if (i < 1) {
- bar (0);
- } else
- return;
- default:
- ...
- }
- Since there are occasions where a switch case fall through is
- desirable, GCC provides an attribute, '__attribute__
- ((fallthrough))', that is to be used along with a null statement to
- suppress this warning that would normally occur:
- switch (cond)
- {
- case 1:
- bar (0);
- __attribute__ ((fallthrough));
- default:
- ...
- }
- C++17 provides a standard way to suppress the
- '-Wimplicit-fallthrough' warning using '[[fallthrough]];' instead
- of the GNU attribute. In C++11 or C++14 users can use
- '[[gnu::fallthrough]];', which is a GNU extension. Instead of
- these attributes, it is also possible to add a fallthrough comment
- to silence the warning. The whole body of the C or C++ style
- comment should match the given regular expressions listed below.
- The option argument N specifies what kind of comments are accepted:
- * '-Wimplicit-fallthrough=0' disables the warning altogether.
- * '-Wimplicit-fallthrough=1' matches '.*' regular expression,
- any comment is used as fallthrough comment.
- * '-Wimplicit-fallthrough=2' case insensitively matches
- '.*falls?[ \t-]*thr(ough|u).*' regular expression.
- * '-Wimplicit-fallthrough=3' case sensitively matches one of the
- following regular expressions:
- * '-fallthrough'
- * '@fallthrough@'
- * 'lint -fallthrough[ \t]*'
- * '[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?
- FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?'
- * '[ \t.!]*(Else,? |Intentional(ly)? )?
- Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?'
- * '[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?
- fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?'
- * '-Wimplicit-fallthrough=4' case sensitively matches one of the
- following regular expressions:
- * '-fallthrough'
- * '@fallthrough@'
- * 'lint -fallthrough[ \t]*'
- * '[ \t]*FALLTHR(OUGH|U)[ \t]*'
- * '-Wimplicit-fallthrough=5' doesn't recognize any comments as
- fallthrough comments, only attributes disable the warning.
- The comment needs to be followed after optional whitespace and
- other comments by 'case' or 'default' keywords or by a user label
- that precedes some 'case' or 'default' label.
- switch (cond)
- {
- case 1:
- bar (0);
- /* FALLTHRU */
- default:
- ...
- }
- The '-Wimplicit-fallthrough=3' warning is enabled by '-Wextra'.
- '-Wif-not-aligned (C, C++, Objective-C and Objective-C++ only)'
- Control if warning triggered by the 'warn_if_not_aligned' attribute
- should be issued. This is enabled by default. Use
- '-Wno-if-not-aligned' to disable it.
- '-Wignored-qualifiers (C and C++ only)'
- Warn if the return type of a function has a type qualifier such as
- 'const'. For ISO C such a type qualifier has no effect, since the
- value returned by a function is not an lvalue. For C++, the
- warning is only emitted for scalar types or 'void'. ISO C
- prohibits qualified 'void' return types on function definitions, so
- such return types always receive a warning even without this
- option.
- This warning is also enabled by '-Wextra'.
- '-Wignored-attributes (C and C++ only)'
- Warn when an attribute is ignored. This is different from the
- '-Wattributes' option in that it warns whenever the compiler
- decides to drop an attribute, not that the attribute is either
- unknown, used in a wrong place, etc. This warning is enabled by
- default.
- '-Wmain'
- Warn if the type of 'main' is suspicious. 'main' should be a
- function with external linkage, returning int, taking either zero
- arguments, two, or three arguments of appropriate types. This
- warning is enabled by default in C++ and is enabled by either
- '-Wall' or '-Wpedantic'.
- '-Wmisleading-indentation (C and C++ only)'
- Warn when the indentation of the code does not reflect the block
- structure. Specifically, a warning is issued for 'if', 'else',
- 'while', and 'for' clauses with a guarded statement that does not
- use braces, followed by an unguarded statement with the same
- indentation.
- In the following example, the call to "bar" is misleadingly
- indented as if it were guarded by the "if" conditional.
- if (some_condition ())
- foo ();
- bar (); /* Gotcha: this is not guarded by the "if". */
- In the case of mixed tabs and spaces, the warning uses the
- '-ftabstop=' option to determine if the statements line up
- (defaulting to 8).
- The warning is not issued for code involving multiline preprocessor
- logic such as the following example.
- if (flagA)
- foo (0);
- #if SOME_CONDITION_THAT_DOES_NOT_HOLD
- if (flagB)
- #endif
- foo (1);
- The warning is not issued after a '#line' directive, since this
- typically indicates autogenerated code, and no assumptions can be
- made about the layout of the file that the directive references.
- This warning is enabled by '-Wall' in C and C++.
- '-Wmissing-attributes'
- Warn when a declaration of a function is missing one or more
- attributes that a related function is declared with and whose
- absence may adversely affect the correctness or efficiency of
- generated code. For example, in C++, the warning is issued when an
- explicit specialization of a primary template declared with
- attribute 'alloc_align', 'alloc_size', 'assume_aligned', 'format',
- 'format_arg', 'malloc', or 'nonnull' is declared without it.
- Attributes 'deprecated', 'error', and 'warning' suppress the
- warning. (*note Function Attributes::).
- '-Wmissing-attributes' is enabled by '-Wall'.
- For example, since the declaration of the primary function template
- below makes use of both attribute 'malloc' and 'alloc_size' the
- declaration of the explicit specialization of the template is
- diagnosed because it is missing one of the attributes.
- template <class T>
- T* __attribute__ ((malloc, alloc_size (1)))
- allocate (size_t);
- template <>
- void* __attribute__ ((malloc)) // missing alloc_size
- allocate<void> (size_t);
- '-Wmissing-braces'
- Warn if an aggregate or union initializer is not fully bracketed.
- In the following example, the initializer for 'a' is not fully
- bracketed, but that for 'b' is fully bracketed. This warning is
- enabled by '-Wall' in C.
- int a[2][2] = { 0, 1, 2, 3 };
- int b[2][2] = { { 0, 1 }, { 2, 3 } };
- This warning is enabled by '-Wall'.
- '-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)'
- Warn if a user-supplied include directory does not exist.
- '-Wmultistatement-macros'
- Warn about unsafe multiple statement macros that appear to be
- guarded by a clause such as 'if', 'else', 'for', 'switch', or
- 'while', in which only the first statement is actually guarded
- after the macro is expanded.
- For example:
- #define DOIT x++; y++
- if (c)
- DOIT;
- will increment 'y' unconditionally, not just when 'c' holds. The
- can usually be fixed by wrapping the macro in a do-while loop:
- #define DOIT do { x++; y++; } while (0)
- if (c)
- DOIT;
- This warning is enabled by '-Wall' in C and C++.
- '-Wparentheses'
- Warn if parentheses are omitted in certain contexts, such as when
- there is an assignment in a context where a truth value is
- expected, or when operators are nested whose precedence people
- often get confused about.
- Also warn if a comparison like 'x<=y<=z' appears; this is
- equivalent to '(x<=y ? 1 : 0) <= z', which is a different
- interpretation from that of ordinary mathematical notation.
- Also warn for dangerous uses of the GNU extension to '?:' with
- omitted middle operand. When the condition in the '?': operator is
- a boolean expression, the omitted value is always 1. Often
- programmers expect it to be a value computed inside the conditional
- expression instead.
- For C++ this also warns for some cases of unnecessary parentheses
- in declarations, which can indicate an attempt at a function call
- instead of a declaration:
- {
- // Declares a local variable called mymutex.
- std::unique_lock<std::mutex> (mymutex);
- // User meant std::unique_lock<std::mutex> lock (mymutex);
- }
- This warning is enabled by '-Wall'.
- '-Wsequence-point'
- Warn about code that may have undefined semantics because of
- violations of sequence point rules in the C and C++ standards.
- The C and C++ standards define the order in which expressions in a
- C/C++ program are evaluated in terms of "sequence points", which
- represent a partial ordering between the execution of parts of the
- program: those executed before the sequence point, and those
- executed after it. These occur after the evaluation of a full
- expression (one which is not part of a larger expression), after
- the evaluation of the first operand of a '&&', '||', '? :' or ','
- (comma) operator, before a function is called (but after the
- evaluation of its arguments and the expression denoting the called
- function), and in certain other places. Other than as expressed by
- the sequence point rules, the order of evaluation of subexpressions
- of an expression is not specified. All these rules describe only a
- partial order rather than a total order, since, for example, if two
- functions are called within one expression with no sequence point
- between them, the order in which the functions are called is not
- specified. However, the standards committee have ruled that
- function calls do not overlap.
- It is not specified when between sequence points modifications to
- the values of objects take effect. Programs whose behavior depends
- on this have undefined behavior; the C and C++ standards specify
- that "Between the previous and next sequence point an object shall
- have its stored value modified at most once by the evaluation of an
- expression. Furthermore, the prior value shall be read only to
- determine the value to be stored.". If a program breaks these
- rules, the results on any particular implementation are entirely
- unpredictable.
- Examples of code with undefined behavior are 'a = a++;', 'a[n] =
- b[n++]' and 'a[i++] = i;'. Some more complicated cases are not
- diagnosed by this option, and it may give an occasional false
- positive result, but in general it has been found fairly effective
- at detecting this sort of problem in programs.
- The C++17 standard will define the order of evaluation of operands
- in more cases: in particular it requires that the right-hand side
- of an assignment be evaluated before the left-hand side, so the
- above examples are no longer undefined. But this warning will
- still warn about them, to help people avoid writing code that is
- undefined in C and earlier revisions of C++.
- The standard is worded confusingly, therefore there is some debate
- over the precise meaning of the sequence point rules in subtle
- cases. Links to discussions of the problem, including proposed
- formal definitions, may be found on the GCC readings page, at
- <http://gcc.gnu.org/readings.html>.
- This warning is enabled by '-Wall' for C and C++.
- '-Wno-return-local-addr'
- Do not warn about returning a pointer (or in C++, a reference) to a
- variable that goes out of scope after the function returns.
- '-Wreturn-type'
- Warn whenever a function is defined with a return type that
- defaults to 'int'. Also warn about any 'return' statement with no
- return value in a function whose return type is not 'void' (falling
- off the end of the function body is considered returning without a
- value).
- For C only, warn about a 'return' statement with an expression in a
- function whose return type is 'void', unless the expression type is
- also 'void'. As a GNU extension, the latter case is accepted
- without a warning unless '-Wpedantic' is used.
- For C++, a function without return type always produces a
- diagnostic message, even when '-Wno-return-type' is specified. The
- only exceptions are 'main' and functions defined in system headers.
- This warning is enabled by default for C++ and is enabled by
- '-Wall'.
- '-Wshift-count-negative'
- Warn if shift count is negative. This warning is enabled by
- default.
- '-Wshift-count-overflow'
- Warn if shift count >= width of type. This warning is enabled by
- default.
- '-Wshift-negative-value'
- Warn if left shifting a negative value. This warning is enabled by
- '-Wextra' in C99 and C++11 modes (and newer).
- '-Wshift-overflow'
- '-Wshift-overflow=N'
- Warn about left shift overflows. This warning is enabled by
- default in C99 and C++11 modes (and newer).
- '-Wshift-overflow=1'
- This is the warning level of '-Wshift-overflow' and is enabled
- by default in C99 and C++11 modes (and newer). This warning
- level does not warn about left-shifting 1 into the sign bit.
- (However, in C, such an overflow is still rejected in contexts
- where an integer constant expression is required.)
- '-Wshift-overflow=2'
- This warning level also warns about left-shifting 1 into the
- sign bit, unless C++14 mode is active.
- '-Wswitch'
- Warn whenever a 'switch' statement has an index of enumerated type
- and lacks a 'case' for one or more of the named codes of that
- enumeration. (The presence of a 'default' label prevents this
- warning.) 'case' labels outside the enumeration range also provoke
- warnings when this option is used (even if there is a 'default'
- label). This warning is enabled by '-Wall'.
- '-Wswitch-default'
- Warn whenever a 'switch' statement does not have a 'default' case.
- '-Wswitch-enum'
- Warn whenever a 'switch' statement has an index of enumerated type
- and lacks a 'case' for one or more of the named codes of that
- enumeration. 'case' labels outside the enumeration range also
- provoke warnings when this option is used. The only difference
- between '-Wswitch' and this option is that this option gives a
- warning about an omitted enumeration code even if there is a
- 'default' label.
- '-Wswitch-bool'
- Warn whenever a 'switch' statement has an index of boolean type and
- the case values are outside the range of a boolean type. It is
- possible to suppress this warning by casting the controlling
- expression to a type other than 'bool'. For example:
- switch ((int) (a == 4))
- {
- ...
- }
- This warning is enabled by default for C and C++ programs.
- '-Wswitch-unreachable'
- Warn whenever a 'switch' statement contains statements between the
- controlling expression and the first case label, which will never
- be executed. For example:
- switch (cond)
- {
- i = 15;
- ...
- case 5:
- ...
- }
- '-Wswitch-unreachable' does not warn if the statement between the
- controlling expression and the first case label is just a
- declaration:
- switch (cond)
- {
- int i;
- ...
- case 5:
- i = 5;
- ...
- }
- This warning is enabled by default for C and C++ programs.
- '-Wsync-nand (C and C++ only)'
- Warn when '__sync_fetch_and_nand' and '__sync_nand_and_fetch'
- built-in functions are used. These functions changed semantics in
- GCC 4.4.
- '-Wunused-but-set-parameter'
- Warn whenever a function parameter is assigned to, but otherwise
- unused (aside from its declaration).
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
- This warning is also enabled by '-Wunused' together with '-Wextra'.
- '-Wunused-but-set-variable'
- Warn whenever a local variable is assigned to, but otherwise unused
- (aside from its declaration). This warning is enabled by '-Wall'.
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
- This warning is also enabled by '-Wunused', which is enabled by
- '-Wall'.
- '-Wunused-function'
- Warn whenever a static function is declared but not defined or a
- non-inline static function is unused. This warning is enabled by
- '-Wall'.
- '-Wunused-label'
- Warn whenever a label is declared but not used. This warning is
- enabled by '-Wall'.
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
- '-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)'
- Warn when a typedef locally defined in a function is not used.
- This warning is enabled by '-Wall'.
- '-Wunused-parameter'
- Warn whenever a function parameter is unused aside from its
- declaration.
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
- '-Wno-unused-result'
- Do not warn if a caller of a function marked with attribute
- 'warn_unused_result' (*note Function Attributes::) does not use its
- return value. The default is '-Wunused-result'.
- '-Wunused-variable'
- Warn whenever a local or static variable is unused aside from its
- declaration. This option implies '-Wunused-const-variable=1' for
- C, but not for C++. This warning is enabled by '-Wall'.
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
- '-Wunused-const-variable'
- '-Wunused-const-variable=N'
- Warn whenever a constant static variable is unused aside from its
- declaration. '-Wunused-const-variable=1' is enabled by
- '-Wunused-variable' for C, but not for C++. In C this declares
- variable storage, but in C++ this is not an error since const
- variables take the place of '#define's.
- To suppress this warning use the 'unused' attribute (*note Variable
- Attributes::).
- '-Wunused-const-variable=1'
- This is the warning level that is enabled by
- '-Wunused-variable' for C. It warns only about unused static
- const variables defined in the main compilation unit, but not
- about static const variables declared in any header included.
- '-Wunused-const-variable=2'
- This warning level also warns for unused constant static
- variables in headers (excluding system headers). This is the
- warning level of '-Wunused-const-variable' and must be
- explicitly requested since in C++ this isn't an error and in C
- it might be harder to clean up all headers included.
- '-Wunused-value'
- Warn whenever a statement computes a result that is explicitly not
- used. To suppress this warning cast the unused expression to
- 'void'. This includes an expression-statement or the left-hand
- side of a comma expression that contains no side effects. For
- example, an expression such as 'x[i,j]' causes a warning, while
- 'x[(void)i,j]' does not.
- This warning is enabled by '-Wall'.
- '-Wunused'
- All the above '-Wunused' options combined.
- In order to get a warning about an unused function parameter, you
- must either specify '-Wextra -Wunused' (note that '-Wall' implies
- '-Wunused'), or separately specify '-Wunused-parameter'.
- '-Wuninitialized'
- Warn if an automatic variable is used without first being
- initialized or if a variable may be clobbered by a 'setjmp' call.
- In C++, warn if a non-static reference or non-static 'const' member
- appears in a class without constructors.
- If you want to warn about code that uses the uninitialized value of
- the variable in its own initializer, use the '-Winit-self' option.
- These warnings occur for individual uninitialized or clobbered
- elements of structure, union or array variables as well as for
- variables that are uninitialized or clobbered as a whole. They do
- not occur for variables or elements declared 'volatile'. Because
- these warnings depend on optimization, the exact variables or
- elements for which there are warnings depends on the precise
- optimization options and version of GCC used.
- Note that there may be no warning about a variable that is used
- only to compute a value that itself is never used, because such
- computations may be deleted by data flow analysis before the
- warnings are printed.
- '-Winvalid-memory-model'
- Warn for invocations of *note __atomic Builtins::, *note __sync
- Builtins::, and the C11 atomic generic functions with a memory
- consistency argument that is either invalid for the operation or
- outside the range of values of the 'memory_order' enumeration. For
- example, since the '__atomic_store' and '__atomic_store_n'
- built-ins are only defined for the relaxed, release, and
- sequentially consistent memory orders the following code is
- diagnosed:
- void store (int *i)
- {
- __atomic_store_n (i, 0, memory_order_consume);
- }
- '-Winvalid-memory-model' is enabled by default.
- '-Wmaybe-uninitialized'
- For an automatic (i.e. local) variable, if there exists a path from
- the function entry to a use of the variable that is initialized,
- but there exist some other paths for which the variable is not
- initialized, the compiler emits a warning if it cannot prove the
- uninitialized paths are not executed at run time.
- These warnings are only possible in optimizing compilation, because
- otherwise GCC does not keep track of the state of variables.
- These warnings are made optional because GCC may not be able to
- determine when the code is correct in spite of appearing to have an
- error. Here is one example of how this can happen:
- {
- int x;
- switch (y)
- {
- case 1: x = 1;
- break;
- case 2: x = 4;
- break;
- case 3: x = 5;
- }
- foo (x);
- }
- If the value of 'y' is always 1, 2 or 3, then 'x' is always
- initialized, but GCC doesn't know this. To suppress the warning,
- you need to provide a default case with assert(0) or similar code.
- This option also warns when a non-volatile automatic variable might
- be changed by a call to 'longjmp'. The compiler sees only the
- calls to 'setjmp'. It cannot know where 'longjmp' will be called;
- in fact, a signal handler could call it at any point in the code.
- As a result, you may get a warning even when there is in fact no
- problem because 'longjmp' cannot in fact be called at the place
- that would cause a problem.
- Some spurious warnings can be avoided if you declare all the
- functions you use that never return as 'noreturn'. *Note Function
- Attributes::.
- This warning is enabled by '-Wall' or '-Wextra'.
- '-Wunknown-pragmas'
- Warn when a '#pragma' directive is encountered that is not
- understood by GCC. If this command-line option is used, warnings
- are even issued for unknown pragmas in system header files. This
- is not the case if the warnings are only enabled by the '-Wall'
- command-line option.
- '-Wno-pragmas'
- Do not warn about misuses of pragmas, such as incorrect parameters,
- invalid syntax, or conflicts between pragmas. See also
- '-Wunknown-pragmas'.
- '-Wstrict-aliasing'
- This option is only active when '-fstrict-aliasing' is active. It
- warns about code that might break the strict aliasing rules that
- the compiler is using for optimization. The warning does not catch
- all cases, but does attempt to catch the more common pitfalls. It
- is included in '-Wall'. It is equivalent to '-Wstrict-aliasing=3'
- '-Wstrict-aliasing=n'
- This option is only active when '-fstrict-aliasing' is active. It
- warns about code that might break the strict aliasing rules that
- the compiler is using for optimization. Higher levels correspond
- to higher accuracy (fewer false positives). Higher levels also
- correspond to more effort, similar to the way '-O' works.
- '-Wstrict-aliasing' is equivalent to '-Wstrict-aliasing=3'.
- Level 1: Most aggressive, quick, least accurate. Possibly useful
- when higher levels do not warn but '-fstrict-aliasing' still breaks
- the code, as it has very few false negatives. However, it has many
- false positives. Warns for all pointer conversions between
- possibly incompatible types, even if never dereferenced. Runs in
- the front end only.
- Level 2: Aggressive, quick, not too precise. May still have many
- false positives (not as many as level 1 though), and few false
- negatives (but possibly more than level 1). Unlike level 1, it
- only warns when an address is taken. Warns about incomplete types.
- Runs in the front end only.
- Level 3 (default for '-Wstrict-aliasing'): Should have very few
- false positives and few false negatives. Slightly slower than
- levels 1 or 2 when optimization is enabled. Takes care of the
- common pun+dereference pattern in the front end:
- '*(int*)&some_float'. If optimization is enabled, it also runs in
- the back end, where it deals with multiple statement cases using
- flow-sensitive points-to information. Only warns when the
- converted pointer is dereferenced. Does not warn about incomplete
- types.
- '-Wstrict-overflow'
- '-Wstrict-overflow=N'
- This option is only active when signed overflow is undefined. It
- warns about cases where the compiler optimizes based on the
- assumption that signed overflow does not occur. Note that it does
- not warn about all cases where the code might overflow: it only
- warns about cases where the compiler implements some optimization.
- Thus this warning depends on the optimization level.
- An optimization that assumes that signed overflow does not occur is
- perfectly safe if the values of the variables involved are such
- that overflow never does, in fact, occur. Therefore this warning
- can easily give a false positive: a warning about code that is not
- actually a problem. To help focus on important issues, several
- warning levels are defined. No warnings are issued for the use of
- undefined signed overflow when estimating how many iterations a
- loop requires, in particular when determining whether a loop will
- be executed at all.
- '-Wstrict-overflow=1'
- Warn about cases that are both questionable and easy to avoid.
- For example the compiler simplifies 'x + 1 > x' to '1'. This
- level of '-Wstrict-overflow' is enabled by '-Wall'; higher
- levels are not, and must be explicitly requested.
- '-Wstrict-overflow=2'
- Also warn about other cases where a comparison is simplified
- to a constant. For example: 'abs (x) >= 0'. This can only be
- simplified when signed integer overflow is undefined, because
- 'abs (INT_MIN)' overflows to 'INT_MIN', which is less than
- zero. '-Wstrict-overflow' (with no level) is the same as
- '-Wstrict-overflow=2'.
- '-Wstrict-overflow=3'
- Also warn about other cases where a comparison is simplified.
- For example: 'x + 1 > 1' is simplified to 'x > 0'.
- '-Wstrict-overflow=4'
- Also warn about other simplifications not covered by the above
- cases. For example: '(x * 10) / 5' is simplified to 'x * 2'.
- '-Wstrict-overflow=5'
- Also warn about cases where the compiler reduces the magnitude
- of a constant involved in a comparison. For example: 'x + 2 >
- y' is simplified to 'x + 1 >= y'. This is reported only at
- the highest warning level because this simplification applies
- to many comparisons, so this warning level gives a very large
- number of false positives.
- '-Wstringop-overflow'
- '-Wstringop-overflow=TYPE'
- Warn for calls to string manipulation functions such as 'memcpy'
- and 'strcpy' that are determined to overflow the destination
- buffer. The optional argument is one greater than the type of
- Object Size Checking to perform to determine the size of the
- destination. *Note Object Size Checking::. The argument is
- meaningful only for functions that operate on character arrays but
- not for raw memory functions like 'memcpy' which always make use of
- Object Size type-0. The option also warns for calls that specify a
- size in excess of the largest possible object or at most 'SIZE_MAX
- / 2' bytes. The option produces the best results with optimization
- enabled but can detect a small subset of simple buffer overflows
- even without optimization in calls to the GCC built-in functions
- like '__builtin_memcpy' that correspond to the standard functions.
- In any case, the option warns about just a subset of buffer
- overflows detected by the corresponding overflow checking
- built-ins. For example, the option will issue a warning for the
- 'strcpy' call below because it copies at least 5 characters (the
- string '"blue"' including the terminating NUL) into the buffer of
- size 4.
- enum Color { blue, purple, yellow };
- const char* f (enum Color clr)
- {
- static char buf [4];
- const char *str;
- switch (clr)
- {
- case blue: str = "blue"; break;
- case purple: str = "purple"; break;
- case yellow: str = "yellow"; break;
- }
- return strcpy (buf, str); // warning here
- }
- Option '-Wstringop-overflow=2' is enabled by default.
- '-Wstringop-overflow'
- '-Wstringop-overflow=1'
- The '-Wstringop-overflow=1' option uses type-zero Object Size
- Checking to determine the sizes of destination objects. This
- is the default setting of the option. At this setting the
- option will not warn for writes past the end of subobjects of
- larger objects accessed by pointers unless the size of the
- largest surrounding object is known. When the destination may
- be one of several objects it is assumed to be the largest one
- of them. On Linux systems, when optimization is enabled at
- this setting the option warns for the same code as when the
- '_FORTIFY_SOURCE' macro is defined to a non-zero value.
- '-Wstringop-overflow=2'
- The '-Wstringop-overflow=2' option uses type-one Object Size
- Checking to determine the sizes of destination objects. At
- this setting the option will warn about overflows when writing
- to members of the largest complete objects whose exact size is
- known. It will, however, not warn for excessive writes to the
- same members of unknown objects referenced by pointers since
- they may point to arrays containing unknown numbers of
- elements.
- '-Wstringop-overflow=3'
- The '-Wstringop-overflow=3' option uses type-two Object Size
- Checking to determine the sizes of destination objects. At
- this setting the option warns about overflowing the smallest
- object or data member. This is the most restrictive setting
- of the option that may result in warnings for safe code.
- '-Wstringop-overflow=4'
- The '-Wstringop-overflow=4' option uses type-three Object Size
- Checking to determine the sizes of destination objects. At
- this setting the option will warn about overflowing any data
- members, and when the destination is one of several objects it
- uses the size of the largest of them to decide whether to
- issue a warning. Similarly to '-Wstringop-overflow=3' this
- setting of the option may result in warnings for benign code.
- '-Wstringop-truncation'
- Warn for calls to bounded string manipulation functions such as
- 'strncat', 'strncpy', and 'stpncpy' that may either truncate the
- copied string or leave the destination unchanged.
- In the following example, the call to 'strncat' specifies a bound
- that is less than the length of the source string. As a result,
- the copy of the source will be truncated and so the call is
- diagnosed. To avoid the warning use 'bufsize - strlen (buf) - 1)'
- as the bound.
- void append (char *buf, size_t bufsize)
- {
- strncat (buf, ".txt", 3);
- }
- As another example, the following call to 'strncpy' results in
- copying to 'd' just the characters preceding the terminating NUL,
- without appending the NUL to the end. Assuming the result of
- 'strncpy' is necessarily a NUL-terminated string is a common
- mistake, and so the call is diagnosed. To avoid the warning when
- the result is not expected to be NUL-terminated, call 'memcpy'
- instead.
- void copy (char *d, const char *s)
- {
- strncpy (d, s, strlen (s));
- }
- In the following example, the call to 'strncpy' specifies the size
- of the destination buffer as the bound. If the length of the
- source string is equal to or greater than this size the result of
- the copy will not be NUL-terminated. Therefore, the call is also
- diagnosed. To avoid the warning, specify 'sizeof buf - 1' as the
- bound and set the last element of the buffer to 'NUL'.
- void copy (const char *s)
- {
- char buf[80];
- strncpy (buf, s, sizeof buf);
- ...
- }
- In situations where a character array is intended to store a
- sequence of bytes with no terminating 'NUL' such an array may be
- annotated with attribute 'nonstring' to avoid this warning. Such
- arrays, however, are not suitable arguments to functions that
- expect 'NUL'-terminated strings. To help detect accidental misuses
- of such arrays GCC issues warnings unless it can prove that the use
- is safe. *Note Common Variable Attributes::.
- Option '-Wstringop-truncation' is enabled by '-Wall'.
- '-Wsuggest-attribute=[pure|const|noreturn|format|cold|malloc]'
- Warn for cases where adding an attribute may be beneficial. The
- attributes currently supported are listed below.
- '-Wsuggest-attribute=pure'
- '-Wsuggest-attribute=const'
- '-Wsuggest-attribute=noreturn'
- '-Wsuggest-attribute=malloc'
- Warn about functions that might be candidates for attributes
- 'pure', 'const' or 'noreturn' or 'malloc'. The compiler only
- warns for functions visible in other compilation units or (in
- the case of 'pure' and 'const') if it cannot prove that the
- function returns normally. A function returns normally if it
- doesn't contain an infinite loop or return abnormally by
- throwing, calling 'abort' or trapping. This analysis requires
- option '-fipa-pure-const', which is enabled by default at '-O'
- and higher. Higher optimization levels improve the accuracy
- of the analysis.
- '-Wsuggest-attribute=format'
- '-Wmissing-format-attribute'
- Warn about function pointers that might be candidates for
- 'format' attributes. Note these are only possible candidates,
- not absolute ones. GCC guesses that function pointers with
- 'format' attributes that are used in assignment,
- initialization, parameter passing or return statements should
- have a corresponding 'format' attribute in the resulting type.
- I.e. the left-hand side of the assignment or initialization,
- the type of the parameter variable, or the return type of the
- containing function respectively should also have a 'format'
- attribute to avoid the warning.
- GCC also warns about function definitions that might be
- candidates for 'format' attributes. Again, these are only
- possible candidates. GCC guesses that 'format' attributes
- might be appropriate for any function that calls a function
- like 'vprintf' or 'vscanf', but this might not always be the
- case, and some functions for which 'format' attributes are
- appropriate may not be detected.
- '-Wsuggest-attribute=cold'
- Warn about functions that might be candidates for 'cold'
- attribute. This is based on static detection and generally
- will only warn about functions which always leads to a call to
- another 'cold' function such as wrappers of C++ 'throw' or
- fatal error reporting functions leading to 'abort'.
- '-Wsuggest-final-types'
- Warn about types with virtual methods where code quality would be
- improved if the type were declared with the C++11 'final'
- specifier, or, if possible, declared in an anonymous namespace.
- This allows GCC to more aggressively devirtualize the polymorphic
- calls. This warning is more effective with link time optimization,
- where the information about the class hierarchy graph is more
- complete.
- '-Wsuggest-final-methods'
- Warn about virtual methods where code quality would be improved if
- the method were declared with the C++11 'final' specifier, or, if
- possible, its type were declared in an anonymous namespace or with
- the 'final' specifier. This warning is more effective with
- link-time optimization, where the information about the class
- hierarchy graph is more complete. It is recommended to first
- consider suggestions of '-Wsuggest-final-types' and then rebuild
- with new annotations.
- '-Wsuggest-override'
- Warn about overriding virtual functions that are not marked with
- the override keyword.
- '-Walloc-zero'
- Warn about calls to allocation functions decorated with attribute
- 'alloc_size' that specify zero bytes, including those to the
- built-in forms of the functions 'aligned_alloc', 'alloca',
- 'calloc', 'malloc', and 'realloc'. Because the behavior of these
- functions when called with a zero size differs among
- implementations (and in the case of 'realloc' has been deprecated)
- relying on it may result in subtle portability bugs and should be
- avoided.
- '-Walloc-size-larger-than=N'
- Warn about calls to functions decorated with attribute 'alloc_size'
- that attempt to allocate objects larger than the specified number
- of bytes, or where the result of the size computation in an integer
- type with infinite precision would exceed 'SIZE_MAX / 2'. The
- option argument N may end in one of the standard suffixes
- designating a multiple of bytes such as 'kB' and 'KiB' for kilobyte
- and kibibyte, respectively, 'MB' and 'MiB' for megabyte and
- mebibyte, and so on. '-Walloc-size-larger-than='PTRDIFF_MAX is
- enabled by default. Warnings controlled by the option can be
- disabled by specifying N of SIZE_MAX or more. *Note Function
- Attributes::.
- '-Walloca'
- This option warns on all uses of 'alloca' in the source.
- '-Walloca-larger-than=N'
- This option warns on calls to 'alloca' that are not bounded by a
- controlling predicate limiting its argument of integer type to at
- most N bytes, or calls to 'alloca' where the bound is unknown.
- Arguments of non-integer types are considered unbounded even if
- they appear to be constrained to the expected range.
- For example, a bounded case of 'alloca' could be:
- void func (size_t n)
- {
- void *p;
- if (n <= 1000)
- p = alloca (n);
- else
- p = malloc (n);
- f (p);
- }
- In the above example, passing '-Walloca-larger-than=1000' would not
- issue a warning because the call to 'alloca' is known to be at most
- 1000 bytes. However, if '-Walloca-larger-than=500' were passed,
- the compiler would emit a warning.
- Unbounded uses, on the other hand, are uses of 'alloca' with no
- controlling predicate constraining its integer argument. For
- example:
- void func ()
- {
- void *p = alloca (n);
- f (p);
- }
- If '-Walloca-larger-than=500' were passed, the above would trigger
- a warning, but this time because of the lack of bounds checking.
- Note, that even seemingly correct code involving signed integers
- could cause a warning:
- void func (signed int n)
- {
- if (n < 500)
- {
- p = alloca (n);
- f (p);
- }
- }
- In the above example, N could be negative, causing a larger than
- expected argument to be implicitly cast into the 'alloca' call.
- This option also warns when 'alloca' is used in a loop.
- This warning is not enabled by '-Wall', and is only active when
- '-ftree-vrp' is active (default for '-O2' and above).
- See also '-Wvla-larger-than=N'.
- '-Warray-bounds'
- '-Warray-bounds=N'
- This option is only active when '-ftree-vrp' is active (default for
- '-O2' and above). It warns about subscripts to arrays that are
- always out of bounds. This warning is enabled by '-Wall'.
- '-Warray-bounds=1'
- This is the warning level of '-Warray-bounds' and is enabled
- by '-Wall'; higher levels are not, and must be explicitly
- requested.
- '-Warray-bounds=2'
- This warning level also warns about out of bounds access for
- arrays at the end of a struct and for arrays accessed through
- pointers. This warning level may give a larger number of
- false positives and is deactivated by default.
- '-Wattribute-alias'
- Warn about declarations using the 'alias' and similar attributes
- whose target is incompatible with the type of the alias. *Note
- Declaring Attributes of Functions: Function Attributes.
- '-Wbool-compare'
- Warn about boolean expression compared with an integer value
- different from 'true'/'false'. For instance, the following
- comparison is always false:
- int n = 5;
- ...
- if ((n > 1) == 2) { ... }
- This warning is enabled by '-Wall'.
- '-Wbool-operation'
- Warn about suspicious operations on expressions of a boolean type.
- For instance, bitwise negation of a boolean is very likely a bug in
- the program. For C, this warning also warns about incrementing or
- decrementing a boolean, which rarely makes sense. (In C++,
- decrementing a boolean is always invalid. Incrementing a boolean
- is invalid in C++17, and deprecated otherwise.)
- This warning is enabled by '-Wall'.
- '-Wduplicated-branches'
- Warn when an if-else has identical branches. This warning detects
- cases like
- if (p != NULL)
- return 0;
- else
- return 0;
- It doesn't warn when both branches contain just a null statement.
- This warning also warn for conditional operators:
- int i = x ? *p : *p;
- '-Wduplicated-cond'
- Warn about duplicated conditions in an if-else-if chain. For
- instance, warn for the following code:
- if (p->q != NULL) { ... }
- else if (p->q != NULL) { ... }
- '-Wframe-address'
- Warn when the '__builtin_frame_address' or
- '__builtin_return_address' is called with an argument greater than
- 0. Such calls may return indeterminate values or crash the
- program. The warning is included in '-Wall'.
- '-Wno-discarded-qualifiers (C and Objective-C only)'
- Do not warn if type qualifiers on pointers are being discarded.
- Typically, the compiler warns if a 'const char *' variable is
- passed to a function that takes a 'char *' parameter. This option
- can be used to suppress such a warning.
- '-Wno-discarded-array-qualifiers (C and Objective-C only)'
- Do not warn if type qualifiers on arrays which are pointer targets
- are being discarded. Typically, the compiler warns if a 'const int
- (*)[]' variable is passed to a function that takes a 'int (*)[]'
- parameter. This option can be used to suppress such a warning.
- '-Wno-incompatible-pointer-types (C and Objective-C only)'
- Do not warn when there is a conversion between pointers that have
- incompatible types. This warning is for cases not covered by
- '-Wno-pointer-sign', which warns for pointer argument passing or
- assignment with different signedness.
- '-Wno-int-conversion (C and Objective-C only)'
- Do not warn about incompatible integer to pointer and pointer to
- integer conversions. This warning is about implicit conversions;
- for explicit conversions the warnings '-Wno-int-to-pointer-cast'
- and '-Wno-pointer-to-int-cast' may be used.
- '-Wno-div-by-zero'
- Do not warn about compile-time integer division by zero.
- Floating-point division by zero is not warned about, as it can be a
- legitimate way of obtaining infinities and NaNs.
- '-Wsystem-headers'
- Print warning messages for constructs found in system header files.
- Warnings from system headers are normally suppressed, on the
- assumption that they usually do not indicate real problems and
- would only make the compiler output harder to read. Using this
- command-line option tells GCC to emit warnings from system headers
- as if they occurred in user code. However, note that using '-Wall'
- in conjunction with this option does _not_ warn about unknown
- pragmas in system headers--for that, '-Wunknown-pragmas' must also
- be used.
- '-Wtautological-compare'
- Warn if a self-comparison always evaluates to true or false. This
- warning detects various mistakes such as:
- int i = 1;
- ...
- if (i > i) { ... }
- This warning also warns about bitwise comparisons that always
- evaluate to true or false, for instance:
- if ((a & 16) == 10) { ... }
- will always be false.
- This warning is enabled by '-Wall'.
- '-Wtrampolines'
- Warn about trampolines generated for pointers to nested functions.
- A trampoline is a small piece of data or code that is created at
- run time on the stack when the address of a nested function is
- taken, and is used to call the nested function indirectly. For
- some targets, it is made up of data only and thus requires no
- special treatment. But, for most targets, it is made up of code
- and thus requires the stack to be made executable in order for the
- program to work properly.
- '-Wfloat-equal'
- Warn if floating-point values are used in equality comparisons.
- The idea behind this is that sometimes it is convenient (for the
- programmer) to consider floating-point values as approximations to
- infinitely precise real numbers. If you are doing this, then you
- need to compute (by analyzing the code, or in some other way) the
- maximum or likely maximum error that the computation introduces,
- and allow for it when performing comparisons (and when producing
- output, but that's a different problem). In particular, instead of
- testing for equality, you should check to see whether the two
- values have ranges that overlap; and this is done with the
- relational operators, so equality comparisons are probably
- mistaken.
- '-Wtraditional (C and Objective-C only)'
- Warn about certain constructs that behave differently in
- traditional and ISO C. Also warn about ISO C constructs that have
- no traditional C equivalent, and/or problematic constructs that
- should be avoided.
- * Macro parameters that appear within string literals in the
- macro body. In traditional C macro replacement takes place
- within string literals, but in ISO C it does not.
- * In traditional C, some preprocessor directives did not exist.
- Traditional preprocessors only considered a line to be a
- directive if the '#' appeared in column 1 on the line.
- Therefore '-Wtraditional' warns about directives that
- traditional C understands but ignores because the '#' does not
- appear as the first character on the line. It also suggests
- you hide directives like '#pragma' not understood by
- traditional C by indenting them. Some traditional
- implementations do not recognize '#elif', so this option
- suggests avoiding it altogether.
- * A function-like macro that appears without arguments.
- * The unary plus operator.
- * The 'U' integer constant suffix, or the 'F' or 'L'
- floating-point constant suffixes. (Traditional C does support
- the 'L' suffix on integer constants.) Note, these suffixes
- appear in macros defined in the system headers of most modern
- systems, e.g. the '_MIN'/'_MAX' macros in '<limits.h>'. Use
- of these macros in user code might normally lead to spurious
- warnings, however GCC's integrated preprocessor has enough
- context to avoid warning in these cases.
- * A function declared external in one block and then used after
- the end of the block.
- * A 'switch' statement has an operand of type 'long'.
- * A non-'static' function declaration follows a 'static' one.
- This construct is not accepted by some traditional C
- compilers.
- * The ISO type of an integer constant has a different width or
- signedness from its traditional type. This warning is only
- issued if the base of the constant is ten. I.e. hexadecimal
- or octal values, which typically represent bit patterns, are
- not warned about.
- * Usage of ISO string concatenation is detected.
- * Initialization of automatic aggregates.
- * Identifier conflicts with labels. Traditional C lacks a
- separate namespace for labels.
- * Initialization of unions. If the initializer is zero, the
- warning is omitted. This is done under the assumption that
- the zero initializer in user code appears conditioned on e.g.
- '__STDC__' to avoid missing initializer warnings and relies on
- default initialization to zero in the traditional C case.
- * Conversions by prototypes between fixed/floating-point values
- and vice versa. The absence of these prototypes when
- compiling with traditional C causes serious problems. This is
- a subset of the possible conversion warnings; for the full set
- use '-Wtraditional-conversion'.
- * Use of ISO C style function definitions. This warning
- intentionally is _not_ issued for prototype declarations or
- variadic functions because these ISO C features appear in your
- code when using libiberty's traditional C compatibility
- macros, 'PARAMS' and 'VPARAMS'. This warning is also bypassed
- for nested functions because that feature is already a GCC
- extension and thus not relevant to traditional C
- compatibility.
- '-Wtraditional-conversion (C and Objective-C only)'
- Warn if a prototype causes a type conversion that is different from
- what would happen to the same argument in the absence of a
- prototype. This includes conversions of fixed point to floating
- and vice versa, and conversions changing the width or signedness of
- a fixed-point argument except when the same as the default
- promotion.
- '-Wdeclaration-after-statement (C and Objective-C only)'
- Warn when a declaration is found after a statement in a block.
- This construct, known from C++, was introduced with ISO C99 and is
- by default allowed in GCC. It is not supported by ISO C90. *Note
- Mixed Declarations::.
- '-Wshadow'
- Warn whenever a local variable or type declaration shadows another
- variable, parameter, type, class member (in C++), or instance
- variable (in Objective-C) or whenever a built-in function is
- shadowed. Note that in C++, the compiler warns if a local variable
- shadows an explicit typedef, but not if it shadows a
- struct/class/enum. Same as '-Wshadow=global'.
- '-Wno-shadow-ivar (Objective-C only)'
- Do not warn whenever a local variable shadows an instance variable
- in an Objective-C method.
- '-Wshadow=global'
- The default for '-Wshadow'. Warns for any (global) shadowing.
- '-Wshadow=local'
- Warn when a local variable shadows another local variable or
- parameter. This warning is enabled by '-Wshadow=global'.
- '-Wshadow=compatible-local'
- Warn when a local variable shadows another local variable or
- parameter whose type is compatible with that of the shadowing
- variable. In C++, type compatibility here means the type of the
- shadowing variable can be converted to that of the shadowed
- variable. The creation of this flag (in addition to
- '-Wshadow=local') is based on the idea that when a local variable
- shadows another one of incompatible type, it is most likely
- intentional, not a bug or typo, as shown in the following example:
- for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
- {
- for (int i = 0; i < N; ++i)
- {
- ...
- }
- ...
- }
- Since the two variable 'i' in the example above have incompatible
- types, enabling only '-Wshadow=compatible-local' will not emit a
- warning. Because their types are incompatible, if a programmer
- accidentally uses one in place of the other, type checking will
- catch that and emit an error or warning. So not warning (about
- shadowing) in this case will not lead to undetected bugs. Use of
- this flag instead of '-Wshadow=local' can possibly reduce the
- number of warnings triggered by intentional shadowing.
- This warning is enabled by '-Wshadow=local'.
- '-Wlarger-than=LEN'
- Warn whenever an object of larger than LEN bytes is defined.
- '-Wframe-larger-than=LEN'
- Warn if the size of a function frame is larger than LEN bytes. The
- computation done to determine the stack frame size is approximate
- and not conservative. The actual requirements may be somewhat
- greater than LEN even if you do not get a warning. In addition,
- any space allocated via 'alloca', variable-length arrays, or
- related constructs is not included by the compiler when determining
- whether or not to issue a warning.
- '-Wno-free-nonheap-object'
- Do not warn when attempting to free an object that was not
- allocated on the heap.
- '-Wstack-usage=LEN'
- Warn if the stack usage of a function might be larger than LEN
- bytes. The computation done to determine the stack usage is
- conservative. Any space allocated via 'alloca', variable-length
- arrays, or related constructs is included by the compiler when
- determining whether or not to issue a warning.
- The message is in keeping with the output of '-fstack-usage'.
- * If the stack usage is fully static but exceeds the specified
- amount, it's:
- warning: stack usage is 1120 bytes
- * If the stack usage is (partly) dynamic but bounded, it's:
- warning: stack usage might be 1648 bytes
- * If the stack usage is (partly) dynamic and not bounded, it's:
- warning: stack usage might be unbounded
- '-Wno-pedantic-ms-format (MinGW targets only)'
- When used in combination with '-Wformat' and '-pedantic' without
- GNU extensions, this option disables the warnings about non-ISO
- 'printf' / 'scanf' format width specifiers 'I32', 'I64', and 'I'
- used on Windows targets, which depend on the MS runtime.
- '-Waligned-new'
- Warn about a new-expression of a type that requires greater
- alignment than the 'alignof(std::max_align_t)' but uses an
- allocation function without an explicit alignment parameter. This
- option is enabled by '-Wall'.
- Normally this only warns about global allocation functions, but
- '-Waligned-new=all' also warns about class member allocation
- functions.
- '-Wplacement-new'
- '-Wplacement-new=N'
- Warn about placement new expressions with undefined behavior, such
- as constructing an object in a buffer that is smaller than the type
- of the object. For example, the placement new expression below is
- diagnosed because it attempts to construct an array of 64 integers
- in a buffer only 64 bytes large.
- char buf [64];
- new (buf) int[64];
- This warning is enabled by default.
- '-Wplacement-new=1'
- This is the default warning level of '-Wplacement-new'. At
- this level the warning is not issued for some strictly
- undefined constructs that GCC allows as extensions for
- compatibility with legacy code. For example, the following
- 'new' expression is not diagnosed at this level even though it
- has undefined behavior according to the C++ standard because
- it writes past the end of the one-element array.
- struct S { int n, a[1]; };
- S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
- new (s->a)int [32]();
- '-Wplacement-new=2'
- At this level, in addition to diagnosing all the same
- constructs as at level 1, a diagnostic is also issued for
- placement new expressions that construct an object in the last
- member of structure whose type is an array of a single element
- and whose size is less than the size of the object being
- constructed. While the previous example would be diagnosed,
- the following construct makes use of the flexible member array
- extension to avoid the warning at level 2.
- struct S { int n, a[]; };
- S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
- new (s->a)int [32]();
- '-Wpointer-arith'
- Warn about anything that depends on the "size of" a function type
- or of 'void'. GNU C assigns these types a size of 1, for
- convenience in calculations with 'void *' pointers and pointers to
- functions. In C++, warn also when an arithmetic operation involves
- 'NULL'. This warning is also enabled by '-Wpedantic'.
- '-Wpointer-compare'
- Warn if a pointer is compared with a zero character constant. This
- usually means that the pointer was meant to be dereferenced. For
- example:
- const char *p = foo ();
- if (p == '\0')
- return 42;
- Note that the code above is invalid in C++11.
- This warning is enabled by default.
- '-Wtype-limits'
- Warn if a comparison is always true or always false due to the
- limited range of the data type, but do not warn for constant
- expressions. For example, warn if an unsigned variable is compared
- against zero with '<' or '>='. This warning is also enabled by
- '-Wextra'.
- '-Wcomment'
- '-Wcomments'
- Warn whenever a comment-start sequence '/*' appears in a '/*'
- comment, or whenever a backslash-newline appears in a '//' comment.
- This warning is enabled by '-Wall'.
- '-Wtrigraphs'
- Warn if any trigraphs are encountered that might change the meaning
- of the program. Trigraphs within comments are not warned about,
- except those that would form escaped newlines.
- This option is implied by '-Wall'. If '-Wall' is not given, this
- option is still enabled unless trigraphs are enabled. To get
- trigraph conversion without warnings, but get the other '-Wall'
- warnings, use '-trigraphs -Wall -Wno-trigraphs'.
- '-Wundef'
- Warn if an undefined identifier is evaluated in an '#if' directive.
- Such identifiers are replaced with zero.
- '-Wexpansion-to-defined'
- Warn whenever 'defined' is encountered in the expansion of a macro
- (including the case where the macro is expanded by an '#if'
- directive). Such usage is not portable. This warning is also
- enabled by '-Wpedantic' and '-Wextra'.
- '-Wunused-macros'
- Warn about macros defined in the main file that are unused. A
- macro is "used" if it is expanded or tested for existence at least
- once. The preprocessor also warns if the macro has not been used
- at the time it is redefined or undefined.
- Built-in macros, macros defined on the command line, and macros
- defined in include files are not warned about.
- _Note:_ If a macro is actually used, but only used in skipped
- conditional blocks, then the preprocessor reports it as unused. To
- avoid the warning in such a case, you might improve the scope of
- the macro's definition by, for example, moving it into the first
- skipped block. Alternatively, you could provide a dummy use with
- something like:
- #if defined the_macro_causing_the_warning
- #endif
- '-Wno-endif-labels'
- Do not warn whenever an '#else' or an '#endif' are followed by
- text. This sometimes happens in older programs with code of the
- form
- #if FOO
- ...
- #else FOO
- ...
- #endif FOO
- The second and third 'FOO' should be in comments. This warning is
- on by default.
- '-Wbad-function-cast (C and Objective-C only)'
- Warn when a function call is cast to a non-matching type. For
- example, warn if a call to a function returning an integer type is
- cast to a pointer type.
- '-Wc90-c99-compat (C and Objective-C only)'
- Warn about features not present in ISO C90, but present in ISO C99.
- For instance, warn about use of variable length arrays, 'long long'
- type, 'bool' type, compound literals, designated initializers, and
- so on. This option is independent of the standards mode. Warnings
- are disabled in the expression that follows '__extension__'.
- '-Wc99-c11-compat (C and Objective-C only)'
- Warn about features not present in ISO C99, but present in ISO C11.
- For instance, warn about use of anonymous structures and unions,
- '_Atomic' type qualifier, '_Thread_local' storage-class specifier,
- '_Alignas' specifier, 'Alignof' operator, '_Generic' keyword, and
- so on. This option is independent of the standards mode. Warnings
- are disabled in the expression that follows '__extension__'.
- '-Wc++-compat (C and Objective-C only)'
- Warn about ISO C constructs that are outside of the common subset
- of ISO C and ISO C++, e.g. request for implicit conversion from
- 'void *' to a pointer to non-'void' type.
- '-Wc++11-compat (C++ and Objective-C++ only)'
- Warn about C++ constructs whose meaning differs between ISO C++
- 1998 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are
- keywords in ISO C++ 2011. This warning turns on '-Wnarrowing' and
- is enabled by '-Wall'.
- '-Wc++14-compat (C++ and Objective-C++ only)'
- Warn about C++ constructs whose meaning differs between ISO C++
- 2011 and ISO C++ 2014. This warning is enabled by '-Wall'.
- '-Wc++17-compat (C++ and Objective-C++ only)'
- Warn about C++ constructs whose meaning differs between ISO C++
- 2014 and ISO C++ 2017. This warning is enabled by '-Wall'.
- '-Wcast-qual'
- Warn whenever a pointer is cast so as to remove a type qualifier
- from the target type. For example, warn if a 'const char *' is
- cast to an ordinary 'char *'.
- Also warn when making a cast that introduces a type qualifier in an
- unsafe way. For example, casting 'char **' to 'const char **' is
- unsafe, as in this example:
- /* p is char ** value. */
- const char **q = (const char **) p;
- /* Assignment of readonly string to const char * is OK. */
- *q = "string";
- /* Now char** pointer points to read-only memory. */
- **p = 'b';
- '-Wcast-align'
- Warn whenever a pointer is cast such that the required alignment of
- the target is increased. For example, warn if a 'char *' is cast
- to an 'int *' on machines where integers can only be accessed at
- two- or four-byte boundaries.
- '-Wcast-align=strict'
- Warn whenever a pointer is cast such that the required alignment of
- the target is increased. For example, warn if a 'char *' is cast
- to an 'int *' regardless of the target machine.
- '-Wcast-function-type'
- Warn when a function pointer is cast to an incompatible function
- pointer. In a cast involving function types with a variable
- argument list only the types of initial arguments that are provided
- are considered. Any parameter of pointer-type matches any other
- pointer-type. Any benign differences in integral types are
- ignored, like 'int' vs. 'long' on ILP32 targets. Likewise type
- qualifiers are ignored. The function type 'void (*) (void)' is
- special and matches everything, which can be used to suppress this
- warning. In a cast involving pointer to member types this warning
- warns whenever the type cast is changing the pointer to member
- type. This warning is enabled by '-Wextra'.
- '-Wwrite-strings'
- When compiling C, give string constants the type 'const
- char[LENGTH]' so that copying the address of one into a non-'const'
- 'char *' pointer produces a warning. These warnings help you find
- at compile time code that can try to write into a string constant,
- but only if you have been very careful about using 'const' in
- declarations and prototypes. Otherwise, it is just a nuisance.
- This is why we did not make '-Wall' request these warnings.
- When compiling C++, warn about the deprecated conversion from
- string literals to 'char *'. This warning is enabled by default
- for C++ programs.
- '-Wcatch-value'
- '-Wcatch-value=N (C++ and Objective-C++ only)'
- Warn about catch handlers that do not catch via reference. With
- '-Wcatch-value=1' (or '-Wcatch-value' for short) warn about
- polymorphic class types that are caught by value. With
- '-Wcatch-value=2' warn about all class types that are caught by
- value. With '-Wcatch-value=3' warn about all types that are not
- caught by reference. '-Wcatch-value' is enabled by '-Wall'.
- '-Wclobbered'
- Warn for variables that might be changed by 'longjmp' or 'vfork'.
- This warning is also enabled by '-Wextra'.
- '-Wconditionally-supported (C++ and Objective-C++ only)'
- Warn for conditionally-supported (C++11 [intro.defs]) constructs.
- '-Wconversion'
- Warn for implicit conversions that may alter a value. This
- includes conversions between real and integer, like 'abs (x)' when
- 'x' is 'double'; conversions between signed and unsigned, like
- 'unsigned ui = -1'; and conversions to smaller types, like 'sqrtf
- (M_PI)'. Do not warn for explicit casts like 'abs ((int) x)' and
- 'ui = (unsigned) -1', or if the value is not changed by the
- conversion like in 'abs (2.0)'. Warnings about conversions between
- signed and unsigned integers can be disabled by using
- '-Wno-sign-conversion'.
- For C++, also warn for confusing overload resolution for
- user-defined conversions; and conversions that never use a type
- conversion operator: conversions to 'void', the same type, a base
- class or a reference to them. Warnings about conversions between
- signed and unsigned integers are disabled by default in C++ unless
- '-Wsign-conversion' is explicitly enabled.
- '-Wno-conversion-null (C++ and Objective-C++ only)'
- Do not warn for conversions between 'NULL' and non-pointer types.
- '-Wconversion-null' is enabled by default.
- '-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)'
- Warn when a literal '0' is used as null pointer constant. This can
- be useful to facilitate the conversion to 'nullptr' in C++11.
- '-Wsubobject-linkage (C++ and Objective-C++ only)'
- Warn if a class type has a base or a field whose type uses the
- anonymous namespace or depends on a type with no linkage. If a
- type A depends on a type B with no or internal linkage, defining it
- in multiple translation units would be an ODR violation because the
- meaning of B is different in each translation unit. If A only
- appears in a single translation unit, the best way to silence the
- warning is to give it internal linkage by putting it in an
- anonymous namespace as well. The compiler doesn't give this
- warning for types defined in the main .C file, as those are
- unlikely to have multiple definitions. '-Wsubobject-linkage' is
- enabled by default.
- '-Wdangling-else'
- Warn about constructions where there may be confusion to which 'if'
- statement an 'else' branch belongs. Here is an example of such a
- case:
- {
- if (a)
- if (b)
- foo ();
- else
- bar ();
- }
- In C/C++, every 'else' branch belongs to the innermost possible
- 'if' statement, which in this example is 'if (b)'. This is often
- not what the programmer expected, as illustrated in the above
- example by indentation the programmer chose. When there is the
- potential for this confusion, GCC issues a warning when this flag
- is specified. To eliminate the warning, add explicit braces around
- the innermost 'if' statement so there is no way the 'else' can
- belong to the enclosing 'if'. The resulting code looks like this:
- {
- if (a)
- {
- if (b)
- foo ();
- else
- bar ();
- }
- }
- This warning is enabled by '-Wparentheses'.
- '-Wdate-time'
- Warn when macros '__TIME__', '__DATE__' or '__TIMESTAMP__' are
- encountered as they might prevent bit-wise-identical reproducible
- compilations.
- '-Wdelete-incomplete (C++ and Objective-C++ only)'
- Warn when deleting a pointer to incomplete type, which may cause
- undefined behavior at runtime. This warning is enabled by default.
- '-Wuseless-cast (C++ and Objective-C++ only)'
- Warn when an expression is casted to its own type.
- '-Wempty-body'
- Warn if an empty body occurs in an 'if', 'else' or 'do while'
- statement. This warning is also enabled by '-Wextra'.
- '-Wenum-compare'
- Warn about a comparison between values of different enumerated
- types. In C++ enumerated type mismatches in conditional
- expressions are also diagnosed and the warning is enabled by
- default. In C this warning is enabled by '-Wall'.
- '-Wextra-semi (C++, Objective-C++ only)'
- Warn about redundant semicolon after in-class function definition.
- '-Wjump-misses-init (C, Objective-C only)'
- Warn if a 'goto' statement or a 'switch' statement jumps forward
- across the initialization of a variable, or jumps backward to a
- label after the variable has been initialized. This only warns
- about variables that are initialized when they are declared. This
- warning is only supported for C and Objective-C; in C++ this sort
- of branch is an error in any case.
- '-Wjump-misses-init' is included in '-Wc++-compat'. It can be
- disabled with the '-Wno-jump-misses-init' option.
- '-Wsign-compare'
- Warn when a comparison between signed and unsigned values could
- produce an incorrect result when the signed value is converted to
- unsigned. In C++, this warning is also enabled by '-Wall'. In C,
- it is also enabled by '-Wextra'.
- '-Wsign-conversion'
- Warn for implicit conversions that may change the sign of an
- integer value, like assigning a signed integer expression to an
- unsigned integer variable. An explicit cast silences the warning.
- In C, this option is enabled also by '-Wconversion'.
- '-Wfloat-conversion'
- Warn for implicit conversions that reduce the precision of a real
- value. This includes conversions from real to integer, and from
- higher precision real to lower precision real values. This option
- is also enabled by '-Wconversion'.
- '-Wno-scalar-storage-order'
- Do not warn on suspicious constructs involving reverse scalar
- storage order.
- '-Wsized-deallocation (C++ and Objective-C++ only)'
- Warn about a definition of an unsized deallocation function
- void operator delete (void *) noexcept;
- void operator delete[] (void *) noexcept;
- without a definition of the corresponding sized deallocation
- function
- void operator delete (void *, std::size_t) noexcept;
- void operator delete[] (void *, std::size_t) noexcept;
- or vice versa. Enabled by '-Wextra' along with
- '-fsized-deallocation'.
- '-Wsizeof-pointer-div'
- Warn for suspicious divisions of two sizeof expressions that divide
- the pointer size by the element size, which is the usual way to
- compute the array size but won't work out correctly with pointers.
- This warning warns e.g. about 'sizeof (ptr) / sizeof (ptr[0])' if
- 'ptr' is not an array, but a pointer. This warning is enabled by
- '-Wall'.
- '-Wsizeof-pointer-memaccess'
- Warn for suspicious length parameters to certain string and memory
- built-in functions if the argument uses 'sizeof'. This warning
- triggers for example for 'memset (ptr, 0, sizeof (ptr));' if 'ptr'
- is not an array, but a pointer, and suggests a possible fix, or
- about 'memcpy (&foo, ptr, sizeof (&foo));'.
- '-Wsizeof-pointer-memaccess' also warns about calls to bounded
- string copy functions like 'strncat' or 'strncpy' that specify as
- the bound a 'sizeof' expression of the source array. For example,
- in the following function the call to 'strncat' specifies the size
- of the source string as the bound. That is almost certainly a
- mistake and so the call is diagnosed.
- void make_file (const char *name)
- {
- char path[PATH_MAX];
- strncpy (path, name, sizeof path - 1);
- strncat (path, ".text", sizeof ".text");
- ...
- }
- The '-Wsizeof-pointer-memaccess' option is enabled by '-Wall'.
- '-Wsizeof-array-argument'
- Warn when the 'sizeof' operator is applied to a parameter that is
- declared as an array in a function definition. This warning is
- enabled by default for C and C++ programs.
- '-Wmemset-elt-size'
- Warn for suspicious calls to the 'memset' built-in function, if the
- first argument references an array, and the third argument is a
- number equal to the number of elements, but not equal to the size
- of the array in memory. This indicates that the user has omitted a
- multiplication by the element size. This warning is enabled by
- '-Wall'.
- '-Wmemset-transposed-args'
- Warn for suspicious calls to the 'memset' built-in function, if the
- second argument is not zero and the third argument is zero. This
- warns e.g. about 'memset (buf, sizeof buf, 0)' where most probably
- 'memset (buf, 0, sizeof buf)' was meant instead. The diagnostics
- is only emitted if the third argument is literal zero. If it is
- some expression that is folded to zero, a cast of zero to some
- type, etc., it is far less likely that the user has mistakenly
- exchanged the arguments and no warning is emitted. This warning is
- enabled by '-Wall'.
- '-Waddress'
- Warn about suspicious uses of memory addresses. These include
- using the address of a function in a conditional expression, such
- as 'void func(void); if (func)', and comparisons against the memory
- address of a string literal, such as 'if (x == "abc")'. Such uses
- typically indicate a programmer error: the address of a function
- always evaluates to true, so their use in a conditional usually
- indicate that the programmer forgot the parentheses in a function
- call; and comparisons against string literals result in unspecified
- behavior and are not portable in C, so they usually indicate that
- the programmer intended to use 'strcmp'. This warning is enabled
- by '-Wall'.
- '-Wlogical-op'
- Warn about suspicious uses of logical operators in expressions.
- This includes using logical operators in contexts where a bit-wise
- operator is likely to be expected. Also warns when the operands of
- a logical operator are the same:
- extern int a;
- if (a < 0 && a < 0) { ... }
- '-Wlogical-not-parentheses'
- Warn about logical not used on the left hand side operand of a
- comparison. This option does not warn if the right operand is
- considered to be a boolean expression. Its purpose is to detect
- suspicious code like the following:
- int a;
- ...
- if (!a > 1) { ... }
- It is possible to suppress the warning by wrapping the LHS into
- parentheses:
- if ((!a) > 1) { ... }
- This warning is enabled by '-Wall'.
- '-Waggregate-return'
- Warn if any functions that return structures or unions are defined
- or called. (In languages where you can return an array, this also
- elicits a warning.)
- '-Wno-aggressive-loop-optimizations'
- Warn if in a loop with constant number of iterations the compiler
- detects undefined behavior in some statement during one or more of
- the iterations.
- '-Wno-attributes'
- Do not warn if an unexpected '__attribute__' is used, such as
- unrecognized attributes, function attributes applied to variables,
- etc. This does not stop errors for incorrect use of supported
- attributes.
- '-Wno-builtin-declaration-mismatch'
- Warn if a built-in function is declared with the wrong signature or
- as non-function. This warning is enabled by default.
- '-Wno-builtin-macro-redefined'
- Do not warn if certain built-in macros are redefined. This
- suppresses warnings for redefinition of '__TIMESTAMP__',
- '__TIME__', '__DATE__', '__FILE__', and '__BASE_FILE__'.
- '-Wstrict-prototypes (C and Objective-C only)'
- Warn if a function is declared or defined without specifying the
- argument types. (An old-style function definition is permitted
- without a warning if preceded by a declaration that specifies the
- argument types.)
- '-Wold-style-declaration (C and Objective-C only)'
- Warn for obsolescent usages, according to the C Standard, in a
- declaration. For example, warn if storage-class specifiers like
- 'static' are not the first things in a declaration. This warning
- is also enabled by '-Wextra'.
- '-Wold-style-definition (C and Objective-C only)'
- Warn if an old-style function definition is used. A warning is
- given even if there is a previous prototype.
- '-Wmissing-parameter-type (C and Objective-C only)'
- A function parameter is declared without a type specifier in
- K&R-style functions:
- void foo(bar) { }
- This warning is also enabled by '-Wextra'.
- '-Wmissing-prototypes (C and Objective-C only)'
- Warn if a global function is defined without a previous prototype
- declaration. This warning is issued even if the definition itself
- provides a prototype. Use this option to detect global functions
- that do not have a matching prototype declaration in a header file.
- This option is not valid for C++ because all function declarations
- provide prototypes and a non-matching declaration declares an
- overload rather than conflict with an earlier declaration. Use
- '-Wmissing-declarations' to detect missing declarations in C++.
- '-Wmissing-declarations'
- Warn if a global function is defined without a previous
- declaration. Do so even if the definition itself provides a
- prototype. Use this option to detect global functions that are not
- declared in header files. In C, no warnings are issued for
- functions with previous non-prototype declarations; use
- '-Wmissing-prototypes' to detect missing prototypes. In C++, no
- warnings are issued for function templates, or for inline
- functions, or for functions in anonymous namespaces.
- '-Wmissing-field-initializers'
- Warn if a structure's initializer has some fields missing. For
- example, the following code causes such a warning, because 'x.h' is
- implicitly zero:
- struct s { int f, g, h; };
- struct s x = { 3, 4 };
- This option does not warn about designated initializers, so the
- following modification does not trigger a warning:
- struct s { int f, g, h; };
- struct s x = { .f = 3, .g = 4 };
- In C this option does not warn about the universal zero initializer
- '{ 0 }':
- struct s { int f, g, h; };
- struct s x = { 0 };
- Likewise, in C++ this option does not warn about the empty { }
- initializer, for example:
- struct s { int f, g, h; };
- s x = { };
- This warning is included in '-Wextra'. To get other '-Wextra'
- warnings without this one, use '-Wextra
- -Wno-missing-field-initializers'.
- '-Wno-multichar'
- Do not warn if a multicharacter constant (''FOOF'') is used.
- Usually they indicate a typo in the user's code, as they have
- implementation-defined values, and should not be used in portable
- code.
- '-Wnormalized=[none|id|nfc|nfkc]'
- In ISO C and ISO C++, two identifiers are different if they are
- different sequences of characters. However, sometimes when
- characters outside the basic ASCII character set are used, you can
- have two different character sequences that look the same. To
- avoid confusion, the ISO 10646 standard sets out some
- "normalization rules" which when applied ensure that two sequences
- that look the same are turned into the same sequence. GCC can warn
- you if you are using identifiers that have not been normalized;
- this option controls that warning.
- There are four levels of warning supported by GCC. The default is
- '-Wnormalized=nfc', which warns about any identifier that is not in
- the ISO 10646 "C" normalized form, "NFC". NFC is the recommended
- form for most uses. It is equivalent to '-Wnormalized'.
- Unfortunately, there are some characters allowed in identifiers by
- ISO C and ISO C++ that, when turned into NFC, are not allowed in
- identifiers. That is, there's no way to use these symbols in
- portable ISO C or C++ and have all your identifiers in NFC.
- '-Wnormalized=id' suppresses the warning for these characters. It
- is hoped that future versions of the standards involved will
- correct this, which is why this option is not the default.
- You can switch the warning off for all characters by writing
- '-Wnormalized=none' or '-Wno-normalized'. You should only do this
- if you are using some other normalization scheme (like "D"),
- because otherwise you can easily create bugs that are literally
- impossible to see.
- Some characters in ISO 10646 have distinct meanings but look
- identical in some fonts or display methodologies, especially once
- formatting has been applied. For instance '\u207F', "SUPERSCRIPT
- LATIN SMALL LETTER N", displays just like a regular 'n' that has
- been placed in a superscript. ISO 10646 defines the "NFKC"
- normalization scheme to convert all these into a standard form as
- well, and GCC warns if your code is not in NFKC if you use
- '-Wnormalized=nfkc'. This warning is comparable to warning about
- every identifier that contains the letter O because it might be
- confused with the digit 0, and so is not the default, but may be
- useful as a local coding convention if the programming environment
- cannot be fixed to display these characters distinctly.
- '-Wno-deprecated'
- Do not warn about usage of deprecated features. *Note Deprecated
- Features::.
- '-Wno-deprecated-declarations'
- Do not warn about uses of functions (*note Function Attributes::),
- variables (*note Variable Attributes::), and types (*note Type
- Attributes::) marked as deprecated by using the 'deprecated'
- attribute.
- '-Wno-overflow'
- Do not warn about compile-time overflow in constant expressions.
- '-Wno-odr'
- Warn about One Definition Rule violations during link-time
- optimization. Requires '-flto-odr-type-merging' to be enabled.
- Enabled by default.
- '-Wopenmp-simd'
- Warn if the vectorizer cost model overrides the OpenMP simd
- directive set by user. The '-fsimd-cost-model=unlimited' option
- can be used to relax the cost model.
- '-Woverride-init (C and Objective-C only)'
- Warn if an initialized field without side effects is overridden
- when using designated initializers (*note Designated Initializers:
- Designated Inits.).
- This warning is included in '-Wextra'. To get other '-Wextra'
- warnings without this one, use '-Wextra -Wno-override-init'.
- '-Woverride-init-side-effects (C and Objective-C only)'
- Warn if an initialized field with side effects is overridden when
- using designated initializers (*note Designated Initializers:
- Designated Inits.). This warning is enabled by default.
- '-Wpacked'
- Warn if a structure is given the packed attribute, but the packed
- attribute has no effect on the layout or size of the structure.
- Such structures may be mis-aligned for little benefit. For
- instance, in this code, the variable 'f.x' in 'struct bar' is
- misaligned even though 'struct bar' does not itself have the packed
- attribute:
- struct foo {
- int x;
- char a, b, c, d;
- } __attribute__((packed));
- struct bar {
- char z;
- struct foo f;
- };
- '-Wpacked-bitfield-compat'
- The 4.1, 4.2 and 4.3 series of GCC ignore the 'packed' attribute on
- bit-fields of type 'char'. This has been fixed in GCC 4.4 but the
- change can lead to differences in the structure layout. GCC
- informs you when the offset of such a field has changed in GCC 4.4.
- For example there is no longer a 4-bit padding between field 'a'
- and 'b' in this structure:
- struct foo
- {
- char a:4;
- char b:8;
- } __attribute__ ((packed));
- This warning is enabled by default. Use
- '-Wno-packed-bitfield-compat' to disable this warning.
- '-Wpacked-not-aligned (C, C++, Objective-C and Objective-C++ only)'
- Warn if a structure field with explicitly specified alignment in a
- packed struct or union is misaligned. For example, a warning will
- be issued on 'struct S', like, 'warning: alignment 1 of 'struct S'
- is less than 8', in this code:
- struct __attribute__ ((aligned (8))) S8 { char a[8]; };
- struct __attribute__ ((packed)) S {
- struct S8 s8;
- };
- This warning is enabled by '-Wall'.
- '-Wpadded'
- Warn if padding is included in a structure, either to align an
- element of the structure or to align the whole structure.
- Sometimes when this happens it is possible to rearrange the fields
- of the structure to reduce the padding and so make the structure
- smaller.
- '-Wredundant-decls'
- Warn if anything is declared more than once in the same scope, even
- in cases where multiple declaration is valid and changes nothing.
- '-Wno-restrict'
- Warn when an object referenced by a 'restrict'-qualified parameter
- (or, in C++, a '__restrict'-qualified parameter) is aliased by
- another argument, or when copies between such objects overlap. For
- example, the call to the 'strcpy' function below attempts to
- truncate the string by replacing its initial characters with the
- last four. However, because the call writes the terminating NUL
- into 'a[4]', the copies overlap and the call is diagnosed.
- void foo (void)
- {
- char a[] = "abcd1234";
- strcpy (a, a + 4);
- ...
- }
- The '-Wrestrict' option detects some instances of simple overlap
- even without optimization but works best at '-O2' and above. It is
- included in '-Wall'.
- '-Wnested-externs (C and Objective-C only)'
- Warn if an 'extern' declaration is encountered within a function.
- '-Wno-inherited-variadic-ctor'
- Suppress warnings about use of C++11 inheriting constructors when
- the base class inherited from has a C variadic constructor; the
- warning is on by default because the ellipsis is not inherited.
- '-Winline'
- Warn if a function that is declared as inline cannot be inlined.
- Even with this option, the compiler does not warn about failures to
- inline functions declared in system headers.
- The compiler uses a variety of heuristics to determine whether or
- not to inline a function. For example, the compiler takes into
- account the size of the function being inlined and the amount of
- inlining that has already been done in the current function.
- Therefore, seemingly insignificant changes in the source program
- can cause the warnings produced by '-Winline' to appear or
- disappear.
- '-Wno-invalid-offsetof (C++ and Objective-C++ only)'
- Suppress warnings from applying the 'offsetof' macro to a non-POD
- type. According to the 2014 ISO C++ standard, applying 'offsetof'
- to a non-standard-layout type is undefined. In existing C++
- implementations, however, 'offsetof' typically gives meaningful
- results. This flag is for users who are aware that they are
- writing nonportable code and who have deliberately chosen to ignore
- the warning about it.
- The restrictions on 'offsetof' may be relaxed in a future version
- of the C++ standard.
- '-Wint-in-bool-context'
- Warn for suspicious use of integer values where boolean values are
- expected, such as conditional expressions (?:) using non-boolean
- integer constants in boolean context, like 'if (a <= b ? 2 : 3)'.
- Or left shifting of signed integers in boolean context, like 'for
- (a = 0; 1 << a; a++);'. Likewise for all kinds of multiplications
- regardless of the data type. This warning is enabled by '-Wall'.
- '-Wno-int-to-pointer-cast'
- Suppress warnings from casts to pointer type of an integer of a
- different size. In C++, casting to a pointer type of smaller size
- is an error. 'Wint-to-pointer-cast' is enabled by default.
- '-Wno-pointer-to-int-cast (C and Objective-C only)'
- Suppress warnings from casts from a pointer to an integer type of a
- different size.
- '-Winvalid-pch'
- Warn if a precompiled header (*note Precompiled Headers::) is found
- in the search path but cannot be used.
- '-Wlong-long'
- Warn if 'long long' type is used. This is enabled by either
- '-Wpedantic' or '-Wtraditional' in ISO C90 and C++98 modes. To
- inhibit the warning messages, use '-Wno-long-long'.
- '-Wvariadic-macros'
- Warn if variadic macros are used in ISO C90 mode, or if the GNU
- alternate syntax is used in ISO C99 mode. This is enabled by
- either '-Wpedantic' or '-Wtraditional'. To inhibit the warning
- messages, use '-Wno-variadic-macros'.
- '-Wvarargs'
- Warn upon questionable usage of the macros used to handle variable
- arguments like 'va_start'. This is default. To inhibit the
- warning messages, use '-Wno-varargs'.
- '-Wvector-operation-performance'
- Warn if vector operation is not implemented via SIMD capabilities
- of the architecture. Mainly useful for the performance tuning.
- Vector operation can be implemented 'piecewise', which means that
- the scalar operation is performed on every vector element; 'in
- parallel', which means that the vector operation is implemented
- using scalars of wider type, which normally is more performance
- efficient; and 'as a single scalar', which means that vector fits
- into a scalar type.
- '-Wno-virtual-move-assign'
- Suppress warnings about inheriting from a virtual base with a
- non-trivial C++11 move assignment operator. This is dangerous
- because if the virtual base is reachable along more than one path,
- it is moved multiple times, which can mean both objects end up in
- the moved-from state. If the move assignment operator is written
- to avoid moving from a moved-from object, this warning can be
- disabled.
- '-Wvla'
- Warn if a variable-length array is used in the code. '-Wno-vla'
- prevents the '-Wpedantic' warning of the variable-length array.
- '-Wvla-larger-than=N'
- If this option is used, the compiler will warn on uses of
- variable-length arrays where the size is either unbounded, or
- bounded by an argument that can be larger than N bytes. This is
- similar to how '-Walloca-larger-than=N' works, but with
- variable-length arrays.
- Note that GCC may optimize small variable-length arrays of a known
- value into plain arrays, so this warning may not get triggered for
- such arrays.
- This warning is not enabled by '-Wall', and is only active when
- '-ftree-vrp' is active (default for '-O2' and above).
- See also '-Walloca-larger-than=N'.
- '-Wvolatile-register-var'
- Warn if a register variable is declared volatile. The volatile
- modifier does not inhibit all optimizations that may eliminate
- reads and/or writes to register variables. This warning is enabled
- by '-Wall'.
- '-Wdisabled-optimization'
- Warn if a requested optimization pass is disabled. This warning
- does not generally indicate that there is anything wrong with your
- code; it merely indicates that GCC's optimizers are unable to
- handle the code effectively. Often, the problem is that your code
- is too big or too complex; GCC refuses to optimize programs when
- the optimization itself is likely to take inordinate amounts of
- time.
- '-Wpointer-sign (C and Objective-C only)'
- Warn for pointer argument passing or assignment with different
- signedness. This option is only supported for C and Objective-C.
- It is implied by '-Wall' and by '-Wpedantic', which can be disabled
- with '-Wno-pointer-sign'.
- '-Wstack-protector'
- This option is only active when '-fstack-protector' is active. It
- warns about functions that are not protected against stack
- smashing.
- '-Woverlength-strings'
- Warn about string constants that are longer than the "minimum
- maximum" length specified in the C standard. Modern compilers
- generally allow string constants that are much longer than the
- standard's minimum limit, but very portable programs should avoid
- using longer strings.
- The limit applies _after_ string constant concatenation, and does
- not count the trailing NUL. In C90, the limit was 509 characters;
- in C99, it was raised to 4095. C++98 does not specify a normative
- minimum maximum, so we do not diagnose overlength strings in C++.
- This option is implied by '-Wpedantic', and can be disabled with
- '-Wno-overlength-strings'.
- '-Wunsuffixed-float-constants (C and Objective-C only)'
- Issue a warning for any floating constant that does not have a
- suffix. When used together with '-Wsystem-headers' it warns about
- such constants in system header files. This can be useful when
- preparing code to use with the 'FLOAT_CONST_DECIMAL64' pragma from
- the decimal floating-point extension to C99.
- '-Wno-designated-init (C and Objective-C only)'
- Suppress warnings when a positional initializer is used to
- initialize a structure that has been marked with the
- 'designated_init' attribute.
- '-Whsa'
- Issue a warning when HSAIL cannot be emitted for the compiled
- function or OpenMP construct.
- File: gcc.info, Node: Debugging Options, Next: Optimize Options, Prev: Warning Options, Up: Invoking GCC
- 3.9 Options for Debugging Your Program
- ======================================
- To tell GCC to emit extra information for use by a debugger, in almost
- all cases you need only to add '-g' to your other options.
- GCC allows you to use '-g' with '-O'. The shortcuts taken by optimized
- code may occasionally be surprising: some variables you declared may not
- exist at all; flow of control may briefly move where you did not expect
- it; some statements may not be executed because they compute constant
- results or their values are already at hand; some statements may execute
- in different places because they have been moved out of loops.
- Nevertheless it is possible to debug optimized output. This makes it
- reasonable to use the optimizer for programs that might have bugs.
- If you are not using some other optimization option, consider using
- '-Og' (*note Optimize Options::) with '-g'. With no '-O' option at all,
- some compiler passes that collect information useful for debugging do
- not run at all, so that '-Og' may result in a better debugging
- experience.
- '-g'
- Produce debugging information in the operating system's native
- format (stabs, COFF, XCOFF, or DWARF). GDB can work with this
- debugging information.
- On most systems that use stabs format, '-g' enables use of extra
- debugging information that only GDB can use; this extra information
- makes debugging work better in GDB but probably makes other
- debuggers crash or refuse to read the program. If you want to
- control for certain whether to generate the extra information, use
- '-gstabs+', '-gstabs', '-gxcoff+', '-gxcoff', or '-gvms' (see
- below).
- '-ggdb'
- Produce debugging information for use by GDB. This means to use
- the most expressive format available (DWARF, stabs, or the native
- format if neither of those are supported), including GDB extensions
- if at all possible.
- '-gdwarf'
- '-gdwarf-VERSION'
- Produce debugging information in DWARF format (if that is
- supported). The value of VERSION may be either 2, 3, 4 or 5; the
- default version for most targets is 4. DWARF Version 5 is only
- experimental.
- Note that with DWARF Version 2, some ports require and always use
- some non-conflicting DWARF 3 extensions in the unwind tables.
- Version 4 may require GDB 7.0 and '-fvar-tracking-assignments' for
- maximum benefit.
- GCC no longer supports DWARF Version 1, which is substantially
- different than Version 2 and later. For historical reasons, some
- other DWARF-related options such as '-fno-dwarf2-cfi-asm') retain a
- reference to DWARF Version 2 in their names, but apply to all
- currently-supported versions of DWARF.
- '-gstabs'
- Produce debugging information in stabs format (if that is
- supported), without GDB extensions. This is the format used by DBX
- on most BSD systems. On MIPS, Alpha and System V Release 4 systems
- this option produces stabs debugging output that is not understood
- by DBX. On System V Release 4 systems this option requires the GNU
- assembler.
- '-gstabs+'
- Produce debugging information in stabs format (if that is
- supported), using GNU extensions understood only by the GNU
- debugger (GDB). The use of these extensions is likely to make
- other debuggers crash or refuse to read the program.
- '-gxcoff'
- Produce debugging information in XCOFF format (if that is
- supported). This is the format used by the DBX debugger on IBM
- RS/6000 systems.
- '-gxcoff+'
- Produce debugging information in XCOFF format (if that is
- supported), using GNU extensions understood only by the GNU
- debugger (GDB). The use of these extensions is likely to make
- other debuggers crash or refuse to read the program, and may cause
- assemblers other than the GNU assembler (GAS) to fail with an
- error.
- '-gvms'
- Produce debugging information in Alpha/VMS debug format (if that is
- supported). This is the format used by DEBUG on Alpha/VMS systems.
- '-gLEVEL'
- '-ggdbLEVEL'
- '-gstabsLEVEL'
- '-gxcoffLEVEL'
- '-gvmsLEVEL'
- Request debugging information and also use LEVEL to specify how
- much information. The default level is 2.
- Level 0 produces no debug information at all. Thus, '-g0' negates
- '-g'.
- Level 1 produces minimal information, enough for making backtraces
- in parts of the program that you don't plan to debug. This
- includes descriptions of functions and external variables, and line
- number tables, but no information about local variables.
- Level 3 includes extra information, such as all the macro
- definitions present in the program. Some debuggers support macro
- expansion when you use '-g3'.
- '-gdwarf' does not accept a concatenated debug level, to avoid
- confusion with '-gdwarf-LEVEL'. Instead use an additional
- '-gLEVEL' option to change the debug level for DWARF.
- '-feliminate-unused-debug-symbols'
- Produce debugging information in stabs format (if that is
- supported), for only symbols that are actually used.
- '-femit-class-debug-always'
- Instead of emitting debugging information for a C++ class in only
- one object file, emit it in all object files using the class. This
- option should be used only with debuggers that are unable to handle
- the way GCC normally emits debugging information for classes
- because using this option increases the size of debugging
- information by as much as a factor of two.
- '-fno-merge-debug-strings'
- Direct the linker to not merge together strings in the debugging
- information that are identical in different object files. Merging
- is not supported by all assemblers or linkers. Merging decreases
- the size of the debug information in the output file at the cost of
- increasing link processing time. Merging is enabled by default.
- '-fdebug-prefix-map=OLD=NEW'
- When compiling files residing in directory 'OLD', record debugging
- information describing them as if the files resided in directory
- 'NEW' instead. This can be used to replace a build-time path with
- an install-time path in the debug info. It can also be used to
- change an absolute path to a relative path by using '.' for NEW.
- This can give more reproducible builds, which are location
- independent, but may require an extra command to tell GDB where to
- find the source files. See also '-ffile-prefix-map'.
- '-fvar-tracking'
- Run variable tracking pass. It computes where variables are stored
- at each position in code. Better debugging information is then
- generated (if the debugging information format supports this
- information).
- It is enabled by default when compiling with optimization ('-Os',
- '-O', '-O2', ...), debugging information ('-g') and the debug info
- format supports it.
- '-fvar-tracking-assignments'
- Annotate assignments to user variables early in the compilation and
- attempt to carry the annotations over throughout the compilation
- all the way to the end, in an attempt to improve debug information
- while optimizing. Use of '-gdwarf-4' is recommended along with it.
- It can be enabled even if var-tracking is disabled, in which case
- annotations are created and maintained, but discarded at the end.
- By default, this flag is enabled together with '-fvar-tracking',
- except when selective scheduling is enabled.
- '-gsplit-dwarf'
- Separate as much DWARF debugging information as possible into a
- separate output file with the extension '.dwo'. This option allows
- the build system to avoid linking files with debug information. To
- be useful, this option requires a debugger capable of reading
- '.dwo' files.
- '-gpubnames'
- Generate DWARF '.debug_pubnames' and '.debug_pubtypes' sections.
- '-ggnu-pubnames'
- Generate '.debug_pubnames' and '.debug_pubtypes' sections in a
- format suitable for conversion into a GDB index. This option is
- only useful with a linker that can produce GDB index version 7.
- '-fdebug-types-section'
- When using DWARF Version 4 or higher, type DIEs can be put into
- their own '.debug_types' section instead of making them part of the
- '.debug_info' section. It is more efficient to put them in a
- separate comdat sections since the linker can then remove
- duplicates. But not all DWARF consumers support '.debug_types'
- sections yet and on some objects '.debug_types' produces larger
- instead of smaller debugging information.
- '-grecord-gcc-switches'
- '-gno-record-gcc-switches'
- This switch causes the command-line options used to invoke the
- compiler that may affect code generation to be appended to the
- DW_AT_producer attribute in DWARF debugging information. The
- options are concatenated with spaces separating them from each
- other and from the compiler version. It is enabled by default.
- See also '-frecord-gcc-switches' for another way of storing
- compiler options into the object file.
- '-gstrict-dwarf'
- Disallow using extensions of later DWARF standard version than
- selected with '-gdwarf-VERSION'. On most targets using
- non-conflicting DWARF extensions from later standard versions is
- allowed.
- '-gno-strict-dwarf'
- Allow using extensions of later DWARF standard version than
- selected with '-gdwarf-VERSION'.
- '-gas-loc-support'
- Inform the compiler that the assembler supports '.loc' directives.
- It may then use them for the assembler to generate DWARF2+ line
- number tables.
- This is generally desirable, because assembler-generated
- line-number tables are a lot more compact than those the compiler
- can generate itself.
- This option will be enabled by default if, at GCC configure time,
- the assembler was found to support such directives.
- '-gno-as-loc-support'
- Force GCC to generate DWARF2+ line number tables internally, if
- DWARF2+ line number tables are to be generated.
- 'gas-locview-support'
- Inform the compiler that the assembler supports 'view' assignment
- and reset assertion checking in '.loc' directives.
- This option will be enabled by default if, at GCC configure time,
- the assembler was found to support them.
- 'gno-as-locview-support'
- Force GCC to assign view numbers internally, if
- '-gvariable-location-views' are explicitly requested.
- '-gcolumn-info'
- '-gno-column-info'
- Emit location column information into DWARF debugging information,
- rather than just file and line. This option is enabled by default.
- '-gstatement-frontiers'
- '-gno-statement-frontiers'
- This option causes GCC to create markers in the internal
- representation at the beginning of statements, and to keep them
- roughly in place throughout compilation, using them to guide the
- output of 'is_stmt' markers in the line number table. This is
- enabled by default when compiling with optimization ('-Os', '-O',
- '-O2', ...), and outputting DWARF 2 debug information at the normal
- level.
- '-gvariable-location-views'
- '-gvariable-location-views=incompat5'
- '-gno-variable-location-views'
- Augment variable location lists with progressive view numbers
- implied from the line number table. This enables debug information
- consumers to inspect state at certain points of the program, even
- if no instructions associated with the corresponding source
- locations are present at that point. If the assembler lacks
- support for view numbers in line number tables, this will cause the
- compiler to emit the line number table, which generally makes them
- somewhat less compact. The augmented line number tables and
- location lists are fully backward-compatible, so they can be
- consumed by debug information consumers that are not aware of these
- augmentations, but they won't derive any benefit from them either.
- This is enabled by default when outputting DWARF 2 debug
- information at the normal level, as long as there is assembler
- support, '-fvar-tracking-assignments' is enabled and
- '-gstrict-dwarf' is not. When assembler support is not available,
- this may still be enabled, but it will force GCC to output internal
- line number tables, and if '-ginternal-reset-location-views' is not
- enabled, that will most certainly lead to silently mismatching
- location views.
- There is a proposed representation for view numbers that is not
- backward compatible with the location list format introduced in
- DWARF 5, that can be enabled with
- '-gvariable-location-views=incompat5'. This option may be removed
- in the future, is only provided as a reference implementation of
- the proposed representation. Debug information consumers are not
- expected to support this extended format, and they would be
- rendered unable to decode location lists using it.
- '-ginternal-reset-location-views'
- '-gnointernal-reset-location-views'
- Attempt to determine location views that can be omitted from
- location view lists. This requires the compiler to have very
- accurate insn length estimates, which isn't always the case, and it
- may cause incorrect view lists to be generated silently when using
- an assembler that does not support location view lists. The GNU
- assembler will flag any such error as a 'view number mismatch'.
- This is only enabled on ports that define a reliable estimation
- function.
- '-ginline-points'
- '-gno-inline-points'
- Generate extended debug information for inlined functions.
- Location view tracking markers are inserted at inlined entry
- points, so that address and view numbers can be computed and output
- in debug information. This can be enabled independently of
- location views, in which case the view numbers won't be output, but
- it can only be enabled along with statement frontiers, and it is
- only enabled by default if location views are enabled.
- '-gz[=TYPE]'
- Produce compressed debug sections in DWARF format, if that is
- supported. If TYPE is not given, the default type depends on the
- capabilities of the assembler and linker used. TYPE may be one of
- 'none' (don't compress debug sections), 'zlib' (use zlib
- compression in ELF gABI format), or 'zlib-gnu' (use zlib
- compression in traditional GNU format). If the linker doesn't
- support writing compressed debug sections, the option is rejected.
- Otherwise, if the assembler does not support them, '-gz' is
- silently ignored when producing object files.
- '-femit-struct-debug-baseonly'
- Emit debug information for struct-like types only when the base
- name of the compilation source file matches the base name of file
- in which the struct is defined.
- This option substantially reduces the size of debugging
- information, but at significant potential loss in type information
- to the debugger. See '-femit-struct-debug-reduced' for a less
- aggressive option. See '-femit-struct-debug-detailed' for more
- detailed control.
- This option works only with DWARF debug output.
- '-femit-struct-debug-reduced'
- Emit debug information for struct-like types only when the base
- name of the compilation source file matches the base name of file
- in which the type is defined, unless the struct is a template or
- defined in a system header.
- This option significantly reduces the size of debugging
- information, with some potential loss in type information to the
- debugger. See '-femit-struct-debug-baseonly' for a more aggressive
- option. See '-femit-struct-debug-detailed' for more detailed
- control.
- This option works only with DWARF debug output.
- '-femit-struct-debug-detailed[=SPEC-LIST]'
- Specify the struct-like types for which the compiler generates
- debug information. The intent is to reduce duplicate struct debug
- information between different object files within the same program.
- This option is a detailed version of '-femit-struct-debug-reduced'
- and '-femit-struct-debug-baseonly', which serves for most needs.
- A specification has the syntax
- ['dir:'|'ind:']['ord:'|'gen:']('any'|'sys'|'base'|'none')
- The optional first word limits the specification to structs that
- are used directly ('dir:') or used indirectly ('ind:'). A struct
- type is used directly when it is the type of a variable, member.
- Indirect uses arise through pointers to structs. That is, when use
- of an incomplete struct is valid, the use is indirect. An example
- is 'struct one direct; struct two * indirect;'.
- The optional second word limits the specification to ordinary
- structs ('ord:') or generic structs ('gen:'). Generic structs are
- a bit complicated to explain. For C++, these are non-explicit
- specializations of template classes, or non-template classes within
- the above. Other programming languages have generics, but
- '-femit-struct-debug-detailed' does not yet implement them.
- The third word specifies the source files for those structs for
- which the compiler should emit debug information. The values
- 'none' and 'any' have the normal meaning. The value 'base' means
- that the base of name of the file in which the type declaration
- appears must match the base of the name of the main compilation
- file. In practice, this means that when compiling 'foo.c', debug
- information is generated for types declared in that file and
- 'foo.h', but not other header files. The value 'sys' means those
- types satisfying 'base' or declared in system or compiler headers.
- You may need to experiment to determine the best settings for your
- application.
- The default is '-femit-struct-debug-detailed=all'.
- This option works only with DWARF debug output.
- '-fno-dwarf2-cfi-asm'
- Emit DWARF unwind info as compiler generated '.eh_frame' section
- instead of using GAS '.cfi_*' directives.
- '-fno-eliminate-unused-debug-types'
- Normally, when producing DWARF output, GCC avoids producing debug
- symbol output for types that are nowhere used in the source file
- being compiled. Sometimes it is useful to have GCC emit debugging
- information for all types declared in a compilation unit,
- regardless of whether or not they are actually used in that
- compilation unit, for example if, in the debugger, you want to cast
- a value to a type that is not actually used in your program (but is
- declared). More often, however, this results in a significant
- amount of wasted space.
- File: gcc.info, Node: Optimize Options, Next: Instrumentation Options, Prev: Debugging Options, Up: Invoking GCC
- 3.10 Options That Control Optimization
- ======================================
- These options control various sorts of optimizations.
- Without any optimization option, the compiler's goal is to reduce the
- cost of compilation and to make debugging produce the expected results.
- Statements are independent: if you stop the program with a breakpoint
- between statements, you can then assign a new value to any variable or
- change the program counter to any other statement in the function and
- get exactly the results you expect from the source code.
- Turning on optimization flags makes the compiler attempt to improve the
- performance and/or code size at the expense of compilation time and
- possibly the ability to debug the program.
- The compiler performs optimization based on the knowledge it has of the
- program. Compiling multiple files at once to a single output file mode
- allows the compiler to use information gained from all of the files when
- compiling each of them.
- Not all optimizations are controlled directly by a flag. Only
- optimizations that have a flag are listed in this section.
- Most optimizations are only enabled if an '-O' level is set on the
- command line. Otherwise they are disabled, even if individual
- optimization flags are specified.
- Depending on the target and how GCC was configured, a slightly
- different set of optimizations may be enabled at each '-O' level than
- those listed here. You can invoke GCC with '-Q --help=optimizers' to
- find out the exact set of optimizations that are enabled at each level.
- *Note Overall Options::, for examples.
- '-O'
- '-O1'
- Optimize. Optimizing compilation takes somewhat more time, and a
- lot more memory for a large function.
- With '-O', the compiler tries to reduce code size and execution
- time, without performing any optimizations that take a great deal
- of compilation time.
- '-O' turns on the following optimization flags:
- -fauto-inc-dec
- -fbranch-count-reg
- -fcombine-stack-adjustments
- -fcompare-elim
- -fcprop-registers
- -fdce
- -fdefer-pop
- -fdelayed-branch
- -fdse
- -fforward-propagate
- -fguess-branch-probability
- -fif-conversion2
- -fif-conversion
- -finline-functions-called-once
- -fipa-pure-const
- -fipa-profile
- -fipa-reference
- -fmerge-constants
- -fmove-loop-invariants
- -fomit-frame-pointer
- -freorder-blocks
- -fshrink-wrap
- -fshrink-wrap-separate
- -fsplit-wide-types
- -fssa-backprop
- -fssa-phiopt
- -ftree-bit-ccp
- -ftree-ccp
- -ftree-ch
- -ftree-coalesce-vars
- -ftree-copy-prop
- -ftree-dce
- -ftree-dominator-opts
- -ftree-dse
- -ftree-forwprop
- -ftree-fre
- -ftree-phiprop
- -ftree-sink
- -ftree-slsr
- -ftree-sra
- -ftree-pta
- -ftree-ter
- -funit-at-a-time
- '-O2'
- Optimize even more. GCC performs nearly all supported
- optimizations that do not involve a space-speed tradeoff. As
- compared to '-O', this option increases both compilation time and
- the performance of the generated code.
- '-O2' turns on all optimization flags specified by '-O'. It also
- turns on the following optimization flags:
- -fthread-jumps
- -falign-functions -falign-jumps
- -falign-loops -falign-labels
- -fcaller-saves
- -fcrossjumping
- -fcse-follow-jumps -fcse-skip-blocks
- -fdelete-null-pointer-checks
- -fdevirtualize -fdevirtualize-speculatively
- -fexpensive-optimizations
- -fgcse -fgcse-lm
- -fhoist-adjacent-loads
- -finline-small-functions
- -findirect-inlining
- -fipa-cp
- -fipa-bit-cp
- -fipa-vrp
- -fipa-sra
- -fipa-icf
- -fisolate-erroneous-paths-dereference
- -flra-remat
- -foptimize-sibling-calls
- -foptimize-strlen
- -fpartial-inlining
- -fpeephole2
- -freorder-blocks-algorithm=stc
- -freorder-blocks-and-partition -freorder-functions
- -frerun-cse-after-loop
- -fsched-interblock -fsched-spec
- -fschedule-insns -fschedule-insns2
- -fstore-merging
- -fstrict-aliasing
- -ftree-builtin-call-dce
- -ftree-switch-conversion -ftree-tail-merge
- -fcode-hoisting
- -ftree-pre
- -ftree-vrp
- -fipa-ra
- Please note the warning under '-fgcse' about invoking '-O2' on
- programs that use computed gotos.
- '-O3'
- Optimize yet more. '-O3' turns on all optimizations specified by
- '-O2' and also turns on the following optimization flags:
- -finline-functions
- -funswitch-loops
- -fpredictive-commoning
- -fgcse-after-reload
- -ftree-loop-vectorize
- -ftree-loop-distribution
- -ftree-loop-distribute-patterns
- -floop-interchange
- -floop-unroll-and-jam
- -fsplit-paths
- -ftree-slp-vectorize
- -fvect-cost-model
- -ftree-partial-pre
- -fpeel-loops
- -fipa-cp-clone
- '-O0'
- Reduce compilation time and make debugging produce the expected
- results. This is the default.
- '-Os'
- Optimize for size. '-Os' enables all '-O2' optimizations that do
- not typically increase code size.
- '-Os' disables the following optimization flags:
- -falign-functions -falign-jumps -falign-loops
- -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc
- -freorder-blocks-and-partition -fprefetch-loop-arrays
- It also enables '-finline-functions', causes the compiler to tune
- for code size rather than execution speed, and performs further
- optimizations designed to reduce code size.
- '-Ofast'
- Disregard strict standards compliance. '-Ofast' enables all '-O3'
- optimizations. It also enables optimizations that are not valid
- for all standard-compliant programs. It turns on '-ffast-math' and
- the Fortran-specific '-fstack-arrays', unless
- '-fmax-stack-var-size' is specified, and '-fno-protect-parens'.
- '-Og'
- Optimize debugging experience. '-Og' enables optimizations that do
- not interfere with debugging. It should be the optimization level
- of choice for the standard edit-compile-debug cycle, offering a
- reasonable level of optimization while maintaining fast compilation
- and a good debugging experience.
- If you use multiple '-O' options, with or without level numbers, the
- last such option is the one that is effective.
- Options of the form '-fFLAG' specify machine-independent flags. Most
- flags have both positive and negative forms; the negative form of
- '-ffoo' is '-fno-foo'. In the table below, only one of the forms is
- listed--the one you typically use. You can figure out the other form by
- either removing 'no-' or adding it.
- The following options control specific optimizations. They are either
- activated by '-O' options or are related to ones that are. You can use
- the following flags in the rare cases when "fine-tuning" of
- optimizations to be performed is desired.
- '-fno-defer-pop'
- Always pop the arguments to each function call as soon as that
- function returns. For machines that must pop arguments after a
- function call, the compiler normally lets arguments accumulate on
- the stack for several function calls and pops them all at once.
- Disabled at levels '-O', '-O2', '-O3', '-Os'.
- '-fforward-propagate'
- Perform a forward propagation pass on RTL. The pass tries to
- combine two instructions and checks if the result can be
- simplified. If loop unrolling is active, two passes are performed
- and the second is scheduled after loop unrolling.
- This option is enabled by default at optimization levels '-O',
- '-O2', '-O3', '-Os'.
- '-ffp-contract=STYLE'
- '-ffp-contract=off' disables floating-point expression contraction.
- '-ffp-contract=fast' enables floating-point expression contraction
- such as forming of fused multiply-add operations if the target has
- native support for them. '-ffp-contract=on' enables floating-point
- expression contraction if allowed by the language standard. This
- is currently not implemented and treated equal to
- '-ffp-contract=off'.
- The default is '-ffp-contract=fast'.
- '-fomit-frame-pointer'
- Omit the frame pointer in functions that don't need one. This
- avoids the instructions to save, set up and restore the frame
- pointer; on many targets it also makes an extra register available.
- On some targets this flag has no effect because the standard
- calling sequence always uses a frame pointer, so it cannot be
- omitted.
- Note that '-fno-omit-frame-pointer' doesn't guarantee the frame
- pointer is used in all functions. Several targets always omit the
- frame pointer in leaf functions.
- Enabled by default at '-O' and higher.
- '-foptimize-sibling-calls'
- Optimize sibling and tail recursive calls.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-foptimize-strlen'
- Optimize various standard C string functions (e.g. 'strlen',
- 'strchr' or 'strcpy') and their '_FORTIFY_SOURCE' counterparts into
- faster alternatives.
- Enabled at levels '-O2', '-O3'.
- '-fno-inline'
- Do not expand any functions inline apart from those marked with the
- 'always_inline' attribute. This is the default when not
- optimizing.
- Single functions can be exempted from inlining by marking them with
- the 'noinline' attribute.
- '-finline-small-functions'
- Integrate functions into their callers when their body is smaller
- than expected function call code (so overall size of program gets
- smaller). The compiler heuristically decides which functions are
- simple enough to be worth integrating in this way. This inlining
- applies to all functions, even those not declared inline.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-findirect-inlining'
- Inline also indirect calls that are discovered to be known at
- compile time thanks to previous inlining. This option has any
- effect only when inlining itself is turned on by the
- '-finline-functions' or '-finline-small-functions' options.
- Enabled at levels '-O3', '-Os'. Also enabled by '-fprofile-use'
- and '-fauto-profile'.
- '-finline-functions'
- Consider all functions for inlining, even if they are not declared
- inline. The compiler heuristically decides which functions are
- worth integrating in this way.
- If all calls to a given function are integrated, and the function
- is declared 'static', then the function is normally not output as
- assembler code in its own right.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-finline-functions-called-once'
- Consider all 'static' functions called once for inlining into their
- caller even if they are not marked 'inline'. If a call to a given
- function is integrated, then the function is not output as
- assembler code in its own right.
- Enabled at levels '-O1', '-O2', '-O3' and '-Os'.
- '-fearly-inlining'
- Inline functions marked by 'always_inline' and functions whose body
- seems smaller than the function call overhead early before doing
- '-fprofile-generate' instrumentation and real inlining pass. Doing
- so makes profiling significantly cheaper and usually inlining
- faster on programs having large chains of nested wrapper functions.
- Enabled by default.
- '-fipa-sra'
- Perform interprocedural scalar replacement of aggregates, removal
- of unused parameters and replacement of parameters passed by
- reference by parameters passed by value.
- Enabled at levels '-O2', '-O3' and '-Os'.
- '-finline-limit=N'
- By default, GCC limits the size of functions that can be inlined.
- This flag allows coarse control of this limit. N is the size of
- functions that can be inlined in number of pseudo instructions.
- Inlining is actually controlled by a number of parameters, which
- may be specified individually by using '--param NAME=VALUE'. The
- '-finline-limit=N' option sets some of these parameters as follows:
- 'max-inline-insns-single'
- is set to N/2.
- 'max-inline-insns-auto'
- is set to N/2.
- See below for a documentation of the individual parameters
- controlling inlining and for the defaults of these parameters.
- _Note:_ there may be no value to '-finline-limit' that results in
- default behavior.
- _Note:_ pseudo instruction represents, in this particular context,
- an abstract measurement of function's size. In no way does it
- represent a count of assembly instructions and as such its exact
- meaning might change from one release to an another.
- '-fno-keep-inline-dllexport'
- This is a more fine-grained version of '-fkeep-inline-functions',
- which applies only to functions that are declared using the
- 'dllexport' attribute or declspec. *Note Declaring Attributes of
- Functions: Function Attributes.
- '-fkeep-inline-functions'
- In C, emit 'static' functions that are declared 'inline' into the
- object file, even if the function has been inlined into all of its
- callers. This switch does not affect functions using the 'extern
- inline' extension in GNU C90. In C++, emit any and all inline
- functions into the object file.
- '-fkeep-static-functions'
- Emit 'static' functions into the object file, even if the function
- is never used.
- '-fkeep-static-consts'
- Emit variables declared 'static const' when optimization isn't
- turned on, even if the variables aren't referenced.
- GCC enables this option by default. If you want to force the
- compiler to check if a variable is referenced, regardless of
- whether or not optimization is turned on, use the
- '-fno-keep-static-consts' option.
- '-fmerge-constants'
- Attempt to merge identical constants (string constants and
- floating-point constants) across compilation units.
- This option is the default for optimized compilation if the
- assembler and linker support it. Use '-fno-merge-constants' to
- inhibit this behavior.
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
- '-fmerge-all-constants'
- Attempt to merge identical constants and identical variables.
- This option implies '-fmerge-constants'. In addition to
- '-fmerge-constants' this considers e.g. even constant initialized
- arrays or initialized constant variables with integral or
- floating-point types. Languages like C or C++ require each
- variable, including multiple instances of the same variable in
- recursive calls, to have distinct locations, so using this option
- results in non-conforming behavior.
- '-fmodulo-sched'
- Perform swing modulo scheduling immediately before the first
- scheduling pass. This pass looks at innermost loops and reorders
- their instructions by overlapping different iterations.
- '-fmodulo-sched-allow-regmoves'
- Perform more aggressive SMS-based modulo scheduling with register
- moves allowed. By setting this flag certain anti-dependences edges
- are deleted, which triggers the generation of reg-moves based on
- the life-range analysis. This option is effective only with
- '-fmodulo-sched' enabled.
- '-fno-branch-count-reg'
- Avoid running a pass scanning for opportunities to use "decrement
- and branch" instructions on a count register instead of generating
- sequences of instructions that decrement a register, compare it
- against zero, and then branch based upon the result. This option
- is only meaningful on architectures that support such instructions,
- which include x86, PowerPC, IA-64 and S/390. Note that the
- '-fno-branch-count-reg' option doesn't remove the decrement and
- branch instructions from the generated instruction stream
- introduced by other optimization passes.
- Enabled by default at '-O1' and higher.
- The default is '-fbranch-count-reg'.
- '-fno-function-cse'
- Do not put function addresses in registers; make each instruction
- that calls a constant function contain the function's address
- explicitly.
- This option results in less efficient code, but some strange hacks
- that alter the assembler output may be confused by the
- optimizations performed when this option is not used.
- The default is '-ffunction-cse'
- '-fno-zero-initialized-in-bss'
- If the target supports a BSS section, GCC by default puts variables
- that are initialized to zero into BSS. This can save space in the
- resulting code.
- This option turns off this behavior because some programs
- explicitly rely on variables going to the data section--e.g., so
- that the resulting executable can find the beginning of that
- section and/or make assumptions based on that.
- The default is '-fzero-initialized-in-bss'.
- '-fthread-jumps'
- Perform optimizations that check to see if a jump branches to a
- location where another comparison subsumed by the first is found.
- If so, the first branch is redirected to either the destination of
- the second branch or a point immediately following it, depending on
- whether the condition is known to be true or false.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-fsplit-wide-types'
- When using a type that occupies multiple registers, such as 'long
- long' on a 32-bit system, split the registers apart and allocate
- them independently. This normally generates better code for those
- types, but may make debugging more difficult.
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
- '-fcse-follow-jumps'
- In common subexpression elimination (CSE), scan through jump
- instructions when the target of the jump is not reached by any
- other path. For example, when CSE encounters an 'if' statement
- with an 'else' clause, CSE follows the jump when the condition
- tested is false.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-fcse-skip-blocks'
- This is similar to '-fcse-follow-jumps', but causes CSE to follow
- jumps that conditionally skip over blocks. When CSE encounters a
- simple 'if' statement with no else clause, '-fcse-skip-blocks'
- causes CSE to follow the jump around the body of the 'if'.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-frerun-cse-after-loop'
- Re-run common subexpression elimination after loop optimizations
- are performed.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-fgcse'
- Perform a global common subexpression elimination pass. This pass
- also performs global constant and copy propagation.
- _Note:_ When compiling a program using computed gotos, a GCC
- extension, you may get better run-time performance if you disable
- the global common subexpression elimination pass by adding
- '-fno-gcse' to the command line.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-fgcse-lm'
- When '-fgcse-lm' is enabled, global common subexpression
- elimination attempts to move loads that are only killed by stores
- into themselves. This allows a loop containing a load/store
- sequence to be changed to a load outside the loop, and a copy/store
- within the loop.
- Enabled by default when '-fgcse' is enabled.
- '-fgcse-sm'
- When '-fgcse-sm' is enabled, a store motion pass is run after
- global common subexpression elimination. This pass attempts to
- move stores out of loops. When used in conjunction with
- '-fgcse-lm', loops containing a load/store sequence can be changed
- to a load before the loop and a store after the loop.
- Not enabled at any optimization level.
- '-fgcse-las'
- When '-fgcse-las' is enabled, the global common subexpression
- elimination pass eliminates redundant loads that come after stores
- to the same memory location (both partial and full redundancies).
- Not enabled at any optimization level.
- '-fgcse-after-reload'
- When '-fgcse-after-reload' is enabled, a redundant load elimination
- pass is performed after reload. The purpose of this pass is to
- clean up redundant spilling.
- '-faggressive-loop-optimizations'
- This option tells the loop optimizer to use language constraints to
- derive bounds for the number of iterations of a loop. This assumes
- that loop code does not invoke undefined behavior by for example
- causing signed integer overflows or out-of-bound array accesses.
- The bounds for the number of iterations of a loop are used to guide
- loop unrolling and peeling and loop exit test optimizations. This
- option is enabled by default.
- '-funconstrained-commons'
- This option tells the compiler that variables declared in common
- blocks (e.g. Fortran) may later be overridden with longer trailing
- arrays. This prevents certain optimizations that depend on knowing
- the array bounds.
- '-fcrossjumping'
- Perform cross-jumping transformation. This transformation unifies
- equivalent code and saves code size. The resulting code may or may
- not perform better than without cross-jumping.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-fauto-inc-dec'
- Combine increments or decrements of addresses with memory accesses.
- This pass is always skipped on architectures that do not have
- instructions to support this. Enabled by default at '-O' and
- higher on architectures that support this.
- '-fdce'
- Perform dead code elimination (DCE) on RTL. Enabled by default at
- '-O' and higher.
- '-fdse'
- Perform dead store elimination (DSE) on RTL. Enabled by default at
- '-O' and higher.
- '-fif-conversion'
- Attempt to transform conditional jumps into branch-less
- equivalents. This includes use of conditional moves, min, max, set
- flags and abs instructions, and some tricks doable by standard
- arithmetics. The use of conditional execution on chips where it is
- available is controlled by '-fif-conversion2'.
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
- '-fif-conversion2'
- Use conditional execution (where available) to transform
- conditional jumps into branch-less equivalents.
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
- '-fdeclone-ctor-dtor'
- The C++ ABI requires multiple entry points for constructors and
- destructors: one for a base subobject, one for a complete object,
- and one for a virtual destructor that calls operator delete
- afterwards. For a hierarchy with virtual bases, the base and
- complete variants are clones, which means two copies of the
- function. With this option, the base and complete variants are
- changed to be thunks that call a common implementation.
- Enabled by '-Os'.
- '-fdelete-null-pointer-checks'
- Assume that programs cannot safely dereference null pointers, and
- that no code or data element resides at address zero. This option
- enables simple constant folding optimizations at all optimization
- levels. In addition, other optimization passes in GCC use this
- flag to control global dataflow analyses that eliminate useless
- checks for null pointers; these assume that a memory access to
- address zero always results in a trap, so that if a pointer is
- checked after it has already been dereferenced, it cannot be null.
- Note however that in some environments this assumption is not true.
- Use '-fno-delete-null-pointer-checks' to disable this optimization
- for programs that depend on that behavior.
- This option is enabled by default on most targets. On Nios II ELF,
- it defaults to off. On AVR, CR16, and MSP430, this option is
- completely disabled.
- Passes that use the dataflow information are enabled independently
- at different optimization levels.
- '-fdevirtualize'
- Attempt to convert calls to virtual functions to direct calls.
- This is done both within a procedure and interprocedurally as part
- of indirect inlining ('-findirect-inlining') and interprocedural
- constant propagation ('-fipa-cp'). Enabled at levels '-O2', '-O3',
- '-Os'.
- '-fdevirtualize-speculatively'
- Attempt to convert calls to virtual functions to speculative direct
- calls. Based on the analysis of the type inheritance graph,
- determine for a given call the set of likely targets. If the set
- is small, preferably of size 1, change the call into a conditional
- deciding between direct and indirect calls. The speculative calls
- enable more optimizations, such as inlining. When they seem
- useless after further optimization, they are converted back into
- original form.
- '-fdevirtualize-at-ltrans'
- Stream extra information needed for aggressive devirtualization
- when running the link-time optimizer in local transformation mode.
- This option enables more devirtualization but significantly
- increases the size of streamed data. For this reason it is
- disabled by default.
- '-fexpensive-optimizations'
- Perform a number of minor optimizations that are relatively
- expensive.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-free'
- Attempt to remove redundant extension instructions. This is
- especially helpful for the x86-64 architecture, which implicitly
- zero-extends in 64-bit registers after writing to their lower
- 32-bit half.
- Enabled for Alpha, AArch64 and x86 at levels '-O2', '-O3', '-Os'.
- '-fno-lifetime-dse'
- In C++ the value of an object is only affected by changes within
- its lifetime: when the constructor begins, the object has an
- indeterminate value, and any changes during the lifetime of the
- object are dead when the object is destroyed. Normally dead store
- elimination will take advantage of this; if your code relies on the
- value of the object storage persisting beyond the lifetime of the
- object, you can use this flag to disable this optimization. To
- preserve stores before the constructor starts (e.g. because your
- operator new clears the object storage) but still treat the object
- as dead after the destructor you, can use '-flifetime-dse=1'. The
- default behavior can be explicitly selected with
- '-flifetime-dse=2'. '-flifetime-dse=0' is equivalent to
- '-fno-lifetime-dse'.
- '-flive-range-shrinkage'
- Attempt to decrease register pressure through register live range
- shrinkage. This is helpful for fast processors with small or
- moderate size register sets.
- '-fira-algorithm=ALGORITHM'
- Use the specified coloring algorithm for the integrated register
- allocator. The ALGORITHM argument can be 'priority', which
- specifies Chow's priority coloring, or 'CB', which specifies
- Chaitin-Briggs coloring. Chaitin-Briggs coloring is not
- implemented for all architectures, but for those targets that do
- support it, it is the default because it generates better code.
- '-fira-region=REGION'
- Use specified regions for the integrated register allocator. The
- REGION argument should be one of the following:
- 'all'
- Use all loops as register allocation regions. This can give
- the best results for machines with a small and/or irregular
- register set.
- 'mixed'
- Use all loops except for loops with small register pressure as
- the regions. This value usually gives the best results in
- most cases and for most architectures, and is enabled by
- default when compiling with optimization for speed ('-O',
- '-O2', ...).
- 'one'
- Use all functions as a single region. This typically results
- in the smallest code size, and is enabled by default for '-Os'
- or '-O0'.
- '-fira-hoist-pressure'
- Use IRA to evaluate register pressure in the code hoisting pass for
- decisions to hoist expressions. This option usually results in
- smaller code, but it can slow the compiler down.
- This option is enabled at level '-Os' for all targets.
- '-fira-loop-pressure'
- Use IRA to evaluate register pressure in loops for decisions to
- move loop invariants. This option usually results in generation of
- faster and smaller code on machines with large register files (>=
- 32 registers), but it can slow the compiler down.
- This option is enabled at level '-O3' for some targets.
- '-fno-ira-share-save-slots'
- Disable sharing of stack slots used for saving call-used hard
- registers living through a call. Each hard register gets a
- separate stack slot, and as a result function stack frames are
- larger.
- '-fno-ira-share-spill-slots'
- Disable sharing of stack slots allocated for pseudo-registers.
- Each pseudo-register that does not get a hard register gets a
- separate stack slot, and as a result function stack frames are
- larger.
- '-flra-remat'
- Enable CFG-sensitive rematerialization in LRA. Instead of loading
- values of spilled pseudos, LRA tries to rematerialize (recalculate)
- values if it is profitable.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-fdelayed-branch'
- If supported for the target machine, attempt to reorder
- instructions to exploit instruction slots available after delayed
- branch instructions.
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
- '-fschedule-insns'
- If supported for the target machine, attempt to reorder
- instructions to eliminate execution stalls due to required data
- being unavailable. This helps machines that have slow floating
- point or memory load instructions by allowing other instructions to
- be issued until the result of the load or floating-point
- instruction is required.
- Enabled at levels '-O2', '-O3'.
- '-fschedule-insns2'
- Similar to '-fschedule-insns', but requests an additional pass of
- instruction scheduling after register allocation has been done.
- This is especially useful on machines with a relatively small
- number of registers and where memory load instructions take more
- than one cycle.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-fno-sched-interblock'
- Don't schedule instructions across basic blocks. This is normally
- enabled by default when scheduling before register allocation, i.e.
- with '-fschedule-insns' or at '-O2' or higher.
- '-fno-sched-spec'
- Don't allow speculative motion of non-load instructions. This is
- normally enabled by default when scheduling before register
- allocation, i.e. with '-fschedule-insns' or at '-O2' or higher.
- '-fsched-pressure'
- Enable register pressure sensitive insn scheduling before register
- allocation. This only makes sense when scheduling before register
- allocation is enabled, i.e. with '-fschedule-insns' or at '-O2' or
- higher. Usage of this option can improve the generated code and
- decrease its size by preventing register pressure increase above
- the number of available hard registers and subsequent spills in
- register allocation.
- '-fsched-spec-load'
- Allow speculative motion of some load instructions. This only
- makes sense when scheduling before register allocation, i.e. with
- '-fschedule-insns' or at '-O2' or higher.
- '-fsched-spec-load-dangerous'
- Allow speculative motion of more load instructions. This only
- makes sense when scheduling before register allocation, i.e. with
- '-fschedule-insns' or at '-O2' or higher.
- '-fsched-stalled-insns'
- '-fsched-stalled-insns=N'
- Define how many insns (if any) can be moved prematurely from the
- queue of stalled insns into the ready list during the second
- scheduling pass. '-fno-sched-stalled-insns' means that no insns
- are moved prematurely, '-fsched-stalled-insns=0' means there is no
- limit on how many queued insns can be moved prematurely.
- '-fsched-stalled-insns' without a value is equivalent to
- '-fsched-stalled-insns=1'.
- '-fsched-stalled-insns-dep'
- '-fsched-stalled-insns-dep=N'
- Define how many insn groups (cycles) are examined for a dependency
- on a stalled insn that is a candidate for premature removal from
- the queue of stalled insns. This has an effect only during the
- second scheduling pass, and only if '-fsched-stalled-insns' is
- used. '-fno-sched-stalled-insns-dep' is equivalent to
- '-fsched-stalled-insns-dep=0'. '-fsched-stalled-insns-dep' without
- a value is equivalent to '-fsched-stalled-insns-dep=1'.
- '-fsched2-use-superblocks'
- When scheduling after register allocation, use superblock
- scheduling. This allows motion across basic block boundaries,
- resulting in faster schedules. This option is experimental, as not
- all machine descriptions used by GCC model the CPU closely enough
- to avoid unreliable results from the algorithm.
- This only makes sense when scheduling after register allocation,
- i.e. with '-fschedule-insns2' or at '-O2' or higher.
- '-fsched-group-heuristic'
- Enable the group heuristic in the scheduler. This heuristic favors
- the instruction that belongs to a schedule group. This is enabled
- by default when scheduling is enabled, i.e. with '-fschedule-insns'
- or '-fschedule-insns2' or at '-O2' or higher.
- '-fsched-critical-path-heuristic'
- Enable the critical-path heuristic in the scheduler. This
- heuristic favors instructions on the critical path. This is
- enabled by default when scheduling is enabled, i.e. with
- '-fschedule-insns' or '-fschedule-insns2' or at '-O2' or higher.
- '-fsched-spec-insn-heuristic'
- Enable the speculative instruction heuristic in the scheduler.
- This heuristic favors speculative instructions with greater
- dependency weakness. This is enabled by default when scheduling is
- enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or at
- '-O2' or higher.
- '-fsched-rank-heuristic'
- Enable the rank heuristic in the scheduler. This heuristic favors
- the instruction belonging to a basic block with greater size or
- frequency. This is enabled by default when scheduling is enabled,
- i.e. with '-fschedule-insns' or '-fschedule-insns2' or at '-O2' or
- higher.
- '-fsched-last-insn-heuristic'
- Enable the last-instruction heuristic in the scheduler. This
- heuristic favors the instruction that is less dependent on the last
- instruction scheduled. This is enabled by default when scheduling
- is enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or
- at '-O2' or higher.
- '-fsched-dep-count-heuristic'
- Enable the dependent-count heuristic in the scheduler. This
- heuristic favors the instruction that has more instructions
- depending on it. This is enabled by default when scheduling is
- enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or at
- '-O2' or higher.
- '-freschedule-modulo-scheduled-loops'
- Modulo scheduling is performed before traditional scheduling. If a
- loop is modulo scheduled, later scheduling passes may change its
- schedule. Use this option to control that behavior.
- '-fselective-scheduling'
- Schedule instructions using selective scheduling algorithm.
- Selective scheduling runs instead of the first scheduler pass.
- '-fselective-scheduling2'
- Schedule instructions using selective scheduling algorithm.
- Selective scheduling runs instead of the second scheduler pass.
- '-fsel-sched-pipelining'
- Enable software pipelining of innermost loops during selective
- scheduling. This option has no effect unless one of
- '-fselective-scheduling' or '-fselective-scheduling2' is turned on.
- '-fsel-sched-pipelining-outer-loops'
- When pipelining loops during selective scheduling, also pipeline
- outer loops. This option has no effect unless
- '-fsel-sched-pipelining' is turned on.
- '-fsemantic-interposition'
- Some object formats, like ELF, allow interposing of symbols by the
- dynamic linker. This means that for symbols exported from the DSO,
- the compiler cannot perform interprocedural propagation, inlining
- and other optimizations in anticipation that the function or
- variable in question may change. While this feature is useful, for
- example, to rewrite memory allocation functions by a debugging
- implementation, it is expensive in the terms of code quality. With
- '-fno-semantic-interposition' the compiler assumes that if
- interposition happens for functions the overwriting function will
- have precisely the same semantics (and side effects). Similarly if
- interposition happens for variables, the constructor of the
- variable will be the same. The flag has no effect for functions
- explicitly declared inline (where it is never allowed for
- interposition to change semantics) and for symbols explicitly
- declared weak.
- '-fshrink-wrap'
- Emit function prologues only before parts of the function that need
- it, rather than at the top of the function. This flag is enabled
- by default at '-O' and higher.
- '-fshrink-wrap-separate'
- Shrink-wrap separate parts of the prologue and epilogue separately,
- so that those parts are only executed when needed. This option is
- on by default, but has no effect unless '-fshrink-wrap' is also
- turned on and the target supports this.
- '-fcaller-saves'
- Enable allocation of values to registers that are clobbered by
- function calls, by emitting extra instructions to save and restore
- the registers around such calls. Such allocation is done only when
- it seems to result in better code.
- This option is always enabled by default on certain machines,
- usually those which have no call-preserved registers to use
- instead.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-fcombine-stack-adjustments'
- Tracks stack adjustments (pushes and pops) and stack memory
- references and then tries to find ways to combine them.
- Enabled by default at '-O1' and higher.
- '-fipa-ra'
- Use caller save registers for allocation if those registers are not
- used by any called function. In that case it is not necessary to
- save and restore them around calls. This is only possible if
- called functions are part of same compilation unit as current
- function and they are compiled before it.
- Enabled at levels '-O2', '-O3', '-Os', however the option is
- disabled if generated code will be instrumented for profiling
- ('-p', or '-pg') or if callee's register usage cannot be known
- exactly (this happens on targets that do not expose prologues and
- epilogues in RTL).
- '-fconserve-stack'
- Attempt to minimize stack usage. The compiler attempts to use less
- stack space, even if that makes the program slower. This option
- implies setting the 'large-stack-frame' parameter to 100 and the
- 'large-stack-frame-growth' parameter to 400.
- '-ftree-reassoc'
- Perform reassociation on trees. This flag is enabled by default at
- '-O' and higher.
- '-fcode-hoisting'
- Perform code hoisting. Code hoisting tries to move the evaluation
- of expressions executed on all paths to the function exit as early
- as possible. This is especially useful as a code size
- optimization, but it often helps for code speed as well. This flag
- is enabled by default at '-O2' and higher.
- '-ftree-pre'
- Perform partial redundancy elimination (PRE) on trees. This flag
- is enabled by default at '-O2' and '-O3'.
- '-ftree-partial-pre'
- Make partial redundancy elimination (PRE) more aggressive. This
- flag is enabled by default at '-O3'.
- '-ftree-forwprop'
- Perform forward propagation on trees. This flag is enabled by
- default at '-O' and higher.
- '-ftree-fre'
- Perform full redundancy elimination (FRE) on trees. The difference
- between FRE and PRE is that FRE only considers expressions that are
- computed on all paths leading to the redundant computation. This
- analysis is faster than PRE, though it exposes fewer redundancies.
- This flag is enabled by default at '-O' and higher.
- '-ftree-phiprop'
- Perform hoisting of loads from conditional pointers on trees. This
- pass is enabled by default at '-O' and higher.
- '-fhoist-adjacent-loads'
- Speculatively hoist loads from both branches of an if-then-else if
- the loads are from adjacent locations in the same structure and the
- target architecture has a conditional move instruction. This flag
- is enabled by default at '-O2' and higher.
- '-ftree-copy-prop'
- Perform copy propagation on trees. This pass eliminates
- unnecessary copy operations. This flag is enabled by default at
- '-O' and higher.
- '-fipa-pure-const'
- Discover which functions are pure or constant. Enabled by default
- at '-O' and higher.
- '-fipa-reference'
- Discover which static variables do not escape the compilation unit.
- Enabled by default at '-O' and higher.
- '-fipa-pta'
- Perform interprocedural pointer analysis and interprocedural
- modification and reference analysis. This option can cause
- excessive memory and compile-time usage on large compilation units.
- It is not enabled by default at any optimization level.
- '-fipa-profile'
- Perform interprocedural profile propagation. The functions called
- only from cold functions are marked as cold. Also functions
- executed once (such as 'cold', 'noreturn', static constructors or
- destructors) are identified. Cold functions and loop less parts of
- functions executed once are then optimized for size. Enabled by
- default at '-O' and higher.
- '-fipa-cp'
- Perform interprocedural constant propagation. This optimization
- analyzes the program to determine when values passed to functions
- are constants and then optimizes accordingly. This optimization
- can substantially increase performance if the application has
- constants passed to functions. This flag is enabled by default at
- '-O2', '-Os' and '-O3'.
- '-fipa-cp-clone'
- Perform function cloning to make interprocedural constant
- propagation stronger. When enabled, interprocedural constant
- propagation performs function cloning when externally visible
- function can be called with constant arguments. Because this
- optimization can create multiple copies of functions, it may
- significantly increase code size (see '--param
- ipcp-unit-growth=VALUE'). This flag is enabled by default at
- '-O3'.
- '-fipa-bit-cp'
- When enabled, perform interprocedural bitwise constant propagation.
- This flag is enabled by default at '-O2'. It requires that
- '-fipa-cp' is enabled.
- '-fipa-vrp'
- When enabled, perform interprocedural propagation of value ranges.
- This flag is enabled by default at '-O2'. It requires that
- '-fipa-cp' is enabled.
- '-fipa-icf'
- Perform Identical Code Folding for functions and read-only
- variables. The optimization reduces code size and may disturb
- unwind stacks by replacing a function by equivalent one with a
- different name. The optimization works more effectively with
- link-time optimization enabled.
- Nevertheless the behavior is similar to Gold Linker ICF
- optimization, GCC ICF works on different levels and thus the
- optimizations are not same - there are equivalences that are found
- only by GCC and equivalences found only by Gold.
- This flag is enabled by default at '-O2' and '-Os'.
- '-fisolate-erroneous-paths-dereference'
- Detect paths that trigger erroneous or undefined behavior due to
- dereferencing a null pointer. Isolate those paths from the main
- control flow and turn the statement with erroneous or undefined
- behavior into a trap. This flag is enabled by default at '-O2' and
- higher and depends on '-fdelete-null-pointer-checks' also being
- enabled.
- '-fisolate-erroneous-paths-attribute'
- Detect paths that trigger erroneous or undefined behavior due to a
- null value being used in a way forbidden by a 'returns_nonnull' or
- 'nonnull' attribute. Isolate those paths from the main control
- flow and turn the statement with erroneous or undefined behavior
- into a trap. This is not currently enabled, but may be enabled by
- '-O2' in the future.
- '-ftree-sink'
- Perform forward store motion on trees. This flag is enabled by
- default at '-O' and higher.
- '-ftree-bit-ccp'
- Perform sparse conditional bit constant propagation on trees and
- propagate pointer alignment information. This pass only operates
- on local scalar variables and is enabled by default at '-O' and
- higher. It requires that '-ftree-ccp' is enabled.
- '-ftree-ccp'
- Perform sparse conditional constant propagation (CCP) on trees.
- This pass only operates on local scalar variables and is enabled by
- default at '-O' and higher.
- '-fssa-backprop'
- Propagate information about uses of a value up the definition chain
- in order to simplify the definitions. For example, this pass
- strips sign operations if the sign of a value never matters. The
- flag is enabled by default at '-O' and higher.
- '-fssa-phiopt'
- Perform pattern matching on SSA PHI nodes to optimize conditional
- code. This pass is enabled by default at '-O' and higher.
- '-ftree-switch-conversion'
- Perform conversion of simple initializations in a switch to
- initializations from a scalar array. This flag is enabled by
- default at '-O2' and higher.
- '-ftree-tail-merge'
- Look for identical code sequences. When found, replace one with a
- jump to the other. This optimization is known as tail merging or
- cross jumping. This flag is enabled by default at '-O2' and
- higher. The compilation time in this pass can be limited using
- 'max-tail-merge-comparisons' parameter and
- 'max-tail-merge-iterations' parameter.
- '-ftree-dce'
- Perform dead code elimination (DCE) on trees. This flag is enabled
- by default at '-O' and higher.
- '-ftree-builtin-call-dce'
- Perform conditional dead code elimination (DCE) for calls to
- built-in functions that may set 'errno' but are otherwise free of
- side effects. This flag is enabled by default at '-O2' and higher
- if '-Os' is not also specified.
- '-ftree-dominator-opts'
- Perform a variety of simple scalar cleanups (constant/copy
- propagation, redundancy elimination, range propagation and
- expression simplification) based on a dominator tree traversal.
- This also performs jump threading (to reduce jumps to jumps). This
- flag is enabled by default at '-O' and higher.
- '-ftree-dse'
- Perform dead store elimination (DSE) on trees. A dead store is a
- store into a memory location that is later overwritten by another
- store without any intervening loads. In this case the earlier
- store can be deleted. This flag is enabled by default at '-O' and
- higher.
- '-ftree-ch'
- Perform loop header copying on trees. This is beneficial since it
- increases effectiveness of code motion optimizations. It also
- saves one jump. This flag is enabled by default at '-O' and
- higher. It is not enabled for '-Os', since it usually increases
- code size.
- '-ftree-loop-optimize'
- Perform loop optimizations on trees. This flag is enabled by
- default at '-O' and higher.
- '-ftree-loop-linear'
- '-floop-strip-mine'
- '-floop-block'
- Perform loop nest optimizations. Same as '-floop-nest-optimize'.
- To use this code transformation, GCC has to be configured with
- '--with-isl' to enable the Graphite loop transformation
- infrastructure.
- '-fgraphite-identity'
- Enable the identity transformation for graphite. For every SCoP we
- generate the polyhedral representation and transform it back to
- gimple. Using '-fgraphite-identity' we can check the costs or
- benefits of the GIMPLE -> GRAPHITE -> GIMPLE transformation. Some
- minimal optimizations are also performed by the code generator isl,
- like index splitting and dead code elimination in loops.
- '-floop-nest-optimize'
- Enable the isl based loop nest optimizer. This is a generic loop
- nest optimizer based on the Pluto optimization algorithms. It
- calculates a loop structure optimized for data-locality and
- parallelism. This option is experimental.
- '-floop-parallelize-all'
- Use the Graphite data dependence analysis to identify loops that
- can be parallelized. Parallelize all the loops that can be
- analyzed to not contain loop carried dependences without checking
- that it is profitable to parallelize the loops.
- '-ftree-coalesce-vars'
- While transforming the program out of the SSA representation,
- attempt to reduce copying by coalescing versions of different
- user-defined variables, instead of just compiler temporaries. This
- may severely limit the ability to debug an optimized program
- compiled with '-fno-var-tracking-assignments'. In the negated
- form, this flag prevents SSA coalescing of user variables. This
- option is enabled by default if optimization is enabled, and it
- does very little otherwise.
- '-ftree-loop-if-convert'
- Attempt to transform conditional jumps in the innermost loops to
- branch-less equivalents. The intent is to remove control-flow from
- the innermost loops in order to improve the ability of the
- vectorization pass to handle these loops. This is enabled by
- default if vectorization is enabled.
- '-ftree-loop-distribution'
- Perform loop distribution. This flag can improve cache performance
- on big loop bodies and allow further loop optimizations, like
- parallelization or vectorization, to take place. For example, the
- loop
- DO I = 1, N
- A(I) = B(I) + C
- D(I) = E(I) * F
- ENDDO
- is transformed to
- DO I = 1, N
- A(I) = B(I) + C
- ENDDO
- DO I = 1, N
- D(I) = E(I) * F
- ENDDO
- '-ftree-loop-distribute-patterns'
- Perform loop distribution of patterns that can be code generated
- with calls to a library. This flag is enabled by default at '-O3'.
- This pass distributes the initialization loops and generates a call
- to memset zero. For example, the loop
- DO I = 1, N
- A(I) = 0
- B(I) = A(I) + I
- ENDDO
- is transformed to
- DO I = 1, N
- A(I) = 0
- ENDDO
- DO I = 1, N
- B(I) = A(I) + I
- ENDDO
- and the initialization loop is transformed into a call to memset
- zero.
- '-floop-interchange'
- Perform loop interchange outside of graphite. This flag can
- improve cache performance on loop nest and allow further loop
- optimizations, like vectorization, to take place. For example, the
- loop
- for (int i = 0; i < N; i++)
- for (int j = 0; j < N; j++)
- for (int k = 0; k < N; k++)
- c[i][j] = c[i][j] + a[i][k]*b[k][j];
- is transformed to
- for (int i = 0; i < N; i++)
- for (int k = 0; k < N; k++)
- for (int j = 0; j < N; j++)
- c[i][j] = c[i][j] + a[i][k]*b[k][j];
- This flag is enabled by default at '-O3'.
- '-floop-unroll-and-jam'
- Apply unroll and jam transformations on feasible loops. In a loop
- nest this unrolls the outer loop by some factor and fuses the
- resulting multiple inner loops. This flag is enabled by default at
- '-O3'.
- '-ftree-loop-im'
- Perform loop invariant motion on trees. This pass moves only
- invariants that are hard to handle at RTL level (function calls,
- operations that expand to nontrivial sequences of insns). With
- '-funswitch-loops' it also moves operands of conditions that are
- invariant out of the loop, so that we can use just trivial
- invariantness analysis in loop unswitching. The pass also includes
- store motion.
- '-ftree-loop-ivcanon'
- Create a canonical counter for number of iterations in loops for
- which determining number of iterations requires complicated
- analysis. Later optimizations then may determine the number
- easily. Useful especially in connection with unrolling.
- '-fivopts'
- Perform induction variable optimizations (strength reduction,
- induction variable merging and induction variable elimination) on
- trees.
- '-ftree-parallelize-loops=n'
- Parallelize loops, i.e., split their iteration space to run in n
- threads. This is only possible for loops whose iterations are
- independent and can be arbitrarily reordered. The optimization is
- only profitable on multiprocessor machines, for loops that are
- CPU-intensive, rather than constrained e.g. by memory bandwidth.
- This option implies '-pthread', and thus is only supported on
- targets that have support for '-pthread'.
- '-ftree-pta'
- Perform function-local points-to analysis on trees. This flag is
- enabled by default at '-O' and higher.
- '-ftree-sra'
- Perform scalar replacement of aggregates. This pass replaces
- structure references with scalars to prevent committing structures
- to memory too early. This flag is enabled by default at '-O' and
- higher.
- '-fstore-merging'
- Perform merging of narrow stores to consecutive memory addresses.
- This pass merges contiguous stores of immediate values narrower
- than a word into fewer wider stores to reduce the number of
- instructions. This is enabled by default at '-O2' and higher as
- well as '-Os'.
- '-ftree-ter'
- Perform temporary expression replacement during the SSA->normal
- phase. Single use/single def temporaries are replaced at their use
- location with their defining expression. This results in
- non-GIMPLE code, but gives the expanders much more complex trees to
- work on resulting in better RTL generation. This is enabled by
- default at '-O' and higher.
- '-ftree-slsr'
- Perform straight-line strength reduction on trees. This recognizes
- related expressions involving multiplications and replaces them by
- less expensive calculations when possible. This is enabled by
- default at '-O' and higher.
- '-ftree-vectorize'
- Perform vectorization on trees. This flag enables
- '-ftree-loop-vectorize' and '-ftree-slp-vectorize' if not
- explicitly specified.
- '-ftree-loop-vectorize'
- Perform loop vectorization on trees. This flag is enabled by
- default at '-O3' and when '-ftree-vectorize' is enabled.
- '-ftree-slp-vectorize'
- Perform basic block vectorization on trees. This flag is enabled
- by default at '-O3' and when '-ftree-vectorize' is enabled.
- '-fvect-cost-model=MODEL'
- Alter the cost model used for vectorization. The MODEL argument
- should be one of 'unlimited', 'dynamic' or 'cheap'. With the
- 'unlimited' model the vectorized code-path is assumed to be
- profitable while with the 'dynamic' model a runtime check guards
- the vectorized code-path to enable it only for iteration counts
- that will likely execute faster than when executing the original
- scalar loop. The 'cheap' model disables vectorization of loops
- where doing so would be cost prohibitive for example due to
- required runtime checks for data dependence or alignment but
- otherwise is equal to the 'dynamic' model. The default cost model
- depends on other optimization flags and is either 'dynamic' or
- 'cheap'.
- '-fsimd-cost-model=MODEL'
- Alter the cost model used for vectorization of loops marked with
- the OpenMP simd directive. The MODEL argument should be one of
- 'unlimited', 'dynamic', 'cheap'. All values of MODEL have the same
- meaning as described in '-fvect-cost-model' and by default a cost
- model defined with '-fvect-cost-model' is used.
- '-ftree-vrp'
- Perform Value Range Propagation on trees. This is similar to the
- constant propagation pass, but instead of values, ranges of values
- are propagated. This allows the optimizers to remove unnecessary
- range checks like array bound checks and null pointer checks. This
- is enabled by default at '-O2' and higher. Null pointer check
- elimination is only done if '-fdelete-null-pointer-checks' is
- enabled.
- '-fsplit-paths'
- Split paths leading to loop backedges. This can improve dead code
- elimination and common subexpression elimination. This is enabled
- by default at '-O2' and above.
- '-fsplit-ivs-in-unroller'
- Enables expression of values of induction variables in later
- iterations of the unrolled loop using the value in the first
- iteration. This breaks long dependency chains, thus improving
- efficiency of the scheduling passes.
- A combination of '-fweb' and CSE is often sufficient to obtain the
- same effect. However, that is not reliable in cases where the loop
- body is more complicated than a single basic block. It also does
- not work at all on some architectures due to restrictions in the
- CSE pass.
- This optimization is enabled by default.
- '-fvariable-expansion-in-unroller'
- With this option, the compiler creates multiple copies of some
- local variables when unrolling a loop, which can result in superior
- code.
- '-fpartial-inlining'
- Inline parts of functions. This option has any effect only when
- inlining itself is turned on by the '-finline-functions' or
- '-finline-small-functions' options.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-fpredictive-commoning'
- Perform predictive commoning optimization, i.e., reusing
- computations (especially memory loads and stores) performed in
- previous iterations of loops.
- This option is enabled at level '-O3'.
- '-fprefetch-loop-arrays'
- If supported by the target machine, generate instructions to
- prefetch memory to improve the performance of loops that access
- large arrays.
- This option may generate better or worse code; results are highly
- dependent on the structure of loops within the source code.
- Disabled at level '-Os'.
- '-fno-printf-return-value'
- Do not substitute constants for known return value of formatted
- output functions such as 'sprintf', 'snprintf', 'vsprintf', and
- 'vsnprintf' (but not 'printf' of 'fprintf'). This transformation
- allows GCC to optimize or even eliminate branches based on the
- known return value of these functions called with arguments that
- are either constant, or whose values are known to be in a range
- that makes determining the exact return value possible. For
- example, when '-fprintf-return-value' is in effect, both the branch
- and the body of the 'if' statement (but not the call to 'snprint')
- can be optimized away when 'i' is a 32-bit or smaller integer
- because the return value is guaranteed to be at most 8.
- char buf[9];
- if (snprintf (buf, "%08x", i) >= sizeof buf)
- ...
- The '-fprintf-return-value' option relies on other optimizations
- and yields best results with '-O2' and above. It works in tandem
- with the '-Wformat-overflow' and '-Wformat-truncation' options.
- The '-fprintf-return-value' option is enabled by default.
- '-fno-peephole'
- '-fno-peephole2'
- Disable any machine-specific peephole optimizations. The
- difference between '-fno-peephole' and '-fno-peephole2' is in how
- they are implemented in the compiler; some targets use one, some
- use the other, a few use both.
- '-fpeephole' is enabled by default. '-fpeephole2' enabled at
- levels '-O2', '-O3', '-Os'.
- '-fno-guess-branch-probability'
- Do not guess branch probabilities using heuristics.
- GCC uses heuristics to guess branch probabilities if they are not
- provided by profiling feedback ('-fprofile-arcs'). These
- heuristics are based on the control flow graph. If some branch
- probabilities are specified by '__builtin_expect', then the
- heuristics are used to guess branch probabilities for the rest of
- the control flow graph, taking the '__builtin_expect' info into
- account. The interactions between the heuristics and
- '__builtin_expect' can be complex, and in some cases, it may be
- useful to disable the heuristics so that the effects of
- '__builtin_expect' are easier to understand.
- The default is '-fguess-branch-probability' at levels '-O', '-O2',
- '-O3', '-Os'.
- '-freorder-blocks'
- Reorder basic blocks in the compiled function in order to reduce
- number of taken branches and improve code locality.
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
- '-freorder-blocks-algorithm=ALGORITHM'
- Use the specified algorithm for basic block reordering. The
- ALGORITHM argument can be 'simple', which does not increase code
- size (except sometimes due to secondary effects like alignment), or
- 'stc', the "software trace cache" algorithm, which tries to put all
- often executed code together, minimizing the number of branches
- executed by making extra copies of code.
- The default is 'simple' at levels '-O', '-Os', and 'stc' at levels
- '-O2', '-O3'.
- '-freorder-blocks-and-partition'
- In addition to reordering basic blocks in the compiled function, in
- order to reduce number of taken branches, partitions hot and cold
- basic blocks into separate sections of the assembly and '.o' files,
- to improve paging and cache locality performance.
- This optimization is automatically turned off in the presence of
- exception handling or unwind tables (on targets using
- setjump/longjump or target specific scheme), for linkonce sections,
- for functions with a user-defined section attribute and on any
- architecture that does not support named sections. When
- '-fsplit-stack' is used this option is not enabled by default (to
- avoid linker errors), but may be enabled explicitly (if using a
- working linker).
- Enabled for x86 at levels '-O2', '-O3', '-Os'.
- '-freorder-functions'
- Reorder functions in the object file in order to improve code
- locality. This is implemented by using special subsections
- '.text.hot' for most frequently executed functions and
- '.text.unlikely' for unlikely executed functions. Reordering is
- done by the linker so object file format must support named
- sections and linker must place them in a reasonable way.
- Also profile feedback must be available to make this option
- effective. See '-fprofile-arcs' for details.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-fstrict-aliasing'
- Allow the compiler to assume the strictest aliasing rules
- applicable to the language being compiled. For C (and C++), this
- activates optimizations based on the type of expressions. In
- particular, an object of one type is assumed never to reside at the
- same address as an object of a different type, unless the types are
- almost the same. For example, an 'unsigned int' can alias an
- 'int', but not a 'void*' or a 'double'. A character type may alias
- any other type.
- Pay special attention to code like this:
- union a_union {
- int i;
- double d;
- };
- int f() {
- union a_union t;
- t.d = 3.0;
- return t.i;
- }
- The practice of reading from a different union member than the one
- most recently written to (called "type-punning") is common. Even
- with '-fstrict-aliasing', type-punning is allowed, provided the
- memory is accessed through the union type. So, the code above
- works as expected. *Note Structures unions enumerations and
- bit-fields implementation::. However, this code might not:
- int f() {
- union a_union t;
- int* ip;
- t.d = 3.0;
- ip = &t.i;
- return *ip;
- }
- Similarly, access by taking the address, casting the resulting
- pointer and dereferencing the result has undefined behavior, even
- if the cast uses a union type, e.g.:
- int f() {
- double d = 3.0;
- return ((union a_union *) &d)->i;
- }
- The '-fstrict-aliasing' option is enabled at levels '-O2', '-O3',
- '-Os'.
- '-falign-functions'
- '-falign-functions=N'
- Align the start of functions to the next power-of-two greater than
- N, skipping up to N bytes. For instance, '-falign-functions=32'
- aligns functions to the next 32-byte boundary, but
- '-falign-functions=24' aligns to the next 32-byte boundary only if
- this can be done by skipping 23 bytes or less.
- '-fno-align-functions' and '-falign-functions=1' are equivalent and
- mean that functions are not aligned.
- Some assemblers only support this flag when N is a power of two; in
- that case, it is rounded up.
- If N is not specified or is zero, use a machine-dependent default.
- The maximum allowed N option value is 65536.
- Enabled at levels '-O2', '-O3'.
- '-flimit-function-alignment'
- If this option is enabled, the compiler tries to avoid
- unnecessarily overaligning functions. It attempts to instruct the
- assembler to align by the amount specified by '-falign-functions',
- but not to skip more bytes than the size of the function.
- '-falign-labels'
- '-falign-labels=N'
- Align all branch targets to a power-of-two boundary, skipping up to
- N bytes like '-falign-functions'. This option can easily make code
- slower, because it must insert dummy operations for when the branch
- target is reached in the usual flow of the code.
- '-fno-align-labels' and '-falign-labels=1' are equivalent and mean
- that labels are not aligned.
- If '-falign-loops' or '-falign-jumps' are applicable and are
- greater than this value, then their values are used instead.
- If N is not specified or is zero, use a machine-dependent default
- which is very likely to be '1', meaning no alignment. The maximum
- allowed N option value is 65536.
- Enabled at levels '-O2', '-O3'.
- '-falign-loops'
- '-falign-loops=N'
- Align loops to a power-of-two boundary, skipping up to N bytes like
- '-falign-functions'. If the loops are executed many times, this
- makes up for any execution of the dummy operations.
- '-fno-align-loops' and '-falign-loops=1' are equivalent and mean
- that loops are not aligned. The maximum allowed N option value is
- 65536.
- If N is not specified or is zero, use a machine-dependent default.
- Enabled at levels '-O2', '-O3'.
- '-falign-jumps'
- '-falign-jumps=N'
- Align branch targets to a power-of-two boundary, for branch targets
- where the targets can only be reached by jumping, skipping up to N
- bytes like '-falign-functions'. In this case, no dummy operations
- need be executed.
- '-fno-align-jumps' and '-falign-jumps=1' are equivalent and mean
- that loops are not aligned.
- If N is not specified or is zero, use a machine-dependent default.
- The maximum allowed N option value is 65536.
- Enabled at levels '-O2', '-O3'.
- '-funit-at-a-time'
- This option is left for compatibility reasons. '-funit-at-a-time'
- has no effect, while '-fno-unit-at-a-time' implies
- '-fno-toplevel-reorder' and '-fno-section-anchors'.
- Enabled by default.
- '-fno-toplevel-reorder'
- Do not reorder top-level functions, variables, and 'asm'
- statements. Output them in the same order that they appear in the
- input file. When this option is used, unreferenced static
- variables are not removed. This option is intended to support
- existing code that relies on a particular ordering. For new code,
- it is better to use attributes when possible.
- Enabled at level '-O0'. When disabled explicitly, it also implies
- '-fno-section-anchors', which is otherwise enabled at '-O0' on some
- targets.
- '-fweb'
- Constructs webs as commonly used for register allocation purposes
- and assign each web individual pseudo register. This allows the
- register allocation pass to operate on pseudos directly, but also
- strengthens several other optimization passes, such as CSE, loop
- optimizer and trivial dead code remover. It can, however, make
- debugging impossible, since variables no longer stay in a "home
- register".
- Enabled by default with '-funroll-loops'.
- '-fwhole-program'
- Assume that the current compilation unit represents the whole
- program being compiled. All public functions and variables with
- the exception of 'main' and those merged by attribute
- 'externally_visible' become static functions and in effect are
- optimized more aggressively by interprocedural optimizers.
- This option should not be used in combination with '-flto'.
- Instead relying on a linker plugin should provide safer and more
- precise information.
- '-flto[=N]'
- This option runs the standard link-time optimizer. When invoked
- with source code, it generates GIMPLE (one of GCC's internal
- representations) and writes it to special ELF sections in the
- object file. When the object files are linked together, all the
- function bodies are read from these ELF sections and instantiated
- as if they had been part of the same translation unit.
- To use the link-time optimizer, '-flto' and optimization options
- should be specified at compile time and during the final link. It
- is recommended that you compile all the files participating in the
- same link with the same options and also specify those options at
- link time. For example:
- gcc -c -O2 -flto foo.c
- gcc -c -O2 -flto bar.c
- gcc -o myprog -flto -O2 foo.o bar.o
- The first two invocations to GCC save a bytecode representation of
- GIMPLE into special ELF sections inside 'foo.o' and 'bar.o'. The
- final invocation reads the GIMPLE bytecode from 'foo.o' and
- 'bar.o', merges the two files into a single internal image, and
- compiles the result as usual. Since both 'foo.o' and 'bar.o' are
- merged into a single image, this causes all the interprocedural
- analyses and optimizations in GCC to work across the two files as
- if they were a single one. This means, for example, that the
- inliner is able to inline functions in 'bar.o' into functions in
- 'foo.o' and vice-versa.
- Another (simpler) way to enable link-time optimization is:
- gcc -o myprog -flto -O2 foo.c bar.c
- The above generates bytecode for 'foo.c' and 'bar.c', merges them
- together into a single GIMPLE representation and optimizes them as
- usual to produce 'myprog'.
- The only important thing to keep in mind is that to enable
- link-time optimizations you need to use the GCC driver to perform
- the link step. GCC then automatically performs link-time
- optimization if any of the objects involved were compiled with the
- '-flto' command-line option. You generally should specify the
- optimization options to be used for link-time optimization though
- GCC tries to be clever at guessing an optimization level to use
- from the options used at compile time if you fail to specify one at
- link time. You can always override the automatic decision to do
- link-time optimization by passing '-fno-lto' to the link command.
- To make whole program optimization effective, it is necessary to
- make certain whole program assumptions. The compiler needs to know
- what functions and variables can be accessed by libraries and
- runtime outside of the link-time optimized unit. When supported by
- the linker, the linker plugin (see '-fuse-linker-plugin') passes
- information to the compiler about used and externally visible
- symbols. When the linker plugin is not available,
- '-fwhole-program' should be used to allow the compiler to make
- these assumptions, which leads to more aggressive optimization
- decisions.
- When '-fuse-linker-plugin' is not enabled, when a file is compiled
- with '-flto', the generated object file is larger than a regular
- object file because it contains GIMPLE bytecodes and the usual
- final code (see '-ffat-lto-objects'. This means that object files
- with LTO information can be linked as normal object files; if
- '-fno-lto' is passed to the linker, no interprocedural
- optimizations are applied. Note that when '-fno-fat-lto-objects'
- is enabled the compile stage is faster but you cannot perform a
- regular, non-LTO link on them.
- Additionally, the optimization flags used to compile individual
- files are not necessarily related to those used at link time. For
- instance,
- gcc -c -O0 -ffat-lto-objects -flto foo.c
- gcc -c -O0 -ffat-lto-objects -flto bar.c
- gcc -o myprog -O3 foo.o bar.o
- This produces individual object files with unoptimized assembler
- code, but the resulting binary 'myprog' is optimized at '-O3'. If,
- instead, the final binary is generated with '-fno-lto', then
- 'myprog' is not optimized.
- When producing the final binary, GCC only applies link-time
- optimizations to those files that contain bytecode. Therefore, you
- can mix and match object files and libraries with GIMPLE bytecodes
- and final object code. GCC automatically selects which files to
- optimize in LTO mode and which files to link without further
- processing.
- There are some code generation flags preserved by GCC when
- generating bytecodes, as they need to be used during the final link
- stage. Generally options specified at link time override those
- specified at compile time.
- If you do not specify an optimization level option '-O' at link
- time, then GCC uses the highest optimization level used when
- compiling the object files.
- Currently, the following options and their settings are taken from
- the first object file that explicitly specifies them: '-fPIC',
- '-fpic', '-fpie', '-fcommon', '-fexceptions',
- '-fnon-call-exceptions', '-fgnu-tm' and all the '-m' target flags.
- Certain ABI-changing flags are required to match in all compilation
- units, and trying to override this at link time with a conflicting
- value is ignored. This includes options such as
- '-freg-struct-return' and '-fpcc-struct-return'.
- Other options such as '-ffp-contract', '-fno-strict-overflow',
- '-fwrapv', '-fno-trapv' or '-fno-strict-aliasing' are passed
- through to the link stage and merged conservatively for conflicting
- translation units. Specifically '-fno-strict-overflow', '-fwrapv'
- and '-fno-trapv' take precedence; and for example
- '-ffp-contract=off' takes precedence over '-ffp-contract=fast'.
- You can override them at link time.
- If LTO encounters objects with C linkage declared with incompatible
- types in separate translation units to be linked together
- (undefined behavior according to ISO C99 6.2.7), a non-fatal
- diagnostic may be issued. The behavior is still undefined at run
- time. Similar diagnostics may be raised for other languages.
- Another feature of LTO is that it is possible to apply
- interprocedural optimizations on files written in different
- languages:
- gcc -c -flto foo.c
- g++ -c -flto bar.cc
- gfortran -c -flto baz.f90
- g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
- Notice that the final link is done with 'g++' to get the C++
- runtime libraries and '-lgfortran' is added to get the Fortran
- runtime libraries. In general, when mixing languages in LTO mode,
- you should use the same link command options as when mixing
- languages in a regular (non-LTO) compilation.
- If object files containing GIMPLE bytecode are stored in a library
- archive, say 'libfoo.a', it is possible to extract and use them in
- an LTO link if you are using a linker with plugin support. To
- create static libraries suitable for LTO, use 'gcc-ar' and
- 'gcc-ranlib' instead of 'ar' and 'ranlib'; to show the symbols of
- object files with GIMPLE bytecode, use 'gcc-nm'. Those commands
- require that 'ar', 'ranlib' and 'nm' have been compiled with plugin
- support. At link time, use the flag '-fuse-linker-plugin' to
- ensure that the library participates in the LTO optimization
- process:
- gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
- With the linker plugin enabled, the linker extracts the needed
- GIMPLE files from 'libfoo.a' and passes them on to the running GCC
- to make them part of the aggregated GIMPLE image to be optimized.
- If you are not using a linker with plugin support and/or do not
- enable the linker plugin, then the objects inside 'libfoo.a' are
- extracted and linked as usual, but they do not participate in the
- LTO optimization process. In order to make a static library
- suitable for both LTO optimization and usual linkage, compile its
- object files with '-flto' '-ffat-lto-objects'.
- Link-time optimizations do not require the presence of the whole
- program to operate. If the program does not require any symbols to
- be exported, it is possible to combine '-flto' and
- '-fwhole-program' to allow the interprocedural optimizers to use
- more aggressive assumptions which may lead to improved optimization
- opportunities. Use of '-fwhole-program' is not needed when linker
- plugin is active (see '-fuse-linker-plugin').
- The current implementation of LTO makes no attempt to generate
- bytecode that is portable between different types of hosts. The
- bytecode files are versioned and there is a strict version check,
- so bytecode files generated in one version of GCC do not work with
- an older or newer version of GCC.
- Link-time optimization does not work well with generation of
- debugging information on systems other than those using a
- combination of ELF and DWARF.
- If you specify the optional N, the optimization and code generation
- done at link time is executed in parallel using N parallel jobs by
- utilizing an installed 'make' program. The environment variable
- 'MAKE' may be used to override the program used. The default value
- for N is 1.
- You can also specify '-flto=jobserver' to use GNU make's job server
- mode to determine the number of parallel jobs. This is useful when
- the Makefile calling GCC is already executing in parallel. You
- must prepend a '+' to the command recipe in the parent Makefile for
- this to work. This option likely only works if 'MAKE' is GNU make.
- '-flto-partition=ALG'
- Specify the partitioning algorithm used by the link-time optimizer.
- The value is either '1to1' to specify a partitioning mirroring the
- original source files or 'balanced' to specify partitioning into
- equally sized chunks (whenever possible) or 'max' to create new
- partition for every symbol where possible. Specifying 'none' as an
- algorithm disables partitioning and streaming completely. The
- default value is 'balanced'. While '1to1' can be used as an
- workaround for various code ordering issues, the 'max' partitioning
- is intended for internal testing only. The value 'one' specifies
- that exactly one partition should be used while the value 'none'
- bypasses partitioning and executes the link-time optimization step
- directly from the WPA phase.
- '-flto-odr-type-merging'
- Enable streaming of mangled types names of C++ types and their
- unification at link time. This increases size of LTO object files,
- but enables diagnostics about One Definition Rule violations.
- '-flto-compression-level=N'
- This option specifies the level of compression used for
- intermediate language written to LTO object files, and is only
- meaningful in conjunction with LTO mode ('-flto'). Valid values
- are 0 (no compression) to 9 (maximum compression). Values outside
- this range are clamped to either 0 or 9. If the option is not
- given, a default balanced compression setting is used.
- '-fuse-linker-plugin'
- Enables the use of a linker plugin during link-time optimization.
- This option relies on plugin support in the linker, which is
- available in gold or in GNU ld 2.21 or newer.
- This option enables the extraction of object files with GIMPLE
- bytecode out of library archives. This improves the quality of
- optimization by exposing more code to the link-time optimizer.
- This information specifies what symbols can be accessed externally
- (by non-LTO object or during dynamic linking). Resulting code
- quality improvements on binaries (and shared libraries that use
- hidden visibility) are similar to '-fwhole-program'. See '-flto'
- for a description of the effect of this flag and how to use it.
- This option is enabled by default when LTO support in GCC is
- enabled and GCC was configured for use with a linker supporting
- plugins (GNU ld 2.21 or newer or gold).
- '-ffat-lto-objects'
- Fat LTO objects are object files that contain both the intermediate
- language and the object code. This makes them usable for both LTO
- linking and normal linking. This option is effective only when
- compiling with '-flto' and is ignored at link time.
- '-fno-fat-lto-objects' improves compilation time over plain LTO,
- but requires the complete toolchain to be aware of LTO. It requires
- a linker with linker plugin support for basic functionality.
- Additionally, 'nm', 'ar' and 'ranlib' need to support linker
- plugins to allow a full-featured build environment (capable of
- building static libraries etc). GCC provides the 'gcc-ar',
- 'gcc-nm', 'gcc-ranlib' wrappers to pass the right options to these
- tools. With non fat LTO makefiles need to be modified to use them.
- Note that modern binutils provide plugin auto-load mechanism.
- Installing the linker plugin into '$libdir/bfd-plugins' has the
- same effect as usage of the command wrappers ('gcc-ar', 'gcc-nm'
- and 'gcc-ranlib').
- The default is '-fno-fat-lto-objects' on targets with linker plugin
- support.
- '-fcompare-elim'
- After register allocation and post-register allocation instruction
- splitting, identify arithmetic instructions that compute processor
- flags similar to a comparison operation based on that arithmetic.
- If possible, eliminate the explicit comparison operation.
- This pass only applies to certain targets that cannot explicitly
- represent the comparison operation before register allocation is
- complete.
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
- '-fcprop-registers'
- After register allocation and post-register allocation instruction
- splitting, perform a copy-propagation pass to try to reduce
- scheduling dependencies and occasionally eliminate the copy.
- Enabled at levels '-O', '-O2', '-O3', '-Os'.
- '-fprofile-correction'
- Profiles collected using an instrumented binary for multi-threaded
- programs may be inconsistent due to missed counter updates. When
- this option is specified, GCC uses heuristics to correct or smooth
- out such inconsistencies. By default, GCC emits an error message
- when an inconsistent profile is detected.
- '-fprofile-use'
- '-fprofile-use=PATH'
- Enable profile feedback-directed optimizations, and the following
- optimizations which are generally profitable only with profile
- feedback available: '-fbranch-probabilities', '-fvpt',
- '-funroll-loops', '-fpeel-loops', '-ftracer', '-ftree-vectorize',
- and 'ftree-loop-distribute-patterns'.
- Before you can use this option, you must first generate profiling
- information. *Note Instrumentation Options::, for information
- about the '-fprofile-generate' option.
- By default, GCC emits an error message if the feedback profiles do
- not match the source code. This error can be turned into a warning
- by using '-Wcoverage-mismatch'. Note this may result in poorly
- optimized code.
- If PATH is specified, GCC looks at the PATH to find the profile
- feedback data files. See '-fprofile-dir'.
- '-fauto-profile'
- '-fauto-profile=PATH'
- Enable sampling-based feedback-directed optimizations, and the
- following optimizations which are generally profitable only with
- profile feedback available: '-fbranch-probabilities', '-fvpt',
- '-funroll-loops', '-fpeel-loops', '-ftracer', '-ftree-vectorize',
- '-finline-functions', '-fipa-cp', '-fipa-cp-clone',
- '-fpredictive-commoning', '-funswitch-loops',
- '-fgcse-after-reload', and '-ftree-loop-distribute-patterns'.
- PATH is the name of a file containing AutoFDO profile information.
- If omitted, it defaults to 'fbdata.afdo' in the current directory.
- Producing an AutoFDO profile data file requires running your
- program with the 'perf' utility on a supported GNU/Linux target
- system. For more information, see <https://perf.wiki.kernel.org/>.
- E.g.
- perf record -e br_inst_retired:near_taken -b -o perf.data \
- -- your_program
- Then use the 'create_gcov' tool to convert the raw profile data to
- a format that can be used by GCC. You must also supply the
- unstripped binary for your program to this tool. See
- <https://github.com/google/autofdo>.
- E.g.
- create_gcov --binary=your_program.unstripped --profile=perf.data \
- --gcov=profile.afdo
- The following options control compiler behavior regarding
- floating-point arithmetic. These options trade off between speed and
- correctness. All must be specifically enabled.
- '-ffloat-store'
- Do not store floating-point variables in registers, and inhibit
- other options that might change whether a floating-point value is
- taken from a register or memory.
- This option prevents undesirable excess precision on machines such
- as the 68000 where the floating registers (of the 68881) keep more
- precision than a 'double' is supposed to have. Similarly for the
- x86 architecture. For most programs, the excess precision does
- only good, but a few programs rely on the precise definition of
- IEEE floating point. Use '-ffloat-store' for such programs, after
- modifying them to store all pertinent intermediate computations
- into variables.
- '-fexcess-precision=STYLE'
- This option allows further control over excess precision on
- machines where floating-point operations occur in a format with
- more precision or range than the IEEE standard and interchange
- floating-point types. By default, '-fexcess-precision=fast' is in
- effect; this means that operations may be carried out in a wider
- precision than the types specified in the source if that would
- result in faster code, and it is unpredictable when rounding to the
- types specified in the source code takes place. When compiling C,
- if '-fexcess-precision=standard' is specified then excess precision
- follows the rules specified in ISO C99; in particular, both casts
- and assignments cause values to be rounded to their semantic types
- (whereas '-ffloat-store' only affects assignments). This option is
- enabled by default for C if a strict conformance option such as
- '-std=c99' is used. '-ffast-math' enables
- '-fexcess-precision=fast' by default regardless of whether a strict
- conformance option is used.
- '-fexcess-precision=standard' is not implemented for languages
- other than C. On the x86, it has no effect if '-mfpmath=sse' or
- '-mfpmath=sse+387' is specified; in the former case, IEEE semantics
- apply without excess precision, and in the latter, rounding is
- unpredictable.
- '-ffast-math'
- Sets the options '-fno-math-errno', '-funsafe-math-optimizations',
- '-ffinite-math-only', '-fno-rounding-math', '-fno-signaling-nans',
- '-fcx-limited-range' and '-fexcess-precision=fast'.
- This option causes the preprocessor macro '__FAST_MATH__' to be
- defined.
- This option is not turned on by any '-O' option besides '-Ofast'
- since it can result in incorrect output for programs that depend on
- an exact implementation of IEEE or ISO rules/specifications for
- math functions. It may, however, yield faster code for programs
- that do not require the guarantees of these specifications.
- '-fno-math-errno'
- Do not set 'errno' after calling math functions that are executed
- with a single instruction, e.g., 'sqrt'. A program that relies on
- IEEE exceptions for math error handling may want to use this flag
- for speed while maintaining IEEE arithmetic compatibility.
- This option is not turned on by any '-O' option since it can result
- in incorrect output for programs that depend on an exact
- implementation of IEEE or ISO rules/specifications for math
- functions. It may, however, yield faster code for programs that do
- not require the guarantees of these specifications.
- The default is '-fmath-errno'.
- On Darwin systems, the math library never sets 'errno'. There is
- therefore no reason for the compiler to consider the possibility
- that it might, and '-fno-math-errno' is the default.
- '-funsafe-math-optimizations'
- Allow optimizations for floating-point arithmetic that (a) assume
- that arguments and results are valid and (b) may violate IEEE or
- ANSI standards. When used at link time, it may include libraries
- or startup files that change the default FPU control word or other
- similar optimizations.
- This option is not turned on by any '-O' option since it can result
- in incorrect output for programs that depend on an exact
- implementation of IEEE or ISO rules/specifications for math
- functions. It may, however, yield faster code for programs that do
- not require the guarantees of these specifications. Enables
- '-fno-signed-zeros', '-fno-trapping-math', '-fassociative-math' and
- '-freciprocal-math'.
- The default is '-fno-unsafe-math-optimizations'.
- '-fassociative-math'
- Allow re-association of operands in series of floating-point
- operations. This violates the ISO C and C++ language standard by
- possibly changing computation result. NOTE: re-ordering may change
- the sign of zero as well as ignore NaNs and inhibit or create
- underflow or overflow (and thus cannot be used on code that relies
- on rounding behavior like '(x + 2**52) - 2**52'. May also reorder
- floating-point comparisons and thus may not be used when ordered
- comparisons are required. This option requires that both
- '-fno-signed-zeros' and '-fno-trapping-math' be in effect.
- Moreover, it doesn't make much sense with '-frounding-math'. For
- Fortran the option is automatically enabled when both
- '-fno-signed-zeros' and '-fno-trapping-math' are in effect.
- The default is '-fno-associative-math'.
- '-freciprocal-math'
- Allow the reciprocal of a value to be used instead of dividing by
- the value if this enables optimizations. For example 'x / y' can
- be replaced with 'x * (1/y)', which is useful if '(1/y)' is subject
- to common subexpression elimination. Note that this loses
- precision and increases the number of flops operating on the value.
- The default is '-fno-reciprocal-math'.
- '-ffinite-math-only'
- Allow optimizations for floating-point arithmetic that assume that
- arguments and results are not NaNs or +-Infs.
- This option is not turned on by any '-O' option since it can result
- in incorrect output for programs that depend on an exact
- implementation of IEEE or ISO rules/specifications for math
- functions. It may, however, yield faster code for programs that do
- not require the guarantees of these specifications.
- The default is '-fno-finite-math-only'.
- '-fno-signed-zeros'
- Allow optimizations for floating-point arithmetic that ignore the
- signedness of zero. IEEE arithmetic specifies the behavior of
- distinct +0.0 and -0.0 values, which then prohibits simplification
- of expressions such as x+0.0 or 0.0*x (even with
- '-ffinite-math-only'). This option implies that the sign of a zero
- result isn't significant.
- The default is '-fsigned-zeros'.
- '-fno-trapping-math'
- Compile code assuming that floating-point operations cannot
- generate user-visible traps. These traps include division by zero,
- overflow, underflow, inexact result and invalid operation. This
- option requires that '-fno-signaling-nans' be in effect. Setting
- this option may allow faster code if one relies on "non-stop" IEEE
- arithmetic, for example.
- This option should never be turned on by any '-O' option since it
- can result in incorrect output for programs that depend on an exact
- implementation of IEEE or ISO rules/specifications for math
- functions.
- The default is '-ftrapping-math'.
- '-frounding-math'
- Disable transformations and optimizations that assume default
- floating-point rounding behavior. This is round-to-zero for all
- floating point to integer conversions, and round-to-nearest for all
- other arithmetic truncations. This option should be specified for
- programs that change the FP rounding mode dynamically, or that may
- be executed with a non-default rounding mode. This option disables
- constant folding of floating-point expressions at compile time
- (which may be affected by rounding mode) and arithmetic
- transformations that are unsafe in the presence of sign-dependent
- rounding modes.
- The default is '-fno-rounding-math'.
- This option is experimental and does not currently guarantee to
- disable all GCC optimizations that are affected by rounding mode.
- Future versions of GCC may provide finer control of this setting
- using C99's 'FENV_ACCESS' pragma. This command-line option will be
- used to specify the default state for 'FENV_ACCESS'.
- '-fsignaling-nans'
- Compile code assuming that IEEE signaling NaNs may generate
- user-visible traps during floating-point operations. Setting this
- option disables optimizations that may change the number of
- exceptions visible with signaling NaNs. This option implies
- '-ftrapping-math'.
- This option causes the preprocessor macro '__SUPPORT_SNAN__' to be
- defined.
- The default is '-fno-signaling-nans'.
- This option is experimental and does not currently guarantee to
- disable all GCC optimizations that affect signaling NaN behavior.
- '-fno-fp-int-builtin-inexact'
- Do not allow the built-in functions 'ceil', 'floor', 'round' and
- 'trunc', and their 'float' and 'long double' variants, to generate
- code that raises the "inexact" floating-point exception for
- noninteger arguments. ISO C99 and C11 allow these functions to
- raise the "inexact" exception, but ISO/IEC TS 18661-1:2014, the C
- bindings to IEEE 754-2008, does not allow these functions to do so.
- The default is '-ffp-int-builtin-inexact', allowing the exception
- to be raised. This option does nothing unless '-ftrapping-math' is
- in effect.
- Even if '-fno-fp-int-builtin-inexact' is used, if the functions
- generate a call to a library function then the "inexact" exception
- may be raised if the library implementation does not follow TS
- 18661.
- '-fsingle-precision-constant'
- Treat floating-point constants as single precision instead of
- implicitly converting them to double-precision constants.
- '-fcx-limited-range'
- When enabled, this option states that a range reduction step is not
- needed when performing complex division. Also, there is no
- checking whether the result of a complex multiplication or division
- is 'NaN + I*NaN', with an attempt to rescue the situation in that
- case. The default is '-fno-cx-limited-range', but is enabled by
- '-ffast-math'.
- This option controls the default setting of the ISO C99
- 'CX_LIMITED_RANGE' pragma. Nevertheless, the option applies to all
- languages.
- '-fcx-fortran-rules'
- Complex multiplication and division follow Fortran rules. Range
- reduction is done as part of complex division, but there is no
- checking whether the result of a complex multiplication or division
- is 'NaN + I*NaN', with an attempt to rescue the situation in that
- case.
- The default is '-fno-cx-fortran-rules'.
- The following options control optimizations that may improve
- performance, but are not enabled by any '-O' options. This section
- includes experimental options that may produce broken code.
- '-fbranch-probabilities'
- After running a program compiled with '-fprofile-arcs' (*note
- Instrumentation Options::), you can compile it a second time using
- '-fbranch-probabilities', to improve optimizations based on the
- number of times each branch was taken. When a program compiled
- with '-fprofile-arcs' exits, it saves arc execution counts to a
- file called 'SOURCENAME.gcda' for each source file. The
- information in this data file is very dependent on the structure of
- the generated code, so you must use the same source code and the
- same optimization options for both compilations.
- With '-fbranch-probabilities', GCC puts a 'REG_BR_PROB' note on
- each 'JUMP_INSN' and 'CALL_INSN'. These can be used to improve
- optimization. Currently, they are only used in one place: in
- 'reorg.c', instead of guessing which path a branch is most likely
- to take, the 'REG_BR_PROB' values are used to exactly determine
- which path is taken more often.
- '-fprofile-values'
- If combined with '-fprofile-arcs', it adds code so that some data
- about values of expressions in the program is gathered.
- With '-fbranch-probabilities', it reads back the data gathered from
- profiling values of expressions for usage in optimizations.
- Enabled with '-fprofile-generate' and '-fprofile-use'.
- '-fprofile-reorder-functions'
- Function reordering based on profile instrumentation collects first
- time of execution of a function and orders these functions in
- ascending order.
- Enabled with '-fprofile-use'.
- '-fvpt'
- If combined with '-fprofile-arcs', this option instructs the
- compiler to add code to gather information about values of
- expressions.
- With '-fbranch-probabilities', it reads back the data gathered and
- actually performs the optimizations based on them. Currently the
- optimizations include specialization of division operations using
- the knowledge about the value of the denominator.
- '-frename-registers'
- Attempt to avoid false dependencies in scheduled code by making use
- of registers left over after register allocation. This
- optimization most benefits processors with lots of registers.
- Depending on the debug information format adopted by the target,
- however, it can make debugging impossible, since variables no
- longer stay in a "home register".
- Enabled by default with '-funroll-loops'.
- '-fschedule-fusion'
- Performs a target dependent pass over the instruction stream to
- schedule instructions of same type together because target machine
- can execute them more efficiently if they are adjacent to each
- other in the instruction flow.
- Enabled at levels '-O2', '-O3', '-Os'.
- '-ftracer'
- Perform tail duplication to enlarge superblock size. This
- transformation simplifies the control flow of the function allowing
- other optimizations to do a better job.
- Enabled with '-fprofile-use'.
- '-funroll-loops'
- Unroll loops whose number of iterations can be determined at
- compile time or upon entry to the loop. '-funroll-loops' implies
- '-frerun-cse-after-loop', '-fweb' and '-frename-registers'. It
- also turns on complete loop peeling (i.e. complete removal of loops
- with a small constant number of iterations). This option makes
- code larger, and may or may not make it run faster.
- Enabled with '-fprofile-use'.
- '-funroll-all-loops'
- Unroll all loops, even if their number of iterations is uncertain
- when the loop is entered. This usually makes programs run more
- slowly. '-funroll-all-loops' implies the same options as
- '-funroll-loops'.
- '-fpeel-loops'
- Peels loops for which there is enough information that they do not
- roll much (from profile feedback or static analysis). It also
- turns on complete loop peeling (i.e. complete removal of loops with
- small constant number of iterations).
- Enabled with '-O3' and/or '-fprofile-use'.
- '-fmove-loop-invariants'
- Enables the loop invariant motion pass in the RTL loop optimizer.
- Enabled at level '-O1'
- '-fsplit-loops'
- Split a loop into two if it contains a condition that's always true
- for one side of the iteration space and false for the other.
- '-funswitch-loops'
- Move branches with loop invariant conditions out of the loop, with
- duplicates of the loop on both branches (modified according to
- result of the condition).
- '-ffunction-sections'
- '-fdata-sections'
- Place each function or data item into its own section in the output
- file if the target supports arbitrary sections. The name of the
- function or the name of the data item determines the section's name
- in the output file.
- Use these options on systems where the linker can perform
- optimizations to improve locality of reference in the instruction
- space. Most systems using the ELF object format have linkers with
- such optimizations. On AIX, the linker rearranges sections
- (CSECTs) based on the call graph. The performance impact varies.
- Together with a linker garbage collection (linker '--gc-sections'
- option) these options may lead to smaller statically-linked
- executables (after stripping).
- On ELF/DWARF systems these options do not degenerate the quality of
- the debug information. There could be issues with other object
- files/debug info formats.
- Only use these options when there are significant benefits from
- doing so. When you specify these options, the assembler and linker
- create larger object and executable files and are also slower.
- These options affect code generation. They prevent optimizations
- by the compiler and assembler using relative locations inside a
- translation unit since the locations are unknown until link time.
- An example of such an optimization is relaxing calls to short call
- instructions.
- '-fbranch-target-load-optimize'
- Perform branch target register load optimization before prologue /
- epilogue threading. The use of target registers can typically be
- exposed only during reload, thus hoisting loads out of loops and
- doing inter-block scheduling needs a separate optimization pass.
- '-fbranch-target-load-optimize2'
- Perform branch target register load optimization after prologue /
- epilogue threading.
- '-fbtr-bb-exclusive'
- When performing branch target register load optimization, don't
- reuse branch target registers within any basic block.
- '-fstdarg-opt'
- Optimize the prologue of variadic argument functions with respect
- to usage of those arguments.
- '-fsection-anchors'
- Try to reduce the number of symbolic address calculations by using
- shared "anchor" symbols to address nearby objects. This
- transformation can help to reduce the number of GOT entries and GOT
- accesses on some targets.
- For example, the implementation of the following function 'foo':
- static int a, b, c;
- int foo (void) { return a + b + c; }
- usually calculates the addresses of all three variables, but if you
- compile it with '-fsection-anchors', it accesses the variables from
- a common anchor point instead. The effect is similar to the
- following pseudocode (which isn't valid C):
- int foo (void)
- {
- register int *xr = &x;
- return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
- }
- Not all targets support this option.
- '--param NAME=VALUE'
- In some places, GCC uses various constants to control the amount of
- optimization that is done. For example, GCC does not inline
- functions that contain more than a certain number of instructions.
- You can control some of these constants on the command line using
- the '--param' option.
- The names of specific parameters, and the meaning of the values,
- are tied to the internals of the compiler, and are subject to
- change without notice in future releases.
- In each case, the VALUE is an integer. The allowable choices for
- NAME are:
- 'predictable-branch-outcome'
- When branch is predicted to be taken with probability lower
- than this threshold (in percent), then it is considered well
- predictable. The default is 10.
- 'max-rtl-if-conversion-insns'
- RTL if-conversion tries to remove conditional branches around
- a block and replace them with conditionally executed
- instructions. This parameter gives the maximum number of
- instructions in a block which should be considered for
- if-conversion. The default is 10, though the compiler will
- also use other heuristics to decide whether if-conversion is
- likely to be profitable.
- 'max-rtl-if-conversion-predictable-cost'
- 'max-rtl-if-conversion-unpredictable-cost'
- RTL if-conversion will try to remove conditional branches
- around a block and replace them with conditionally executed
- instructions. These parameters give the maximum permissible
- cost for the sequence that would be generated by if-conversion
- depending on whether the branch is statically determined to be
- predictable or not. The units for this parameter are the same
- as those for the GCC internal seq_cost metric. The compiler
- will try to provide a reasonable default for this parameter
- using the BRANCH_COST target macro.
- 'max-crossjump-edges'
- The maximum number of incoming edges to consider for
- cross-jumping. The algorithm used by '-fcrossjumping' is
- O(N^2) in the number of edges incoming to each block.
- Increasing values mean more aggressive optimization, making
- the compilation time increase with probably small improvement
- in executable size.
- 'min-crossjump-insns'
- The minimum number of instructions that must be matched at the
- end of two blocks before cross-jumping is performed on them.
- This value is ignored in the case where all instructions in
- the block being cross-jumped from are matched. The default
- value is 5.
- 'max-grow-copy-bb-insns'
- The maximum code size expansion factor when copying basic
- blocks instead of jumping. The expansion is relative to a
- jump instruction. The default value is 8.
- 'max-goto-duplication-insns'
- The maximum number of instructions to duplicate to a block
- that jumps to a computed goto. To avoid O(N^2) behavior in a
- number of passes, GCC factors computed gotos early in the
- compilation process, and unfactors them as late as possible.
- Only computed jumps at the end of a basic blocks with no more
- than max-goto-duplication-insns are unfactored. The default
- value is 8.
- 'max-delay-slot-insn-search'
- The maximum number of instructions to consider when looking
- for an instruction to fill a delay slot. If more than this
- arbitrary number of instructions are searched, the time
- savings from filling the delay slot are minimal, so stop
- searching. Increasing values mean more aggressive
- optimization, making the compilation time increase with
- probably small improvement in execution time.
- 'max-delay-slot-live-search'
- When trying to fill delay slots, the maximum number of
- instructions to consider when searching for a block with valid
- live register information. Increasing this arbitrarily chosen
- value means more aggressive optimization, increasing the
- compilation time. This parameter should be removed when the
- delay slot code is rewritten to maintain the control-flow
- graph.
- 'max-gcse-memory'
- The approximate maximum amount of memory that can be allocated
- in order to perform the global common subexpression
- elimination optimization. If more memory than specified is
- required, the optimization is not done.
- 'max-gcse-insertion-ratio'
- If the ratio of expression insertions to deletions is larger
- than this value for any expression, then RTL PRE inserts or
- removes the expression and thus leaves partially redundant
- computations in the instruction stream. The default value is
- 20.
- 'max-pending-list-length'
- The maximum number of pending dependencies scheduling allows
- before flushing the current state and starting over. Large
- functions with few branches or calls can create excessively
- large lists which needlessly consume memory and resources.
- 'max-modulo-backtrack-attempts'
- The maximum number of backtrack attempts the scheduler should
- make when modulo scheduling a loop. Larger values can
- exponentially increase compilation time.
- 'max-inline-insns-single'
- Several parameters control the tree inliner used in GCC. This
- number sets the maximum number of instructions (counted in
- GCC's internal representation) in a single function that the
- tree inliner considers for inlining. This only affects
- functions declared inline and methods implemented in a class
- declaration (C++). The default value is 400.
- 'max-inline-insns-auto'
- When you use '-finline-functions' (included in '-O3'), a lot
- of functions that would otherwise not be considered for
- inlining by the compiler are investigated. To those
- functions, a different (more restrictive) limit compared to
- functions declared inline can be applied. The default value
- is 30.
- 'inline-min-speedup'
- When estimated performance improvement of caller + callee
- runtime exceeds this threshold (in percent), the function can
- be inlined regardless of the limit on '--param
- max-inline-insns-single' and '--param max-inline-insns-auto'.
- The default value is 15.
- 'large-function-insns'
- The limit specifying really large functions. For functions
- larger than this limit after inlining, inlining is constrained
- by '--param large-function-growth'. This parameter is useful
- primarily to avoid extreme compilation time caused by
- non-linear algorithms used by the back end. The default value
- is 2700.
- 'large-function-growth'
- Specifies maximal growth of large function caused by inlining
- in percents. The default value is 100 which limits large
- function growth to 2.0 times the original size.
- 'large-unit-insns'
- The limit specifying large translation unit. Growth caused by
- inlining of units larger than this limit is limited by
- '--param inline-unit-growth'. For small units this might be
- too tight. For example, consider a unit consisting of
- function A that is inline and B that just calls A three times.
- If B is small relative to A, the growth of unit is 300\% and
- yet such inlining is very sane. For very large units
- consisting of small inlineable functions, however, the overall
- unit growth limit is needed to avoid exponential explosion of
- code size. Thus for smaller units, the size is increased to
- '--param large-unit-insns' before applying '--param
- inline-unit-growth'. The default is 10000.
- 'inline-unit-growth'
- Specifies maximal overall growth of the compilation unit
- caused by inlining. The default value is 20 which limits unit
- growth to 1.2 times the original size. Cold functions (either
- marked cold via an attribute or by profile feedback) are not
- accounted into the unit size.
- 'ipcp-unit-growth'
- Specifies maximal overall growth of the compilation unit
- caused by interprocedural constant propagation. The default
- value is 10 which limits unit growth to 1.1 times the original
- size.
- 'large-stack-frame'
- The limit specifying large stack frames. While inlining the
- algorithm is trying to not grow past this limit too much. The
- default value is 256 bytes.
- 'large-stack-frame-growth'
- Specifies maximal growth of large stack frames caused by
- inlining in percents. The default value is 1000 which limits
- large stack frame growth to 11 times the original size.
- 'max-inline-insns-recursive'
- 'max-inline-insns-recursive-auto'
- Specifies the maximum number of instructions an out-of-line
- copy of a self-recursive inline function can grow into by
- performing recursive inlining.
- '--param max-inline-insns-recursive' applies to functions
- declared inline. For functions not declared inline, recursive
- inlining happens only when '-finline-functions' (included in
- '-O3') is enabled; '--param max-inline-insns-recursive-auto'
- applies instead. The default value is 450.
- 'max-inline-recursive-depth'
- 'max-inline-recursive-depth-auto'
- Specifies the maximum recursion depth used for recursive
- inlining.
- '--param max-inline-recursive-depth' applies to functions
- declared inline. For functions not declared inline, recursive
- inlining happens only when '-finline-functions' (included in
- '-O3') is enabled; '--param max-inline-recursive-depth-auto'
- applies instead. The default value is 8.
- 'min-inline-recursive-probability'
- Recursive inlining is profitable only for function having deep
- recursion in average and can hurt for function having little
- recursion depth by increasing the prologue size or complexity
- of function body to other optimizers.
- When profile feedback is available (see '-fprofile-generate')
- the actual recursion depth can be guessed from the probability
- that function recurses via a given call expression. This
- parameter limits inlining only to call expressions whose
- probability exceeds the given threshold (in percents). The
- default value is 10.
- 'early-inlining-insns'
- Specify growth that the early inliner can make. In effect it
- increases the amount of inlining for code having a large
- abstraction penalty. The default value is 14.
- 'max-early-inliner-iterations'
- Limit of iterations of the early inliner. This basically
- bounds the number of nested indirect calls the early inliner
- can resolve. Deeper chains are still handled by late
- inlining.
- 'comdat-sharing-probability'
- Probability (in percent) that C++ inline function with comdat
- visibility are shared across multiple compilation units. The
- default value is 20.
- 'profile-func-internal-id'
- A parameter to control whether to use function internal id in
- profile database lookup. If the value is 0, the compiler uses
- an id that is based on function assembler name and filename,
- which makes old profile data more tolerant to source changes
- such as function reordering etc. The default value is 0.
- 'min-vect-loop-bound'
- The minimum number of iterations under which loops are not
- vectorized when '-ftree-vectorize' is used. The number of
- iterations after vectorization needs to be greater than the
- value specified by this option to allow vectorization. The
- default value is 0.
- 'gcse-cost-distance-ratio'
- Scaling factor in calculation of maximum distance an
- expression can be moved by GCSE optimizations. This is
- currently supported only in the code hoisting pass. The
- bigger the ratio, the more aggressive code hoisting is with
- simple expressions, i.e., the expressions that have cost less
- than 'gcse-unrestricted-cost'. Specifying 0 disables hoisting
- of simple expressions. The default value is 10.
- 'gcse-unrestricted-cost'
- Cost, roughly measured as the cost of a single typical machine
- instruction, at which GCSE optimizations do not constrain the
- distance an expression can travel. This is currently
- supported only in the code hoisting pass. The lesser the
- cost, the more aggressive code hoisting is. Specifying 0
- allows all expressions to travel unrestricted distances. The
- default value is 3.
- 'max-hoist-depth'
- The depth of search in the dominator tree for expressions to
- hoist. This is used to avoid quadratic behavior in hoisting
- algorithm. The value of 0 does not limit on the search, but
- may slow down compilation of huge functions. The default
- value is 30.
- 'max-tail-merge-comparisons'
- The maximum amount of similar bbs to compare a bb with. This
- is used to avoid quadratic behavior in tree tail merging. The
- default value is 10.
- 'max-tail-merge-iterations'
- The maximum amount of iterations of the pass over the
- function. This is used to limit compilation time in tree tail
- merging. The default value is 2.
- 'store-merging-allow-unaligned'
- Allow the store merging pass to introduce unaligned stores if
- it is legal to do so. The default value is 1.
- 'max-stores-to-merge'
- The maximum number of stores to attempt to merge into wider
- stores in the store merging pass. The minimum value is 2 and
- the default is 64.
- 'max-unrolled-insns'
- The maximum number of instructions that a loop may have to be
- unrolled. If a loop is unrolled, this parameter also
- determines how many times the loop code is unrolled.
- 'max-average-unrolled-insns'
- The maximum number of instructions biased by probabilities of
- their execution that a loop may have to be unrolled. If a
- loop is unrolled, this parameter also determines how many
- times the loop code is unrolled.
- 'max-unroll-times'
- The maximum number of unrollings of a single loop.
- 'max-peeled-insns'
- The maximum number of instructions that a loop may have to be
- peeled. If a loop is peeled, this parameter also determines
- how many times the loop code is peeled.
- 'max-peel-times'
- The maximum number of peelings of a single loop.
- 'max-peel-branches'
- The maximum number of branches on the hot path through the
- peeled sequence.
- 'max-completely-peeled-insns'
- The maximum number of insns of a completely peeled loop.
- 'max-completely-peel-times'
- The maximum number of iterations of a loop to be suitable for
- complete peeling.
- 'max-completely-peel-loop-nest-depth'
- The maximum depth of a loop nest suitable for complete
- peeling.
- 'max-unswitch-insns'
- The maximum number of insns of an unswitched loop.
- 'max-unswitch-level'
- The maximum number of branches unswitched in a single loop.
- 'max-loop-headers-insns'
- The maximum number of insns in loop header duplicated by the
- copy loop headers pass.
- 'lim-expensive'
- The minimum cost of an expensive expression in the loop
- invariant motion.
- 'iv-consider-all-candidates-bound'
- Bound on number of candidates for induction variables, below
- which all candidates are considered for each use in induction
- variable optimizations. If there are more candidates than
- this, only the most relevant ones are considered to avoid
- quadratic time complexity.
- 'iv-max-considered-uses'
- The induction variable optimizations give up on loops that
- contain more induction variable uses.
- 'iv-always-prune-cand-set-bound'
- If the number of candidates in the set is smaller than this
- value, always try to remove unnecessary ivs from the set when
- adding a new one.
- 'avg-loop-niter'
- Average number of iterations of a loop.
- 'dse-max-object-size'
- Maximum size (in bytes) of objects tracked bytewise by dead
- store elimination. Larger values may result in larger
- compilation times.
- 'scev-max-expr-size'
- Bound on size of expressions used in the scalar evolutions
- analyzer. Large expressions slow the analyzer.
- 'scev-max-expr-complexity'
- Bound on the complexity of the expressions in the scalar
- evolutions analyzer. Complex expressions slow the analyzer.
- 'max-tree-if-conversion-phi-args'
- Maximum number of arguments in a PHI supported by TREE if
- conversion unless the loop is marked with simd pragma.
- 'vect-max-version-for-alignment-checks'
- The maximum number of run-time checks that can be performed
- when doing loop versioning for alignment in the vectorizer.
- 'vect-max-version-for-alias-checks'
- The maximum number of run-time checks that can be performed
- when doing loop versioning for alias in the vectorizer.
- 'vect-max-peeling-for-alignment'
- The maximum number of loop peels to enhance access alignment
- for vectorizer. Value -1 means no limit.
- 'max-iterations-to-track'
- The maximum number of iterations of a loop the brute-force
- algorithm for analysis of the number of iterations of the loop
- tries to evaluate.
- 'hot-bb-count-ws-permille'
- A basic block profile count is considered hot if it
- contributes to the given permillage (i.e. 0...1000) of the
- entire profiled execution.
- 'hot-bb-frequency-fraction'
- Select fraction of the entry block frequency of executions of
- basic block in function given basic block needs to have to be
- considered hot.
- 'max-predicted-iterations'
- The maximum number of loop iterations we predict statically.
- This is useful in cases where a function contains a single
- loop with known bound and another loop with unknown bound.
- The known number of iterations is predicted correctly, while
- the unknown number of iterations average to roughly 10. This
- means that the loop without bounds appears artificially cold
- relative to the other one.
- 'builtin-expect-probability'
- Control the probability of the expression having the specified
- value. This parameter takes a percentage (i.e. 0 ... 100)
- as input. The default probability of 90 is obtained
- empirically.
- 'align-threshold'
- Select fraction of the maximal frequency of executions of a
- basic block in a function to align the basic block.
- 'align-loop-iterations'
- A loop expected to iterate at least the selected number of
- iterations is aligned.
- 'tracer-dynamic-coverage'
- 'tracer-dynamic-coverage-feedback'
- This value is used to limit superblock formation once the
- given percentage of executed instructions is covered. This
- limits unnecessary code size expansion.
- The 'tracer-dynamic-coverage-feedback' parameter is used only
- when profile feedback is available. The real profiles (as
- opposed to statically estimated ones) are much less balanced
- allowing the threshold to be larger value.
- 'tracer-max-code-growth'
- Stop tail duplication once code growth has reached given
- percentage. This is a rather artificial limit, as most of the
- duplicates are eliminated later in cross jumping, so it may be
- set to much higher values than is the desired code growth.
- 'tracer-min-branch-ratio'
- Stop reverse growth when the reverse probability of best edge
- is less than this threshold (in percent).
- 'tracer-min-branch-probability'
- 'tracer-min-branch-probability-feedback'
- Stop forward growth if the best edge has probability lower
- than this threshold.
- Similarly to 'tracer-dynamic-coverage' two parameters are
- provided. 'tracer-min-branch-probability-feedback' is used
- for compilation with profile feedback and
- 'tracer-min-branch-probability' compilation without. The
- value for compilation with profile feedback needs to be more
- conservative (higher) in order to make tracer effective.
- 'stack-clash-protection-guard-size'
- Specify the size of the operating system provided stack guard
- as 2 raised to NUM bytes. The default value is 12 (4096
- bytes). Acceptable values are between 12 and 30. Higher
- values may reduce the number of explicit probes, but a value
- larger than the operating system provided guard will leave
- code vulnerable to stack clash style attacks.
- 'stack-clash-protection-probe-interval'
- Stack clash protection involves probing stack space as it is
- allocated. This param controls the maximum distance between
- probes into the stack as 2 raised to NUM bytes. Acceptable
- values are between 10 and 16 and defaults to 12. Higher
- values may reduce the number of explicit probes, but a value
- larger than the operating system provided guard will leave
- code vulnerable to stack clash style attacks.
- 'max-cse-path-length'
- The maximum number of basic blocks on path that CSE considers.
- The default is 10.
- 'max-cse-insns'
- The maximum number of instructions CSE processes before
- flushing. The default is 1000.
- 'ggc-min-expand'
- GCC uses a garbage collector to manage its own memory
- allocation. This parameter specifies the minimum percentage
- by which the garbage collector's heap should be allowed to
- expand between collections. Tuning this may improve
- compilation speed; it has no effect on code generation.
- The default is 30% + 70% * (RAM/1GB) with an upper bound of
- 100% when RAM >= 1GB. If 'getrlimit' is available, the notion
- of "RAM" is the smallest of actual RAM and 'RLIMIT_DATA' or
- 'RLIMIT_AS'. If GCC is not able to calculate RAM on a
- particular platform, the lower bound of 30% is used. Setting
- this parameter and 'ggc-min-heapsize' to zero causes a full
- collection to occur at every opportunity. This is extremely
- slow, but can be useful for debugging.
- 'ggc-min-heapsize'
- Minimum size of the garbage collector's heap before it begins
- bothering to collect garbage. The first collection occurs
- after the heap expands by 'ggc-min-expand'% beyond
- 'ggc-min-heapsize'. Again, tuning this may improve
- compilation speed, and has no effect on code generation.
- The default is the smaller of RAM/8, RLIMIT_RSS, or a limit
- that tries to ensure that RLIMIT_DATA or RLIMIT_AS are not
- exceeded, but with a lower bound of 4096 (four megabytes) and
- an upper bound of 131072 (128 megabytes). If GCC is not able
- to calculate RAM on a particular platform, the lower bound is
- used. Setting this parameter very large effectively disables
- garbage collection. Setting this parameter and
- 'ggc-min-expand' to zero causes a full collection to occur at
- every opportunity.
- 'max-reload-search-insns'
- The maximum number of instruction reload should look backward
- for equivalent register. Increasing values mean more
- aggressive optimization, making the compilation time increase
- with probably slightly better performance. The default value
- is 100.
- 'max-cselib-memory-locations'
- The maximum number of memory locations cselib should take into
- account. Increasing values mean more aggressive optimization,
- making the compilation time increase with probably slightly
- better performance. The default value is 500.
- 'max-sched-ready-insns'
- The maximum number of instructions ready to be issued the
- scheduler should consider at any given time during the first
- scheduling pass. Increasing values mean more thorough
- searches, making the compilation time increase with probably
- little benefit. The default value is 100.
- 'max-sched-region-blocks'
- The maximum number of blocks in a region to be considered for
- interblock scheduling. The default value is 10.
- 'max-pipeline-region-blocks'
- The maximum number of blocks in a region to be considered for
- pipelining in the selective scheduler. The default value is
- 15.
- 'max-sched-region-insns'
- The maximum number of insns in a region to be considered for
- interblock scheduling. The default value is 100.
- 'max-pipeline-region-insns'
- The maximum number of insns in a region to be considered for
- pipelining in the selective scheduler. The default value is
- 200.
- 'min-spec-prob'
- The minimum probability (in percents) of reaching a source
- block for interblock speculative scheduling. The default
- value is 40.
- 'max-sched-extend-regions-iters'
- The maximum number of iterations through CFG to extend
- regions. A value of 0 (the default) disables region
- extensions.
- 'max-sched-insn-conflict-delay'
- The maximum conflict delay for an insn to be considered for
- speculative motion. The default value is 3.
- 'sched-spec-prob-cutoff'
- The minimal probability of speculation success (in percents),
- so that speculative insns are scheduled. The default value is
- 40.
- 'sched-state-edge-prob-cutoff'
- The minimum probability an edge must have for the scheduler to
- save its state across it. The default value is 10.
- 'sched-mem-true-dep-cost'
- Minimal distance (in CPU cycles) between store and load
- targeting same memory locations. The default value is 1.
- 'selsched-max-lookahead'
- The maximum size of the lookahead window of selective
- scheduling. It is a depth of search for available
- instructions. The default value is 50.
- 'selsched-max-sched-times'
- The maximum number of times that an instruction is scheduled
- during selective scheduling. This is the limit on the number
- of iterations through which the instruction may be pipelined.
- The default value is 2.
- 'selsched-insns-to-rename'
- The maximum number of best instructions in the ready list that
- are considered for renaming in the selective scheduler. The
- default value is 2.
- 'sms-min-sc'
- The minimum value of stage count that swing modulo scheduler
- generates. The default value is 2.
- 'max-last-value-rtl'
- The maximum size measured as number of RTLs that can be
- recorded in an expression in combiner for a pseudo register as
- last known value of that register. The default is 10000.
- 'max-combine-insns'
- The maximum number of instructions the RTL combiner tries to
- combine. The default value is 2 at '-Og' and 4 otherwise.
- 'integer-share-limit'
- Small integer constants can use a shared data structure,
- reducing the compiler's memory usage and increasing its speed.
- This sets the maximum value of a shared integer constant. The
- default value is 256.
- 'ssp-buffer-size'
- The minimum size of buffers (i.e. arrays) that receive stack
- smashing protection when '-fstack-protection' is used.
- 'min-size-for-stack-sharing'
- The minimum size of variables taking part in stack slot
- sharing when not optimizing. The default value is 32.
- 'max-jump-thread-duplication-stmts'
- Maximum number of statements allowed in a block that needs to
- be duplicated when threading jumps.
- 'max-fields-for-field-sensitive'
- Maximum number of fields in a structure treated in a field
- sensitive manner during pointer analysis. The default is zero
- for '-O0' and '-O1', and 100 for '-Os', '-O2', and '-O3'.
- 'prefetch-latency'
- Estimate on average number of instructions that are executed
- before prefetch finishes. The distance prefetched ahead is
- proportional to this constant. Increasing this number may
- also lead to less streams being prefetched (see
- 'simultaneous-prefetches').
- 'simultaneous-prefetches'
- Maximum number of prefetches that can run at the same time.
- 'l1-cache-line-size'
- The size of cache line in L1 cache, in bytes.
- 'l1-cache-size'
- The size of L1 cache, in kilobytes.
- 'l2-cache-size'
- The size of L2 cache, in kilobytes.
- 'loop-interchange-max-num-stmts'
- The maximum number of stmts in a loop to be interchanged.
- 'loop-interchange-stride-ratio'
- The minimum ratio between stride of two loops for interchange
- to be profitable.
- 'min-insn-to-prefetch-ratio'
- The minimum ratio between the number of instructions and the
- number of prefetches to enable prefetching in a loop.
- 'prefetch-min-insn-to-mem-ratio'
- The minimum ratio between the number of instructions and the
- number of memory references to enable prefetching in a loop.
- 'use-canonical-types'
- Whether the compiler should use the "canonical" type system.
- By default, this should always be 1, which uses a more
- efficient internal mechanism for comparing types in C++ and
- Objective-C++. However, if bugs in the canonical type system
- are causing compilation failures, set this value to 0 to
- disable canonical types.
- 'switch-conversion-max-branch-ratio'
- Switch initialization conversion refuses to create arrays that
- are bigger than 'switch-conversion-max-branch-ratio' times the
- number of branches in the switch.
- 'max-partial-antic-length'
- Maximum length of the partial antic set computed during the
- tree partial redundancy elimination optimization
- ('-ftree-pre') when optimizing at '-O3' and above. For some
- sorts of source code the enhanced partial redundancy
- elimination optimization can run away, consuming all of the
- memory available on the host machine. This parameter sets a
- limit on the length of the sets that are computed, which
- prevents the runaway behavior. Setting a value of 0 for this
- parameter allows an unlimited set length.
- 'sccvn-max-scc-size'
- Maximum size of a strongly connected component (SCC) during
- SCCVN processing. If this limit is hit, SCCVN processing for
- the whole function is not done and optimizations depending on
- it are disabled. The default maximum SCC size is 10000.
- 'sccvn-max-alias-queries-per-access'
- Maximum number of alias-oracle queries we perform when looking
- for redundancies for loads and stores. If this limit is hit
- the search is aborted and the load or store is not considered
- redundant. The number of queries is algorithmically limited
- to the number of stores on all paths from the load to the
- function entry. The default maximum number of queries is
- 1000.
- 'ira-max-loops-num'
- IRA uses regional register allocation by default. If a
- function contains more loops than the number given by this
- parameter, only at most the given number of the most
- frequently-executed loops form regions for regional register
- allocation. The default value of the parameter is 100.
- 'ira-max-conflict-table-size'
- Although IRA uses a sophisticated algorithm to compress the
- conflict table, the table can still require excessive amounts
- of memory for huge functions. If the conflict table for a
- function could be more than the size in MB given by this
- parameter, the register allocator instead uses a faster,
- simpler, and lower-quality algorithm that does not require
- building a pseudo-register conflict table. The default value
- of the parameter is 2000.
- 'ira-loop-reserved-regs'
- IRA can be used to evaluate more accurate register pressure in
- loops for decisions to move loop invariants (see '-O3'). The
- number of available registers reserved for some other purposes
- is given by this parameter. The default value of the
- parameter is 2, which is the minimal number of registers
- needed by typical instructions. This value is the best found
- from numerous experiments.
- 'lra-inheritance-ebb-probability-cutoff'
- LRA tries to reuse values reloaded in registers in subsequent
- insns. This optimization is called inheritance. EBB is used
- as a region to do this optimization. The parameter defines a
- minimal fall-through edge probability in percentage used to
- add BB to inheritance EBB in LRA. The default value of the
- parameter is 40. The value was chosen from numerous runs of
- SPEC2000 on x86-64.
- 'loop-invariant-max-bbs-in-loop'
- Loop invariant motion can be very expensive, both in
- compilation time and in amount of needed compile-time memory,
- with very large loops. Loops with more basic blocks than this
- parameter won't have loop invariant motion optimization
- performed on them. The default value of the parameter is 1000
- for '-O1' and 10000 for '-O2' and above.
- 'loop-max-datarefs-for-datadeps'
- Building data dependencies is expensive for very large loops.
- This parameter limits the number of data references in loops
- that are considered for data dependence analysis. These large
- loops are no handled by the optimizations using loop data
- dependencies. The default value is 1000.
- 'max-vartrack-size'
- Sets a maximum number of hash table slots to use during
- variable tracking dataflow analysis of any function. If this
- limit is exceeded with variable tracking at assignments
- enabled, analysis for that function is retried without it,
- after removing all debug insns from the function. If the
- limit is exceeded even without debug insns, var tracking
- analysis is completely disabled for the function. Setting the
- parameter to zero makes it unlimited.
- 'max-vartrack-expr-depth'
- Sets a maximum number of recursion levels when attempting to
- map variable names or debug temporaries to value expressions.
- This trades compilation time for more complete debug
- information. If this is set too low, value expressions that
- are available and could be represented in debug information
- may end up not being used; setting this higher may enable the
- compiler to find more complex debug expressions, but compile
- time and memory use may grow. The default is 12.
- 'max-debug-marker-count'
- Sets a threshold on the number of debug markers (e.g. begin
- stmt markers) to avoid complexity explosion at inlining or
- expanding to RTL. If a function has more such gimple stmts
- than the set limit, such stmts will be dropped from the
- inlined copy of a function, and from its RTL expansion. The
- default is 100000.
- 'min-nondebug-insn-uid'
- Use uids starting at this parameter for nondebug insns. The
- range below the parameter is reserved exclusively for debug
- insns created by '-fvar-tracking-assignments', but debug insns
- may get (non-overlapping) uids above it if the reserved range
- is exhausted.
- 'ipa-sra-ptr-growth-factor'
- IPA-SRA replaces a pointer to an aggregate with one or more
- new parameters only when their cumulative size is less or
- equal to 'ipa-sra-ptr-growth-factor' times the size of the
- original pointer parameter.
- 'sra-max-scalarization-size-Ospeed'
- 'sra-max-scalarization-size-Osize'
- The two Scalar Reduction of Aggregates passes (SRA and
- IPA-SRA) aim to replace scalar parts of aggregates with uses
- of independent scalar variables. These parameters control the
- maximum size, in storage units, of aggregate which is
- considered for replacement when compiling for speed
- ('sra-max-scalarization-size-Ospeed') or size
- ('sra-max-scalarization-size-Osize') respectively.
- 'tm-max-aggregate-size'
- When making copies of thread-local variables in a transaction,
- this parameter specifies the size in bytes after which
- variables are saved with the logging functions as opposed to
- save/restore code sequence pairs. This option only applies
- when using '-fgnu-tm'.
- 'graphite-max-nb-scop-params'
- To avoid exponential effects in the Graphite loop transforms,
- the number of parameters in a Static Control Part (SCoP) is
- bounded. The default value is 10 parameters, a value of zero
- can be used to lift the bound. A variable whose value is
- unknown at compilation time and defined outside a SCoP is a
- parameter of the SCoP.
- 'loop-block-tile-size'
- Loop blocking or strip mining transforms, enabled with
- '-floop-block' or '-floop-strip-mine', strip mine each loop in
- the loop nest by a given number of iterations. The strip
- length can be changed using the 'loop-block-tile-size'
- parameter. The default value is 51 iterations.
- 'loop-unroll-jam-size'
- Specify the unroll factor for the '-floop-unroll-and-jam'
- option. The default value is 4.
- 'loop-unroll-jam-depth'
- Specify the dimension to be unrolled (counting from the most
- inner loop) for the '-floop-unroll-and-jam'. The default
- value is 2.
- 'ipa-cp-value-list-size'
- IPA-CP attempts to track all possible values and types passed
- to a function's parameter in order to propagate them and
- perform devirtualization. 'ipa-cp-value-list-size' is the
- maximum number of values and types it stores per one formal
- parameter of a function.
- 'ipa-cp-eval-threshold'
- IPA-CP calculates its own score of cloning profitability
- heuristics and performs those cloning opportunities with
- scores that exceed 'ipa-cp-eval-threshold'.
- 'ipa-cp-recursion-penalty'
- Percentage penalty the recursive functions will receive when
- they are evaluated for cloning.
- 'ipa-cp-single-call-penalty'
- Percentage penalty functions containing a single call to
- another function will receive when they are evaluated for
- cloning.
- 'ipa-max-agg-items'
- IPA-CP is also capable to propagate a number of scalar values
- passed in an aggregate. 'ipa-max-agg-items' controls the
- maximum number of such values per one parameter.
- 'ipa-cp-loop-hint-bonus'
- When IPA-CP determines that a cloning candidate would make the
- number of iterations of a loop known, it adds a bonus of
- 'ipa-cp-loop-hint-bonus' to the profitability score of the
- candidate.
- 'ipa-cp-array-index-hint-bonus'
- When IPA-CP determines that a cloning candidate would make the
- index of an array access known, it adds a bonus of
- 'ipa-cp-array-index-hint-bonus' to the profitability score of
- the candidate.
- 'ipa-max-aa-steps'
- During its analysis of function bodies, IPA-CP employs alias
- analysis in order to track values pointed to by function
- parameters. In order not spend too much time analyzing huge
- functions, it gives up and consider all memory clobbered after
- examining 'ipa-max-aa-steps' statements modifying memory.
- 'lto-partitions'
- Specify desired number of partitions produced during WHOPR
- compilation. The number of partitions should exceed the
- number of CPUs used for compilation. The default value is 32.
- 'lto-min-partition'
- Size of minimal partition for WHOPR (in estimated
- instructions). This prevents expenses of splitting very small
- programs into too many partitions.
- 'lto-max-partition'
- Size of max partition for WHOPR (in estimated instructions).
- to provide an upper bound for individual size of partition.
- Meant to be used only with balanced partitioning.
- 'cxx-max-namespaces-for-diagnostic-help'
- The maximum number of namespaces to consult for suggestions
- when C++ name lookup fails for an identifier. The default is
- 1000.
- 'sink-frequency-threshold'
- The maximum relative execution frequency (in percents) of the
- target block relative to a statement's original block to allow
- statement sinking of a statement. Larger numbers result in
- more aggressive statement sinking. The default value is 75.
- A small positive adjustment is applied for statements with
- memory operands as those are even more profitable so sink.
- 'max-stores-to-sink'
- The maximum number of conditional store pairs that can be
- sunk. Set to 0 if either vectorization ('-ftree-vectorize')
- or if-conversion ('-ftree-loop-if-convert') is disabled. The
- default is 2.
- 'allow-store-data-races'
- Allow optimizers to introduce new data races on stores. Set
- to 1 to allow, otherwise to 0. This option is enabled by
- default at optimization level '-Ofast'.
- 'case-values-threshold'
- The smallest number of different values for which it is best
- to use a jump-table instead of a tree of conditional branches.
- If the value is 0, use the default for the machine. The
- default is 0.
- 'tree-reassoc-width'
- Set the maximum number of instructions executed in parallel in
- reassociated tree. This parameter overrides target dependent
- heuristics used by default if has non zero value.
- 'sched-pressure-algorithm'
- Choose between the two available implementations of
- '-fsched-pressure'. Algorithm 1 is the original
- implementation and is the more likely to prevent instructions
- from being reordered. Algorithm 2 was designed to be a
- compromise between the relatively conservative approach taken
- by algorithm 1 and the rather aggressive approach taken by the
- default scheduler. It relies more heavily on having a regular
- register file and accurate register pressure classes. See
- 'haifa-sched.c' in the GCC sources for more details.
- The default choice depends on the target.
- 'max-slsr-cand-scan'
- Set the maximum number of existing candidates that are
- considered when seeking a basis for a new straight-line
- strength reduction candidate.
- 'asan-globals'
- Enable buffer overflow detection for global objects. This
- kind of protection is enabled by default if you are using
- '-fsanitize=address' option. To disable global objects
- protection use '--param asan-globals=0'.
- 'asan-stack'
- Enable buffer overflow detection for stack objects. This kind
- of protection is enabled by default when using
- '-fsanitize=address'. To disable stack protection use
- '--param asan-stack=0' option.
- 'asan-instrument-reads'
- Enable buffer overflow detection for memory reads. This kind
- of protection is enabled by default when using
- '-fsanitize=address'. To disable memory reads protection use
- '--param asan-instrument-reads=0'.
- 'asan-instrument-writes'
- Enable buffer overflow detection for memory writes. This kind
- of protection is enabled by default when using
- '-fsanitize=address'. To disable memory writes protection use
- '--param asan-instrument-writes=0' option.
- 'asan-memintrin'
- Enable detection for built-in functions. This kind of
- protection is enabled by default when using
- '-fsanitize=address'. To disable built-in functions
- protection use '--param asan-memintrin=0'.
- 'asan-use-after-return'
- Enable detection of use-after-return. This kind of protection
- is enabled by default when using the '-fsanitize=address'
- option. To disable it use '--param asan-use-after-return=0'.
- Note: By default the check is disabled at run time. To enable
- it, add 'detect_stack_use_after_return=1' to the environment
- variable 'ASAN_OPTIONS'.
- 'asan-instrumentation-with-call-threshold'
- If number of memory accesses in function being instrumented is
- greater or equal to this number, use callbacks instead of
- inline checks. E.g. to disable inline code use '--param
- asan-instrumentation-with-call-threshold=0'.
- 'use-after-scope-direct-emission-threshold'
- If the size of a local variable in bytes is smaller or equal
- to this number, directly poison (or unpoison) shadow memory
- instead of using run-time callbacks. The default value is
- 256.
- 'chkp-max-ctor-size'
- Static constructors generated by Pointer Bounds Checker may
- become very large and significantly increase compile time at
- optimization level '-O1' and higher. This parameter is a
- maximum number of statements in a single generated
- constructor. Default value is 5000.
- 'max-fsm-thread-path-insns'
- Maximum number of instructions to copy when duplicating blocks
- on a finite state automaton jump thread path. The default is
- 100.
- 'max-fsm-thread-length'
- Maximum number of basic blocks on a finite state automaton
- jump thread path. The default is 10.
- 'max-fsm-thread-paths'
- Maximum number of new jump thread paths to create for a finite
- state automaton. The default is 50.
- 'parloops-chunk-size'
- Chunk size of omp schedule for loops parallelized by parloops.
- The default is 0.
- 'parloops-schedule'
- Schedule type of omp schedule for loops parallelized by
- parloops (static, dynamic, guided, auto, runtime). The
- default is static.
- 'parloops-min-per-thread'
- The minimum number of iterations per thread of an innermost
- parallelized loop for which the parallelized variant is
- prefered over the single threaded one. The default is 100.
- Note that for a parallelized loop nest the minimum number of
- iterations of the outermost loop per thread is two.
- 'max-ssa-name-query-depth'
- Maximum depth of recursion when querying properties of SSA
- names in things like fold routines. One level of recursion
- corresponds to following a use-def chain.
- 'hsa-gen-debug-stores'
- Enable emission of special debug stores within HSA kernels
- which are then read and reported by libgomp plugin.
- Generation of these stores is disabled by default, use
- '--param hsa-gen-debug-stores=1' to enable it.
- 'max-speculative-devirt-maydefs'
- The maximum number of may-defs we analyze when looking for a
- must-def specifying the dynamic type of an object that invokes
- a virtual call we may be able to devirtualize speculatively.
- 'max-vrp-switch-assertions'
- The maximum number of assertions to add along the default edge
- of a switch statement during VRP. The default is 10.
- 'unroll-jam-min-percent'
- The minimum percentage of memory references that must be
- optimized away for the unroll-and-jam transformation to be
- considered profitable.
- 'unroll-jam-max-unroll'
- The maximum number of times the outer loop should be unrolled
- by the unroll-and-jam transformation.
- File: gcc.info, Node: Instrumentation Options, Next: Preprocessor Options, Prev: Optimize Options, Up: Invoking GCC
- 3.11 Program Instrumentation Options
- ====================================
- GCC supports a number of command-line options that control adding
- run-time instrumentation to the code it normally generates. For
- example, one purpose of instrumentation is collect profiling statistics
- for use in finding program hot spots, code coverage analysis, or
- profile-guided optimizations. Another class of program instrumentation
- is adding run-time checking to detect programming errors like invalid
- pointer dereferences or out-of-bounds array accesses, as well as
- deliberately hostile attacks such as stack smashing or C++ vtable
- hijacking. There is also a general hook which can be used to implement
- other forms of tracing or function-level instrumentation for debug or
- program analysis purposes.
- '-p'
- Generate extra code to write profile information suitable for the
- analysis program 'prof'. You must use this option when compiling
- the source files you want data about, and you must also use it when
- linking.
- '-pg'
- Generate extra code to write profile information suitable for the
- analysis program 'gprof'. You must use this option when compiling
- the source files you want data about, and you must also use it when
- linking.
- '-fprofile-arcs'
- Add code so that program flow "arcs" are instrumented. During
- execution the program records how many times each branch and call
- is executed and how many times it is taken or returns. On targets
- that support constructors with priority support, profiling properly
- handles constructors, destructors and C++ constructors (and
- destructors) of classes which are used as a type of a global
- variable.
- When the compiled program exits it saves this data to a file called
- 'AUXNAME.gcda' for each source file. The data may be used for
- profile-directed optimizations ('-fbranch-probabilities'), or for
- test coverage analysis ('-ftest-coverage'). Each object file's
- AUXNAME is generated from the name of the output file, if
- explicitly specified and it is not the final executable, otherwise
- it is the basename of the source file. In both cases any suffix is
- removed (e.g. 'foo.gcda' for input file 'dir/foo.c', or
- 'dir/foo.gcda' for output file specified as '-o dir/foo.o'). *Note
- Cross-profiling::.
- '--coverage'
- This option is used to compile and link code instrumented for
- coverage analysis. The option is a synonym for '-fprofile-arcs'
- '-ftest-coverage' (when compiling) and '-lgcov' (when linking).
- See the documentation for those options for more details.
- * Compile the source files with '-fprofile-arcs' plus
- optimization and code generation options. For test coverage
- analysis, use the additional '-ftest-coverage' option. You do
- not need to profile every source file in a program.
- * Compile the source files additionally with
- '-fprofile-abs-path' to create absolute path names in the
- '.gcno' files. This allows 'gcov' to find the correct sources
- in projects where compilations occur with different working
- directories.
- * Link your object files with '-lgcov' or '-fprofile-arcs' (the
- latter implies the former).
- * Run the program on a representative workload to generate the
- arc profile information. This may be repeated any number of
- times. You can run concurrent instances of your program, and
- provided that the file system supports locking, the data files
- will be correctly updated. Unless a strict ISO C dialect
- option is in effect, 'fork' calls are detected and correctly
- handled without double counting.
- * For profile-directed optimizations, compile the source files
- again with the same optimization and code generation options
- plus '-fbranch-probabilities' (*note Options that Control
- Optimization: Optimize Options.).
- * For test coverage analysis, use 'gcov' to produce human
- readable information from the '.gcno' and '.gcda' files.
- Refer to the 'gcov' documentation for further information.
- With '-fprofile-arcs', for each function of your program GCC
- creates a program flow graph, then finds a spanning tree for the
- graph. Only arcs that are not on the spanning tree have to be
- instrumented: the compiler adds code to count the number of times
- that these arcs are executed. When an arc is the only exit or only
- entrance to a block, the instrumentation code can be added to the
- block; otherwise, a new basic block must be created to hold the
- instrumentation code.
- '-ftest-coverage'
- Produce a notes file that the 'gcov' code-coverage utility (*note
- 'gcov'--a Test Coverage Program: Gcov.) can use to show program
- coverage. Each source file's note file is called 'AUXNAME.gcno'.
- Refer to the '-fprofile-arcs' option above for a description of
- AUXNAME and instructions on how to generate test coverage data.
- Coverage data matches the source files more closely if you do not
- optimize.
- '-fprofile-abs-path'
- Automatically convert relative source file names to absolute path
- names in the '.gcno' files. This allows 'gcov' to find the correct
- sources in projects where compilations occur with different working
- directories.
- '-fprofile-dir=PATH'
- Set the directory to search for the profile data files in to PATH.
- This option affects only the profile data generated by
- '-fprofile-generate', '-ftest-coverage', '-fprofile-arcs' and used
- by '-fprofile-use' and '-fbranch-probabilities' and its related
- options. Both absolute and relative paths can be used. By
- default, GCC uses the current directory as PATH, thus the profile
- data file appears in the same directory as the object file.
- '-fprofile-generate'
- '-fprofile-generate=PATH'
- Enable options usually used for instrumenting application to
- produce profile useful for later recompilation with profile
- feedback based optimization. You must use '-fprofile-generate'
- both when compiling and when linking your program.
- The following options are enabled: '-fprofile-arcs',
- '-fprofile-values', '-fvpt'.
- If PATH is specified, GCC looks at the PATH to find the profile
- feedback data files. See '-fprofile-dir'.
- To optimize the program based on the collected profile information,
- use '-fprofile-use'. *Note Optimize Options::, for more
- information.
- '-fprofile-update=METHOD'
- Alter the update method for an application instrumented for profile
- feedback based optimization. The METHOD argument should be one of
- 'single', 'atomic' or 'prefer-atomic'. The first one is useful for
- single-threaded applications, while the second one prevents profile
- corruption by emitting thread-safe code.
- *Warning:* When an application does not properly join all threads
- (or creates an detached thread), a profile file can be still
- corrupted.
- Using 'prefer-atomic' would be transformed either to 'atomic', when
- supported by a target, or to 'single' otherwise. The GCC driver
- automatically selects 'prefer-atomic' when '-pthread' is present in
- the command line.
- '-fsanitize=address'
- Enable AddressSanitizer, a fast memory error detector. Memory
- access instructions are instrumented to detect out-of-bounds and
- use-after-free bugs. The option enables
- '-fsanitize-address-use-after-scope'. See
- <https://github.com/google/sanitizers/wiki/AddressSanitizer> for
- more details. The run-time behavior can be influenced using the
- 'ASAN_OPTIONS' environment variable. When set to 'help=1', the
- available options are shown at startup of the instrumented program.
- See
- <https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags>
- for a list of supported options. The option cannot be combined
- with '-fsanitize=thread' and/or '-fcheck-pointer-bounds'.
- '-fsanitize=kernel-address'
- Enable AddressSanitizer for Linux kernel. See
- <https://github.com/google/kasan/wiki> for more details. The
- option cannot be combined with '-fcheck-pointer-bounds'.
- '-fsanitize=pointer-compare'
- Instrument comparison operation (<, <=, >, >=) with pointer
- operands. The option must be combined with either
- '-fsanitize=kernel-address' or '-fsanitize=address' The option
- cannot be combined with '-fsanitize=thread' and/or
- '-fcheck-pointer-bounds'. Note: By default the check is disabled
- at run time. To enable it, add 'detect_invalid_pointer_pairs=2' to
- the environment variable 'ASAN_OPTIONS'. Using
- 'detect_invalid_pointer_pairs=1' detects invalid operation only
- when both pointers are non-null.
- '-fsanitize=pointer-subtract'
- Instrument subtraction with pointer operands. The option must be
- combined with either '-fsanitize=kernel-address' or
- '-fsanitize=address' The option cannot be combined with
- '-fsanitize=thread' and/or '-fcheck-pointer-bounds'. Note: By
- default the check is disabled at run time. To enable it, add
- 'detect_invalid_pointer_pairs=2' to the environment variable
- 'ASAN_OPTIONS'. Using 'detect_invalid_pointer_pairs=1' detects
- invalid operation only when both pointers are non-null.
- '-fsanitize=thread'
- Enable ThreadSanitizer, a fast data race detector. Memory access
- instructions are instrumented to detect data race bugs. See
- <https://github.com/google/sanitizers/wiki#threadsanitizer> for
- more details. The run-time behavior can be influenced using the
- 'TSAN_OPTIONS' environment variable; see
- <https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags>
- for a list of supported options. The option cannot be combined
- with '-fsanitize=address', '-fsanitize=leak' and/or
- '-fcheck-pointer-bounds'.
- Note that sanitized atomic builtins cannot throw exceptions when
- operating on invalid memory addresses with non-call exceptions
- ('-fnon-call-exceptions').
- '-fsanitize=leak'
- Enable LeakSanitizer, a memory leak detector. This option only
- matters for linking of executables and the executable is linked
- against a library that overrides 'malloc' and other allocator
- functions. See
- <https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer>
- for more details. The run-time behavior can be influenced using
- the 'LSAN_OPTIONS' environment variable. The option cannot be
- combined with '-fsanitize=thread'.
- '-fsanitize=undefined'
- Enable UndefinedBehaviorSanitizer, a fast undefined behavior
- detector. Various computations are instrumented to detect
- undefined behavior at runtime. Current suboptions are:
- '-fsanitize=shift'
- This option enables checking that the result of a shift
- operation is not undefined. Note that what exactly is
- considered undefined differs slightly between C and C++, as
- well as between ISO C90 and C99, etc. This option has two
- suboptions, '-fsanitize=shift-base' and
- '-fsanitize=shift-exponent'.
- '-fsanitize=shift-exponent'
- This option enables checking that the second argument of a
- shift operation is not negative and is smaller than the
- precision of the promoted first argument.
- '-fsanitize=shift-base'
- If the second argument of a shift operation is within range,
- check that the result of a shift operation is not undefined.
- Note that what exactly is considered undefined differs
- slightly between C and C++, as well as between ISO C90 and
- C99, etc.
- '-fsanitize=integer-divide-by-zero'
- Detect integer division by zero as well as 'INT_MIN / -1'
- division.
- '-fsanitize=unreachable'
- With this option, the compiler turns the
- '__builtin_unreachable' call into a diagnostics message call
- instead. When reaching the '__builtin_unreachable' call, the
- behavior is undefined.
- '-fsanitize=vla-bound'
- This option instructs the compiler to check that the size of a
- variable length array is positive.
- '-fsanitize=null'
- This option enables pointer checking. Particularly, the
- application built with this option turned on will issue an
- error message when it tries to dereference a NULL pointer, or
- if a reference (possibly an rvalue reference) is bound to a
- NULL pointer, or if a method is invoked on an object pointed
- by a NULL pointer.
- '-fsanitize=return'
- This option enables return statement checking. Programs built
- with this option turned on will issue an error message when
- the end of a non-void function is reached without actually
- returning a value. This option works in C++ only.
- '-fsanitize=signed-integer-overflow'
- This option enables signed integer overflow checking. We
- check that the result of '+', '*', and both unary and binary
- '-' does not overflow in the signed arithmetics. Note,
- integer promotion rules must be taken into account. That is,
- the following is not an overflow:
- signed char a = SCHAR_MAX;
- a++;
- '-fsanitize=bounds'
- This option enables instrumentation of array bounds. Various
- out of bounds accesses are detected. Flexible array members,
- flexible array member-like arrays, and initializers of
- variables with static storage are not instrumented. The
- option cannot be combined with '-fcheck-pointer-bounds'.
- '-fsanitize=bounds-strict'
- This option enables strict instrumentation of array bounds.
- Most out of bounds accesses are detected, including flexible
- array members and flexible array member-like arrays.
- Initializers of variables with static storage are not
- instrumented. The option cannot be combined with
- '-fcheck-pointer-bounds'.
- '-fsanitize=alignment'
- This option enables checking of alignment of pointers when
- they are dereferenced, or when a reference is bound to
- insufficiently aligned target, or when a method or constructor
- is invoked on insufficiently aligned object.
- '-fsanitize=object-size'
- This option enables instrumentation of memory references using
- the '__builtin_object_size' function. Various out of bounds
- pointer accesses are detected.
- '-fsanitize=float-divide-by-zero'
- Detect floating-point division by zero. Unlike other similar
- options, '-fsanitize=float-divide-by-zero' is not enabled by
- '-fsanitize=undefined', since floating-point division by zero
- can be a legitimate way of obtaining infinities and NaNs.
- '-fsanitize=float-cast-overflow'
- This option enables floating-point type to integer conversion
- checking. We check that the result of the conversion does not
- overflow. Unlike other similar options,
- '-fsanitize=float-cast-overflow' is not enabled by
- '-fsanitize=undefined'. This option does not work well with
- 'FE_INVALID' exceptions enabled.
- '-fsanitize=nonnull-attribute'
- This option enables instrumentation of calls, checking whether
- null values are not passed to arguments marked as requiring a
- non-null value by the 'nonnull' function attribute.
- '-fsanitize=returns-nonnull-attribute'
- This option enables instrumentation of return statements in
- functions marked with 'returns_nonnull' function attribute, to
- detect returning of null values from such functions.
- '-fsanitize=bool'
- This option enables instrumentation of loads from bool. If a
- value other than 0/1 is loaded, a run-time error is issued.
- '-fsanitize=enum'
- This option enables instrumentation of loads from an enum
- type. If a value outside the range of values for the enum
- type is loaded, a run-time error is issued.
- '-fsanitize=vptr'
- This option enables instrumentation of C++ member function
- calls, member accesses and some conversions between pointers
- to base and derived classes, to verify the referenced object
- has the correct dynamic type.
- '-fsanitize=pointer-overflow'
- This option enables instrumentation of pointer arithmetics.
- If the pointer arithmetics overflows, a run-time error is
- issued.
- '-fsanitize=builtin'
- This option enables instrumentation of arguments to selected
- builtin functions. If an invalid value is passed to such
- arguments, a run-time error is issued. E.g. passing 0 as the
- argument to '__builtin_ctz' or '__builtin_clz' invokes
- undefined behavior and is diagnosed by this option.
- While '-ftrapv' causes traps for signed overflows to be emitted,
- '-fsanitize=undefined' gives a diagnostic message. This currently
- works only for the C family of languages.
- '-fno-sanitize=all'
- This option disables all previously enabled sanitizers.
- '-fsanitize=all' is not allowed, as some sanitizers cannot be used
- together.
- '-fasan-shadow-offset=NUMBER'
- This option forces GCC to use custom shadow offset in
- AddressSanitizer checks. It is useful for experimenting with
- different shadow memory layouts in Kernel AddressSanitizer.
- '-fsanitize-sections=S1,S2,...'
- Sanitize global variables in selected user-defined sections. SI
- may contain wildcards.
- '-fsanitize-recover[=OPTS]'
- '-fsanitize-recover=' controls error recovery mode for sanitizers
- mentioned in comma-separated list of OPTS. Enabling this option
- for a sanitizer component causes it to attempt to continue running
- the program as if no error happened. This means multiple runtime
- errors can be reported in a single program run, and the exit code
- of the program may indicate success even when errors have been
- reported. The '-fno-sanitize-recover=' option can be used to alter
- this behavior: only the first detected error is reported and
- program then exits with a non-zero exit code.
- Currently this feature only works for '-fsanitize=undefined' (and
- its suboptions except for '-fsanitize=unreachable' and
- '-fsanitize=return'), '-fsanitize=float-cast-overflow',
- '-fsanitize=float-divide-by-zero', '-fsanitize=bounds-strict',
- '-fsanitize=kernel-address' and '-fsanitize=address'. For these
- sanitizers error recovery is turned on by default, except
- '-fsanitize=address', for which this feature is experimental.
- '-fsanitize-recover=all' and '-fno-sanitize-recover=all' is also
- accepted, the former enables recovery for all sanitizers that
- support it, the latter disables recovery for all sanitizers that
- support it.
- Even if a recovery mode is turned on the compiler side, it needs to
- be also enabled on the runtime library side, otherwise the failures
- are still fatal. The runtime library defaults to 'halt_on_error=0'
- for ThreadSanitizer and UndefinedBehaviorSanitizer, while default
- value for AddressSanitizer is 'halt_on_error=1'. This can be
- overridden through setting the 'halt_on_error' flag in the
- corresponding environment variable.
- Syntax without an explicit OPTS parameter is deprecated. It is
- equivalent to specifying an OPTS list of:
- undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
- '-fsanitize-address-use-after-scope'
- Enable sanitization of local variables to detect use-after-scope
- bugs. The option sets '-fstack-reuse' to 'none'.
- '-fsanitize-undefined-trap-on-error'
- The '-fsanitize-undefined-trap-on-error' option instructs the
- compiler to report undefined behavior using '__builtin_trap' rather
- than a 'libubsan' library routine. The advantage of this is that
- the 'libubsan' library is not needed and is not linked in, so this
- is usable even in freestanding environments.
- '-fsanitize-coverage=trace-pc'
- Enable coverage-guided fuzzing code instrumentation. Inserts a
- call to '__sanitizer_cov_trace_pc' into every basic block.
- '-fsanitize-coverage=trace-cmp'
- Enable dataflow guided fuzzing code instrumentation. Inserts a
- call to '__sanitizer_cov_trace_cmp1', '__sanitizer_cov_trace_cmp2',
- '__sanitizer_cov_trace_cmp4' or '__sanitizer_cov_trace_cmp8' for
- integral comparison with both operands variable or
- '__sanitizer_cov_trace_const_cmp1',
- '__sanitizer_cov_trace_const_cmp2',
- '__sanitizer_cov_trace_const_cmp4' or
- '__sanitizer_cov_trace_const_cmp8' for integral comparison with one
- operand constant, '__sanitizer_cov_trace_cmpf' or
- '__sanitizer_cov_trace_cmpd' for float or double comparisons and
- '__sanitizer_cov_trace_switch' for switch statements.
- '-fbounds-check'
- For front ends that support it, generate additional code to check
- that indices used to access arrays are within the declared range.
- This is currently only supported by the Fortran front end, where
- this option defaults to false.
- '-fcheck-pointer-bounds'
- Enable Pointer Bounds Checker instrumentation. Each memory
- reference is instrumented with checks of the pointer used for
- memory access against bounds associated with that pointer.
- Currently there is only an implementation for Intel MPX available,
- thus x86 GNU/Linux target and '-mmpx' are required to enable this
- feature. MPX-based instrumentation requires a runtime library to
- enable MPX in hardware and handle bounds violation signals. By
- default when '-fcheck-pointer-bounds' and '-mmpx' options are used
- to link a program, the GCC driver links against the 'libmpx' and
- 'libmpxwrappers' libraries. Bounds checking on calls to dynamic
- libraries requires a linker with '-z bndplt' support; if GCC was
- configured with a linker without support for this option (including
- the Gold linker and older versions of ld), a warning is given if
- you link with '-mmpx' without also specifying '-static', since the
- overall effectiveness of the bounds checking protection is reduced.
- See also '-static-libmpxwrappers'.
- MPX-based instrumentation may be used for debugging and also may be
- included in production code to increase program security.
- Depending on usage, you may have different requirements for the
- runtime library. The current version of the MPX runtime library is
- more oriented for use as a debugging tool. MPX runtime library
- usage implies '-lpthread'. See also '-static-libmpx'. The runtime
- library behavior can be influenced using various 'CHKP_RT_*'
- environment variables. See
- <https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler>
- for more details.
- Generated instrumentation may be controlled by various '-fchkp-*'
- options and by the 'bnd_variable_size' structure field attribute
- (*note Type Attributes::) and 'bnd_legacy', and 'bnd_instrument'
- function attributes (*note Function Attributes::). GCC also
- provides a number of built-in functions for controlling the Pointer
- Bounds Checker. *Note Pointer Bounds Checker builtins::, for more
- information.
- '-fchkp-check-incomplete-type'
- Generate pointer bounds checks for variables with incomplete type.
- Enabled by default.
- '-fchkp-narrow-bounds'
- Controls bounds used by Pointer Bounds Checker for pointers to
- object fields. If narrowing is enabled then field bounds are used.
- Otherwise object bounds are used. See also
- '-fchkp-narrow-to-innermost-array' and
- '-fchkp-first-field-has-own-bounds'. Enabled by default.
- '-fchkp-first-field-has-own-bounds'
- Forces Pointer Bounds Checker to use narrowed bounds for the
- address of the first field in the structure. By default a pointer
- to the first field has the same bounds as a pointer to the whole
- structure.
- '-fchkp-flexible-struct-trailing-arrays'
- Forces Pointer Bounds Checker to treat all trailing arrays in
- structures as possibly flexible. By default only array fields with
- zero length or that are marked with attribute bnd_variable_size are
- treated as flexible.
- '-fchkp-narrow-to-innermost-array'
- Forces Pointer Bounds Checker to use bounds of the innermost arrays
- in case of nested static array access. By default this option is
- disabled and bounds of the outermost array are used.
- '-fchkp-optimize'
- Enables Pointer Bounds Checker optimizations. Enabled by default
- at optimization levels '-O', '-O2', '-O3'.
- '-fchkp-use-fast-string-functions'
- Enables use of '*_nobnd' versions of string functions (not copying
- bounds) by Pointer Bounds Checker. Disabled by default.
- '-fchkp-use-nochk-string-functions'
- Enables use of '*_nochk' versions of string functions (not checking
- bounds) by Pointer Bounds Checker. Disabled by default.
- '-fchkp-use-static-bounds'
- Allow Pointer Bounds Checker to generate static bounds holding
- bounds of static variables. Enabled by default.
- '-fchkp-use-static-const-bounds'
- Use statically-initialized bounds for constant bounds instead of
- generating them each time they are required. By default enabled
- when '-fchkp-use-static-bounds' is enabled.
- '-fchkp-treat-zero-dynamic-size-as-infinite'
- With this option, objects with incomplete type whose
- dynamically-obtained size is zero are treated as having infinite
- size instead by Pointer Bounds Checker. This option may be helpful
- if a program is linked with a library missing size information for
- some symbols. Disabled by default.
- '-fchkp-check-read'
- Instructs Pointer Bounds Checker to generate checks for all read
- accesses to memory. Enabled by default.
- '-fchkp-check-write'
- Instructs Pointer Bounds Checker to generate checks for all write
- accesses to memory. Enabled by default.
- '-fchkp-store-bounds'
- Instructs Pointer Bounds Checker to generate bounds stores for
- pointer writes. Enabled by default.
- '-fchkp-instrument-calls'
- Instructs Pointer Bounds Checker to pass pointer bounds to calls.
- Enabled by default.
- '-fchkp-instrument-marked-only'
- Instructs Pointer Bounds Checker to instrument only functions
- marked with the 'bnd_instrument' attribute (*note Function
- Attributes::). Disabled by default.
- '-fchkp-use-wrappers'
- Allows Pointer Bounds Checker to replace calls to built-in
- functions with calls to wrapper functions. When
- '-fchkp-use-wrappers' is used to link a program, the GCC driver
- automatically links against 'libmpxwrappers'. See also
- '-static-libmpxwrappers'. Enabled by default.
- '-fcf-protection=[full|branch|return|none]'
- Enable code instrumentation of control-flow transfers to increase
- program security by checking that target addresses of control-flow
- transfer instructions (such as indirect function call, function
- return, indirect jump) are valid. This prevents diverting the flow
- of control to an unexpected target. This is intended to protect
- against such threats as Return-oriented Programming (ROP), and
- similarly call/jmp-oriented programming (COP/JOP).
- The value 'branch' tells the compiler to implement checking of
- validity of control-flow transfer at the point of indirect branch
- instructions, i.e. call/jmp instructions. The value 'return'
- implements checking of validity at the point of returning from a
- function. The value 'full' is an alias for specifying both
- 'branch' and 'return'. The value 'none' turns off instrumentation.
- The macro '__CET__' is defined when '-fcf-protection' is used. The
- first bit of '__CET__' is set to 1 for the value 'branch' and the
- second bit of '__CET__' is set to 1 for the 'return'.
- You can also use the 'nocf_check' attribute to identify which
- functions and calls should be skipped from instrumentation (*note
- Function Attributes::).
- Currently the x86 GNU/Linux target provides an implementation based
- on Intel Control-flow Enforcement Technology (CET).
- '-fstack-protector'
- Emit extra code to check for buffer overflows, such as stack
- smashing attacks. This is done by adding a guard variable to
- functions with vulnerable objects. This includes functions that
- call 'alloca', and functions with buffers larger than 8 bytes. The
- guards are initialized when a function is entered and then checked
- when the function exits. If a guard check fails, an error message
- is printed and the program exits.
- '-fstack-protector-all'
- Like '-fstack-protector' except that all functions are protected.
- '-fstack-protector-strong'
- Like '-fstack-protector' but includes additional functions to be
- protected -- those that have local array definitions, or have
- references to local frame addresses.
- '-fstack-protector-explicit'
- Like '-fstack-protector' but only protects those functions which
- have the 'stack_protect' attribute.
- '-fstack-check'
- Generate code to verify that you do not go beyond the boundary of
- the stack. You should specify this flag if you are running in an
- environment with multiple threads, but you only rarely need to
- specify it in a single-threaded environment since stack overflow is
- automatically detected on nearly all systems if there is only one
- stack.
- Note that this switch does not actually cause checking to be done;
- the operating system or the language runtime must do that. The
- switch causes generation of code to ensure that they see the stack
- being extended.
- You can additionally specify a string parameter: 'no' means no
- checking, 'generic' means force the use of old-style checking,
- 'specific' means use the best checking method and is equivalent to
- bare '-fstack-check'.
- Old-style checking is a generic mechanism that requires no specific
- target support in the compiler but comes with the following
- drawbacks:
- 1. Modified allocation strategy for large objects: they are
- always allocated dynamically if their size exceeds a fixed
- threshold. Note this may change the semantics of some code.
- 2. Fixed limit on the size of the static frame of functions: when
- it is topped by a particular function, stack checking is not
- reliable and a warning is issued by the compiler.
- 3. Inefficiency: because of both the modified allocation strategy
- and the generic implementation, code performance is hampered.
- Note that old-style stack checking is also the fallback method for
- 'specific' if no target support has been added in the compiler.
- '-fstack-check=' is designed for Ada's needs to detect infinite
- recursion and stack overflows. 'specific' is an excellent choice
- when compiling Ada code. It is not generally sufficient to protect
- against stack-clash attacks. To protect against those you want
- '-fstack-clash-protection'.
- '-fstack-clash-protection'
- Generate code to prevent stack clash style attacks. When this
- option is enabled, the compiler will only allocate one page of
- stack space at a time and each page is accessed immediately after
- allocation. Thus, it prevents allocations from jumping over any
- stack guard page provided by the operating system.
- Most targets do not fully support stack clash protection. However,
- on those targets '-fstack-clash-protection' will protect dynamic
- stack allocations. '-fstack-clash-protection' may also provide
- limited protection for static stack allocations if the target
- supports '-fstack-check=specific'.
- '-fstack-limit-register=REG'
- '-fstack-limit-symbol=SYM'
- '-fno-stack-limit'
- Generate code to ensure that the stack does not grow beyond a
- certain value, either the value of a register or the address of a
- symbol. If a larger stack is required, a signal is raised at run
- time. For most targets, the signal is raised before the stack
- overruns the boundary, so it is possible to catch the signal
- without taking special precautions.
- For instance, if the stack starts at absolute address '0x80000000'
- and grows downwards, you can use the flags
- '-fstack-limit-symbol=__stack_limit' and
- '-Wl,--defsym,__stack_limit=0x7ffe0000' to enforce a stack limit of
- 128KB. Note that this may only work with the GNU linker.
- You can locally override stack limit checking by using the
- 'no_stack_limit' function attribute (*note Function Attributes::).
- '-fsplit-stack'
- Generate code to automatically split the stack before it overflows.
- The resulting program has a discontiguous stack which can only
- overflow if the program is unable to allocate any more memory.
- This is most useful when running threaded programs, as it is no
- longer necessary to calculate a good stack size to use for each
- thread. This is currently only implemented for the x86 targets
- running GNU/Linux.
- When code compiled with '-fsplit-stack' calls code compiled without
- '-fsplit-stack', there may not be much stack space available for
- the latter code to run. If compiling all code, including library
- code, with '-fsplit-stack' is not an option, then the linker can
- fix up these calls so that the code compiled without
- '-fsplit-stack' always has a large stack. Support for this is
- implemented in the gold linker in GNU binutils release 2.21 and
- later.
- '-fvtable-verify=[std|preinit|none]'
- This option is only available when compiling C++ code. It turns on
- (or off, if using '-fvtable-verify=none') the security feature that
- verifies at run time, for every virtual call, that the vtable
- pointer through which the call is made is valid for the type of the
- object, and has not been corrupted or overwritten. If an invalid
- vtable pointer is detected at run time, an error is reported and
- execution of the program is immediately halted.
- This option causes run-time data structures to be built at program
- startup, which are used for verifying the vtable pointers. The
- options 'std' and 'preinit' control the timing of when these data
- structures are built. In both cases the data structures are built
- before execution reaches 'main'. Using '-fvtable-verify=std'
- causes the data structures to be built after shared libraries have
- been loaded and initialized. '-fvtable-verify=preinit' causes them
- to be built before shared libraries have been loaded and
- initialized.
- If this option appears multiple times in the command line with
- different values specified, 'none' takes highest priority over both
- 'std' and 'preinit'; 'preinit' takes priority over 'std'.
- '-fvtv-debug'
- When used in conjunction with '-fvtable-verify=std' or
- '-fvtable-verify=preinit', causes debug versions of the runtime
- functions for the vtable verification feature to be called. This
- flag also causes the compiler to log information about which vtable
- pointers it finds for each class. This information is written to a
- file named 'vtv_set_ptr_data.log' in the directory named by the
- environment variable 'VTV_LOGS_DIR' if that is defined or the
- current working directory otherwise.
- Note: This feature _appends_ data to the log file. If you want a
- fresh log file, be sure to delete any existing one.
- '-fvtv-counts'
- This is a debugging flag. When used in conjunction with
- '-fvtable-verify=std' or '-fvtable-verify=preinit', this causes the
- compiler to keep track of the total number of virtual calls it
- encounters and the number of verifications it inserts. It also
- counts the number of calls to certain run-time library functions
- that it inserts and logs this information for each compilation
- unit. The compiler writes this information to a file named
- 'vtv_count_data.log' in the directory named by the environment
- variable 'VTV_LOGS_DIR' if that is defined or the current working
- directory otherwise. It also counts the size of the vtable pointer
- sets for each class, and writes this information to
- 'vtv_class_set_sizes.log' in the same directory.
- Note: This feature _appends_ data to the log files. To get fresh
- log files, be sure to delete any existing ones.
- '-finstrument-functions'
- Generate instrumentation calls for entry and exit to functions.
- Just after function entry and just before function exit, the
- following profiling functions are called with the address of the
- current function and its call site. (On some platforms,
- '__builtin_return_address' does not work beyond the current
- function, so the call site information may not be available to the
- profiling functions otherwise.)
- void __cyg_profile_func_enter (void *this_fn,
- void *call_site);
- void __cyg_profile_func_exit (void *this_fn,
- void *call_site);
- The first argument is the address of the start of the current
- function, which may be looked up exactly in the symbol table.
- This instrumentation is also done for functions expanded inline in
- other functions. The profiling calls indicate where, conceptually,
- the inline function is entered and exited. This means that
- addressable versions of such functions must be available. If all
- your uses of a function are expanded inline, this may mean an
- additional expansion of code size. If you use 'extern inline' in
- your C code, an addressable version of such functions must be
- provided. (This is normally the case anyway, but if you get lucky
- and the optimizer always expands the functions inline, you might
- have gotten away without providing static copies.)
- A function may be given the attribute 'no_instrument_function', in
- which case this instrumentation is not done. This can be used, for
- example, for the profiling functions listed above, high-priority
- interrupt routines, and any functions from which the profiling
- functions cannot safely be called (perhaps signal handlers, if the
- profiling routines generate output or allocate memory).
- '-finstrument-functions-exclude-file-list=FILE,FILE,...'
- Set the list of functions that are excluded from instrumentation
- (see the description of '-finstrument-functions'). If the file
- that contains a function definition matches with one of FILE, then
- that function is not instrumented. The match is done on
- substrings: if the FILE parameter is a substring of the file name,
- it is considered to be a match.
- For example:
- -finstrument-functions-exclude-file-list=/bits/stl,include/sys
- excludes any inline function defined in files whose pathnames
- contain '/bits/stl' or 'include/sys'.
- If, for some reason, you want to include letter ',' in one of SYM,
- write '\,'. For example,
- '-finstrument-functions-exclude-file-list='\,\,tmp'' (note the
- single quote surrounding the option).
- '-finstrument-functions-exclude-function-list=SYM,SYM,...'
- This is similar to '-finstrument-functions-exclude-file-list', but
- this option sets the list of function names to be excluded from
- instrumentation. The function name to be matched is its
- user-visible name, such as 'vector<int> blah(const vector<int> &)',
- not the internal mangled name (e.g., '_Z4blahRSt6vectorIiSaIiEE').
- The match is done on substrings: if the SYM parameter is a
- substring of the function name, it is considered to be a match.
- For C99 and C++ extended identifiers, the function name must be
- given in UTF-8, not using universal character names.
- '-fpatchable-function-entry=N[,M]'
- Generate N NOPs right at the beginning of each function, with the
- function entry point before the Mth NOP. If M is omitted, it
- defaults to '0' so the function entry points to the address just at
- the first NOP. The NOP instructions reserve extra space which can
- be used to patch in any desired instrumentation at run time,
- provided that the code segment is writable. The amount of space is
- controllable indirectly via the number of NOPs; the NOP instruction
- used corresponds to the instruction emitted by the internal GCC
- back-end interface 'gen_nop'. This behavior is target-specific and
- may also depend on the architecture variant and/or other
- compilation options.
- For run-time identification, the starting addresses of these areas,
- which correspond to their respective function entries minus M, are
- additionally collected in the '__patchable_function_entries'
- section of the resulting binary.
- Note that the value of '__attribute__ ((patchable_function_entry
- (N,M)))' takes precedence over command-line option
- '-fpatchable-function-entry=N,M'. This can be used to increase the
- area size or to remove it completely on a single function. If
- 'N=0', no pad location is recorded.
- The NOP instructions are inserted at--and maybe before, depending
- on M--the function entry address, even before the prologue.
- File: gcc.info, Node: Preprocessor Options, Next: Assembler Options, Prev: Instrumentation Options, Up: Invoking GCC
- 3.12 Options Controlling the Preprocessor
- =========================================
- These options control the C preprocessor, which is run on each C source
- file before actual compilation.
- If you use the '-E' option, nothing is done except preprocessing. Some
- of these options make sense only together with '-E' because they cause
- the preprocessor output to be unsuitable for actual compilation.
- In addition to the options listed here, there are a number of options
- to control search paths for include files documented in *note Directory
- Options::. Options to control preprocessor diagnostics are listed in
- *note Warning Options::.
- '-D NAME'
- Predefine NAME as a macro, with definition '1'.
- '-D NAME=DEFINITION'
- The contents of DEFINITION are tokenized and processed as if they
- appeared during translation phase three in a '#define' directive.
- In particular, the definition is truncated by embedded newline
- characters.
- If you are invoking the preprocessor from a shell or shell-like
- program you may need to use the shell's quoting syntax to protect
- characters such as spaces that have a meaning in the shell syntax.
- If you wish to define a function-like macro on the command line,
- write its argument list with surrounding parentheses before the
- equals sign (if any). Parentheses are meaningful to most shells,
- so you should quote the option. With 'sh' and 'csh',
- '-D'NAME(ARGS...)=DEFINITION'' works.
- '-D' and '-U' options are processed in the order they are given on
- the command line. All '-imacros FILE' and '-include FILE' options
- are processed after all '-D' and '-U' options.
- '-U NAME'
- Cancel any previous definition of NAME, either built in or provided
- with a '-D' option.
- '-include FILE'
- Process FILE as if '#include "file"' appeared as the first line of
- the primary source file. However, the first directory searched for
- FILE is the preprocessor's working directory _instead of_ the
- directory containing the main source file. If not found there, it
- is searched for in the remainder of the '#include "..."' search
- chain as normal.
- If multiple '-include' options are given, the files are included in
- the order they appear on the command line.
- '-imacros FILE'
- Exactly like '-include', except that any output produced by
- scanning FILE is thrown away. Macros it defines remain defined.
- This allows you to acquire all the macros from a header without
- also processing its declarations.
- All files specified by '-imacros' are processed before all files
- specified by '-include'.
- '-undef'
- Do not predefine any system-specific or GCC-specific macros. The
- standard predefined macros remain defined.
- '-pthread'
- Define additional macros required for using the POSIX threads
- library. You should use this option consistently for both
- compilation and linking. This option is supported on GNU/Linux
- targets, most other Unix derivatives, and also on x86 Cygwin and
- MinGW targets.
- '-M'
- Instead of outputting the result of preprocessing, output a rule
- suitable for 'make' describing the dependencies of the main source
- file. The preprocessor outputs one 'make' rule containing the
- object file name for that source file, a colon, and the names of
- all the included files, including those coming from '-include' or
- '-imacros' command-line options.
- Unless specified explicitly (with '-MT' or '-MQ'), the object file
- name consists of the name of the source file with any suffix
- replaced with object file suffix and with any leading directory
- parts removed. If there are many included files then the rule is
- split into several lines using '\'-newline. The rule has no
- commands.
- This option does not suppress the preprocessor's debug output, such
- as '-dM'. To avoid mixing such debug output with the dependency
- rules you should explicitly specify the dependency output file with
- '-MF', or use an environment variable like 'DEPENDENCIES_OUTPUT'
- (*note Environment Variables::). Debug output is still sent to the
- regular output stream as normal.
- Passing '-M' to the driver implies '-E', and suppresses warnings
- with an implicit '-w'.
- '-MM'
- Like '-M' but do not mention header files that are found in system
- header directories, nor header files that are included, directly or
- indirectly, from such a header.
- This implies that the choice of angle brackets or double quotes in
- an '#include' directive does not in itself determine whether that
- header appears in '-MM' dependency output.
- '-MF FILE'
- When used with '-M' or '-MM', specifies a file to write the
- dependencies to. If no '-MF' switch is given the preprocessor
- sends the rules to the same place it would send preprocessed
- output.
- When used with the driver options '-MD' or '-MMD', '-MF' overrides
- the default dependency output file.
- If FILE is '-', then the dependencies are written to 'stdout'.
- '-MG'
- In conjunction with an option such as '-M' requesting dependency
- generation, '-MG' assumes missing header files are generated files
- and adds them to the dependency list without raising an error. The
- dependency filename is taken directly from the '#include' directive
- without prepending any path. '-MG' also suppresses preprocessed
- output, as a missing header file renders this useless.
- This feature is used in automatic updating of makefiles.
- '-MP'
- This option instructs CPP to add a phony target for each dependency
- other than the main file, causing each to depend on nothing. These
- dummy rules work around errors 'make' gives if you remove header
- files without updating the 'Makefile' to match.
- This is typical output:
- test.o: test.c test.h
- test.h:
- '-MT TARGET'
- Change the target of the rule emitted by dependency generation. By
- default CPP takes the name of the main input file, deletes any
- directory components and any file suffix such as '.c', and appends
- the platform's usual object suffix. The result is the target.
- An '-MT' option sets the target to be exactly the string you
- specify. If you want multiple targets, you can specify them as a
- single argument to '-MT', or use multiple '-MT' options.
- For example, '-MT '$(objpfx)foo.o'' might give
- $(objpfx)foo.o: foo.c
- '-MQ TARGET'
- Same as '-MT', but it quotes any characters which are special to
- Make. '-MQ '$(objpfx)foo.o'' gives
- $$(objpfx)foo.o: foo.c
- The default target is automatically quoted, as if it were given
- with '-MQ'.
- '-MD'
- '-MD' is equivalent to '-M -MF FILE', except that '-E' is not
- implied. The driver determines FILE based on whether an '-o'
- option is given. If it is, the driver uses its argument but with a
- suffix of '.d', otherwise it takes the name of the input file,
- removes any directory components and suffix, and applies a '.d'
- suffix.
- If '-MD' is used in conjunction with '-E', any '-o' switch is
- understood to specify the dependency output file (*note -MF:
- dashMF.), but if used without '-E', each '-o' is understood to
- specify a target object file.
- Since '-E' is not implied, '-MD' can be used to generate a
- dependency output file as a side effect of the compilation process.
- '-MMD'
- Like '-MD' except mention only user header files, not system header
- files.
- '-fpreprocessed'
- Indicate to the preprocessor that the input file has already been
- preprocessed. This suppresses things like macro expansion,
- trigraph conversion, escaped newline splicing, and processing of
- most directives. The preprocessor still recognizes and removes
- comments, so that you can pass a file preprocessed with '-C' to the
- compiler without problems. In this mode the integrated
- preprocessor is little more than a tokenizer for the front ends.
- '-fpreprocessed' is implicit if the input file has one of the
- extensions '.i', '.ii' or '.mi'. These are the extensions that GCC
- uses for preprocessed files created by '-save-temps'.
- '-fdirectives-only'
- When preprocessing, handle directives, but do not expand macros.
- The option's behavior depends on the '-E' and '-fpreprocessed'
- options.
- With '-E', preprocessing is limited to the handling of directives
- such as '#define', '#ifdef', and '#error'. Other preprocessor
- operations, such as macro expansion and trigraph conversion are not
- performed. In addition, the '-dD' option is implicitly enabled.
- With '-fpreprocessed', predefinition of command line and most
- builtin macros is disabled. Macros such as '__LINE__', which are
- contextually dependent, are handled normally. This enables
- compilation of files previously preprocessed with '-E
- -fdirectives-only'.
- With both '-E' and '-fpreprocessed', the rules for '-fpreprocessed'
- take precedence. This enables full preprocessing of files
- previously preprocessed with '-E -fdirectives-only'.
- '-fdollars-in-identifiers'
- Accept '$' in identifiers.
- '-fextended-identifiers'
- Accept universal character names in identifiers. This option is
- enabled by default for C99 (and later C standard versions) and C++.
- '-fno-canonical-system-headers'
- When preprocessing, do not shorten system header paths with
- canonicalization.
- '-ftabstop=WIDTH'
- Set the distance between tab stops. This helps the preprocessor
- report correct column numbers in warnings or errors, even if tabs
- appear on the line. If the value is less than 1 or greater than
- 100, the option is ignored. The default is 8.
- '-ftrack-macro-expansion[=LEVEL]'
- Track locations of tokens across macro expansions. This allows the
- compiler to emit diagnostic about the current macro expansion stack
- when a compilation error occurs in a macro expansion. Using this
- option makes the preprocessor and the compiler consume more memory.
- The LEVEL parameter can be used to choose the level of precision of
- token location tracking thus decreasing the memory consumption if
- necessary. Value '0' of LEVEL de-activates this option. Value '1'
- tracks tokens locations in a degraded mode for the sake of minimal
- memory overhead. In this mode all tokens resulting from the
- expansion of an argument of a function-like macro have the same
- location. Value '2' tracks tokens locations completely. This
- value is the most memory hungry. When this option is given no
- argument, the default parameter value is '2'.
- Note that '-ftrack-macro-expansion=2' is activated by default.
- '-fmacro-prefix-map=OLD=NEW'
- When preprocessing files residing in directory 'OLD', expand the
- '__FILE__' and '__BASE_FILE__' macros as if the files resided in
- directory 'NEW' instead. This can be used to change an absolute
- path to a relative path by using '.' for NEW which can result in
- more reproducible builds that are location independent. This
- option also affects '__builtin_FILE()' during compilation. See
- also '-ffile-prefix-map'.
- '-fexec-charset=CHARSET'
- Set the execution character set, used for string and character
- constants. The default is UTF-8. CHARSET can be any encoding
- supported by the system's 'iconv' library routine.
- '-fwide-exec-charset=CHARSET'
- Set the wide execution character set, used for wide string and
- character constants. The default is UTF-32 or UTF-16, whichever
- corresponds to the width of 'wchar_t'. As with '-fexec-charset',
- CHARSET can be any encoding supported by the system's 'iconv'
- library routine; however, you will have problems with encodings
- that do not fit exactly in 'wchar_t'.
- '-finput-charset=CHARSET'
- Set the input character set, used for translation from the
- character set of the input file to the source character set used by
- GCC. If the locale does not specify, or GCC cannot get this
- information from the locale, the default is UTF-8. This can be
- overridden by either the locale or this command-line option.
- Currently the command-line option takes precedence if there's a
- conflict. CHARSET can be any encoding supported by the system's
- 'iconv' library routine.
- '-fpch-deps'
- When using precompiled headers (*note Precompiled Headers::), this
- flag causes the dependency-output flags to also list the files from
- the precompiled header's dependencies. If not specified, only the
- precompiled header are listed and not the files that were used to
- create it, because those files are not consulted when a precompiled
- header is used.
- '-fpch-preprocess'
- This option allows use of a precompiled header (*note Precompiled
- Headers::) together with '-E'. It inserts a special '#pragma',
- '#pragma GCC pch_preprocess "FILENAME"' in the output to mark the
- place where the precompiled header was found, and its FILENAME.
- When '-fpreprocessed' is in use, GCC recognizes this '#pragma' and
- loads the PCH.
- This option is off by default, because the resulting preprocessed
- output is only really suitable as input to GCC. It is switched on
- by '-save-temps'.
- You should not write this '#pragma' in your own code, but it is
- safe to edit the filename if the PCH file is available in a
- different location. The filename may be absolute or it may be
- relative to GCC's current directory.
- '-fworking-directory'
- Enable generation of linemarkers in the preprocessor output that
- let the compiler know the current working directory at the time of
- preprocessing. When this option is enabled, the preprocessor
- emits, after the initial linemarker, a second linemarker with the
- current working directory followed by two slashes. GCC uses this
- directory, when it's present in the preprocessed input, as the
- directory emitted as the current working directory in some
- debugging information formats. This option is implicitly enabled
- if debugging information is enabled, but this can be inhibited with
- the negated form '-fno-working-directory'. If the '-P' flag is
- present in the command line, this option has no effect, since no
- '#line' directives are emitted whatsoever.
- '-A PREDICATE=ANSWER'
- Make an assertion with the predicate PREDICATE and answer ANSWER.
- This form is preferred to the older form '-A PREDICATE(ANSWER)',
- which is still supported, because it does not use shell special
- characters.
- '-A -PREDICATE=ANSWER'
- Cancel an assertion with the predicate PREDICATE and answer ANSWER.
- '-C'
- Do not discard comments. All comments are passed through to the
- output file, except for comments in processed directives, which are
- deleted along with the directive.
- You should be prepared for side effects when using '-C'; it causes
- the preprocessor to treat comments as tokens in their own right.
- For example, comments appearing at the start of what would be a
- directive line have the effect of turning that line into an
- ordinary source line, since the first token on the line is no
- longer a '#'.
- '-CC'
- Do not discard comments, including during macro expansion. This is
- like '-C', except that comments contained within macros are also
- passed through to the output file where the macro is expanded.
- In addition to the side effects of the '-C' option, the '-CC'
- option causes all C++-style comments inside a macro to be converted
- to C-style comments. This is to prevent later use of that macro
- from inadvertently commenting out the remainder of the source line.
- The '-CC' option is generally used to support lint comments.
- '-P'
- Inhibit generation of linemarkers in the output from the
- preprocessor. This might be useful when running the preprocessor
- on something that is not C code, and will be sent to a program
- which might be confused by the linemarkers.
- '-traditional'
- '-traditional-cpp'
- Try to imitate the behavior of pre-standard C preprocessors, as
- opposed to ISO C preprocessors. See the GNU CPP manual for
- details.
- Note that GCC does not otherwise attempt to emulate a pre-standard
- C compiler, and these options are only supported with the '-E'
- switch, or when invoking CPP explicitly.
- '-trigraphs'
- Support ISO C trigraphs. These are three-character sequences, all
- starting with '??', that are defined by ISO C to stand for single
- characters. For example, '??/' stands for '\', so ''??/n'' is a
- character constant for a newline.
- The nine trigraphs and their replacements are
- Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??-
- Replacement: [ ] { } # \ ^ | ~
- By default, GCC ignores trigraphs, but in standard-conforming modes
- it converts them. See the '-std' and '-ansi' options.
- '-remap'
- Enable special code to work around file systems which only permit
- very short file names, such as MS-DOS.
- '-H'
- Print the name of each header file used, in addition to other
- normal activities. Each name is indented to show how deep in the
- '#include' stack it is. Precompiled header files are also printed,
- even if they are found to be invalid; an invalid precompiled header
- file is printed with '...x' and a valid one with '...!' .
- '-dLETTERS'
- Says to make debugging dumps during compilation as specified by
- LETTERS. The flags documented here are those relevant to the
- preprocessor. Other LETTERS are interpreted by the compiler
- proper, or reserved for future versions of GCC, and so are silently
- ignored. If you specify LETTERS whose behavior conflicts, the
- result is undefined. *Note Developer Options::, for more
- information.
- '-dM'
- Instead of the normal output, generate a list of '#define'
- directives for all the macros defined during the execution of
- the preprocessor, including predefined macros. This gives you
- a way of finding out what is predefined in your version of the
- preprocessor. Assuming you have no file 'foo.h', the command
- touch foo.h; cpp -dM foo.h
- shows all the predefined macros.
- If you use '-dM' without the '-E' option, '-dM' is interpreted
- as a synonym for '-fdump-rtl-mach'. *Note (gcc)Developer
- Options::.
- '-dD'
- Like '-dM' except in two respects: it does _not_ include the
- predefined macros, and it outputs _both_ the '#define'
- directives and the result of preprocessing. Both kinds of
- output go to the standard output file.
- '-dN'
- Like '-dD', but emit only the macro names, not their
- expansions.
- '-dI'
- Output '#include' directives in addition to the result of
- preprocessing.
- '-dU'
- Like '-dD' except that only macros that are expanded, or whose
- definedness is tested in preprocessor directives, are output;
- the output is delayed until the use or test of the macro; and
- '#undef' directives are also output for macros tested but
- undefined at the time.
- '-fdebug-cpp'
- This option is only useful for debugging GCC. When used from CPP or
- with '-E', it dumps debugging information about location maps.
- Every token in the output is preceded by the dump of the map its
- location belongs to.
- When used from GCC without '-E', this option has no effect.
- '-Wp,OPTION'
- You can use '-Wp,OPTION' to bypass the compiler driver and pass
- OPTION directly through to the preprocessor. If OPTION contains
- commas, it is split into multiple options at the commas. However,
- many options are modified, translated or interpreted by the
- compiler driver before being passed to the preprocessor, and '-Wp'
- forcibly bypasses this phase. The preprocessor's direct interface
- is undocumented and subject to change, so whenever possible you
- should avoid using '-Wp' and let the driver handle the options
- instead.
- '-Xpreprocessor OPTION'
- Pass OPTION as an option to the preprocessor. You can use this to
- supply system-specific preprocessor options that GCC does not
- recognize.
- If you want to pass an option that takes an argument, you must use
- '-Xpreprocessor' twice, once for the option and once for the
- argument.
- '-no-integrated-cpp'
- Perform preprocessing as a separate pass before compilation. By
- default, GCC performs preprocessing as an integrated part of input
- tokenization and parsing. If this option is provided, the
- appropriate language front end ('cc1', 'cc1plus', or 'cc1obj' for
- C, C++, and Objective-C, respectively) is instead invoked twice,
- once for preprocessing only and once for actual compilation of the
- preprocessed input. This option may be useful in conjunction with
- the '-B' or '-wrapper' options to specify an alternate preprocessor
- or perform additional processing of the program source between
- normal preprocessing and compilation.
- File: gcc.info, Node: Assembler Options, Next: Link Options, Prev: Preprocessor Options, Up: Invoking GCC
- 3.13 Passing Options to the Assembler
- =====================================
- You can pass options to the assembler.
- '-Wa,OPTION'
- Pass OPTION as an option to the assembler. If OPTION contains
- commas, it is split into multiple options at the commas.
- '-Xassembler OPTION'
- Pass OPTION as an option to the assembler. You can use this to
- supply system-specific assembler options that GCC does not
- recognize.
- If you want to pass an option that takes an argument, you must use
- '-Xassembler' twice, once for the option and once for the argument.
- File: gcc.info, Node: Link Options, Next: Directory Options, Prev: Assembler Options, Up: Invoking GCC
- 3.14 Options for Linking
- ========================
- These options come into play when the compiler links object files into
- an executable output file. They are meaningless if the compiler is not
- doing a link step.
- 'OBJECT-FILE-NAME'
- A file name that does not end in a special recognized suffix is
- considered to name an object file or library. (Object files are
- distinguished from libraries by the linker according to the file
- contents.) If linking is done, these object files are used as
- input to the linker.
- '-c'
- '-S'
- '-E'
- If any of these options is used, then the linker is not run, and
- object file names should not be used as arguments. *Note Overall
- Options::.
- '-fuse-ld=bfd'
- Use the 'bfd' linker instead of the default linker.
- '-fuse-ld=gold'
- Use the 'gold' linker instead of the default linker.
- '-lLIBRARY'
- '-l LIBRARY'
- Search the library named LIBRARY when linking. (The second
- alternative with the library as a separate argument is only for
- POSIX compliance and is not recommended.)
- It makes a difference where in the command you write this option;
- the linker searches and processes libraries and object files in the
- order they are specified. Thus, 'foo.o -lz bar.o' searches library
- 'z' after file 'foo.o' but before 'bar.o'. If 'bar.o' refers to
- functions in 'z', those functions may not be loaded.
- The linker searches a standard list of directories for the library,
- which is actually a file named 'libLIBRARY.a'. The linker then
- uses this file as if it had been specified precisely by name.
- The directories searched include several standard system
- directories plus any that you specify with '-L'.
- Normally the files found this way are library files--archive files
- whose members are object files. The linker handles an archive file
- by scanning through it for members which define symbols that have
- so far been referenced but not defined. But if the file that is
- found is an ordinary object file, it is linked in the usual
- fashion. The only difference between using an '-l' option and
- specifying a file name is that '-l' surrounds LIBRARY with 'lib'
- and '.a' and searches several directories.
- '-lobjc'
- You need this special case of the '-l' option in order to link an
- Objective-C or Objective-C++ program.
- '-nostartfiles'
- Do not use the standard system startup files when linking. The
- standard system libraries are used normally, unless '-nostdlib' or
- '-nodefaultlibs' is used.
- '-nodefaultlibs'
- Do not use the standard system libraries when linking. Only the
- libraries you specify are passed to the linker, and options
- specifying linkage of the system libraries, such as
- '-static-libgcc' or '-shared-libgcc', are ignored. The standard
- startup files are used normally, unless '-nostartfiles' is used.
- The compiler may generate calls to 'memcmp', 'memset', 'memcpy' and
- 'memmove'. These entries are usually resolved by entries in libc.
- These entry points should be supplied through some other mechanism
- when this option is specified.
- '-nostdlib'
- Do not use the standard system startup files or libraries when
- linking. No startup files and only the libraries you specify are
- passed to the linker, and options specifying linkage of the system
- libraries, such as '-static-libgcc' or '-shared-libgcc', are
- ignored.
- The compiler may generate calls to 'memcmp', 'memset', 'memcpy' and
- 'memmove'. These entries are usually resolved by entries in libc.
- These entry points should be supplied through some other mechanism
- when this option is specified.
- One of the standard libraries bypassed by '-nostdlib' and
- '-nodefaultlibs' is 'libgcc.a', a library of internal subroutines
- which GCC uses to overcome shortcomings of particular machines, or
- special needs for some languages. (*Note Interfacing to GCC
- Output: (gccint)Interface, for more discussion of 'libgcc.a'.) In
- most cases, you need 'libgcc.a' even when you want to avoid other
- standard libraries. In other words, when you specify '-nostdlib'
- or '-nodefaultlibs' you should usually specify '-lgcc' as well.
- This ensures that you have no unresolved references to internal GCC
- library subroutines. (An example of such an internal subroutine is
- '__main', used to ensure C++ constructors are called; *note
- 'collect2': (gccint)Collect2.)
- '-pie'
- Produce a dynamically linked position independent executable on
- targets that support it. For predictable results, you must also
- specify the same set of options used for compilation ('-fpie',
- '-fPIE', or model suboptions) when you specify this linker option.
- '-no-pie'
- Don't produce a dynamically linked position independent executable.
- '-static-pie'
- Produce a static position independent executable on targets that
- support it. A static position independent executable is similar to
- a static executable, but can be loaded at any address without a
- dynamic linker. For predictable results, you must also specify the
- same set of options used for compilation ('-fpie', '-fPIE', or
- model suboptions) when you specify this linker option.
- '-pthread'
- Link with the POSIX threads library. This option is supported on
- GNU/Linux targets, most other Unix derivatives, and also on x86
- Cygwin and MinGW targets. On some targets this option also sets
- flags for the preprocessor, so it should be used consistently for
- both compilation and linking.
- '-rdynamic'
- Pass the flag '-export-dynamic' to the ELF linker, on targets that
- support it. This instructs the linker to add all symbols, not only
- used ones, to the dynamic symbol table. This option is needed for
- some uses of 'dlopen' or to allow obtaining backtraces from within
- a program.
- '-s'
- Remove all symbol table and relocation information from the
- executable.
- '-static'
- On systems that support dynamic linking, this overrides '-pie' and
- prevents linking with the shared libraries. On other systems, this
- option has no effect.
- '-shared'
- Produce a shared object which can then be linked with other objects
- to form an executable. Not all systems support this option. For
- predictable results, you must also specify the same set of options
- used for compilation ('-fpic', '-fPIC', or model suboptions) when
- you specify this linker option.(1)
- '-shared-libgcc'
- '-static-libgcc'
- On systems that provide 'libgcc' as a shared library, these options
- force the use of either the shared or static version, respectively.
- If no shared version of 'libgcc' was built when the compiler was
- configured, these options have no effect.
- There are several situations in which an application should use the
- shared 'libgcc' instead of the static version. The most common of
- these is when the application wishes to throw and catch exceptions
- across different shared libraries. In that case, each of the
- libraries as well as the application itself should use the shared
- 'libgcc'.
- Therefore, the G++ driver automatically adds '-shared-libgcc'
- whenever you build a shared library or a main executable, because
- C++ programs typically use exceptions, so this is the right thing
- to do.
- If, instead, you use the GCC driver to create shared libraries, you
- may find that they are not always linked with the shared 'libgcc'.
- If GCC finds, at its configuration time, that you have a non-GNU
- linker or a GNU linker that does not support option
- '--eh-frame-hdr', it links the shared version of 'libgcc' into
- shared libraries by default. Otherwise, it takes advantage of the
- linker and optimizes away the linking with the shared version of
- 'libgcc', linking with the static version of libgcc by default.
- This allows exceptions to propagate through such shared libraries,
- without incurring relocation costs at library load time.
- However, if a library or main executable is supposed to throw or
- catch exceptions, you must link it using the G++ driver, or using
- the option '-shared-libgcc', such that it is linked with the shared
- 'libgcc'.
- '-static-libasan'
- When the '-fsanitize=address' option is used to link a program, the
- GCC driver automatically links against 'libasan'. If 'libasan' is
- available as a shared library, and the '-static' option is not
- used, then this links against the shared version of 'libasan'. The
- '-static-libasan' option directs the GCC driver to link 'libasan'
- statically, without necessarily linking other libraries statically.
- '-static-libtsan'
- When the '-fsanitize=thread' option is used to link a program, the
- GCC driver automatically links against 'libtsan'. If 'libtsan' is
- available as a shared library, and the '-static' option is not
- used, then this links against the shared version of 'libtsan'. The
- '-static-libtsan' option directs the GCC driver to link 'libtsan'
- statically, without necessarily linking other libraries statically.
- '-static-liblsan'
- When the '-fsanitize=leak' option is used to link a program, the
- GCC driver automatically links against 'liblsan'. If 'liblsan' is
- available as a shared library, and the '-static' option is not
- used, then this links against the shared version of 'liblsan'. The
- '-static-liblsan' option directs the GCC driver to link 'liblsan'
- statically, without necessarily linking other libraries statically.
- '-static-libubsan'
- When the '-fsanitize=undefined' option is used to link a program,
- the GCC driver automatically links against 'libubsan'. If
- 'libubsan' is available as a shared library, and the '-static'
- option is not used, then this links against the shared version of
- 'libubsan'. The '-static-libubsan' option directs the GCC driver
- to link 'libubsan' statically, without necessarily linking other
- libraries statically.
- '-static-libmpx'
- When the '-fcheck-pointer bounds' and '-mmpx' options are used to
- link a program, the GCC driver automatically links against
- 'libmpx'. If 'libmpx' is available as a shared library, and the
- '-static' option is not used, then this links against the shared
- version of 'libmpx'. The '-static-libmpx' option directs the GCC
- driver to link 'libmpx' statically, without necessarily linking
- other libraries statically.
- '-static-libmpxwrappers'
- When the '-fcheck-pointer bounds' and '-mmpx' options are used to
- link a program without also using '-fno-chkp-use-wrappers', the GCC
- driver automatically links against 'libmpxwrappers'. If
- 'libmpxwrappers' is available as a shared library, and the
- '-static' option is not used, then this links against the shared
- version of 'libmpxwrappers'. The '-static-libmpxwrappers' option
- directs the GCC driver to link 'libmpxwrappers' statically, without
- necessarily linking other libraries statically.
- '-static-libstdc++'
- When the 'g++' program is used to link a C++ program, it normally
- automatically links against 'libstdc++'. If 'libstdc++' is
- available as a shared library, and the '-static' option is not
- used, then this links against the shared version of 'libstdc++'.
- That is normally fine. However, it is sometimes useful to freeze
- the version of 'libstdc++' used by the program without going all
- the way to a fully static link. The '-static-libstdc++' option
- directs the 'g++' driver to link 'libstdc++' statically, without
- necessarily linking other libraries statically.
- '-symbolic'
- Bind references to global symbols when building a shared object.
- Warn about any unresolved references (unless overridden by the link
- editor option '-Xlinker -z -Xlinker defs'). Only a few systems
- support this option.
- '-T SCRIPT'
- Use SCRIPT as the linker script. This option is supported by most
- systems using the GNU linker. On some targets, such as bare-board
- targets without an operating system, the '-T' option may be
- required when linking to avoid references to undefined symbols.
- '-Xlinker OPTION'
- Pass OPTION as an option to the linker. You can use this to supply
- system-specific linker options that GCC does not recognize.
- If you want to pass an option that takes a separate argument, you
- must use '-Xlinker' twice, once for the option and once for the
- argument. For example, to pass '-assert definitions', you must
- write '-Xlinker -assert -Xlinker definitions'. It does not work to
- write '-Xlinker "-assert definitions"', because this passes the
- entire string as a single argument, which is not what the linker
- expects.
- When using the GNU linker, it is usually more convenient to pass
- arguments to linker options using the 'OPTION=VALUE' syntax than as
- separate arguments. For example, you can specify '-Xlinker
- -Map=output.map' rather than '-Xlinker -Map -Xlinker output.map'.
- Other linkers may not support this syntax for command-line options.
- '-Wl,OPTION'
- Pass OPTION as an option to the linker. If OPTION contains commas,
- it is split into multiple options at the commas. You can use this
- syntax to pass an argument to the option. For example,
- '-Wl,-Map,output.map' passes '-Map output.map' to the linker. When
- using the GNU linker, you can also get the same effect with
- '-Wl,-Map=output.map'.
- '-u SYMBOL'
- Pretend the symbol SYMBOL is undefined, to force linking of library
- modules to define it. You can use '-u' multiple times with
- different symbols to force loading of additional library modules.
- '-z KEYWORD'
- '-z' is passed directly on to the linker along with the keyword
- KEYWORD. See the section in the documentation of your linker for
- permitted values and their meanings.
- ---------- Footnotes ----------
- (1) On some systems, 'gcc -shared' needs to build supplementary stub
- code for constructors to work. On multi-libbed systems, 'gcc -shared'
- must select the correct support libraries to link against. Failing to
- supply the correct flags may lead to subtle defects. Supplying them in
- cases where they are not necessary is innocuous.
- File: gcc.info, Node: Directory Options, Next: Code Gen Options, Prev: Link Options, Up: Invoking GCC
- 3.15 Options for Directory Search
- =================================
- These options specify directories to search for header files, for
- libraries and for parts of the compiler:
- '-I DIR'
- '-iquote DIR'
- '-isystem DIR'
- '-idirafter DIR'
- Add the directory DIR to the list of directories to be searched for
- header files during preprocessing. If DIR begins with '=' or
- '$SYSROOT', then the '=' or '$SYSROOT' is replaced by the sysroot
- prefix; see '--sysroot' and '-isysroot'.
- Directories specified with '-iquote' apply only to the quote form
- of the directive, '#include "FILE"'. Directories specified with
- '-I', '-isystem', or '-idirafter' apply to lookup for both the
- '#include "FILE"' and '#include <FILE>' directives.
- You can specify any number or combination of these options on the
- command line to search for header files in several directories.
- The lookup order is as follows:
- 1. For the quote form of the include directive, the directory of
- the current file is searched first.
- 2. For the quote form of the include directive, the directories
- specified by '-iquote' options are searched in left-to-right
- order, as they appear on the command line.
- 3. Directories specified with '-I' options are scanned in
- left-to-right order.
- 4. Directories specified with '-isystem' options are scanned in
- left-to-right order.
- 5. Standard system directories are scanned.
- 6. Directories specified with '-idirafter' options are scanned in
- left-to-right order.
- You can use '-I' to override a system header file, substituting
- your own version, since these directories are searched before the
- standard system header file directories. However, you should not
- use this option to add directories that contain vendor-supplied
- system header files; use '-isystem' for that.
- The '-isystem' and '-idirafter' options also mark the directory as
- a system directory, so that it gets the same special treatment that
- is applied to the standard system directories.
- If a standard system include directory, or a directory specified
- with '-isystem', is also specified with '-I', the '-I' option is
- ignored. The directory is still searched but as a system directory
- at its normal position in the system include chain. This is to
- ensure that GCC's procedure to fix buggy system headers and the
- ordering for the '#include_next' directive are not inadvertently
- changed. If you really need to change the search order for system
- directories, use the '-nostdinc' and/or '-isystem' options.
- '-I-'
- Split the include path. This option has been deprecated. Please
- use '-iquote' instead for '-I' directories before the '-I-' and
- remove the '-I-' option.
- Any directories specified with '-I' options before '-I-' are
- searched only for headers requested with '#include "FILE"'; they
- are not searched for '#include <FILE>'. If additional directories
- are specified with '-I' options after the '-I-', those directories
- are searched for all '#include' directives.
- In addition, '-I-' inhibits the use of the directory of the current
- file directory as the first search directory for '#include "FILE"'.
- There is no way to override this effect of '-I-'.
- '-iprefix PREFIX'
- Specify PREFIX as the prefix for subsequent '-iwithprefix' options.
- If the prefix represents a directory, you should include the final
- '/'.
- '-iwithprefix DIR'
- '-iwithprefixbefore DIR'
- Append DIR to the prefix specified previously with '-iprefix', and
- add the resulting directory to the include search path.
- '-iwithprefixbefore' puts it in the same place '-I' would;
- '-iwithprefix' puts it where '-idirafter' would.
- '-isysroot DIR'
- This option is like the '--sysroot' option, but applies only to
- header files (except for Darwin targets, where it applies to both
- header files and libraries). See the '--sysroot' option for more
- information.
- '-imultilib DIR'
- Use DIR as a subdirectory of the directory containing
- target-specific C++ headers.
- '-nostdinc'
- Do not search the standard system directories for header files.
- Only the directories explicitly specified with '-I', '-iquote',
- '-isystem', and/or '-idirafter' options (and the directory of the
- current file, if appropriate) are searched.
- '-nostdinc++'
- Do not search for header files in the C++-specific standard
- directories, but do still search the other standard directories.
- (This option is used when building the C++ library.)
- '-iplugindir=DIR'
- Set the directory to search for plugins that are passed by
- '-fplugin=NAME' instead of '-fplugin=PATH/NAME.so'. This option is
- not meant to be used by the user, but only passed by the driver.
- '-LDIR'
- Add directory DIR to the list of directories to be searched for
- '-l'.
- '-BPREFIX'
- This option specifies where to find the executables, libraries,
- include files, and data files of the compiler itself.
- The compiler driver program runs one or more of the subprograms
- 'cpp', 'cc1', 'as' and 'ld'. It tries PREFIX as a prefix for each
- program it tries to run, both with and without 'MACHINE/VERSION/'
- for the corresponding target machine and compiler version.
- For each subprogram to be run, the compiler driver first tries the
- '-B' prefix, if any. If that name is not found, or if '-B' is not
- specified, the driver tries two standard prefixes, '/usr/lib/gcc/'
- and '/usr/local/lib/gcc/'. If neither of those results in a file
- name that is found, the unmodified program name is searched for
- using the directories specified in your 'PATH' environment
- variable.
- The compiler checks to see if the path provided by '-B' refers to a
- directory, and if necessary it adds a directory separator character
- at the end of the path.
- '-B' prefixes that effectively specify directory names also apply
- to libraries in the linker, because the compiler translates these
- options into '-L' options for the linker. They also apply to
- include files in the preprocessor, because the compiler translates
- these options into '-isystem' options for the preprocessor. In
- this case, the compiler appends 'include' to the prefix.
- The runtime support file 'libgcc.a' can also be searched for using
- the '-B' prefix, if needed. If it is not found there, the two
- standard prefixes above are tried, and that is all. The file is
- left out of the link if it is not found by those means.
- Another way to specify a prefix much like the '-B' prefix is to use
- the environment variable 'GCC_EXEC_PREFIX'. *Note Environment
- Variables::.
- As a special kludge, if the path provided by '-B' is
- '[dir/]stageN/', where N is a number in the range 0 to 9, then it
- is replaced by '[dir/]include'. This is to help with
- boot-strapping the compiler.
- '-no-canonical-prefixes'
- Do not expand any symbolic links, resolve references to '/../' or
- '/./', or make the path absolute when generating a relative prefix.
- '--sysroot=DIR'
- Use DIR as the logical root directory for headers and libraries.
- For example, if the compiler normally searches for headers in
- '/usr/include' and libraries in '/usr/lib', it instead searches
- 'DIR/usr/include' and 'DIR/usr/lib'.
- If you use both this option and the '-isysroot' option, then the
- '--sysroot' option applies to libraries, but the '-isysroot' option
- applies to header files.
- The GNU linker (beginning with version 2.16) has the necessary
- support for this option. If your linker does not support this
- option, the header file aspect of '--sysroot' still works, but the
- library aspect does not.
- '--no-sysroot-suffix'
- For some targets, a suffix is added to the root directory specified
- with '--sysroot', depending on the other options used, so that
- headers may for example be found in 'DIR/SUFFIX/usr/include'
- instead of 'DIR/usr/include'. This option disables the addition of
- such a suffix.
- File: gcc.info, Node: Code Gen Options, Next: Developer Options, Prev: Directory Options, Up: Invoking GCC
- 3.16 Options for Code Generation Conventions
- ============================================
- These machine-independent options control the interface conventions used
- in code generation.
- Most of them have both positive and negative forms; the negative form
- of '-ffoo' is '-fno-foo'. In the table below, only one of the forms is
- listed--the one that is not the default. You can figure out the other
- form by either removing 'no-' or adding it.
- '-fstack-reuse=REUSE-LEVEL'
- This option controls stack space reuse for user declared local/auto
- variables and compiler generated temporaries. REUSE_LEVEL can be
- 'all', 'named_vars', or 'none'. 'all' enables stack reuse for all
- local variables and temporaries, 'named_vars' enables the reuse
- only for user defined local variables with names, and 'none'
- disables stack reuse completely. The default value is 'all'. The
- option is needed when the program extends the lifetime of a scoped
- local variable or a compiler generated temporary beyond the end
- point defined by the language. When a lifetime of a variable ends,
- and if the variable lives in memory, the optimizing compiler has
- the freedom to reuse its stack space with other temporaries or
- scoped local variables whose live range does not overlap with it.
- Legacy code extending local lifetime is likely to break with the
- stack reuse optimization.
- For example,
- int *p;
- {
- int local1;
- p = &local1;
- local1 = 10;
- ....
- }
- {
- int local2;
- local2 = 20;
- ...
- }
- if (*p == 10) // out of scope use of local1
- {
- }
- Another example:
- struct A
- {
- A(int k) : i(k), j(k) { }
- int i;
- int j;
- };
- A *ap;
- void foo(const A& ar)
- {
- ap = &ar;
- }
- void bar()
- {
- foo(A(10)); // temp object's lifetime ends when foo returns
- {
- A a(20);
- ....
- }
- ap->i+= 10; // ap references out of scope temp whose space
- // is reused with a. What is the value of ap->i?
- }
- The lifetime of a compiler generated temporary is well defined by
- the C++ standard. When a lifetime of a temporary ends, and if the
- temporary lives in memory, the optimizing compiler has the freedom
- to reuse its stack space with other temporaries or scoped local
- variables whose live range does not overlap with it. However some
- of the legacy code relies on the behavior of older compilers in
- which temporaries' stack space is not reused, the aggressive stack
- reuse can lead to runtime errors. This option is used to control
- the temporary stack reuse optimization.
- '-ftrapv'
- This option generates traps for signed overflow on addition,
- subtraction, multiplication operations. The options '-ftrapv' and
- '-fwrapv' override each other, so using '-ftrapv' '-fwrapv' on the
- command-line results in '-fwrapv' being effective. Note that only
- active options override, so using '-ftrapv' '-fwrapv' '-fno-wrapv'
- on the command-line results in '-ftrapv' being effective.
- '-fwrapv'
- This option instructs the compiler to assume that signed arithmetic
- overflow of addition, subtraction and multiplication wraps around
- using twos-complement representation. This flag enables some
- optimizations and disables others. The options '-ftrapv' and
- '-fwrapv' override each other, so using '-ftrapv' '-fwrapv' on the
- command-line results in '-fwrapv' being effective. Note that only
- active options override, so using '-ftrapv' '-fwrapv' '-fno-wrapv'
- on the command-line results in '-ftrapv' being effective.
- '-fwrapv-pointer'
- This option instructs the compiler to assume that pointer
- arithmetic overflow on addition and subtraction wraps around using
- twos-complement representation. This flag disables some
- optimizations which assume pointer overflow is invalid.
- '-fstrict-overflow'
- This option implies '-fno-wrapv' '-fno-wrapv-pointer' and when
- negated implies '-fwrapv' '-fwrapv-pointer'.
- '-fexceptions'
- Enable exception handling. Generates extra code needed to
- propagate exceptions. For some targets, this implies GCC generates
- frame unwind information for all functions, which can produce
- significant data size overhead, although it does not affect
- execution. If you do not specify this option, GCC enables it by
- default for languages like C++ that normally require exception
- handling, and disables it for languages like C that do not normally
- require it. However, you may need to enable this option when
- compiling C code that needs to interoperate properly with exception
- handlers written in C++. You may also wish to disable this option
- if you are compiling older C++ programs that don't use exception
- handling.
- '-fnon-call-exceptions'
- Generate code that allows trapping instructions to throw
- exceptions. Note that this requires platform-specific runtime
- support that does not exist everywhere. Moreover, it only allows
- _trapping_ instructions to throw exceptions, i.e. memory references
- or floating-point instructions. It does not allow exceptions to be
- thrown from arbitrary signal handlers such as 'SIGALRM'.
- '-fdelete-dead-exceptions'
- Consider that instructions that may throw exceptions but don't
- otherwise contribute to the execution of the program can be
- optimized away. This option is enabled by default for the Ada
- front end, as permitted by the Ada language specification.
- Optimization passes that cause dead exceptions to be removed are
- enabled independently at different optimization levels.
- '-funwind-tables'
- Similar to '-fexceptions', except that it just generates any needed
- static data, but does not affect the generated code in any other
- way. You normally do not need to enable this option; instead, a
- language processor that needs this handling enables it on your
- behalf.
- '-fasynchronous-unwind-tables'
- Generate unwind table in DWARF format, if supported by target
- machine. The table is exact at each instruction boundary, so it
- can be used for stack unwinding from asynchronous events (such as
- debugger or garbage collector).
- '-fno-gnu-unique'
- On systems with recent GNU assembler and C library, the C++
- compiler uses the 'STB_GNU_UNIQUE' binding to make sure that
- definitions of template static data members and static local
- variables in inline functions are unique even in the presence of
- 'RTLD_LOCAL'; this is necessary to avoid problems with a library
- used by two different 'RTLD_LOCAL' plugins depending on a
- definition in one of them and therefore disagreeing with the other
- one about the binding of the symbol. But this causes 'dlclose' to
- be ignored for affected DSOs; if your program relies on
- reinitialization of a DSO via 'dlclose' and 'dlopen', you can use
- '-fno-gnu-unique'.
- '-fpcc-struct-return'
- Return "short" 'struct' and 'union' values in memory like longer
- ones, rather than in registers. This convention is less efficient,
- but it has the advantage of allowing intercallability between
- GCC-compiled files and files compiled with other compilers,
- particularly the Portable C Compiler (pcc).
- The precise convention for returning structures in memory depends
- on the target configuration macros.
- Short structures and unions are those whose size and alignment
- match that of some integer type.
- *Warning:* code compiled with the '-fpcc-struct-return' switch is
- not binary compatible with code compiled with the
- '-freg-struct-return' switch. Use it to conform to a non-default
- application binary interface.
- '-freg-struct-return'
- Return 'struct' and 'union' values in registers when possible.
- This is more efficient for small structures than
- '-fpcc-struct-return'.
- If you specify neither '-fpcc-struct-return' nor
- '-freg-struct-return', GCC defaults to whichever convention is
- standard for the target. If there is no standard convention, GCC
- defaults to '-fpcc-struct-return', except on targets where GCC is
- the principal compiler. In those cases, we can choose the
- standard, and we chose the more efficient register return
- alternative.
- *Warning:* code compiled with the '-freg-struct-return' switch is
- not binary compatible with code compiled with the
- '-fpcc-struct-return' switch. Use it to conform to a non-default
- application binary interface.
- '-fshort-enums'
- Allocate to an 'enum' type only as many bytes as it needs for the
- declared range of possible values. Specifically, the 'enum' type
- is equivalent to the smallest integer type that has enough room.
- *Warning:* the '-fshort-enums' switch causes GCC to generate code
- that is not binary compatible with code generated without that
- switch. Use it to conform to a non-default application binary
- interface.
- '-fshort-wchar'
- Override the underlying type for 'wchar_t' to be 'short unsigned
- int' instead of the default for the target. This option is useful
- for building programs to run under WINE.
- *Warning:* the '-fshort-wchar' switch causes GCC to generate code
- that is not binary compatible with code generated without that
- switch. Use it to conform to a non-default application binary
- interface.
- '-fno-common'
- In C code, this option controls the placement of global variables
- defined without an initializer, known as "tentative definitions" in
- the C standard. Tentative definitions are distinct from
- declarations of a variable with the 'extern' keyword, which do not
- allocate storage.
- Unix C compilers have traditionally allocated storage for
- uninitialized global variables in a common block. This allows the
- linker to resolve all tentative definitions of the same variable in
- different compilation units to the same object, or to a
- non-tentative definition. This is the behavior specified by
- '-fcommon', and is the default for GCC on most targets. On the
- other hand, this behavior is not required by ISO C, and on some
- targets may carry a speed or code size penalty on variable
- references.
- The '-fno-common' option specifies that the compiler should instead
- place uninitialized global variables in the data section of the
- object file. This inhibits the merging of tentative definitions by
- the linker so you get a multiple-definition error if the same
- variable is defined in more than one compilation unit. Compiling
- with '-fno-common' is useful on targets for which it provides
- better performance, or if you wish to verify that the program will
- work on other systems that always treat uninitialized variable
- definitions this way.
- '-fno-ident'
- Ignore the '#ident' directive.
- '-finhibit-size-directive'
- Don't output a '.size' assembler directive, or anything else that
- would cause trouble if the function is split in the middle, and the
- two halves are placed at locations far apart in memory. This
- option is used when compiling 'crtstuff.c'; you should not need to
- use it for anything else.
- '-fverbose-asm'
- Put extra commentary information in the generated assembly code to
- make it more readable. This option is generally only of use to
- those who actually need to read the generated assembly code
- (perhaps while debugging the compiler itself).
- '-fno-verbose-asm', the default, causes the extra information to be
- omitted and is useful when comparing two assembler files.
- The added comments include:
- * information on the compiler version and command-line options,
- * the source code lines associated with the assembly
- instructions, in the form FILENAME:LINENUMBER:CONTENT OF LINE,
- * hints on which high-level expressions correspond to the
- various assembly instruction operands.
- For example, given this C source file:
- int test (int n)
- {
- int i;
- int total = 0;
- for (i = 0; i < n; i++)
- total += i * i;
- return total;
- }
- compiling to (x86_64) assembly via '-S' and emitting the result
- direct to stdout via '-o' '-'
- gcc -S test.c -fverbose-asm -Os -o -
- gives output similar to this:
- .file "test.c"
- # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
- [...snip...]
- # options passed:
- [...snip...]
- .text
- .globl test
- .type test, @function
- test:
- .LFB0:
- .cfi_startproc
- # test.c:4: int total = 0;
- xorl %eax, %eax # <retval>
- # test.c:6: for (i = 0; i < n; i++)
- xorl %edx, %edx # i
- .L2:
- # test.c:6: for (i = 0; i < n; i++)
- cmpl %edi, %edx # n, i
- jge .L5 #,
- # test.c:7: total += i * i;
- movl %edx, %ecx # i, tmp92
- imull %edx, %ecx # i, tmp92
- # test.c:6: for (i = 0; i < n; i++)
- incl %edx # i
- # test.c:7: total += i * i;
- addl %ecx, %eax # tmp92, <retval>
- jmp .L2 #
- .L5:
- # test.c:10: }
- ret
- .cfi_endproc
- .LFE0:
- .size test, .-test
- .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
- .section .note.GNU-stack,"",@progbits
- The comments are intended for humans rather than machines and hence
- the precise format of the comments is subject to change.
- '-frecord-gcc-switches'
- This switch causes the command line used to invoke the compiler to
- be recorded into the object file that is being created. This
- switch is only implemented on some targets and the exact format of
- the recording is target and binary file format dependent, but it
- usually takes the form of a section containing ASCII text. This
- switch is related to the '-fverbose-asm' switch, but that switch
- only records information in the assembler output file as comments,
- so it never reaches the object file. See also
- '-grecord-gcc-switches' for another way of storing compiler options
- into the object file.
- '-fpic'
- Generate position-independent code (PIC) suitable for use in a
- shared library, if supported for the target machine. Such code
- accesses all constant addresses through a global offset table
- (GOT). The dynamic loader resolves the GOT entries when the
- program starts (the dynamic loader is not part of GCC; it is part
- of the operating system). If the GOT size for the linked
- executable exceeds a machine-specific maximum size, you get an
- error message from the linker indicating that '-fpic' does not
- work; in that case, recompile with '-fPIC' instead. (These
- maximums are 8k on the SPARC, 28k on AArch64 and 32k on the m68k
- and RS/6000. The x86 has no such limit.)
- Position-independent code requires special support, and therefore
- works only on certain machines. For the x86, GCC supports PIC for
- System V but not for the Sun 386i. Code generated for the IBM
- RS/6000 is always position-independent.
- When this flag is set, the macros '__pic__' and '__PIC__' are
- defined to 1.
- '-fPIC'
- If supported for the target machine, emit position-independent
- code, suitable for dynamic linking and avoiding any limit on the
- size of the global offset table. This option makes a difference on
- AArch64, m68k, PowerPC and SPARC.
- Position-independent code requires special support, and therefore
- works only on certain machines.
- When this flag is set, the macros '__pic__' and '__PIC__' are
- defined to 2.
- '-fpie'
- '-fPIE'
- These options are similar to '-fpic' and '-fPIC', but generated
- position independent code can be only linked into executables.
- Usually these options are used when '-pie' GCC option is used
- during linking.
- '-fpie' and '-fPIE' both define the macros '__pie__' and '__PIE__'.
- The macros have the value 1 for '-fpie' and 2 for '-fPIE'.
- '-fno-plt'
- Do not use the PLT for external function calls in
- position-independent code. Instead, load the callee address at
- call sites from the GOT and branch to it. This leads to more
- efficient code by eliminating PLT stubs and exposing GOT loads to
- optimizations. On architectures such as 32-bit x86 where PLT stubs
- expect the GOT pointer in a specific register, this gives more
- register allocation freedom to the compiler. Lazy binding requires
- use of the PLT; with '-fno-plt' all external symbols are resolved
- at load time.
- Alternatively, the function attribute 'noplt' can be used to avoid
- calls through the PLT for specific external functions.
- In position-dependent code, a few targets also convert calls to
- functions that are marked to not use the PLT to use the GOT
- instead.
- '-fno-jump-tables'
- Do not use jump tables for switch statements even where it would be
- more efficient than other code generation strategies. This option
- is of use in conjunction with '-fpic' or '-fPIC' for building code
- that forms part of a dynamic linker and cannot reference the
- address of a jump table. On some targets, jump tables do not
- require a GOT and this option is not needed.
- '-ffixed-REG'
- Treat the register named REG as a fixed register; generated code
- should never refer to it (except perhaps as a stack pointer, frame
- pointer or in some other fixed role).
- REG must be the name of a register. The register names accepted
- are machine-specific and are defined in the 'REGISTER_NAMES' macro
- in the machine description macro file.
- This flag does not have a negative form, because it specifies a
- three-way choice.
- '-fcall-used-REG'
- Treat the register named REG as an allocable register that is
- clobbered by function calls. It may be allocated for temporaries
- or variables that do not live across a call. Functions compiled
- this way do not save and restore the register REG.
- It is an error to use this flag with the frame pointer or stack
- pointer. Use of this flag for other registers that have fixed
- pervasive roles in the machine's execution model produces
- disastrous results.
- This flag does not have a negative form, because it specifies a
- three-way choice.
- '-fcall-saved-REG'
- Treat the register named REG as an allocable register saved by
- functions. It may be allocated even for temporaries or variables
- that live across a call. Functions compiled this way save and
- restore the register REG if they use it.
- It is an error to use this flag with the frame pointer or stack
- pointer. Use of this flag for other registers that have fixed
- pervasive roles in the machine's execution model produces
- disastrous results.
- A different sort of disaster results from the use of this flag for
- a register in which function values may be returned.
- This flag does not have a negative form, because it specifies a
- three-way choice.
- '-fpack-struct[=N]'
- Without a value specified, pack all structure members together
- without holes. When a value is specified (which must be a small
- power of two), pack structure members according to this value,
- representing the maximum alignment (that is, objects with default
- alignment requirements larger than this are output potentially
- unaligned at the next fitting location.
- *Warning:* the '-fpack-struct' switch causes GCC to generate code
- that is not binary compatible with code generated without that
- switch. Additionally, it makes the code suboptimal. Use it to
- conform to a non-default application binary interface.
- '-fleading-underscore'
- This option and its counterpart, '-fno-leading-underscore',
- forcibly change the way C symbols are represented in the object
- file. One use is to help link with legacy assembly code.
- *Warning:* the '-fleading-underscore' switch causes GCC to generate
- code that is not binary compatible with code generated without that
- switch. Use it to conform to a non-default application binary
- interface. Not all targets provide complete support for this
- switch.
- '-ftls-model=MODEL'
- Alter the thread-local storage model to be used (*note
- Thread-Local::). The MODEL argument should be one of
- 'global-dynamic', 'local-dynamic', 'initial-exec' or 'local-exec'.
- Note that the choice is subject to optimization: the compiler may
- use a more efficient model for symbols not visible outside of the
- translation unit, or if '-fpic' is not given on the command line.
- The default without '-fpic' is 'initial-exec'; with '-fpic' the
- default is 'global-dynamic'.
- '-ftrampolines'
- For targets that normally need trampolines for nested functions,
- always generate them instead of using descriptors. Otherwise, for
- targets that do not need them, like for example HP-PA or IA-64, do
- nothing.
- A trampoline is a small piece of code that is created at run time
- on the stack when the address of a nested function is taken, and is
- used to call the nested function indirectly. Therefore, it
- requires the stack to be made executable in order for the program
- to work properly.
- '-fno-trampolines' is enabled by default on a language by language
- basis to let the compiler avoid generating them, if it computes
- that this is safe, and replace them with descriptors. Descriptors
- are made up of data only, but the generated code must be prepared
- to deal with them. As of this writing, '-fno-trampolines' is
- enabled by default only for Ada.
- Moreover, code compiled with '-ftrampolines' and code compiled with
- '-fno-trampolines' are not binary compatible if nested functions
- are present. This option must therefore be used on a program-wide
- basis and be manipulated with extreme care.
- '-fvisibility=[default|internal|hidden|protected]'
- Set the default ELF image symbol visibility to the specified
- option--all symbols are marked with this unless overridden within
- the code. Using this feature can very substantially improve
- linking and load times of shared object libraries, produce more
- optimized code, provide near-perfect API export and prevent symbol
- clashes. It is *strongly* recommended that you use this in any
- shared objects you distribute.
- Despite the nomenclature, 'default' always means public; i.e.,
- available to be linked against from outside the shared object.
- 'protected' and 'internal' are pretty useless in real-world usage
- so the only other commonly used option is 'hidden'. The default if
- '-fvisibility' isn't specified is 'default', i.e., make every
- symbol public.
- A good explanation of the benefits offered by ensuring ELF symbols
- have the correct visibility is given by "How To Write Shared
- Libraries" by Ulrich Drepper (which can be found at
- <https://www.akkadia.org/drepper/>)--however a superior solution
- made possible by this option to marking things hidden when the
- default is public is to make the default hidden and mark things
- public. This is the norm with DLLs on Windows and with
- '-fvisibility=hidden' and '__attribute__ ((visibility("default")))'
- instead of '__declspec(dllexport)' you get almost identical
- semantics with identical syntax. This is a great boon to those
- working with cross-platform projects.
- For those adding visibility support to existing code, you may find
- '#pragma GCC visibility' of use. This works by you enclosing the
- declarations you wish to set visibility for with (for example)
- '#pragma GCC visibility push(hidden)' and '#pragma GCC visibility
- pop'. Bear in mind that symbol visibility should be viewed *as
- part of the API interface contract* and thus all new code should
- always specify visibility when it is not the default; i.e.,
- declarations only for use within the local DSO should *always* be
- marked explicitly as hidden as so to avoid PLT indirection
- overheads--making this abundantly clear also aids readability and
- self-documentation of the code. Note that due to ISO C++
- specification requirements, 'operator new' and 'operator delete'
- must always be of default visibility.
- Be aware that headers from outside your project, in particular
- system headers and headers from any other library you use, may not
- be expecting to be compiled with visibility other than the default.
- You may need to explicitly say '#pragma GCC visibility
- push(default)' before including any such headers.
- 'extern' declarations are not affected by '-fvisibility', so a lot
- of code can be recompiled with '-fvisibility=hidden' with no
- modifications. However, this means that calls to 'extern'
- functions with no explicit visibility use the PLT, so it is more
- effective to use '__attribute ((visibility))' and/or '#pragma GCC
- visibility' to tell the compiler which 'extern' declarations should
- be treated as hidden.
- Note that '-fvisibility' does affect C++ vague linkage entities.
- This means that, for instance, an exception class that is be thrown
- between DSOs must be explicitly marked with default visibility so
- that the 'type_info' nodes are unified between the DSOs.
- An overview of these techniques, their benefits and how to use them
- is at <http://gcc.gnu.org/wiki/Visibility>.
- '-fstrict-volatile-bitfields'
- This option should be used if accesses to volatile bit-fields (or
- other structure fields, although the compiler usually honors those
- types anyway) should use a single access of the width of the
- field's type, aligned to a natural alignment if possible. For
- example, targets with memory-mapped peripheral registers might
- require all such accesses to be 16 bits wide; with this flag you
- can declare all peripheral bit-fields as 'unsigned short' (assuming
- short is 16 bits on these targets) to force GCC to use 16-bit
- accesses instead of, perhaps, a more efficient 32-bit access.
- If this option is disabled, the compiler uses the most efficient
- instruction. In the previous example, that might be a 32-bit load
- instruction, even though that accesses bytes that do not contain
- any portion of the bit-field, or memory-mapped registers unrelated
- to the one being updated.
- In some cases, such as when the 'packed' attribute is applied to a
- structure field, it may not be possible to access the field with a
- single read or write that is correctly aligned for the target
- machine. In this case GCC falls back to generating multiple
- accesses rather than code that will fault or truncate the result at
- run time.
- Note: Due to restrictions of the C/C++11 memory model, write
- accesses are not allowed to touch non bit-field members. It is
- therefore recommended to define all bits of the field's type as
- bit-field members.
- The default value of this option is determined by the application
- binary interface for the target processor.
- '-fsync-libcalls'
- This option controls whether any out-of-line instance of the
- '__sync' family of functions may be used to implement the C++11
- '__atomic' family of functions.
- The default value of this option is enabled, thus the only useful
- form of the option is '-fno-sync-libcalls'. This option is used in
- the implementation of the 'libatomic' runtime library.
- File: gcc.info, Node: Developer Options, Next: Submodel Options, Prev: Code Gen Options, Up: Invoking GCC
- 3.17 GCC Developer Options
- ==========================
- This section describes command-line options that are primarily of
- interest to GCC developers, including options to support compiler
- testing and investigation of compiler bugs and compile-time performance
- problems. This includes options that produce debug dumps at various
- points in the compilation; that print statistics such as memory use and
- execution time; and that print information about GCC's configuration,
- such as where it searches for libraries. You should rarely need to use
- any of these options for ordinary compilation and linking tasks.
- '-dLETTERS'
- '-fdump-rtl-PASS'
- '-fdump-rtl-PASS=FILENAME'
- Says to make debugging dumps during compilation at times specified
- by LETTERS. This is used for debugging the RTL-based passes of the
- compiler. The file names for most of the dumps are made by
- appending a pass number and a word to the DUMPNAME, and the files
- are created in the directory of the output file. In case of
- '=FILENAME' option, the dump is output on the given file instead of
- the pass numbered dump files. Note that the pass number is
- assigned as passes are registered into the pass manager. Most
- passes are registered in the order that they will execute and for
- these passes the number corresponds to the pass execution order.
- However, passes registered by plugins, passes specific to
- compilation targets, or passes that are otherwise registered after
- all the other passes are numbered higher than a pass named "final",
- even if they are executed earlier. DUMPNAME is generated from the
- name of the output file if explicitly specified and not an
- executable, otherwise it is the basename of the source file.
- Some '-dLETTERS' switches have different meaning when '-E' is used
- for preprocessing. *Note Preprocessor Options::, for information
- about preprocessor-specific dump options.
- Debug dumps can be enabled with a '-fdump-rtl' switch or some '-d'
- option LETTERS. Here are the possible letters for use in PASS and
- LETTERS, and their meanings:
- '-fdump-rtl-alignments'
- Dump after branch alignments have been computed.
- '-fdump-rtl-asmcons'
- Dump after fixing rtl statements that have unsatisfied in/out
- constraints.
- '-fdump-rtl-auto_inc_dec'
- Dump after auto-inc-dec discovery. This pass is only run on
- architectures that have auto inc or auto dec instructions.
- '-fdump-rtl-barriers'
- Dump after cleaning up the barrier instructions.
- '-fdump-rtl-bbpart'
- Dump after partitioning hot and cold basic blocks.
- '-fdump-rtl-bbro'
- Dump after block reordering.
- '-fdump-rtl-btl1'
- '-fdump-rtl-btl2'
- '-fdump-rtl-btl1' and '-fdump-rtl-btl2' enable dumping after
- the two branch target load optimization passes.
- '-fdump-rtl-bypass'
- Dump after jump bypassing and control flow optimizations.
- '-fdump-rtl-combine'
- Dump after the RTL instruction combination pass.
- '-fdump-rtl-compgotos'
- Dump after duplicating the computed gotos.
- '-fdump-rtl-ce1'
- '-fdump-rtl-ce2'
- '-fdump-rtl-ce3'
- '-fdump-rtl-ce1', '-fdump-rtl-ce2', and '-fdump-rtl-ce3'
- enable dumping after the three if conversion passes.
- '-fdump-rtl-cprop_hardreg'
- Dump after hard register copy propagation.
- '-fdump-rtl-csa'
- Dump after combining stack adjustments.
- '-fdump-rtl-cse1'
- '-fdump-rtl-cse2'
- '-fdump-rtl-cse1' and '-fdump-rtl-cse2' enable dumping after
- the two common subexpression elimination passes.
- '-fdump-rtl-dce'
- Dump after the standalone dead code elimination passes.
- '-fdump-rtl-dbr'
- Dump after delayed branch scheduling.
- '-fdump-rtl-dce1'
- '-fdump-rtl-dce2'
- '-fdump-rtl-dce1' and '-fdump-rtl-dce2' enable dumping after
- the two dead store elimination passes.
- '-fdump-rtl-eh'
- Dump after finalization of EH handling code.
- '-fdump-rtl-eh_ranges'
- Dump after conversion of EH handling range regions.
- '-fdump-rtl-expand'
- Dump after RTL generation.
- '-fdump-rtl-fwprop1'
- '-fdump-rtl-fwprop2'
- '-fdump-rtl-fwprop1' and '-fdump-rtl-fwprop2' enable dumping
- after the two forward propagation passes.
- '-fdump-rtl-gcse1'
- '-fdump-rtl-gcse2'
- '-fdump-rtl-gcse1' and '-fdump-rtl-gcse2' enable dumping after
- global common subexpression elimination.
- '-fdump-rtl-init-regs'
- Dump after the initialization of the registers.
- '-fdump-rtl-initvals'
- Dump after the computation of the initial value sets.
- '-fdump-rtl-into_cfglayout'
- Dump after converting to cfglayout mode.
- '-fdump-rtl-ira'
- Dump after iterated register allocation.
- '-fdump-rtl-jump'
- Dump after the second jump optimization.
- '-fdump-rtl-loop2'
- '-fdump-rtl-loop2' enables dumping after the rtl loop
- optimization passes.
- '-fdump-rtl-mach'
- Dump after performing the machine dependent reorganization
- pass, if that pass exists.
- '-fdump-rtl-mode_sw'
- Dump after removing redundant mode switches.
- '-fdump-rtl-rnreg'
- Dump after register renumbering.
- '-fdump-rtl-outof_cfglayout'
- Dump after converting from cfglayout mode.
- '-fdump-rtl-peephole2'
- Dump after the peephole pass.
- '-fdump-rtl-postreload'
- Dump after post-reload optimizations.
- '-fdump-rtl-pro_and_epilogue'
- Dump after generating the function prologues and epilogues.
- '-fdump-rtl-sched1'
- '-fdump-rtl-sched2'
- '-fdump-rtl-sched1' and '-fdump-rtl-sched2' enable dumping
- after the basic block scheduling passes.
- '-fdump-rtl-ree'
- Dump after sign/zero extension elimination.
- '-fdump-rtl-seqabstr'
- Dump after common sequence discovery.
- '-fdump-rtl-shorten'
- Dump after shortening branches.
- '-fdump-rtl-sibling'
- Dump after sibling call optimizations.
- '-fdump-rtl-split1'
- '-fdump-rtl-split2'
- '-fdump-rtl-split3'
- '-fdump-rtl-split4'
- '-fdump-rtl-split5'
- These options enable dumping after five rounds of instruction
- splitting.
- '-fdump-rtl-sms'
- Dump after modulo scheduling. This pass is only run on some
- architectures.
- '-fdump-rtl-stack'
- Dump after conversion from GCC's "flat register file"
- registers to the x87's stack-like registers. This pass is
- only run on x86 variants.
- '-fdump-rtl-subreg1'
- '-fdump-rtl-subreg2'
- '-fdump-rtl-subreg1' and '-fdump-rtl-subreg2' enable dumping
- after the two subreg expansion passes.
- '-fdump-rtl-unshare'
- Dump after all rtl has been unshared.
- '-fdump-rtl-vartrack'
- Dump after variable tracking.
- '-fdump-rtl-vregs'
- Dump after converting virtual registers to hard registers.
- '-fdump-rtl-web'
- Dump after live range splitting.
- '-fdump-rtl-regclass'
- '-fdump-rtl-subregs_of_mode_init'
- '-fdump-rtl-subregs_of_mode_finish'
- '-fdump-rtl-dfinit'
- '-fdump-rtl-dfinish'
- These dumps are defined but always produce empty files.
- '-da'
- '-fdump-rtl-all'
- Produce all the dumps listed above.
- '-dA'
- Annotate the assembler output with miscellaneous debugging
- information.
- '-dD'
- Dump all macro definitions, at the end of preprocessing, in
- addition to normal output.
- '-dH'
- Produce a core dump whenever an error occurs.
- '-dp'
- Annotate the assembler output with a comment indicating which
- pattern and alternative is used. The length and cost of each
- instruction are also printed.
- '-dP'
- Dump the RTL in the assembler output as a comment before each
- instruction. Also turns on '-dp' annotation.
- '-dx'
- Just generate RTL for a function instead of compiling it.
- Usually used with '-fdump-rtl-expand'.
- '-fdump-noaddr'
- When doing debugging dumps, suppress address output. This makes it
- more feasible to use diff on debugging dumps for compiler
- invocations with different compiler binaries and/or different text
- / bss / data / heap / stack / dso start locations.
- '-freport-bug'
- Collect and dump debug information into a temporary file if an
- internal compiler error (ICE) occurs.
- '-fdump-unnumbered'
- When doing debugging dumps, suppress instruction numbers and
- address output. This makes it more feasible to use diff on
- debugging dumps for compiler invocations with different options, in
- particular with and without '-g'.
- '-fdump-unnumbered-links'
- When doing debugging dumps (see '-d' option above), suppress
- instruction numbers for the links to the previous and next
- instructions in a sequence.
- '-fdump-ipa-SWITCH'
- Control the dumping at various stages of inter-procedural analysis
- language tree to a file. The file name is generated by appending a
- switch specific suffix to the source file name, and the file is
- created in the same directory as the output file. The following
- dumps are possible:
- 'all'
- Enables all inter-procedural analysis dumps.
- 'cgraph'
- Dumps information about call-graph optimization, unused
- function removal, and inlining decisions.
- 'inline'
- Dump after function inlining.
- '-fdump-lang-all'
- '-fdump-lang-SWITCH'
- '-fdump-lang-SWITCH-OPTIONS'
- '-fdump-lang-SWITCH-OPTIONS=FILENAME'
- Control the dumping of language-specific information. The OPTIONS
- and FILENAME portions behave as described in the '-fdump-tree'
- option. The following SWITCH values are accepted:
- 'all'
- Enable all language-specific dumps.
- 'class'
- Dump class hierarchy information. Virtual table information
- is emitted unless ''slim'' is specified. This option is
- applicable to C++ only.
- 'raw'
- Dump the raw internal tree data. This option is applicable to
- C++ only.
- '-fdump-passes'
- Print on 'stderr' the list of optimization passes that are turned
- on and off by the current command-line options.
- '-fdump-statistics-OPTION'
- Enable and control dumping of pass statistics in a separate file.
- The file name is generated by appending a suffix ending in
- '.statistics' to the source file name, and the file is created in
- the same directory as the output file. If the '-OPTION' form is
- used, '-stats' causes counters to be summed over the whole
- compilation unit while '-details' dumps every event as the passes
- generate them. The default with no option is to sum counters for
- each function compiled.
- '-fdump-tree-all'
- '-fdump-tree-SWITCH'
- '-fdump-tree-SWITCH-OPTIONS'
- '-fdump-tree-SWITCH-OPTIONS=FILENAME'
- Control the dumping at various stages of processing the
- intermediate language tree to a file. The file name is generated
- by appending a switch-specific suffix to the source file name, and
- the file is created in the same directory as the output file. In
- case of '=FILENAME' option, the dump is output on the given file
- instead of the auto named dump files. If the '-OPTIONS' form is
- used, OPTIONS is a list of '-' separated options which control the
- details of the dump. Not all options are applicable to all dumps;
- those that are not meaningful are ignored. The following options
- are available
- 'address'
- Print the address of each node. Usually this is not
- meaningful as it changes according to the environment and
- source file. Its primary use is for tying up a dump file with
- a debug environment.
- 'asmname'
- If 'DECL_ASSEMBLER_NAME' has been set for a given decl, use
- that in the dump instead of 'DECL_NAME'. Its primary use is
- ease of use working backward from mangled names in the
- assembly file.
- 'slim'
- When dumping front-end intermediate representations, inhibit
- dumping of members of a scope or body of a function merely
- because that scope has been reached. Only dump such items
- when they are directly reachable by some other path.
- When dumping pretty-printed trees, this option inhibits
- dumping the bodies of control structures.
- When dumping RTL, print the RTL in slim (condensed) form
- instead of the default LISP-like representation.
- 'raw'
- Print a raw representation of the tree. By default, trees are
- pretty-printed into a C-like representation.
- 'details'
- Enable more detailed dumps (not honored by every dump option).
- Also include information from the optimization passes.
- 'stats'
- Enable dumping various statistics about the pass (not honored
- by every dump option).
- 'blocks'
- Enable showing basic block boundaries (disabled in raw dumps).
- 'graph'
- For each of the other indicated dump files
- ('-fdump-rtl-PASS'), dump a representation of the control flow
- graph suitable for viewing with GraphViz to
- 'FILE.PASSID.PASS.dot'. Each function in the file is
- pretty-printed as a subgraph, so that GraphViz can render them
- all in a single plot.
- This option currently only works for RTL dumps, and the RTL is
- always dumped in slim form.
- 'vops'
- Enable showing virtual operands for every statement.
- 'lineno'
- Enable showing line numbers for statements.
- 'uid'
- Enable showing the unique ID ('DECL_UID') for each variable.
- 'verbose'
- Enable showing the tree dump for each statement.
- 'eh'
- Enable showing the EH region number holding each statement.
- 'scev'
- Enable showing scalar evolution analysis details.
- 'optimized'
- Enable showing optimization information (only available in
- certain passes).
- 'missed'
- Enable showing missed optimization information (only available
- in certain passes).
- 'note'
- Enable other detailed optimization information (only available
- in certain passes).
- '=FILENAME'
- Instead of an auto named dump file, output into the given file
- name. The file names 'stdout' and 'stderr' are treated
- specially and are considered already open standard streams.
- For example,
- gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
- -fdump-tree-pre=/dev/stderr file.c
- outputs vectorizer dump into 'foo.dump', while the PRE dump is
- output on to 'stderr'. If two conflicting dump filenames are
- given for the same pass, then the latter option overrides the
- earlier one.
- 'all'
- Turn on all options, except 'raw', 'slim', 'verbose' and
- 'lineno'.
- 'optall'
- Turn on all optimization options, i.e., 'optimized', 'missed',
- and 'note'.
- To determine what tree dumps are available or find the dump for a
- pass of interest follow the steps below.
- 1. Invoke GCC with '-fdump-passes' and in the 'stderr' output
- look for a code that corresponds to the pass you are
- interested in. For example, the codes 'tree-evrp',
- 'tree-vrp1', and 'tree-vrp2' correspond to the three Value
- Range Propagation passes. The number at the end distinguishes
- distinct invocations of the same pass.
- 2. To enable the creation of the dump file, append the pass code
- to the '-fdump-' option prefix and invoke GCC with it. For
- example, to enable the dump from the Early Value Range
- Propagation pass, invoke GCC with the '-fdump-tree-evrp'
- option. Optionally, you may specify the name of the dump
- file. If you don't specify one, GCC creates as described
- below.
- 3. Find the pass dump in a file whose name is composed of three
- components separated by a period: the name of the source file
- GCC was invoked to compile, a numeric suffix indicating the
- pass number followed by the letter 't' for tree passes (and
- the letter 'r' for RTL passes), and finally the pass code.
- For example, the Early VRP pass dump might be in a file named
- 'myfile.c.038t.evrp' in the current working directory. Note
- that the numeric codes are not stable and may change from one
- version of GCC to another.
- '-fopt-info'
- '-fopt-info-OPTIONS'
- '-fopt-info-OPTIONS=FILENAME'
- Controls optimization dumps from various optimization passes. If
- the '-OPTIONS' form is used, OPTIONS is a list of '-' separated
- option keywords to select the dump details and optimizations.
- The OPTIONS can be divided into two groups: options describing the
- verbosity of the dump, and options describing which optimizations
- should be included. The options from both the groups can be freely
- mixed as they are non-overlapping. However, in case of any
- conflicts, the later options override the earlier options on the
- command line.
- The following options control the dump verbosity:
- 'optimized'
- Print information when an optimization is successfully
- applied. It is up to a pass to decide which information is
- relevant. For example, the vectorizer passes print the source
- location of loops which are successfully vectorized.
- 'missed'
- Print information about missed optimizations. Individual
- passes control which information to include in the output.
- 'note'
- Print verbose information about optimizations, such as certain
- transformations, more detailed messages about decisions etc.
- 'all'
- Print detailed optimization information. This includes
- 'optimized', 'missed', and 'note'.
- One or more of the following option keywords can be used to
- describe a group of optimizations:
- 'ipa'
- Enable dumps from all interprocedural optimizations.
- 'loop'
- Enable dumps from all loop optimizations.
- 'inline'
- Enable dumps from all inlining optimizations.
- 'omp'
- Enable dumps from all OMP (Offloading and Multi Processing)
- optimizations.
- 'vec'
- Enable dumps from all vectorization optimizations.
- 'optall'
- Enable dumps from all optimizations. This is a superset of
- the optimization groups listed above.
- If OPTIONS is omitted, it defaults to 'optimized-optall', which
- means to dump all info about successful optimizations from all the
- passes.
- If the FILENAME is provided, then the dumps from all the applicable
- optimizations are concatenated into the FILENAME. Otherwise the
- dump is output onto 'stderr'. Though multiple '-fopt-info' options
- are accepted, only one of them can include a FILENAME. If other
- filenames are provided then all but the first such option are
- ignored.
- Note that the output FILENAME is overwritten in case of multiple
- translation units. If a combined output from multiple translation
- units is desired, 'stderr' should be used instead.
- In the following example, the optimization info is output to
- 'stderr':
- gcc -O3 -fopt-info
- This example:
- gcc -O3 -fopt-info-missed=missed.all
- outputs missed optimization report from all the passes into
- 'missed.all', and this one:
- gcc -O2 -ftree-vectorize -fopt-info-vec-missed
- prints information about missed optimization opportunities from
- vectorization passes on 'stderr'. Note that
- '-fopt-info-vec-missed' is equivalent to '-fopt-info-missed-vec'.
- The order of the optimization group names and message types listed
- after '-fopt-info' does not matter.
- As another example,
- gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
- outputs information about missed optimizations as well as optimized
- locations from all the inlining passes into 'inline.txt'.
- Finally, consider:
- gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
- Here the two output filenames 'vec.miss' and 'loop.opt' are in
- conflict since only one output file is allowed. In this case, only
- the first option takes effect and the subsequent options are
- ignored. Thus only 'vec.miss' is produced which contains dumps
- from the vectorizer about missed opportunities.
- '-fsched-verbose=N'
- On targets that use instruction scheduling, this option controls
- the amount of debugging output the scheduler prints to the dump
- files.
- For N greater than zero, '-fsched-verbose' outputs the same
- information as '-fdump-rtl-sched1' and '-fdump-rtl-sched2'. For N
- greater than one, it also output basic block probabilities,
- detailed ready list information and unit/insn info. For N greater
- than two, it includes RTL at abort point, control-flow and regions
- info. And for N over four, '-fsched-verbose' also includes
- dependence info.
- '-fenable-KIND-PASS'
- '-fdisable-KIND-PASS=RANGE-LIST'
- This is a set of options that are used to explicitly disable/enable
- optimization passes. These options are intended for use for
- debugging GCC. Compiler users should use regular options for
- enabling/disabling passes instead.
- '-fdisable-ipa-PASS'
- Disable IPA pass PASS. PASS is the pass name. If the same
- pass is statically invoked in the compiler multiple times, the
- pass name should be appended with a sequential number starting
- from 1.
- '-fdisable-rtl-PASS'
- '-fdisable-rtl-PASS=RANGE-LIST'
- Disable RTL pass PASS. PASS is the pass name. If the same
- pass is statically invoked in the compiler multiple times, the
- pass name should be appended with a sequential number starting
- from 1. RANGE-LIST is a comma-separated list of function
- ranges or assembler names. Each range is a number pair
- separated by a colon. The range is inclusive in both ends.
- If the range is trivial, the number pair can be simplified as
- a single number. If the function's call graph node's UID
- falls within one of the specified ranges, the PASS is disabled
- for that function. The UID is shown in the function header of
- a dump file, and the pass names can be dumped by using option
- '-fdump-passes'.
- '-fdisable-tree-PASS'
- '-fdisable-tree-PASS=RANGE-LIST'
- Disable tree pass PASS. See '-fdisable-rtl' for the
- description of option arguments.
- '-fenable-ipa-PASS'
- Enable IPA pass PASS. PASS is the pass name. If the same
- pass is statically invoked in the compiler multiple times, the
- pass name should be appended with a sequential number starting
- from 1.
- '-fenable-rtl-PASS'
- '-fenable-rtl-PASS=RANGE-LIST'
- Enable RTL pass PASS. See '-fdisable-rtl' for option argument
- description and examples.
- '-fenable-tree-PASS'
- '-fenable-tree-PASS=RANGE-LIST'
- Enable tree pass PASS. See '-fdisable-rtl' for the
- description of option arguments.
- Here are some examples showing uses of these options.
- # disable ccp1 for all functions
- -fdisable-tree-ccp1
- # disable complete unroll for function whose cgraph node uid is 1
- -fenable-tree-cunroll=1
- # disable gcse2 for functions at the following ranges [1,1],
- # [300,400], and [400,1000]
- # disable gcse2 for functions foo and foo2
- -fdisable-rtl-gcse2=foo,foo2
- # disable early inlining
- -fdisable-tree-einline
- # disable ipa inlining
- -fdisable-ipa-inline
- # enable tree full unroll
- -fenable-tree-unroll
- '-fchecking'
- '-fchecking=N'
- Enable internal consistency checking. The default depends on the
- compiler configuration. '-fchecking=2' enables further internal
- consistency checking that might affect code generation.
- '-frandom-seed=STRING'
- This option provides a seed that GCC uses in place of random
- numbers in generating certain symbol names that have to be
- different in every compiled file. It is also used to place unique
- stamps in coverage data files and the object files that produce
- them. You can use the '-frandom-seed' option to produce
- reproducibly identical object files.
- The STRING can either be a number (decimal, octal or hex) or an
- arbitrary string (in which case it's converted to a number by
- computing CRC32).
- The STRING should be different for every file you compile.
- '-save-temps'
- '-save-temps=cwd'
- Store the usual "temporary" intermediate files permanently; place
- them in the current directory and name them based on the source
- file. Thus, compiling 'foo.c' with '-c -save-temps' produces files
- 'foo.i' and 'foo.s', as well as 'foo.o'. This creates a
- preprocessed 'foo.i' output file even though the compiler now
- normally uses an integrated preprocessor.
- When used in combination with the '-x' command-line option,
- '-save-temps' is sensible enough to avoid over writing an input
- source file with the same extension as an intermediate file. The
- corresponding intermediate file may be obtained by renaming the
- source file before using '-save-temps'.
- If you invoke GCC in parallel, compiling several different source
- files that share a common base name in different subdirectories or
- the same source file compiled for multiple output destinations, it
- is likely that the different parallel compilers will interfere with
- each other, and overwrite the temporary files. For instance:
- gcc -save-temps -o outdir1/foo.o indir1/foo.c&
- gcc -save-temps -o outdir2/foo.o indir2/foo.c&
- may result in 'foo.i' and 'foo.o' being written to simultaneously
- by both compilers.
- '-save-temps=obj'
- Store the usual "temporary" intermediate files permanently. If the
- '-o' option is used, the temporary files are based on the object
- file. If the '-o' option is not used, the '-save-temps=obj' switch
- behaves like '-save-temps'.
- For example:
- gcc -save-temps=obj -c foo.c
- gcc -save-temps=obj -c bar.c -o dir/xbar.o
- gcc -save-temps=obj foobar.c -o dir2/yfoobar
- creates 'foo.i', 'foo.s', 'dir/xbar.i', 'dir/xbar.s',
- 'dir2/yfoobar.i', 'dir2/yfoobar.s', and 'dir2/yfoobar.o'.
- '-time[=FILE]'
- Report the CPU time taken by each subprocess in the compilation
- sequence. For C source files, this is the compiler proper and
- assembler (plus the linker if linking is done).
- Without the specification of an output file, the output looks like
- this:
- # cc1 0.12 0.01
- # as 0.00 0.01
- The first number on each line is the "user time", that is time
- spent executing the program itself. The second number is "system
- time", time spent executing operating system routines on behalf of
- the program. Both numbers are in seconds.
- With the specification of an output file, the output is appended to
- the named file, and it looks like this:
- 0.12 0.01 cc1 OPTIONS
- 0.00 0.01 as OPTIONS
- The "user time" and the "system time" are moved before the program
- name, and the options passed to the program are displayed, so that
- one can later tell what file was being compiled, and with which
- options.
- '-fdump-final-insns[=FILE]'
- Dump the final internal representation (RTL) to FILE. If the
- optional argument is omitted (or if FILE is '.'), the name of the
- dump file is determined by appending '.gkd' to the compilation
- output file name.
- '-fcompare-debug[=OPTS]'
- If no error occurs during compilation, run the compiler a second
- time, adding OPTS and '-fcompare-debug-second' to the arguments
- passed to the second compilation. Dump the final internal
- representation in both compilations, and print an error if they
- differ.
- If the equal sign is omitted, the default '-gtoggle' is used.
- The environment variable 'GCC_COMPARE_DEBUG', if defined, non-empty
- and nonzero, implicitly enables '-fcompare-debug'. If
- 'GCC_COMPARE_DEBUG' is defined to a string starting with a dash,
- then it is used for OPTS, otherwise the default '-gtoggle' is used.
- '-fcompare-debug=', with the equal sign but without OPTS, is
- equivalent to '-fno-compare-debug', which disables the dumping of
- the final representation and the second compilation, preventing
- even 'GCC_COMPARE_DEBUG' from taking effect.
- To verify full coverage during '-fcompare-debug' testing, set
- 'GCC_COMPARE_DEBUG' to say '-fcompare-debug-not-overridden', which
- GCC rejects as an invalid option in any actual compilation (rather
- than preprocessing, assembly or linking). To get just a warning,
- setting 'GCC_COMPARE_DEBUG' to '-w%n-fcompare-debug not overridden'
- will do.
- '-fcompare-debug-second'
- This option is implicitly passed to the compiler for the second
- compilation requested by '-fcompare-debug', along with options to
- silence warnings, and omitting other options that would cause the
- compiler to produce output to files or to standard output as a side
- effect. Dump files and preserved temporary files are renamed so as
- to contain the '.gk' additional extension during the second
- compilation, to avoid overwriting those generated by the first.
- When this option is passed to the compiler driver, it causes the
- _first_ compilation to be skipped, which makes it useful for little
- other than debugging the compiler proper.
- '-gtoggle'
- Turn off generation of debug info, if leaving out this option
- generates it, or turn it on at level 2 otherwise. The position of
- this argument in the command line does not matter; it takes effect
- after all other options are processed, and it does so only once, no
- matter how many times it is given. This is mainly intended to be
- used with '-fcompare-debug'.
- '-fvar-tracking-assignments-toggle'
- Toggle '-fvar-tracking-assignments', in the same way that
- '-gtoggle' toggles '-g'.
- '-Q'
- Makes the compiler print out each function name as it is compiled,
- and print some statistics about each pass when it finishes.
- '-ftime-report'
- Makes the compiler print some statistics about the time consumed by
- each pass when it finishes.
- '-ftime-report-details'
- Record the time consumed by infrastructure parts separately for
- each pass.
- '-fira-verbose=N'
- Control the verbosity of the dump file for the integrated register
- allocator. The default value is 5. If the value N is greater or
- equal to 10, the dump output is sent to stderr using the same
- format as N minus 10.
- '-flto-report'
- Prints a report with internal details on the workings of the
- link-time optimizer. The contents of this report vary from version
- to version. It is meant to be useful to GCC developers when
- processing object files in LTO mode (via '-flto').
- Disabled by default.
- '-flto-report-wpa'
- Like '-flto-report', but only print for the WPA phase of Link Time
- Optimization.
- '-fmem-report'
- Makes the compiler print some statistics about permanent memory
- allocation when it finishes.
- '-fmem-report-wpa'
- Makes the compiler print some statistics about permanent memory
- allocation for the WPA phase only.
- '-fpre-ipa-mem-report'
- '-fpost-ipa-mem-report'
- Makes the compiler print some statistics about permanent memory
- allocation before or after interprocedural optimization.
- '-fprofile-report'
- Makes the compiler print some statistics about consistency of the
- (estimated) profile and effect of individual passes.
- '-fstack-usage'
- Makes the compiler output stack usage information for the program,
- on a per-function basis. The filename for the dump is made by
- appending '.su' to the AUXNAME. AUXNAME is generated from the name
- of the output file, if explicitly specified and it is not an
- executable, otherwise it is the basename of the source file. An
- entry is made up of three fields:
- * The name of the function.
- * A number of bytes.
- * One or more qualifiers: 'static', 'dynamic', 'bounded'.
- The qualifier 'static' means that the function manipulates the
- stack statically: a fixed number of bytes are allocated for the
- frame on function entry and released on function exit; no stack
- adjustments are otherwise made in the function. The second field
- is this fixed number of bytes.
- The qualifier 'dynamic' means that the function manipulates the
- stack dynamically: in addition to the static allocation described
- above, stack adjustments are made in the body of the function, for
- example to push/pop arguments around function calls. If the
- qualifier 'bounded' is also present, the amount of these
- adjustments is bounded at compile time and the second field is an
- upper bound of the total amount of stack used by the function. If
- it is not present, the amount of these adjustments is not bounded
- at compile time and the second field only represents the bounded
- part.
- '-fstats'
- Emit statistics about front-end processing at the end of the
- compilation. This option is supported only by the C++ front end,
- and the information is generally only useful to the G++ development
- team.
- '-fdbg-cnt-list'
- Print the name and the counter upper bound for all debug counters.
- '-fdbg-cnt=COUNTER-VALUE-LIST'
- Set the internal debug counter upper bound. COUNTER-VALUE-LIST is
- a comma-separated list of NAME:VALUE pairs which sets the upper
- bound of each debug counter NAME to VALUE. All debug counters have
- the initial upper bound of 'UINT_MAX'; thus 'dbg_cnt' returns true
- always unless the upper bound is set by this option. For example,
- with '-fdbg-cnt=dce:10,tail_call:0', 'dbg_cnt(dce)' returns true
- only for first 10 invocations.
- '-print-file-name=LIBRARY'
- Print the full absolute name of the library file LIBRARY that would
- be used when linking--and don't do anything else. With this
- option, GCC does not compile or link anything; it just prints the
- file name.
- '-print-multi-directory'
- Print the directory name corresponding to the multilib selected by
- any other switches present in the command line. This directory is
- supposed to exist in 'GCC_EXEC_PREFIX'.
- '-print-multi-lib'
- Print the mapping from multilib directory names to compiler
- switches that enable them. The directory name is separated from
- the switches by ';', and each switch starts with an '@' instead of
- the '-', without spaces between multiple switches. This is
- supposed to ease shell processing.
- '-print-multi-os-directory'
- Print the path to OS libraries for the selected multilib, relative
- to some 'lib' subdirectory. If OS libraries are present in the
- 'lib' subdirectory and no multilibs are used, this is usually just
- '.', if OS libraries are present in 'libSUFFIX' sibling directories
- this prints e.g. '../lib64', '../lib' or '../lib32', or if OS
- libraries are present in 'lib/SUBDIR' subdirectories it prints e.g.
- 'amd64', 'sparcv9' or 'ev6'.
- '-print-multiarch'
- Print the path to OS libraries for the selected multiarch, relative
- to some 'lib' subdirectory.
- '-print-prog-name=PROGRAM'
- Like '-print-file-name', but searches for a program such as 'cpp'.
- '-print-libgcc-file-name'
- Same as '-print-file-name=libgcc.a'.
- This is useful when you use '-nostdlib' or '-nodefaultlibs' but you
- do want to link with 'libgcc.a'. You can do:
- gcc -nostdlib FILES... `gcc -print-libgcc-file-name`
- '-print-search-dirs'
- Print the name of the configured installation directory and a list
- of program and library directories 'gcc' searches--and don't do
- anything else.
- This is useful when 'gcc' prints the error message 'installation
- problem, cannot exec cpp0: No such file or directory'. To resolve
- this you either need to put 'cpp0' and the other compiler
- components where 'gcc' expects to find them, or you can set the
- environment variable 'GCC_EXEC_PREFIX' to the directory where you
- installed them. Don't forget the trailing '/'. *Note Environment
- Variables::.
- '-print-sysroot'
- Print the target sysroot directory that is used during compilation.
- This is the target sysroot specified either at configure time or
- using the '--sysroot' option, possibly with an extra suffix that
- depends on compilation options. If no target sysroot is specified,
- the option prints nothing.
- '-print-sysroot-headers-suffix'
- Print the suffix added to the target sysroot when searching for
- headers, or give an error if the compiler is not configured with
- such a suffix--and don't do anything else.
- '-dumpmachine'
- Print the compiler's target machine (for example,
- 'i686-pc-linux-gnu')--and don't do anything else.
- '-dumpversion'
- Print the compiler version (for example, '3.0', '6.3.0' or
- '7')--and don't do anything else. This is the compiler version
- used in filesystem paths, specs, can be depending on how the
- compiler has been configured just a single number (major version),
- two numbers separated by dot (major and minor version) or three
- numbers separated by dots (major, minor and patchlevel version).
- '-dumpfullversion'
- Print the full compiler version, always 3 numbers separated by
- dots, major, minor and patchlevel version.
- '-dumpspecs'
- Print the compiler's built-in specs--and don't do anything else.
- (This is used when GCC itself is being built.) *Note Spec Files::.
- File: gcc.info, Node: Submodel Options, Next: Spec Files, Prev: Developer Options, Up: Invoking GCC
- 3.18 Machine-Dependent Options
- ==============================
- Each target machine supported by GCC can have its own options--for
- example, to allow you to compile for a particular processor variant or
- ABI, or to control optimizations specific to that machine. By
- convention, the names of machine-specific options start with '-m'.
- Some configurations of the compiler also support additional
- target-specific options, usually for compatibility with other compilers
- on the same platform.
- * Menu:
- * AArch64 Options::
- * Adapteva Epiphany Options::
- * ARC Options::
- * ARM Options::
- * AVR Options::
- * Blackfin Options::
- * C6X Options::
- * CRIS Options::
- * CR16 Options::
- * Darwin Options::
- * DEC Alpha Options::
- * FR30 Options::
- * FT32 Options::
- * FRV Options::
- * GNU/Linux Options::
- * H8/300 Options::
- * HPPA Options::
- * IA-64 Options::
- * LM32 Options::
- * M32C Options::
- * M32R/D Options::
- * M680x0 Options::
- * MCore Options::
- * MeP Options::
- * MicroBlaze Options::
- * MIPS Options::
- * MMIX Options::
- * MN10300 Options::
- * Moxie Options::
- * MSP430 Options::
- * NDS32 Options::
- * Nios II Options::
- * Nvidia PTX Options::
- * PDP-11 Options::
- * picoChip Options::
- * PowerPC Options::
- * PowerPC SPE Options::
- * RISC-V Options::
- * RL78 Options::
- * RS/6000 and PowerPC Options::
- * RX Options::
- * S/390 and zSeries Options::
- * Score Options::
- * SH Options::
- * Solaris 2 Options::
- * SPARC Options::
- * SPU Options::
- * System V Options::
- * TILE-Gx Options::
- * TILEPro Options::
- * V850 Options::
- * VAX Options::
- * Visium Options::
- * VMS Options::
- * VxWorks Options::
- * x86 Options::
- * x86 Windows Options::
- * Xstormy16 Options::
- * Xtensa Options::
- * zSeries Options::
- File: gcc.info, Node: AArch64 Options, Next: Adapteva Epiphany Options, Up: Submodel Options
- 3.18.1 AArch64 Options
- ----------------------
- These options are defined for AArch64 implementations:
- '-mabi=NAME'
- Generate code for the specified data model. Permissible values are
- 'ilp32' for SysV-like data model where int, long int and pointers
- are 32 bits, and 'lp64' for SysV-like data model where int is 32
- bits, but long int and pointers are 64 bits.
- The default depends on the specific target configuration. Note
- that the LP64 and ILP32 ABIs are not link-compatible; you must
- compile your entire program with the same ABI, and link with a
- compatible set of libraries.
- '-mbig-endian'
- Generate big-endian code. This is the default when GCC is
- configured for an 'aarch64_be-*-*' target.
- '-mgeneral-regs-only'
- Generate code which uses only the general-purpose registers. This
- will prevent the compiler from using floating-point and Advanced
- SIMD registers but will not impose any restrictions on the
- assembler.
- '-mlittle-endian'
- Generate little-endian code. This is the default when GCC is
- configured for an 'aarch64-*-*' but not an 'aarch64_be-*-*' target.
- '-mcmodel=tiny'
- Generate code for the tiny code model. The program and its
- statically defined symbols must be within 1MB of each other.
- Programs can be statically or dynamically linked.
- '-mcmodel=small'
- Generate code for the small code model. The program and its
- statically defined symbols must be within 4GB of each other.
- Programs can be statically or dynamically linked. This is the
- default code model.
- '-mcmodel=large'
- Generate code for the large code model. This makes no assumptions
- about addresses and sizes of sections. Programs can be statically
- linked only.
- '-mstrict-align'
- Avoid generating memory accesses that may not be aligned on a
- natural object boundary as described in the architecture
- specification.
- '-momit-leaf-frame-pointer'
- '-mno-omit-leaf-frame-pointer'
- Omit or keep the frame pointer in leaf functions. The former
- behavior is the default.
- '-mtls-dialect=desc'
- Use TLS descriptors as the thread-local storage mechanism for
- dynamic accesses of TLS variables. This is the default.
- '-mtls-dialect=traditional'
- Use traditional TLS as the thread-local storage mechanism for
- dynamic accesses of TLS variables.
- '-mtls-size=SIZE'
- Specify bit size of immediate TLS offsets. Valid values are 12,
- 24, 32, 48. This option requires binutils 2.26 or newer.
- '-mfix-cortex-a53-835769'
- '-mno-fix-cortex-a53-835769'
- Enable or disable the workaround for the ARM Cortex-A53 erratum
- number 835769. This involves inserting a NOP instruction between
- memory instructions and 64-bit integer multiply-accumulate
- instructions.
- '-mfix-cortex-a53-843419'
- '-mno-fix-cortex-a53-843419'
- Enable or disable the workaround for the ARM Cortex-A53 erratum
- number 843419. This erratum workaround is made at link time and
- this will only pass the corresponding flag to the linker.
- '-mlow-precision-recip-sqrt'
- '-mno-low-precision-recip-sqrt'
- Enable or disable the reciprocal square root approximation. This
- option only has an effect if '-ffast-math' or
- '-funsafe-math-optimizations' is used as well. Enabling this
- reduces precision of reciprocal square root results to about 16
- bits for single precision and to 32 bits for double precision.
- '-mlow-precision-sqrt'
- '-mno-low-precision-sqrt'
- Enable or disable the square root approximation. This option only
- has an effect if '-ffast-math' or '-funsafe-math-optimizations' is
- used as well. Enabling this reduces precision of square root
- results to about 16 bits for single precision and to 32 bits for
- double precision. If enabled, it implies
- '-mlow-precision-recip-sqrt'.
- '-mlow-precision-div'
- '-mno-low-precision-div'
- Enable or disable the division approximation. This option only has
- an effect if '-ffast-math' or '-funsafe-math-optimizations' is used
- as well. Enabling this reduces precision of division results to
- about 16 bits for single precision and to 32 bits for double
- precision.
- '-march=NAME'
- Specify the name of the target architecture and, optionally, one or
- more feature modifiers. This option has the form
- '-march=ARCH{+[no]FEATURE}*'.
- The permissible values for ARCH are 'armv8-a', 'armv8.1-a',
- 'armv8.2-a', 'armv8.3-a' or 'armv8.4-a' or NATIVE.
- The value 'armv8.4-a' implies 'armv8.3-a' and enables compiler
- support for the ARMv8.4-A architecture extensions.
- The value 'armv8.3-a' implies 'armv8.2-a' and enables compiler
- support for the ARMv8.3-A architecture extensions.
- The value 'armv8.2-a' implies 'armv8.1-a' and enables compiler
- support for the ARMv8.2-A architecture extensions.
- The value 'armv8.1-a' implies 'armv8-a' and enables compiler
- support for the ARMv8.1-A architecture extension. In particular,
- it enables the '+crc', '+lse', and '+rdma' features.
- The value 'native' is available on native AArch64 GNU/Linux and
- causes the compiler to pick the architecture of the host system.
- This option has no effect if the compiler is unable to recognize
- the architecture of the host system,
- The permissible values for FEATURE are listed in the sub-section on
- *note '-march' and '-mcpu' Feature Modifiers:
- aarch64-feature-modifiers. Where conflicting feature modifiers are
- specified, the right-most feature is used.
- GCC uses NAME to determine what kind of instructions it can emit
- when generating assembly code. If '-march' is specified without
- either of '-mtune' or '-mcpu' also being specified, the code is
- tuned to perform well across a range of target processors
- implementing the target architecture.
- '-mtune=NAME'
- Specify the name of the target processor for which GCC should tune
- the performance of the code. Permissible values for this option
- are: 'generic', 'cortex-a35', 'cortex-a53', 'cortex-a55',
- 'cortex-a57', 'cortex-a72', 'cortex-a73', 'cortex-a75',
- 'exynos-m1', 'falkor', 'qdf24xx', 'saphira', 'xgene1', 'vulcan',
- 'thunderx', 'thunderxt88', 'thunderxt88p1', 'thunderxt81',
- 'thunderxt83', 'thunderx2t99', 'cortex-a57.cortex-a53',
- 'cortex-a72.cortex-a53', 'cortex-a73.cortex-a35',
- 'cortex-a73.cortex-a53', 'cortex-a75.cortex-a55', 'native'.
- The values 'cortex-a57.cortex-a53', 'cortex-a72.cortex-a53',
- 'cortex-a73.cortex-a35', 'cortex-a73.cortex-a53',
- 'cortex-a75.cortex-a55' specify that GCC should tune for a
- big.LITTLE system.
- Additionally on native AArch64 GNU/Linux systems the value 'native'
- tunes performance to the host system. This option has no effect if
- the compiler is unable to recognize the processor of the host
- system.
- Where none of '-mtune=', '-mcpu=' or '-march=' are specified, the
- code is tuned to perform well across a range of target processors.
- This option cannot be suffixed by feature modifiers.
- '-mcpu=NAME'
- Specify the name of the target processor, optionally suffixed by
- one or more feature modifiers. This option has the form
- '-mcpu=CPU{+[no]FEATURE}*', where the permissible values for CPU
- are the same as those available for '-mtune'. The permissible
- values for FEATURE are documented in the sub-section on *note
- '-march' and '-mcpu' Feature Modifiers: aarch64-feature-modifiers.
- Where conflicting feature modifiers are specified, the right-most
- feature is used.
- GCC uses NAME to determine what kind of instructions it can emit
- when generating assembly code (as if by '-march') and to determine
- the target processor for which to tune for performance (as if by
- '-mtune'). Where this option is used in conjunction with '-march'
- or '-mtune', those options take precedence over the appropriate
- part of this option.
- '-moverride=STRING'
- Override tuning decisions made by the back-end in response to a
- '-mtune=' switch. The syntax, semantics, and accepted values for
- STRING in this option are not guaranteed to be consistent across
- releases.
- This option is only intended to be useful when developing GCC.
- '-mverbose-cost-dump'
- Enable verbose cost model dumping in the debug dump files. This
- option is provided for use in debugging the compiler.
- '-mpc-relative-literal-loads'
- '-mno-pc-relative-literal-loads'
- Enable or disable PC-relative literal loads. With this option
- literal pools are accessed using a single instruction and emitted
- after each function. This limits the maximum size of functions to
- 1MB. This is enabled by default for '-mcmodel=tiny'.
- '-msign-return-address=SCOPE'
- Select the function scope on which return address signing will be
- applied. Permissible values are 'none', which disables return
- address signing, 'non-leaf', which enables pointer signing for
- functions which are not leaf functions, and 'all', which enables
- pointer signing for all functions. The default value is 'none'.
- '-msve-vector-bits=BITS'
- Specify the number of bits in an SVE vector register. This option
- only has an effect when SVE is enabled.
- GCC supports two forms of SVE code generation: "vector-length
- agnostic" output that works with any size of vector register and
- "vector-length specific" output that allows GCC to make assumptions
- about the vector length when it is useful for optimization reasons.
- The possible values of 'bits' are: 'scalable', '128', '256', '512',
- '1024' and '2048'. Specifying 'scalable' selects vector-length
- agnostic output. At present '-msve-vector-bits=128' also generates
- vector-length agnostic output. All other values generate
- vector-length specific code. The behavior of these values may
- change in future releases and no value except 'scalable' should be
- relied on for producing code that is portable across different
- hardware SVE vector lengths.
- The default is '-msve-vector-bits=scalable', which produces
- vector-length agnostic code.
- 3.18.1.1 '-march' and '-mcpu' Feature Modifiers
- ...............................................
- Feature modifiers used with '-march' and '-mcpu' can be any of the
- following and their inverses 'noFEATURE':
- 'crc'
- Enable CRC extension. This is on by default for
- '-march=armv8.1-a'.
- 'crypto'
- Enable Crypto extension. This also enables Advanced SIMD and
- floating-point instructions.
- 'fp'
- Enable floating-point instructions. This is on by default for all
- possible values for options '-march' and '-mcpu'.
- 'simd'
- Enable Advanced SIMD instructions. This also enables
- floating-point instructions. This is on by default for all
- possible values for options '-march' and '-mcpu'.
- 'sve'
- Enable Scalable Vector Extension instructions. This also enables
- Advanced SIMD and floating-point instructions.
- 'lse'
- Enable Large System Extension instructions. This is on by default
- for '-march=armv8.1-a'.
- 'rdma'
- Enable Round Double Multiply Accumulate instructions. This is on
- by default for '-march=armv8.1-a'.
- 'fp16'
- Enable FP16 extension. This also enables floating-point
- instructions.
- 'fp16fml'
- Enable FP16 fmla extension. This also enables FP16 extensions and
- floating-point instructions. This option is enabled by default for
- '-march=armv8.4-a'. Use of this option with architectures prior to
- Armv8.2-A is not supported.
- 'rcpc'
- Enable the RcPc extension. This does not change code generation
- from GCC, but is passed on to the assembler, enabling inline asm
- statements to use instructions from the RcPc extension.
- 'dotprod'
- Enable the Dot Product extension. This also enables Advanced SIMD
- instructions.
- 'aes'
- Enable the Armv8-a aes and pmull crypto extension. This also
- enables Advanced SIMD instructions.
- 'sha2'
- Enable the Armv8-a sha2 crypto extension. This also enables
- Advanced SIMD instructions.
- 'sha3'
- Enable the sha512 and sha3 crypto extension. This also enables
- Advanced SIMD instructions. Use of this option with architectures
- prior to Armv8.2-A is not supported.
- 'sm4'
- Enable the sm3 and sm4 crypto extension. This also enables
- Advanced SIMD instructions. Use of this option with architectures
- prior to Armv8.2-A is not supported.
- Feature 'crypto' implies 'aes', 'sha2', and 'simd', which implies 'fp'.
- Conversely, 'nofp' implies 'nosimd', which implies 'nocrypto', 'noaes'
- and 'nosha2'.
- File: gcc.info, Node: Adapteva Epiphany Options, Next: ARC Options, Prev: AArch64 Options, Up: Submodel Options
- 3.18.2 Adapteva Epiphany Options
- --------------------------------
- These '-m' options are defined for Adapteva Epiphany:
- '-mhalf-reg-file'
- Don't allocate any register in the range 'r32'...'r63'. That
- allows code to run on hardware variants that lack these registers.
- '-mprefer-short-insn-regs'
- Preferentially allocate registers that allow short instruction
- generation. This can result in increased instruction count, so
- this may either reduce or increase overall code size.
- '-mbranch-cost=NUM'
- Set the cost of branches to roughly NUM "simple" instructions.
- This cost is only a heuristic and is not guaranteed to produce
- consistent results across releases.
- '-mcmove'
- Enable the generation of conditional moves.
- '-mnops=NUM'
- Emit NUM NOPs before every other generated instruction.
- '-mno-soft-cmpsf'
- For single-precision floating-point comparisons, emit an 'fsub'
- instruction and test the flags. This is faster than a software
- comparison, but can get incorrect results in the presence of NaNs,
- or when two different small numbers are compared such that their
- difference is calculated as zero. The default is '-msoft-cmpsf',
- which uses slower, but IEEE-compliant, software comparisons.
- '-mstack-offset=NUM'
- Set the offset between the top of the stack and the stack pointer.
- E.g., a value of 8 means that the eight bytes in the range
- 'sp+0...sp+7' can be used by leaf functions without stack
- allocation. Values other than '8' or '16' are untested and
- unlikely to work. Note also that this option changes the ABI;
- compiling a program with a different stack offset than the
- libraries have been compiled with generally does not work. This
- option can be useful if you want to evaluate if a different stack
- offset would give you better code, but to actually use a different
- stack offset to build working programs, it is recommended to
- configure the toolchain with the appropriate
- '--with-stack-offset=NUM' option.
- '-mno-round-nearest'
- Make the scheduler assume that the rounding mode has been set to
- truncating. The default is '-mround-nearest'.
- '-mlong-calls'
- If not otherwise specified by an attribute, assume all calls might
- be beyond the offset range of the 'b' / 'bl' instructions, and
- therefore load the function address into a register before
- performing a (otherwise direct) call. This is the default.
- '-mshort-calls'
- If not otherwise specified by an attribute, assume all direct calls
- are in the range of the 'b' / 'bl' instructions, so use these
- instructions for direct calls. The default is '-mlong-calls'.
- '-msmall16'
- Assume addresses can be loaded as 16-bit unsigned values. This
- does not apply to function addresses for which '-mlong-calls'
- semantics are in effect.
- '-mfp-mode=MODE'
- Set the prevailing mode of the floating-point unit. This
- determines the floating-point mode that is provided and expected at
- function call and return time. Making this mode match the mode you
- predominantly need at function start can make your programs smaller
- and faster by avoiding unnecessary mode switches.
- MODE can be set to one the following values:
- 'caller'
- Any mode at function entry is valid, and retained or restored
- when the function returns, and when it calls other functions.
- This mode is useful for compiling libraries or other
- compilation units you might want to incorporate into different
- programs with different prevailing FPU modes, and the
- convenience of being able to use a single object file
- outweighs the size and speed overhead for any extra mode
- switching that might be needed, compared with what would be
- needed with a more specific choice of prevailing FPU mode.
- 'truncate'
- This is the mode used for floating-point calculations with
- truncating (i.e. round towards zero) rounding mode. That
- includes conversion from floating point to integer.
- 'round-nearest'
- This is the mode used for floating-point calculations with
- round-to-nearest-or-even rounding mode.
- 'int'
- This is the mode used to perform integer calculations in the
- FPU, e.g. integer multiply, or integer
- multiply-and-accumulate.
- The default is '-mfp-mode=caller'
- '-mnosplit-lohi'
- '-mno-postinc'
- '-mno-postmodify'
- Code generation tweaks that disable, respectively, splitting of
- 32-bit loads, generation of post-increment addresses, and
- generation of post-modify addresses. The defaults are
- 'msplit-lohi', '-mpost-inc', and '-mpost-modify'.
- '-mnovect-double'
- Change the preferred SIMD mode to SImode. The default is
- '-mvect-double', which uses DImode as preferred SIMD mode.
- '-max-vect-align=NUM'
- The maximum alignment for SIMD vector mode types. NUM may be 4 or
- 8. The default is 8. Note that this is an ABI change, even though
- many library function interfaces are unaffected if they don't use
- SIMD vector modes in places that affect size and/or alignment of
- relevant types.
- '-msplit-vecmove-early'
- Split vector moves into single word moves before reload. In theory
- this can give better register allocation, but so far the reverse
- seems to be generally the case.
- '-m1reg-REG'
- Specify a register to hold the constant -1, which makes loading
- small negative constants and certain bitmasks faster. Allowable
- values for REG are 'r43' and 'r63', which specify use of that
- register as a fixed register, and 'none', which means that no
- register is used for this purpose. The default is '-m1reg-none'.
- File: gcc.info, Node: ARC Options, Next: ARM Options, Prev: Adapteva Epiphany Options, Up: Submodel Options
- 3.18.3 ARC Options
- ------------------
- The following options control the architecture variant for which code is
- being compiled:
- '-mbarrel-shifter'
- Generate instructions supported by barrel shifter. This is the
- default unless '-mcpu=ARC601' or '-mcpu=ARCEM' is in effect.
- '-mjli-always'
- Force to call a function using jli_s instruction. This option is
- valid only for ARCv2 architecture.
- '-mcpu=CPU'
- Set architecture type, register usage, and instruction scheduling
- parameters for CPU. There are also shortcut alias options
- available for backward compatibility and convenience. Supported
- values for CPU are
- 'arc600'
- Compile for ARC600. Aliases: '-mA6', '-mARC600'.
- 'arc601'
- Compile for ARC601. Alias: '-mARC601'.
- 'arc700'
- Compile for ARC700. Aliases: '-mA7', '-mARC700'. This is the
- default when configured with '--with-cpu=arc700'.
- 'arcem'
- Compile for ARC EM.
- 'archs'
- Compile for ARC HS.
- 'em'
- Compile for ARC EM CPU with no hardware extensions.
- 'em4'
- Compile for ARC EM4 CPU.
- 'em4_dmips'
- Compile for ARC EM4 DMIPS CPU.
- 'em4_fpus'
- Compile for ARC EM4 DMIPS CPU with the single-precision
- floating-point extension.
- 'em4_fpuda'
- Compile for ARC EM4 DMIPS CPU with single-precision
- floating-point and double assist instructions.
- 'hs'
- Compile for ARC HS CPU with no hardware extensions except the
- atomic instructions.
- 'hs34'
- Compile for ARC HS34 CPU.
- 'hs38'
- Compile for ARC HS38 CPU.
- 'hs38_linux'
- Compile for ARC HS38 CPU with all hardware extensions on.
- 'arc600_norm'
- Compile for ARC 600 CPU with 'norm' instructions enabled.
- 'arc600_mul32x16'
- Compile for ARC 600 CPU with 'norm' and 32x16-bit multiply
- instructions enabled.
- 'arc600_mul64'
- Compile for ARC 600 CPU with 'norm' and 'mul64'-family
- instructions enabled.
- 'arc601_norm'
- Compile for ARC 601 CPU with 'norm' instructions enabled.
- 'arc601_mul32x16'
- Compile for ARC 601 CPU with 'norm' and 32x16-bit multiply
- instructions enabled.
- 'arc601_mul64'
- Compile for ARC 601 CPU with 'norm' and 'mul64'-family
- instructions enabled.
- 'nps400'
- Compile for ARC 700 on NPS400 chip.
- 'em_mini'
- Compile for ARC EM minimalist configuration featuring reduced
- register set.
- '-mdpfp'
- '-mdpfp-compact'
- Generate double-precision FPX instructions, tuned for the compact
- implementation.
- '-mdpfp-fast'
- Generate double-precision FPX instructions, tuned for the fast
- implementation.
- '-mno-dpfp-lrsr'
- Disable 'lr' and 'sr' instructions from using FPX extension aux
- registers.
- '-mea'
- Generate extended arithmetic instructions. Currently only 'divaw',
- 'adds', 'subs', and 'sat16' are supported. This is always enabled
- for '-mcpu=ARC700'.
- '-mno-mpy'
- Do not generate 'mpy'-family instructions for ARC700. This option
- is deprecated.
- '-mmul32x16'
- Generate 32x16-bit multiply and multiply-accumulate instructions.
- '-mmul64'
- Generate 'mul64' and 'mulu64' instructions. Only valid for
- '-mcpu=ARC600'.
- '-mnorm'
- Generate 'norm' instructions. This is the default if
- '-mcpu=ARC700' is in effect.
- '-mspfp'
- '-mspfp-compact'
- Generate single-precision FPX instructions, tuned for the compact
- implementation.
- '-mspfp-fast'
- Generate single-precision FPX instructions, tuned for the fast
- implementation.
- '-msimd'
- Enable generation of ARC SIMD instructions via target-specific
- builtins. Only valid for '-mcpu=ARC700'.
- '-msoft-float'
- This option ignored; it is provided for compatibility purposes
- only. Software floating-point code is emitted by default, and this
- default can overridden by FPX options; '-mspfp', '-mspfp-compact',
- or '-mspfp-fast' for single precision, and '-mdpfp',
- '-mdpfp-compact', or '-mdpfp-fast' for double precision.
- '-mswap'
- Generate 'swap' instructions.
- '-matomic'
- This enables use of the locked load/store conditional extension to
- implement atomic memory built-in functions. Not available for ARC
- 6xx or ARC EM cores.
- '-mdiv-rem'
- Enable 'div' and 'rem' instructions for ARCv2 cores.
- '-mcode-density'
- Enable code density instructions for ARC EM. This option is on by
- default for ARC HS.
- '-mll64'
- Enable double load/store operations for ARC HS cores.
- '-mtp-regno=REGNO'
- Specify thread pointer register number.
- '-mmpy-option=MULTO'
- Compile ARCv2 code with a multiplier design option. You can
- specify the option using either a string or numeric value for
- MULTO. 'wlh1' is the default value. The recognized values are:
- '0'
- 'none'
- No multiplier available.
- '1'
- 'w'
- 16x16 multiplier, fully pipelined. The following instructions
- are enabled: 'mpyw' and 'mpyuw'.
- '2'
- 'wlh1'
- 32x32 multiplier, fully pipelined (1 stage). The following
- instructions are additionally enabled: 'mpy', 'mpyu', 'mpym',
- 'mpymu', and 'mpy_s'.
- '3'
- 'wlh2'
- 32x32 multiplier, fully pipelined (2 stages). The following
- instructions are additionally enabled: 'mpy', 'mpyu', 'mpym',
- 'mpymu', and 'mpy_s'.
- '4'
- 'wlh3'
- Two 16x16 multipliers, blocking, sequential. The following
- instructions are additionally enabled: 'mpy', 'mpyu', 'mpym',
- 'mpymu', and 'mpy_s'.
- '5'
- 'wlh4'
- One 16x16 multiplier, blocking, sequential. The following
- instructions are additionally enabled: 'mpy', 'mpyu', 'mpym',
- 'mpymu', and 'mpy_s'.
- '6'
- 'wlh5'
- One 32x4 multiplier, blocking, sequential. The following
- instructions are additionally enabled: 'mpy', 'mpyu', 'mpym',
- 'mpymu', and 'mpy_s'.
- '7'
- 'plus_dmpy'
- ARC HS SIMD support.
- '8'
- 'plus_macd'
- ARC HS SIMD support.
- '9'
- 'plus_qmacw'
- ARC HS SIMD support.
- This option is only available for ARCv2 cores.
- '-mfpu=FPU'
- Enables support for specific floating-point hardware extensions for
- ARCv2 cores. Supported values for FPU are:
- 'fpus'
- Enables support for single-precision floating-point hardware
- extensions.
- 'fpud'
- Enables support for double-precision floating-point hardware
- extensions. The single-precision floating-point extension is
- also enabled. Not available for ARC EM.
- 'fpuda'
- Enables support for double-precision floating-point hardware
- extensions using double-precision assist instructions. The
- single-precision floating-point extension is also enabled.
- This option is only available for ARC EM.
- 'fpuda_div'
- Enables support for double-precision floating-point hardware
- extensions using double-precision assist instructions. The
- single-precision floating-point, square-root, and divide
- extensions are also enabled. This option is only available
- for ARC EM.
- 'fpuda_fma'
- Enables support for double-precision floating-point hardware
- extensions using double-precision assist instructions. The
- single-precision floating-point and fused multiply and add
- hardware extensions are also enabled. This option is only
- available for ARC EM.
- 'fpuda_all'
- Enables support for double-precision floating-point hardware
- extensions using double-precision assist instructions. All
- single-precision floating-point hardware extensions are also
- enabled. This option is only available for ARC EM.
- 'fpus_div'
- Enables support for single-precision floating-point,
- square-root and divide hardware extensions.
- 'fpud_div'
- Enables support for double-precision floating-point,
- square-root and divide hardware extensions. This option
- includes option 'fpus_div'. Not available for ARC EM.
- 'fpus_fma'
- Enables support for single-precision floating-point and fused
- multiply and add hardware extensions.
- 'fpud_fma'
- Enables support for double-precision floating-point and fused
- multiply and add hardware extensions. This option includes
- option 'fpus_fma'. Not available for ARC EM.
- 'fpus_all'
- Enables support for all single-precision floating-point
- hardware extensions.
- 'fpud_all'
- Enables support for all single- and double-precision
- floating-point hardware extensions. Not available for ARC EM.
- '-mirq-ctrl-saved=REGISTER-RANGE, BLINK, LP_COUNT'
- Specifies general-purposes registers that the processor
- automatically saves/restores on interrupt entry and exit.
- REGISTER-RANGE is specified as two registers separated by a dash.
- The register range always starts with 'r0', the upper limit is 'fp'
- register. BLINK and LP_COUNT are optional. This option is only
- valid for ARC EM and ARC HS cores.
- '-mrgf-banked-regs=NUMBER'
- Specifies the number of registers replicated in second register
- bank on entry to fast interrupt. Fast interrupts are interrupts
- with the highest priority level P0. These interrupts save only PC
- and STATUS32 registers to avoid memory transactions during
- interrupt entry and exit sequences. Use this option when you are
- using fast interrupts in an ARC V2 family processor. Permitted
- values are 4, 8, 16, and 32.
- '-mlpc-width=WIDTH'
- Specify the width of the 'lp_count' register. Valid values for
- WIDTH are 8, 16, 20, 24, 28 and 32 bits. The default width is
- fixed to 32 bits. If the width is less than 32, the compiler does
- not attempt to transform loops in your program to use the
- zero-delay loop mechanism unless it is known that the 'lp_count'
- register can hold the required loop-counter value. Depending on
- the width specified, the compiler and run-time library might
- continue to use the loop mechanism for various needs. This option
- defines macro '__ARC_LPC_WIDTH__' with the value of WIDTH.
- '-mrf16'
- This option instructs the compiler to generate code for a 16-entry
- register file. This option defines the '__ARC_RF16__' preprocessor
- macro.
- The following options are passed through to the assembler, and also
- define preprocessor macro symbols.
- '-mdsp-packa'
- Passed down to the assembler to enable the DSP Pack A extensions.
- Also sets the preprocessor symbol '__Xdsp_packa'. This option is
- deprecated.
- '-mdvbf'
- Passed down to the assembler to enable the dual Viterbi butterfly
- extension. Also sets the preprocessor symbol '__Xdvbf'. This
- option is deprecated.
- '-mlock'
- Passed down to the assembler to enable the locked load/store
- conditional extension. Also sets the preprocessor symbol
- '__Xlock'.
- '-mmac-d16'
- Passed down to the assembler. Also sets the preprocessor symbol
- '__Xxmac_d16'. This option is deprecated.
- '-mmac-24'
- Passed down to the assembler. Also sets the preprocessor symbol
- '__Xxmac_24'. This option is deprecated.
- '-mrtsc'
- Passed down to the assembler to enable the 64-bit time-stamp
- counter extension instruction. Also sets the preprocessor symbol
- '__Xrtsc'. This option is deprecated.
- '-mswape'
- Passed down to the assembler to enable the swap byte ordering
- extension instruction. Also sets the preprocessor symbol
- '__Xswape'.
- '-mtelephony'
- Passed down to the assembler to enable dual- and single-operand
- instructions for telephony. Also sets the preprocessor symbol
- '__Xtelephony'. This option is deprecated.
- '-mxy'
- Passed down to the assembler to enable the XY memory extension.
- Also sets the preprocessor symbol '__Xxy'.
- The following options control how the assembly code is annotated:
- '-misize'
- Annotate assembler instructions with estimated addresses.
- '-mannotate-align'
- Explain what alignment considerations lead to the decision to make
- an instruction short or long.
- The following options are passed through to the linker:
- '-marclinux'
- Passed through to the linker, to specify use of the 'arclinux'
- emulation. This option is enabled by default in tool chains built
- for 'arc-linux-uclibc' and 'arceb-linux-uclibc' targets when
- profiling is not requested.
- '-marclinux_prof'
- Passed through to the linker, to specify use of the 'arclinux_prof'
- emulation. This option is enabled by default in tool chains built
- for 'arc-linux-uclibc' and 'arceb-linux-uclibc' targets when
- profiling is requested.
- The following options control the semantics of generated code:
- '-mlong-calls'
- Generate calls as register indirect calls, thus providing access to
- the full 32-bit address range.
- '-mmedium-calls'
- Don't use less than 25-bit addressing range for calls, which is the
- offset available for an unconditional branch-and-link instruction.
- Conditional execution of function calls is suppressed, to allow use
- of the 25-bit range, rather than the 21-bit range with conditional
- branch-and-link. This is the default for tool chains built for
- 'arc-linux-uclibc' and 'arceb-linux-uclibc' targets.
- '-G NUM'
- Put definitions of externally-visible data in a small data section
- if that data is no bigger than NUM bytes. The default value of NUM
- is 4 for any ARC configuration, or 8 when we have double load/store
- operations.
- '-mno-sdata'
- Do not generate sdata references. This is the default for tool
- chains built for 'arc-linux-uclibc' and 'arceb-linux-uclibc'
- targets.
- '-mvolatile-cache'
- Use ordinarily cached memory accesses for volatile references.
- This is the default.
- '-mno-volatile-cache'
- Enable cache bypass for volatile references.
- The following options fine tune code generation:
- '-malign-call'
- Do alignment optimizations for call instructions.
- '-mauto-modify-reg'
- Enable the use of pre/post modify with register displacement.
- '-mbbit-peephole'
- Enable bbit peephole2.
- '-mno-brcc'
- This option disables a target-specific pass in 'arc_reorg' to
- generate compare-and-branch ('brCC') instructions. It has no
- effect on generation of these instructions driven by the combiner
- pass.
- '-mcase-vector-pcrel'
- Use PC-relative switch case tables to enable case table shortening.
- This is the default for '-Os'.
- '-mcompact-casesi'
- Enable compact 'casesi' pattern. This is the default for '-Os',
- and only available for ARCv1 cores.
- '-mno-cond-exec'
- Disable the ARCompact-specific pass to generate conditional
- execution instructions.
- Due to delay slot scheduling and interactions between operand
- numbers, literal sizes, instruction lengths, and the support for
- conditional execution, the target-independent pass to generate
- conditional execution is often lacking, so the ARC port has kept a
- special pass around that tries to find more conditional execution
- generation opportunities after register allocation, branch
- shortening, and delay slot scheduling have been done. This pass
- generally, but not always, improves performance and code size, at
- the cost of extra compilation time, which is why there is an option
- to switch it off. If you have a problem with call instructions
- exceeding their allowable offset range because they are
- conditionalized, you should consider using '-mmedium-calls'
- instead.
- '-mearly-cbranchsi'
- Enable pre-reload use of the 'cbranchsi' pattern.
- '-mexpand-adddi'
- Expand 'adddi3' and 'subdi3' at RTL generation time into 'add.f',
- 'adc' etc. This option is deprecated.
- '-mindexed-loads'
- Enable the use of indexed loads. This can be problematic because
- some optimizers then assume that indexed stores exist, which is not
- the case.
- '-mlra'
- Enable Local Register Allocation. This is still experimental for
- ARC, so by default the compiler uses standard reload (i.e.
- '-mno-lra').
- '-mlra-priority-none'
- Don't indicate any priority for target registers.
- '-mlra-priority-compact'
- Indicate target register priority for r0..r3 / r12..r15.
- '-mlra-priority-noncompact'
- Reduce target register priority for r0..r3 / r12..r15.
- '-mno-millicode'
- When optimizing for size (using '-Os'), prologues and epilogues
- that have to save or restore a large number of registers are often
- shortened by using call to a special function in libgcc; this is
- referred to as a _millicode_ call. As these calls can pose
- performance issues, and/or cause linking issues when linking in a
- nonstandard way, this option is provided to turn off millicode call
- generation.
- '-mmixed-code'
- Tweak register allocation to help 16-bit instruction generation.
- This generally has the effect of decreasing the average instruction
- size while increasing the instruction count.
- '-mq-class'
- Enable 'q' instruction alternatives. This is the default for
- '-Os'.
- '-mRcq'
- Enable 'Rcq' constraint handling. Most short code generation
- depends on this. This is the default.
- '-mRcw'
- Enable 'Rcw' constraint handling. Most ccfsm condexec mostly
- depends on this. This is the default.
- '-msize-level=LEVEL'
- Fine-tune size optimization with regards to instruction lengths and
- alignment. The recognized values for LEVEL are:
- '0'
- No size optimization. This level is deprecated and treated
- like '1'.
- '1'
- Short instructions are used opportunistically.
- '2'
- In addition, alignment of loops and of code after barriers are
- dropped.
- '3'
- In addition, optional data alignment is dropped, and the
- option 'Os' is enabled.
- This defaults to '3' when '-Os' is in effect. Otherwise, the
- behavior when this is not set is equivalent to level '1'.
- '-mtune=CPU'
- Set instruction scheduling parameters for CPU, overriding any
- implied by '-mcpu='.
- Supported values for CPU are
- 'ARC600'
- Tune for ARC600 CPU.
- 'ARC601'
- Tune for ARC601 CPU.
- 'ARC700'
- Tune for ARC700 CPU with standard multiplier block.
- 'ARC700-xmac'
- Tune for ARC700 CPU with XMAC block.
- 'ARC725D'
- Tune for ARC725D CPU.
- 'ARC750D'
- Tune for ARC750D CPU.
- '-mmultcost=NUM'
- Cost to assume for a multiply instruction, with '4' being equal to
- a normal instruction.
- '-munalign-prob-threshold=PROBABILITY'
- Set probability threshold for unaligning branches. When tuning for
- 'ARC700' and optimizing for speed, branches without filled delay
- slot are preferably emitted unaligned and long, unless profiling
- indicates that the probability for the branch to be taken is below
- PROBABILITY. *Note Cross-profiling::. The default is
- (REG_BR_PROB_BASE/2), i.e. 5000.
- The following options are maintained for backward compatibility, but
- are now deprecated and will be removed in a future release:
- '-margonaut'
- Obsolete FPX.
- '-mbig-endian'
- '-EB'
- Compile code for big-endian targets. Use of these options is now
- deprecated. Big-endian code is supported by configuring GCC to
- build 'arceb-elf32' and 'arceb-linux-uclibc' targets, for which big
- endian is the default.
- '-mlittle-endian'
- '-EL'
- Compile code for little-endian targets. Use of these options is
- now deprecated. Little-endian code is supported by configuring GCC
- to build 'arc-elf32' and 'arc-linux-uclibc' targets, for which
- little endian is the default.
- '-mbarrel_shifter'
- Replaced by '-mbarrel-shifter'.
- '-mdpfp_compact'
- Replaced by '-mdpfp-compact'.
- '-mdpfp_fast'
- Replaced by '-mdpfp-fast'.
- '-mdsp_packa'
- Replaced by '-mdsp-packa'.
- '-mEA'
- Replaced by '-mea'.
- '-mmac_24'
- Replaced by '-mmac-24'.
- '-mmac_d16'
- Replaced by '-mmac-d16'.
- '-mspfp_compact'
- Replaced by '-mspfp-compact'.
- '-mspfp_fast'
- Replaced by '-mspfp-fast'.
- '-mtune=CPU'
- Values 'arc600', 'arc601', 'arc700' and 'arc700-xmac' for CPU are
- replaced by 'ARC600', 'ARC601', 'ARC700' and 'ARC700-xmac'
- respectively.
- '-multcost=NUM'
- Replaced by '-mmultcost'.
- File: gcc.info, Node: ARM Options, Next: AVR Options, Prev: ARC Options, Up: Submodel Options
- 3.18.4 ARM Options
- ------------------
- These '-m' options are defined for the ARM port:
- '-mabi=NAME'
- Generate code for the specified ABI. Permissible values are:
- 'apcs-gnu', 'atpcs', 'aapcs', 'aapcs-linux' and 'iwmmxt'.
- '-mapcs-frame'
- Generate a stack frame that is compliant with the ARM Procedure
- Call Standard for all functions, even if this is not strictly
- necessary for correct execution of the code. Specifying
- '-fomit-frame-pointer' with this option causes the stack frames not
- to be generated for leaf functions. The default is
- '-mno-apcs-frame'. This option is deprecated.
- '-mapcs'
- This is a synonym for '-mapcs-frame' and is deprecated.
- '-mthumb-interwork'
- Generate code that supports calling between the ARM and Thumb
- instruction sets. Without this option, on pre-v5 architectures,
- the two instruction sets cannot be reliably used inside one
- program. The default is '-mno-thumb-interwork', since slightly
- larger code is generated when '-mthumb-interwork' is specified. In
- AAPCS configurations this option is meaningless.
- '-mno-sched-prolog'
- Prevent the reordering of instructions in the function prologue, or
- the merging of those instruction with the instructions in the
- function's body. This means that all functions start with a
- recognizable set of instructions (or in fact one of a choice from a
- small set of different function prologues), and this information
- can be used to locate the start of functions inside an executable
- piece of code. The default is '-msched-prolog'.
- '-mfloat-abi=NAME'
- Specifies which floating-point ABI to use. Permissible values are:
- 'soft', 'softfp' and 'hard'.
- Specifying 'soft' causes GCC to generate output containing library
- calls for floating-point operations. 'softfp' allows the
- generation of code using hardware floating-point instructions, but
- still uses the soft-float calling conventions. 'hard' allows
- generation of floating-point instructions and uses FPU-specific
- calling conventions.
- The default depends on the specific target configuration. Note
- that the hard-float and soft-float ABIs are not link-compatible;
- you must compile your entire program with the same ABI, and link
- with a compatible set of libraries.
- '-mlittle-endian'
- Generate code for a processor running in little-endian mode. This
- is the default for all standard configurations.
- '-mbig-endian'
- Generate code for a processor running in big-endian mode; the
- default is to compile code for a little-endian processor.
- '-mbe8'
- '-mbe32'
- When linking a big-endian image select between BE8 and BE32
- formats. The option has no effect for little-endian images and is
- ignored. The default is dependent on the selected target
- architecture. For ARMv6 and later architectures the default is
- BE8, for older architectures the default is BE32. BE32 format has
- been deprecated by ARM.
- '-march=NAME[+extension...]'
- This specifies the name of the target ARM architecture. GCC uses
- this name to determine what kind of instructions it can emit when
- generating assembly code. This option can be used in conjunction
- with or instead of the '-mcpu=' option.
- Permissible names are: 'armv4t', 'armv5t', 'armv5te', 'armv6',
- 'armv6j', 'armv6k', 'armv6kz', 'armv6t2', 'armv6z', 'armv6zk',
- 'armv7', 'armv7-a', 'armv7ve', 'armv8-a', 'armv8.1-a', 'armv8.2-a',
- 'armv8.3-a', 'armv8.4-a', 'armv7-r', 'armv8-r', 'armv6-m',
- 'armv6s-m', 'armv7-m', 'armv7e-m', 'armv8-m.base', 'armv8-m.main',
- 'iwmmxt' and 'iwmmxt2'.
- Additionally, the following architectures, which lack support for
- the Thumb execution state, are recognized but support is
- deprecated: 'armv2', 'armv2a', 'armv3', 'armv3m', 'armv4', 'armv5'
- and 'armv5e'.
- Many of the architectures support extensions. These can be added
- by appending '+EXTENSION' to the architecture name. Extension
- options are processed in order and capabilities accumulate. An
- extension will also enable any necessary base extensions upon which
- it depends. For example, the '+crypto' extension will always
- enable the '+simd' extension. The exception to the additive
- construction is for extensions that are prefixed with '+no...':
- these extensions disable the specified option and any other
- extensions that may depend on the presence of that extension.
- For example, '-march=armv7-a+simd+nofp+vfpv4' is equivalent to
- writing '-march=armv7-a+vfpv4' since the '+simd' option is entirely
- disabled by the '+nofp' option that follows it.
- Most extension names are generically named, but have an effect that
- is dependent upon the architecture to which it is applied. For
- example, the '+simd' option can be applied to both 'armv7-a' and
- 'armv8-a' architectures, but will enable the original ARMv7-A
- Advanced SIMD (Neon) extensions for 'armv7-a' and the ARMv8-A
- variant for 'armv8-a'.
- The table below lists the supported extensions for each
- architecture. Architectures not mentioned do not support any
- extensions.
- 'armv5e'
- 'armv5te'
- 'armv6'
- 'armv6j'
- 'armv6k'
- 'armv6kz'
- 'armv6t2'
- 'armv6z'
- 'armv6zk'
- '+fp'
- The VFPv2 floating-point instructions. The extension
- '+vfpv2' can be used as an alias for this extension.
- '+nofp'
- Disable the floating-point instructions.
- 'armv7'
- The common subset of the ARMv7-A, ARMv7-R and ARMv7-M
- architectures.
- '+fp'
- The VFPv3 floating-point instructions, with 16
- double-precision registers. The extension '+vfpv3-d16'
- can be used as an alias for this extension. Note that
- floating-point is not supported by the base ARMv7-M
- architecture, but is compatible with both the ARMv7-A and
- ARMv7-R architectures.
- '+nofp'
- Disable the floating-point instructions.
- 'armv7-a'
- '+mp'
- The multiprocessing extension.
- '+sec'
- The security extension.
- '+fp'
- The VFPv3 floating-point instructions, with 16
- double-precision registers. The extension '+vfpv3-d16'
- can be used as an alias for this extension.
- '+simd'
- The Advanced SIMD (Neon) v1 and the VFPv3 floating-point
- instructions. The extensions '+neon' and '+neon-vfpv3'
- can be used as aliases for this extension.
- '+vfpv3'
- The VFPv3 floating-point instructions, with 32
- double-precision registers.
- '+vfpv3-d16-fp16'
- The VFPv3 floating-point instructions, with 16
- double-precision registers and the half-precision
- floating-point conversion operations.
- '+vfpv3-fp16'
- The VFPv3 floating-point instructions, with 32
- double-precision registers and the half-precision
- floating-point conversion operations.
- '+vfpv4-d16'
- The VFPv4 floating-point instructions, with 16
- double-precision registers.
- '+vfpv4'
- The VFPv4 floating-point instructions, with 32
- double-precision registers.
- '+neon-fp16'
- The Advanced SIMD (Neon) v1 and the VFPv3 floating-point
- instructions, with the half-precision floating-point
- conversion operations.
- '+neon-vfpv4'
- The Advanced SIMD (Neon) v2 and the VFPv4 floating-point
- instructions.
- '+nosimd'
- Disable the Advanced SIMD instructions (does not disable
- floating point).
- '+nofp'
- Disable the floating-point and Advanced SIMD
- instructions.
- 'armv7ve'
- The extended version of the ARMv7-A architecture with support
- for virtualization.
- '+fp'
- The VFPv4 floating-point instructions, with 16
- double-precision registers. The extension '+vfpv4-d16'
- can be used as an alias for this extension.
- '+simd'
- The Advanced SIMD (Neon) v2 and the VFPv4 floating-point
- instructions. The extension '+neon-vfpv4' can be used as
- an alias for this extension.
- '+vfpv3-d16'
- The VFPv3 floating-point instructions, with 16
- double-precision registers.
- '+vfpv3'
- The VFPv3 floating-point instructions, with 32
- double-precision registers.
- '+vfpv3-d16-fp16'
- The VFPv3 floating-point instructions, with 16
- double-precision registers and the half-precision
- floating-point conversion operations.
- '+vfpv3-fp16'
- The VFPv3 floating-point instructions, with 32
- double-precision registers and the half-precision
- floating-point conversion operations.
- '+vfpv4-d16'
- The VFPv4 floating-point instructions, with 16
- double-precision registers.
- '+vfpv4'
- The VFPv4 floating-point instructions, with 32
- double-precision registers.
- '+neon'
- The Advanced SIMD (Neon) v1 and the VFPv3 floating-point
- instructions. The extension '+neon-vfpv3' can be used as
- an alias for this extension.
- '+neon-fp16'
- The Advanced SIMD (Neon) v1 and the VFPv3 floating-point
- instructions, with the half-precision floating-point
- conversion operations.
- '+nosimd'
- Disable the Advanced SIMD instructions (does not disable
- floating point).
- '+nofp'
- Disable the floating-point and Advanced SIMD
- instructions.
- 'armv8-a'
- '+crc'
- The Cyclic Redundancy Check (CRC) instructions.
- '+simd'
- The ARMv8-A Advanced SIMD and floating-point
- instructions.
- '+crypto'
- The cryptographic instructions.
- '+nocrypto'
- Disable the cryptographic instructions.
- '+nofp'
- Disable the floating-point, Advanced SIMD and
- cryptographic instructions.
- 'armv8.1-a'
- '+simd'
- The ARMv8.1-A Advanced SIMD and floating-point
- instructions.
- '+crypto'
- The cryptographic instructions. This also enables the
- Advanced SIMD and floating-point instructions.
- '+nocrypto'
- Disable the cryptographic instructions.
- '+nofp'
- Disable the floating-point, Advanced SIMD and
- cryptographic instructions.
- 'armv8.2-a'
- 'armv8.3-a'
- '+fp16'
- The half-precision floating-point data processing
- instructions. This also enables the Advanced SIMD and
- floating-point instructions.
- '+fp16fml'
- The half-precision floating-point fmla extension. This
- also enables the half-precision floating-point extension
- and Advanced SIMD and floating-point instructions.
- '+simd'
- The ARMv8.1-A Advanced SIMD and floating-point
- instructions.
- '+crypto'
- The cryptographic instructions. This also enables the
- Advanced SIMD and floating-point instructions.
- '+dotprod'
- Enable the Dot Product extension. This also enables
- Advanced SIMD instructions.
- '+nocrypto'
- Disable the cryptographic extension.
- '+nofp'
- Disable the floating-point, Advanced SIMD and
- cryptographic instructions.
- 'armv8.4-a'
- '+fp16'
- The half-precision floating-point data processing
- instructions. This also enables the Advanced SIMD and
- floating-point instructions as well as the Dot Product
- extension and the half-precision floating-point fmla
- extension.
- '+simd'
- The ARMv8.3-A Advanced SIMD and floating-point
- instructions as well as the Dot Product extension.
- '+crypto'
- The cryptographic instructions. This also enables the
- Advanced SIMD and floating-point instructions as well as
- the Dot Product extension.
- '+nocrypto'
- Disable the cryptographic extension.
- '+nofp'
- Disable the floating-point, Advanced SIMD and
- cryptographic instructions.
- 'armv7-r'
- '+fp.sp'
- The single-precision VFPv3 floating-point instructions.
- The extension '+vfpv3xd' can be used as an alias for this
- extension.
- '+fp'
- The VFPv3 floating-point instructions with 16
- double-precision registers. The extension +vfpv3-d16 can
- be used as an alias for this extension.
- '+vfpv3xd-d16-fp16'
- The single-precision VFPv3 floating-point instructions
- with 16 double-precision registers and the half-precision
- floating-point conversion operations.
- '+vfpv3-d16-fp16'
- The VFPv3 floating-point instructions, with 16
- double-precision registers and the half-precision
- floating-point conversion operations.
- '+nofp'
- Disable the floating-point extension.
- '+idiv'
- The ARM-state integer division instructions.
- '+noidiv'
- Disable the ARM-state integer division extension.
- 'armv7e-m'
- '+fp'
- The single-precision VFPv4 floating-point instructions.
- '+fpv5'
- The single-precision FPv5 floating-point instructions.
- '+fp.dp'
- The single- and double-precision FPv5 floating-point
- instructions.
- '+nofp'
- Disable the floating-point extensions.
- 'armv8-m.main'
- '+dsp'
- The DSP instructions.
- '+nodsp'
- Disable the DSP extension.
- '+fp'
- The single-precision floating-point instructions.
- '+fp.dp'
- The single- and double-precision floating-point
- instructions.
- '+nofp'
- Disable the floating-point extension.
- 'armv8-r'
- '+crc'
- The Cyclic Redundancy Check (CRC) instructions.
- '+fp.sp'
- The single-precision FPv5 floating-point instructions.
- '+simd'
- The ARMv8-A Advanced SIMD and floating-point
- instructions.
- '+crypto'
- The cryptographic instructions.
- '+nocrypto'
- Disable the cryptographic instructions.
- '+nofp'
- Disable the floating-point, Advanced SIMD and
- cryptographic instructions.
- '-march=native' causes the compiler to auto-detect the architecture
- of the build computer. At present, this feature is only supported
- on GNU/Linux, and not all architectures are recognized. If the
- auto-detect is unsuccessful the option has no effect.
- '-mtune=NAME'
- This option specifies the name of the target ARM processor for
- which GCC should tune the performance of the code. For some ARM
- implementations better performance can be obtained by using this
- option. Permissible names are: 'arm2', 'arm250', 'arm3', 'arm6',
- 'arm60', 'arm600', 'arm610', 'arm620', 'arm7', 'arm7m', 'arm7d',
- 'arm7dm', 'arm7di', 'arm7dmi', 'arm70', 'arm700', 'arm700i',
- 'arm710', 'arm710c', 'arm7100', 'arm720', 'arm7500', 'arm7500fe',
- 'arm7tdmi', 'arm7tdmi-s', 'arm710t', 'arm720t', 'arm740t',
- 'strongarm', 'strongarm110', 'strongarm1100', 'strongarm1110',
- 'arm8', 'arm810', 'arm9', 'arm9e', 'arm920', 'arm920t', 'arm922t',
- 'arm946e-s', 'arm966e-s', 'arm968e-s', 'arm926ej-s', 'arm940t',
- 'arm9tdmi', 'arm10tdmi', 'arm1020t', 'arm1026ej-s', 'arm10e',
- 'arm1020e', 'arm1022e', 'arm1136j-s', 'arm1136jf-s', 'mpcore',
- 'mpcorenovfp', 'arm1156t2-s', 'arm1156t2f-s', 'arm1176jz-s',
- 'arm1176jzf-s', 'generic-armv7-a', 'cortex-a5', 'cortex-a7',
- 'cortex-a8', 'cortex-a9', 'cortex-a12', 'cortex-a15', 'cortex-a17',
- 'cortex-a32', 'cortex-a35', 'cortex-a53', 'cortex-a55',
- 'cortex-a57', 'cortex-a72', 'cortex-a73', 'cortex-a75',
- 'cortex-r4', 'cortex-r4f', 'cortex-r5', 'cortex-r7', 'cortex-r8',
- 'cortex-r52', 'cortex-m33', 'cortex-m23', 'cortex-m7', 'cortex-m4',
- 'cortex-m3', 'cortex-m1', 'cortex-m0', 'cortex-m0plus',
- 'cortex-m1.small-multiply', 'cortex-m0.small-multiply',
- 'cortex-m0plus.small-multiply', 'exynos-m1', 'marvell-pj4',
- 'xscale', 'iwmmxt', 'iwmmxt2', 'ep9312', 'fa526', 'fa626',
- 'fa606te', 'fa626te', 'fmp626', 'fa726te', 'xgene1'.
- Additionally, this option can specify that GCC should tune the
- performance of the code for a big.LITTLE system. Permissible names
- are: 'cortex-a15.cortex-a7', 'cortex-a17.cortex-a7',
- 'cortex-a57.cortex-a53', 'cortex-a72.cortex-a53',
- 'cortex-a72.cortex-a35', 'cortex-a73.cortex-a53',
- 'cortex-a75.cortex-a55'.
- '-mtune=generic-ARCH' specifies that GCC should tune the
- performance for a blend of processors within architecture ARCH.
- The aim is to generate code that run well on the current most
- popular processors, balancing between optimizations that benefit
- some CPUs in the range, and avoiding performance pitfalls of other
- CPUs. The effects of this option may change in future GCC versions
- as CPU models come and go.
- '-mtune' permits the same extension options as '-mcpu', but the
- extension options do not affect the tuning of the generated code.
- '-mtune=native' causes the compiler to auto-detect the CPU of the
- build computer. At present, this feature is only supported on
- GNU/Linux, and not all architectures are recognized. If the
- auto-detect is unsuccessful the option has no effect.
- '-mcpu=NAME[+extension...]'
- This specifies the name of the target ARM processor. GCC uses this
- name to derive the name of the target ARM architecture (as if
- specified by '-march') and the ARM processor type for which to tune
- for performance (as if specified by '-mtune'). Where this option
- is used in conjunction with '-march' or '-mtune', those options
- take precedence over the appropriate part of this option.
- Many of the supported CPUs implement optional architectural
- extensions. Where this is so the architectural extensions are
- normally enabled by default. If implementations that lack the
- extension exist, then the extension syntax can be used to disable
- those extensions that have been omitted. For floating-point and
- Advanced SIMD (Neon) instructions, the settings of the options
- '-mfloat-abi' and '-mfpu' must also be considered: floating-point
- and Advanced SIMD instructions will only be used if '-mfloat-abi'
- is not set to 'soft'; and any setting of '-mfpu' other than 'auto'
- will override the available floating-point and SIMD extension
- instructions.
- For example, 'cortex-a9' can be found in three major
- configurations: integer only, with just a floating-point unit or
- with floating-point and Advanced SIMD. The default is to enable all
- the instructions, but the extensions '+nosimd' and '+nofp' can be
- used to disable just the SIMD or both the SIMD and floating-point
- instructions respectively.
- Permissible names for this option are the same as those for
- '-mtune'.
- The following extension options are common to the listed CPUs:
- '+nodsp'
- Disable the DSP instructions on 'cortex-m33'.
- '+nofp'
- Disables the floating-point instructions on 'arm9e',
- 'arm946e-s', 'arm966e-s', 'arm968e-s', 'arm10e', 'arm1020e',
- 'arm1022e', 'arm926ej-s', 'arm1026ej-s', 'cortex-r5',
- 'cortex-r7', 'cortex-r8', 'cortex-m4', 'cortex-m7' and
- 'cortex-m33'. Disables the floating-point and SIMD
- instructions on 'generic-armv7-a', 'cortex-a5', 'cortex-a7',
- 'cortex-a8', 'cortex-a9', 'cortex-a12', 'cortex-a15',
- 'cortex-a17', 'cortex-a15.cortex-a7', 'cortex-a17.cortex-a7',
- 'cortex-a32', 'cortex-a35', 'cortex-a53' and 'cortex-a55'.
- '+nofp.dp'
- Disables the double-precision component of the floating-point
- instructions on 'cortex-r5', 'cortex-r7', 'cortex-r8',
- 'cortex-r52' and 'cortex-m7'.
- '+nosimd'
- Disables the SIMD (but not floating-point) instructions on
- 'generic-armv7-a', 'cortex-a5', 'cortex-a7' and 'cortex-a9'.
- '+crypto'
- Enables the cryptographic instructions on 'cortex-a32',
- 'cortex-a35', 'cortex-a53', 'cortex-a55', 'cortex-a57',
- 'cortex-a72', 'cortex-a73', 'cortex-a75', 'exynos-m1',
- 'xgene1', 'cortex-a57.cortex-a53', 'cortex-a72.cortex-a53',
- 'cortex-a73.cortex-a35', 'cortex-a73.cortex-a53' and
- 'cortex-a75.cortex-a55'.
- Additionally the 'generic-armv7-a' pseudo target defaults to VFPv3
- with 16 double-precision registers. It supports the following
- extension options: 'mp', 'sec', 'vfpv3-d16', 'vfpv3',
- 'vfpv3-d16-fp16', 'vfpv3-fp16', 'vfpv4-d16', 'vfpv4', 'neon',
- 'neon-vfpv3', 'neon-fp16', 'neon-vfpv4'. The meanings are the same
- as for the extensions to '-march=armv7-a'.
- '-mcpu=generic-ARCH' is also permissible, and is equivalent to
- '-march=ARCH -mtune=generic-ARCH'. See '-mtune' for more
- information.
- '-mcpu=native' causes the compiler to auto-detect the CPU of the
- build computer. At present, this feature is only supported on
- GNU/Linux, and not all architectures are recognized. If the
- auto-detect is unsuccessful the option has no effect.
- '-mfpu=NAME'
- This specifies what floating-point hardware (or hardware emulation)
- is available on the target. Permissible names are: 'auto',
- 'vfpv2', 'vfpv3', 'vfpv3-fp16', 'vfpv3-d16', 'vfpv3-d16-fp16',
- 'vfpv3xd', 'vfpv3xd-fp16', 'neon-vfpv3', 'neon-fp16', 'vfpv4',
- 'vfpv4-d16', 'fpv4-sp-d16', 'neon-vfpv4', 'fpv5-d16',
- 'fpv5-sp-d16', 'fp-armv8', 'neon-fp-armv8' and
- 'crypto-neon-fp-armv8'. Note that 'neon' is an alias for
- 'neon-vfpv3' and 'vfp' is an alias for 'vfpv2'.
- The setting 'auto' is the default and is special. It causes the
- compiler to select the floating-point and Advanced SIMD
- instructions based on the settings of '-mcpu' and '-march'.
- If the selected floating-point hardware includes the NEON extension
- (e.g. '-mfpu=neon'), note that floating-point operations are not
- generated by GCC's auto-vectorization pass unless
- '-funsafe-math-optimizations' is also specified. This is because
- NEON hardware does not fully implement the IEEE 754 standard for
- floating-point arithmetic (in particular denormal values are
- treated as zero), so the use of NEON instructions may lead to a
- loss of precision.
- You can also set the fpu name at function level by using the
- 'target("fpu=")' function attributes (*note ARM Function
- Attributes::) or pragmas (*note Function Specific Option
- Pragmas::).
- '-mfp16-format=NAME'
- Specify the format of the '__fp16' half-precision floating-point
- type. Permissible names are 'none', 'ieee', and 'alternative'; the
- default is 'none', in which case the '__fp16' type is not defined.
- *Note Half-Precision::, for more information.
- '-mstructure-size-boundary=N'
- The sizes of all structures and unions are rounded up to a multiple
- of the number of bits set by this option. Permissible values are
- 8, 32 and 64. The default value varies for different toolchains.
- For the COFF targeted toolchain the default value is 8. A value of
- 64 is only allowed if the underlying ABI supports it.
- Specifying a larger number can produce faster, more efficient code,
- but can also increase the size of the program. Different values
- are potentially incompatible. Code compiled with one value cannot
- necessarily expect to work with code or libraries compiled with
- another value, if they exchange information using structures or
- unions.
- This option is deprecated.
- '-mabort-on-noreturn'
- Generate a call to the function 'abort' at the end of a 'noreturn'
- function. It is executed if the function tries to return.
- '-mlong-calls'
- '-mno-long-calls'
- Tells the compiler to perform function calls by first loading the
- address of the function into a register and then performing a
- subroutine call on this register. This switch is needed if the
- target function lies outside of the 64-megabyte addressing range of
- the offset-based version of subroutine call instruction.
- Even if this switch is enabled, not all function calls are turned
- into long calls. The heuristic is that static functions, functions
- that have the 'short_call' attribute, functions that are inside the
- scope of a '#pragma no_long_calls' directive, and functions whose
- definitions have already been compiled within the current
- compilation unit are not turned into long calls. The exceptions to
- this rule are that weak function definitions, functions with the
- 'long_call' attribute or the 'section' attribute, and functions
- that are within the scope of a '#pragma long_calls' directive are
- always turned into long calls.
- This feature is not enabled by default. Specifying
- '-mno-long-calls' restores the default behavior, as does placing
- the function calls within the scope of a '#pragma long_calls_off'
- directive. Note these switches have no effect on how the compiler
- generates code to handle function calls via function pointers.
- '-msingle-pic-base'
- Treat the register used for PIC addressing as read-only, rather
- than loading it in the prologue for each function. The runtime
- system is responsible for initializing this register with an
- appropriate value before execution begins.
- '-mpic-register=REG'
- Specify the register to be used for PIC addressing. For standard
- PIC base case, the default is any suitable register determined by
- compiler. For single PIC base case, the default is 'R9' if target
- is EABI based or stack-checking is enabled, otherwise the default
- is 'R10'.
- '-mpic-data-is-text-relative'
- Assume that the displacement between the text and data segments is
- fixed at static link time. This permits using PC-relative
- addressing operations to access data known to be in the data
- segment. For non-VxWorks RTP targets, this option is enabled by
- default. When disabled on such targets, it will enable
- '-msingle-pic-base' by default.
- '-mpoke-function-name'
- Write the name of each function into the text section, directly
- preceding the function prologue. The generated code is similar to
- this:
- t0
- .ascii "arm_poke_function_name", 0
- .align
- t1
- .word 0xff000000 + (t1 - t0)
- arm_poke_function_name
- mov ip, sp
- stmfd sp!, {fp, ip, lr, pc}
- sub fp, ip, #4
- When performing a stack backtrace, code can inspect the value of
- 'pc' stored at 'fp + 0'. If the trace function then looks at
- location 'pc - 12' and the top 8 bits are set, then we know that
- there is a function name embedded immediately preceding this
- location and has length '((pc[-3]) & 0xff000000)'.
- '-mthumb'
- '-marm'
- Select between generating code that executes in ARM and Thumb
- states. The default for most configurations is to generate code
- that executes in ARM state, but the default can be changed by
- configuring GCC with the '--with-mode='STATE configure option.
- You can also override the ARM and Thumb mode for each function by
- using the 'target("thumb")' and 'target("arm")' function attributes
- (*note ARM Function Attributes::) or pragmas (*note Function
- Specific Option Pragmas::).
- '-mflip-thumb'
- Switch ARM/Thumb modes on alternating functions. This option is
- provided for regression testing of mixed Thumb/ARM code generation,
- and is not intended for ordinary use in compiling code.
- '-mtpcs-frame'
- Generate a stack frame that is compliant with the Thumb Procedure
- Call Standard for all non-leaf functions. (A leaf function is one
- that does not call any other functions.) The default is
- '-mno-tpcs-frame'.
- '-mtpcs-leaf-frame'
- Generate a stack frame that is compliant with the Thumb Procedure
- Call Standard for all leaf functions. (A leaf function is one that
- does not call any other functions.) The default is
- '-mno-apcs-leaf-frame'.
- '-mcallee-super-interworking'
- Gives all externally visible functions in the file being compiled
- an ARM instruction set header which switches to Thumb mode before
- executing the rest of the function. This allows these functions to
- be called from non-interworking code. This option is not valid in
- AAPCS configurations because interworking is enabled by default.
- '-mcaller-super-interworking'
- Allows calls via function pointers (including virtual functions) to
- execute correctly regardless of whether the target code has been
- compiled for interworking or not. There is a small overhead in the
- cost of executing a function pointer if this option is enabled.
- This option is not valid in AAPCS configurations because
- interworking is enabled by default.
- '-mtp=NAME'
- Specify the access model for the thread local storage pointer. The
- valid models are 'soft', which generates calls to
- '__aeabi_read_tp', 'cp15', which fetches the thread pointer from
- 'cp15' directly (supported in the arm6k architecture), and 'auto',
- which uses the best available method for the selected processor.
- The default setting is 'auto'.
- '-mtls-dialect=DIALECT'
- Specify the dialect to use for accessing thread local storage. Two
- DIALECTs are supported--'gnu' and 'gnu2'. The 'gnu' dialect
- selects the original GNU scheme for supporting local and global
- dynamic TLS models. The 'gnu2' dialect selects the GNU descriptor
- scheme, which provides better performance for shared libraries.
- The GNU descriptor scheme is compatible with the original scheme,
- but does require new assembler, linker and library support.
- Initial and local exec TLS models are unaffected by this option and
- always use the original scheme.
- '-mword-relocations'
- Only generate absolute relocations on word-sized values (i.e.
- R_ARM_ABS32). This is enabled by default on targets (uClinux,
- SymbianOS) where the runtime loader imposes this restriction, and
- when '-fpic' or '-fPIC' is specified.
- '-mfix-cortex-m3-ldrd'
- Some Cortex-M3 cores can cause data corruption when 'ldrd'
- instructions with overlapping destination and base registers are
- used. This option avoids generating these instructions. This
- option is enabled by default when '-mcpu=cortex-m3' is specified.
- '-munaligned-access'
- '-mno-unaligned-access'
- Enables (or disables) reading and writing of 16- and 32- bit values
- from addresses that are not 16- or 32- bit aligned. By default
- unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
- ARMv8-M Baseline architectures, and enabled for all other
- architectures. If unaligned access is not enabled then words in
- packed data structures are accessed a byte at a time.
- The ARM attribute 'Tag_CPU_unaligned_access' is set in the
- generated object file to either true or false, depending upon the
- setting of this option. If unaligned access is enabled then the
- preprocessor symbol '__ARM_FEATURE_UNALIGNED' is also defined.
- '-mneon-for-64bits'
- Enables using Neon to handle scalar 64-bits operations. This is
- disabled by default since the cost of moving data from core
- registers to Neon is high.
- '-mslow-flash-data'
- Assume loading data from flash is slower than fetching instruction.
- Therefore literal load is minimized for better performance. This
- option is only supported when compiling for ARMv7 M-profile and off
- by default.
- '-masm-syntax-unified'
- Assume inline assembler is using unified asm syntax. The default
- is currently off which implies divided syntax. This option has no
- impact on Thumb2. However, this may change in future releases of
- GCC. Divided syntax should be considered deprecated.
- '-mrestrict-it'
- Restricts generation of IT blocks to conform to the rules of
- ARMv8-A. IT blocks can only contain a single 16-bit instruction
- from a select set of instructions. This option is on by default
- for ARMv8-A Thumb mode.
- '-mprint-tune-info'
- Print CPU tuning information as comment in assembler file. This is
- an option used only for regression testing of the compiler and not
- intended for ordinary use in compiling code. This option is
- disabled by default.
- '-mverbose-cost-dump'
- Enable verbose cost model dumping in the debug dump files. This
- option is provided for use in debugging the compiler.
- '-mpure-code'
- Do not allow constant data to be placed in code sections.
- Additionally, when compiling for ELF object format give all text
- sections the ELF processor-specific section attribute
- 'SHF_ARM_PURECODE'. This option is only available when generating
- non-pic code for M-profile targets with the MOVT instruction.
- '-mcmse'
- Generate secure code as per the "ARMv8-M Security Extensions:
- Requirements on Development Tools Engineering Specification", which
- can be found on
- <http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf>.
- File: gcc.info, Node: AVR Options, Next: Blackfin Options, Prev: ARM Options, Up: Submodel Options
- 3.18.5 AVR Options
- ------------------
- These options are defined for AVR implementations:
- '-mmcu=MCU'
- Specify Atmel AVR instruction set architectures (ISA) or MCU type.
- The default for this option is 'avr2'.
- GCC supports the following AVR devices and ISAs:
- 'avr2'
- "Classic" devices with up to 8 KiB of program memory.
- MCU = 'attiny22', 'attiny26', 'at90c8534', 'at90s2313',
- 'at90s2323', 'at90s2333', 'at90s2343', 'at90s4414',
- 'at90s4433', 'at90s4434', 'at90s8515', 'at90s8535'.
- 'avr25'
- "Classic" devices with up to 8 KiB of program memory and with
- the 'MOVW' instruction.
- MCU = 'ata5272', 'ata6616c', 'attiny13', 'attiny13a',
- 'attiny2313', 'attiny2313a', 'attiny24', 'attiny24a',
- 'attiny25', 'attiny261', 'attiny261a', 'attiny43u',
- 'attiny4313', 'attiny44', 'attiny44a', 'attiny441',
- 'attiny45', 'attiny461', 'attiny461a', 'attiny48',
- 'attiny828', 'attiny84', 'attiny84a', 'attiny841', 'attiny85',
- 'attiny861', 'attiny861a', 'attiny87', 'attiny88',
- 'at86rf401'.
- 'avr3'
- "Classic" devices with 16 KiB up to 64 KiB of program memory.
- MCU = 'at43usb355', 'at76c711'.
- 'avr31'
- "Classic" devices with 128 KiB of program memory.
- MCU = 'atmega103', 'at43usb320'.
- 'avr35'
- "Classic" devices with 16 KiB up to 64 KiB of program memory
- and with the 'MOVW' instruction.
- MCU = 'ata5505', 'ata6617c', 'ata664251', 'atmega16u2',
- 'atmega32u2', 'atmega8u2', 'attiny1634', 'attiny167',
- 'at90usb162', 'at90usb82'.
- 'avr4'
- "Enhanced" devices with up to 8 KiB of program memory.
- MCU = 'ata6285', 'ata6286', 'ata6289', 'ata6612c', 'atmega48',
- 'atmega48a', 'atmega48p', 'atmega48pa', 'atmega48pb',
- 'atmega8', 'atmega8a', 'atmega8hva', 'atmega8515',
- 'atmega8535', 'atmega88', 'atmega88a', 'atmega88p',
- 'atmega88pa', 'atmega88pb', 'at90pwm1', 'at90pwm2',
- 'at90pwm2b', 'at90pwm3', 'at90pwm3b', 'at90pwm81'.
- 'avr5'
- "Enhanced" devices with 16 KiB up to 64 KiB of program memory.
- MCU = 'ata5702m322', 'ata5782', 'ata5790', 'ata5790n',
- 'ata5791', 'ata5795', 'ata5831', 'ata6613c', 'ata6614q',
- 'ata8210', 'ata8510', 'atmega16', 'atmega16a', 'atmega16hva',
- 'atmega16hva2', 'atmega16hvb', 'atmega16hvbrevb',
- 'atmega16m1', 'atmega16u4', 'atmega161', 'atmega162',
- 'atmega163', 'atmega164a', 'atmega164p', 'atmega164pa',
- 'atmega165', 'atmega165a', 'atmega165p', 'atmega165pa',
- 'atmega168', 'atmega168a', 'atmega168p', 'atmega168pa',
- 'atmega168pb', 'atmega169', 'atmega169a', 'atmega169p',
- 'atmega169pa', 'atmega32', 'atmega32a', 'atmega32c1',
- 'atmega32hvb', 'atmega32hvbrevb', 'atmega32m1', 'atmega32u4',
- 'atmega32u6', 'atmega323', 'atmega324a', 'atmega324p',
- 'atmega324pa', 'atmega325', 'atmega325a', 'atmega325p',
- 'atmega325pa', 'atmega3250', 'atmega3250a', 'atmega3250p',
- 'atmega3250pa', 'atmega328', 'atmega328p', 'atmega328pb',
- 'atmega329', 'atmega329a', 'atmega329p', 'atmega329pa',
- 'atmega3290', 'atmega3290a', 'atmega3290p', 'atmega3290pa',
- 'atmega406', 'atmega64', 'atmega64a', 'atmega64c1',
- 'atmega64hve', 'atmega64hve2', 'atmega64m1', 'atmega64rfr2',
- 'atmega640', 'atmega644', 'atmega644a', 'atmega644p',
- 'atmega644pa', 'atmega644rfr2', 'atmega645', 'atmega645a',
- 'atmega645p', 'atmega6450', 'atmega6450a', 'atmega6450p',
- 'atmega649', 'atmega649a', 'atmega649p', 'atmega6490',
- 'atmega6490a', 'atmega6490p', 'at90can32', 'at90can64',
- 'at90pwm161', 'at90pwm216', 'at90pwm316', 'at90scr100',
- 'at90usb646', 'at90usb647', 'at94k', 'm3000'.
- 'avr51'
- "Enhanced" devices with 128 KiB of program memory.
- MCU = 'atmega128', 'atmega128a', 'atmega128rfa1',
- 'atmega128rfr2', 'atmega1280', 'atmega1281', 'atmega1284',
- 'atmega1284p', 'atmega1284rfr2', 'at90can128', 'at90usb1286',
- 'at90usb1287'.
- 'avr6'
- "Enhanced" devices with 3-byte PC, i.e. with more than 128 KiB
- of program memory.
- MCU = 'atmega256rfr2', 'atmega2560', 'atmega2561',
- 'atmega2564rfr2'.
- 'avrxmega2'
- "XMEGA" devices with more than 8 KiB and up to 64 KiB of
- program memory.
- MCU = 'atxmega16a4', 'atxmega16a4u', 'atxmega16c4',
- 'atxmega16d4', 'atxmega16e5', 'atxmega32a4', 'atxmega32a4u',
- 'atxmega32c3', 'atxmega32c4', 'atxmega32d3', 'atxmega32d4',
- 'atxmega32e5', 'atxmega8e5'.
- 'avrxmega3'
- "XMEGA" devices with up to 64 KiB of combined program memory
- and RAM, and with program memory visible in the RAM address
- space.
- MCU = 'attiny1614', 'attiny1616', 'attiny1617', 'attiny212',
- 'attiny214', 'attiny3214', 'attiny3216', 'attiny3217',
- 'attiny412', 'attiny414', 'attiny416', 'attiny417',
- 'attiny814', 'attiny816', 'attiny817'.
- 'avrxmega4'
- "XMEGA" devices with more than 64 KiB and up to 128 KiB of
- program memory.
- MCU = 'atxmega64a3', 'atxmega64a3u', 'atxmega64a4u',
- 'atxmega64b1', 'atxmega64b3', 'atxmega64c3', 'atxmega64d3',
- 'atxmega64d4'.
- 'avrxmega5'
- "XMEGA" devices with more than 64 KiB and up to 128 KiB of
- program memory and more than 64 KiB of RAM.
- MCU = 'atxmega64a1', 'atxmega64a1u'.
- 'avrxmega6'
- "XMEGA" devices with more than 128 KiB of program memory.
- MCU = 'atxmega128a3', 'atxmega128a3u', 'atxmega128b1',
- 'atxmega128b3', 'atxmega128c3', 'atxmega128d3',
- 'atxmega128d4', 'atxmega192a3', 'atxmega192a3u',
- 'atxmega192c3', 'atxmega192d3', 'atxmega256a3',
- 'atxmega256a3b', 'atxmega256a3bu', 'atxmega256a3u',
- 'atxmega256c3', 'atxmega256d3', 'atxmega384c3',
- 'atxmega384d3'.
- 'avrxmega7'
- "XMEGA" devices with more than 128 KiB of program memory and
- more than 64 KiB of RAM.
- MCU = 'atxmega128a1', 'atxmega128a1u', 'atxmega128a4u'.
- 'avrtiny'
- "TINY" Tiny core devices with 512 B up to 4 KiB of program
- memory.
- MCU = 'attiny10', 'attiny20', 'attiny4', 'attiny40',
- 'attiny5', 'attiny9'.
- 'avr1'
- This ISA is implemented by the minimal AVR core and supported
- for assembler only.
- MCU = 'attiny11', 'attiny12', 'attiny15', 'attiny28',
- 'at90s1200'.
- '-mabsdata'
- Assume that all data in static storage can be accessed by LDS / STS
- instructions. This option has only an effect on reduced Tiny
- devices like ATtiny40. See also the 'absdata' *note variable
- attribute: AVR Variable Attributes.
- '-maccumulate-args'
- Accumulate outgoing function arguments and acquire/release the
- needed stack space for outgoing function arguments once in function
- prologue/epilogue. Without this option, outgoing arguments are
- pushed before calling a function and popped afterwards.
- Popping the arguments after the function call can be expensive on
- AVR so that accumulating the stack space might lead to smaller
- executables because arguments need not be removed from the stack
- after such a function call.
- This option can lead to reduced code size for functions that
- perform several calls to functions that get their arguments on the
- stack like calls to printf-like functions.
- '-mbranch-cost=COST'
- Set the branch costs for conditional branch instructions to COST.
- Reasonable values for COST are small, non-negative integers. The
- default branch cost is 0.
- '-mcall-prologues'
- Functions prologues/epilogues are expanded as calls to appropriate
- subroutines. Code size is smaller.
- '-mgas-isr-prologues'
- Interrupt service routines (ISRs) may use the '__gcc_isr' pseudo
- instruction supported by GNU Binutils. If this option is on, the
- feature can still be disabled for individual ISRs by means of the
- *note 'no_gccisr': AVR Function Attributes. function attribute.
- This feature is activated per default if optimization is on (but
- not with '-Og', *note Optimize Options::), and if GNU Binutils
- support PR21683 (https://sourceware.org/PR21683).
- '-mint8'
- Assume 'int' to be 8-bit integer. This affects the sizes of all
- types: a 'char' is 1 byte, an 'int' is 1 byte, a 'long' is 2 bytes,
- and 'long long' is 4 bytes. Please note that this option does not
- conform to the C standards, but it results in smaller code size.
- '-mmain-is-OS_task'
- Do not save registers in 'main'. The effect is the same like
- attaching attribute *note 'OS_task': AVR Function Attributes. to
- 'main'. It is activated per default if optimization is on.
- '-mn-flash=NUM'
- Assume that the flash memory has a size of NUM times 64 KiB.
- '-mno-interrupts'
- Generated code is not compatible with hardware interrupts. Code
- size is smaller.
- '-mrelax'
- Try to replace 'CALL' resp. 'JMP' instruction by the shorter
- 'RCALL' resp. 'RJMP' instruction if applicable. Setting '-mrelax'
- just adds the '--mlink-relax' option to the assembler's command
- line and the '--relax' option to the linker's command line.
- Jump relaxing is performed by the linker because jump offsets are
- not known before code is located. Therefore, the assembler code
- generated by the compiler is the same, but the instructions in the
- executable may differ from instructions in the assembler code.
- Relaxing must be turned on if linker stubs are needed, see the
- section on 'EIND' and linker stubs below.
- '-mrmw'
- Assume that the device supports the Read-Modify-Write instructions
- 'XCH', 'LAC', 'LAS' and 'LAT'.
- '-mshort-calls'
- Assume that 'RJMP' and 'RCALL' can target the whole program memory.
- This option is used internally for multilib selection. It is not
- an optimization option, and you don't need to set it by hand.
- '-msp8'
- Treat the stack pointer register as an 8-bit register, i.e. assume
- the high byte of the stack pointer is zero. In general, you don't
- need to set this option by hand.
- This option is used internally by the compiler to select and build
- multilibs for architectures 'avr2' and 'avr25'. These
- architectures mix devices with and without 'SPH'. For any setting
- other than '-mmcu=avr2' or '-mmcu=avr25' the compiler driver adds
- or removes this option from the compiler proper's command line,
- because the compiler then knows if the device or architecture has
- an 8-bit stack pointer and thus no 'SPH' register or not.
- '-mstrict-X'
- Use address register 'X' in a way proposed by the hardware. This
- means that 'X' is only used in indirect, post-increment or
- pre-decrement addressing.
- Without this option, the 'X' register may be used in the same way
- as 'Y' or 'Z' which then is emulated by additional instructions.
- For example, loading a value with 'X+const' addressing with a small
- non-negative 'const < 64' to a register RN is performed as
- adiw r26, const ; X += const
- ld RN, X ; RN = *X
- sbiw r26, const ; X -= const
- '-mtiny-stack'
- Only change the lower 8 bits of the stack pointer.
- '-mfract-convert-truncate'
- Allow to use truncation instead of rounding towards zero for
- fractional fixed-point types.
- '-nodevicelib'
- Don't link against AVR-LibC's device specific library 'lib<mcu>.a'.
- '-Waddr-space-convert'
- Warn about conversions between address spaces in the case where the
- resulting address space is not contained in the incoming address
- space.
- '-Wmisspelled-isr'
- Warn if the ISR is misspelled, i.e. without __vector prefix.
- Enabled by default.
- 3.18.5.1 'EIND' and Devices with More Than 128 Ki Bytes of Flash
- ................................................................
- Pointers in the implementation are 16 bits wide. The address of a
- function or label is represented as word address so that indirect jumps
- and calls can target any code address in the range of 64 Ki words.
- In order to facilitate indirect jump on devices with more than 128 Ki
- bytes of program memory space, there is a special function register
- called 'EIND' that serves as most significant part of the target address
- when 'EICALL' or 'EIJMP' instructions are used.
- Indirect jumps and calls on these devices are handled as follows by the
- compiler and are subject to some limitations:
- * The compiler never sets 'EIND'.
- * The compiler uses 'EIND' implicitly in 'EICALL'/'EIJMP'
- instructions or might read 'EIND' directly in order to emulate an
- indirect call/jump by means of a 'RET' instruction.
- * The compiler assumes that 'EIND' never changes during the startup
- code or during the application. In particular, 'EIND' is not
- saved/restored in function or interrupt service routine
- prologue/epilogue.
- * For indirect calls to functions and computed goto, the linker
- generates _stubs_. Stubs are jump pads sometimes also called
- _trampolines_. Thus, the indirect call/jump jumps to such a stub.
- The stub contains a direct jump to the desired address.
- * Linker relaxation must be turned on so that the linker generates
- the stubs correctly in all situations. See the compiler option
- '-mrelax' and the linker option '--relax'. There are corner cases
- where the linker is supposed to generate stubs but aborts without
- relaxation and without a helpful error message.
- * The default linker script is arranged for code with 'EIND = 0'. If
- code is supposed to work for a setup with 'EIND != 0', a custom
- linker script has to be used in order to place the sections whose
- name start with '.trampolines' into the segment where 'EIND' points
- to.
- * The startup code from libgcc never sets 'EIND'. Notice that
- startup code is a blend of code from libgcc and AVR-LibC. For the
- impact of AVR-LibC on 'EIND', see the
- AVR-LibC user manual (http://nongnu.org/avr-libc/user-manual/).
- * It is legitimate for user-specific startup code to set up 'EIND'
- early, for example by means of initialization code located in
- section '.init3'. Such code runs prior to general startup code
- that initializes RAM and calls constructors, but after the bit of
- startup code from AVR-LibC that sets 'EIND' to the segment where
- the vector table is located.
- #include <avr/io.h>
- static void
- __attribute__((section(".init3"),naked,used,no_instrument_function))
- init3_set_eind (void)
- {
- __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
- "out %i0,r24" :: "n" (&EIND) : "r24","memory");
- }
- The '__trampolines_start' symbol is defined in the linker script.
- * Stubs are generated automatically by the linker if the following
- two conditions are met:
- - The address of a label is taken by means of the 'gs' modifier
- (short for _generate stubs_) like so:
- LDI r24, lo8(gs(FUNC))
- LDI r25, hi8(gs(FUNC))
- - The final location of that label is in a code segment
- _outside_ the segment where the stubs are located.
- * The compiler emits such 'gs' modifiers for code labels in the
- following situations:
- - Taking address of a function or code label.
- - Computed goto.
- - If prologue-save function is used, see '-mcall-prologues'
- command-line option.
- - Switch/case dispatch tables. If you do not want such dispatch
- tables you can specify the '-fno-jump-tables' command-line
- option.
- - C and C++ constructors/destructors called during
- startup/shutdown.
- - If the tools hit a 'gs()' modifier explained above.
- * Jumping to non-symbolic addresses like so is _not_ supported:
- int main (void)
- {
- /* Call function at word address 0x2 */
- return ((int(*)(void)) 0x2)();
- }
- Instead, a stub has to be set up, i.e. the function has to be
- called through a symbol ('func_4' in the example):
- int main (void)
- {
- extern int func_4 (void);
- /* Call function at byte address 0x4 */
- return func_4();
- }
- and the application be linked with '-Wl,--defsym,func_4=0x4'.
- Alternatively, 'func_4' can be defined in the linker script.
- 3.18.5.2 Handling of the 'RAMPD', 'RAMPX', 'RAMPY' and 'RAMPZ' Special Function Registers
- .........................................................................................
- Some AVR devices support memories larger than the 64 KiB range that can
- be accessed with 16-bit pointers. To access memory locations outside
- this 64 KiB range, the content of a 'RAMP' register is used as high part
- of the address: The 'X', 'Y', 'Z' address register is concatenated with
- the 'RAMPX', 'RAMPY', 'RAMPZ' special function register, respectively,
- to get a wide address. Similarly, 'RAMPD' is used together with direct
- addressing.
- * The startup code initializes the 'RAMP' special function registers
- with zero.
- * If a *note named address space: AVR Named Address Spaces. other
- than generic or '__flash' is used, then 'RAMPZ' is set as needed
- before the operation.
- * If the device supports RAM larger than 64 KiB and the compiler
- needs to change 'RAMPZ' to accomplish an operation, 'RAMPZ' is
- reset to zero after the operation.
- * If the device comes with a specific 'RAMP' register, the ISR
- prologue/epilogue saves/restores that SFR and initializes it with
- zero in case the ISR code might (implicitly) use it.
- * RAM larger than 64 KiB is not supported by GCC for AVR targets. If
- you use inline assembler to read from locations outside the 16-bit
- address range and change one of the 'RAMP' registers, you must
- reset it to zero after the access.
- 3.18.5.3 AVR Built-in Macros
- ............................
- GCC defines several built-in macros so that the user code can test for
- the presence or absence of features. Almost any of the following
- built-in macros are deduced from device capabilities and thus triggered
- by the '-mmcu=' command-line option.
- For even more AVR-specific built-in macros see *note AVR Named Address
- Spaces:: and *note AVR Built-in Functions::.
- '__AVR_ARCH__'
- Build-in macro that resolves to a decimal number that identifies
- the architecture and depends on the '-mmcu=MCU' option. Possible
- values are:
- '2', '25', '3', '31', '35', '4', '5', '51', '6'
- for MCU='avr2', 'avr25', 'avr3', 'avr31', 'avr35', 'avr4', 'avr5',
- 'avr51', 'avr6',
- respectively and
- '100', '102', '103', '104', '105', '106', '107'
- for MCU='avrtiny', 'avrxmega2', 'avrxmega3', 'avrxmega4',
- 'avrxmega5', 'avrxmega6', 'avrxmega7', respectively. If MCU
- specifies a device, this built-in macro is set accordingly. For
- example, with '-mmcu=atmega8' the macro is defined to '4'.
- '__AVR_DEVICE__'
- Setting '-mmcu=DEVICE' defines this built-in macro which reflects
- the device's name. For example, '-mmcu=atmega8' defines the
- built-in macro '__AVR_ATmega8__', '-mmcu=attiny261a' defines
- '__AVR_ATtiny261A__', etc.
- The built-in macros' names follow the scheme '__AVR_DEVICE__' where
- DEVICE is the device name as from the AVR user manual. The
- difference between DEVICE in the built-in macro and DEVICE in
- '-mmcu=DEVICE' is that the latter is always lowercase.
- If DEVICE is not a device but only a core architecture like
- 'avr51', this macro is not defined.
- '__AVR_DEVICE_NAME__'
- Setting '-mmcu=DEVICE' defines this built-in macro to the device's
- name. For example, with '-mmcu=atmega8' the macro is defined to
- 'atmega8'.
- If DEVICE is not a device but only a core architecture like
- 'avr51', this macro is not defined.
- '__AVR_XMEGA__'
- The device / architecture belongs to the XMEGA family of devices.
- '__AVR_HAVE_ELPM__'
- The device has the 'ELPM' instruction.
- '__AVR_HAVE_ELPMX__'
- The device has the 'ELPM RN,Z' and 'ELPM RN,Z+' instructions.
- '__AVR_HAVE_MOVW__'
- The device has the 'MOVW' instruction to perform 16-bit
- register-register moves.
- '__AVR_HAVE_LPMX__'
- The device has the 'LPM RN,Z' and 'LPM RN,Z+' instructions.
- '__AVR_HAVE_MUL__'
- The device has a hardware multiplier.
- '__AVR_HAVE_JMP_CALL__'
- The device has the 'JMP' and 'CALL' instructions. This is the case
- for devices with more than 8 KiB of program memory.
- '__AVR_HAVE_EIJMP_EICALL__'
- '__AVR_3_BYTE_PC__'
- The device has the 'EIJMP' and 'EICALL' instructions. This is the
- case for devices with more than 128 KiB of program memory. This
- also means that the program counter (PC) is 3 bytes wide.
- '__AVR_2_BYTE_PC__'
- The program counter (PC) is 2 bytes wide. This is the case for
- devices with up to 128 KiB of program memory.
- '__AVR_HAVE_8BIT_SP__'
- '__AVR_HAVE_16BIT_SP__'
- The stack pointer (SP) register is treated as 8-bit respectively
- 16-bit register by the compiler. The definition of these macros is
- affected by '-mtiny-stack'.
- '__AVR_HAVE_SPH__'
- '__AVR_SP8__'
- The device has the SPH (high part of stack pointer) special
- function register or has an 8-bit stack pointer, respectively. The
- definition of these macros is affected by '-mmcu=' and in the cases
- of '-mmcu=avr2' and '-mmcu=avr25' also by '-msp8'.
- '__AVR_HAVE_RAMPD__'
- '__AVR_HAVE_RAMPX__'
- '__AVR_HAVE_RAMPY__'
- '__AVR_HAVE_RAMPZ__'
- The device has the 'RAMPD', 'RAMPX', 'RAMPY', 'RAMPZ' special
- function register, respectively.
- '__NO_INTERRUPTS__'
- This macro reflects the '-mno-interrupts' command-line option.
- '__AVR_ERRATA_SKIP__'
- '__AVR_ERRATA_SKIP_JMP_CALL__'
- Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
- instructions because of a hardware erratum. Skip instructions are
- 'SBRS', 'SBRC', 'SBIS', 'SBIC' and 'CPSE'. The second macro is
- only defined if '__AVR_HAVE_JMP_CALL__' is also set.
- '__AVR_ISA_RMW__'
- The device has Read-Modify-Write instructions (XCH, LAC, LAS and
- LAT).
- '__AVR_SFR_OFFSET__=OFFSET'
- Instructions that can address I/O special function registers
- directly like 'IN', 'OUT', 'SBI', etc. may use a different address
- as if addressed by an instruction to access RAM like 'LD' or 'STS'.
- This offset depends on the device architecture and has to be
- subtracted from the RAM address in order to get the respective
- I/O address.
- '__AVR_SHORT_CALLS__'
- The '-mshort-calls' command line option is set.
- '__AVR_PM_BASE_ADDRESS__=ADDR'
- Some devices support reading from flash memory by means of 'LD*'
- instructions. The flash memory is seen in the data address space
- at an offset of '__AVR_PM_BASE_ADDRESS__'. If this macro is not
- defined, this feature is not available. If defined, the address
- space is linear and there is no need to put '.rodata' into RAM.
- This is handled by the default linker description file, and is
- currently available for 'avrtiny' and 'avrxmega3'. Even more
- convenient, there is no need to use address spaces like '__flash'
- or features like attribute 'progmem' and 'pgm_read_*'.
- '__WITH_AVRLIBC__'
- The compiler is configured to be used together with AVR-Libc. See
- the '--with-avrlibc' configure option.
- File: gcc.info, Node: Blackfin Options, Next: C6X Options, Prev: AVR Options, Up: Submodel Options
- 3.18.6 Blackfin Options
- -----------------------
- '-mcpu=CPU[-SIREVISION]'
- Specifies the name of the target Blackfin processor. Currently,
- CPU can be one of 'bf512', 'bf514', 'bf516', 'bf518', 'bf522',
- 'bf523', 'bf524', 'bf525', 'bf526', 'bf527', 'bf531', 'bf532',
- 'bf533', 'bf534', 'bf536', 'bf537', 'bf538', 'bf539', 'bf542',
- 'bf544', 'bf547', 'bf548', 'bf549', 'bf542m', 'bf544m', 'bf547m',
- 'bf548m', 'bf549m', 'bf561', 'bf592'.
- The optional SIREVISION specifies the silicon revision of the
- target Blackfin processor. Any workarounds available for the
- targeted silicon revision are enabled. If SIREVISION is 'none', no
- workarounds are enabled. If SIREVISION is 'any', all workarounds
- for the targeted processor are enabled. The '__SILICON_REVISION__'
- macro is defined to two hexadecimal digits representing the major
- and minor numbers in the silicon revision. If SIREVISION is
- 'none', the '__SILICON_REVISION__' is not defined. If SIREVISION
- is 'any', the '__SILICON_REVISION__' is defined to be '0xffff'. If
- this optional SIREVISION is not used, GCC assumes the latest known
- silicon revision of the targeted Blackfin processor.
- GCC defines a preprocessor macro for the specified CPU. For the
- 'bfin-elf' toolchain, this option causes the hardware BSP provided
- by libgloss to be linked in if '-msim' is not given.
- Without this option, 'bf532' is used as the processor by default.
- Note that support for 'bf561' is incomplete. For 'bf561', only the
- preprocessor macro is defined.
- '-msim'
- Specifies that the program will be run on the simulator. This
- causes the simulator BSP provided by libgloss to be linked in.
- This option has effect only for 'bfin-elf' toolchain. Certain
- other options, such as '-mid-shared-library' and '-mfdpic', imply
- '-msim'.
- '-momit-leaf-frame-pointer'
- Don't keep the frame pointer in a register for leaf functions.
- This avoids the instructions to save, set up and restore frame
- pointers and makes an extra register available in leaf functions.
- '-mspecld-anomaly'
- When enabled, the compiler ensures that the generated code does not
- contain speculative loads after jump instructions. If this option
- is used, '__WORKAROUND_SPECULATIVE_LOADS' is defined.
- '-mno-specld-anomaly'
- Don't generate extra code to prevent speculative loads from
- occurring.
- '-mcsync-anomaly'
- When enabled, the compiler ensures that the generated code does not
- contain CSYNC or SSYNC instructions too soon after conditional
- branches. If this option is used, '__WORKAROUND_SPECULATIVE_SYNCS'
- is defined.
- '-mno-csync-anomaly'
- Don't generate extra code to prevent CSYNC or SSYNC instructions
- from occurring too soon after a conditional branch.
- '-mlow-64k'
- When enabled, the compiler is free to take advantage of the
- knowledge that the entire program fits into the low 64k of memory.
- '-mno-low-64k'
- Assume that the program is arbitrarily large. This is the default.
- '-mstack-check-l1'
- Do stack checking using information placed into L1 scratchpad
- memory by the uClinux kernel.
- '-mid-shared-library'
- Generate code that supports shared libraries via the library ID
- method. This allows for execute in place and shared libraries in
- an environment without virtual memory management. This option
- implies '-fPIC'. With a 'bfin-elf' target, this option implies
- '-msim'.
- '-mno-id-shared-library'
- Generate code that doesn't assume ID-based shared libraries are
- being used. This is the default.
- '-mleaf-id-shared-library'
- Generate code that supports shared libraries via the library ID
- method, but assumes that this library or executable won't link
- against any other ID shared libraries. That allows the compiler to
- use faster code for jumps and calls.
- '-mno-leaf-id-shared-library'
- Do not assume that the code being compiled won't link against any
- ID shared libraries. Slower code is generated for jump and call
- insns.
- '-mshared-library-id=n'
- Specifies the identification number of the ID-based shared library
- being compiled. Specifying a value of 0 generates more compact
- code; specifying other values forces the allocation of that number
- to the current library but is no more space- or time-efficient than
- omitting this option.
- '-msep-data'
- Generate code that allows the data segment to be located in a
- different area of memory from the text segment. This allows for
- execute in place in an environment without virtual memory
- management by eliminating relocations against the text section.
- '-mno-sep-data'
- Generate code that assumes that the data segment follows the text
- segment. This is the default.
- '-mlong-calls'
- '-mno-long-calls'
- Tells the compiler to perform function calls by first loading the
- address of the function into a register and then performing a
- subroutine call on this register. This switch is needed if the
- target function lies outside of the 24-bit addressing range of the
- offset-based version of subroutine call instruction.
- This feature is not enabled by default. Specifying
- '-mno-long-calls' restores the default behavior. Note these
- switches have no effect on how the compiler generates code to
- handle function calls via function pointers.
- '-mfast-fp'
- Link with the fast floating-point library. This library relaxes
- some of the IEEE floating-point standard's rules for checking
- inputs against Not-a-Number (NAN), in the interest of performance.
- '-minline-plt'
- Enable inlining of PLT entries in function calls to functions that
- are not known to bind locally. It has no effect without '-mfdpic'.
- '-mmulticore'
- Build a standalone application for multicore Blackfin processors.
- This option causes proper start files and link scripts supporting
- multicore to be used, and defines the macro '__BFIN_MULTICORE'. It
- can only be used with '-mcpu=bf561[-SIREVISION]'.
- This option can be used with '-mcorea' or '-mcoreb', which selects
- the one-application-per-core programming model. Without '-mcorea'
- or '-mcoreb', the single-application/dual-core programming model is
- used. In this model, the main function of Core B should be named
- as 'coreb_main'.
- If this option is not used, the single-core application programming
- model is used.
- '-mcorea'
- Build a standalone application for Core A of BF561 when using the
- one-application-per-core programming model. Proper start files and
- link scripts are used to support Core A, and the macro
- '__BFIN_COREA' is defined. This option can only be used in
- conjunction with '-mmulticore'.
- '-mcoreb'
- Build a standalone application for Core B of BF561 when using the
- one-application-per-core programming model. Proper start files and
- link scripts are used to support Core B, and the macro
- '__BFIN_COREB' is defined. When this option is used, 'coreb_main'
- should be used instead of 'main'. This option can only be used in
- conjunction with '-mmulticore'.
- '-msdram'
- Build a standalone application for SDRAM. Proper start files and
- link scripts are used to put the application into SDRAM, and the
- macro '__BFIN_SDRAM' is defined. The loader should initialize
- SDRAM before loading the application.
- '-micplb'
- Assume that ICPLBs are enabled at run time. This has an effect on
- certain anomaly workarounds. For Linux targets, the default is to
- assume ICPLBs are enabled; for standalone applications the default
- is off.
- File: gcc.info, Node: C6X Options, Next: CRIS Options, Prev: Blackfin Options, Up: Submodel Options
- 3.18.7 C6X Options
- ------------------
- '-march=NAME'
- This specifies the name of the target architecture. GCC uses this
- name to determine what kind of instructions it can emit when
- generating assembly code. Permissible names are: 'c62x', 'c64x',
- 'c64x+', 'c67x', 'c67x+', 'c674x'.
- '-mbig-endian'
- Generate code for a big-endian target.
- '-mlittle-endian'
- Generate code for a little-endian target. This is the default.
- '-msim'
- Choose startup files and linker script suitable for the simulator.
- '-msdata=default'
- Put small global and static data in the '.neardata' section, which
- is pointed to by register 'B14'. Put small uninitialized global
- and static data in the '.bss' section, which is adjacent to the
- '.neardata' section. Put small read-only data into the '.rodata'
- section. The corresponding sections used for large pieces of data
- are '.fardata', '.far' and '.const'.
- '-msdata=all'
- Put all data, not just small objects, into the sections reserved
- for small data, and use addressing relative to the 'B14' register
- to access them.
- '-msdata=none'
- Make no use of the sections reserved for small data, and use
- absolute addresses to access all data. Put all initialized global
- and static data in the '.fardata' section, and all uninitialized
- data in the '.far' section. Put all constant data into the
- '.const' section.
- File: gcc.info, Node: CRIS Options, Next: CR16 Options, Prev: C6X Options, Up: Submodel Options
- 3.18.8 CRIS Options
- -------------------
- These options are defined specifically for the CRIS ports.
- '-march=ARCHITECTURE-TYPE'
- '-mcpu=ARCHITECTURE-TYPE'
- Generate code for the specified architecture. The choices for
- ARCHITECTURE-TYPE are 'v3', 'v8' and 'v10' for respectively
- ETRAX 4, ETRAX 100, and ETRAX 100 LX. Default is 'v0' except for
- cris-axis-linux-gnu, where the default is 'v10'.
- '-mtune=ARCHITECTURE-TYPE'
- Tune to ARCHITECTURE-TYPE everything applicable about the generated
- code, except for the ABI and the set of available instructions.
- The choices for ARCHITECTURE-TYPE are the same as for
- '-march=ARCHITECTURE-TYPE'.
- '-mmax-stack-frame=N'
- Warn when the stack frame of a function exceeds N bytes.
- '-metrax4'
- '-metrax100'
- The options '-metrax4' and '-metrax100' are synonyms for
- '-march=v3' and '-march=v8' respectively.
- '-mmul-bug-workaround'
- '-mno-mul-bug-workaround'
- Work around a bug in the 'muls' and 'mulu' instructions for CPU
- models where it applies. This option is active by default.
- '-mpdebug'
- Enable CRIS-specific verbose debug-related information in the
- assembly code. This option also has the effect of turning off the
- '#NO_APP' formatted-code indicator to the assembler at the
- beginning of the assembly file.
- '-mcc-init'
- Do not use condition-code results from previous instruction; always
- emit compare and test instructions before use of condition codes.
- '-mno-side-effects'
- Do not emit instructions with side effects in addressing modes
- other than post-increment.
- '-mstack-align'
- '-mno-stack-align'
- '-mdata-align'
- '-mno-data-align'
- '-mconst-align'
- '-mno-const-align'
- These options ('no-' options) arrange (eliminate arrangements) for
- the stack frame, individual data and constants to be aligned for
- the maximum single data access size for the chosen CPU model. The
- default is to arrange for 32-bit alignment. ABI details such as
- structure layout are not affected by these options.
- '-m32-bit'
- '-m16-bit'
- '-m8-bit'
- Similar to the stack- data- and const-align options above, these
- options arrange for stack frame, writable data and constants to all
- be 32-bit, 16-bit or 8-bit aligned. The default is 32-bit
- alignment.
- '-mno-prologue-epilogue'
- '-mprologue-epilogue'
- With '-mno-prologue-epilogue', the normal function prologue and
- epilogue which set up the stack frame are omitted and no return
- instructions or return sequences are generated in the code. Use
- this option only together with visual inspection of the compiled
- code: no warnings or errors are generated when call-saved registers
- must be saved, or storage for local variables needs to be
- allocated.
- '-mno-gotplt'
- '-mgotplt'
- With '-fpic' and '-fPIC', don't generate (do generate) instruction
- sequences that load addresses for functions from the PLT part of
- the GOT rather than (traditional on other architectures) calls to
- the PLT. The default is '-mgotplt'.
- '-melf'
- Legacy no-op option only recognized with the cris-axis-elf and
- cris-axis-linux-gnu targets.
- '-mlinux'
- Legacy no-op option only recognized with the cris-axis-linux-gnu
- target.
- '-sim'
- This option, recognized for the cris-axis-elf, arranges to link
- with input-output functions from a simulator library. Code,
- initialized data and zero-initialized data are allocated
- consecutively.
- '-sim2'
- Like '-sim', but pass linker options to locate initialized data at
- 0x40000000 and zero-initialized data at 0x80000000.
- File: gcc.info, Node: CR16 Options, Next: Darwin Options, Prev: CRIS Options, Up: Submodel Options
- 3.18.9 CR16 Options
- -------------------
- These options are defined specifically for the CR16 ports.
- '-mmac'
- Enable the use of multiply-accumulate instructions. Disabled by
- default.
- '-mcr16cplus'
- '-mcr16c'
- Generate code for CR16C or CR16C+ architecture. CR16C+
- architecture is default.
- '-msim'
- Links the library libsim.a which is in compatible with simulator.
- Applicable to ELF compiler only.
- '-mint32'
- Choose integer type as 32-bit wide.
- '-mbit-ops'
- Generates 'sbit'/'cbit' instructions for bit manipulations.
- '-mdata-model=MODEL'
- Choose a data model. The choices for MODEL are 'near', 'far' or
- 'medium'. 'medium' is default. However, 'far' is not valid with
- '-mcr16c', as the CR16C architecture does not support the far data
- model.
- File: gcc.info, Node: Darwin Options, Next: DEC Alpha Options, Prev: CR16 Options, Up: Submodel Options
- 3.18.10 Darwin Options
- ----------------------
- These options are defined for all architectures running the Darwin
- operating system.
- FSF GCC on Darwin does not create "fat" object files; it creates an
- object file for the single architecture that GCC was built to target.
- Apple's GCC on Darwin does create "fat" files if multiple '-arch'
- options are used; it does so by running the compiler or linker multiple
- times and joining the results together with 'lipo'.
- The subtype of the file created (like 'ppc7400' or 'ppc970' or 'i686')
- is determined by the flags that specify the ISA that GCC is targeting,
- like '-mcpu' or '-march'. The '-force_cpusubtype_ALL' option can be
- used to override this.
- The Darwin tools vary in their behavior when presented with an ISA
- mismatch. The assembler, 'as', only permits instructions to be used
- that are valid for the subtype of the file it is generating, so you
- cannot put 64-bit instructions in a 'ppc750' object file. The linker
- for shared libraries, '/usr/bin/libtool', fails and prints an error if
- asked to create a shared library with a less restrictive subtype than
- its input files (for instance, trying to put a 'ppc970' object file in a
- 'ppc7400' library). The linker for executables, 'ld', quietly gives the
- executable the most restrictive subtype of any of its input files.
- '-FDIR'
- Add the framework directory DIR to the head of the list of
- directories to be searched for header files. These directories are
- interleaved with those specified by '-I' options and are scanned in
- a left-to-right order.
- A framework directory is a directory with frameworks in it. A
- framework is a directory with a 'Headers' and/or 'PrivateHeaders'
- directory contained directly in it that ends in '.framework'. The
- name of a framework is the name of this directory excluding the
- '.framework'. Headers associated with the framework are found in
- one of those two directories, with 'Headers' being searched first.
- A subframework is a framework directory that is in a framework's
- 'Frameworks' directory. Includes of subframework headers can only
- appear in a header of a framework that contains the subframework,
- or in a sibling subframework header. Two subframeworks are
- siblings if they occur in the same framework. A subframework
- should not have the same name as a framework; a warning is issued
- if this is violated. Currently a subframework cannot have
- subframeworks; in the future, the mechanism may be extended to
- support this. The standard frameworks can be found in
- '/System/Library/Frameworks' and '/Library/Frameworks'. An example
- include looks like '#include <Framework/header.h>', where
- 'Framework' denotes the name of the framework and 'header.h' is
- found in the 'PrivateHeaders' or 'Headers' directory.
- '-iframeworkDIR'
- Like '-F' except the directory is a treated as a system directory.
- The main difference between this '-iframework' and '-F' is that
- with '-iframework' the compiler does not warn about constructs
- contained within header files found via DIR. This option is valid
- only for the C family of languages.
- '-gused'
- Emit debugging information for symbols that are used. For stabs
- debugging format, this enables '-feliminate-unused-debug-symbols'.
- This is by default ON.
- '-gfull'
- Emit debugging information for all symbols and types.
- '-mmacosx-version-min=VERSION'
- The earliest version of MacOS X that this executable will run on is
- VERSION. Typical values of VERSION include '10.1', '10.2', and
- '10.3.9'.
- If the compiler was built to use the system's headers by default,
- then the default for this option is the system version on which the
- compiler is running, otherwise the default is to make choices that
- are compatible with as many systems and code bases as possible.
- '-mkernel'
- Enable kernel development mode. The '-mkernel' option sets
- '-static', '-fno-common', '-fno-use-cxa-atexit', '-fno-exceptions',
- '-fno-non-call-exceptions', '-fapple-kext', '-fno-weak' and
- '-fno-rtti' where applicable. This mode also sets '-mno-altivec',
- '-msoft-float', '-fno-builtin' and '-mlong-branch' for PowerPC
- targets.
- '-mone-byte-bool'
- Override the defaults for 'bool' so that 'sizeof(bool)==1'. By
- default 'sizeof(bool)' is '4' when compiling for Darwin/PowerPC and
- '1' when compiling for Darwin/x86, so this option has no effect on
- x86.
- *Warning:* The '-mone-byte-bool' switch causes GCC to generate code
- that is not binary compatible with code generated without that
- switch. Using this switch may require recompiling all other
- modules in a program, including system libraries. Use this switch
- to conform to a non-default data model.
- '-mfix-and-continue'
- '-ffix-and-continue'
- '-findirect-data'
- Generate code suitable for fast turnaround development, such as to
- allow GDB to dynamically load '.o' files into already-running
- programs. '-findirect-data' and '-ffix-and-continue' are provided
- for backwards compatibility.
- '-all_load'
- Loads all members of static archive libraries. See man ld(1) for
- more information.
- '-arch_errors_fatal'
- Cause the errors having to do with files that have the wrong
- architecture to be fatal.
- '-bind_at_load'
- Causes the output file to be marked such that the dynamic linker
- will bind all undefined references when the file is loaded or
- launched.
- '-bundle'
- Produce a Mach-o bundle format file. See man ld(1) for more
- information.
- '-bundle_loader EXECUTABLE'
- This option specifies the EXECUTABLE that will load the build
- output file being linked. See man ld(1) for more information.
- '-dynamiclib'
- When passed this option, GCC produces a dynamic library instead of
- an executable when linking, using the Darwin 'libtool' command.
- '-force_cpusubtype_ALL'
- This causes GCC's output file to have the 'ALL' subtype, instead of
- one controlled by the '-mcpu' or '-march' option.
- '-allowable_client CLIENT_NAME'
- '-client_name'
- '-compatibility_version'
- '-current_version'
- '-dead_strip'
- '-dependency-file'
- '-dylib_file'
- '-dylinker_install_name'
- '-dynamic'
- '-exported_symbols_list'
- '-filelist'
- '-flat_namespace'
- '-force_flat_namespace'
- '-headerpad_max_install_names'
- '-image_base'
- '-init'
- '-install_name'
- '-keep_private_externs'
- '-multi_module'
- '-multiply_defined'
- '-multiply_defined_unused'
- '-noall_load'
- '-no_dead_strip_inits_and_terms'
- '-nofixprebinding'
- '-nomultidefs'
- '-noprebind'
- '-noseglinkedit'
- '-pagezero_size'
- '-prebind'
- '-prebind_all_twolevel_modules'
- '-private_bundle'
- '-read_only_relocs'
- '-sectalign'
- '-sectobjectsymbols'
- '-whyload'
- '-seg1addr'
- '-sectcreate'
- '-sectobjectsymbols'
- '-sectorder'
- '-segaddr'
- '-segs_read_only_addr'
- '-segs_read_write_addr'
- '-seg_addr_table'
- '-seg_addr_table_filename'
- '-seglinkedit'
- '-segprot'
- '-segs_read_only_addr'
- '-segs_read_write_addr'
- '-single_module'
- '-static'
- '-sub_library'
- '-sub_umbrella'
- '-twolevel_namespace'
- '-umbrella'
- '-undefined'
- '-unexported_symbols_list'
- '-weak_reference_mismatches'
- '-whatsloaded'
- These options are passed to the Darwin linker. The Darwin linker
- man page describes them in detail.
- File: gcc.info, Node: DEC Alpha Options, Next: FR30 Options, Prev: Darwin Options, Up: Submodel Options
- 3.18.11 DEC Alpha Options
- -------------------------
- These '-m' options are defined for the DEC Alpha implementations:
- '-mno-soft-float'
- '-msoft-float'
- Use (do not use) the hardware floating-point instructions for
- floating-point operations. When '-msoft-float' is specified,
- functions in 'libgcc.a' are used to perform floating-point
- operations. Unless they are replaced by routines that emulate the
- floating-point operations, or compiled in such a way as to call
- such emulations routines, these routines issue floating-point
- operations. If you are compiling for an Alpha without
- floating-point operations, you must ensure that the library is
- built so as not to call them.
- Note that Alpha implementations without floating-point operations
- are required to have floating-point registers.
- '-mfp-reg'
- '-mno-fp-regs'
- Generate code that uses (does not use) the floating-point register
- set. '-mno-fp-regs' implies '-msoft-float'. If the floating-point
- register set is not used, floating-point operands are passed in
- integer registers as if they were integers and floating-point
- results are passed in '$0' instead of '$f0'. This is a
- non-standard calling sequence, so any function with a
- floating-point argument or return value called by code compiled
- with '-mno-fp-regs' must also be compiled with that option.
- A typical use of this option is building a kernel that does not
- use, and hence need not save and restore, any floating-point
- registers.
- '-mieee'
- The Alpha architecture implements floating-point hardware optimized
- for maximum performance. It is mostly compliant with the IEEE
- floating-point standard. However, for full compliance, software
- assistance is required. This option generates code fully
- IEEE-compliant code _except_ that the INEXACT-FLAG is not
- maintained (see below). If this option is turned on, the
- preprocessor macro '_IEEE_FP' is defined during compilation. The
- resulting code is less efficient but is able to correctly support
- denormalized numbers and exceptional IEEE values such as
- not-a-number and plus/minus infinity. Other Alpha compilers call
- this option '-ieee_with_no_inexact'.
- '-mieee-with-inexact'
- This is like '-mieee' except the generated code also maintains the
- IEEE INEXACT-FLAG. Turning on this option causes the generated
- code to implement fully-compliant IEEE math. In addition to
- '_IEEE_FP', '_IEEE_FP_EXACT' is defined as a preprocessor macro.
- On some Alpha implementations the resulting code may execute
- significantly slower than the code generated by default. Since
- there is very little code that depends on the INEXACT-FLAG, you
- should normally not specify this option. Other Alpha compilers
- call this option '-ieee_with_inexact'.
- '-mfp-trap-mode=TRAP-MODE'
- This option controls what floating-point related traps are enabled.
- Other Alpha compilers call this option '-fptm TRAP-MODE'. The trap
- mode can be set to one of four values:
- 'n'
- This is the default (normal) setting. The only traps that are
- enabled are the ones that cannot be disabled in software
- (e.g., division by zero trap).
- 'u'
- In addition to the traps enabled by 'n', underflow traps are
- enabled as well.
- 'su'
- Like 'u', but the instructions are marked to be safe for
- software completion (see Alpha architecture manual for
- details).
- 'sui'
- Like 'su', but inexact traps are enabled as well.
- '-mfp-rounding-mode=ROUNDING-MODE'
- Selects the IEEE rounding mode. Other Alpha compilers call this
- option '-fprm ROUNDING-MODE'. The ROUNDING-MODE can be one of:
- 'n'
- Normal IEEE rounding mode. Floating-point numbers are rounded
- towards the nearest machine number or towards the even machine
- number in case of a tie.
- 'm'
- Round towards minus infinity.
- 'c'
- Chopped rounding mode. Floating-point numbers are rounded
- towards zero.
- 'd'
- Dynamic rounding mode. A field in the floating-point control
- register (FPCR, see Alpha architecture reference manual)
- controls the rounding mode in effect. The C library
- initializes this register for rounding towards plus infinity.
- Thus, unless your program modifies the FPCR, 'd' corresponds
- to round towards plus infinity.
- '-mtrap-precision=TRAP-PRECISION'
- In the Alpha architecture, floating-point traps are imprecise.
- This means without software assistance it is impossible to recover
- from a floating trap and program execution normally needs to be
- terminated. GCC can generate code that can assist operating system
- trap handlers in determining the exact location that caused a
- floating-point trap. Depending on the requirements of an
- application, different levels of precisions can be selected:
- 'p'
- Program precision. This option is the default and means a
- trap handler can only identify which program caused a
- floating-point exception.
- 'f'
- Function precision. The trap handler can determine the
- function that caused a floating-point exception.
- 'i'
- Instruction precision. The trap handler can determine the
- exact instruction that caused a floating-point exception.
- Other Alpha compilers provide the equivalent options called
- '-scope_safe' and '-resumption_safe'.
- '-mieee-conformant'
- This option marks the generated code as IEEE conformant. You must
- not use this option unless you also specify '-mtrap-precision=i'
- and either '-mfp-trap-mode=su' or '-mfp-trap-mode=sui'. Its only
- effect is to emit the line '.eflag 48' in the function prologue of
- the generated assembly file.
- '-mbuild-constants'
- Normally GCC examines a 32- or 64-bit integer constant to see if it
- can construct it from smaller constants in two or three
- instructions. If it cannot, it outputs the constant as a literal
- and generates code to load it from the data segment at run time.
- Use this option to require GCC to construct _all_ integer constants
- using code, even if it takes more instructions (the maximum is
- six).
- You typically use this option to build a shared library dynamic
- loader. Itself a shared library, it must relocate itself in memory
- before it can find the variables and constants in its own data
- segment.
- '-mbwx'
- '-mno-bwx'
- '-mcix'
- '-mno-cix'
- '-mfix'
- '-mno-fix'
- '-mmax'
- '-mno-max'
- Indicate whether GCC should generate code to use the optional BWX,
- CIX, FIX and MAX instruction sets. The default is to use the
- instruction sets supported by the CPU type specified via '-mcpu='
- option or that of the CPU on which GCC was built if none is
- specified.
- '-mfloat-vax'
- '-mfloat-ieee'
- Generate code that uses (does not use) VAX F and G floating-point
- arithmetic instead of IEEE single and double precision.
- '-mexplicit-relocs'
- '-mno-explicit-relocs'
- Older Alpha assemblers provided no way to generate symbol
- relocations except via assembler macros. Use of these macros does
- not allow optimal instruction scheduling. GNU binutils as of
- version 2.12 supports a new syntax that allows the compiler to
- explicitly mark which relocations should apply to which
- instructions. This option is mostly useful for debugging, as GCC
- detects the capabilities of the assembler when it is built and sets
- the default accordingly.
- '-msmall-data'
- '-mlarge-data'
- When '-mexplicit-relocs' is in effect, static data is accessed via
- "gp-relative" relocations. When '-msmall-data' is used, objects 8
- bytes long or smaller are placed in a "small data area" (the
- '.sdata' and '.sbss' sections) and are accessed via 16-bit
- relocations off of the '$gp' register. This limits the size of the
- small data area to 64KB, but allows the variables to be directly
- accessed via a single instruction.
- The default is '-mlarge-data'. With this option the data area is
- limited to just below 2GB. Programs that require more than 2GB of
- data must use 'malloc' or 'mmap' to allocate the data in the heap
- instead of in the program's data segment.
- When generating code for shared libraries, '-fpic' implies
- '-msmall-data' and '-fPIC' implies '-mlarge-data'.
- '-msmall-text'
- '-mlarge-text'
- When '-msmall-text' is used, the compiler assumes that the code of
- the entire program (or shared library) fits in 4MB, and is thus
- reachable with a branch instruction. When '-msmall-data' is used,
- the compiler can assume that all local symbols share the same '$gp'
- value, and thus reduce the number of instructions required for a
- function call from 4 to 1.
- The default is '-mlarge-text'.
- '-mcpu=CPU_TYPE'
- Set the instruction set and instruction scheduling parameters for
- machine type CPU_TYPE. You can specify either the 'EV' style name
- or the corresponding chip number. GCC supports scheduling
- parameters for the EV4, EV5 and EV6 family of processors and
- chooses the default values for the instruction set from the
- processor you specify. If you do not specify a processor type, GCC
- defaults to the processor on which the compiler was built.
- Supported values for CPU_TYPE are
- 'ev4'
- 'ev45'
- '21064'
- Schedules as an EV4 and has no instruction set extensions.
- 'ev5'
- '21164'
- Schedules as an EV5 and has no instruction set extensions.
- 'ev56'
- '21164a'
- Schedules as an EV5 and supports the BWX extension.
- 'pca56'
- '21164pc'
- '21164PC'
- Schedules as an EV5 and supports the BWX and MAX extensions.
- 'ev6'
- '21264'
- Schedules as an EV6 and supports the BWX, FIX, and MAX
- extensions.
- 'ev67'
- '21264a'
- Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX
- extensions.
- Native toolchains also support the value 'native', which selects
- the best architecture option for the host processor.
- '-mcpu=native' has no effect if GCC does not recognize the
- processor.
- '-mtune=CPU_TYPE'
- Set only the instruction scheduling parameters for machine type
- CPU_TYPE. The instruction set is not changed.
- Native toolchains also support the value 'native', which selects
- the best architecture option for the host processor.
- '-mtune=native' has no effect if GCC does not recognize the
- processor.
- '-mmemory-latency=TIME'
- Sets the latency the scheduler should assume for typical memory
- references as seen by the application. This number is highly
- dependent on the memory access patterns used by the application and
- the size of the external cache on the machine.
- Valid options for TIME are
- 'NUMBER'
- A decimal number representing clock cycles.
- 'L1'
- 'L2'
- 'L3'
- 'main'
- The compiler contains estimates of the number of clock cycles
- for "typical" EV4 & EV5 hardware for the Level 1, 2 & 3 caches
- (also called Dcache, Scache, and Bcache), as well as to main
- memory. Note that L3 is only valid for EV5.
- File: gcc.info, Node: FR30 Options, Next: FT32 Options, Prev: DEC Alpha Options, Up: Submodel Options
- 3.18.12 FR30 Options
- --------------------
- These options are defined specifically for the FR30 port.
- '-msmall-model'
- Use the small address space model. This can produce smaller code,
- but it does assume that all symbolic values and addresses fit into
- a 20-bit range.
- '-mno-lsim'
- Assume that runtime support has been provided and so there is no
- need to include the simulator library ('libsim.a') on the linker
- command line.
- File: gcc.info, Node: FT32 Options, Next: FRV Options, Prev: FR30 Options, Up: Submodel Options
- 3.18.13 FT32 Options
- --------------------
- These options are defined specifically for the FT32 port.
- '-msim'
- Specifies that the program will be run on the simulator. This
- causes an alternate runtime startup and library to be linked. You
- must not use this option when generating programs that will run on
- real hardware; you must provide your own runtime library for
- whatever I/O functions are needed.
- '-mlra'
- Enable Local Register Allocation. This is still experimental for
- FT32, so by default the compiler uses standard reload.
- '-mnodiv'
- Do not use div and mod instructions.
- '-mft32b'
- Enable use of the extended instructions of the FT32B processor.
- '-mcompress'
- Compress all code using the Ft32B code compression scheme.
- '-mnopm'
- Do not generate code that reads program memory.
- File: gcc.info, Node: FRV Options, Next: GNU/Linux Options, Prev: FT32 Options, Up: Submodel Options
- 3.18.14 FRV Options
- -------------------
- '-mgpr-32'
- Only use the first 32 general-purpose registers.
- '-mgpr-64'
- Use all 64 general-purpose registers.
- '-mfpr-32'
- Use only the first 32 floating-point registers.
- '-mfpr-64'
- Use all 64 floating-point registers.
- '-mhard-float'
- Use hardware instructions for floating-point operations.
- '-msoft-float'
- Use library routines for floating-point operations.
- '-malloc-cc'
- Dynamically allocate condition code registers.
- '-mfixed-cc'
- Do not try to dynamically allocate condition code registers, only
- use 'icc0' and 'fcc0'.
- '-mdword'
- Change ABI to use double word insns.
- '-mno-dword'
- Do not use double word instructions.
- '-mdouble'
- Use floating-point double instructions.
- '-mno-double'
- Do not use floating-point double instructions.
- '-mmedia'
- Use media instructions.
- '-mno-media'
- Do not use media instructions.
- '-mmuladd'
- Use multiply and add/subtract instructions.
- '-mno-muladd'
- Do not use multiply and add/subtract instructions.
- '-mfdpic'
- Select the FDPIC ABI, which uses function descriptors to represent
- pointers to functions. Without any PIC/PIE-related options, it
- implies '-fPIE'. With '-fpic' or '-fpie', it assumes GOT entries
- and small data are within a 12-bit range from the GOT base address;
- with '-fPIC' or '-fPIE', GOT offsets are computed with 32 bits.
- With a 'bfin-elf' target, this option implies '-msim'.
- '-minline-plt'
- Enable inlining of PLT entries in function calls to functions that
- are not known to bind locally. It has no effect without '-mfdpic'.
- It's enabled by default if optimizing for speed and compiling for
- shared libraries (i.e., '-fPIC' or '-fpic'), or when an
- optimization option such as '-O3' or above is present in the
- command line.
- '-mTLS'
- Assume a large TLS segment when generating thread-local code.
- '-mtls'
- Do not assume a large TLS segment when generating thread-local
- code.
- '-mgprel-ro'
- Enable the use of 'GPREL' relocations in the FDPIC ABI for data
- that is known to be in read-only sections. It's enabled by
- default, except for '-fpic' or '-fpie': even though it may help
- make the global offset table smaller, it trades 1 instruction for
- 4. With '-fPIC' or '-fPIE', it trades 3 instructions for 4, one of
- which may be shared by multiple symbols, and it avoids the need for
- a GOT entry for the referenced symbol, so it's more likely to be a
- win. If it is not, '-mno-gprel-ro' can be used to disable it.
- '-multilib-library-pic'
- Link with the (library, not FD) pic libraries. It's implied by
- '-mlibrary-pic', as well as by '-fPIC' and '-fpic' without
- '-mfdpic'. You should never have to use it explicitly.
- '-mlinked-fp'
- Follow the EABI requirement of always creating a frame pointer
- whenever a stack frame is allocated. This option is enabled by
- default and can be disabled with '-mno-linked-fp'.
- '-mlong-calls'
- Use indirect addressing to call functions outside the current
- compilation unit. This allows the functions to be placed anywhere
- within the 32-bit address space.
- '-malign-labels'
- Try to align labels to an 8-byte boundary by inserting NOPs into
- the previous packet. This option only has an effect when VLIW
- packing is enabled. It doesn't create new packets; it merely adds
- NOPs to existing ones.
- '-mlibrary-pic'
- Generate position-independent EABI code.
- '-macc-4'
- Use only the first four media accumulator registers.
- '-macc-8'
- Use all eight media accumulator registers.
- '-mpack'
- Pack VLIW instructions.
- '-mno-pack'
- Do not pack VLIW instructions.
- '-mno-eflags'
- Do not mark ABI switches in e_flags.
- '-mcond-move'
- Enable the use of conditional-move instructions (default).
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mno-cond-move'
- Disable the use of conditional-move instructions.
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mscc'
- Enable the use of conditional set instructions (default).
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mno-scc'
- Disable the use of conditional set instructions.
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mcond-exec'
- Enable the use of conditional execution (default).
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mno-cond-exec'
- Disable the use of conditional execution.
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mvliw-branch'
- Run a pass to pack branches into VLIW instructions (default).
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mno-vliw-branch'
- Do not run a pass to pack branches into VLIW instructions.
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mmulti-cond-exec'
- Enable optimization of '&&' and '||' in conditional execution
- (default).
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mno-multi-cond-exec'
- Disable optimization of '&&' and '||' in conditional execution.
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mnested-cond-exec'
- Enable nested conditional execution optimizations (default).
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-mno-nested-cond-exec'
- Disable nested conditional execution optimizations.
- This switch is mainly for debugging the compiler and will likely be
- removed in a future version.
- '-moptimize-membar'
- This switch removes redundant 'membar' instructions from the
- compiler-generated code. It is enabled by default.
- '-mno-optimize-membar'
- This switch disables the automatic removal of redundant 'membar'
- instructions from the generated code.
- '-mtomcat-stats'
- Cause gas to print out tomcat statistics.
- '-mcpu=CPU'
- Select the processor type for which to generate code. Possible
- values are 'frv', 'fr550', 'tomcat', 'fr500', 'fr450', 'fr405',
- 'fr400', 'fr300' and 'simple'.
- File: gcc.info, Node: GNU/Linux Options, Next: H8/300 Options, Prev: FRV Options, Up: Submodel Options
- 3.18.15 GNU/Linux Options
- -------------------------
- These '-m' options are defined for GNU/Linux targets:
- '-mglibc'
- Use the GNU C library. This is the default except on
- '*-*-linux-*uclibc*', '*-*-linux-*musl*' and '*-*-linux-*android*'
- targets.
- '-muclibc'
- Use uClibc C library. This is the default on '*-*-linux-*uclibc*'
- targets.
- '-mmusl'
- Use the musl C library. This is the default on '*-*-linux-*musl*'
- targets.
- '-mbionic'
- Use Bionic C library. This is the default on '*-*-linux-*android*'
- targets.
- '-mandroid'
- Compile code compatible with Android platform. This is the default
- on '*-*-linux-*android*' targets.
- When compiling, this option enables '-mbionic', '-fPIC',
- '-fno-exceptions' and '-fno-rtti' by default. When linking, this
- option makes the GCC driver pass Android-specific options to the
- linker. Finally, this option causes the preprocessor macro
- '__ANDROID__' to be defined.
- '-tno-android-cc'
- Disable compilation effects of '-mandroid', i.e., do not enable
- '-mbionic', '-fPIC', '-fno-exceptions' and '-fno-rtti' by default.
- '-tno-android-ld'
- Disable linking effects of '-mandroid', i.e., pass standard Linux
- linking options to the linker.
- File: gcc.info, Node: H8/300 Options, Next: HPPA Options, Prev: GNU/Linux Options, Up: Submodel Options
- 3.18.16 H8/300 Options
- ----------------------
- These '-m' options are defined for the H8/300 implementations:
- '-mrelax'
- Shorten some address references at link time, when possible; uses
- the linker option '-relax'. *Note 'ld' and the H8/300: (ld)H8/300,
- for a fuller description.
- '-mh'
- Generate code for the H8/300H.
- '-ms'
- Generate code for the H8S.
- '-mn'
- Generate code for the H8S and H8/300H in the normal mode. This
- switch must be used either with '-mh' or '-ms'.
- '-ms2600'
- Generate code for the H8S/2600. This switch must be used with
- '-ms'.
- '-mexr'
- Extended registers are stored on stack before execution of function
- with monitor attribute. Default option is '-mexr'. This option is
- valid only for H8S targets.
- '-mno-exr'
- Extended registers are not stored on stack before execution of
- function with monitor attribute. Default option is '-mno-exr'.
- This option is valid only for H8S targets.
- '-mint32'
- Make 'int' data 32 bits by default.
- '-malign-300'
- On the H8/300H and H8S, use the same alignment rules as for the
- H8/300. The default for the H8/300H and H8S is to align longs and
- floats on 4-byte boundaries. '-malign-300' causes them to be
- aligned on 2-byte boundaries. This option has no effect on the
- H8/300.
- File: gcc.info, Node: HPPA Options, Next: IA-64 Options, Prev: H8/300 Options, Up: Submodel Options
- 3.18.17 HPPA Options
- --------------------
- These '-m' options are defined for the HPPA family of computers:
- '-march=ARCHITECTURE-TYPE'
- Generate code for the specified architecture. The choices for
- ARCHITECTURE-TYPE are '1.0' for PA 1.0, '1.1' for PA 1.1, and '2.0'
- for PA 2.0 processors. Refer to '/usr/lib/sched.models' on an
- HP-UX system to determine the proper architecture option for your
- machine. Code compiled for lower numbered architectures runs on
- higher numbered architectures, but not the other way around.
- '-mpa-risc-1-0'
- '-mpa-risc-1-1'
- '-mpa-risc-2-0'
- Synonyms for '-march=1.0', '-march=1.1', and '-march=2.0'
- respectively.
- '-mcaller-copies'
- The caller copies function arguments passed by hidden reference.
- This option should be used with care as it is not compatible with
- the default 32-bit runtime. However, only aggregates larger than
- eight bytes are passed by hidden reference and the option provides
- better compatibility with OpenMP.
- '-mjump-in-delay'
- This option is ignored and provided for compatibility purposes
- only.
- '-mdisable-fpregs'
- Prevent floating-point registers from being used in any manner.
- This is necessary for compiling kernels that perform lazy context
- switching of floating-point registers. If you use this option and
- attempt to perform floating-point operations, the compiler aborts.
- '-mdisable-indexing'
- Prevent the compiler from using indexing address modes. This
- avoids some rather obscure problems when compiling MIG generated
- code under MACH.
- '-mno-space-regs'
- Generate code that assumes the target has no space registers. This
- allows GCC to generate faster indirect calls and use unscaled index
- address modes.
- Such code is suitable for level 0 PA systems and kernels.
- '-mfast-indirect-calls'
- Generate code that assumes calls never cross space boundaries.
- This allows GCC to emit code that performs faster indirect calls.
- This option does not work in the presence of shared libraries or
- nested functions.
- '-mfixed-range=REGISTER-RANGE'
- Generate code treating the given register range as fixed registers.
- A fixed register is one that the register allocator cannot use.
- This is useful when compiling kernel code. A register range is
- specified as two registers separated by a dash. Multiple register
- ranges can be specified separated by a comma.
- '-mlong-load-store'
- Generate 3-instruction load and store sequences as sometimes
- required by the HP-UX 10 linker. This is equivalent to the '+k'
- option to the HP compilers.
- '-mportable-runtime'
- Use the portable calling conventions proposed by HP for ELF
- systems.
- '-mgas'
- Enable the use of assembler directives only GAS understands.
- '-mschedule=CPU-TYPE'
- Schedule code according to the constraints for the machine type
- CPU-TYPE. The choices for CPU-TYPE are '700' '7100', '7100LC',
- '7200', '7300' and '8000'. Refer to '/usr/lib/sched.models' on an
- HP-UX system to determine the proper scheduling option for your
- machine. The default scheduling is '8000'.
- '-mlinker-opt'
- Enable the optimization pass in the HP-UX linker. Note this makes
- symbolic debugging impossible. It also triggers a bug in the HP-UX
- 8 and HP-UX 9 linkers in which they give bogus error messages when
- linking some programs.
- '-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not available for all HPPA
- targets. Normally the facilities of the machine's usual C compiler
- are used, but this cannot be done directly in cross-compilation.
- You must make your own arrangements to provide suitable library
- functions for cross-compilation.
- '-msoft-float' changes the calling convention in the output file;
- therefore, it is only useful if you compile _all_ of a program with
- this option. In particular, you need to compile 'libgcc.a', the
- library that comes with GCC, with '-msoft-float' in order for this
- to work.
- '-msio'
- Generate the predefine, '_SIO', for server IO. The default is
- '-mwsio'. This generates the predefines, '__hp9000s700',
- '__hp9000s700__' and '_WSIO', for workstation IO. These options
- are available under HP-UX and HI-UX.
- '-mgnu-ld'
- Use options specific to GNU 'ld'. This passes '-shared' to 'ld'
- when building a shared library. It is the default when GCC is
- configured, explicitly or implicitly, with the GNU linker. This
- option does not affect which 'ld' is called; it only changes what
- parameters are passed to that 'ld'. The 'ld' that is called is
- determined by the '--with-ld' configure option, GCC's program
- search path, and finally by the user's 'PATH'. The linker used by
- GCC can be printed using 'which `gcc -print-prog-name=ld`'. This
- option is only available on the 64-bit HP-UX GCC, i.e. configured
- with 'hppa*64*-*-hpux*'.
- '-mhp-ld'
- Use options specific to HP 'ld'. This passes '-b' to 'ld' when
- building a shared library and passes '+Accept TypeMismatch' to 'ld'
- on all links. It is the default when GCC is configured, explicitly
- or implicitly, with the HP linker. This option does not affect
- which 'ld' is called; it only changes what parameters are passed to
- that 'ld'. The 'ld' that is called is determined by the
- '--with-ld' configure option, GCC's program search path, and
- finally by the user's 'PATH'. The linker used by GCC can be
- printed using 'which `gcc -print-prog-name=ld`'. This option is
- only available on the 64-bit HP-UX GCC, i.e. configured with
- 'hppa*64*-*-hpux*'.
- '-mlong-calls'
- Generate code that uses long call sequences. This ensures that a
- call is always able to reach linker generated stubs. The default
- is to generate long calls only when the distance from the call site
- to the beginning of the function or translation unit, as the case
- may be, exceeds a predefined limit set by the branch type being
- used. The limits for normal calls are 7,600,000 and 240,000 bytes,
- respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are
- always limited at 240,000 bytes.
- Distances are measured from the beginning of functions when using
- the '-ffunction-sections' option, or when using the '-mgas' and
- '-mno-portable-runtime' options together under HP-UX with the SOM
- linker.
- It is normally not desirable to use this option as it degrades
- performance. However, it may be useful in large applications,
- particularly when partial linking is used to build the application.
- The types of long calls used depends on the capabilities of the
- assembler and linker, and the type of code being generated. The
- impact on systems that support long absolute calls, and long pic
- symbol-difference or pc-relative calls should be relatively small.
- However, an indirect call is used on 32-bit ELF systems in pic code
- and it is quite long.
- '-munix=UNIX-STD'
- Generate compiler predefines and select a startfile for the
- specified UNIX standard. The choices for UNIX-STD are '93', '95'
- and '98'. '93' is supported on all HP-UX versions. '95' is
- available on HP-UX 10.10 and later. '98' is available on HP-UX
- 11.11 and later. The default values are '93' for HP-UX 10.00, '95'
- for HP-UX 10.10 though to 11.00, and '98' for HP-UX 11.11 and
- later.
- '-munix=93' provides the same predefines as GCC 3.3 and 3.4.
- '-munix=95' provides additional predefines for 'XOPEN_UNIX' and
- '_XOPEN_SOURCE_EXTENDED', and the startfile 'unix95.o'.
- '-munix=98' provides additional predefines for '_XOPEN_UNIX',
- '_XOPEN_SOURCE_EXTENDED', '_INCLUDE__STDC_A1_SOURCE' and
- '_INCLUDE_XOPEN_SOURCE_500', and the startfile 'unix98.o'.
- It is _important_ to note that this option changes the interfaces
- for various library routines. It also affects the operational
- behavior of the C library. Thus, _extreme_ care is needed in using
- this option.
- Library code that is intended to operate with more than one UNIX
- standard must test, set and restore the variable
- '__xpg4_extended_mask' as appropriate. Most GNU software doesn't
- provide this capability.
- '-nolibdld'
- Suppress the generation of link options to search libdld.sl when
- the '-static' option is specified on HP-UX 10 and later.
- '-static'
- The HP-UX implementation of setlocale in libc has a dependency on
- libdld.sl. There isn't an archive version of libdld.sl. Thus,
- when the '-static' option is specified, special link options are
- needed to resolve this dependency.
- On HP-UX 10 and later, the GCC driver adds the necessary options to
- link with libdld.sl when the '-static' option is specified. This
- causes the resulting binary to be dynamic. On the 64-bit port, the
- linkers generate dynamic binaries by default in any case. The
- '-nolibdld' option can be used to prevent the GCC driver from
- adding these link options.
- '-threads'
- Add support for multithreading with the "dce thread" library under
- HP-UX. This option sets flags for both the preprocessor and
- linker.
- File: gcc.info, Node: IA-64 Options, Next: LM32 Options, Prev: HPPA Options, Up: Submodel Options
- 3.18.18 IA-64 Options
- ---------------------
- These are the '-m' options defined for the Intel IA-64 architecture.
- '-mbig-endian'
- Generate code for a big-endian target. This is the default for
- HP-UX.
- '-mlittle-endian'
- Generate code for a little-endian target. This is the default for
- AIX5 and GNU/Linux.
- '-mgnu-as'
- '-mno-gnu-as'
- Generate (or don't) code for the GNU assembler. This is the
- default.
- '-mgnu-ld'
- '-mno-gnu-ld'
- Generate (or don't) code for the GNU linker. This is the default.
- '-mno-pic'
- Generate code that does not use a global pointer register. The
- result is not position independent code, and violates the IA-64
- ABI.
- '-mvolatile-asm-stop'
- '-mno-volatile-asm-stop'
- Generate (or don't) a stop bit immediately before and after
- volatile asm statements.
- '-mregister-names'
- '-mno-register-names'
- Generate (or don't) 'in', 'loc', and 'out' register names for the
- stacked registers. This may make assembler output more readable.
- '-mno-sdata'
- '-msdata'
- Disable (or enable) optimizations that use the small data section.
- This may be useful for working around optimizer bugs.
- '-mconstant-gp'
- Generate code that uses a single constant global pointer value.
- This is useful when compiling kernel code.
- '-mauto-pic'
- Generate code that is self-relocatable. This implies
- '-mconstant-gp'. This is useful when compiling firmware code.
- '-minline-float-divide-min-latency'
- Generate code for inline divides of floating-point values using the
- minimum latency algorithm.
- '-minline-float-divide-max-throughput'
- Generate code for inline divides of floating-point values using the
- maximum throughput algorithm.
- '-mno-inline-float-divide'
- Do not generate inline code for divides of floating-point values.
- '-minline-int-divide-min-latency'
- Generate code for inline divides of integer values using the
- minimum latency algorithm.
- '-minline-int-divide-max-throughput'
- Generate code for inline divides of integer values using the
- maximum throughput algorithm.
- '-mno-inline-int-divide'
- Do not generate inline code for divides of integer values.
- '-minline-sqrt-min-latency'
- Generate code for inline square roots using the minimum latency
- algorithm.
- '-minline-sqrt-max-throughput'
- Generate code for inline square roots using the maximum throughput
- algorithm.
- '-mno-inline-sqrt'
- Do not generate inline code for 'sqrt'.
- '-mfused-madd'
- '-mno-fused-madd'
- Do (don't) generate code that uses the fused multiply/add or
- multiply/subtract instructions. The default is to use these
- instructions.
- '-mno-dwarf2-asm'
- '-mdwarf2-asm'
- Don't (or do) generate assembler code for the DWARF line number
- debugging info. This may be useful when not using the GNU
- assembler.
- '-mearly-stop-bits'
- '-mno-early-stop-bits'
- Allow stop bits to be placed earlier than immediately preceding the
- instruction that triggered the stop bit. This can improve
- instruction scheduling, but does not always do so.
- '-mfixed-range=REGISTER-RANGE'
- Generate code treating the given register range as fixed registers.
- A fixed register is one that the register allocator cannot use.
- This is useful when compiling kernel code. A register range is
- specified as two registers separated by a dash. Multiple register
- ranges can be specified separated by a comma.
- '-mtls-size=TLS-SIZE'
- Specify bit size of immediate TLS offsets. Valid values are 14,
- 22, and 64.
- '-mtune=CPU-TYPE'
- Tune the instruction scheduling for a particular CPU, Valid values
- are 'itanium', 'itanium1', 'merced', 'itanium2', and 'mckinley'.
- '-milp32'
- '-mlp64'
- Generate code for a 32-bit or 64-bit environment. The 32-bit
- environment sets int, long and pointer to 32 bits. The 64-bit
- environment sets int to 32 bits and long and pointer to 64 bits.
- These are HP-UX specific flags.
- '-mno-sched-br-data-spec'
- '-msched-br-data-spec'
- (Dis/En)able data speculative scheduling before reload. This
- results in generation of 'ld.a' instructions and the corresponding
- check instructions ('ld.c' / 'chk.a'). The default setting is
- disabled.
- '-msched-ar-data-spec'
- '-mno-sched-ar-data-spec'
- (En/Dis)able data speculative scheduling after reload. This
- results in generation of 'ld.a' instructions and the corresponding
- check instructions ('ld.c' / 'chk.a'). The default setting is
- enabled.
- '-mno-sched-control-spec'
- '-msched-control-spec'
- (Dis/En)able control speculative scheduling. This feature is
- available only during region scheduling (i.e. before reload). This
- results in generation of the 'ld.s' instructions and the
- corresponding check instructions 'chk.s'. The default setting is
- disabled.
- '-msched-br-in-data-spec'
- '-mno-sched-br-in-data-spec'
- (En/Dis)able speculative scheduling of the instructions that are
- dependent on the data speculative loads before reload. This is
- effective only with '-msched-br-data-spec' enabled. The default
- setting is enabled.
- '-msched-ar-in-data-spec'
- '-mno-sched-ar-in-data-spec'
- (En/Dis)able speculative scheduling of the instructions that are
- dependent on the data speculative loads after reload. This is
- effective only with '-msched-ar-data-spec' enabled. The default
- setting is enabled.
- '-msched-in-control-spec'
- '-mno-sched-in-control-spec'
- (En/Dis)able speculative scheduling of the instructions that are
- dependent on the control speculative loads. This is effective only
- with '-msched-control-spec' enabled. The default setting is
- enabled.
- '-mno-sched-prefer-non-data-spec-insns'
- '-msched-prefer-non-data-spec-insns'
- If enabled, data-speculative instructions are chosen for schedule
- only if there are no other choices at the moment. This makes the
- use of the data speculation much more conservative. The default
- setting is disabled.
- '-mno-sched-prefer-non-control-spec-insns'
- '-msched-prefer-non-control-spec-insns'
- If enabled, control-speculative instructions are chosen for
- schedule only if there are no other choices at the moment. This
- makes the use of the control speculation much more conservative.
- The default setting is disabled.
- '-mno-sched-count-spec-in-critical-path'
- '-msched-count-spec-in-critical-path'
- If enabled, speculative dependencies are considered during
- computation of the instructions priorities. This makes the use of
- the speculation a bit more conservative. The default setting is
- disabled.
- '-msched-spec-ldc'
- Use a simple data speculation check. This option is on by default.
- '-msched-control-spec-ldc'
- Use a simple check for control speculation. This option is on by
- default.
- '-msched-stop-bits-after-every-cycle'
- Place a stop bit after every cycle when scheduling. This option is
- on by default.
- '-msched-fp-mem-deps-zero-cost'
- Assume that floating-point stores and loads are not likely to cause
- a conflict when placed into the same instruction group. This
- option is disabled by default.
- '-msel-sched-dont-check-control-spec'
- Generate checks for control speculation in selective scheduling.
- This flag is disabled by default.
- '-msched-max-memory-insns=MAX-INSNS'
- Limit on the number of memory insns per instruction group, giving
- lower priority to subsequent memory insns attempting to schedule in
- the same instruction group. Frequently useful to prevent cache
- bank conflicts. The default value is 1.
- '-msched-max-memory-insns-hard-limit'
- Makes the limit specified by 'msched-max-memory-insns' a hard
- limit, disallowing more than that number in an instruction group.
- Otherwise, the limit is "soft", meaning that non-memory operations
- are preferred when the limit is reached, but memory operations may
- still be scheduled.
- File: gcc.info, Node: LM32 Options, Next: M32C Options, Prev: IA-64 Options, Up: Submodel Options
- 3.18.19 LM32 Options
- --------------------
- These '-m' options are defined for the LatticeMico32 architecture:
- '-mbarrel-shift-enabled'
- Enable barrel-shift instructions.
- '-mdivide-enabled'
- Enable divide and modulus instructions.
- '-mmultiply-enabled'
- Enable multiply instructions.
- '-msign-extend-enabled'
- Enable sign extend instructions.
- '-muser-enabled'
- Enable user-defined instructions.
- File: gcc.info, Node: M32C Options, Next: M32R/D Options, Prev: LM32 Options, Up: Submodel Options
- 3.18.20 M32C Options
- --------------------
- '-mcpu=NAME'
- Select the CPU for which code is generated. NAME may be one of
- 'r8c' for the R8C/Tiny series, 'm16c' for the M16C (up to /60)
- series, 'm32cm' for the M16C/80 series, or 'm32c' for the M32C/80
- series.
- '-msim'
- Specifies that the program will be run on the simulator. This
- causes an alternate runtime library to be linked in which supports,
- for example, file I/O. You must not use this option when
- generating programs that will run on real hardware; you must
- provide your own runtime library for whatever I/O functions are
- needed.
- '-memregs=NUMBER'
- Specifies the number of memory-based pseudo-registers GCC uses
- during code generation. These pseudo-registers are used like real
- registers, so there is a tradeoff between GCC's ability to fit the
- code into available registers, and the performance penalty of using
- memory instead of registers. Note that all modules in a program
- must be compiled with the same value for this option. Because of
- that, you must not use this option with GCC's default runtime
- libraries.
- File: gcc.info, Node: M32R/D Options, Next: M680x0 Options, Prev: M32C Options, Up: Submodel Options
- 3.18.21 M32R/D Options
- ----------------------
- These '-m' options are defined for Renesas M32R/D architectures:
- '-m32r2'
- Generate code for the M32R/2.
- '-m32rx'
- Generate code for the M32R/X.
- '-m32r'
- Generate code for the M32R. This is the default.
- '-mmodel=small'
- Assume all objects live in the lower 16MB of memory (so that their
- addresses can be loaded with the 'ld24' instruction), and assume
- all subroutines are reachable with the 'bl' instruction. This is
- the default.
- The addressability of a particular object can be set with the
- 'model' attribute.
- '-mmodel=medium'
- Assume objects may be anywhere in the 32-bit address space (the
- compiler generates 'seth/add3' instructions to load their
- addresses), and assume all subroutines are reachable with the 'bl'
- instruction.
- '-mmodel=large'
- Assume objects may be anywhere in the 32-bit address space (the
- compiler generates 'seth/add3' instructions to load their
- addresses), and assume subroutines may not be reachable with the
- 'bl' instruction (the compiler generates the much slower
- 'seth/add3/jl' instruction sequence).
- '-msdata=none'
- Disable use of the small data area. Variables are put into one of
- '.data', '.bss', or '.rodata' (unless the 'section' attribute has
- been specified). This is the default.
- The small data area consists of sections '.sdata' and '.sbss'.
- Objects may be explicitly put in the small data area with the
- 'section' attribute using one of these sections.
- '-msdata=sdata'
- Put small global and static data in the small data area, but do not
- generate special code to reference them.
- '-msdata=use'
- Put small global and static data in the small data area, and
- generate special instructions to reference them.
- '-G NUM'
- Put global and static objects less than or equal to NUM bytes into
- the small data or BSS sections instead of the normal data or BSS
- sections. The default value of NUM is 8. The '-msdata' option
- must be set to one of 'sdata' or 'use' for this option to have any
- effect.
- All modules should be compiled with the same '-G NUM' value.
- Compiling with different values of NUM may or may not work; if it
- doesn't the linker gives an error message--incorrect code is not
- generated.
- '-mdebug'
- Makes the M32R-specific code in the compiler display some
- statistics that might help in debugging programs.
- '-malign-loops'
- Align all loops to a 32-byte boundary.
- '-mno-align-loops'
- Do not enforce a 32-byte alignment for loops. This is the default.
- '-missue-rate=NUMBER'
- Issue NUMBER instructions per cycle. NUMBER can only be 1 or 2.
- '-mbranch-cost=NUMBER'
- NUMBER can only be 1 or 2. If it is 1 then branches are preferred
- over conditional code, if it is 2, then the opposite applies.
- '-mflush-trap=NUMBER'
- Specifies the trap number to use to flush the cache. The default
- is 12. Valid numbers are between 0 and 15 inclusive.
- '-mno-flush-trap'
- Specifies that the cache cannot be flushed by using a trap.
- '-mflush-func=NAME'
- Specifies the name of the operating system function to call to
- flush the cache. The default is '_flush_cache', but a function
- call is only used if a trap is not available.
- '-mno-flush-func'
- Indicates that there is no OS function for flushing the cache.
- File: gcc.info, Node: M680x0 Options, Next: MCore Options, Prev: M32R/D Options, Up: Submodel Options
- 3.18.22 M680x0 Options
- ----------------------
- These are the '-m' options defined for M680x0 and ColdFire processors.
- The default settings depend on which architecture was selected when the
- compiler was configured; the defaults for the most common choices are
- given below.
- '-march=ARCH'
- Generate code for a specific M680x0 or ColdFire instruction set
- architecture. Permissible values of ARCH for M680x0 architectures
- are: '68000', '68010', '68020', '68030', '68040', '68060' and
- 'cpu32'. ColdFire architectures are selected according to
- Freescale's ISA classification and the permissible values are:
- 'isaa', 'isaaplus', 'isab' and 'isac'.
- GCC defines a macro '__mcfARCH__' whenever it is generating code
- for a ColdFire target. The ARCH in this macro is one of the
- '-march' arguments given above.
- When used together, '-march' and '-mtune' select code that runs on
- a family of similar processors but that is optimized for a
- particular microarchitecture.
- '-mcpu=CPU'
- Generate code for a specific M680x0 or ColdFire processor. The
- M680x0 CPUs are: '68000', '68010', '68020', '68030', '68040',
- '68060', '68302', '68332' and 'cpu32'. The ColdFire CPUs are given
- by the table below, which also classifies the CPUs into families:
- *Family* *'-mcpu' arguments*
- '51' '51' '51ac' '51ag' '51cn' '51em' '51je' '51jf' '51jg'
- '51jm' '51mm' '51qe' '51qm'
- '5206' '5202' '5204' '5206'
- '5206e' '5206e'
- '5208' '5207' '5208'
- '5211a' '5210a' '5211a'
- '5213' '5211' '5212' '5213'
- '5216' '5214' '5216'
- '52235' '52230' '52231' '52232' '52233' '52234' '52235'
- '5225' '5224' '5225'
- '52259' '52252' '52254' '52255' '52256' '52258' '52259'
- '5235' '5232' '5233' '5234' '5235' '523x'
- '5249' '5249'
- '5250' '5250'
- '5271' '5270' '5271'
- '5272' '5272'
- '5275' '5274' '5275'
- '5282' '5280' '5281' '5282' '528x'
- '53017' '53011' '53012' '53013' '53014' '53015' '53016' '53017'
- '5307' '5307'
- '5329' '5327' '5328' '5329' '532x'
- '5373' '5372' '5373' '537x'
- '5407' '5407'
- '5475' '5470' '5471' '5472' '5473' '5474' '5475' '547x' '5480'
- '5481' '5482' '5483' '5484' '5485'
- '-mcpu=CPU' overrides '-march=ARCH' if ARCH is compatible with CPU.
- Other combinations of '-mcpu' and '-march' are rejected.
- GCC defines the macro '__mcf_cpu_CPU' when ColdFire target CPU is
- selected. It also defines '__mcf_family_FAMILY', where the value
- of FAMILY is given by the table above.
- '-mtune=TUNE'
- Tune the code for a particular microarchitecture within the
- constraints set by '-march' and '-mcpu'. The M680x0
- microarchitectures are: '68000', '68010', '68020', '68030',
- '68040', '68060' and 'cpu32'. The ColdFire microarchitectures are:
- 'cfv1', 'cfv2', 'cfv3', 'cfv4' and 'cfv4e'.
- You can also use '-mtune=68020-40' for code that needs to run
- relatively well on 68020, 68030 and 68040 targets.
- '-mtune=68020-60' is similar but includes 68060 targets as well.
- These two options select the same tuning decisions as '-m68020-40'
- and '-m68020-60' respectively.
- GCC defines the macros '__mcARCH' and '__mcARCH__' when tuning for
- 680x0 architecture ARCH. It also defines 'mcARCH' unless either
- '-ansi' or a non-GNU '-std' option is used. If GCC is tuning for a
- range of architectures, as selected by '-mtune=68020-40' or
- '-mtune=68020-60', it defines the macros for every architecture in
- the range.
- GCC also defines the macro '__mUARCH__' when tuning for ColdFire
- microarchitecture UARCH, where UARCH is one of the arguments given
- above.
- '-m68000'
- '-mc68000'
- Generate output for a 68000. This is the default when the compiler
- is configured for 68000-based systems. It is equivalent to
- '-march=68000'.
- Use this option for microcontrollers with a 68000 or EC000 core,
- including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
- '-m68010'
- Generate output for a 68010. This is the default when the compiler
- is configured for 68010-based systems. It is equivalent to
- '-march=68010'.
- '-m68020'
- '-mc68020'
- Generate output for a 68020. This is the default when the compiler
- is configured for 68020-based systems. It is equivalent to
- '-march=68020'.
- '-m68030'
- Generate output for a 68030. This is the default when the compiler
- is configured for 68030-based systems. It is equivalent to
- '-march=68030'.
- '-m68040'
- Generate output for a 68040. This is the default when the compiler
- is configured for 68040-based systems. It is equivalent to
- '-march=68040'.
- This option inhibits the use of 68881/68882 instructions that have
- to be emulated by software on the 68040. Use this option if your
- 68040 does not have code to emulate those instructions.
- '-m68060'
- Generate output for a 68060. This is the default when the compiler
- is configured for 68060-based systems. It is equivalent to
- '-march=68060'.
- This option inhibits the use of 68020 and 68881/68882 instructions
- that have to be emulated by software on the 68060. Use this option
- if your 68060 does not have code to emulate those instructions.
- '-mcpu32'
- Generate output for a CPU32. This is the default when the compiler
- is configured for CPU32-based systems. It is equivalent to
- '-march=cpu32'.
- Use this option for microcontrollers with a CPU32 or CPU32+ core,
- including the 68330, 68331, 68332, 68333, 68334, 68336, 68340,
- 68341, 68349 and 68360.
- '-m5200'
- Generate output for a 520X ColdFire CPU. This is the default when
- the compiler is configured for 520X-based systems. It is
- equivalent to '-mcpu=5206', and is now deprecated in favor of that
- option.
- Use this option for microcontroller with a 5200 core, including the
- MCF5202, MCF5203, MCF5204 and MCF5206.
- '-m5206e'
- Generate output for a 5206e ColdFire CPU. The option is now
- deprecated in favor of the equivalent '-mcpu=5206e'.
- '-m528x'
- Generate output for a member of the ColdFire 528X family. The
- option is now deprecated in favor of the equivalent '-mcpu=528x'.
- '-m5307'
- Generate output for a ColdFire 5307 CPU. The option is now
- deprecated in favor of the equivalent '-mcpu=5307'.
- '-m5407'
- Generate output for a ColdFire 5407 CPU. The option is now
- deprecated in favor of the equivalent '-mcpu=5407'.
- '-mcfv4e'
- Generate output for a ColdFire V4e family CPU (e.g. 547x/548x).
- This includes use of hardware floating-point instructions. The
- option is equivalent to '-mcpu=547x', and is now deprecated in
- favor of that option.
- '-m68020-40'
- Generate output for a 68040, without using any of the new
- instructions. This results in code that can run relatively
- efficiently on either a 68020/68881 or a 68030 or a 68040. The
- generated code does use the 68881 instructions that are emulated on
- the 68040.
- The option is equivalent to '-march=68020' '-mtune=68020-40'.
- '-m68020-60'
- Generate output for a 68060, without using any of the new
- instructions. This results in code that can run relatively
- efficiently on either a 68020/68881 or a 68030 or a 68040. The
- generated code does use the 68881 instructions that are emulated on
- the 68060.
- The option is equivalent to '-march=68020' '-mtune=68020-60'.
- '-mhard-float'
- '-m68881'
- Generate floating-point instructions. This is the default for
- 68020 and above, and for ColdFire devices that have an FPU. It
- defines the macro '__HAVE_68881__' on M680x0 targets and
- '__mcffpu__' on ColdFire targets.
- '-msoft-float'
- Do not generate floating-point instructions; use library calls
- instead. This is the default for 68000, 68010, and 68832 targets.
- It is also the default for ColdFire devices that have no FPU.
- '-mdiv'
- '-mno-div'
- Generate (do not generate) ColdFire hardware divide and remainder
- instructions. If '-march' is used without '-mcpu', the default is
- "on" for ColdFire architectures and "off" for M680x0 architectures.
- Otherwise, the default is taken from the target CPU (either the
- default CPU, or the one specified by '-mcpu'). For example, the
- default is "off" for '-mcpu=5206' and "on" for '-mcpu=5206e'.
- GCC defines the macro '__mcfhwdiv__' when this option is enabled.
- '-mshort'
- Consider type 'int' to be 16 bits wide, like 'short int'.
- Additionally, parameters passed on the stack are also aligned to a
- 16-bit boundary even on targets whose API mandates promotion to
- 32-bit.
- '-mno-short'
- Do not consider type 'int' to be 16 bits wide. This is the
- default.
- '-mnobitfield'
- '-mno-bitfield'
- Do not use the bit-field instructions. The '-m68000', '-mcpu32'
- and '-m5200' options imply '-mnobitfield'.
- '-mbitfield'
- Do use the bit-field instructions. The '-m68020' option implies
- '-mbitfield'. This is the default if you use a configuration
- designed for a 68020.
- '-mrtd'
- Use a different function-calling convention, in which functions
- that take a fixed number of arguments return with the 'rtd'
- instruction, which pops their arguments while returning. This
- saves one instruction in the caller since there is no need to pop
- the arguments there.
- This calling convention is incompatible with the one normally used
- on Unix, so you cannot use it if you need to call libraries
- compiled with the Unix compiler.
- Also, you must provide function prototypes for all functions that
- take variable numbers of arguments (including 'printf'); otherwise
- incorrect code is generated for calls to those functions.
- In addition, seriously incorrect code results if you call a
- function with too many arguments. (Normally, extra arguments are
- harmlessly ignored.)
- The 'rtd' instruction is supported by the 68010, 68020, 68030,
- 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
- '-mno-rtd'
- Do not use the calling conventions selected by '-mrtd'. This is
- the default.
- '-malign-int'
- '-mno-align-int'
- Control whether GCC aligns 'int', 'long', 'long long', 'float',
- 'double', and 'long double' variables on a 32-bit boundary
- ('-malign-int') or a 16-bit boundary ('-mno-align-int'). Aligning
- variables on 32-bit boundaries produces code that runs somewhat
- faster on processors with 32-bit busses at the expense of more
- memory.
- *Warning:* if you use the '-malign-int' switch, GCC aligns
- structures containing the above types differently than most
- published application binary interface specifications for the m68k.
- '-mpcrel'
- Use the pc-relative addressing mode of the 68000 directly, instead
- of using a global offset table. At present, this option implies
- '-fpic', allowing at most a 16-bit offset for pc-relative
- addressing. '-fPIC' is not presently supported with '-mpcrel',
- though this could be supported for 68020 and higher processors.
- '-mno-strict-align'
- '-mstrict-align'
- Do not (do) assume that unaligned memory references are handled by
- the system.
- '-msep-data'
- Generate code that allows the data segment to be located in a
- different area of memory from the text segment. This allows for
- execute-in-place in an environment without virtual memory
- management. This option implies '-fPIC'.
- '-mno-sep-data'
- Generate code that assumes that the data segment follows the text
- segment. This is the default.
- '-mid-shared-library'
- Generate code that supports shared libraries via the library ID
- method. This allows for execute-in-place and shared libraries in
- an environment without virtual memory management. This option
- implies '-fPIC'.
- '-mno-id-shared-library'
- Generate code that doesn't assume ID-based shared libraries are
- being used. This is the default.
- '-mshared-library-id=n'
- Specifies the identification number of the ID-based shared library
- being compiled. Specifying a value of 0 generates more compact
- code; specifying other values forces the allocation of that number
- to the current library, but is no more space- or time-efficient
- than omitting this option.
- '-mxgot'
- '-mno-xgot'
- When generating position-independent code for ColdFire, generate
- code that works if the GOT has more than 8192 entries. This code
- is larger and slower than code generated without this option. On
- M680x0 processors, this option is not needed; '-fPIC' suffices.
- GCC normally uses a single instruction to load values from the GOT.
- While this is relatively efficient, it only works if the GOT is
- smaller than about 64k. Anything larger causes the linker to
- report an error such as:
- relocation truncated to fit: R_68K_GOT16O foobar
- If this happens, you should recompile your code with '-mxgot'. It
- should then work with very large GOTs. However, code generated
- with '-mxgot' is less efficient, since it takes 4 instructions to
- fetch the value of a global symbol.
- Note that some linkers, including newer versions of the GNU linker,
- can create multiple GOTs and sort GOT entries. If you have such a
- linker, you should only need to use '-mxgot' when compiling a
- single object file that accesses more than 8192 GOT entries. Very
- few do.
- These options have no effect unless GCC is generating
- position-independent code.
- '-mlong-jump-table-offsets'
- Use 32-bit offsets in 'switch' tables. The default is to use
- 16-bit offsets.
- File: gcc.info, Node: MCore Options, Next: MeP Options, Prev: M680x0 Options, Up: Submodel Options
- 3.18.23 MCore Options
- ---------------------
- These are the '-m' options defined for the Motorola M*Core processors.
- '-mhardlit'
- '-mno-hardlit'
- Inline constants into the code stream if it can be done in two
- instructions or less.
- '-mdiv'
- '-mno-div'
- Use the divide instruction. (Enabled by default).
- '-mrelax-immediate'
- '-mno-relax-immediate'
- Allow arbitrary-sized immediates in bit operations.
- '-mwide-bitfields'
- '-mno-wide-bitfields'
- Always treat bit-fields as 'int'-sized.
- '-m4byte-functions'
- '-mno-4byte-functions'
- Force all functions to be aligned to a 4-byte boundary.
- '-mcallgraph-data'
- '-mno-callgraph-data'
- Emit callgraph information.
- '-mslow-bytes'
- '-mno-slow-bytes'
- Prefer word access when reading byte quantities.
- '-mlittle-endian'
- '-mbig-endian'
- Generate code for a little-endian target.
- '-m210'
- '-m340'
- Generate code for the 210 processor.
- '-mno-lsim'
- Assume that runtime support has been provided and so omit the
- simulator library ('libsim.a)' from the linker command line.
- '-mstack-increment=SIZE'
- Set the maximum amount for a single stack increment operation.
- Large values can increase the speed of programs that contain
- functions that need a large amount of stack space, but they can
- also trigger a segmentation fault if the stack is extended too
- much. The default value is 0x1000.
- File: gcc.info, Node: MeP Options, Next: MicroBlaze Options, Prev: MCore Options, Up: Submodel Options
- 3.18.24 MeP Options
- -------------------
- '-mabsdiff'
- Enables the 'abs' instruction, which is the absolute difference
- between two registers.
- '-mall-opts'
- Enables all the optional instructions--average, multiply, divide,
- bit operations, leading zero, absolute difference, min/max, clip,
- and saturation.
- '-maverage'
- Enables the 'ave' instruction, which computes the average of two
- registers.
- '-mbased=N'
- Variables of size N bytes or smaller are placed in the '.based'
- section by default. Based variables use the '$tp' register as a
- base register, and there is a 128-byte limit to the '.based'
- section.
- '-mbitops'
- Enables the bit operation instructions--bit test ('btstm'), set
- ('bsetm'), clear ('bclrm'), invert ('bnotm'), and test-and-set
- ('tas').
- '-mc=NAME'
- Selects which section constant data is placed in. NAME may be
- 'tiny', 'near', or 'far'.
- '-mclip'
- Enables the 'clip' instruction. Note that '-mclip' is not useful
- unless you also provide '-mminmax'.
- '-mconfig=NAME'
- Selects one of the built-in core configurations. Each MeP chip has
- one or more modules in it; each module has a core CPU and a variety
- of coprocessors, optional instructions, and peripherals. The
- 'MeP-Integrator' tool, not part of GCC, provides these
- configurations through this option; using this option is the same
- as using all the corresponding command-line options. The default
- configuration is 'default'.
- '-mcop'
- Enables the coprocessor instructions. By default, this is a 32-bit
- coprocessor. Note that the coprocessor is normally enabled via the
- '-mconfig=' option.
- '-mcop32'
- Enables the 32-bit coprocessor's instructions.
- '-mcop64'
- Enables the 64-bit coprocessor's instructions.
- '-mivc2'
- Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
- '-mdc'
- Causes constant variables to be placed in the '.near' section.
- '-mdiv'
- Enables the 'div' and 'divu' instructions.
- '-meb'
- Generate big-endian code.
- '-mel'
- Generate little-endian code.
- '-mio-volatile'
- Tells the compiler that any variable marked with the 'io' attribute
- is to be considered volatile.
- '-ml'
- Causes variables to be assigned to the '.far' section by default.
- '-mleadz'
- Enables the 'leadz' (leading zero) instruction.
- '-mm'
- Causes variables to be assigned to the '.near' section by default.
- '-mminmax'
- Enables the 'min' and 'max' instructions.
- '-mmult'
- Enables the multiplication and multiply-accumulate instructions.
- '-mno-opts'
- Disables all the optional instructions enabled by '-mall-opts'.
- '-mrepeat'
- Enables the 'repeat' and 'erepeat' instructions, used for
- low-overhead looping.
- '-ms'
- Causes all variables to default to the '.tiny' section. Note that
- there is a 65536-byte limit to this section. Accesses to these
- variables use the '%gp' base register.
- '-msatur'
- Enables the saturation instructions. Note that the compiler does
- not currently generate these itself, but this option is included
- for compatibility with other tools, like 'as'.
- '-msdram'
- Link the SDRAM-based runtime instead of the default ROM-based
- runtime.
- '-msim'
- Link the simulator run-time libraries.
- '-msimnovec'
- Link the simulator runtime libraries, excluding built-in support
- for reset and exception vectors and tables.
- '-mtf'
- Causes all functions to default to the '.far' section. Without
- this option, functions default to the '.near' section.
- '-mtiny=N'
- Variables that are N bytes or smaller are allocated to the '.tiny'
- section. These variables use the '$gp' base register. The default
- for this option is 4, but note that there's a 65536-byte limit to
- the '.tiny' section.
- File: gcc.info, Node: MicroBlaze Options, Next: MIPS Options, Prev: MeP Options, Up: Submodel Options
- 3.18.25 MicroBlaze Options
- --------------------------
- '-msoft-float'
- Use software emulation for floating point (default).
- '-mhard-float'
- Use hardware floating-point instructions.
- '-mmemcpy'
- Do not optimize block moves, use 'memcpy'.
- '-mno-clearbss'
- This option is deprecated. Use '-fno-zero-initialized-in-bss'
- instead.
- '-mcpu=CPU-TYPE'
- Use features of, and schedule code for, the given CPU. Supported
- values are in the format 'vX.YY.Z', where X is a major version, YY
- is the minor version, and Z is compatibility code. Example values
- are 'v3.00.a', 'v4.00.b', 'v5.00.a', 'v5.00.b', 'v6.00.a'.
- '-mxl-soft-mul'
- Use software multiply emulation (default).
- '-mxl-soft-div'
- Use software emulation for divides (default).
- '-mxl-barrel-shift'
- Use the hardware barrel shifter.
- '-mxl-pattern-compare'
- Use pattern compare instructions.
- '-msmall-divides'
- Use table lookup optimization for small signed integer divisions.
- '-mxl-stack-check'
- This option is deprecated. Use '-fstack-check' instead.
- '-mxl-gp-opt'
- Use GP-relative '.sdata'/'.sbss' sections.
- '-mxl-multiply-high'
- Use multiply high instructions for high part of 32x32 multiply.
- '-mxl-float-convert'
- Use hardware floating-point conversion instructions.
- '-mxl-float-sqrt'
- Use hardware floating-point square root instruction.
- '-mbig-endian'
- Generate code for a big-endian target.
- '-mlittle-endian'
- Generate code for a little-endian target.
- '-mxl-reorder'
- Use reorder instructions (swap and byte reversed load/store).
- '-mxl-mode-APP-MODEL'
- Select application model APP-MODEL. Valid models are
- 'executable'
- normal executable (default), uses startup code 'crt0.o'.
- 'xmdstub'
- for use with Xilinx Microprocessor Debugger (XMD) based
- software intrusive debug agent called xmdstub. This uses
- startup file 'crt1.o' and sets the start address of the
- program to 0x800.
- 'bootstrap'
- for applications that are loaded using a bootloader. This
- model uses startup file 'crt2.o' which does not contain a
- processor reset vector handler. This is suitable for
- transferring control on a processor reset to the bootloader
- rather than the application.
- 'novectors'
- for applications that do not require any of the MicroBlaze
- vectors. This option may be useful for applications running
- within a monitoring application. This model uses 'crt3.o' as
- a startup file.
- Option '-xl-mode-APP-MODEL' is a deprecated alias for
- '-mxl-mode-APP-MODEL'.
- File: gcc.info, Node: MIPS Options, Next: MMIX Options, Prev: MicroBlaze Options, Up: Submodel Options
- 3.18.26 MIPS Options
- --------------------
- '-EB'
- Generate big-endian code.
- '-EL'
- Generate little-endian code. This is the default for 'mips*el-*-*'
- configurations.
- '-march=ARCH'
- Generate code that runs on ARCH, which can be the name of a generic
- MIPS ISA, or the name of a particular processor. The ISA names
- are: 'mips1', 'mips2', 'mips3', 'mips4', 'mips32', 'mips32r2',
- 'mips32r3', 'mips32r5', 'mips32r6', 'mips64', 'mips64r2',
- 'mips64r3', 'mips64r5' and 'mips64r6'. The processor names are:
- '4kc', '4km', '4kp', '4ksc', '4kec', '4kem', '4kep', '4ksd', '5kc',
- '5kf', '20kc', '24kc', '24kf2_1', '24kf1_1', '24kec', '24kef2_1',
- '24kef1_1', '34kc', '34kf2_1', '34kf1_1', '34kn', '74kc',
- '74kf2_1', '74kf1_1', '74kf3_2', '1004kc', '1004kf2_1',
- '1004kf1_1', 'i6400', 'interaptiv', 'loongson2e', 'loongson2f',
- 'loongson3a', 'm4k', 'm14k', 'm14kc', 'm14ke', 'm14kec', 'm5100',
- 'm5101', 'octeon', 'octeon+', 'octeon2', 'octeon3', 'orion',
- 'p5600', 'r2000', 'r3000', 'r3900', 'r4000', 'r4400', 'r4600',
- 'r4650', 'r4700', 'r6000', 'r8000', 'rm7000', 'rm9000', 'r10000',
- 'r12000', 'r14000', 'r16000', 'sb1', 'sr71000', 'vr4100', 'vr4111',
- 'vr4120', 'vr4130', 'vr4300', 'vr5000', 'vr5400', 'vr5500', 'xlr'
- and 'xlp'. The special value 'from-abi' selects the most
- compatible architecture for the selected ABI (that is, 'mips1' for
- 32-bit ABIs and 'mips3' for 64-bit ABIs).
- The native Linux/GNU toolchain also supports the value 'native',
- which selects the best architecture option for the host processor.
- '-march=native' has no effect if GCC does not recognize the
- processor.
- In processor names, a final '000' can be abbreviated as 'k' (for
- example, '-march=r2k'). Prefixes are optional, and 'vr' may be
- written 'r'.
- Names of the form 'Nf2_1' refer to processors with FPUs clocked at
- half the rate of the core, names of the form 'Nf1_1' refer to
- processors with FPUs clocked at the same rate as the core, and
- names of the form 'Nf3_2' refer to processors with FPUs clocked a
- ratio of 3:2 with respect to the core. For compatibility reasons,
- 'Nf' is accepted as a synonym for 'Nf2_1' while 'Nx' and 'Bfx' are
- accepted as synonyms for 'Nf1_1'.
- GCC defines two macros based on the value of this option. The
- first is '_MIPS_ARCH', which gives the name of target architecture,
- as a string. The second has the form '_MIPS_ARCH_FOO', where FOO
- is the capitalized value of '_MIPS_ARCH'. For example,
- '-march=r2000' sets '_MIPS_ARCH' to '"r2000"' and defines the macro
- '_MIPS_ARCH_R2000'.
- Note that the '_MIPS_ARCH' macro uses the processor names given
- above. In other words, it has the full prefix and does not
- abbreviate '000' as 'k'. In the case of 'from-abi', the macro
- names the resolved architecture (either '"mips1"' or '"mips3"').
- It names the default architecture when no '-march' option is given.
- '-mtune=ARCH'
- Optimize for ARCH. Among other things, this option controls the
- way instructions are scheduled, and the perceived cost of
- arithmetic operations. The list of ARCH values is the same as for
- '-march'.
- When this option is not used, GCC optimizes for the processor
- specified by '-march'. By using '-march' and '-mtune' together, it
- is possible to generate code that runs on a family of processors,
- but optimize the code for one particular member of that family.
- '-mtune' defines the macros '_MIPS_TUNE' and '_MIPS_TUNE_FOO',
- which work in the same way as the '-march' ones described above.
- '-mips1'
- Equivalent to '-march=mips1'.
- '-mips2'
- Equivalent to '-march=mips2'.
- '-mips3'
- Equivalent to '-march=mips3'.
- '-mips4'
- Equivalent to '-march=mips4'.
- '-mips32'
- Equivalent to '-march=mips32'.
- '-mips32r3'
- Equivalent to '-march=mips32r3'.
- '-mips32r5'
- Equivalent to '-march=mips32r5'.
- '-mips32r6'
- Equivalent to '-march=mips32r6'.
- '-mips64'
- Equivalent to '-march=mips64'.
- '-mips64r2'
- Equivalent to '-march=mips64r2'.
- '-mips64r3'
- Equivalent to '-march=mips64r3'.
- '-mips64r5'
- Equivalent to '-march=mips64r5'.
- '-mips64r6'
- Equivalent to '-march=mips64r6'.
- '-mips16'
- '-mno-mips16'
- Generate (do not generate) MIPS16 code. If GCC is targeting a
- MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE.
- MIPS16 code generation can also be controlled on a per-function
- basis by means of 'mips16' and 'nomips16' attributes. *Note
- Function Attributes::, for more information.
- '-mflip-mips16'
- Generate MIPS16 code on alternating functions. This option is
- provided for regression testing of mixed MIPS16/non-MIPS16 code
- generation, and is not intended for ordinary use in compiling user
- code.
- '-minterlink-compressed'
- '-mno-interlink-compressed'
- Require (do not require) that code using the standard
- (uncompressed) MIPS ISA be link-compatible with MIPS16 and
- microMIPS code, and vice versa.
- For example, code using the standard ISA encoding cannot jump
- directly to MIPS16 or microMIPS code; it must either use a call or
- an indirect jump. '-minterlink-compressed' therefore disables
- direct jumps unless GCC knows that the target of the jump is not
- compressed.
- '-minterlink-mips16'
- '-mno-interlink-mips16'
- Aliases of '-minterlink-compressed' and
- '-mno-interlink-compressed'. These options predate the microMIPS
- ASE and are retained for backwards compatibility.
- '-mabi=32'
- '-mabi=o64'
- '-mabi=n32'
- '-mabi=64'
- '-mabi=eabi'
- Generate code for the given ABI.
- Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
- generates 64-bit code when you select a 64-bit architecture, but
- you can use '-mgp32' to get 32-bit code instead.
- For information about the O64 ABI, see
- <http://gcc.gnu.org/projects/mipso64-abi.html>.
- GCC supports a variant of the o32 ABI in which floating-point
- registers are 64 rather than 32 bits wide. You can select this
- combination with '-mabi=32' '-mfp64'. This ABI relies on the
- 'mthc1' and 'mfhc1' instructions and is therefore only supported
- for MIPS32R2, MIPS32R3 and MIPS32R5 processors.
- The register assignments for arguments and return values remain the
- same, but each scalar value is passed in a single 64-bit register
- rather than a pair of 32-bit registers. For example, scalar
- floating-point values are returned in '$f0' only, not a '$f0'/'$f1'
- pair. The set of call-saved registers also remains the same in
- that the even-numbered double-precision registers are saved.
- Two additional variants of the o32 ABI are supported to enable a
- transition from 32-bit to 64-bit registers. These are FPXX
- ('-mfpxx') and FP64A ('-mfp64' '-mno-odd-spreg'). The FPXX
- extension mandates that all code must execute correctly when run
- using 32-bit or 64-bit registers. The code can be interlinked with
- either FP32 or FP64, but not both. The FP64A extension is similar
- to the FP64 extension but forbids the use of odd-numbered
- single-precision registers. This can be used in conjunction with
- the 'FRE' mode of FPUs in MIPS32R5 processors and allows both FP32
- and FP64A code to interlink and run in the same process without
- changing FPU modes.
- '-mabicalls'
- '-mno-abicalls'
- Generate (do not generate) code that is suitable for SVR4-style
- dynamic objects. '-mabicalls' is the default for SVR4-based
- systems.
- '-mshared'
- '-mno-shared'
- Generate (do not generate) code that is fully position-independent,
- and that can therefore be linked into shared libraries. This
- option only affects '-mabicalls'.
- All '-mabicalls' code has traditionally been position-independent,
- regardless of options like '-fPIC' and '-fpic'. However, as an
- extension, the GNU toolchain allows executables to use absolute
- accesses for locally-binding symbols. It can also use shorter GP
- initialization sequences and generate direct calls to
- locally-defined functions. This mode is selected by '-mno-shared'.
- '-mno-shared' depends on binutils 2.16 or higher and generates
- objects that can only be linked by the GNU linker. However, the
- option does not affect the ABI of the final executable; it only
- affects the ABI of relocatable objects. Using '-mno-shared'
- generally makes executables both smaller and quicker.
- '-mshared' is the default.
- '-mplt'
- '-mno-plt'
- Assume (do not assume) that the static and dynamic linkers support
- PLTs and copy relocations. This option only affects '-mno-shared
- -mabicalls'. For the n64 ABI, this option has no effect without
- '-msym32'.
- You can make '-mplt' the default by configuring GCC with
- '--with-mips-plt'. The default is '-mno-plt' otherwise.
- '-mxgot'
- '-mno-xgot'
- Lift (do not lift) the usual restrictions on the size of the global
- offset table.
- GCC normally uses a single instruction to load values from the GOT.
- While this is relatively efficient, it only works if the GOT is
- smaller than about 64k. Anything larger causes the linker to
- report an error such as:
- relocation truncated to fit: R_MIPS_GOT16 foobar
- If this happens, you should recompile your code with '-mxgot'.
- This works with very large GOTs, although the code is also less
- efficient, since it takes three instructions to fetch the value of
- a global symbol.
- Note that some linkers can create multiple GOTs. If you have such
- a linker, you should only need to use '-mxgot' when a single object
- file accesses more than 64k's worth of GOT entries. Very few do.
- These options have no effect unless GCC is generating position
- independent code.
- '-mgp32'
- Assume that general-purpose registers are 32 bits wide.
- '-mgp64'
- Assume that general-purpose registers are 64 bits wide.
- '-mfp32'
- Assume that floating-point registers are 32 bits wide.
- '-mfp64'
- Assume that floating-point registers are 64 bits wide.
- '-mfpxx'
- Do not assume the width of floating-point registers.
- '-mhard-float'
- Use floating-point coprocessor instructions.
- '-msoft-float'
- Do not use floating-point coprocessor instructions. Implement
- floating-point calculations using library calls instead.
- '-mno-float'
- Equivalent to '-msoft-float', but additionally asserts that the
- program being compiled does not perform any floating-point
- operations. This option is presently supported only by some
- bare-metal MIPS configurations, where it may select a special set
- of libraries that lack all floating-point support (including, for
- example, the floating-point 'printf' formats). If code compiled
- with '-mno-float' accidentally contains floating-point operations,
- it is likely to suffer a link-time or run-time failure.
- '-msingle-float'
- Assume that the floating-point coprocessor only supports
- single-precision operations.
- '-mdouble-float'
- Assume that the floating-point coprocessor supports
- double-precision operations. This is the default.
- '-modd-spreg'
- '-mno-odd-spreg'
- Enable the use of odd-numbered single-precision floating-point
- registers for the o32 ABI. This is the default for processors that
- are known to support these registers. When using the o32 FPXX ABI,
- '-mno-odd-spreg' is set by default.
- '-mabs=2008'
- '-mabs=legacy'
- These options control the treatment of the special not-a-number
- (NaN) IEEE 754 floating-point data with the 'abs.fmt' and 'neg.fmt'
- machine instructions.
- By default or when '-mabs=legacy' is used the legacy treatment is
- selected. In this case these instructions are considered
- arithmetic and avoided where correct operation is required and the
- input operand might be a NaN. A longer sequence of instructions
- that manipulate the sign bit of floating-point datum manually is
- used instead unless the '-ffinite-math-only' option has also been
- specified.
- The '-mabs=2008' option selects the IEEE 754-2008 treatment. In
- this case these instructions are considered non-arithmetic and
- therefore operating correctly in all cases, including in particular
- where the input operand is a NaN. These instructions are therefore
- always used for the respective operations.
- '-mnan=2008'
- '-mnan=legacy'
- These options control the encoding of the special not-a-number
- (NaN) IEEE 754 floating-point data.
- The '-mnan=legacy' option selects the legacy encoding. In this
- case quiet NaNs (qNaNs) are denoted by the first bit of their
- trailing significand field being 0, whereas signaling NaNs (sNaNs)
- are denoted by the first bit of their trailing significand field
- being 1.
- The '-mnan=2008' option selects the IEEE 754-2008 encoding. In
- this case qNaNs are denoted by the first bit of their trailing
- significand field being 1, whereas sNaNs are denoted by the first
- bit of their trailing significand field being 0.
- The default is '-mnan=legacy' unless GCC has been configured with
- '--with-nan=2008'.
- '-mllsc'
- '-mno-llsc'
- Use (do not use) 'll', 'sc', and 'sync' instructions to implement
- atomic memory built-in functions. When neither option is
- specified, GCC uses the instructions if the target architecture
- supports them.
- '-mllsc' is useful if the runtime environment can emulate the
- instructions and '-mno-llsc' can be useful when compiling for
- nonstandard ISAs. You can make either option the default by
- configuring GCC with '--with-llsc' and '--without-llsc'
- respectively. '--with-llsc' is the default for some
- configurations; see the installation documentation for details.
- '-mdsp'
- '-mno-dsp'
- Use (do not use) revision 1 of the MIPS DSP ASE. *Note MIPS DSP
- Built-in Functions::. This option defines the preprocessor macro
- '__mips_dsp'. It also defines '__mips_dsp_rev' to 1.
- '-mdspr2'
- '-mno-dspr2'
- Use (do not use) revision 2 of the MIPS DSP ASE. *Note MIPS DSP
- Built-in Functions::. This option defines the preprocessor macros
- '__mips_dsp' and '__mips_dspr2'. It also defines '__mips_dsp_rev'
- to 2.
- '-msmartmips'
- '-mno-smartmips'
- Use (do not use) the MIPS SmartMIPS ASE.
- '-mpaired-single'
- '-mno-paired-single'
- Use (do not use) paired-single floating-point instructions. *Note
- MIPS Paired-Single Support::. This option requires hardware
- floating-point support to be enabled.
- '-mdmx'
- '-mno-mdmx'
- Use (do not use) MIPS Digital Media Extension instructions. This
- option can only be used when generating 64-bit code and requires
- hardware floating-point support to be enabled.
- '-mips3d'
- '-mno-mips3d'
- Use (do not use) the MIPS-3D ASE. *Note MIPS-3D Built-in
- Functions::. The option '-mips3d' implies '-mpaired-single'.
- '-mmicromips'
- '-mno-micromips'
- Generate (do not generate) microMIPS code.
- MicroMIPS code generation can also be controlled on a per-function
- basis by means of 'micromips' and 'nomicromips' attributes. *Note
- Function Attributes::, for more information.
- '-mmt'
- '-mno-mt'
- Use (do not use) MT Multithreading instructions.
- '-mmcu'
- '-mno-mcu'
- Use (do not use) the MIPS MCU ASE instructions.
- '-meva'
- '-mno-eva'
- Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
- '-mvirt'
- '-mno-virt'
- Use (do not use) the MIPS Virtualization (VZ) instructions.
- '-mxpa'
- '-mno-xpa'
- Use (do not use) the MIPS eXtended Physical Address (XPA)
- instructions.
- '-mlong64'
- Force 'long' types to be 64 bits wide. See '-mlong32' for an
- explanation of the default and the way that the pointer size is
- determined.
- '-mlong32'
- Force 'long', 'int', and pointer types to be 32 bits wide.
- The default size of 'int's, 'long's and pointers depends on the
- ABI. All the supported ABIs use 32-bit 'int's. The n64 ABI uses
- 64-bit 'long's, as does the 64-bit EABI; the others use 32-bit
- 'long's. Pointers are the same size as 'long's, or the same size
- as integer registers, whichever is smaller.
- '-msym32'
- '-mno-sym32'
- Assume (do not assume) that all symbols have 32-bit values,
- regardless of the selected ABI. This option is useful in
- combination with '-mabi=64' and '-mno-abicalls' because it allows
- GCC to generate shorter and faster references to symbolic
- addresses.
- '-G NUM'
- Put definitions of externally-visible data in a small data section
- if that data is no bigger than NUM bytes. GCC can then generate
- more efficient accesses to the data; see '-mgpopt' for details.
- The default '-G' option depends on the configuration.
- '-mlocal-sdata'
- '-mno-local-sdata'
- Extend (do not extend) the '-G' behavior to local data too, such as
- to static variables in C. '-mlocal-sdata' is the default for all
- configurations.
- If the linker complains that an application is using too much small
- data, you might want to try rebuilding the less
- performance-critical parts with '-mno-local-sdata'. You might also
- want to build large libraries with '-mno-local-sdata', so that the
- libraries leave more room for the main program.
- '-mextern-sdata'
- '-mno-extern-sdata'
- Assume (do not assume) that externally-defined data is in a small
- data section if the size of that data is within the '-G' limit.
- '-mextern-sdata' is the default for all configurations.
- If you compile a module MOD with '-mextern-sdata' '-G NUM'
- '-mgpopt', and MOD references a variable VAR that is no bigger than
- NUM bytes, you must make sure that VAR is placed in a small data
- section. If VAR is defined by another module, you must either
- compile that module with a high-enough '-G' setting or attach a
- 'section' attribute to VAR's definition. If VAR is common, you
- must link the application with a high-enough '-G' setting.
- The easiest way of satisfying these restrictions is to compile and
- link every module with the same '-G' option. However, you may wish
- to build a library that supports several different small data
- limits. You can do this by compiling the library with the highest
- supported '-G' setting and additionally using '-mno-extern-sdata'
- to stop the library from making assumptions about
- externally-defined data.
- '-mgpopt'
- '-mno-gpopt'
- Use (do not use) GP-relative accesses for symbols that are known to
- be in a small data section; see '-G', '-mlocal-sdata' and
- '-mextern-sdata'. '-mgpopt' is the default for all configurations.
- '-mno-gpopt' is useful for cases where the '$gp' register might not
- hold the value of '_gp'. For example, if the code is part of a
- library that might be used in a boot monitor, programs that call
- boot monitor routines pass an unknown value in '$gp'. (In such
- situations, the boot monitor itself is usually compiled with
- '-G0'.)
- '-mno-gpopt' implies '-mno-local-sdata' and '-mno-extern-sdata'.
- '-membedded-data'
- '-mno-embedded-data'
- Allocate variables to the read-only data section first if possible,
- then next in the small data section if possible, otherwise in data.
- This gives slightly slower code than the default, but reduces the
- amount of RAM required when executing, and thus may be preferred
- for some embedded systems.
- '-muninit-const-in-rodata'
- '-mno-uninit-const-in-rodata'
- Put uninitialized 'const' variables in the read-only data section.
- This option is only meaningful in conjunction with
- '-membedded-data'.
- '-mcode-readable=SETTING'
- Specify whether GCC may generate code that reads from executable
- sections. There are three possible settings:
- '-mcode-readable=yes'
- Instructions may freely access executable sections. This is
- the default setting.
- '-mcode-readable=pcrel'
- MIPS16 PC-relative load instructions can access executable
- sections, but other instructions must not do so. This option
- is useful on 4KSc and 4KSd processors when the code TLBs have
- the Read Inhibit bit set. It is also useful on processors
- that can be configured to have a dual instruction/data SRAM
- interface and that, like the M4K, automatically redirect
- PC-relative loads to the instruction RAM.
- '-mcode-readable=no'
- Instructions must not access executable sections. This option
- can be useful on targets that are configured to have a dual
- instruction/data SRAM interface but that (unlike the M4K) do
- not automatically redirect PC-relative loads to the
- instruction RAM.
- '-msplit-addresses'
- '-mno-split-addresses'
- Enable (disable) use of the '%hi()' and '%lo()' assembler
- relocation operators. This option has been superseded by
- '-mexplicit-relocs' but is retained for backwards compatibility.
- '-mexplicit-relocs'
- '-mno-explicit-relocs'
- Use (do not use) assembler relocation operators when dealing with
- symbolic addresses. The alternative, selected by
- '-mno-explicit-relocs', is to use assembler macros instead.
- '-mexplicit-relocs' is the default if GCC was configured to use an
- assembler that supports relocation operators.
- '-mcheck-zero-division'
- '-mno-check-zero-division'
- Trap (do not trap) on integer division by zero.
- The default is '-mcheck-zero-division'.
- '-mdivide-traps'
- '-mdivide-breaks'
- MIPS systems check for division by zero by generating either a
- conditional trap or a break instruction. Using traps results in
- smaller code, but is only supported on MIPS II and later. Also,
- some versions of the Linux kernel have a bug that prevents trap
- from generating the proper signal ('SIGFPE'). Use '-mdivide-traps'
- to allow conditional traps on architectures that support them and
- '-mdivide-breaks' to force the use of breaks.
- The default is usually '-mdivide-traps', but this can be overridden
- at configure time using '--with-divide=breaks'. Divide-by-zero
- checks can be completely disabled using '-mno-check-zero-division'.
- '-mload-store-pairs'
- '-mno-load-store-pairs'
- Enable (disable) an optimization that pairs consecutive load or
- store instructions to enable load/store bonding. This option is
- enabled by default but only takes effect when the selected
- architecture is known to support bonding.
- '-mmemcpy'
- '-mno-memcpy'
- Force (do not force) the use of 'memcpy' for non-trivial block
- moves. The default is '-mno-memcpy', which allows GCC to inline
- most constant-sized copies.
- '-mlong-calls'
- '-mno-long-calls'
- Disable (do not disable) use of the 'jal' instruction. Calling
- functions using 'jal' is more efficient but requires the caller and
- callee to be in the same 256 megabyte segment.
- This option has no effect on abicalls code. The default is
- '-mno-long-calls'.
- '-mmad'
- '-mno-mad'
- Enable (disable) use of the 'mad', 'madu' and 'mul' instructions,
- as provided by the R4650 ISA.
- '-mimadd'
- '-mno-imadd'
- Enable (disable) use of the 'madd' and 'msub' integer instructions.
- The default is '-mimadd' on architectures that support 'madd' and
- 'msub' except for the 74k architecture where it was found to
- generate slower code.
- '-mfused-madd'
- '-mno-fused-madd'
- Enable (disable) use of the floating-point multiply-accumulate
- instructions, when they are available. The default is
- '-mfused-madd'.
- On the R8000 CPU when multiply-accumulate instructions are used,
- the intermediate product is calculated to infinite precision and is
- not subject to the FCSR Flush to Zero bit. This may be undesirable
- in some circumstances. On other processors the result is
- numerically identical to the equivalent computation using separate
- multiply, add, subtract and negate instructions.
- '-nocpp'
- Tell the MIPS assembler to not run its preprocessor over user
- assembler files (with a '.s' suffix) when assembling them.
- '-mfix-24k'
- '-mno-fix-24k'
- Work around the 24K E48 (lost data on stores during refill) errata.
- The workarounds are implemented by the assembler rather than by
- GCC.
- '-mfix-r4000'
- '-mno-fix-r4000'
- Work around certain R4000 CPU errata:
- - A double-word or a variable shift may give an incorrect result
- if executed immediately after starting an integer division.
- - A double-word or a variable shift may give an incorrect result
- if executed while an integer multiplication is in progress.
- - An integer division may give an incorrect result if started in
- a delay slot of a taken branch or a jump.
- '-mfix-r4400'
- '-mno-fix-r4400'
- Work around certain R4400 CPU errata:
- - A double-word or a variable shift may give an incorrect result
- if executed immediately after starting an integer division.
- '-mfix-r10000'
- '-mno-fix-r10000'
- Work around certain R10000 errata:
- - 'll'/'sc' sequences may not behave atomically on revisions
- prior to 3.0. They may deadlock on revisions 2.6 and earlier.
- This option can only be used if the target architecture supports
- branch-likely instructions. '-mfix-r10000' is the default when
- '-march=r10000' is used; '-mno-fix-r10000' is the default
- otherwise.
- '-mfix-rm7000'
- '-mno-fix-rm7000'
- Work around the RM7000 'dmult'/'dmultu' errata. The workarounds
- are implemented by the assembler rather than by GCC.
- '-mfix-vr4120'
- '-mno-fix-vr4120'
- Work around certain VR4120 errata:
- - 'dmultu' does not always produce the correct result.
- - 'div' and 'ddiv' do not always produce the correct result if
- one of the operands is negative.
- The workarounds for the division errata rely on special functions
- in 'libgcc.a'. At present, these functions are only provided by
- the 'mips64vr*-elf' configurations.
- Other VR4120 errata require a NOP to be inserted between certain
- pairs of instructions. These errata are handled by the assembler,
- not by GCC itself.
- '-mfix-vr4130'
- Work around the VR4130 'mflo'/'mfhi' errata. The workarounds are
- implemented by the assembler rather than by GCC, although GCC
- avoids using 'mflo' and 'mfhi' if the VR4130 'macc', 'macchi',
- 'dmacc' and 'dmacchi' instructions are available instead.
- '-mfix-sb1'
- '-mno-fix-sb1'
- Work around certain SB-1 CPU core errata. (This flag currently
- works around the SB-1 revision 2 "F1" and "F2" floating-point
- errata.)
- '-mr10k-cache-barrier=SETTING'
- Specify whether GCC should insert cache barriers to avoid the side
- effects of speculation on R10K processors.
- In common with many processors, the R10K tries to predict the
- outcome of a conditional branch and speculatively executes
- instructions from the "taken" branch. It later aborts these
- instructions if the predicted outcome is wrong. However, on the
- R10K, even aborted instructions can have side effects.
- This problem only affects kernel stores and, depending on the
- system, kernel loads. As an example, a speculatively-executed
- store may load the target memory into cache and mark the cache line
- as dirty, even if the store itself is later aborted. If a DMA
- operation writes to the same area of memory before the "dirty" line
- is flushed, the cached data overwrites the DMA-ed data. See the
- R10K processor manual for a full description, including other
- potential problems.
- One workaround is to insert cache barrier instructions before every
- memory access that might be speculatively executed and that might
- have side effects even if aborted. '-mr10k-cache-barrier=SETTING'
- controls GCC's implementation of this workaround. It assumes that
- aborted accesses to any byte in the following regions does not have
- side effects:
- 1. the memory occupied by the current function's stack frame;
- 2. the memory occupied by an incoming stack argument;
- 3. the memory occupied by an object with a link-time-constant
- address.
- It is the kernel's responsibility to ensure that speculative
- accesses to these regions are indeed safe.
- If the input program contains a function declaration such as:
- void foo (void);
- then the implementation of 'foo' must allow 'j foo' and 'jal foo'
- to be executed speculatively. GCC honors this restriction for
- functions it compiles itself. It expects non-GCC functions (such
- as hand-written assembly code) to do the same.
- The option has three forms:
- '-mr10k-cache-barrier=load-store'
- Insert a cache barrier before a load or store that might be
- speculatively executed and that might have side effects even
- if aborted.
- '-mr10k-cache-barrier=store'
- Insert a cache barrier before a store that might be
- speculatively executed and that might have side effects even
- if aborted.
- '-mr10k-cache-barrier=none'
- Disable the insertion of cache barriers. This is the default
- setting.
- '-mflush-func=FUNC'
- '-mno-flush-func'
- Specifies the function to call to flush the I and D caches, or to
- not call any such function. If called, the function must take the
- same arguments as the common '_flush_func', that is, the address of
- the memory range for which the cache is being flushed, the size of
- the memory range, and the number 3 (to flush both caches). The
- default depends on the target GCC was configured for, but commonly
- is either '_flush_func' or '__cpu_flush'.
- 'mbranch-cost=NUM'
- Set the cost of branches to roughly NUM "simple" instructions.
- This cost is only a heuristic and is not guaranteed to produce
- consistent results across releases. A zero cost redundantly
- selects the default, which is based on the '-mtune' setting.
- '-mbranch-likely'
- '-mno-branch-likely'
- Enable or disable use of Branch Likely instructions, regardless of
- the default for the selected architecture. By default, Branch
- Likely instructions may be generated if they are supported by the
- selected architecture. An exception is for the MIPS32 and MIPS64
- architectures and processors that implement those architectures;
- for those, Branch Likely instructions are not be generated by
- default because the MIPS32 and MIPS64 architectures specifically
- deprecate their use.
- '-mcompact-branches=never'
- '-mcompact-branches=optimal'
- '-mcompact-branches=always'
- These options control which form of branches will be generated.
- The default is '-mcompact-branches=optimal'.
- The '-mcompact-branches=never' option ensures that compact branch
- instructions will never be generated.
- The '-mcompact-branches=always' option ensures that a compact
- branch instruction will be generated if available. If a compact
- branch instruction is not available, a delay slot form of the
- branch will be used instead.
- This option is supported from MIPS Release 6 onwards.
- The '-mcompact-branches=optimal' option will cause a delay slot
- branch to be used if one is available in the current ISA and the
- delay slot is successfully filled. If the delay slot is not
- filled, a compact branch will be chosen if one is available.
- '-mfp-exceptions'
- '-mno-fp-exceptions'
- Specifies whether FP exceptions are enabled. This affects how FP
- instructions are scheduled for some processors. The default is
- that FP exceptions are enabled.
- For instance, on the SB-1, if FP exceptions are disabled, and we
- are emitting 64-bit code, then we can use both FP pipes.
- Otherwise, we can only use one FP pipe.
- '-mvr4130-align'
- '-mno-vr4130-align'
- The VR4130 pipeline is two-way superscalar, but can only issue two
- instructions together if the first one is 8-byte aligned. When
- this option is enabled, GCC aligns pairs of instructions that it
- thinks should execute in parallel.
- This option only has an effect when optimizing for the VR4130. It
- normally makes code faster, but at the expense of making it bigger.
- It is enabled by default at optimization level '-O3'.
- '-msynci'
- '-mno-synci'
- Enable (disable) generation of 'synci' instructions on
- architectures that support it. The 'synci' instructions (if
- enabled) are generated when '__builtin___clear_cache' is compiled.
- This option defaults to '-mno-synci', but the default can be
- overridden by configuring GCC with '--with-synci'.
- When compiling code for single processor systems, it is generally
- safe to use 'synci'. However, on many multi-core (SMP) systems, it
- does not invalidate the instruction caches on all cores and may
- lead to undefined behavior.
- '-mrelax-pic-calls'
- '-mno-relax-pic-calls'
- Try to turn PIC calls that are normally dispatched via register
- '$25' into direct calls. This is only possible if the linker can
- resolve the destination at link time and if the destination is
- within range for a direct call.
- '-mrelax-pic-calls' is the default if GCC was configured to use an
- assembler and a linker that support the '.reloc' assembly directive
- and '-mexplicit-relocs' is in effect. With '-mno-explicit-relocs',
- this optimization can be performed by the assembler and the linker
- alone without help from the compiler.
- '-mmcount-ra-address'
- '-mno-mcount-ra-address'
- Emit (do not emit) code that allows '_mcount' to modify the calling
- function's return address. When enabled, this option extends the
- usual '_mcount' interface with a new RA-ADDRESS parameter, which
- has type 'intptr_t *' and is passed in register '$12'. '_mcount'
- can then modify the return address by doing both of the following:
- * Returning the new address in register '$31'.
- * Storing the new address in '*RA-ADDRESS', if RA-ADDRESS is
- nonnull.
- The default is '-mno-mcount-ra-address'.
- '-mframe-header-opt'
- '-mno-frame-header-opt'
- Enable (disable) frame header optimization in the o32 ABI. When
- using the o32 ABI, calling functions will allocate 16 bytes on the
- stack for the called function to write out register arguments.
- When enabled, this optimization will suppress the allocation of the
- frame header if it can be determined that it is unused.
- This optimization is off by default at all optimization levels.
- '-mlxc1-sxc1'
- '-mno-lxc1-sxc1'
- When applicable, enable (disable) the generation of 'lwxc1',
- 'swxc1', 'ldxc1', 'sdxc1' instructions. Enabled by default.
- '-mmadd4'
- '-mno-madd4'
- When applicable, enable (disable) the generation of 4-operand
- 'madd.s', 'madd.d' and related instructions. Enabled by default.
- File: gcc.info, Node: MMIX Options, Next: MN10300 Options, Prev: MIPS Options, Up: Submodel Options
- 3.18.27 MMIX Options
- --------------------
- These options are defined for the MMIX:
- '-mlibfuncs'
- '-mno-libfuncs'
- Specify that intrinsic library functions are being compiled,
- passing all values in registers, no matter the size.
- '-mepsilon'
- '-mno-epsilon'
- Generate floating-point comparison instructions that compare with
- respect to the 'rE' epsilon register.
- '-mabi=mmixware'
- '-mabi=gnu'
- Generate code that passes function parameters and return values
- that (in the called function) are seen as registers '$0' and up, as
- opposed to the GNU ABI which uses global registers '$231' and up.
- '-mzero-extend'
- '-mno-zero-extend'
- When reading data from memory in sizes shorter than 64 bits, use
- (do not use) zero-extending load instructions by default, rather
- than sign-extending ones.
- '-mknuthdiv'
- '-mno-knuthdiv'
- Make the result of a division yielding a remainder have the same
- sign as the divisor. With the default, '-mno-knuthdiv', the sign
- of the remainder follows the sign of the dividend. Both methods
- are arithmetically valid, the latter being almost exclusively used.
- '-mtoplevel-symbols'
- '-mno-toplevel-symbols'
- Prepend (do not prepend) a ':' to all global symbols, so the
- assembly code can be used with the 'PREFIX' assembly directive.
- '-melf'
- Generate an executable in the ELF format, rather than the default
- 'mmo' format used by the 'mmix' simulator.
- '-mbranch-predict'
- '-mno-branch-predict'
- Use (do not use) the probable-branch instructions, when static
- branch prediction indicates a probable branch.
- '-mbase-addresses'
- '-mno-base-addresses'
- Generate (do not generate) code that uses _base addresses_. Using
- a base address automatically generates a request (handled by the
- assembler and the linker) for a constant to be set up in a global
- register. The register is used for one or more base address
- requests within the range 0 to 255 from the value held in the
- register. The generally leads to short and fast code, but the
- number of different data items that can be addressed is limited.
- This means that a program that uses lots of static data may require
- '-mno-base-addresses'.
- '-msingle-exit'
- '-mno-single-exit'
- Force (do not force) generated code to have a single exit point in
- each function.
- File: gcc.info, Node: MN10300 Options, Next: Moxie Options, Prev: MMIX Options, Up: Submodel Options
- 3.18.28 MN10300 Options
- -----------------------
- These '-m' options are defined for Matsushita MN10300 architectures:
- '-mmult-bug'
- Generate code to avoid bugs in the multiply instructions for the
- MN10300 processors. This is the default.
- '-mno-mult-bug'
- Do not generate code to avoid bugs in the multiply instructions for
- the MN10300 processors.
- '-mam33'
- Generate code using features specific to the AM33 processor.
- '-mno-am33'
- Do not generate code using features specific to the AM33 processor.
- This is the default.
- '-mam33-2'
- Generate code using features specific to the AM33/2.0 processor.
- '-mam34'
- Generate code using features specific to the AM34 processor.
- '-mtune=CPU-TYPE'
- Use the timing characteristics of the indicated CPU type when
- scheduling instructions. This does not change the targeted
- processor type. The CPU type must be one of 'mn10300', 'am33',
- 'am33-2' or 'am34'.
- '-mreturn-pointer-on-d0'
- When generating a function that returns a pointer, return the
- pointer in both 'a0' and 'd0'. Otherwise, the pointer is returned
- only in 'a0', and attempts to call such functions without a
- prototype result in errors. Note that this option is on by
- default; use '-mno-return-pointer-on-d0' to disable it.
- '-mno-crt0'
- Do not link in the C run-time initialization object file.
- '-mrelax'
- Indicate to the linker that it should perform a relaxation
- optimization pass to shorten branches, calls and absolute memory
- addresses. This option only has an effect when used on the command
- line for the final link step.
- This option makes symbolic debugging impossible.
- '-mliw'
- Allow the compiler to generate _Long Instruction Word_ instructions
- if the target is the 'AM33' or later. This is the default. This
- option defines the preprocessor macro '__LIW__'.
- '-mnoliw'
- Do not allow the compiler to generate _Long Instruction Word_
- instructions. This option defines the preprocessor macro
- '__NO_LIW__'.
- '-msetlb'
- Allow the compiler to generate the _SETLB_ and _Lcc_ instructions
- if the target is the 'AM33' or later. This is the default. This
- option defines the preprocessor macro '__SETLB__'.
- '-mnosetlb'
- Do not allow the compiler to generate _SETLB_ or _Lcc_
- instructions. This option defines the preprocessor macro
- '__NO_SETLB__'.
- File: gcc.info, Node: Moxie Options, Next: MSP430 Options, Prev: MN10300 Options, Up: Submodel Options
- 3.18.29 Moxie Options
- ---------------------
- '-meb'
- Generate big-endian code. This is the default for 'moxie-*-*'
- configurations.
- '-mel'
- Generate little-endian code.
- '-mmul.x'
- Generate mul.x and umul.x instructions. This is the default for
- 'moxiebox-*-*' configurations.
- '-mno-crt0'
- Do not link in the C run-time initialization object file.
- File: gcc.info, Node: MSP430 Options, Next: NDS32 Options, Prev: Moxie Options, Up: Submodel Options
- 3.18.30 MSP430 Options
- ----------------------
- These options are defined for the MSP430:
- '-masm-hex'
- Force assembly output to always use hex constants. Normally such
- constants are signed decimals, but this option is available for
- testsuite and/or aesthetic purposes.
- '-mmcu='
- Select the MCU to target. This is used to create a C preprocessor
- symbol based upon the MCU name, converted to upper case and pre-
- and post-fixed with '__'. This in turn is used by the 'msp430.h'
- header file to select an MCU-specific supplementary header file.
- The option also sets the ISA to use. If the MCU name is one that
- is known to only support the 430 ISA then that is selected,
- otherwise the 430X ISA is selected. A generic MCU name of 'msp430'
- can also be used to select the 430 ISA. Similarly the generic
- 'msp430x' MCU name selects the 430X ISA.
- In addition an MCU-specific linker script is added to the linker
- command line. The script's name is the name of the MCU with '.ld'
- appended. Thus specifying '-mmcu=xxx' on the 'gcc' command line
- defines the C preprocessor symbol '__XXX__' and cause the linker to
- search for a script called 'xxx.ld'.
- This option is also passed on to the assembler.
- '-mwarn-mcu'
- '-mno-warn-mcu'
- This option enables or disables warnings about conflicts between
- the MCU name specified by the '-mmcu' option and the ISA set by the
- '-mcpu' option and/or the hardware multiply support set by the
- '-mhwmult' option. It also toggles warnings about unrecognized MCU
- names. This option is on by default.
- '-mcpu='
- Specifies the ISA to use. Accepted values are 'msp430', 'msp430x'
- and 'msp430xv2'. This option is deprecated. The '-mmcu=' option
- should be used to select the ISA.
- '-msim'
- Link to the simulator runtime libraries and linker script.
- Overrides any scripts that would be selected by the '-mmcu='
- option.
- '-mlarge'
- Use large-model addressing (20-bit pointers, 32-bit 'size_t').
- '-msmall'
- Use small-model addressing (16-bit pointers, 16-bit 'size_t').
- '-mrelax'
- This option is passed to the assembler and linker, and allows the
- linker to perform certain optimizations that cannot be done until
- the final link.
- 'mhwmult='
- Describes the type of hardware multiply supported by the target.
- Accepted values are 'none' for no hardware multiply, '16bit' for
- the original 16-bit-only multiply supported by early MCUs. '32bit'
- for the 16/32-bit multiply supported by later MCUs and 'f5series'
- for the 16/32-bit multiply supported by F5-series MCUs. A value of
- 'auto' can also be given. This tells GCC to deduce the hardware
- multiply support based upon the MCU name provided by the '-mmcu'
- option. If no '-mmcu' option is specified or if the MCU name is
- not recognized then no hardware multiply support is assumed.
- 'auto' is the default setting.
- Hardware multiplies are normally performed by calling a library
- routine. This saves space in the generated code. When compiling
- at '-O3' or higher however the hardware multiplier is invoked
- inline. This makes for bigger, but faster code.
- The hardware multiply routines disable interrupts whilst running
- and restore the previous interrupt state when they finish. This
- makes them safe to use inside interrupt handlers as well as in
- normal code.
- '-minrt'
- Enable the use of a minimum runtime environment - no static
- initializers or constructors. This is intended for
- memory-constrained devices. The compiler includes special symbols
- in some objects that tell the linker and runtime which code
- fragments are required.
- '-mcode-region='
- '-mdata-region='
- These options tell the compiler where to place functions and data
- that do not have one of the 'lower', 'upper', 'either' or 'section'
- attributes. Possible values are 'lower', 'upper', 'either' or
- 'any'. The first three behave like the corresponding attribute.
- The fourth possible value - 'any' - is the default. It leaves
- placement entirely up to the linker script and how it assigns the
- standard sections ('.text', '.data', etc) to the memory regions.
- '-msilicon-errata='
- This option passes on a request to assembler to enable the fixes
- for the named silicon errata.
- '-msilicon-errata-warn='
- This option passes on a request to the assembler to enable warning
- messages when a silicon errata might need to be applied.
- File: gcc.info, Node: NDS32 Options, Next: Nios II Options, Prev: MSP430 Options, Up: Submodel Options
- 3.18.31 NDS32 Options
- ---------------------
- These options are defined for NDS32 implementations:
- '-mbig-endian'
- Generate code in big-endian mode.
- '-mlittle-endian'
- Generate code in little-endian mode.
- '-mreduced-regs'
- Use reduced-set registers for register allocation.
- '-mfull-regs'
- Use full-set registers for register allocation.
- '-mcmov'
- Generate conditional move instructions.
- '-mno-cmov'
- Do not generate conditional move instructions.
- '-mext-perf'
- Generate performance extension instructions.
- '-mno-ext-perf'
- Do not generate performance extension instructions.
- '-mext-perf2'
- Generate performance extension 2 instructions.
- '-mno-ext-perf2'
- Do not generate performance extension 2 instructions.
- '-mext-string'
- Generate string extension instructions.
- '-mno-ext-string'
- Do not generate string extension instructions.
- '-mv3push'
- Generate v3 push25/pop25 instructions.
- '-mno-v3push'
- Do not generate v3 push25/pop25 instructions.
- '-m16-bit'
- Generate 16-bit instructions.
- '-mno-16-bit'
- Do not generate 16-bit instructions.
- '-misr-vector-size=NUM'
- Specify the size of each interrupt vector, which must be 4 or 16.
- '-mcache-block-size=NUM'
- Specify the size of each cache block, which must be a power of 2
- between 4 and 512.
- '-march=ARCH'
- Specify the name of the target architecture.
- '-mcmodel=CODE-MODEL'
- Set the code model to one of
- 'small'
- All the data and read-only data segments must be within 512KB
- addressing space. The text segment must be within 16MB
- addressing space.
- 'medium'
- The data segment must be within 512KB while the read-only data
- segment can be within 4GB addressing space. The text segment
- should be still within 16MB addressing space.
- 'large'
- All the text and data segments can be within 4GB addressing
- space.
- '-mctor-dtor'
- Enable constructor/destructor feature.
- '-mrelax'
- Guide linker to relax instructions.
- File: gcc.info, Node: Nios II Options, Next: Nvidia PTX Options, Prev: NDS32 Options, Up: Submodel Options
- 3.18.32 Nios II Options
- -----------------------
- These are the options defined for the Altera Nios II processor.
- '-G NUM'
- Put global and static objects less than or equal to NUM bytes into
- the small data or BSS sections instead of the normal data or BSS
- sections. The default value of NUM is 8.
- '-mgpopt=OPTION'
- '-mgpopt'
- '-mno-gpopt'
- Generate (do not generate) GP-relative accesses. The following
- OPTION names are recognized:
- 'none'
- Do not generate GP-relative accesses.
- 'local'
- Generate GP-relative accesses for small data objects that are
- not external, weak, or uninitialized common symbols. Also use
- GP-relative addressing for objects that have been explicitly
- placed in a small data section via a 'section' attribute.
- 'global'
- As for 'local', but also generate GP-relative accesses for
- small data objects that are external, weak, or common. If you
- use this option, you must ensure that all parts of your
- program (including libraries) are compiled with the same '-G'
- setting.
- 'data'
- Generate GP-relative accesses for all data objects in the
- program. If you use this option, the entire data and BSS
- segments of your program must fit in 64K of memory and you
- must use an appropriate linker script to allocate them within
- the addressable range of the global pointer.
- 'all'
- Generate GP-relative addresses for function pointers as well
- as data pointers. If you use this option, the entire text,
- data, and BSS segments of your program must fit in 64K of
- memory and you must use an appropriate linker script to
- allocate them within the addressable range of the global
- pointer.
- '-mgpopt' is equivalent to '-mgpopt=local', and '-mno-gpopt' is
- equivalent to '-mgpopt=none'.
- The default is '-mgpopt' except when '-fpic' or '-fPIC' is
- specified to generate position-independent code. Note that the
- Nios II ABI does not permit GP-relative accesses from shared
- libraries.
- You may need to specify '-mno-gpopt' explicitly when building
- programs that include large amounts of small data, including large
- GOT data sections. In this case, the 16-bit offset for GP-relative
- addressing may not be large enough to allow access to the entire
- small data section.
- '-mgprel-sec=REGEXP'
- This option specifies additional section names that can be accessed
- via GP-relative addressing. It is most useful in conjunction with
- 'section' attributes on variable declarations (*note Common
- Variable Attributes::) and a custom linker script. The REGEXP is a
- POSIX Extended Regular Expression.
- This option does not affect the behavior of the '-G' option, and
- the specified sections are in addition to the standard '.sdata' and
- '.sbss' small-data sections that are recognized by '-mgpopt'.
- '-mr0rel-sec=REGEXP'
- This option specifies names of sections that can be accessed via a
- 16-bit offset from 'r0'; that is, in the low 32K or high 32K of the
- 32-bit address space. It is most useful in conjunction with
- 'section' attributes on variable declarations (*note Common
- Variable Attributes::) and a custom linker script. The REGEXP is a
- POSIX Extended Regular Expression.
- In contrast to the use of GP-relative addressing for small data,
- zero-based addressing is never generated by default and there are
- no conventional section names used in standard linker scripts for
- sections in the low or high areas of memory.
- '-mel'
- '-meb'
- Generate little-endian (default) or big-endian (experimental) code,
- respectively.
- '-march=ARCH'
- This specifies the name of the target Nios II architecture. GCC
- uses this name to determine what kind of instructions it can emit
- when generating assembly code. Permissible names are: 'r1', 'r2'.
- The preprocessor macro '__nios2_arch__' is available to programs,
- with value 1 or 2, indicating the targeted ISA level.
- '-mbypass-cache'
- '-mno-bypass-cache'
- Force all load and store instructions to always bypass cache by
- using I/O variants of the instructions. The default is not to
- bypass the cache.
- '-mno-cache-volatile'
- '-mcache-volatile'
- Volatile memory access bypass the cache using the I/O variants of
- the load and store instructions. The default is not to bypass the
- cache.
- '-mno-fast-sw-div'
- '-mfast-sw-div'
- Do not use table-based fast divide for small numbers. The default
- is to use the fast divide at '-O3' and above.
- '-mno-hw-mul'
- '-mhw-mul'
- '-mno-hw-mulx'
- '-mhw-mulx'
- '-mno-hw-div'
- '-mhw-div'
- Enable or disable emitting 'mul', 'mulx' and 'div' family of
- instructions by the compiler. The default is to emit 'mul' and not
- emit 'div' and 'mulx'.
- '-mbmx'
- '-mno-bmx'
- '-mcdx'
- '-mno-cdx'
- Enable or disable generation of Nios II R2 BMX (bit manipulation)
- and CDX (code density) instructions. Enabling these instructions
- also requires '-march=r2'. Since these instructions are optional
- extensions to the R2 architecture, the default is not to emit them.
- '-mcustom-INSN=N'
- '-mno-custom-INSN'
- Each '-mcustom-INSN=N' option enables use of a custom instruction
- with encoding N when generating code that uses INSN. For example,
- '-mcustom-fadds=253' generates custom instruction 253 for
- single-precision floating-point add operations instead of the
- default behavior of using a library call.
- The following values of INSN are supported. Except as otherwise
- noted, floating-point operations are expected to be implemented
- with normal IEEE 754 semantics and correspond directly to the C
- operators or the equivalent GCC built-in functions (*note Other
- Builtins::).
- Single-precision floating point:
- 'fadds', 'fsubs', 'fdivs', 'fmuls'
- Binary arithmetic operations.
- 'fnegs'
- Unary negation.
- 'fabss'
- Unary absolute value.
- 'fcmpeqs', 'fcmpges', 'fcmpgts', 'fcmples', 'fcmplts', 'fcmpnes'
- Comparison operations.
- 'fmins', 'fmaxs'
- Floating-point minimum and maximum. These instructions are
- only generated if '-ffinite-math-only' is specified.
- 'fsqrts'
- Unary square root operation.
- 'fcoss', 'fsins', 'ftans', 'fatans', 'fexps', 'flogs'
- Floating-point trigonometric and exponential functions. These
- instructions are only generated if
- '-funsafe-math-optimizations' is also specified.
- Double-precision floating point:
- 'faddd', 'fsubd', 'fdivd', 'fmuld'
- Binary arithmetic operations.
- 'fnegd'
- Unary negation.
- 'fabsd'
- Unary absolute value.
- 'fcmpeqd', 'fcmpged', 'fcmpgtd', 'fcmpled', 'fcmpltd', 'fcmpned'
- Comparison operations.
- 'fmind', 'fmaxd'
- Double-precision minimum and maximum. These instructions are
- only generated if '-ffinite-math-only' is specified.
- 'fsqrtd'
- Unary square root operation.
- 'fcosd', 'fsind', 'ftand', 'fatand', 'fexpd', 'flogd'
- Double-precision trigonometric and exponential functions.
- These instructions are only generated if
- '-funsafe-math-optimizations' is also specified.
- Conversions:
- 'fextsd'
- Conversion from single precision to double precision.
- 'ftruncds'
- Conversion from double precision to single precision.
- 'fixsi', 'fixsu', 'fixdi', 'fixdu'
- Conversion from floating point to signed or unsigned integer
- types, with truncation towards zero.
- 'round'
- Conversion from single-precision floating point to signed
- integer, rounding to the nearest integer and ties away from
- zero. This corresponds to the '__builtin_lroundf' function
- when '-fno-math-errno' is used.
- 'floatis', 'floatus', 'floatid', 'floatud'
- Conversion from signed or unsigned integer types to
- floating-point types.
- In addition, all of the following transfer instructions for
- internal registers X and Y must be provided to use any of the
- double-precision floating-point instructions. Custom instructions
- taking two double-precision source operands expect the first
- operand in the 64-bit register X. The other operand (or only
- operand of a unary operation) is given to the custom arithmetic
- instruction with the least significant half in source register SRC1
- and the most significant half in SRC2. A custom instruction that
- returns a double-precision result returns the most significant 32
- bits in the destination register and the other half in 32-bit
- register Y. GCC automatically generates the necessary code
- sequences to write register X and/or read register Y when
- double-precision floating-point instructions are used.
- 'fwrx'
- Write SRC1 into the least significant half of X and SRC2 into
- the most significant half of X.
- 'fwry'
- Write SRC1 into Y.
- 'frdxhi', 'frdxlo'
- Read the most or least (respectively) significant half of X
- and store it in DEST.
- 'frdy'
- Read the value of Y and store it into DEST.
- Note that you can gain more local control over generation of Nios
- II custom instructions by using the 'target("custom-INSN=N")' and
- 'target("no-custom-INSN")' function attributes (*note Function
- Attributes::) or pragmas (*note Function Specific Option
- Pragmas::).
- '-mcustom-fpu-cfg=NAME'
- This option enables a predefined, named set of custom instruction
- encodings (see '-mcustom-INSN' above). Currently, the following
- sets are defined:
- '-mcustom-fpu-cfg=60-1' is equivalent to:
- -mcustom-fmuls=252
- -mcustom-fadds=253
- -mcustom-fsubs=254
- -fsingle-precision-constant
- '-mcustom-fpu-cfg=60-2' is equivalent to:
- -mcustom-fmuls=252
- -mcustom-fadds=253
- -mcustom-fsubs=254
- -mcustom-fdivs=255
- -fsingle-precision-constant
- '-mcustom-fpu-cfg=72-3' is equivalent to:
- -mcustom-floatus=243
- -mcustom-fixsi=244
- -mcustom-floatis=245
- -mcustom-fcmpgts=246
- -mcustom-fcmples=249
- -mcustom-fcmpeqs=250
- -mcustom-fcmpnes=251
- -mcustom-fmuls=252
- -mcustom-fadds=253
- -mcustom-fsubs=254
- -mcustom-fdivs=255
- -fsingle-precision-constant
- Custom instruction assignments given by individual '-mcustom-INSN='
- options override those given by '-mcustom-fpu-cfg=', regardless of
- the order of the options on the command line.
- Note that you can gain more local control over selection of a FPU
- configuration by using the 'target("custom-fpu-cfg=NAME")' function
- attribute (*note Function Attributes::) or pragma (*note Function
- Specific Option Pragmas::).
- These additional '-m' options are available for the Altera Nios II ELF
- (bare-metal) target:
- '-mhal'
- Link with HAL BSP. This suppresses linking with the GCC-provided C
- runtime startup and termination code, and is typically used in
- conjunction with '-msys-crt0=' to specify the location of the
- alternate startup code provided by the HAL BSP.
- '-msmallc'
- Link with a limited version of the C library, '-lsmallc', rather
- than Newlib.
- '-msys-crt0=STARTFILE'
- STARTFILE is the file name of the startfile (crt0) to use when
- linking. This option is only useful in conjunction with '-mhal'.
- '-msys-lib=SYSTEMLIB'
- SYSTEMLIB is the library name of the library that provides
- low-level system calls required by the C library, e.g. 'read' and
- 'write'. This option is typically used to link with a library
- provided by a HAL BSP.
- File: gcc.info, Node: Nvidia PTX Options, Next: PDP-11 Options, Prev: Nios II Options, Up: Submodel Options
- 3.18.33 Nvidia PTX Options
- --------------------------
- These options are defined for Nvidia PTX:
- '-m32'
- '-m64'
- Generate code for 32-bit or 64-bit ABI.
- '-mmainkernel'
- Link in code for a __main kernel. This is for stand-alone instead
- of offloading execution.
- '-moptimize'
- Apply partitioned execution optimizations. This is the default
- when any level of optimization is selected.
- '-msoft-stack'
- Generate code that does not use '.local' memory directly for stack
- storage. Instead, a per-warp stack pointer is maintained
- explicitly. This enables variable-length stack allocation (with
- variable-length arrays or 'alloca'), and when global memory is used
- for underlying storage, makes it possible to access automatic
- variables from other threads, or with atomic instructions. This
- code generation variant is used for OpenMP offloading, but the
- option is exposed on its own for the purpose of testing the
- compiler; to generate code suitable for linking into programs using
- OpenMP offloading, use option '-mgomp'.
- '-muniform-simt'
- Switch to code generation variant that allows to execute all
- threads in each warp, while maintaining memory state and side
- effects as if only one thread in each warp was active outside of
- OpenMP SIMD regions. All atomic operations and calls to runtime
- (malloc, free, vprintf) are conditionally executed (iff current
- lane index equals the master lane index), and the register being
- assigned is copied via a shuffle instruction from the master lane.
- Outside of SIMD regions lane 0 is the master; inside, each thread
- sees itself as the master. Shared memory array 'int __nvptx_uni[]'
- stores all-zeros or all-ones bitmasks for each warp, indicating
- current mode (0 outside of SIMD regions). Each thread can
- bitwise-and the bitmask at position 'tid.y' with current lane index
- to compute the master lane index.
- '-mgomp'
- Generate code for use in OpenMP offloading: enables '-msoft-stack'
- and '-muniform-simt' options, and selects corresponding multilib
- variant.
- File: gcc.info, Node: PDP-11 Options, Next: picoChip Options, Prev: Nvidia PTX Options, Up: Submodel Options
- 3.18.34 PDP-11 Options
- ----------------------
- These options are defined for the PDP-11:
- '-mfpu'
- Use hardware FPP floating point. This is the default. (FIS
- floating point on the PDP-11/40 is not supported.)
- '-msoft-float'
- Do not use hardware floating point.
- '-mac0'
- Return floating-point results in ac0 (fr0 in Unix assembler
- syntax).
- '-mno-ac0'
- Return floating-point results in memory. This is the default.
- '-m40'
- Generate code for a PDP-11/40.
- '-m45'
- Generate code for a PDP-11/45. This is the default.
- '-m10'
- Generate code for a PDP-11/10.
- '-mbcopy-builtin'
- Use inline 'movmemhi' patterns for copying memory. This is the
- default.
- '-mbcopy'
- Do not use inline 'movmemhi' patterns for copying memory.
- '-mint16'
- '-mno-int32'
- Use 16-bit 'int'. This is the default.
- '-mint32'
- '-mno-int16'
- Use 32-bit 'int'.
- '-mfloat64'
- '-mno-float32'
- Use 64-bit 'float'. This is the default.
- '-mfloat32'
- '-mno-float64'
- Use 32-bit 'float'.
- '-mabshi'
- Use 'abshi2' pattern. This is the default.
- '-mno-abshi'
- Do not use 'abshi2' pattern.
- '-mbranch-expensive'
- Pretend that branches are expensive. This is for experimenting
- with code generation only.
- '-mbranch-cheap'
- Do not pretend that branches are expensive. This is the default.
- '-munix-asm'
- Use Unix assembler syntax. This is the default when configured for
- 'pdp11-*-bsd'.
- '-mdec-asm'
- Use DEC assembler syntax. This is the default when configured for
- any PDP-11 target other than 'pdp11-*-bsd'.
- File: gcc.info, Node: picoChip Options, Next: PowerPC Options, Prev: PDP-11 Options, Up: Submodel Options
- 3.18.35 picoChip Options
- ------------------------
- These '-m' options are defined for picoChip implementations:
- '-mae=AE_TYPE'
- Set the instruction set, register set, and instruction scheduling
- parameters for array element type AE_TYPE. Supported values for
- AE_TYPE are 'ANY', 'MUL', and 'MAC'.
- '-mae=ANY' selects a completely generic AE type. Code generated
- with this option runs on any of the other AE types. The code is
- not as efficient as it would be if compiled for a specific AE type,
- and some types of operation (e.g., multiplication) do not work
- properly on all types of AE.
- '-mae=MUL' selects a MUL AE type. This is the most useful AE type
- for compiled code, and is the default.
- '-mae=MAC' selects a DSP-style MAC AE. Code compiled with this
- option may suffer from poor performance of byte (char)
- manipulation, since the DSP AE does not provide hardware support
- for byte load/stores.
- '-msymbol-as-address'
- Enable the compiler to directly use a symbol name as an address in
- a load/store instruction, without first loading it into a register.
- Typically, the use of this option generates larger programs, which
- run faster than when the option isn't used. However, the results
- vary from program to program, so it is left as a user option,
- rather than being permanently enabled.
- '-mno-inefficient-warnings'
- Disables warnings about the generation of inefficient code. These
- warnings can be generated, for example, when compiling code that
- performs byte-level memory operations on the MAC AE type. The MAC
- AE has no hardware support for byte-level memory operations, so all
- byte load/stores must be synthesized from word load/store
- operations. This is inefficient and a warning is generated to
- indicate that you should rewrite the code to avoid byte operations,
- or to target an AE type that has the necessary hardware support.
- This option disables these warnings.
- File: gcc.info, Node: PowerPC Options, Next: PowerPC SPE Options, Prev: picoChip Options, Up: Submodel Options
- 3.18.36 PowerPC Options
- -----------------------
- These are listed under *Note RS/6000 and PowerPC Options::.
- File: gcc.info, Node: PowerPC SPE Options, Next: RISC-V Options, Prev: PowerPC Options, Up: Submodel Options
- 3.18.37 PowerPC SPE Options
- ---------------------------
- These '-m' options are defined for PowerPC SPE:
- '-mmfcrf'
- '-mno-mfcrf'
- '-mpopcntb'
- '-mno-popcntb'
- You use these options to specify which instructions are available
- on the processor you are using. The default value of these options
- is determined when configuring GCC. Specifying the
- '-mcpu=CPU_TYPE' overrides the specification of these options. We
- recommend you use the '-mcpu=CPU_TYPE' option rather than the
- options listed above.
- The '-mmfcrf' option allows GCC to generate the move from condition
- register field instruction implemented on the POWER4 processor and
- other processors that support the PowerPC V2.01 architecture. The
- '-mpopcntb' option allows GCC to generate the popcount and
- double-precision FP reciprocal estimate instruction implemented on
- the POWER5 processor and other processors that support the PowerPC
- V2.02 architecture.
- '-mcpu=CPU_TYPE'
- Set architecture type, register usage, and instruction scheduling
- parameters for machine type CPU_TYPE. Supported values for
- CPU_TYPE are '8540', '8548', and 'native'.
- '-mcpu=powerpc' specifies pure 32-bit PowerPC (either endian), with
- an appropriate, generic processor model assumed for scheduling
- purposes.
- Specifying 'native' as cpu type detects and selects the
- architecture option that corresponds to the host processor of the
- system performing the compilation. '-mcpu=native' has no effect if
- GCC does not recognize the processor.
- The other options specify a specific processor. Code generated
- under those options runs best on that processor, and may not run at
- all on others.
- The '-mcpu' options automatically enable or disable the following
- options:
- -mhard-float -mmfcrf -mmultiple
- -mpopcntb -mpopcntd
- -msingle-float -mdouble-float
- -mfloat128
- The particular options set for any particular CPU varies between
- compiler versions, depending on what setting seems to produce
- optimal code for that CPU; it doesn't necessarily reflect the
- actual hardware's capabilities. If you wish to set an individual
- option to a particular value, you may specify it after the '-mcpu'
- option, like '-mcpu=8548'.
- '-mtune=CPU_TYPE'
- Set the instruction scheduling parameters for machine type
- CPU_TYPE, but do not set the architecture type or register usage,
- as '-mcpu=CPU_TYPE' does. The same values for CPU_TYPE are used
- for '-mtune' as for '-mcpu'. If both are specified, the code
- generated uses the architecture and registers set by '-mcpu', but
- the scheduling parameters set by '-mtune'.
- '-msecure-plt'
- Generate code that allows 'ld' and 'ld.so' to build executables and
- shared libraries with non-executable '.plt' and '.got' sections.
- This is a PowerPC 32-bit SYSV ABI option.
- '-mbss-plt'
- Generate code that uses a BSS '.plt' section that 'ld.so' fills in,
- and requires '.plt' and '.got' sections that are both writable and
- executable. This is a PowerPC 32-bit SYSV ABI option.
- '-misel'
- '-mno-isel'
- This switch enables or disables the generation of ISEL
- instructions.
- '-misel=YES/NO'
- This switch has been deprecated. Use '-misel' and '-mno-isel'
- instead.
- '-mspe'
- '-mno-spe'
- This switch enables or disables the generation of SPE simd
- instructions.
- '-mspe=YES/NO'
- This option has been deprecated. Use '-mspe' and '-mno-spe'
- instead.
- '-mfloat128'
- '-mno-float128'
- Enable/disable the __FLOAT128 keyword for IEEE 128-bit floating
- point and use either software emulation for IEEE 128-bit floating
- point or hardware instructions.
- '-mfloat-gprs=YES/SINGLE/DOUBLE/NO'
- '-mfloat-gprs'
- This switch enables or disables the generation of floating-point
- operations on the general-purpose registers for architectures that
- support it.
- The argument 'yes' or 'single' enables the use of single-precision
- floating-point operations.
- The argument 'double' enables the use of single and
- double-precision floating-point operations.
- The argument 'no' disables floating-point operations on the
- general-purpose registers.
- This option is currently only available on the MPC854x.
- '-mfull-toc'
- '-mno-fp-in-toc'
- '-mno-sum-in-toc'
- '-mminimal-toc'
- Modify generation of the TOC (Table Of Contents), which is created
- for every executable file. The '-mfull-toc' option is selected by
- default. In that case, GCC allocates at least one TOC entry for
- each unique non-automatic variable reference in your program. GCC
- also places floating-point constants in the TOC. However, only
- 16,384 entries are available in the TOC.
- If you receive a linker error message that saying you have
- overflowed the available TOC space, you can reduce the amount of
- TOC space used with the '-mno-fp-in-toc' and '-mno-sum-in-toc'
- options. '-mno-fp-in-toc' prevents GCC from putting floating-point
- constants in the TOC and '-mno-sum-in-toc' forces GCC to generate
- code to calculate the sum of an address and a constant at run time
- instead of putting that sum into the TOC. You may specify one or
- both of these options. Each causes GCC to produce very slightly
- slower and larger code at the expense of conserving TOC space.
- If you still run out of space in the TOC even when you specify both
- of these options, specify '-mminimal-toc' instead. This option
- causes GCC to make only one TOC entry for every file. When you
- specify this option, GCC produces code that is slower and larger
- but which uses extremely little TOC space. You may wish to use
- this option only on files that contain less frequently-executed
- code.
- '-maix32'
- Disables the 64-bit ABI. GCC defaults to '-maix32'.
- '-mxl-compat'
- '-mno-xl-compat'
- Produce code that conforms more closely to IBM XL compiler
- semantics when using AIX-compatible ABI. Pass floating-point
- arguments to prototyped functions beyond the register save area
- (RSA) on the stack in addition to argument FPRs. Do not assume
- that most significant double in 128-bit long double value is
- properly rounded when comparing values and converting to double.
- Use XL symbol names for long double support routines.
- The AIX calling convention was extended but not initially
- documented to handle an obscure K&R C case of calling a function
- that takes the address of its arguments with fewer arguments than
- declared. IBM XL compilers access floating-point arguments that do
- not fit in the RSA from the stack when a subroutine is compiled
- without optimization. Because always storing floating-point
- arguments on the stack is inefficient and rarely needed, this
- option is not enabled by default and only is necessary when calling
- subroutines compiled by IBM XL compilers without optimization.
- '-malign-natural'
- '-malign-power'
- On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
- '-malign-natural' overrides the ABI-defined alignment of larger
- types, such as floating-point doubles, on their natural size-based
- boundary. The option '-malign-power' instructs GCC to follow the
- ABI-specified alignment rules. GCC defaults to the standard
- alignment defined in the ABI.
- On 64-bit Darwin, natural alignment is the default, and
- '-malign-power' is not supported.
- '-msoft-float'
- '-mhard-float'
- Generate code that does not use (uses) the floating-point register
- set. Software floating-point emulation is provided if you use the
- '-msoft-float' option, and pass the option to GCC when linking.
- '-msingle-float'
- '-mdouble-float'
- Generate code for single- or double-precision floating-point
- operations. '-mdouble-float' implies '-msingle-float'.
- '-mmultiple'
- '-mno-multiple'
- Generate code that uses (does not use) the load multiple word
- instructions and the store multiple word instructions. These
- instructions are generated by default on POWER systems, and not
- generated on PowerPC systems. Do not use '-mmultiple' on
- little-endian PowerPC systems, since those instructions do not work
- when the processor is in little-endian mode. The exceptions are
- PPC740 and PPC750 which permit these instructions in little-endian
- mode.
- '-mupdate'
- '-mno-update'
- Generate code that uses (does not use) the load or store
- instructions that update the base register to the address of the
- calculated memory location. These instructions are generated by
- default. If you use '-mno-update', there is a small window between
- the time that the stack pointer is updated and the address of the
- previous frame is stored, which means code that walks the stack
- frame across interrupts or signals may get corrupted data.
- '-mavoid-indexed-addresses'
- '-mno-avoid-indexed-addresses'
- Generate code that tries to avoid (not avoid) the use of indexed
- load or store instructions. These instructions can incur a
- performance penalty on Power6 processors in certain situations,
- such as when stepping through large arrays that cross a 16M
- boundary. This option is enabled by default when targeting Power6
- and disabled otherwise.
- '-mfused-madd'
- '-mno-fused-madd'
- Generate code that uses (does not use) the floating-point multiply
- and accumulate instructions. These instructions are generated by
- default if hardware floating point is used. The machine-dependent
- '-mfused-madd' option is now mapped to the machine-independent
- '-ffp-contract=fast' option, and '-mno-fused-madd' is mapped to
- '-ffp-contract=off'.
- '-mno-strict-align'
- '-mstrict-align'
- On System V.4 and embedded PowerPC systems do not (do) assume that
- unaligned memory references are handled by the system.
- '-mrelocatable'
- '-mno-relocatable'
- Generate code that allows (does not allow) a static executable to
- be relocated to a different address at run time. A simple embedded
- PowerPC system loader should relocate the entire contents of
- '.got2' and 4-byte locations listed in the '.fixup' section, a
- table of 32-bit addresses generated by this option. For this to
- work, all objects linked together must be compiled with
- '-mrelocatable' or '-mrelocatable-lib'. '-mrelocatable' code
- aligns the stack to an 8-byte boundary.
- '-mrelocatable-lib'
- '-mno-relocatable-lib'
- Like '-mrelocatable', '-mrelocatable-lib' generates a '.fixup'
- section to allow static executables to be relocated at run time,
- but '-mrelocatable-lib' does not use the smaller stack alignment of
- '-mrelocatable'. Objects compiled with '-mrelocatable-lib' may be
- linked with objects compiled with any combination of the
- '-mrelocatable' options.
- '-mno-toc'
- '-mtoc'
- On System V.4 and embedded PowerPC systems do not (do) assume that
- register 2 contains a pointer to a global area pointing to the
- addresses used in the program.
- '-mlittle'
- '-mlittle-endian'
- On System V.4 and embedded PowerPC systems compile code for the
- processor in little-endian mode. The '-mlittle-endian' option is
- the same as '-mlittle'.
- '-mbig'
- '-mbig-endian'
- On System V.4 and embedded PowerPC systems compile code for the
- processor in big-endian mode. The '-mbig-endian' option is the
- same as '-mbig'.
- '-mdynamic-no-pic'
- On Darwin and Mac OS X systems, compile code so that it is not
- relocatable, but that its external references are relocatable. The
- resulting code is suitable for applications, but not shared
- libraries.
- '-msingle-pic-base'
- Treat the register used for PIC addressing as read-only, rather
- than loading it in the prologue for each function. The runtime
- system is responsible for initializing this register with an
- appropriate value before execution begins.
- '-mprioritize-restricted-insns=PRIORITY'
- This option controls the priority that is assigned to dispatch-slot
- restricted instructions during the second scheduling pass. The
- argument PRIORITY takes the value '0', '1', or '2' to assign no,
- highest, or second-highest (respectively) priority to dispatch-slot
- restricted instructions.
- '-msched-costly-dep=DEPENDENCE_TYPE'
- This option controls which dependences are considered costly by the
- target during instruction scheduling. The argument DEPENDENCE_TYPE
- takes one of the following values:
- 'no'
- No dependence is costly.
- 'all'
- All dependences are costly.
- 'true_store_to_load'
- A true dependence from store to load is costly.
- 'store_to_load'
- Any dependence from store to load is costly.
- NUMBER
- Any dependence for which the latency is greater than or equal
- to NUMBER is costly.
- '-minsert-sched-nops=SCHEME'
- This option controls which NOP insertion scheme is used during the
- second scheduling pass. The argument SCHEME takes one of the
- following values:
- 'no'
- Don't insert NOPs.
- 'pad'
- Pad with NOPs any dispatch group that has vacant issue slots,
- according to the scheduler's grouping.
- 'regroup_exact'
- Insert NOPs to force costly dependent insns into separate
- groups. Insert exactly as many NOPs as needed to force an
- insn to a new group, according to the estimated processor
- grouping.
- NUMBER
- Insert NOPs to force costly dependent insns into separate
- groups. Insert NUMBER NOPs to force an insn to a new group.
- '-mcall-sysv'
- On System V.4 and embedded PowerPC systems compile code using
- calling conventions that adhere to the March 1995 draft of the
- System V Application Binary Interface, PowerPC processor
- supplement. This is the default unless you configured GCC using
- 'powerpc-*-eabiaix'.
- '-mcall-sysv-eabi'
- '-mcall-eabi'
- Specify both '-mcall-sysv' and '-meabi' options.
- '-mcall-sysv-noeabi'
- Specify both '-mcall-sysv' and '-mno-eabi' options.
- '-mcall-aixdesc'
- On System V.4 and embedded PowerPC systems compile code for the AIX
- operating system.
- '-mcall-linux'
- On System V.4 and embedded PowerPC systems compile code for the
- Linux-based GNU system.
- '-mcall-freebsd'
- On System V.4 and embedded PowerPC systems compile code for the
- FreeBSD operating system.
- '-mcall-netbsd'
- On System V.4 and embedded PowerPC systems compile code for the
- NetBSD operating system.
- '-mcall-openbsd'
- On System V.4 and embedded PowerPC systems compile code for the
- OpenBSD operating system.
- '-maix-struct-return'
- Return all structures in memory (as specified by the AIX ABI).
- '-msvr4-struct-return'
- Return structures smaller than 8 bytes in registers (as specified
- by the SVR4 ABI).
- '-mabi=ABI-TYPE'
- Extend the current ABI with a particular extension, or remove such
- extension. Valid values are 'altivec', 'no-altivec', 'spe',
- 'no-spe', 'ibmlongdouble', 'ieeelongdouble', 'elfv1', 'elfv2'.
- '-mabi=spe'
- Extend the current ABI with SPE ABI extensions. This does not
- change the default ABI, instead it adds the SPE ABI extensions to
- the current ABI.
- '-mabi=no-spe'
- Disable Book-E SPE ABI extensions for the current ABI.
- '-mabi=ibmlongdouble'
- Change the current ABI to use IBM extended-precision long double.
- This is not likely to work if your system defaults to using IEEE
- extended-precision long double. If you change the long double type
- from IEEE extended-precision, the compiler will issue a warning
- unless you use the '-Wno-psabi' option. Requires
- '-mlong-double-128' to be enabled.
- '-mabi=ieeelongdouble'
- Change the current ABI to use IEEE extended-precision long double.
- This is not likely to work if your system defaults to using IBM
- extended-precision long double. If you change the long double type
- from IBM extended-precision, the compiler will issue a warning
- unless you use the '-Wno-psabi' option. Requires
- '-mlong-double-128' to be enabled.
- '-mabi=elfv1'
- Change the current ABI to use the ELFv1 ABI. This is the default
- ABI for big-endian PowerPC 64-bit Linux. Overriding the default
- ABI requires special system support and is likely to fail in
- spectacular ways.
- '-mabi=elfv2'
- Change the current ABI to use the ELFv2 ABI. This is the default
- ABI for little-endian PowerPC 64-bit Linux. Overriding the default
- ABI requires special system support and is likely to fail in
- spectacular ways.
- '-mgnu-attribute'
- '-mno-gnu-attribute'
- Emit .gnu_attribute assembly directives to set tag/value pairs in a
- .gnu.attributes section that specify ABI variations in function
- parameters or return values.
- '-mprototype'
- '-mno-prototype'
- On System V.4 and embedded PowerPC systems assume that all calls to
- variable argument functions are properly prototyped. Otherwise,
- the compiler must insert an instruction before every non-prototyped
- call to set or clear bit 6 of the condition code register ('CR') to
- indicate whether floating-point values are passed in the
- floating-point registers in case the function takes variable
- arguments. With '-mprototype', only calls to prototyped variable
- argument functions set or clear the bit.
- '-msim'
- On embedded PowerPC systems, assume that the startup module is
- called 'sim-crt0.o' and that the standard C libraries are
- 'libsim.a' and 'libc.a'. This is the default for
- 'powerpc-*-eabisim' configurations.
- '-mmvme'
- On embedded PowerPC systems, assume that the startup module is
- called 'crt0.o' and the standard C libraries are 'libmvme.a' and
- 'libc.a'.
- '-mads'
- On embedded PowerPC systems, assume that the startup module is
- called 'crt0.o' and the standard C libraries are 'libads.a' and
- 'libc.a'.
- '-myellowknife'
- On embedded PowerPC systems, assume that the startup module is
- called 'crt0.o' and the standard C libraries are 'libyk.a' and
- 'libc.a'.
- '-mvxworks'
- On System V.4 and embedded PowerPC systems, specify that you are
- compiling for a VxWorks system.
- '-memb'
- On embedded PowerPC systems, set the 'PPC_EMB' bit in the ELF flags
- header to indicate that 'eabi' extended relocations are used.
- '-meabi'
- '-mno-eabi'
- On System V.4 and embedded PowerPC systems do (do not) adhere to
- the Embedded Applications Binary Interface (EABI), which is a set
- of modifications to the System V.4 specifications. Selecting
- '-meabi' means that the stack is aligned to an 8-byte boundary, a
- function '__eabi' is called from 'main' to set up the EABI
- environment, and the '-msdata' option can use both 'r2' and 'r13'
- to point to two separate small data areas. Selecting '-mno-eabi'
- means that the stack is aligned to a 16-byte boundary, no EABI
- initialization function is called from 'main', and the '-msdata'
- option only uses 'r13' to point to a single small data area. The
- '-meabi' option is on by default if you configured GCC using one of
- the 'powerpc*-*-eabi*' options.
- '-msdata=eabi'
- On System V.4 and embedded PowerPC systems, put small initialized
- 'const' global and static data in the '.sdata2' section, which is
- pointed to by register 'r2'. Put small initialized non-'const'
- global and static data in the '.sdata' section, which is pointed to
- by register 'r13'. Put small uninitialized global and static data
- in the '.sbss' section, which is adjacent to the '.sdata' section.
- The '-msdata=eabi' option is incompatible with the '-mrelocatable'
- option. The '-msdata=eabi' option also sets the '-memb' option.
- '-msdata=sysv'
- On System V.4 and embedded PowerPC systems, put small global and
- static data in the '.sdata' section, which is pointed to by
- register 'r13'. Put small uninitialized global and static data in
- the '.sbss' section, which is adjacent to the '.sdata' section.
- The '-msdata=sysv' option is incompatible with the '-mrelocatable'
- option.
- '-msdata=default'
- '-msdata'
- On System V.4 and embedded PowerPC systems, if '-meabi' is used,
- compile code the same as '-msdata=eabi', otherwise compile code the
- same as '-msdata=sysv'.
- '-msdata=data'
- On System V.4 and embedded PowerPC systems, put small global data
- in the '.sdata' section. Put small uninitialized global data in
- the '.sbss' section. Do not use register 'r13' to address small
- data however. This is the default behavior unless other '-msdata'
- options are used.
- '-msdata=none'
- '-mno-sdata'
- On embedded PowerPC systems, put all initialized global and static
- data in the '.data' section, and all uninitialized data in the
- '.bss' section.
- '-mblock-move-inline-limit=NUM'
- Inline all block moves (such as calls to 'memcpy' or structure
- copies) less than or equal to NUM bytes. The minimum value for NUM
- is 32 bytes on 32-bit targets and 64 bytes on 64-bit targets. The
- default value is target-specific.
- '-G NUM'
- On embedded PowerPC systems, put global and static items less than
- or equal to NUM bytes into the small data or BSS sections instead
- of the normal data or BSS section. By default, NUM is 8. The '-G
- NUM' switch is also passed to the linker. All modules should be
- compiled with the same '-G NUM' value.
- '-mregnames'
- '-mno-regnames'
- On System V.4 and embedded PowerPC systems do (do not) emit
- register names in the assembly language output using symbolic
- forms.
- '-mlongcall'
- '-mno-longcall'
- By default assume that all calls are far away so that a longer and
- more expensive calling sequence is required. This is required for
- calls farther than 32 megabytes (33,554,432 bytes) from the current
- location. A short call is generated if the compiler knows the call
- cannot be that far away. This setting can be overridden by the
- 'shortcall' function attribute, or by '#pragma longcall(0)'.
- Some linkers are capable of detecting out-of-range calls and
- generating glue code on the fly. On these systems, long calls are
- unnecessary and generate slower code. As of this writing, the AIX
- linker can do this, as can the GNU linker for PowerPC/64. It is
- planned to add this feature to the GNU linker for 32-bit PowerPC
- systems as well.
- In the future, GCC may ignore all longcall specifications when the
- linker is known to generate glue.
- '-mtls-markers'
- '-mno-tls-markers'
- Mark (do not mark) calls to '__tls_get_addr' with a relocation
- specifying the function argument. The relocation allows the linker
- to reliably associate function call with argument setup
- instructions for TLS optimization, which in turn allows GCC to
- better schedule the sequence.
- '-mrecip'
- '-mno-recip'
- This option enables use of the reciprocal estimate and reciprocal
- square root estimate instructions with additional Newton-Raphson
- steps to increase precision instead of doing a divide or square
- root and divide for floating-point arguments. You should use the
- '-ffast-math' option when using '-mrecip' (or at least
- '-funsafe-math-optimizations', '-ffinite-math-only',
- '-freciprocal-math' and '-fno-trapping-math'). Note that while the
- throughput of the sequence is generally higher than the throughput
- of the non-reciprocal instruction, the precision of the sequence
- can be decreased by up to 2 ulp (i.e. the inverse of 1.0 equals
- 0.99999994) for reciprocal square roots.
- '-mrecip=OPT'
- This option controls which reciprocal estimate instructions may be
- used. OPT is a comma-separated list of options, which may be
- preceded by a '!' to invert the option:
- 'all'
- Enable all estimate instructions.
- 'default'
- Enable the default instructions, equivalent to '-mrecip'.
- 'none'
- Disable all estimate instructions, equivalent to '-mno-recip'.
- 'div'
- Enable the reciprocal approximation instructions for both
- single and double precision.
- 'divf'
- Enable the single-precision reciprocal approximation
- instructions.
- 'divd'
- Enable the double-precision reciprocal approximation
- instructions.
- 'rsqrt'
- Enable the reciprocal square root approximation instructions
- for both single and double precision.
- 'rsqrtf'
- Enable the single-precision reciprocal square root
- approximation instructions.
- 'rsqrtd'
- Enable the double-precision reciprocal square root
- approximation instructions.
- So, for example, '-mrecip=all,!rsqrtd' enables all of the
- reciprocal estimate instructions, except for the 'FRSQRTE',
- 'XSRSQRTEDP', and 'XVRSQRTEDP' instructions which handle the
- double-precision reciprocal square root calculations.
- '-mrecip-precision'
- '-mno-recip-precision'
- Assume (do not assume) that the reciprocal estimate instructions
- provide higher-precision estimates than is mandated by the PowerPC
- ABI. Selecting '-mcpu=power6', '-mcpu=power7' or '-mcpu=power8'
- automatically selects '-mrecip-precision'. The double-precision
- square root estimate instructions are not generated by default on
- low-precision machines, since they do not provide an estimate that
- converges after three steps.
- '-mpointers-to-nested-functions'
- '-mno-pointers-to-nested-functions'
- Generate (do not generate) code to load up the static chain
- register ('r11') when calling through a pointer on AIX and 64-bit
- Linux systems where a function pointer points to a 3-word
- descriptor giving the function address, TOC value to be loaded in
- register 'r2', and static chain value to be loaded in register
- 'r11'. The '-mpointers-to-nested-functions' is on by default. You
- cannot call through pointers to nested functions or pointers to
- functions compiled in other languages that use the static chain if
- you use '-mno-pointers-to-nested-functions'.
- '-msave-toc-indirect'
- '-mno-save-toc-indirect'
- Generate (do not generate) code to save the TOC value in the
- reserved stack location in the function prologue if the function
- calls through a pointer on AIX and 64-bit Linux systems. If the
- TOC value is not saved in the prologue, it is saved just before the
- call through the pointer. The '-mno-save-toc-indirect' option is
- the default.
- '-mcompat-align-parm'
- '-mno-compat-align-parm'
- Generate (do not generate) code to pass structure parameters with a
- maximum alignment of 64 bits, for compatibility with older versions
- of GCC.
- Older versions of GCC (prior to 4.9.0) incorrectly did not align a
- structure parameter on a 128-bit boundary when that structure
- contained a member requiring 128-bit alignment. This is corrected
- in more recent versions of GCC. This option may be used to generate
- code that is compatible with functions compiled with older versions
- of GCC.
- The '-mno-compat-align-parm' option is the default.
- '-mstack-protector-guard=GUARD'
- '-mstack-protector-guard-reg=REG'
- '-mstack-protector-guard-offset=OFFSET'
- '-mstack-protector-guard-symbol=SYMBOL'
- Generate stack protection code using canary at GUARD. Supported
- locations are 'global' for global canary or 'tls' for per-thread
- canary in the TLS block (the default with GNU libc version 2.4 or
- later).
- With the latter choice the options
- '-mstack-protector-guard-reg=REG' and
- '-mstack-protector-guard-offset=OFFSET' furthermore specify which
- register to use as base register for reading the canary, and from
- what offset from that base register. The default for those is as
- specified in the relevant ABI.
- '-mstack-protector-guard-symbol=SYMBOL' overrides the offset with a
- symbol reference to a canary in the TLS block.
- File: gcc.info, Node: RISC-V Options, Next: RL78 Options, Prev: PowerPC SPE Options, Up: Submodel Options
- 3.18.38 RISC-V Options
- ----------------------
- These command-line options are defined for RISC-V targets:
- '-mbranch-cost=N'
- Set the cost of branches to roughly N instructions.
- '-mplt'
- '-mno-plt'
- When generating PIC code, do or don't allow the use of PLTs.
- Ignored for non-PIC. The default is '-mplt'.
- '-mabi=ABI-STRING'
- Specify integer and floating-point calling convention. ABI-STRING
- contains two parts: the size of integer types and the registers
- used for floating-point types. For example '-march=rv64ifd
- -mabi=lp64d' means that 'long' and pointers are 64-bit (implicitly
- defining 'int' to be 32-bit), and that floating-point values up to
- 64 bits wide are passed in F registers. Contrast this with
- '-march=rv64ifd -mabi=lp64f', which still allows the compiler to
- generate code that uses the F and D extensions but only allows
- floating-point values up to 32 bits long to be passed in registers;
- or '-march=rv64ifd -mabi=lp64', in which no floating-point
- arguments will be passed in registers.
- The default for this argument is system dependent, users who want a
- specific calling convention should specify one explicitly. The
- valid calling conventions are: 'ilp32', 'ilp32f', 'ilp32d', 'lp64',
- 'lp64f', and 'lp64d'. Some calling conventions are impossible to
- implement on some ISAs: for example, '-march=rv32if -mabi=ilp32d'
- is invalid because the ABI requires 64-bit values be passed in F
- registers, but F registers are only 32 bits wide. There is also
- the 'ilp32e' ABI that can only be used with the 'rv32e'
- architecture. This ABI is not well specified at present, and is
- subject to change.
- '-mfdiv'
- '-mno-fdiv'
- Do or don't use hardware floating-point divide and square root
- instructions. This requires the F or D extensions for
- floating-point registers. The default is to use them if the
- specified architecture has these instructions.
- '-mdiv'
- '-mno-div'
- Do or don't use hardware instructions for integer division. This
- requires the M extension. The default is to use them if the
- specified architecture has these instructions.
- '-march=ISA-STRING'
- Generate code for given RISC-V ISA (e.g. 'rv64im'). ISA strings
- must be lower-case. Examples include 'rv64i', 'rv32g', 'rv32e',
- and 'rv32imaf'.
- '-mtune=PROCESSOR-STRING'
- Optimize the output for the given processor, specified by
- microarchitecture name. Permissible values for this option are:
- 'rocket', 'sifive-3-series', 'sifive-5-series', 'sifive-7-series',
- and 'size'.
- When '-mtune=' is not specified, the default is 'rocket'.
- The 'size' choice is not intended for use by end-users. This is
- used when '-Os' is specified. It overrides the instruction cost
- info provided by '-mtune=', but does not override the pipeline
- info. This helps reduce code size while still giving good
- performance.
- '-mpreferred-stack-boundary=NUM'
- Attempt to keep the stack boundary aligned to a 2 raised to NUM
- byte boundary. If '-mpreferred-stack-boundary' is not specified,
- the default is 4 (16 bytes or 128-bits).
- *Warning:* If you use this switch, then you must build all modules
- with the same value, including any libraries. This includes the
- system libraries and startup modules.
- '-msmall-data-limit=N'
- Put global and static data smaller than N bytes into a special
- section (on some targets).
- '-msave-restore'
- '-mno-save-restore'
- Do or don't use smaller but slower prologue and epilogue code that
- uses library function calls. The default is to use fast inline
- prologues and epilogues.
- '-mstrict-align'
- '-mno-strict-align'
- Do not or do generate unaligned memory accesses. The default is
- set depending on whether the processor we are optimizing for
- supports fast unaligned access or not.
- '-mcmodel=medlow'
- Generate code for the medium-low code model. The program and its
- statically defined symbols must lie within a single 2 GiB address
- range and must lie between absolute addresses -2 GiB and +2 GiB.
- Programs can be statically or dynamically linked. This is the
- default code model.
- '-mcmodel=medany'
- Generate code for the medium-any code model. The program and its
- statically defined symbols must be within any single 2 GiB address
- range. Programs can be statically or dynamically linked.
- '-mexplicit-relocs'
- '-mno-exlicit-relocs'
- Use or do not use assembler relocation operators when dealing with
- symbolic addresses. The alternative is to use assembler macros
- instead, which may limit optimization.
- '-mrelax'
- '-mno-relax'
- Take advantage of linker relaxations to reduce the number of
- instructions required to materialize symbol addresses. The default
- is to take advantage of linker relaxations.
- '-memit-attribute'
- '-mno-emit-attribute'
- Emit (do not emit) RISC-V attribute to record extra information
- into ELF objects. This feature requires at least binutils 2.32.
- '-malign-data=TYPE'
- Control how GCC aligns variables and constants of array, structure,
- or union types. Supported values for TYPE are 'xlen' which uses x
- register width as the alignment value, and 'natural' which uses
- natural alignment. 'xlen' is the default.
- File: gcc.info, Node: RL78 Options, Next: RS/6000 and PowerPC Options, Prev: RISC-V Options, Up: Submodel Options
- 3.18.39 RL78 Options
- --------------------
- '-msim'
- Links in additional target libraries to support operation within a
- simulator.
- '-mmul=none'
- '-mmul=g10'
- '-mmul=g13'
- '-mmul=g14'
- '-mmul=rl78'
- Specifies the type of hardware multiplication and division support
- to be used. The simplest is 'none', which uses software for both
- multiplication and division. This is the default. The 'g13' value
- is for the hardware multiply/divide peripheral found on the
- RL78/G13 (S2 core) targets. The 'g14' value selects the use of the
- multiplication and division instructions supported by the RL78/G14
- (S3 core) parts. The value 'rl78' is an alias for 'g14' and the
- value 'mg10' is an alias for 'none'.
- In addition a C preprocessor macro is defined, based upon the
- setting of this option. Possible values are: '__RL78_MUL_NONE__',
- '__RL78_MUL_G13__' or '__RL78_MUL_G14__'.
- '-mcpu=g10'
- '-mcpu=g13'
- '-mcpu=g14'
- '-mcpu=rl78'
- Specifies the RL78 core to target. The default is the G14 core,
- also known as an S3 core or just RL78. The G13 or S2 core does not
- have multiply or divide instructions, instead it uses a hardware
- peripheral for these operations. The G10 or S1 core does not have
- register banks, so it uses a different calling convention.
- If this option is set it also selects the type of hardware multiply
- support to use, unless this is overridden by an explicit
- '-mmul=none' option on the command line. Thus specifying
- '-mcpu=g13' enables the use of the G13 hardware multiply peripheral
- and specifying '-mcpu=g10' disables the use of hardware
- multiplications altogether.
- Note, although the RL78/G14 core is the default target, specifying
- '-mcpu=g14' or '-mcpu=rl78' on the command line does change the
- behavior of the toolchain since it also enables G14 hardware
- multiply support. If these options are not specified on the
- command line then software multiplication routines will be used
- even though the code targets the RL78 core. This is for backwards
- compatibility with older toolchains which did not have hardware
- multiply and divide support.
- In addition a C preprocessor macro is defined, based upon the
- setting of this option. Possible values are: '__RL78_G10__',
- '__RL78_G13__' or '__RL78_G14__'.
- '-mg10'
- '-mg13'
- '-mg14'
- '-mrl78'
- These are aliases for the corresponding '-mcpu=' option. They are
- provided for backwards compatibility.
- '-mallregs'
- Allow the compiler to use all of the available registers. By
- default registers 'r24..r31' are reserved for use in interrupt
- handlers. With this option enabled these registers can be used in
- ordinary functions as well.
- '-m64bit-doubles'
- '-m32bit-doubles'
- Make the 'double' data type be 64 bits ('-m64bit-doubles') or 32
- bits ('-m32bit-doubles') in size. The default is
- '-m32bit-doubles'.
- '-msave-mduc-in-interrupts'
- '-mno-save-mduc-in-interrupts'
- Specifies that interrupt handler functions should preserve the MDUC
- registers. This is only necessary if normal code might use the
- MDUC registers, for example because it performs multiplication and
- division operations. The default is to ignore the MDUC registers
- as this makes the interrupt handlers faster. The target option
- -mg13 needs to be passed for this to work as this feature is only
- available on the G13 target (S2 core). The MDUC registers will
- only be saved if the interrupt handler performs a multiplication or
- division operation or it calls another function.
- File: gcc.info, Node: RS/6000 and PowerPC Options, Next: RX Options, Prev: RL78 Options, Up: Submodel Options
- 3.18.40 IBM RS/6000 and PowerPC Options
- ---------------------------------------
- These '-m' options are defined for the IBM RS/6000 and PowerPC:
- '-mpowerpc-gpopt'
- '-mno-powerpc-gpopt'
- '-mpowerpc-gfxopt'
- '-mno-powerpc-gfxopt'
- '-mpowerpc64'
- '-mno-powerpc64'
- '-mmfcrf'
- '-mno-mfcrf'
- '-mpopcntb'
- '-mno-popcntb'
- '-mpopcntd'
- '-mno-popcntd'
- '-mfprnd'
- '-mno-fprnd'
- '-mcmpb'
- '-mno-cmpb'
- '-mmfpgpr'
- '-mno-mfpgpr'
- '-mhard-dfp'
- '-mno-hard-dfp'
- You use these options to specify which instructions are available
- on the processor you are using. The default value of these options
- is determined when configuring GCC. Specifying the
- '-mcpu=CPU_TYPE' overrides the specification of these options. We
- recommend you use the '-mcpu=CPU_TYPE' option rather than the
- options listed above.
- Specifying '-mpowerpc-gpopt' allows GCC to use the optional PowerPC
- architecture instructions in the General Purpose group, including
- floating-point square root. Specifying '-mpowerpc-gfxopt' allows
- GCC to use the optional PowerPC architecture instructions in the
- Graphics group, including floating-point select.
- The '-mmfcrf' option allows GCC to generate the move from condition
- register field instruction implemented on the POWER4 processor and
- other processors that support the PowerPC V2.01 architecture. The
- '-mpopcntb' option allows GCC to generate the popcount and
- double-precision FP reciprocal estimate instruction implemented on
- the POWER5 processor and other processors that support the PowerPC
- V2.02 architecture. The '-mpopcntd' option allows GCC to generate
- the popcount instruction implemented on the POWER7 processor and
- other processors that support the PowerPC V2.06 architecture. The
- '-mfprnd' option allows GCC to generate the FP round to integer
- instructions implemented on the POWER5+ processor and other
- processors that support the PowerPC V2.03 architecture. The
- '-mcmpb' option allows GCC to generate the compare bytes
- instruction implemented on the POWER6 processor and other
- processors that support the PowerPC V2.05 architecture. The
- '-mmfpgpr' option allows GCC to generate the FP move to/from
- general-purpose register instructions implemented on the POWER6X
- processor and other processors that support the extended PowerPC
- V2.05 architecture. The '-mhard-dfp' option allows GCC to generate
- the decimal floating-point instructions implemented on some POWER
- processors.
- The '-mpowerpc64' option allows GCC to generate the additional
- 64-bit instructions that are found in the full PowerPC64
- architecture and to treat GPRs as 64-bit, doubleword quantities.
- GCC defaults to '-mno-powerpc64'.
- '-mcpu=CPU_TYPE'
- Set architecture type, register usage, and instruction scheduling
- parameters for machine type CPU_TYPE. Supported values for
- CPU_TYPE are '401', '403', '405', '405fp', '440', '440fp', '464',
- '464fp', '476', '476fp', '505', '601', '602', '603', '603e', '604',
- '604e', '620', '630', '740', '7400', '7450', '750', '801', '821',
- '823', '860', '970', '8540', 'a2', 'e300c2', 'e300c3', 'e500mc',
- 'e500mc64', 'e5500', 'e6500', 'ec603e', 'G3', 'G4', 'G5', 'titan',
- 'power3', 'power4', 'power5', 'power5+', 'power6', 'power6x',
- 'power7', 'power8', 'power9', 'powerpc', 'powerpc64',
- 'powerpc64le', 'rs64', and 'native'.
- '-mcpu=powerpc', '-mcpu=powerpc64', and '-mcpu=powerpc64le' specify
- pure 32-bit PowerPC (either endian), 64-bit big endian PowerPC and
- 64-bit little endian PowerPC architecture machine types, with an
- appropriate, generic processor model assumed for scheduling
- purposes.
- Specifying 'native' as cpu type detects and selects the
- architecture option that corresponds to the host processor of the
- system performing the compilation. '-mcpu=native' has no effect if
- GCC does not recognize the processor.
- The other options specify a specific processor. Code generated
- under those options runs best on that processor, and may not run at
- all on others.
- The '-mcpu' options automatically enable or disable the following
- options:
- -maltivec -mfprnd -mhard-float -mmfcrf -mmultiple
- -mpopcntb -mpopcntd -mpowerpc64
- -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float
- -msimple-fpu -mmulhw -mdlmzb -mmfpgpr -mvsx
- -mcrypto -mhtm -mpower8-fusion -mpower8-vector
- -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware
- The particular options set for any particular CPU varies between
- compiler versions, depending on what setting seems to produce
- optimal code for that CPU; it doesn't necessarily reflect the
- actual hardware's capabilities. If you wish to set an individual
- option to a particular value, you may specify it after the '-mcpu'
- option, like '-mcpu=970 -mno-altivec'.
- On AIX, the '-maltivec' and '-mpowerpc64' options are not enabled
- or disabled by the '-mcpu' option at present because AIX does not
- have full support for these options. You may still enable or
- disable them individually if you're sure it'll work in your
- environment.
- '-mtune=CPU_TYPE'
- Set the instruction scheduling parameters for machine type
- CPU_TYPE, but do not set the architecture type or register usage,
- as '-mcpu=CPU_TYPE' does. The same values for CPU_TYPE are used
- for '-mtune' as for '-mcpu'. If both are specified, the code
- generated uses the architecture and registers set by '-mcpu', but
- the scheduling parameters set by '-mtune'.
- '-mcmodel=small'
- Generate PowerPC64 code for the small model: The TOC is limited to
- 64k.
- '-mcmodel=medium'
- Generate PowerPC64 code for the medium model: The TOC and other
- static data may be up to a total of 4G in size. This is the
- default for 64-bit Linux.
- '-mcmodel=large'
- Generate PowerPC64 code for the large model: The TOC may be up to
- 4G in size. Other data and code is only limited by the 64-bit
- address space.
- '-maltivec'
- '-mno-altivec'
- Generate code that uses (does not use) AltiVec instructions, and
- also enable the use of built-in functions that allow more direct
- access to the AltiVec instruction set. You may also need to set
- '-mabi=altivec' to adjust the current ABI with AltiVec ABI
- enhancements.
- When '-maltivec' is used, rather than '-maltivec=le' or
- '-maltivec=be', the element order for AltiVec intrinsics such as
- 'vec_splat', 'vec_extract', and 'vec_insert' match array element
- order corresponding to the endianness of the target. That is,
- element zero identifies the leftmost element in a vector register
- when targeting a big-endian platform, and identifies the rightmost
- element in a vector register when targeting a little-endian
- platform.
- '-maltivec=be'
- Generate AltiVec instructions using big-endian element order,
- regardless of whether the target is big- or little-endian. This is
- the default when targeting a big-endian platform. Using this
- option is currently deprecated. Support for this feature will be
- removed in GCC 9.
- The element order is used to interpret element numbers in AltiVec
- intrinsics such as 'vec_splat', 'vec_extract', and 'vec_insert'.
- By default, these match array element order corresponding to the
- endianness for the target.
- '-maltivec=le'
- Generate AltiVec instructions using little-endian element order,
- regardless of whether the target is big- or little-endian. This is
- the default when targeting a little-endian platform. This option
- is currently ignored when targeting a big-endian platform.
- The element order is used to interpret element numbers in AltiVec
- intrinsics such as 'vec_splat', 'vec_extract', and 'vec_insert'.
- By default, these match array element order corresponding to the
- endianness for the target.
- '-mvrsave'
- '-mno-vrsave'
- Generate VRSAVE instructions when generating AltiVec code.
- '-msecure-plt'
- Generate code that allows 'ld' and 'ld.so' to build executables and
- shared libraries with non-executable '.plt' and '.got' sections.
- This is a PowerPC 32-bit SYSV ABI option.
- '-mbss-plt'
- Generate code that uses a BSS '.plt' section that 'ld.so' fills in,
- and requires '.plt' and '.got' sections that are both writable and
- executable. This is a PowerPC 32-bit SYSV ABI option.
- '-misel'
- '-mno-isel'
- This switch enables or disables the generation of ISEL
- instructions.
- '-misel=YES/NO'
- This switch has been deprecated. Use '-misel' and '-mno-isel'
- instead.
- '-mpaired'
- '-mno-paired'
- This switch enables or disables the generation of PAIRED simd
- instructions.
- '-mvsx'
- '-mno-vsx'
- Generate code that uses (does not use) vector/scalar (VSX)
- instructions, and also enable the use of built-in functions that
- allow more direct access to the VSX instruction set.
- '-mcrypto'
- '-mno-crypto'
- Enable the use (disable) of the built-in functions that allow
- direct access to the cryptographic instructions that were added in
- version 2.07 of the PowerPC ISA.
- '-mhtm'
- '-mno-htm'
- Enable (disable) the use of the built-in functions that allow
- direct access to the Hardware Transactional Memory (HTM)
- instructions that were added in version 2.07 of the PowerPC ISA.
- '-mpower8-fusion'
- '-mno-power8-fusion'
- Generate code that keeps (does not keeps) some integer operations
- adjacent so that the instructions can be fused together on power8
- and later processors.
- '-mpower8-vector'
- '-mno-power8-vector'
- Generate code that uses (does not use) the vector and scalar
- instructions that were added in version 2.07 of the PowerPC ISA.
- Also enable the use of built-in functions that allow more direct
- access to the vector instructions.
- '-mquad-memory'
- '-mno-quad-memory'
- Generate code that uses (does not use) the non-atomic quad word
- memory instructions. The '-mquad-memory' option requires use of
- 64-bit mode.
- '-mquad-memory-atomic'
- '-mno-quad-memory-atomic'
- Generate code that uses (does not use) the atomic quad word memory
- instructions. The '-mquad-memory-atomic' option requires use of
- 64-bit mode.
- '-mfloat128'
- '-mno-float128'
- Enable/disable the __FLOAT128 keyword for IEEE 128-bit floating
- point and use either software emulation for IEEE 128-bit floating
- point or hardware instructions.
- The VSX instruction set ('-mvsx', '-mcpu=power7', '-mcpu=power8'),
- or '-mcpu=power9' must be enabled to use the IEEE 128-bit floating
- point support. The IEEE 128-bit floating point support only works
- on PowerPC Linux systems.
- The default for '-mfloat128' is enabled on PowerPC Linux systems
- using the VSX instruction set, and disabled on other systems.
- If you use the ISA 3.0 instruction set ('-mpower9-vector' or
- '-mcpu=power9') on a 64-bit system, the IEEE 128-bit floating point
- support will also enable the generation of ISA 3.0 IEEE 128-bit
- floating point instructions. Otherwise, if you do not specify to
- generate ISA 3.0 instructions or you are targeting a 32-bit big
- endian system, IEEE 128-bit floating point will be done with
- software emulation.
- '-mfloat128-hardware'
- '-mno-float128-hardware'
- Enable/disable using ISA 3.0 hardware instructions to support the
- __FLOAT128 data type.
- The default for '-mfloat128-hardware' is enabled on PowerPC Linux
- systems using the ISA 3.0 instruction set, and disabled on other
- systems.
- '-m32'
- '-m64'
- Generate code for 32-bit or 64-bit environments of Darwin and SVR4
- targets (including GNU/Linux). The 32-bit environment sets int,
- long and pointer to 32 bits and generates code that runs on any
- PowerPC variant. The 64-bit environment sets int to 32 bits and
- long and pointer to 64 bits, and generates code for PowerPC64, as
- for '-mpowerpc64'.
- '-mfull-toc'
- '-mno-fp-in-toc'
- '-mno-sum-in-toc'
- '-mminimal-toc'
- Modify generation of the TOC (Table Of Contents), which is created
- for every executable file. The '-mfull-toc' option is selected by
- default. In that case, GCC allocates at least one TOC entry for
- each unique non-automatic variable reference in your program. GCC
- also places floating-point constants in the TOC. However, only
- 16,384 entries are available in the TOC.
- If you receive a linker error message that saying you have
- overflowed the available TOC space, you can reduce the amount of
- TOC space used with the '-mno-fp-in-toc' and '-mno-sum-in-toc'
- options. '-mno-fp-in-toc' prevents GCC from putting floating-point
- constants in the TOC and '-mno-sum-in-toc' forces GCC to generate
- code to calculate the sum of an address and a constant at run time
- instead of putting that sum into the TOC. You may specify one or
- both of these options. Each causes GCC to produce very slightly
- slower and larger code at the expense of conserving TOC space.
- If you still run out of space in the TOC even when you specify both
- of these options, specify '-mminimal-toc' instead. This option
- causes GCC to make only one TOC entry for every file. When you
- specify this option, GCC produces code that is slower and larger
- but which uses extremely little TOC space. You may wish to use
- this option only on files that contain less frequently-executed
- code.
- '-maix64'
- '-maix32'
- Enable 64-bit AIX ABI and calling convention: 64-bit pointers,
- 64-bit 'long' type, and the infrastructure needed to support them.
- Specifying '-maix64' implies '-mpowerpc64', while '-maix32'
- disables the 64-bit ABI and implies '-mno-powerpc64'. GCC defaults
- to '-maix32'.
- '-mxl-compat'
- '-mno-xl-compat'
- Produce code that conforms more closely to IBM XL compiler
- semantics when using AIX-compatible ABI. Pass floating-point
- arguments to prototyped functions beyond the register save area
- (RSA) on the stack in addition to argument FPRs. Do not assume
- that most significant double in 128-bit long double value is
- properly rounded when comparing values and converting to double.
- Use XL symbol names for long double support routines.
- The AIX calling convention was extended but not initially
- documented to handle an obscure K&R C case of calling a function
- that takes the address of its arguments with fewer arguments than
- declared. IBM XL compilers access floating-point arguments that do
- not fit in the RSA from the stack when a subroutine is compiled
- without optimization. Because always storing floating-point
- arguments on the stack is inefficient and rarely needed, this
- option is not enabled by default and only is necessary when calling
- subroutines compiled by IBM XL compilers without optimization.
- '-mpe'
- Support "IBM RS/6000 SP" "Parallel Environment" (PE). Link an
- application written to use message passing with special startup
- code to enable the application to run. The system must have PE
- installed in the standard location ('/usr/lpp/ppe.poe/'), or the
- 'specs' file must be overridden with the '-specs=' option to
- specify the appropriate directory location. The Parallel
- Environment does not support threads, so the '-mpe' option and the
- '-pthread' option are incompatible.
- '-malign-natural'
- '-malign-power'
- On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
- '-malign-natural' overrides the ABI-defined alignment of larger
- types, such as floating-point doubles, on their natural size-based
- boundary. The option '-malign-power' instructs GCC to follow the
- ABI-specified alignment rules. GCC defaults to the standard
- alignment defined in the ABI.
- On 64-bit Darwin, natural alignment is the default, and
- '-malign-power' is not supported.
- '-msoft-float'
- '-mhard-float'
- Generate code that does not use (uses) the floating-point register
- set. Software floating-point emulation is provided if you use the
- '-msoft-float' option, and pass the option to GCC when linking.
- '-msingle-float'
- '-mdouble-float'
- Generate code for single- or double-precision floating-point
- operations. '-mdouble-float' implies '-msingle-float'.
- '-msimple-fpu'
- Do not generate 'sqrt' and 'div' instructions for hardware
- floating-point unit.
- '-mfpu=NAME'
- Specify type of floating-point unit. Valid values for NAME are
- 'sp_lite' (equivalent to '-msingle-float -msimple-fpu'), 'dp_lite'
- (equivalent to '-mdouble-float -msimple-fpu'), 'sp_full'
- (equivalent to '-msingle-float'), and 'dp_full' (equivalent to
- '-mdouble-float').
- '-mxilinx-fpu'
- Perform optimizations for the floating-point unit on Xilinx PPC
- 405/440.
- '-mmultiple'
- '-mno-multiple'
- Generate code that uses (does not use) the load multiple word
- instructions and the store multiple word instructions. These
- instructions are generated by default on POWER systems, and not
- generated on PowerPC systems. Do not use '-mmultiple' on
- little-endian PowerPC systems, since those instructions do not work
- when the processor is in little-endian mode. The exceptions are
- PPC740 and PPC750 which permit these instructions in little-endian
- mode.
- '-mupdate'
- '-mno-update'
- Generate code that uses (does not use) the load or store
- instructions that update the base register to the address of the
- calculated memory location. These instructions are generated by
- default. If you use '-mno-update', there is a small window between
- the time that the stack pointer is updated and the address of the
- previous frame is stored, which means code that walks the stack
- frame across interrupts or signals may get corrupted data.
- '-mavoid-indexed-addresses'
- '-mno-avoid-indexed-addresses'
- Generate code that tries to avoid (not avoid) the use of indexed
- load or store instructions. These instructions can incur a
- performance penalty on Power6 processors in certain situations,
- such as when stepping through large arrays that cross a 16M
- boundary. This option is enabled by default when targeting Power6
- and disabled otherwise.
- '-mfused-madd'
- '-mno-fused-madd'
- Generate code that uses (does not use) the floating-point multiply
- and accumulate instructions. These instructions are generated by
- default if hardware floating point is used. The machine-dependent
- '-mfused-madd' option is now mapped to the machine-independent
- '-ffp-contract=fast' option, and '-mno-fused-madd' is mapped to
- '-ffp-contract=off'.
- '-mmulhw'
- '-mno-mulhw'
- Generate code that uses (does not use) the half-word multiply and
- multiply-accumulate instructions on the IBM 405, 440, 464 and 476
- processors. These instructions are generated by default when
- targeting those processors.
- '-mdlmzb'
- '-mno-dlmzb'
- Generate code that uses (does not use) the string-search 'dlmzb'
- instruction on the IBM 405, 440, 464 and 476 processors. This
- instruction is generated by default when targeting those
- processors.
- '-mno-bit-align'
- '-mbit-align'
- On System V.4 and embedded PowerPC systems do not (do) force
- structures and unions that contain bit-fields to be aligned to the
- base type of the bit-field.
- For example, by default a structure containing nothing but 8
- 'unsigned' bit-fields of length 1 is aligned to a 4-byte boundary
- and has a size of 4 bytes. By using '-mno-bit-align', the
- structure is aligned to a 1-byte boundary and is 1 byte in size.
- '-mno-strict-align'
- '-mstrict-align'
- On System V.4 and embedded PowerPC systems do not (do) assume that
- unaligned memory references are handled by the system.
- '-mrelocatable'
- '-mno-relocatable'
- Generate code that allows (does not allow) a static executable to
- be relocated to a different address at run time. A simple embedded
- PowerPC system loader should relocate the entire contents of
- '.got2' and 4-byte locations listed in the '.fixup' section, a
- table of 32-bit addresses generated by this option. For this to
- work, all objects linked together must be compiled with
- '-mrelocatable' or '-mrelocatable-lib'. '-mrelocatable' code
- aligns the stack to an 8-byte boundary.
- '-mrelocatable-lib'
- '-mno-relocatable-lib'
- Like '-mrelocatable', '-mrelocatable-lib' generates a '.fixup'
- section to allow static executables to be relocated at run time,
- but '-mrelocatable-lib' does not use the smaller stack alignment of
- '-mrelocatable'. Objects compiled with '-mrelocatable-lib' may be
- linked with objects compiled with any combination of the
- '-mrelocatable' options.
- '-mno-toc'
- '-mtoc'
- On System V.4 and embedded PowerPC systems do not (do) assume that
- register 2 contains a pointer to a global area pointing to the
- addresses used in the program.
- '-mlittle'
- '-mlittle-endian'
- On System V.4 and embedded PowerPC systems compile code for the
- processor in little-endian mode. The '-mlittle-endian' option is
- the same as '-mlittle'.
- '-mbig'
- '-mbig-endian'
- On System V.4 and embedded PowerPC systems compile code for the
- processor in big-endian mode. The '-mbig-endian' option is the
- same as '-mbig'.
- '-mdynamic-no-pic'
- On Darwin and Mac OS X systems, compile code so that it is not
- relocatable, but that its external references are relocatable. The
- resulting code is suitable for applications, but not shared
- libraries.
- '-msingle-pic-base'
- Treat the register used for PIC addressing as read-only, rather
- than loading it in the prologue for each function. The runtime
- system is responsible for initializing this register with an
- appropriate value before execution begins.
- '-mprioritize-restricted-insns=PRIORITY'
- This option controls the priority that is assigned to dispatch-slot
- restricted instructions during the second scheduling pass. The
- argument PRIORITY takes the value '0', '1', or '2' to assign no,
- highest, or second-highest (respectively) priority to dispatch-slot
- restricted instructions.
- '-msched-costly-dep=DEPENDENCE_TYPE'
- This option controls which dependences are considered costly by the
- target during instruction scheduling. The argument DEPENDENCE_TYPE
- takes one of the following values:
- 'no'
- No dependence is costly.
- 'all'
- All dependences are costly.
- 'true_store_to_load'
- A true dependence from store to load is costly.
- 'store_to_load'
- Any dependence from store to load is costly.
- NUMBER
- Any dependence for which the latency is greater than or equal
- to NUMBER is costly.
- '-minsert-sched-nops=SCHEME'
- This option controls which NOP insertion scheme is used during the
- second scheduling pass. The argument SCHEME takes one of the
- following values:
- 'no'
- Don't insert NOPs.
- 'pad'
- Pad with NOPs any dispatch group that has vacant issue slots,
- according to the scheduler's grouping.
- 'regroup_exact'
- Insert NOPs to force costly dependent insns into separate
- groups. Insert exactly as many NOPs as needed to force an
- insn to a new group, according to the estimated processor
- grouping.
- NUMBER
- Insert NOPs to force costly dependent insns into separate
- groups. Insert NUMBER NOPs to force an insn to a new group.
- '-mcall-sysv'
- On System V.4 and embedded PowerPC systems compile code using
- calling conventions that adhere to the March 1995 draft of the
- System V Application Binary Interface, PowerPC processor
- supplement. This is the default unless you configured GCC using
- 'powerpc-*-eabiaix'.
- '-mcall-sysv-eabi'
- '-mcall-eabi'
- Specify both '-mcall-sysv' and '-meabi' options.
- '-mcall-sysv-noeabi'
- Specify both '-mcall-sysv' and '-mno-eabi' options.
- '-mcall-aixdesc'
- On System V.4 and embedded PowerPC systems compile code for the AIX
- operating system.
- '-mcall-linux'
- On System V.4 and embedded PowerPC systems compile code for the
- Linux-based GNU system.
- '-mcall-freebsd'
- On System V.4 and embedded PowerPC systems compile code for the
- FreeBSD operating system.
- '-mcall-netbsd'
- On System V.4 and embedded PowerPC systems compile code for the
- NetBSD operating system.
- '-mcall-openbsd'
- On System V.4 and embedded PowerPC systems compile code for the
- OpenBSD operating system.
- '-mtraceback=TRACEBACK_TYPE'
- Select the type of traceback table. Valid values for
- TRACEBACK_TYPE are 'full', 'part', and 'no'.
- '-maix-struct-return'
- Return all structures in memory (as specified by the AIX ABI).
- '-msvr4-struct-return'
- Return structures smaller than 8 bytes in registers (as specified
- by the SVR4 ABI).
- '-mabi=ABI-TYPE'
- Extend the current ABI with a particular extension, or remove such
- extension. Valid values are 'altivec', 'no-altivec', 'spe',
- 'no-spe', 'ibmlongdouble', 'ieeelongdouble', 'elfv1', 'elfv2'.
- '-mabi=ibmlongdouble'
- Change the current ABI to use IBM extended-precision long double.
- This is not likely to work if your system defaults to using IEEE
- extended-precision long double. If you change the long double type
- from IEEE extended-precision, the compiler will issue a warning
- unless you use the '-Wno-psabi' option. Requires
- '-mlong-double-128' to be enabled.
- '-mabi=ieeelongdouble'
- Change the current ABI to use IEEE extended-precision long double.
- This is not likely to work if your system defaults to using IBM
- extended-precision long double. If you change the long double type
- from IBM extended-precision, the compiler will issue a warning
- unless you use the '-Wno-psabi' option. Requires
- '-mlong-double-128' to be enabled.
- '-mabi=elfv1'
- Change the current ABI to use the ELFv1 ABI. This is the default
- ABI for big-endian PowerPC 64-bit Linux. Overriding the default
- ABI requires special system support and is likely to fail in
- spectacular ways.
- '-mabi=elfv2'
- Change the current ABI to use the ELFv2 ABI. This is the default
- ABI for little-endian PowerPC 64-bit Linux. Overriding the default
- ABI requires special system support and is likely to fail in
- spectacular ways.
- '-mgnu-attribute'
- '-mno-gnu-attribute'
- Emit .gnu_attribute assembly directives to set tag/value pairs in a
- .gnu.attributes section that specify ABI variations in function
- parameters or return values.
- '-mprototype'
- '-mno-prototype'
- On System V.4 and embedded PowerPC systems assume that all calls to
- variable argument functions are properly prototyped. Otherwise,
- the compiler must insert an instruction before every non-prototyped
- call to set or clear bit 6 of the condition code register ('CR') to
- indicate whether floating-point values are passed in the
- floating-point registers in case the function takes variable
- arguments. With '-mprototype', only calls to prototyped variable
- argument functions set or clear the bit.
- '-msim'
- On embedded PowerPC systems, assume that the startup module is
- called 'sim-crt0.o' and that the standard C libraries are
- 'libsim.a' and 'libc.a'. This is the default for
- 'powerpc-*-eabisim' configurations.
- '-mmvme'
- On embedded PowerPC systems, assume that the startup module is
- called 'crt0.o' and the standard C libraries are 'libmvme.a' and
- 'libc.a'.
- '-mads'
- On embedded PowerPC systems, assume that the startup module is
- called 'crt0.o' and the standard C libraries are 'libads.a' and
- 'libc.a'.
- '-myellowknife'
- On embedded PowerPC systems, assume that the startup module is
- called 'crt0.o' and the standard C libraries are 'libyk.a' and
- 'libc.a'.
- '-mvxworks'
- On System V.4 and embedded PowerPC systems, specify that you are
- compiling for a VxWorks system.
- '-memb'
- On embedded PowerPC systems, set the 'PPC_EMB' bit in the ELF flags
- header to indicate that 'eabi' extended relocations are used.
- '-meabi'
- '-mno-eabi'
- On System V.4 and embedded PowerPC systems do (do not) adhere to
- the Embedded Applications Binary Interface (EABI), which is a set
- of modifications to the System V.4 specifications. Selecting
- '-meabi' means that the stack is aligned to an 8-byte boundary, a
- function '__eabi' is called from 'main' to set up the EABI
- environment, and the '-msdata' option can use both 'r2' and 'r13'
- to point to two separate small data areas. Selecting '-mno-eabi'
- means that the stack is aligned to a 16-byte boundary, no EABI
- initialization function is called from 'main', and the '-msdata'
- option only uses 'r13' to point to a single small data area. The
- '-meabi' option is on by default if you configured GCC using one of
- the 'powerpc*-*-eabi*' options.
- '-msdata=eabi'
- On System V.4 and embedded PowerPC systems, put small initialized
- 'const' global and static data in the '.sdata2' section, which is
- pointed to by register 'r2'. Put small initialized non-'const'
- global and static data in the '.sdata' section, which is pointed to
- by register 'r13'. Put small uninitialized global and static data
- in the '.sbss' section, which is adjacent to the '.sdata' section.
- The '-msdata=eabi' option is incompatible with the '-mrelocatable'
- option. The '-msdata=eabi' option also sets the '-memb' option.
- '-msdata=sysv'
- On System V.4 and embedded PowerPC systems, put small global and
- static data in the '.sdata' section, which is pointed to by
- register 'r13'. Put small uninitialized global and static data in
- the '.sbss' section, which is adjacent to the '.sdata' section.
- The '-msdata=sysv' option is incompatible with the '-mrelocatable'
- option.
- '-msdata=default'
- '-msdata'
- On System V.4 and embedded PowerPC systems, if '-meabi' is used,
- compile code the same as '-msdata=eabi', otherwise compile code the
- same as '-msdata=sysv'.
- '-msdata=data'
- On System V.4 and embedded PowerPC systems, put small global data
- in the '.sdata' section. Put small uninitialized global data in
- the '.sbss' section. Do not use register 'r13' to address small
- data however. This is the default behavior unless other '-msdata'
- options are used.
- '-msdata=none'
- '-mno-sdata'
- On embedded PowerPC systems, put all initialized global and static
- data in the '.data' section, and all uninitialized data in the
- '.bss' section.
- '-mreadonly-in-sdata'
- '-mreadonly-in-sdata'
- Put read-only objects in the '.sdata' section as well. This is the
- default.
- '-mblock-move-inline-limit=NUM'
- Inline all block moves (such as calls to 'memcpy' or structure
- copies) less than or equal to NUM bytes. The minimum value for NUM
- is 32 bytes on 32-bit targets and 64 bytes on 64-bit targets. The
- default value is target-specific.
- '-mblock-compare-inline-limit=NUM'
- Generate non-looping inline code for all block compares (such as
- calls to 'memcmp' or structure compares) less than or equal to NUM
- bytes. If NUM is 0, all inline expansion (non-loop and loop) of
- block compare is disabled. The default value is target-specific.
- '-mblock-compare-inline-loop-limit=NUM'
- Generate an inline expansion using loop code for all block compares
- that are less than or equal to NUM bytes, but greater than the
- limit for non-loop inline block compare expansion. If the block
- length is not constant, at most NUM bytes will be compared before
- 'memcmp' is called to compare the remainder of the block. The
- default value is target-specific.
- '-mstring-compare-inline-limit=NUM'
- Generate at most NUM pairs of load instructions to compare the
- string inline. If the difference or end of string is not found at
- the end of the inline compare a call to 'strcmp' or 'strncmp' will
- take care of the rest of the comparison. The default is 8 pairs of
- loads, which will compare 64 bytes on a 64-bit target and 32 bytes
- on a 32-bit target.
- '-G NUM'
- On embedded PowerPC systems, put global and static items less than
- or equal to NUM bytes into the small data or BSS sections instead
- of the normal data or BSS section. By default, NUM is 8. The '-G
- NUM' switch is also passed to the linker. All modules should be
- compiled with the same '-G NUM' value.
- '-mregnames'
- '-mno-regnames'
- On System V.4 and embedded PowerPC systems do (do not) emit
- register names in the assembly language output using symbolic
- forms.
- '-mlongcall'
- '-mno-longcall'
- By default assume that all calls are far away so that a longer and
- more expensive calling sequence is required. This is required for
- calls farther than 32 megabytes (33,554,432 bytes) from the current
- location. A short call is generated if the compiler knows the call
- cannot be that far away. This setting can be overridden by the
- 'shortcall' function attribute, or by '#pragma longcall(0)'.
- Some linkers are capable of detecting out-of-range calls and
- generating glue code on the fly. On these systems, long calls are
- unnecessary and generate slower code. As of this writing, the AIX
- linker can do this, as can the GNU linker for PowerPC/64. It is
- planned to add this feature to the GNU linker for 32-bit PowerPC
- systems as well.
- On Darwin/PPC systems, '#pragma longcall' generates 'jbsr callee,
- L42', plus a "branch island" (glue code). The two target addresses
- represent the callee and the branch island. The Darwin/PPC linker
- prefers the first address and generates a 'bl callee' if the PPC
- 'bl' instruction reaches the callee directly; otherwise, the linker
- generates 'bl L42' to call the branch island. The branch island is
- appended to the body of the calling function; it computes the full
- 32-bit address of the callee and jumps to it.
- On Mach-O (Darwin) systems, this option directs the compiler emit
- to the glue for every direct call, and the Darwin linker decides
- whether to use or discard it.
- In the future, GCC may ignore all longcall specifications when the
- linker is known to generate glue.
- '-mtls-markers'
- '-mno-tls-markers'
- Mark (do not mark) calls to '__tls_get_addr' with a relocation
- specifying the function argument. The relocation allows the linker
- to reliably associate function call with argument setup
- instructions for TLS optimization, which in turn allows GCC to
- better schedule the sequence.
- '-mrecip'
- '-mno-recip'
- This option enables use of the reciprocal estimate and reciprocal
- square root estimate instructions with additional Newton-Raphson
- steps to increase precision instead of doing a divide or square
- root and divide for floating-point arguments. You should use the
- '-ffast-math' option when using '-mrecip' (or at least
- '-funsafe-math-optimizations', '-ffinite-math-only',
- '-freciprocal-math' and '-fno-trapping-math'). Note that while the
- throughput of the sequence is generally higher than the throughput
- of the non-reciprocal instruction, the precision of the sequence
- can be decreased by up to 2 ulp (i.e. the inverse of 1.0 equals
- 0.99999994) for reciprocal square roots.
- '-mrecip=OPT'
- This option controls which reciprocal estimate instructions may be
- used. OPT is a comma-separated list of options, which may be
- preceded by a '!' to invert the option:
- 'all'
- Enable all estimate instructions.
- 'default'
- Enable the default instructions, equivalent to '-mrecip'.
- 'none'
- Disable all estimate instructions, equivalent to '-mno-recip'.
- 'div'
- Enable the reciprocal approximation instructions for both
- single and double precision.
- 'divf'
- Enable the single-precision reciprocal approximation
- instructions.
- 'divd'
- Enable the double-precision reciprocal approximation
- instructions.
- 'rsqrt'
- Enable the reciprocal square root approximation instructions
- for both single and double precision.
- 'rsqrtf'
- Enable the single-precision reciprocal square root
- approximation instructions.
- 'rsqrtd'
- Enable the double-precision reciprocal square root
- approximation instructions.
- So, for example, '-mrecip=all,!rsqrtd' enables all of the
- reciprocal estimate instructions, except for the 'FRSQRTE',
- 'XSRSQRTEDP', and 'XVRSQRTEDP' instructions which handle the
- double-precision reciprocal square root calculations.
- '-mrecip-precision'
- '-mno-recip-precision'
- Assume (do not assume) that the reciprocal estimate instructions
- provide higher-precision estimates than is mandated by the PowerPC
- ABI. Selecting '-mcpu=power6', '-mcpu=power7' or '-mcpu=power8'
- automatically selects '-mrecip-precision'. The double-precision
- square root estimate instructions are not generated by default on
- low-precision machines, since they do not provide an estimate that
- converges after three steps.
- '-mveclibabi=TYPE'
- Specifies the ABI type to use for vectorizing intrinsics using an
- external library. The only type supported at present is 'mass',
- which specifies to use IBM's Mathematical Acceleration Subsystem
- (MASS) libraries for vectorizing intrinsics using external
- libraries. GCC currently emits calls to 'acosd2', 'acosf4',
- 'acoshd2', 'acoshf4', 'asind2', 'asinf4', 'asinhd2', 'asinhf4',
- 'atan2d2', 'atan2f4', 'atand2', 'atanf4', 'atanhd2', 'atanhf4',
- 'cbrtd2', 'cbrtf4', 'cosd2', 'cosf4', 'coshd2', 'coshf4', 'erfcd2',
- 'erfcf4', 'erfd2', 'erff4', 'exp2d2', 'exp2f4', 'expd2', 'expf4',
- 'expm1d2', 'expm1f4', 'hypotd2', 'hypotf4', 'lgammad2', 'lgammaf4',
- 'log10d2', 'log10f4', 'log1pd2', 'log1pf4', 'log2d2', 'log2f4',
- 'logd2', 'logf4', 'powd2', 'powf4', 'sind2', 'sinf4', 'sinhd2',
- 'sinhf4', 'sqrtd2', 'sqrtf4', 'tand2', 'tanf4', 'tanhd2', and
- 'tanhf4' when generating code for power7. Both '-ftree-vectorize'
- and '-funsafe-math-optimizations' must also be enabled. The MASS
- libraries must be specified at link time.
- '-mfriz'
- '-mno-friz'
- Generate (do not generate) the 'friz' instruction when the
- '-funsafe-math-optimizations' option is used to optimize rounding
- of floating-point values to 64-bit integer and back to floating
- point. The 'friz' instruction does not return the same value if
- the floating-point number is too large to fit in an integer.
- '-mpointers-to-nested-functions'
- '-mno-pointers-to-nested-functions'
- Generate (do not generate) code to load up the static chain
- register ('r11') when calling through a pointer on AIX and 64-bit
- Linux systems where a function pointer points to a 3-word
- descriptor giving the function address, TOC value to be loaded in
- register 'r2', and static chain value to be loaded in register
- 'r11'. The '-mpointers-to-nested-functions' is on by default. You
- cannot call through pointers to nested functions or pointers to
- functions compiled in other languages that use the static chain if
- you use '-mno-pointers-to-nested-functions'.
- '-msave-toc-indirect'
- '-mno-save-toc-indirect'
- Generate (do not generate) code to save the TOC value in the
- reserved stack location in the function prologue if the function
- calls through a pointer on AIX and 64-bit Linux systems. If the
- TOC value is not saved in the prologue, it is saved just before the
- call through the pointer. The '-mno-save-toc-indirect' option is
- the default.
- '-mcompat-align-parm'
- '-mno-compat-align-parm'
- Generate (do not generate) code to pass structure parameters with a
- maximum alignment of 64 bits, for compatibility with older versions
- of GCC.
- Older versions of GCC (prior to 4.9.0) incorrectly did not align a
- structure parameter on a 128-bit boundary when that structure
- contained a member requiring 128-bit alignment. This is corrected
- in more recent versions of GCC. This option may be used to generate
- code that is compatible with functions compiled with older versions
- of GCC.
- The '-mno-compat-align-parm' option is the default.
- '-mstack-protector-guard=GUARD'
- '-mstack-protector-guard-reg=REG'
- '-mstack-protector-guard-offset=OFFSET'
- '-mstack-protector-guard-symbol=SYMBOL'
- Generate stack protection code using canary at GUARD. Supported
- locations are 'global' for global canary or 'tls' for per-thread
- canary in the TLS block (the default with GNU libc version 2.4 or
- later).
- With the latter choice the options
- '-mstack-protector-guard-reg=REG' and
- '-mstack-protector-guard-offset=OFFSET' furthermore specify which
- register to use as base register for reading the canary, and from
- what offset from that base register. The default for those is as
- specified in the relevant ABI.
- '-mstack-protector-guard-symbol=SYMBOL' overrides the offset with a
- symbol reference to a canary in the TLS block.
- File: gcc.info, Node: RX Options, Next: S/390 and zSeries Options, Prev: RS/6000 and PowerPC Options, Up: Submodel Options
- 3.18.41 RX Options
- ------------------
- These command-line options are defined for RX targets:
- '-m64bit-doubles'
- '-m32bit-doubles'
- Make the 'double' data type be 64 bits ('-m64bit-doubles') or 32
- bits ('-m32bit-doubles') in size. The default is
- '-m32bit-doubles'. _Note_ RX floating-point hardware only works on
- 32-bit values, which is why the default is '-m32bit-doubles'.
- '-fpu'
- '-nofpu'
- Enables ('-fpu') or disables ('-nofpu') the use of RX
- floating-point hardware. The default is enabled for the RX600
- series and disabled for the RX200 series.
- Floating-point instructions are only generated for 32-bit
- floating-point values, however, so the FPU hardware is not used for
- doubles if the '-m64bit-doubles' option is used.
- _Note_ If the '-fpu' option is enabled then
- '-funsafe-math-optimizations' is also enabled automatically. This
- is because the RX FPU instructions are themselves unsafe.
- '-mcpu=NAME'
- Selects the type of RX CPU to be targeted. Currently three types
- are supported, the generic 'RX600' and 'RX200' series hardware and
- the specific 'RX610' CPU. The default is 'RX600'.
- The only difference between 'RX600' and 'RX610' is that the 'RX610'
- does not support the 'MVTIPL' instruction.
- The 'RX200' series does not have a hardware floating-point unit and
- so '-nofpu' is enabled by default when this type is selected.
- '-mbig-endian-data'
- '-mlittle-endian-data'
- Store data (but not code) in the big-endian format. The default is
- '-mlittle-endian-data', i.e. to store data in the little-endian
- format.
- '-msmall-data-limit=N'
- Specifies the maximum size in bytes of global and static variables
- which can be placed into the small data area. Using the small data
- area can lead to smaller and faster code, but the size of area is
- limited and it is up to the programmer to ensure that the area does
- not overflow. Also when the small data area is used one of the
- RX's registers (usually 'r13') is reserved for use pointing to this
- area, so it is no longer available for use by the compiler. This
- could result in slower and/or larger code if variables are pushed
- onto the stack instead of being held in this register.
- Note, common variables (variables that have not been initialized)
- and constants are not placed into the small data area as they are
- assigned to other sections in the output executable.
- The default value is zero, which disables this feature. Note, this
- feature is not enabled by default with higher optimization levels
- ('-O2' etc) because of the potentially detrimental effects of
- reserving a register. It is up to the programmer to experiment and
- discover whether this feature is of benefit to their program. See
- the description of the '-mpid' option for a description of how the
- actual register to hold the small data area pointer is chosen.
- '-msim'
- '-mno-sim'
- Use the simulator runtime. The default is to use the libgloss
- board-specific runtime.
- '-mas100-syntax'
- '-mno-as100-syntax'
- When generating assembler output use a syntax that is compatible
- with Renesas's AS100 assembler. This syntax can also be handled by
- the GAS assembler, but it has some restrictions so it is not
- generated by default.
- '-mmax-constant-size=N'
- Specifies the maximum size, in bytes, of a constant that can be
- used as an operand in a RX instruction. Although the RX
- instruction set does allow constants of up to 4 bytes in length to
- be used in instructions, a longer value equates to a longer
- instruction. Thus in some circumstances it can be beneficial to
- restrict the size of constants that are used in instructions.
- Constants that are too big are instead placed into a constant pool
- and referenced via register indirection.
- The value N can be between 0 and 4. A value of 0 (the default) or
- 4 means that constants of any size are allowed.
- '-mrelax'
- Enable linker relaxation. Linker relaxation is a process whereby
- the linker attempts to reduce the size of a program by finding
- shorter versions of various instructions. Disabled by default.
- '-mint-register=N'
- Specify the number of registers to reserve for fast interrupt
- handler functions. The value N can be between 0 and 4. A value of
- 1 means that register 'r13' is reserved for the exclusive use of
- fast interrupt handlers. A value of 2 reserves 'r13' and 'r12'. A
- value of 3 reserves 'r13', 'r12' and 'r11', and a value of 4
- reserves 'r13' through 'r10'. A value of 0, the default, does not
- reserve any registers.
- '-msave-acc-in-interrupts'
- Specifies that interrupt handler functions should preserve the
- accumulator register. This is only necessary if normal code might
- use the accumulator register, for example because it performs
- 64-bit multiplications. The default is to ignore the accumulator
- as this makes the interrupt handlers faster.
- '-mpid'
- '-mno-pid'
- Enables the generation of position independent data. When enabled
- any access to constant data is done via an offset from a base
- address held in a register. This allows the location of constant
- data to be determined at run time without requiring the executable
- to be relocated, which is a benefit to embedded applications with
- tight memory constraints. Data that can be modified is not
- affected by this option.
- Note, using this feature reserves a register, usually 'r13', for
- the constant data base address. This can result in slower and/or
- larger code, especially in complicated functions.
- The actual register chosen to hold the constant data base address
- depends upon whether the '-msmall-data-limit' and/or the
- '-mint-register' command-line options are enabled. Starting with
- register 'r13' and proceeding downwards, registers are allocated
- first to satisfy the requirements of '-mint-register', then '-mpid'
- and finally '-msmall-data-limit'. Thus it is possible for the
- small data area register to be 'r8' if both '-mint-register=4' and
- '-mpid' are specified on the command line.
- By default this feature is not enabled. The default can be
- restored via the '-mno-pid' command-line option.
- '-mno-warn-multiple-fast-interrupts'
- '-mwarn-multiple-fast-interrupts'
- Prevents GCC from issuing a warning message if it finds more than
- one fast interrupt handler when it is compiling a file. The
- default is to issue a warning for each extra fast interrupt handler
- found, as the RX only supports one such interrupt.
- '-mallow-string-insns'
- '-mno-allow-string-insns'
- Enables or disables the use of the string manipulation instructions
- 'SMOVF', 'SCMPU', 'SMOVB', 'SMOVU', 'SUNTIL' 'SWHILE' and also the
- 'RMPA' instruction. These instructions may prefetch data, which is
- not safe to do if accessing an I/O register. (See section 12.2.7
- of the RX62N Group User's Manual for more information).
- The default is to allow these instructions, but it is not possible
- for GCC to reliably detect all circumstances where a string
- instruction might be used to access an I/O register, so their use
- cannot be disabled automatically. Instead it is reliant upon the
- programmer to use the '-mno-allow-string-insns' option if their
- program accesses I/O space.
- When the instructions are enabled GCC defines the C preprocessor
- symbol '__RX_ALLOW_STRING_INSNS__', otherwise it defines the symbol
- '__RX_DISALLOW_STRING_INSNS__'.
- '-mjsr'
- '-mno-jsr'
- Use only (or not only) 'JSR' instructions to access functions.
- This option can be used when code size exceeds the range of 'BSR'
- instructions. Note that '-mno-jsr' does not mean to not use 'JSR'
- but instead means that any type of branch may be used.
- _Note:_ The generic GCC command-line option '-ffixed-REG' has special
- significance to the RX port when used with the 'interrupt' function
- attribute. This attribute indicates a function intended to process fast
- interrupts. GCC ensures that it only uses the registers 'r10', 'r11',
- 'r12' and/or 'r13' and only provided that the normal use of the
- corresponding registers have been restricted via the '-ffixed-REG' or
- '-mint-register' command-line options.
- File: gcc.info, Node: S/390 and zSeries Options, Next: Score Options, Prev: RX Options, Up: Submodel Options
- 3.18.42 S/390 and zSeries Options
- ---------------------------------
- These are the '-m' options defined for the S/390 and zSeries
- architecture.
- '-mhard-float'
- '-msoft-float'
- Use (do not use) the hardware floating-point instructions and
- registers for floating-point operations. When '-msoft-float' is
- specified, functions in 'libgcc.a' are used to perform
- floating-point operations. When '-mhard-float' is specified, the
- compiler generates IEEE floating-point instructions. This is the
- default.
- '-mhard-dfp'
- '-mno-hard-dfp'
- Use (do not use) the hardware decimal-floating-point instructions
- for decimal-floating-point operations. When '-mno-hard-dfp' is
- specified, functions in 'libgcc.a' are used to perform
- decimal-floating-point operations. When '-mhard-dfp' is specified,
- the compiler generates decimal-floating-point hardware
- instructions. This is the default for '-march=z9-ec' or higher.
- '-mlong-double-64'
- '-mlong-double-128'
- These switches control the size of 'long double' type. A size of
- 64 bits makes the 'long double' type equivalent to the 'double'
- type. This is the default.
- '-mbackchain'
- '-mno-backchain'
- Store (do not store) the address of the caller's frame as backchain
- pointer into the callee's stack frame. A backchain may be needed
- to allow debugging using tools that do not understand DWARF call
- frame information. When '-mno-packed-stack' is in effect, the
- backchain pointer is stored at the bottom of the stack frame; when
- '-mpacked-stack' is in effect, the backchain is placed into the
- topmost word of the 96/160 byte register save area.
- In general, code compiled with '-mbackchain' is call-compatible
- with code compiled with '-mmo-backchain'; however, use of the
- backchain for debugging purposes usually requires that the whole
- binary is built with '-mbackchain'. Note that the combination of
- '-mbackchain', '-mpacked-stack' and '-mhard-float' is not
- supported. In order to build a linux kernel use '-msoft-float'.
- The default is to not maintain the backchain.
- '-mpacked-stack'
- '-mno-packed-stack'
- Use (do not use) the packed stack layout. When '-mno-packed-stack'
- is specified, the compiler uses the all fields of the 96/160 byte
- register save area only for their default purpose; unused fields
- still take up stack space. When '-mpacked-stack' is specified,
- register save slots are densely packed at the top of the register
- save area; unused space is reused for other purposes, allowing for
- more efficient use of the available stack space. However, when
- '-mbackchain' is also in effect, the topmost word of the save area
- is always used to store the backchain, and the return address
- register is always saved two words below the backchain.
- As long as the stack frame backchain is not used, code generated
- with '-mpacked-stack' is call-compatible with code generated with
- '-mno-packed-stack'. Note that some non-FSF releases of GCC 2.95
- for S/390 or zSeries generated code that uses the stack frame
- backchain at run time, not just for debugging purposes. Such code
- is not call-compatible with code compiled with '-mpacked-stack'.
- Also, note that the combination of '-mbackchain', '-mpacked-stack'
- and '-mhard-float' is not supported. In order to build a linux
- kernel use '-msoft-float'.
- The default is to not use the packed stack layout.
- '-msmall-exec'
- '-mno-small-exec'
- Generate (or do not generate) code using the 'bras' instruction to
- do subroutine calls. This only works reliably if the total
- executable size does not exceed 64k. The default is to use the
- 'basr' instruction instead, which does not have this limitation.
- '-m64'
- '-m31'
- When '-m31' is specified, generate code compliant to the GNU/Linux
- for S/390 ABI. When '-m64' is specified, generate code compliant
- to the GNU/Linux for zSeries ABI. This allows GCC in particular to
- generate 64-bit instructions. For the 's390' targets, the default
- is '-m31', while the 's390x' targets default to '-m64'.
- '-mzarch'
- '-mesa'
- When '-mzarch' is specified, generate code using the instructions
- available on z/Architecture. When '-mesa' is specified, generate
- code using the instructions available on ESA/390. Note that
- '-mesa' is not possible with '-m64'. When generating code
- compliant to the GNU/Linux for S/390 ABI, the default is '-mesa'.
- When generating code compliant to the GNU/Linux for zSeries ABI,
- the default is '-mzarch'.
- '-mhtm'
- '-mno-htm'
- The '-mhtm' option enables a set of builtins making use of
- instructions available with the transactional execution facility
- introduced with the IBM zEnterprise EC12 machine generation *note
- S/390 System z Built-in Functions::. '-mhtm' is enabled by default
- when using '-march=zEC12'.
- '-mvx'
- '-mno-vx'
- When '-mvx' is specified, generate code using the instructions
- available with the vector extension facility introduced with the
- IBM z13 machine generation. This option changes the ABI for some
- vector type values with regard to alignment and calling
- conventions. In case vector type values are being used in an
- ABI-relevant context a GAS '.gnu_attribute' command will be added
- to mark the resulting binary with the ABI used. '-mvx' is enabled
- by default when using '-march=z13'.
- '-mzvector'
- '-mno-zvector'
- The '-mzvector' option enables vector language extensions and
- builtins using instructions available with the vector extension
- facility introduced with the IBM z13 machine generation. This
- option adds support for 'vector' to be used as a keyword to define
- vector type variables and arguments. 'vector' is only available
- when GNU extensions are enabled. It will not be expanded when
- requesting strict standard compliance e.g. with '-std=c99'. In
- addition to the GCC low-level builtins '-mzvector' enables a set of
- builtins added for compatibility with AltiVec-style implementations
- like Power and Cell. In order to make use of these builtins the
- header file 'vecintrin.h' needs to be included. '-mzvector' is
- disabled by default.
- '-mmvcle'
- '-mno-mvcle'
- Generate (or do not generate) code using the 'mvcle' instruction to
- perform block moves. When '-mno-mvcle' is specified, use a 'mvc'
- loop instead. This is the default unless optimizing for size.
- '-mdebug'
- '-mno-debug'
- Print (or do not print) additional debug information when
- compiling. The default is to not print debug information.
- '-march=CPU-TYPE'
- Generate code that runs on CPU-TYPE, which is the name of a system
- representing a certain processor type. Possible values for
- CPU-TYPE are 'z900'/'arch5', 'z990'/'arch6', 'z9-109',
- 'z9-ec'/'arch7', 'z10'/'arch8', 'z196'/'arch9', 'zEC12',
- 'z13'/'arch11', 'z14'/'arch12', and 'native'.
- The default is '-march=z900'. 'g5'/'arch3' and 'g6' are deprecated
- and will be removed with future releases.
- Specifying 'native' as cpu type can be used to select the best
- architecture option for the host processor. '-march=native' has no
- effect if GCC does not recognize the processor.
- '-mtune=CPU-TYPE'
- Tune to CPU-TYPE everything applicable about the generated code,
- except for the ABI and the set of available instructions. The list
- of CPU-TYPE values is the same as for '-march'. The default is the
- value used for '-march'.
- '-mtpf-trace'
- '-mno-tpf-trace'
- Generate code that adds (does not add) in TPF OS specific branches
- to trace routines in the operating system. This option is off by
- default, even when compiling for the TPF OS.
- '-mfused-madd'
- '-mno-fused-madd'
- Generate code that uses (does not use) the floating-point multiply
- and accumulate instructions. These instructions are generated by
- default if hardware floating point is used.
- '-mwarn-framesize=FRAMESIZE'
- Emit a warning if the current function exceeds the given frame
- size. Because this is a compile-time check it doesn't need to be a
- real problem when the program runs. It is intended to identify
- functions that most probably cause a stack overflow. It is useful
- to be used in an environment with limited stack size e.g. the linux
- kernel.
- '-mwarn-dynamicstack'
- Emit a warning if the function calls 'alloca' or uses
- dynamically-sized arrays. This is generally a bad idea with a
- limited stack size.
- '-mstack-guard=STACK-GUARD'
- '-mstack-size=STACK-SIZE'
- If these options are provided the S/390 back end emits additional
- instructions in the function prologue that trigger a trap if the
- stack size is STACK-GUARD bytes above the STACK-SIZE (remember that
- the stack on S/390 grows downward). If the STACK-GUARD option is
- omitted the smallest power of 2 larger than the frame size of the
- compiled function is chosen. These options are intended to be used
- to help debugging stack overflow problems. The additionally
- emitted code causes only little overhead and hence can also be used
- in production-like systems without greater performance degradation.
- The given values have to be exact powers of 2 and STACK-SIZE has to
- be greater than STACK-GUARD without exceeding 64k. In order to be
- efficient the extra code makes the assumption that the stack starts
- at an address aligned to the value given by STACK-SIZE. The
- STACK-GUARD option can only be used in conjunction with STACK-SIZE.
- '-mhotpatch=PRE-HALFWORDS,POST-HALFWORDS'
- If the hotpatch option is enabled, a "hot-patching" function
- prologue is generated for all functions in the compilation unit.
- The funtion label is prepended with the given number of two-byte
- NOP instructions (PRE-HALFWORDS, maximum 1000000). After the
- label, 2 * POST-HALFWORDS bytes are appended, using the largest NOP
- like instructions the architecture allows (maximum 1000000).
- If both arguments are zero, hotpatching is disabled.
- This option can be overridden for individual functions with the
- 'hotpatch' attribute.
- File: gcc.info, Node: Score Options, Next: SH Options, Prev: S/390 and zSeries Options, Up: Submodel Options
- 3.18.43 Score Options
- ---------------------
- These options are defined for Score implementations:
- '-meb'
- Compile code for big-endian mode. This is the default.
- '-mel'
- Compile code for little-endian mode.
- '-mnhwloop'
- Disable generation of 'bcnz' instructions.
- '-muls'
- Enable generation of unaligned load and store instructions.
- '-mmac'
- Enable the use of multiply-accumulate instructions. Disabled by
- default.
- '-mscore5'
- Specify the SCORE5 as the target architecture.
- '-mscore5u'
- Specify the SCORE5U of the target architecture.
- '-mscore7'
- Specify the SCORE7 as the target architecture. This is the
- default.
- '-mscore7d'
- Specify the SCORE7D as the target architecture.
- File: gcc.info, Node: SH Options, Next: Solaris 2 Options, Prev: Score Options, Up: Submodel Options
- 3.18.44 SH Options
- ------------------
- These '-m' options are defined for the SH implementations:
- '-m1'
- Generate code for the SH1.
- '-m2'
- Generate code for the SH2.
- '-m2e'
- Generate code for the SH2e.
- '-m2a-nofpu'
- Generate code for the SH2a without FPU, or for a SH2a-FPU in such a
- way that the floating-point unit is not used.
- '-m2a-single-only'
- Generate code for the SH2a-FPU, in such a way that no
- double-precision floating-point operations are used.
- '-m2a-single'
- Generate code for the SH2a-FPU assuming the floating-point unit is
- in single-precision mode by default.
- '-m2a'
- Generate code for the SH2a-FPU assuming the floating-point unit is
- in double-precision mode by default.
- '-m3'
- Generate code for the SH3.
- '-m3e'
- Generate code for the SH3e.
- '-m4-nofpu'
- Generate code for the SH4 without a floating-point unit.
- '-m4-single-only'
- Generate code for the SH4 with a floating-point unit that only
- supports single-precision arithmetic.
- '-m4-single'
- Generate code for the SH4 assuming the floating-point unit is in
- single-precision mode by default.
- '-m4'
- Generate code for the SH4.
- '-m4-100'
- Generate code for SH4-100.
- '-m4-100-nofpu'
- Generate code for SH4-100 in such a way that the floating-point
- unit is not used.
- '-m4-100-single'
- Generate code for SH4-100 assuming the floating-point unit is in
- single-precision mode by default.
- '-m4-100-single-only'
- Generate code for SH4-100 in such a way that no double-precision
- floating-point operations are used.
- '-m4-200'
- Generate code for SH4-200.
- '-m4-200-nofpu'
- Generate code for SH4-200 without in such a way that the
- floating-point unit is not used.
- '-m4-200-single'
- Generate code for SH4-200 assuming the floating-point unit is in
- single-precision mode by default.
- '-m4-200-single-only'
- Generate code for SH4-200 in such a way that no double-precision
- floating-point operations are used.
- '-m4-300'
- Generate code for SH4-300.
- '-m4-300-nofpu'
- Generate code for SH4-300 without in such a way that the
- floating-point unit is not used.
- '-m4-300-single'
- Generate code for SH4-300 in such a way that no double-precision
- floating-point operations are used.
- '-m4-300-single-only'
- Generate code for SH4-300 in such a way that no double-precision
- floating-point operations are used.
- '-m4-340'
- Generate code for SH4-340 (no MMU, no FPU).
- '-m4-500'
- Generate code for SH4-500 (no FPU). Passes '-isa=sh4-nofpu' to the
- assembler.
- '-m4a-nofpu'
- Generate code for the SH4al-dsp, or for a SH4a in such a way that
- the floating-point unit is not used.
- '-m4a-single-only'
- Generate code for the SH4a, in such a way that no double-precision
- floating-point operations are used.
- '-m4a-single'
- Generate code for the SH4a assuming the floating-point unit is in
- single-precision mode by default.
- '-m4a'
- Generate code for the SH4a.
- '-m4al'
- Same as '-m4a-nofpu', except that it implicitly passes '-dsp' to
- the assembler. GCC doesn't generate any DSP instructions at the
- moment.
- '-mb'
- Compile code for the processor in big-endian mode.
- '-ml'
- Compile code for the processor in little-endian mode.
- '-mdalign'
- Align doubles at 64-bit boundaries. Note that this changes the
- calling conventions, and thus some functions from the standard C
- library do not work unless you recompile it first with '-mdalign'.
- '-mrelax'
- Shorten some address references at link time, when possible; uses
- the linker option '-relax'.
- '-mbigtable'
- Use 32-bit offsets in 'switch' tables. The default is to use
- 16-bit offsets.
- '-mbitops'
- Enable the use of bit manipulation instructions on SH2A.
- '-mfmovd'
- Enable the use of the instruction 'fmovd'. Check '-mdalign' for
- alignment constraints.
- '-mrenesas'
- Comply with the calling conventions defined by Renesas.
- '-mno-renesas'
- Comply with the calling conventions defined for GCC before the
- Renesas conventions were available. This option is the default for
- all targets of the SH toolchain.
- '-mnomacsave'
- Mark the 'MAC' register as call-clobbered, even if '-mrenesas' is
- given.
- '-mieee'
- '-mno-ieee'
- Control the IEEE compliance of floating-point comparisons, which
- affects the handling of cases where the result of a comparison is
- unordered. By default '-mieee' is implicitly enabled. If
- '-ffinite-math-only' is enabled '-mno-ieee' is implicitly set,
- which results in faster floating-point greater-equal and less-equal
- comparisons. The implicit settings can be overridden by specifying
- either '-mieee' or '-mno-ieee'.
- '-minline-ic_invalidate'
- Inline code to invalidate instruction cache entries after setting
- up nested function trampolines. This option has no effect if
- '-musermode' is in effect and the selected code generation option
- (e.g. '-m4') does not allow the use of the 'icbi' instruction. If
- the selected code generation option does not allow the use of the
- 'icbi' instruction, and '-musermode' is not in effect, the inlined
- code manipulates the instruction cache address array directly with
- an associative write. This not only requires privileged mode at
- run time, but it also fails if the cache line had been mapped via
- the TLB and has become unmapped.
- '-misize'
- Dump instruction size and location in the assembly code.
- '-mpadstruct'
- This option is deprecated. It pads structures to multiple of 4
- bytes, which is incompatible with the SH ABI.
- '-matomic-model=MODEL'
- Sets the model of atomic operations and additional parameters as a
- comma separated list. For details on the atomic built-in functions
- see *note __atomic Builtins::. The following models and parameters
- are supported:
- 'none'
- Disable compiler generated atomic sequences and emit library
- calls for atomic operations. This is the default if the
- target is not 'sh*-*-linux*'.
- 'soft-gusa'
- Generate GNU/Linux compatible gUSA software atomic sequences
- for the atomic built-in functions. The generated atomic
- sequences require additional support from the
- interrupt/exception handling code of the system and are only
- suitable for SH3* and SH4* single-core systems. This option
- is enabled by default when the target is 'sh*-*-linux*' and
- SH3* or SH4*. When the target is SH4A, this option also
- partially utilizes the hardware atomic instructions 'movli.l'
- and 'movco.l' to create more efficient code, unless 'strict'
- is specified.
- 'soft-tcb'
- Generate software atomic sequences that use a variable in the
- thread control block. This is a variation of the gUSA
- sequences which can also be used on SH1* and SH2* targets.
- The generated atomic sequences require additional support from
- the interrupt/exception handling code of the system and are
- only suitable for single-core systems. When using this model,
- the 'gbr-offset=' parameter has to be specified as well.
- 'soft-imask'
- Generate software atomic sequences that temporarily disable
- interrupts by setting 'SR.IMASK = 1111'. This model works
- only when the program runs in privileged mode and is only
- suitable for single-core systems. Additional support from the
- interrupt/exception handling code of the system is not
- required. This model is enabled by default when the target is
- 'sh*-*-linux*' and SH1* or SH2*.
- 'hard-llcs'
- Generate hardware atomic sequences using the 'movli.l' and
- 'movco.l' instructions only. This is only available on SH4A
- and is suitable for multi-core systems. Since the hardware
- instructions support only 32 bit atomic variables access to 8
- or 16 bit variables is emulated with 32 bit accesses. Code
- compiled with this option is also compatible with other
- software atomic model interrupt/exception handling systems if
- executed on an SH4A system. Additional support from the
- interrupt/exception handling code of the system is not
- required for this model.
- 'gbr-offset='
- This parameter specifies the offset in bytes of the variable
- in the thread control block structure that should be used by
- the generated atomic sequences when the 'soft-tcb' model has
- been selected. For other models this parameter is ignored.
- The specified value must be an integer multiple of four and in
- the range 0-1020.
- 'strict'
- This parameter prevents mixed usage of multiple atomic models,
- even if they are compatible, and makes the compiler generate
- atomic sequences of the specified model only.
- '-mtas'
- Generate the 'tas.b' opcode for '__atomic_test_and_set'. Notice
- that depending on the particular hardware and software
- configuration this can degrade overall performance due to the
- operand cache line flushes that are implied by the 'tas.b'
- instruction. On multi-core SH4A processors the 'tas.b' instruction
- must be used with caution since it can result in data corruption
- for certain cache configurations.
- '-mprefergot'
- When generating position-independent code, emit function calls
- using the Global Offset Table instead of the Procedure Linkage
- Table.
- '-musermode'
- '-mno-usermode'
- Don't allow (allow) the compiler generating privileged mode code.
- Specifying '-musermode' also implies '-mno-inline-ic_invalidate' if
- the inlined code would not work in user mode. '-musermode' is the
- default when the target is 'sh*-*-linux*'. If the target is SH1*
- or SH2* '-musermode' has no effect, since there is no user mode.
- '-multcost=NUMBER'
- Set the cost to assume for a multiply insn.
- '-mdiv=STRATEGY'
- Set the division strategy to be used for integer division
- operations. STRATEGY can be one of:
- 'call-div1'
- Calls a library function that uses the single-step division
- instruction 'div1' to perform the operation. Division by zero
- calculates an unspecified result and does not trap. This is
- the default except for SH4, SH2A and SHcompact.
- 'call-fp'
- Calls a library function that performs the operation in double
- precision floating point. Division by zero causes a
- floating-point exception. This is the default for SHcompact
- with FPU. Specifying this for targets that do not have a
- double precision FPU defaults to 'call-div1'.
- 'call-table'
- Calls a library function that uses a lookup table for small
- divisors and the 'div1' instruction with case distinction for
- larger divisors. Division by zero calculates an unspecified
- result and does not trap. This is the default for SH4.
- Specifying this for targets that do not have dynamic shift
- instructions defaults to 'call-div1'.
- When a division strategy has not been specified the default
- strategy is selected based on the current target. For SH2A the
- default strategy is to use the 'divs' and 'divu' instructions
- instead of library function calls.
- '-maccumulate-outgoing-args'
- Reserve space once for outgoing arguments in the function prologue
- rather than around each call. Generally beneficial for performance
- and size. Also needed for unwinding to avoid changing the stack
- frame around conditional code.
- '-mdivsi3_libfunc=NAME'
- Set the name of the library function used for 32-bit signed
- division to NAME. This only affects the name used in the 'call'
- division strategies, and the compiler still expects the same sets
- of input/output/clobbered registers as if this option were not
- present.
- '-mfixed-range=REGISTER-RANGE'
- Generate code treating the given register range as fixed registers.
- A fixed register is one that the register allocator can not use.
- This is useful when compiling kernel code. A register range is
- specified as two registers separated by a dash. Multiple register
- ranges can be specified separated by a comma.
- '-mbranch-cost=NUM'
- Assume NUM to be the cost for a branch instruction. Higher numbers
- make the compiler try to generate more branch-free code if
- possible. If not specified the value is selected depending on the
- processor type that is being compiled for.
- '-mzdcbranch'
- '-mno-zdcbranch'
- Assume (do not assume) that zero displacement conditional branch
- instructions 'bt' and 'bf' are fast. If '-mzdcbranch' is
- specified, the compiler prefers zero displacement branch code
- sequences. This is enabled by default when generating code for SH4
- and SH4A. It can be explicitly disabled by specifying
- '-mno-zdcbranch'.
- '-mcbranch-force-delay-slot'
- Force the usage of delay slots for conditional branches, which
- stuffs the delay slot with a 'nop' if a suitable instruction cannot
- be found. By default this option is disabled. It can be enabled
- to work around hardware bugs as found in the original SH7055.
- '-mfused-madd'
- '-mno-fused-madd'
- Generate code that uses (does not use) the floating-point multiply
- and accumulate instructions. These instructions are generated by
- default if hardware floating point is used. The machine-dependent
- '-mfused-madd' option is now mapped to the machine-independent
- '-ffp-contract=fast' option, and '-mno-fused-madd' is mapped to
- '-ffp-contract=off'.
- '-mfsca'
- '-mno-fsca'
- Allow or disallow the compiler to emit the 'fsca' instruction for
- sine and cosine approximations. The option '-mfsca' must be used
- in combination with '-funsafe-math-optimizations'. It is enabled
- by default when generating code for SH4A. Using '-mno-fsca'
- disables sine and cosine approximations even if
- '-funsafe-math-optimizations' is in effect.
- '-mfsrra'
- '-mno-fsrra'
- Allow or disallow the compiler to emit the 'fsrra' instruction for
- reciprocal square root approximations. The option '-mfsrra' must
- be used in combination with '-funsafe-math-optimizations' and
- '-ffinite-math-only'. It is enabled by default when generating
- code for SH4A. Using '-mno-fsrra' disables reciprocal square root
- approximations even if '-funsafe-math-optimizations' and
- '-ffinite-math-only' are in effect.
- '-mpretend-cmove'
- Prefer zero-displacement conditional branches for conditional move
- instruction patterns. This can result in faster code on the SH4
- processor.
- '-mfdpic'
- Generate code using the FDPIC ABI.
- File: gcc.info, Node: Solaris 2 Options, Next: SPARC Options, Prev: SH Options, Up: Submodel Options
- 3.18.45 Solaris 2 Options
- -------------------------
- These '-m' options are supported on Solaris 2:
- '-mclear-hwcap'
- '-mclear-hwcap' tells the compiler to remove the hardware
- capabilities generated by the Solaris assembler. This is only
- necessary when object files use ISA extensions not supported by the
- current machine, but check at runtime whether or not to use them.
- '-mimpure-text'
- '-mimpure-text', used in addition to '-shared', tells the compiler
- to not pass '-z text' to the linker when linking a shared object.
- Using this option, you can link position-dependent code into a
- shared object.
- '-mimpure-text' suppresses the "relocations remain against
- allocatable but non-writable sections" linker error message.
- However, the necessary relocations trigger copy-on-write, and the
- shared object is not actually shared across processes. Instead of
- using '-mimpure-text', you should compile all source code with
- '-fpic' or '-fPIC'.
- These switches are supported in addition to the above on Solaris 2:
- '-pthreads'
- This is a synonym for '-pthread'.
- File: gcc.info, Node: SPARC Options, Next: SPU Options, Prev: Solaris 2 Options, Up: Submodel Options
- 3.18.46 SPARC Options
- ---------------------
- These '-m' options are supported on the SPARC:
- '-mno-app-regs'
- '-mapp-regs'
- Specify '-mapp-regs' to generate output using the global registers
- 2 through 4, which the SPARC SVR4 ABI reserves for applications.
- Like the global register 1, each global register 2 through 4 is
- then treated as an allocable register that is clobbered by function
- calls. This is the default.
- To be fully SVR4 ABI-compliant at the cost of some performance
- loss, specify '-mno-app-regs'. You should compile libraries and
- system software with this option.
- '-mflat'
- '-mno-flat'
- With '-mflat', the compiler does not generate save/restore
- instructions and uses a "flat" or single register window model.
- This model is compatible with the regular register window model.
- The local registers and the input registers (0-5) are still treated
- as "call-saved" registers and are saved on the stack as needed.
- With '-mno-flat' (the default), the compiler generates save/restore
- instructions (except for leaf functions). This is the normal
- operating mode.
- '-mfpu'
- '-mhard-float'
- Generate output containing floating-point instructions. This is
- the default.
- '-mno-fpu'
- '-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not available for all SPARC
- targets. Normally the facilities of the machine's usual C compiler
- are used, but this cannot be done directly in cross-compilation.
- You must make your own arrangements to provide suitable library
- functions for cross-compilation. The embedded targets
- 'sparc-*-aout' and 'sparclite-*-*' do provide software
- floating-point support.
- '-msoft-float' changes the calling convention in the output file;
- therefore, it is only useful if you compile _all_ of a program with
- this option. In particular, you need to compile 'libgcc.a', the
- library that comes with GCC, with '-msoft-float' in order for this
- to work.
- '-mhard-quad-float'
- Generate output containing quad-word (long double) floating-point
- instructions.
- '-msoft-quad-float'
- Generate output containing library calls for quad-word (long
- double) floating-point instructions. The functions called are
- those specified in the SPARC ABI. This is the default.
- As of this writing, there are no SPARC implementations that have
- hardware support for the quad-word floating-point instructions.
- They all invoke a trap handler for one of these instructions, and
- then the trap handler emulates the effect of the instruction.
- Because of the trap handler overhead, this is much slower than
- calling the ABI library routines. Thus the '-msoft-quad-float'
- option is the default.
- '-mno-unaligned-doubles'
- '-munaligned-doubles'
- Assume that doubles have 8-byte alignment. This is the default.
- With '-munaligned-doubles', GCC assumes that doubles have 8-byte
- alignment only if they are contained in another type, or if they
- have an absolute address. Otherwise, it assumes they have 4-byte
- alignment. Specifying this option avoids some rare compatibility
- problems with code generated by other compilers. It is not the
- default because it results in a performance loss, especially for
- floating-point code.
- '-muser-mode'
- '-mno-user-mode'
- Do not generate code that can only run in supervisor mode. This is
- relevant only for the 'casa' instruction emitted for the LEON3
- processor. This is the default.
- '-mfaster-structs'
- '-mno-faster-structs'
- With '-mfaster-structs', the compiler assumes that structures
- should have 8-byte alignment. This enables the use of pairs of
- 'ldd' and 'std' instructions for copies in structure assignment, in
- place of twice as many 'ld' and 'st' pairs. However, the use of
- this changed alignment directly violates the SPARC ABI. Thus, it's
- intended only for use on targets where the developer acknowledges
- that their resulting code is not directly in line with the rules of
- the ABI.
- '-mstd-struct-return'
- '-mno-std-struct-return'
- With '-mstd-struct-return', the compiler generates checking code in
- functions returning structures or unions to detect size mismatches
- between the two sides of function calls, as per the 32-bit ABI.
- The default is '-mno-std-struct-return'. This option has no effect
- in 64-bit mode.
- '-mlra'
- '-mno-lra'
- Enable Local Register Allocation. This is the default for SPARC
- since GCC 7 so '-mno-lra' needs to be passed to get old Reload.
- '-mcpu=CPU_TYPE'
- Set the instruction set, register set, and instruction scheduling
- parameters for machine type CPU_TYPE. Supported values for
- CPU_TYPE are 'v7', 'cypress', 'v8', 'supersparc', 'hypersparc',
- 'leon', 'leon3', 'leon3v7', 'sparclite', 'f930', 'f934',
- 'sparclite86x', 'sparclet', 'tsc701', 'v9', 'ultrasparc',
- 'ultrasparc3', 'niagara', 'niagara2', 'niagara3', 'niagara4',
- 'niagara7' and 'm8'.
- Native Solaris and GNU/Linux toolchains also support the value
- 'native', which selects the best architecture option for the host
- processor. '-mcpu=native' has no effect if GCC does not recognize
- the processor.
- Default instruction scheduling parameters are used for values that
- select an architecture and not an implementation. These are 'v7',
- 'v8', 'sparclite', 'sparclet', 'v9'.
- Here is a list of each supported architecture and their supported
- implementations.
- v7
- cypress, leon3v7
- v8
- supersparc, hypersparc, leon, leon3
- sparclite
- f930, f934, sparclite86x
- sparclet
- tsc701
- v9
- ultrasparc, ultrasparc3, niagara, niagara2, niagara3,
- niagara4, niagara7, m8
- By default (unless configured otherwise), GCC generates code for
- the V7 variant of the SPARC architecture. With '-mcpu=cypress',
- the compiler additionally optimizes it for the Cypress CY7C602
- chip, as used in the SPARCStation/SPARCServer 3xx series. This is
- also appropriate for the older SPARCStation 1, 2, IPX etc.
- With '-mcpu=v8', GCC generates code for the V8 variant of the SPARC
- architecture. The only difference from V7 code is that the
- compiler emits the integer multiply and integer divide instructions
- which exist in SPARC-V8 but not in SPARC-V7. With
- '-mcpu=supersparc', the compiler additionally optimizes it for the
- SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000
- series.
- With '-mcpu=sparclite', GCC generates code for the SPARClite
- variant of the SPARC architecture. This adds the integer multiply,
- integer divide step and scan ('ffs') instructions which exist in
- SPARClite but not in SPARC-V7. With '-mcpu=f930', the compiler
- additionally optimizes it for the Fujitsu MB86930 chip, which is
- the original SPARClite, with no FPU. With '-mcpu=f934', the
- compiler additionally optimizes it for the Fujitsu MB86934 chip,
- which is the more recent SPARClite with FPU.
- With '-mcpu=sparclet', GCC generates code for the SPARClet variant
- of the SPARC architecture. This adds the integer multiply,
- multiply/accumulate, integer divide step and scan ('ffs')
- instructions which exist in SPARClet but not in SPARC-V7. With
- '-mcpu=tsc701', the compiler additionally optimizes it for the
- TEMIC SPARClet chip.
- With '-mcpu=v9', GCC generates code for the V9 variant of the SPARC
- architecture. This adds 64-bit integer and floating-point move
- instructions, 3 additional floating-point condition code registers
- and conditional move instructions. With '-mcpu=ultrasparc', the
- compiler additionally optimizes it for the Sun UltraSPARC I/II/IIi
- chips. With '-mcpu=ultrasparc3', the compiler additionally
- optimizes it for the Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+
- chips. With '-mcpu=niagara', the compiler additionally optimizes
- it for Sun UltraSPARC T1 chips. With '-mcpu=niagara2', the
- compiler additionally optimizes it for Sun UltraSPARC T2 chips.
- With '-mcpu=niagara3', the compiler additionally optimizes it for
- Sun UltraSPARC T3 chips. With '-mcpu=niagara4', the compiler
- additionally optimizes it for Sun UltraSPARC T4 chips. With
- '-mcpu=niagara7', the compiler additionally optimizes it for Oracle
- SPARC M7 chips. With '-mcpu=m8', the compiler additionally
- optimizes it for Oracle M8 chips.
- '-mtune=CPU_TYPE'
- Set the instruction scheduling parameters for machine type
- CPU_TYPE, but do not set the instruction set or register set that
- the option '-mcpu=CPU_TYPE' does.
- The same values for '-mcpu=CPU_TYPE' can be used for
- '-mtune=CPU_TYPE', but the only useful values are those that select
- a particular CPU implementation. Those are 'cypress',
- 'supersparc', 'hypersparc', 'leon', 'leon3', 'leon3v7', 'f930',
- 'f934', 'sparclite86x', 'tsc701', 'ultrasparc', 'ultrasparc3',
- 'niagara', 'niagara2', 'niagara3', 'niagara4', 'niagara7' and 'm8'.
- With native Solaris and GNU/Linux toolchains, 'native' can also be
- used.
- '-mv8plus'
- '-mno-v8plus'
- With '-mv8plus', GCC generates code for the SPARC-V8+ ABI. The
- difference from the V8 ABI is that the global and out registers are
- considered 64 bits wide. This is enabled by default on Solaris in
- 32-bit mode for all SPARC-V9 processors.
- '-mvis'
- '-mno-vis'
- With '-mvis', GCC generates code that takes advantage of the
- UltraSPARC Visual Instruction Set extensions. The default is
- '-mno-vis'.
- '-mvis2'
- '-mno-vis2'
- With '-mvis2', GCC generates code that takes advantage of version
- 2.0 of the UltraSPARC Visual Instruction Set extensions. The
- default is '-mvis2' when targeting a cpu that supports such
- instructions, such as UltraSPARC-III and later. Setting '-mvis2'
- also sets '-mvis'.
- '-mvis3'
- '-mno-vis3'
- With '-mvis3', GCC generates code that takes advantage of version
- 3.0 of the UltraSPARC Visual Instruction Set extensions. The
- default is '-mvis3' when targeting a cpu that supports such
- instructions, such as niagara-3 and later. Setting '-mvis3' also
- sets '-mvis2' and '-mvis'.
- '-mvis4'
- '-mno-vis4'
- With '-mvis4', GCC generates code that takes advantage of version
- 4.0 of the UltraSPARC Visual Instruction Set extensions. The
- default is '-mvis4' when targeting a cpu that supports such
- instructions, such as niagara-7 and later. Setting '-mvis4' also
- sets '-mvis3', '-mvis2' and '-mvis'.
- '-mvis4b'
- '-mno-vis4b'
- With '-mvis4b', GCC generates code that takes advantage of version
- 4.0 of the UltraSPARC Visual Instruction Set extensions, plus the
- additional VIS instructions introduced in the Oracle SPARC
- Architecture 2017. The default is '-mvis4b' when targeting a cpu
- that supports such instructions, such as m8 and later. Setting
- '-mvis4b' also sets '-mvis4', '-mvis3', '-mvis2' and '-mvis'.
- '-mcbcond'
- '-mno-cbcond'
- With '-mcbcond', GCC generates code that takes advantage of the
- UltraSPARC Compare-and-Branch-on-Condition instructions. The
- default is '-mcbcond' when targeting a CPU that supports such
- instructions, such as Niagara-4 and later.
- '-mfmaf'
- '-mno-fmaf'
- With '-mfmaf', GCC generates code that takes advantage of the
- UltraSPARC Fused Multiply-Add Floating-point instructions. The
- default is '-mfmaf' when targeting a CPU that supports such
- instructions, such as Niagara-3 and later.
- '-mfsmuld'
- '-mno-fsmuld'
- With '-mfsmuld', GCC generates code that takes advantage of the
- Floating-point Multiply Single to Double (FsMULd) instruction. The
- default is '-mfsmuld' when targeting a CPU supporting the
- architecture versions V8 or V9 with FPU except '-mcpu=leon'.
- '-mpopc'
- '-mno-popc'
- With '-mpopc', GCC generates code that takes advantage of the
- UltraSPARC Population Count instruction. The default is '-mpopc'
- when targeting a CPU that supports such an instruction, such as
- Niagara-2 and later.
- '-msubxc'
- '-mno-subxc'
- With '-msubxc', GCC generates code that takes advantage of the
- UltraSPARC Subtract-Extended-with-Carry instruction. The default
- is '-msubxc' when targeting a CPU that supports such an
- instruction, such as Niagara-7 and later.
- '-mfix-at697f'
- Enable the documented workaround for the single erratum of the
- Atmel AT697F processor (which corresponds to erratum #13 of the
- AT697E processor).
- '-mfix-ut699'
- Enable the documented workarounds for the floating-point errata and
- the data cache nullify errata of the UT699 processor.
- '-mfix-ut700'
- Enable the documented workaround for the back-to-back store errata
- of the UT699E/UT700 processor.
- '-mfix-gr712rc'
- Enable the documented workaround for the back-to-back store errata
- of the GR712RC processor.
- These '-m' options are supported in addition to the above on SPARC-V9
- processors in 64-bit environments:
- '-m32'
- '-m64'
- Generate code for a 32-bit or 64-bit environment. The 32-bit
- environment sets int, long and pointer to 32 bits. The 64-bit
- environment sets int to 32 bits and long and pointer to 64 bits.
- '-mcmodel=WHICH'
- Set the code model to one of
- 'medlow'
- The Medium/Low code model: 64-bit addresses, programs must be
- linked in the low 32 bits of memory. Programs can be
- statically or dynamically linked.
- 'medmid'
- The Medium/Middle code model: 64-bit addresses, programs must
- be linked in the low 44 bits of memory, the text and data
- segments must be less than 2GB in size and the data segment
- must be located within 2GB of the text segment.
- 'medany'
- The Medium/Anywhere code model: 64-bit addresses, programs may
- be linked anywhere in memory, the text and data segments must
- be less than 2GB in size and the data segment must be located
- within 2GB of the text segment.
- 'embmedany'
- The Medium/Anywhere code model for embedded systems: 64-bit
- addresses, the text and data segments must be less than 2GB in
- size, both starting anywhere in memory (determined at link
- time). The global register %g4 points to the base of the data
- segment. Programs are statically linked and PIC is not
- supported.
- '-mmemory-model=MEM-MODEL'
- Set the memory model in force on the processor to one of
- 'default'
- The default memory model for the processor and operating
- system.
- 'rmo'
- Relaxed Memory Order
- 'pso'
- Partial Store Order
- 'tso'
- Total Store Order
- 'sc'
- Sequential Consistency
- These memory models are formally defined in Appendix D of the
- SPARC-V9 architecture manual, as set in the processor's 'PSTATE.MM'
- field.
- '-mstack-bias'
- '-mno-stack-bias'
- With '-mstack-bias', GCC assumes that the stack pointer, and frame
- pointer if present, are offset by -2047 which must be added back
- when making stack frame references. This is the default in 64-bit
- mode. Otherwise, assume no such offset is present.
- File: gcc.info, Node: SPU Options, Next: System V Options, Prev: SPARC Options, Up: Submodel Options
- 3.18.47 SPU Options
- -------------------
- These '-m' options are supported on the SPU:
- '-mwarn-reloc'
- '-merror-reloc'
- The loader for SPU does not handle dynamic relocations. By
- default, GCC gives an error when it generates code that requires a
- dynamic relocation. '-mno-error-reloc' disables the error,
- '-mwarn-reloc' generates a warning instead.
- '-msafe-dma'
- '-munsafe-dma'
- Instructions that initiate or test completion of DMA must not be
- reordered with respect to loads and stores of the memory that is
- being accessed. With '-munsafe-dma' you must use the 'volatile'
- keyword to protect memory accesses, but that can lead to
- inefficient code in places where the memory is known to not change.
- Rather than mark the memory as volatile, you can use '-msafe-dma'
- to tell the compiler to treat the DMA instructions as potentially
- affecting all memory.
- '-mbranch-hints'
- By default, GCC generates a branch hint instruction to avoid
- pipeline stalls for always-taken or probably-taken branches. A
- hint is not generated closer than 8 instructions away from its
- branch. There is little reason to disable them, except for
- debugging purposes, or to make an object a little bit smaller.
- '-msmall-mem'
- '-mlarge-mem'
- By default, GCC generates code assuming that addresses are never
- larger than 18 bits. With '-mlarge-mem' code is generated that
- assumes a full 32-bit address.
- '-mstdmain'
- By default, GCC links against startup code that assumes the
- SPU-style main function interface (which has an unconventional
- parameter list). With '-mstdmain', GCC links your program against
- startup code that assumes a C99-style interface to 'main',
- including a local copy of 'argv' strings.
- '-mfixed-range=REGISTER-RANGE'
- Generate code treating the given register range as fixed registers.
- A fixed register is one that the register allocator cannot use.
- This is useful when compiling kernel code. A register range is
- specified as two registers separated by a dash. Multiple register
- ranges can be specified separated by a comma.
- '-mea32'
- '-mea64'
- Compile code assuming that pointers to the PPU address space
- accessed via the '__ea' named address space qualifier are either 32
- or 64 bits wide. The default is 32 bits. As this is an
- ABI-changing option, all object code in an executable must be
- compiled with the same setting.
- '-maddress-space-conversion'
- '-mno-address-space-conversion'
- Allow/disallow treating the '__ea' address space as superset of the
- generic address space. This enables explicit type casts between
- '__ea' and generic pointer as well as implicit conversions of
- generic pointers to '__ea' pointers. The default is to allow
- address space pointer conversions.
- '-mcache-size=CACHE-SIZE'
- This option controls the version of libgcc that the compiler links
- to an executable and selects a software-managed cache for accessing
- variables in the '__ea' address space with a particular cache size.
- Possible options for CACHE-SIZE are '8', '16', '32', '64' and
- '128'. The default cache size is 64KB.
- '-matomic-updates'
- '-mno-atomic-updates'
- This option controls the version of libgcc that the compiler links
- to an executable and selects whether atomic updates to the
- software-managed cache of PPU-side variables are used. If you use
- atomic updates, changes to a PPU variable from SPU code using the
- '__ea' named address space qualifier do not interfere with changes
- to other PPU variables residing in the same cache line from PPU
- code. If you do not use atomic updates, such interference may
- occur; however, writing back cache lines is more efficient. The
- default behavior is to use atomic updates.
- '-mdual-nops'
- '-mdual-nops=N'
- By default, GCC inserts NOPs to increase dual issue when it expects
- it to increase performance. N can be a value from 0 to 10. A
- smaller N inserts fewer NOPs. 10 is the default, 0 is the same as
- '-mno-dual-nops'. Disabled with '-Os'.
- '-mhint-max-nops=N'
- Maximum number of NOPs to insert for a branch hint. A branch hint
- must be at least 8 instructions away from the branch it is
- affecting. GCC inserts up to N NOPs to enforce this, otherwise it
- does not generate the branch hint.
- '-mhint-max-distance=N'
- The encoding of the branch hint instruction limits the hint to be
- within 256 instructions of the branch it is affecting. By default,
- GCC makes sure it is within 125.
- '-msafe-hints'
- Work around a hardware bug that causes the SPU to stall
- indefinitely. By default, GCC inserts the 'hbrp' instruction to
- make sure this stall won't happen.
- File: gcc.info, Node: System V Options, Next: TILE-Gx Options, Prev: SPU Options, Up: Submodel Options
- 3.18.48 Options for System V
- ----------------------------
- These additional options are available on System V Release 4 for
- compatibility with other compilers on those systems:
- '-G'
- Create a shared object. It is recommended that '-symbolic' or
- '-shared' be used instead.
- '-Qy'
- Identify the versions of each tool used by the compiler, in a
- '.ident' assembler directive in the output.
- '-Qn'
- Refrain from adding '.ident' directives to the output file (this is
- the default).
- '-YP,DIRS'
- Search the directories DIRS, and no others, for libraries specified
- with '-l'.
- '-Ym,DIR'
- Look in the directory DIR to find the M4 preprocessor. The
- assembler uses this option.
- File: gcc.info, Node: TILE-Gx Options, Next: TILEPro Options, Prev: System V Options, Up: Submodel Options
- 3.18.49 TILE-Gx Options
- -----------------------
- These '-m' options are supported on the TILE-Gx:
- '-mcmodel=small'
- Generate code for the small model. The distance for direct calls
- is limited to 500M in either direction. PC-relative addresses are
- 32 bits. Absolute addresses support the full address range.
- '-mcmodel=large'
- Generate code for the large model. There is no limitation on call
- distance, pc-relative addresses, or absolute addresses.
- '-mcpu=NAME'
- Selects the type of CPU to be targeted. Currently the only
- supported type is 'tilegx'.
- '-m32'
- '-m64'
- Generate code for a 32-bit or 64-bit environment. The 32-bit
- environment sets int, long, and pointer to 32 bits. The 64-bit
- environment sets int to 32 bits and long and pointer to 64 bits.
- '-mbig-endian'
- '-mlittle-endian'
- Generate code in big/little endian mode, respectively.
- File: gcc.info, Node: TILEPro Options, Next: V850 Options, Prev: TILE-Gx Options, Up: Submodel Options
- 3.18.50 TILEPro Options
- -----------------------
- These '-m' options are supported on the TILEPro:
- '-mcpu=NAME'
- Selects the type of CPU to be targeted. Currently the only
- supported type is 'tilepro'.
- '-m32'
- Generate code for a 32-bit environment, which sets int, long, and
- pointer to 32 bits. This is the only supported behavior so the
- flag is essentially ignored.
- File: gcc.info, Node: V850 Options, Next: VAX Options, Prev: TILEPro Options, Up: Submodel Options
- 3.18.51 V850 Options
- --------------------
- These '-m' options are defined for V850 implementations:
- '-mlong-calls'
- '-mno-long-calls'
- Treat all calls as being far away (near). If calls are assumed to
- be far away, the compiler always loads the function's address into
- a register, and calls indirect through the pointer.
- '-mno-ep'
- '-mep'
- Do not optimize (do optimize) basic blocks that use the same index
- pointer 4 or more times to copy pointer into the 'ep' register, and
- use the shorter 'sld' and 'sst' instructions. The '-mep' option is
- on by default if you optimize.
- '-mno-prolog-function'
- '-mprolog-function'
- Do not use (do use) external functions to save and restore
- registers at the prologue and epilogue of a function. The external
- functions are slower, but use less code space if more than one
- function saves the same number of registers. The
- '-mprolog-function' option is on by default if you optimize.
- '-mspace'
- Try to make the code as small as possible. At present, this just
- turns on the '-mep' and '-mprolog-function' options.
- '-mtda=N'
- Put static or global variables whose size is N bytes or less into
- the tiny data area that register 'ep' points to. The tiny data
- area can hold up to 256 bytes in total (128 bytes for byte
- references).
- '-msda=N'
- Put static or global variables whose size is N bytes or less into
- the small data area that register 'gp' points to. The small data
- area can hold up to 64 kilobytes.
- '-mzda=N'
- Put static or global variables whose size is N bytes or less into
- the first 32 kilobytes of memory.
- '-mv850'
- Specify that the target processor is the V850.
- '-mv850e3v5'
- Specify that the target processor is the V850E3V5. The
- preprocessor constant '__v850e3v5__' is defined if this option is
- used.
- '-mv850e2v4'
- Specify that the target processor is the V850E3V5. This is an
- alias for the '-mv850e3v5' option.
- '-mv850e2v3'
- Specify that the target processor is the V850E2V3. The
- preprocessor constant '__v850e2v3__' is defined if this option is
- used.
- '-mv850e2'
- Specify that the target processor is the V850E2. The preprocessor
- constant '__v850e2__' is defined if this option is used.
- '-mv850e1'
- Specify that the target processor is the V850E1. The preprocessor
- constants '__v850e1__' and '__v850e__' are defined if this option
- is used.
- '-mv850es'
- Specify that the target processor is the V850ES. This is an alias
- for the '-mv850e1' option.
- '-mv850e'
- Specify that the target processor is the V850E. The preprocessor
- constant '__v850e__' is defined if this option is used.
- If neither '-mv850' nor '-mv850e' nor '-mv850e1' nor '-mv850e2' nor
- '-mv850e2v3' nor '-mv850e3v5' are defined then a default target
- processor is chosen and the relevant '__v850*__' preprocessor
- constant is defined.
- The preprocessor constants '__v850' and '__v851__' are always
- defined, regardless of which processor variant is the target.
- '-mdisable-callt'
- '-mno-disable-callt'
- This option suppresses generation of the 'CALLT' instruction for
- the v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the
- v850 architecture.
- This option is enabled by default when the RH850 ABI is in use (see
- '-mrh850-abi'), and disabled by default when the GCC ABI is in use.
- If 'CALLT' instructions are being generated then the C preprocessor
- symbol '__V850_CALLT__' is defined.
- '-mrelax'
- '-mno-relax'
- Pass on (or do not pass on) the '-mrelax' command-line option to
- the assembler.
- '-mlong-jumps'
- '-mno-long-jumps'
- Disable (or re-enable) the generation of PC-relative jump
- instructions.
- '-msoft-float'
- '-mhard-float'
- Disable (or re-enable) the generation of hardware floating point
- instructions. This option is only significant when the target
- architecture is 'V850E2V3' or higher. If hardware floating point
- instructions are being generated then the C preprocessor symbol
- '__FPU_OK__' is defined, otherwise the symbol '__NO_FPU__' is
- defined.
- '-mloop'
- Enables the use of the e3v5 LOOP instruction. The use of this
- instruction is not enabled by default when the e3v5 architecture is
- selected because its use is still experimental.
- '-mrh850-abi'
- '-mghs'
- Enables support for the RH850 version of the V850 ABI. This is the
- default. With this version of the ABI the following rules apply:
- * Integer sized structures and unions are returned via a memory
- pointer rather than a register.
- * Large structures and unions (more than 8 bytes in size) are
- passed by value.
- * Functions are aligned to 16-bit boundaries.
- * The '-m8byte-align' command-line option is supported.
- * The '-mdisable-callt' command-line option is enabled by
- default. The '-mno-disable-callt' command-line option is not
- supported.
- When this version of the ABI is enabled the C preprocessor symbol
- '__V850_RH850_ABI__' is defined.
- '-mgcc-abi'
- Enables support for the old GCC version of the V850 ABI. With this
- version of the ABI the following rules apply:
- * Integer sized structures and unions are returned in register
- 'r10'.
- * Large structures and unions (more than 8 bytes in size) are
- passed by reference.
- * Functions are aligned to 32-bit boundaries, unless optimizing
- for size.
- * The '-m8byte-align' command-line option is not supported.
- * The '-mdisable-callt' command-line option is supported but not
- enabled by default.
- When this version of the ABI is enabled the C preprocessor symbol
- '__V850_GCC_ABI__' is defined.
- '-m8byte-align'
- '-mno-8byte-align'
- Enables support for 'double' and 'long long' types to be aligned on
- 8-byte boundaries. The default is to restrict the alignment of all
- objects to at most 4-bytes. When '-m8byte-align' is in effect the
- C preprocessor symbol '__V850_8BYTE_ALIGN__' is defined.
- '-mbig-switch'
- Generate code suitable for big switch tables. Use this option only
- if the assembler/linker complain about out of range branches within
- a switch table.
- '-mapp-regs'
- This option causes r2 and r5 to be used in the code generated by
- the compiler. This setting is the default.
- '-mno-app-regs'
- This option causes r2 and r5 to be treated as fixed registers.
- File: gcc.info, Node: VAX Options, Next: Visium Options, Prev: V850 Options, Up: Submodel Options
- 3.18.52 VAX Options
- -------------------
- These '-m' options are defined for the VAX:
- '-munix'
- Do not output certain jump instructions ('aobleq' and so on) that
- the Unix assembler for the VAX cannot handle across long ranges.
- '-mgnu'
- Do output those jump instructions, on the assumption that the GNU
- assembler is being used.
- '-mg'
- Output code for G-format floating-point numbers instead of
- D-format.
- File: gcc.info, Node: Visium Options, Next: VMS Options, Prev: VAX Options, Up: Submodel Options
- 3.18.53 Visium Options
- ----------------------
- '-mdebug'
- A program which performs file I/O and is destined to run on an MCM
- target should be linked with this option. It causes the libraries
- libc.a and libdebug.a to be linked. The program should be run on
- the target under the control of the GDB remote debugging stub.
- '-msim'
- A program which performs file I/O and is destined to run on the
- simulator should be linked with option. This causes libraries
- libc.a and libsim.a to be linked.
- '-mfpu'
- '-mhard-float'
- Generate code containing floating-point instructions. This is the
- default.
- '-mno-fpu'
- '-msoft-float'
- Generate code containing library calls for floating-point.
- '-msoft-float' changes the calling convention in the output file;
- therefore, it is only useful if you compile _all_ of a program with
- this option. In particular, you need to compile 'libgcc.a', the
- library that comes with GCC, with '-msoft-float' in order for this
- to work.
- '-mcpu=CPU_TYPE'
- Set the instruction set, register set, and instruction scheduling
- parameters for machine type CPU_TYPE. Supported values for
- CPU_TYPE are 'mcm', 'gr5' and 'gr6'.
- 'mcm' is a synonym of 'gr5' present for backward compatibility.
- By default (unless configured otherwise), GCC generates code for
- the GR5 variant of the Visium architecture.
- With '-mcpu=gr6', GCC generates code for the GR6 variant of the
- Visium architecture. The only difference from GR5 code is that the
- compiler will generate block move instructions.
- '-mtune=CPU_TYPE'
- Set the instruction scheduling parameters for machine type
- CPU_TYPE, but do not set the instruction set or register set that
- the option '-mcpu=CPU_TYPE' would.
- '-msv-mode'
- Generate code for the supervisor mode, where there are no
- restrictions on the access to general registers. This is the
- default.
- '-muser-mode'
- Generate code for the user mode, where the access to some general
- registers is forbidden: on the GR5, registers r24 to r31 cannot be
- accessed in this mode; on the GR6, only registers r29 to r31 are
- affected.
- File: gcc.info, Node: VMS Options, Next: VxWorks Options, Prev: Visium Options, Up: Submodel Options
- 3.18.54 VMS Options
- -------------------
- These '-m' options are defined for the VMS implementations:
- '-mvms-return-codes'
- Return VMS condition codes from 'main'. The default is to return
- POSIX-style condition (e.g. error) codes.
- '-mdebug-main=PREFIX'
- Flag the first routine whose name starts with PREFIX as the main
- routine for the debugger.
- '-mmalloc64'
- Default to 64-bit memory allocation routines.
- '-mpointer-size=SIZE'
- Set the default size of pointers. Possible options for SIZE are
- '32' or 'short' for 32 bit pointers, '64' or 'long' for 64 bit
- pointers, and 'no' for supporting only 32 bit pointers. The later
- option disables 'pragma pointer_size'.
- File: gcc.info, Node: VxWorks Options, Next: x86 Options, Prev: VMS Options, Up: Submodel Options
- 3.18.55 VxWorks Options
- -----------------------
- The options in this section are defined for all VxWorks targets.
- Options specific to the target hardware are listed with the other
- options for that target.
- '-mrtp'
- GCC can generate code for both VxWorks kernels and real time
- processes (RTPs). This option switches from the former to the
- latter. It also defines the preprocessor macro '__RTP__'.
- '-non-static'
- Link an RTP executable against shared libraries rather than static
- libraries. The options '-static' and '-shared' can also be used
- for RTPs (*note Link Options::); '-static' is the default.
- '-Bstatic'
- '-Bdynamic'
- These options are passed down to the linker. They are defined for
- compatibility with Diab.
- '-Xbind-lazy'
- Enable lazy binding of function calls. This option is equivalent
- to '-Wl,-z,now' and is defined for compatibility with Diab.
- '-Xbind-now'
- Disable lazy binding of function calls. This option is the default
- and is defined for compatibility with Diab.
- File: gcc.info, Node: x86 Options, Next: x86 Windows Options, Prev: VxWorks Options, Up: Submodel Options
- 3.18.56 x86 Options
- -------------------
- These '-m' options are defined for the x86 family of computers.
- '-march=CPU-TYPE'
- Generate instructions for the machine type CPU-TYPE. In contrast
- to '-mtune=CPU-TYPE', which merely tunes the generated code for the
- specified CPU-TYPE, '-march=CPU-TYPE' allows GCC to generate code
- that may not run at all on processors other than the one indicated.
- Specifying '-march=CPU-TYPE' implies '-mtune=CPU-TYPE'.
- The choices for CPU-TYPE are:
- 'native'
- This selects the CPU to generate code for at compilation time
- by determining the processor type of the compiling machine.
- Using '-march=native' enables all instruction subsets
- supported by the local machine (hence the result might not run
- on different machines). Using '-mtune=native' produces code
- optimized for the local machine under the constraints of the
- selected instruction set.
- 'x86-64'
- A generic CPU with 64-bit extensions.
- 'i386'
- Original Intel i386 CPU.
- 'i486'
- Intel i486 CPU. (No scheduling is implemented for this chip.)
- 'i586'
- 'pentium'
- Intel Pentium CPU with no MMX support.
- 'lakemont'
- Intel Lakemont MCU, based on Intel Pentium CPU.
- 'pentium-mmx'
- Intel Pentium MMX CPU, based on Pentium core with MMX
- instruction set support.
- 'pentiumpro'
- Intel Pentium Pro CPU.
- 'i686'
- When used with '-march', the Pentium Pro instruction set is
- used, so the code runs on all i686 family chips. When used
- with '-mtune', it has the same meaning as 'generic'.
- 'pentium2'
- Intel Pentium II CPU, based on Pentium Pro core with MMX
- instruction set support.
- 'pentium3'
- 'pentium3m'
- Intel Pentium III CPU, based on Pentium Pro core with MMX and
- SSE instruction set support.
- 'pentium-m'
- Intel Pentium M; low-power version of Intel Pentium III CPU
- with MMX, SSE and SSE2 instruction set support. Used by
- Centrino notebooks.
- 'pentium4'
- 'pentium4m'
- Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set
- support.
- 'prescott'
- Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2
- and SSE3 instruction set support.
- 'nocona'
- Improved version of Intel Pentium 4 CPU with 64-bit
- extensions, MMX, SSE, SSE2 and SSE3 instruction set support.
- 'core2'
- Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3
- and SSSE3 instruction set support.
- 'nehalem'
- Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2,
- SSE3, SSSE3, SSE4.1, SSE4.2 and POPCNT instruction set
- support.
- 'westmere'
- Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2,
- SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES and PCLMUL
- instruction set support.
- 'sandybridge'
- Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2,
- SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL
- instruction set support.
- 'ivybridge'
- Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2,
- SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL,
- FSGSBASE, RDRND and F16C instruction set support.
- 'haswell'
- Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE,
- SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES,
- PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2 and F16C instruction
- set support.
- 'broadwell'
- Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE,
- SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES,
- PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX
- and PREFETCHW instruction set support.
- 'skylake'
- Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE,
- SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES,
- PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX,
- PREFETCHW, CLFLUSHOPT, XSAVEC and XSAVES instruction set
- support.
- 'bonnell'
- Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE,
- SSE2, SSE3 and SSSE3 instruction set support.
- 'silvermont'
- Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE,
- SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and
- RDRND instruction set support.
- 'knl'
- Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX,
- SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2,
- AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED,
- ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and AVX512CD
- instruction set support.
- 'knm'
- Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX,
- SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2,
- AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED,
- ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
- AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set
- support.
- 'skylake-avx512'
- Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX,
- SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX,
- AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
- RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
- CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction
- set support.
- 'cannonlake'
- Intel Cannonlake Server CPU with 64-bit extensions, MOVBE,
- MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX,
- AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
- RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
- AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
- AVX512IFMA, SHA and UMIP instruction set support.
- 'icelake-client'
- Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX,
- SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX,
- AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
- RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
- AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
- AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2,
- AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES
- instruction set support.
- 'icelake-server'
- Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX,
- SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX,
- AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C,
- RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
- AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
- AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2,
- AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES,
- PCONFIG and WBNOINVD instruction set support.
- 'k6'
- AMD K6 CPU with MMX instruction set support.
- 'k6-2'
- 'k6-3'
- Improved versions of AMD K6 CPU with MMX and 3DNow!
- instruction set support.
- 'athlon'
- 'athlon-tbird'
- AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE
- prefetch instructions support.
- 'athlon-4'
- 'athlon-xp'
- 'athlon-mp'
- Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and
- full SSE instruction set support.
- 'k8'
- 'opteron'
- 'athlon64'
- 'athlon-fx'
- Processors based on the AMD K8 core with x86-64 instruction
- set support, including the AMD Opteron, Athlon 64, and Athlon
- 64 FX processors. (This supersets MMX, SSE, SSE2, 3DNow!,
- enhanced 3DNow! and 64-bit instruction set extensions.)
- 'k8-sse3'
- 'opteron-sse3'
- 'athlon64-sse3'
- Improved versions of AMD K8 cores with SSE3 instruction set
- support.
- 'amdfam10'
- 'barcelona'
- CPUs based on AMD Family 10h cores with x86-64 instruction set
- support. (This supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!,
- enhanced 3DNow!, ABM and 64-bit instruction set extensions.)
- 'bdver1'
- CPUs based on AMD Family 15h cores with x86-64 instruction set
- support. (This supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL,
- CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM
- and 64-bit instruction set extensions.)
- 'bdver2'
- AMD Family 15h core based CPUs with x86-64 instruction set
- support. (This supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP,
- LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
- SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
- 'bdver3'
- AMD Family 15h core based CPUs with x86-64 instruction set
- support. (This supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE,
- AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3,
- SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
- extensions.
- 'bdver4'
- AMD Family 15h core based CPUs with x86-64 instruction set
- support. (This supersets BMI, BMI2, TBM, F16C, FMA, FMA4,
- FSGSBASE, AVX, AVX2, XOP, LWP, AES, PCL_MUL, CX16, MOVBE, MMX,
- SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit
- instruction set extensions.
- 'znver1'
- AMD Family 17h core based CPUs with x86-64 instruction set
- support. (This supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX,
- AVX2, ADCX, RDSEED, MWAITX, SHA, CLZERO, AES, PCL_MUL, CX16,
- MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2,
- ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
- instruction set extensions.
- 'btver1'
- CPUs based on AMD Family 14h cores with x86-64 instruction set
- support. (This supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A,
- CX16, ABM and 64-bit instruction set extensions.)
- 'btver2'
- CPUs based on AMD Family 16h cores with x86-64 instruction set
- support. This includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES,
- SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3, SSE2, SSE, MMX
- and 64-bit instruction set extensions.
- 'winchip-c6'
- IDT WinChip C6 CPU, dealt in same way as i486 with additional
- MMX instruction set support.
- 'winchip2'
- IDT WinChip 2 CPU, dealt in same way as i486 with additional
- MMX and 3DNow! instruction set support.
- 'c3'
- VIA C3 CPU with MMX and 3DNow! instruction set support. (No
- scheduling is implemented for this chip.)
- 'c3-2'
- VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set
- support. (No scheduling is implemented for this chip.)
- 'c7'
- VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction
- set support. (No scheduling is implemented for this chip.)
- 'samuel-2'
- VIA Eden Samuel 2 CPU with MMX and 3DNow! instruction set
- support. (No scheduling is implemented for this chip.)
- 'nehemiah'
- VIA Eden Nehemiah CPU with MMX and SSE instruction set
- support. (No scheduling is implemented for this chip.)
- 'esther'
- VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction
- set support. (No scheduling is implemented for this chip.)
- 'eden-x2'
- VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3
- instruction set support. (No scheduling is implemented for
- this chip.)
- 'eden-x4'
- VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3,
- SSE4.1, SSE4.2, AVX and AVX2 instruction set support. (No
- scheduling is implemented for this chip.)
- 'nano'
- Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and
- SSSE3 instruction set support. (No scheduling is implemented
- for this chip.)
- 'nano-1000'
- VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
- instruction set support. (No scheduling is implemented for
- this chip.)
- 'nano-2000'
- VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
- instruction set support. (No scheduling is implemented for
- this chip.)
- 'nano-3000'
- VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and
- SSE4.1 instruction set support. (No scheduling is implemented
- for this chip.)
- 'nano-x2'
- VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3,
- SSSE3 and SSE4.1 instruction set support. (No scheduling is
- implemented for this chip.)
- 'nano-x4'
- VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3,
- SSSE3 and SSE4.1 instruction set support. (No scheduling is
- implemented for this chip.)
- 'geode'
- AMD Geode embedded processor with MMX and 3DNow! instruction
- set support.
- '-mtune=CPU-TYPE'
- Tune to CPU-TYPE everything applicable about the generated code,
- except for the ABI and the set of available instructions. While
- picking a specific CPU-TYPE schedules things appropriately for that
- particular chip, the compiler does not generate any code that
- cannot run on the default machine type unless you use a
- '-march=CPU-TYPE' option. For example, if GCC is configured for
- i686-pc-linux-gnu then '-mtune=pentium4' generates code that is
- tuned for Pentium 4 but still runs on i686 machines.
- The choices for CPU-TYPE are the same as for '-march'. In
- addition, '-mtune' supports 2 extra choices for CPU-TYPE:
- 'generic'
- Produce code optimized for the most common IA32/AMD64/EM64T
- processors. If you know the CPU on which your code will run,
- then you should use the corresponding '-mtune' or '-march'
- option instead of '-mtune=generic'. But, if you do not know
- exactly what CPU users of your application will have, then you
- should use this option.
- As new processors are deployed in the marketplace, the
- behavior of this option will change. Therefore, if you
- upgrade to a newer version of GCC, code generation controlled
- by this option will change to reflect the processors that are
- most common at the time that version of GCC is released.
- There is no '-march=generic' option because '-march' indicates
- the instruction set the compiler can use, and there is no
- generic instruction set applicable to all processors. In
- contrast, '-mtune' indicates the processor (or, in this case,
- collection of processors) for which the code is optimized.
- 'intel'
- Produce code optimized for the most current Intel processors,
- which are Haswell and Silvermont for this version of GCC. If
- you know the CPU on which your code will run, then you should
- use the corresponding '-mtune' or '-march' option instead of
- '-mtune=intel'. But, if you want your application performs
- better on both Haswell and Silvermont, then you should use
- this option.
- As new Intel processors are deployed in the marketplace, the
- behavior of this option will change. Therefore, if you
- upgrade to a newer version of GCC, code generation controlled
- by this option will change to reflect the most current Intel
- processors at the time that version of GCC is released.
- There is no '-march=intel' option because '-march' indicates
- the instruction set the compiler can use, and there is no
- common instruction set applicable to all processors. In
- contrast, '-mtune' indicates the processor (or, in this case,
- collection of processors) for which the code is optimized.
- '-mcpu=CPU-TYPE'
- A deprecated synonym for '-mtune'.
- '-mfpmath=UNIT'
- Generate floating-point arithmetic for selected unit UNIT. The
- choices for UNIT are:
- '387'
- Use the standard 387 floating-point coprocessor present on the
- majority of chips and emulated otherwise. Code compiled with
- this option runs almost everywhere. The temporary results are
- computed in 80-bit precision instead of the precision
- specified by the type, resulting in slightly different results
- compared to most of other chips. See '-ffloat-store' for more
- detailed description.
- This is the default choice for non-Darwin x86-32 targets.
- 'sse'
- Use scalar floating-point instructions present in the SSE
- instruction set. This instruction set is supported by Pentium
- III and newer chips, and in the AMD line by Athlon-4, Athlon
- XP and Athlon MP chips. The earlier version of the SSE
- instruction set supports only single-precision arithmetic,
- thus the double and extended-precision arithmetic are still
- done using 387. A later version, present only in Pentium 4
- and AMD x86-64 chips, supports double-precision arithmetic
- too.
- For the x86-32 compiler, you must use '-march=CPU-TYPE',
- '-msse' or '-msse2' switches to enable SSE extensions and make
- this option effective. For the x86-64 compiler, these
- extensions are enabled by default.
- The resulting code should be considerably faster in the
- majority of cases and avoid the numerical instability problems
- of 387 code, but may break some existing code that expects
- temporaries to be 80 bits.
- This is the default choice for the x86-64 compiler, Darwin
- x86-32 targets, and the default choice for x86-32 targets with
- the SSE2 instruction set when '-ffast-math' is enabled.
- 'sse,387'
- 'sse+387'
- 'both'
- Attempt to utilize both instruction sets at once. This
- effectively doubles the amount of available registers, and on
- chips with separate execution units for 387 and SSE the
- execution resources too. Use this option with care, as it is
- still experimental, because the GCC register allocator does
- not model separate functional units well, resulting in
- unstable performance.
- '-masm=DIALECT'
- Output assembly instructions using selected DIALECT. Also affects
- which dialect is used for basic 'asm' (*note Basic Asm::) and
- extended 'asm' (*note Extended Asm::). Supported choices (in
- dialect order) are 'att' or 'intel'. The default is 'att'. Darwin
- does not support 'intel'.
- '-mieee-fp'
- '-mno-ieee-fp'
- Control whether or not the compiler uses IEEE floating-point
- comparisons. These correctly handle the case where the result of a
- comparison is unordered.
- '-m80387'
- '-mhard-float'
- Generate output containing 80387 instructions for floating point.
- '-mno-80387'
- '-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not part of GCC. Normally
- the facilities of the machine's usual C compiler are used, but this
- cannot be done directly in cross-compilation. You must make your
- own arrangements to provide suitable library functions for
- cross-compilation.
- On machines where a function returns floating-point results in the
- 80387 register stack, some floating-point opcodes may be emitted
- even if '-msoft-float' is used.
- '-mno-fp-ret-in-387'
- Do not use the FPU registers for return values of functions.
- The usual calling convention has functions return values of types
- 'float' and 'double' in an FPU register, even if there is no FPU.
- The idea is that the operating system should emulate an FPU.
- The option '-mno-fp-ret-in-387' causes such values to be returned
- in ordinary CPU registers instead.
- '-mno-fancy-math-387'
- Some 387 emulators do not support the 'sin', 'cos' and 'sqrt'
- instructions for the 387. Specify this option to avoid generating
- those instructions. This option is the default on OpenBSD and
- NetBSD. This option is overridden when '-march' indicates that the
- target CPU always has an FPU and so the instruction does not need
- emulation. These instructions are not generated unless you also
- use the '-funsafe-math-optimizations' switch.
- '-malign-double'
- '-mno-align-double'
- Control whether GCC aligns 'double', 'long double', and 'long long'
- variables on a two-word boundary or a one-word boundary. Aligning
- 'double' variables on a two-word boundary produces code that runs
- somewhat faster on a Pentium at the expense of more memory.
- On x86-64, '-malign-double' is enabled by default.
- *Warning:* if you use the '-malign-double' switch, structures
- containing the above types are aligned differently than the
- published application binary interface specifications for the
- x86-32 and are not binary compatible with structures in code
- compiled without that switch.
- '-m96bit-long-double'
- '-m128bit-long-double'
- These switches control the size of 'long double' type. The x86-32
- application binary interface specifies the size to be 96 bits, so
- '-m96bit-long-double' is the default in 32-bit mode.
- Modern architectures (Pentium and newer) prefer 'long double' to be
- aligned to an 8- or 16-byte boundary. In arrays or structures
- conforming to the ABI, this is not possible. So specifying
- '-m128bit-long-double' aligns 'long double' to a 16-byte boundary
- by padding the 'long double' with an additional 32-bit zero.
- In the x86-64 compiler, '-m128bit-long-double' is the default
- choice as its ABI specifies that 'long double' is aligned on
- 16-byte boundary.
- Notice that neither of these options enable any extra precision
- over the x87 standard of 80 bits for a 'long double'.
- *Warning:* if you override the default value for your target ABI,
- this changes the size of structures and arrays containing 'long
- double' variables, as well as modifying the function calling
- convention for functions taking 'long double'. Hence they are not
- binary-compatible with code compiled without that switch.
- '-mlong-double-64'
- '-mlong-double-80'
- '-mlong-double-128'
- These switches control the size of 'long double' type. A size of
- 64 bits makes the 'long double' type equivalent to the 'double'
- type. This is the default for 32-bit Bionic C library. A size of
- 128 bits makes the 'long double' type equivalent to the
- '__float128' type. This is the default for 64-bit Bionic C
- library.
- *Warning:* if you override the default value for your target ABI,
- this changes the size of structures and arrays containing 'long
- double' variables, as well as modifying the function calling
- convention for functions taking 'long double'. Hence they are not
- binary-compatible with code compiled without that switch.
- '-malign-data=TYPE'
- Control how GCC aligns variables. Supported values for TYPE are
- 'compat' uses increased alignment value compatible uses GCC 4.8 and
- earlier, 'abi' uses alignment value as specified by the psABI, and
- 'cacheline' uses increased alignment value to match the cache line
- size. 'compat' is the default.
- '-mlarge-data-threshold=THRESHOLD'
- When '-mcmodel=medium' is specified, data objects larger than
- THRESHOLD are placed in the large data section. This value must be
- the same across all objects linked into the binary, and defaults to
- 65535.
- '-mrtd'
- Use a different function-calling convention, in which functions
- that take a fixed number of arguments return with the 'ret NUM'
- instruction, which pops their arguments while returning. This
- saves one instruction in the caller since there is no need to pop
- the arguments there.
- You can specify that an individual function is called with this
- calling sequence with the function attribute 'stdcall'. You can
- also override the '-mrtd' option by using the function attribute
- 'cdecl'. *Note Function Attributes::.
- *Warning:* this calling convention is incompatible with the one
- normally used on Unix, so you cannot use it if you need to call
- libraries compiled with the Unix compiler.
- Also, you must provide function prototypes for all functions that
- take variable numbers of arguments (including 'printf'); otherwise
- incorrect code is generated for calls to those functions.
- In addition, seriously incorrect code results if you call a
- function with too many arguments. (Normally, extra arguments are
- harmlessly ignored.)
- '-mregparm=NUM'
- Control how many registers are used to pass integer arguments. By
- default, no registers are used to pass arguments, and at most 3
- registers can be used. You can control this behavior for a
- specific function by using the function attribute 'regparm'. *Note
- Function Attributes::.
- *Warning:* if you use this switch, and NUM is nonzero, then you
- must build all modules with the same value, including any
- libraries. This includes the system libraries and startup modules.
- '-msseregparm'
- Use SSE register passing conventions for float and double arguments
- and return values. You can control this behavior for a specific
- function by using the function attribute 'sseregparm'. *Note
- Function Attributes::.
- *Warning:* if you use this switch then you must build all modules
- with the same value, including any libraries. This includes the
- system libraries and startup modules.
- '-mvect8-ret-in-mem'
- Return 8-byte vectors in memory instead of MMX registers. This is
- the default on Solaris 8 and 9 and VxWorks to match the ABI of the
- Sun Studio compilers until version 12. Later compiler versions
- (starting with Studio 12 Update 1) follow the ABI used by other x86
- targets, which is the default on Solaris 10 and later. _Only_ use
- this option if you need to remain compatible with existing code
- produced by those previous compiler versions or older versions of
- GCC.
- '-mpc32'
- '-mpc64'
- '-mpc80'
- Set 80387 floating-point precision to 32, 64 or 80 bits. When
- '-mpc32' is specified, the significands of results of
- floating-point operations are rounded to 24 bits (single
- precision); '-mpc64' rounds the significands of results of
- floating-point operations to 53 bits (double precision) and
- '-mpc80' rounds the significands of results of floating-point
- operations to 64 bits (extended double precision), which is the
- default. When this option is used, floating-point operations in
- higher precisions are not available to the programmer without
- setting the FPU control word explicitly.
- Setting the rounding of floating-point operations to less than the
- default 80 bits can speed some programs by 2% or more. Note that
- some mathematical libraries assume that extended-precision (80-bit)
- floating-point operations are enabled by default; routines in such
- libraries could suffer significant loss of accuracy, typically
- through so-called "catastrophic cancellation", when this option is
- used to set the precision to less than extended precision.
- '-mstackrealign'
- Realign the stack at entry. On the x86, the '-mstackrealign'
- option generates an alternate prologue and epilogue that realigns
- the run-time stack if necessary. This supports mixing legacy codes
- that keep 4-byte stack alignment with modern codes that keep
- 16-byte stack alignment for SSE compatibility. See also the
- attribute 'force_align_arg_pointer', applicable to individual
- functions.
- '-mpreferred-stack-boundary=NUM'
- Attempt to keep the stack boundary aligned to a 2 raised to NUM
- byte boundary. If '-mpreferred-stack-boundary' is not specified,
- the default is 4 (16 bytes or 128 bits).
- *Warning:* When generating code for the x86-64 architecture with
- SSE extensions disabled, '-mpreferred-stack-boundary=3' can be used
- to keep the stack boundary aligned to 8 byte boundary. Since
- x86-64 ABI require 16 byte stack alignment, this is ABI
- incompatible and intended to be used in controlled environment
- where stack space is important limitation. This option leads to
- wrong code when functions compiled with 16 byte stack alignment
- (such as functions from a standard library) are called with
- misaligned stack. In this case, SSE instructions may lead to
- misaligned memory access traps. In addition, variable arguments
- are handled incorrectly for 16 byte aligned objects (including x87
- long double and __int128), leading to wrong results. You must
- build all modules with '-mpreferred-stack-boundary=3', including
- any libraries. This includes the system libraries and startup
- modules.
- '-mincoming-stack-boundary=NUM'
- Assume the incoming stack is aligned to a 2 raised to NUM byte
- boundary. If '-mincoming-stack-boundary' is not specified, the one
- specified by '-mpreferred-stack-boundary' is used.
- On Pentium and Pentium Pro, 'double' and 'long double' values
- should be aligned to an 8-byte boundary (see '-malign-double') or
- suffer significant run time performance penalties. On Pentium III,
- the Streaming SIMD Extension (SSE) data type '__m128' may not work
- properly if it is not 16-byte aligned.
- To ensure proper alignment of this values on the stack, the stack
- boundary must be as aligned as that required by any value stored on
- the stack. Further, every function must be generated such that it
- keeps the stack aligned. Thus calling a function compiled with a
- higher preferred stack boundary from a function compiled with a
- lower preferred stack boundary most likely misaligns the stack. It
- is recommended that libraries that use callbacks always use the
- default setting.
- This extra alignment does consume extra stack space, and generally
- increases code size. Code that is sensitive to stack space usage,
- such as embedded systems and operating system kernels, may want to
- reduce the preferred alignment to '-mpreferred-stack-boundary=2'.
- '-mmmx'
- '-msse'
- '-msse2'
- '-msse3'
- '-mssse3'
- '-msse4'
- '-msse4a'
- '-msse4.1'
- '-msse4.2'
- '-mavx'
- '-mavx2'
- '-mavx512f'
- '-mavx512pf'
- '-mavx512er'
- '-mavx512cd'
- '-mavx512vl'
- '-mavx512bw'
- '-mavx512dq'
- '-mavx512ifma'
- '-mavx512vbmi'
- '-msha'
- '-maes'
- '-mpclmul'
- '-mclflushopt'
- '-mclwb'
- '-mfsgsbase'
- '-mrdrnd'
- '-mf16c'
- '-mfma'
- '-mpconfig'
- '-mwbnoinvd'
- '-mfma4'
- '-mprfchw'
- '-mrdpid'
- '-mprefetchwt1'
- '-mrdseed'
- '-msgx'
- '-mxop'
- '-mlwp'
- '-m3dnow'
- '-m3dnowa'
- '-mpopcnt'
- '-mabm'
- '-madx'
- '-mbmi'
- '-mbmi2'
- '-mlzcnt'
- '-mfxsr'
- '-mxsave'
- '-mxsaveopt'
- '-mxsavec'
- '-mxsaves'
- '-mrtm'
- '-mhle'
- '-mtbm'
- '-mmpx'
- '-mmwaitx'
- '-mclzero'
- '-mpku'
- '-mavx512vbmi2'
- '-mgfni'
- '-mvaes'
- '-mvpclmulqdq'
- '-mavx512bitalg'
- '-mmovdiri'
- '-mmovdir64b'
- '-mavx512vpopcntdq'
- '-mavx5124fmaps'
- '-mavx512vnni'
- '-mavx5124vnniw'
- These switches enable the use of instructions in the MMX, SSE,
- SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F,
- AVX512PF, AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ,
- AVX512IFMA, AVX512VBMI, SHA, AES, PCLMUL, CLFLUSHOPT, CLWB,
- FSGSBASE, RDRND, F16C, FMA, PCONFIG, WBNOINVD, FMA4, PREFETCHW,
- RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP, 3DNow!, enhanced 3DNow!,
- POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE, XSAVEOPT, XSAVEC,
- XSAVES, RTM, HLE, TBM, MPX, MWAITX, CLZERO, PKU, AVX512VBMI2, GFNI,
- VAES, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B,
- AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, or AVX5124VNNIW extended
- instruction sets. Each has a corresponding '-mno-' option to
- disable use of these instructions.
- These extensions are also available as built-in functions: see
- *note x86 Built-in Functions::, for details of the functions
- enabled and disabled by these switches.
- To generate SSE/SSE2 instructions automatically from floating-point
- code (as opposed to 387 instructions), see '-mfpmath=sse'.
- GCC depresses SSEx instructions when '-mavx' is used. Instead, it
- generates new AVX instructions or AVX equivalence for all SSEx
- instructions when needed.
- These options enable GCC to use these extended instructions in
- generated code, even without '-mfpmath=sse'. Applications that
- perform run-time CPU detection must compile separate files for each
- supported architecture, using the appropriate flags. In
- particular, the file containing the CPU detection code should be
- compiled without these options.
- '-mdump-tune-features'
- This option instructs GCC to dump the names of the x86 performance
- tuning features and default settings. The names can be used in
- '-mtune-ctrl=FEATURE-LIST'.
- '-mtune-ctrl=FEATURE-LIST'
- This option is used to do fine grain control of x86 code generation
- features. FEATURE-LIST is a comma separated list of FEATURE names.
- See also '-mdump-tune-features'. When specified, the FEATURE is
- turned on if it is not preceded with '^', otherwise, it is turned
- off. '-mtune-ctrl=FEATURE-LIST' is intended to be used by GCC
- developers. Using it may lead to code paths not covered by testing
- and can potentially result in compiler ICEs or runtime errors.
- '-mno-default'
- This option instructs GCC to turn off all tunable features. See
- also '-mtune-ctrl=FEATURE-LIST' and '-mdump-tune-features'.
- '-mcld'
- This option instructs GCC to emit a 'cld' instruction in the
- prologue of functions that use string instructions. String
- instructions depend on the DF flag to select between autoincrement
- or autodecrement mode. While the ABI specifies the DF flag to be
- cleared on function entry, some operating systems violate this
- specification by not clearing the DF flag in their exception
- dispatchers. The exception handler can be invoked with the DF flag
- set, which leads to wrong direction mode when string instructions
- are used. This option can be enabled by default on 32-bit x86
- targets by configuring GCC with the '--enable-cld' configure
- option. Generation of 'cld' instructions can be suppressed with
- the '-mno-cld' compiler option in this case.
- '-mvzeroupper'
- This option instructs GCC to emit a 'vzeroupper' instruction before
- a transfer of control flow out of the function to minimize the AVX
- to SSE transition penalty as well as remove unnecessary 'zeroupper'
- intrinsics.
- '-mprefer-avx128'
- This option instructs GCC to use 128-bit AVX instructions instead
- of 256-bit AVX instructions in the auto-vectorizer.
- '-mprefer-vector-width=OPT'
- This option instructs GCC to use OPT-bit vector width in
- instructions instead of default on the selected platform.
- 'none'
- No extra limitations applied to GCC other than defined by the
- selected platform.
- '128'
- Prefer 128-bit vector width for instructions.
- '256'
- Prefer 256-bit vector width for instructions.
- '512'
- Prefer 512-bit vector width for instructions.
- '-mcx16'
- This option enables GCC to generate 'CMPXCHG16B' instructions in
- 64-bit code to implement compare-and-exchange operations on 16-byte
- aligned 128-bit objects. This is useful for atomic updates of data
- structures exceeding one machine word in size. The compiler uses
- this instruction to implement *note __sync Builtins::. However,
- for *note __atomic Builtins:: operating on 128-bit integers, a
- library call is always used.
- '-msahf'
- This option enables generation of 'SAHF' instructions in 64-bit
- code. Early Intel Pentium 4 CPUs with Intel 64 support, prior to
- the introduction of Pentium 4 G1 step in December 2005, lacked the
- 'LAHF' and 'SAHF' instructions which are supported by AMD64. These
- are load and store instructions, respectively, for certain status
- flags. In 64-bit mode, the 'SAHF' instruction is used to optimize
- 'fmod', 'drem', and 'remainder' built-in functions; see *note Other
- Builtins:: for details.
- '-mmovbe'
- This option enables use of the 'movbe' instruction to implement
- '__builtin_bswap32' and '__builtin_bswap64'.
- '-mshstk'
- The '-mshstk' option enables shadow stack built-in functions from
- x86 Control-flow Enforcement Technology (CET).
- '-mcrc32'
- This option enables built-in functions '__builtin_ia32_crc32qi',
- '__builtin_ia32_crc32hi', '__builtin_ia32_crc32si' and
- '__builtin_ia32_crc32di' to generate the 'crc32' machine
- instruction.
- '-mrecip'
- This option enables use of 'RCPSS' and 'RSQRTSS' instructions (and
- their vectorized variants 'RCPPS' and 'RSQRTPS') with an additional
- Newton-Raphson step to increase precision instead of 'DIVSS' and
- 'SQRTSS' (and their vectorized variants) for single-precision
- floating-point arguments. These instructions are generated only
- when '-funsafe-math-optimizations' is enabled together with
- '-ffinite-math-only' and '-fno-trapping-math'. Note that while the
- throughput of the sequence is higher than the throughput of the
- non-reciprocal instruction, the precision of the sequence can be
- decreased by up to 2 ulp (i.e. the inverse of 1.0 equals
- 0.99999994).
- Note that GCC implements '1.0f/sqrtf(X)' in terms of 'RSQRTSS' (or
- 'RSQRTPS') already with '-ffast-math' (or the above option
- combination), and doesn't need '-mrecip'.
- Also note that GCC emits the above sequence with additional
- Newton-Raphson step for vectorized single-float division and
- vectorized 'sqrtf(X)' already with '-ffast-math' (or the above
- option combination), and doesn't need '-mrecip'.
- '-mrecip=OPT'
- This option controls which reciprocal estimate instructions may be
- used. OPT is a comma-separated list of options, which may be
- preceded by a '!' to invert the option:
- 'all'
- Enable all estimate instructions.
- 'default'
- Enable the default instructions, equivalent to '-mrecip'.
- 'none'
- Disable all estimate instructions, equivalent to '-mno-recip'.
- 'div'
- Enable the approximation for scalar division.
- 'vec-div'
- Enable the approximation for vectorized division.
- 'sqrt'
- Enable the approximation for scalar square root.
- 'vec-sqrt'
- Enable the approximation for vectorized square root.
- So, for example, '-mrecip=all,!sqrt' enables all of the reciprocal
- approximations, except for square root.
- '-mveclibabi=TYPE'
- Specifies the ABI type to use for vectorizing intrinsics using an
- external library. Supported values for TYPE are 'svml' for the
- Intel short vector math library and 'acml' for the AMD math core
- library. To use this option, both '-ftree-vectorize' and
- '-funsafe-math-optimizations' have to be enabled, and an SVML or
- ACML ABI-compatible library must be specified at link time.
- GCC currently emits calls to 'vmldExp2', 'vmldLn2', 'vmldLog102',
- 'vmldPow2', 'vmldTanh2', 'vmldTan2', 'vmldAtan2', 'vmldAtanh2',
- 'vmldCbrt2', 'vmldSinh2', 'vmldSin2', 'vmldAsinh2', 'vmldAsin2',
- 'vmldCosh2', 'vmldCos2', 'vmldAcosh2', 'vmldAcos2', 'vmlsExp4',
- 'vmlsLn4', 'vmlsLog104', 'vmlsPow4', 'vmlsTanh4', 'vmlsTan4',
- 'vmlsAtan4', 'vmlsAtanh4', 'vmlsCbrt4', 'vmlsSinh4', 'vmlsSin4',
- 'vmlsAsinh4', 'vmlsAsin4', 'vmlsCosh4', 'vmlsCos4', 'vmlsAcosh4'
- and 'vmlsAcos4' for corresponding function type when
- '-mveclibabi=svml' is used, and '__vrd2_sin', '__vrd2_cos',
- '__vrd2_exp', '__vrd2_log', '__vrd2_log2', '__vrd2_log10',
- '__vrs4_sinf', '__vrs4_cosf', '__vrs4_expf', '__vrs4_logf',
- '__vrs4_log2f', '__vrs4_log10f' and '__vrs4_powf' for the
- corresponding function type when '-mveclibabi=acml' is used.
- '-mabi=NAME'
- Generate code for the specified calling convention. Permissible
- values are 'sysv' for the ABI used on GNU/Linux and other systems,
- and 'ms' for the Microsoft ABI. The default is to use the Microsoft
- ABI when targeting Microsoft Windows and the SysV ABI on all other
- systems. You can control this behavior for specific functions by
- using the function attributes 'ms_abi' and 'sysv_abi'. *Note
- Function Attributes::.
- '-mforce-indirect-call'
- Force all calls to functions to be indirect. This is useful when
- using Intel Processor Trace where it generates more precise timing
- information for function calls.
- '-mcall-ms2sysv-xlogues'
- Due to differences in 64-bit ABIs, any Microsoft ABI function that
- calls a System V ABI function must consider RSI, RDI and XMM6-15 as
- clobbered. By default, the code for saving and restoring these
- registers is emitted inline, resulting in fairly lengthy prologues
- and epilogues. Using '-mcall-ms2sysv-xlogues' emits prologues and
- epilogues that use stubs in the static portion of libgcc to perform
- these saves and restores, thus reducing function size at the cost
- of a few extra instructions.
- '-mtls-dialect=TYPE'
- Generate code to access thread-local storage using the 'gnu' or
- 'gnu2' conventions. 'gnu' is the conservative default; 'gnu2' is
- more efficient, but it may add compile- and run-time requirements
- that cannot be satisfied on all systems.
- '-mpush-args'
- '-mno-push-args'
- Use PUSH operations to store outgoing parameters. This method is
- shorter and usually equally fast as method using SUB/MOV operations
- and is enabled by default. In some cases disabling it may improve
- performance because of improved scheduling and reduced
- dependencies.
- '-maccumulate-outgoing-args'
- If enabled, the maximum amount of space required for outgoing
- arguments is computed in the function prologue. This is faster on
- most modern CPUs because of reduced dependencies, improved
- scheduling and reduced stack usage when the preferred stack
- boundary is not equal to 2. The drawback is a notable increase in
- code size. This switch implies '-mno-push-args'.
- '-mthreads'
- Support thread-safe exception handling on MinGW. Programs that rely
- on thread-safe exception handling must compile and link all code
- with the '-mthreads' option. When compiling, '-mthreads' defines
- '-D_MT'; when linking, it links in a special thread helper library
- '-lmingwthrd' which cleans up per-thread exception-handling data.
- '-mms-bitfields'
- '-mno-ms-bitfields'
- Enable/disable bit-field layout compatible with the native
- Microsoft Windows compiler.
- If 'packed' is used on a structure, or if bit-fields are used, it
- may be that the Microsoft ABI lays out the structure differently
- than the way GCC normally does. Particularly when moving packed
- data between functions compiled with GCC and the native Microsoft
- compiler (either via function call or as data in a file), it may be
- necessary to access either format.
- This option is enabled by default for Microsoft Windows targets.
- This behavior can also be controlled locally by use of variable or
- type attributes. For more information, see *note x86 Variable
- Attributes:: and *note x86 Type Attributes::.
- The Microsoft structure layout algorithm is fairly simple with the
- exception of the bit-field packing. The padding and alignment of
- members of structures and whether a bit-field can straddle a
- storage-unit boundary are determine by these rules:
- 1. Structure members are stored sequentially in the order in
- which they are declared: the first member has the lowest
- memory address and the last member the highest.
- 2. Every data object has an alignment requirement. The alignment
- requirement for all data except structures, unions, and arrays
- is either the size of the object or the current packing size
- (specified with either the 'aligned' attribute or the 'pack'
- pragma), whichever is less. For structures, unions, and
- arrays, the alignment requirement is the largest alignment
- requirement of its members. Every object is allocated an
- offset so that:
- offset % alignment_requirement == 0
- 3. Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte
- allocation unit if the integral types are the same size and if
- the next bit-field fits into the current allocation unit
- without crossing the boundary imposed by the common alignment
- requirements of the bit-fields.
- MSVC interprets zero-length bit-fields in the following ways:
- 1. If a zero-length bit-field is inserted between two bit-fields
- that are normally coalesced, the bit-fields are not coalesced.
- For example:
- struct
- {
- unsigned long bf_1 : 12;
- unsigned long : 0;
- unsigned long bf_2 : 12;
- } t1;
- The size of 't1' is 8 bytes with the zero-length bit-field.
- If the zero-length bit-field were removed, 't1''s size would
- be 4 bytes.
- 2. If a zero-length bit-field is inserted after a bit-field,
- 'foo', and the alignment of the zero-length bit-field is
- greater than the member that follows it, 'bar', 'bar' is
- aligned as the type of the zero-length bit-field.
- For example:
- struct
- {
- char foo : 4;
- short : 0;
- char bar;
- } t2;
- struct
- {
- char foo : 4;
- short : 0;
- double bar;
- } t3;
- For 't2', 'bar' is placed at offset 2, rather than offset 1.
- Accordingly, the size of 't2' is 4. For 't3', the zero-length
- bit-field does not affect the alignment of 'bar' or, as a
- result, the size of the structure.
- Taking this into account, it is important to note the
- following:
- 1. If a zero-length bit-field follows a normal bit-field,
- the type of the zero-length bit-field may affect the
- alignment of the structure as whole. For example, 't2'
- has a size of 4 bytes, since the zero-length bit-field
- follows a normal bit-field, and is of type short.
- 2. Even if a zero-length bit-field is not followed by a
- normal bit-field, it may still affect the alignment of
- the structure:
- struct
- {
- char foo : 6;
- long : 0;
- } t4;
- Here, 't4' takes up 4 bytes.
- 3. Zero-length bit-fields following non-bit-field members are
- ignored:
- struct
- {
- char foo;
- long : 0;
- char bar;
- } t5;
- Here, 't5' takes up 2 bytes.
- '-mno-align-stringops'
- Do not align the destination of inlined string operations. This
- switch reduces code size and improves performance in case the
- destination is already aligned, but GCC doesn't know about it.
- '-minline-all-stringops'
- By default GCC inlines string operations only when the destination
- is known to be aligned to least a 4-byte boundary. This enables
- more inlining and increases code size, but may improve performance
- of code that depends on fast 'memcpy', 'strlen', and 'memset' for
- short lengths.
- '-minline-stringops-dynamically'
- For string operations of unknown size, use run-time checks with
- inline code for small blocks and a library call for large blocks.
- '-mstringop-strategy=ALG'
- Override the internal decision heuristic for the particular
- algorithm to use for inlining string operations. The allowed
- values for ALG are:
- 'rep_byte'
- 'rep_4byte'
- 'rep_8byte'
- Expand using i386 'rep' prefix of the specified size.
- 'byte_loop'
- 'loop'
- 'unrolled_loop'
- Expand into an inline loop.
- 'libcall'
- Always use a library call.
- '-mmemcpy-strategy=STRATEGY'
- Override the internal decision heuristic to decide if
- '__builtin_memcpy' should be inlined and what inline algorithm to
- use when the expected size of the copy operation is known.
- STRATEGY is a comma-separated list of ALG:MAX_SIZE:DEST_ALIGN
- triplets. ALG is specified in '-mstringop-strategy', MAX_SIZE
- specifies the max byte size with which inline algorithm ALG is
- allowed. For the last triplet, the MAX_SIZE must be '-1'. The
- MAX_SIZE of the triplets in the list must be specified in
- increasing order. The minimal byte size for ALG is '0' for the
- first triplet and 'MAX_SIZE + 1' of the preceding range.
- '-mmemset-strategy=STRATEGY'
- The option is similar to '-mmemcpy-strategy=' except that it is to
- control '__builtin_memset' expansion.
- '-momit-leaf-frame-pointer'
- Don't keep the frame pointer in a register for leaf functions.
- This avoids the instructions to save, set up, and restore frame
- pointers and makes an extra register available in leaf functions.
- The option '-fomit-leaf-frame-pointer' removes the frame pointer
- for leaf functions, which might make debugging harder.
- '-mtls-direct-seg-refs'
- '-mno-tls-direct-seg-refs'
- Controls whether TLS variables may be accessed with offsets from
- the TLS segment register ('%gs' for 32-bit, '%fs' for 64-bit), or
- whether the thread base pointer must be added. Whether or not this
- is valid depends on the operating system, and whether it maps the
- segment to cover the entire TLS area.
- For systems that use the GNU C Library, the default is on.
- '-msse2avx'
- '-mno-sse2avx'
- Specify that the assembler should encode SSE instructions with VEX
- prefix. The option '-mavx' turns this on by default.
- '-mfentry'
- '-mno-fentry'
- If profiling is active ('-pg'), put the profiling counter call
- before the prologue. Note: On x86 architectures the attribute
- 'ms_hook_prologue' isn't possible at the moment for '-mfentry' and
- '-pg'.
- '-mrecord-mcount'
- '-mno-record-mcount'
- If profiling is active ('-pg'), generate a __mcount_loc section
- that contains pointers to each profiling call. This is useful for
- automatically patching and out calls.
- '-mnop-mcount'
- '-mno-nop-mcount'
- If profiling is active ('-pg'), generate the calls to the profiling
- functions as NOPs. This is useful when they should be patched in
- later dynamically. This is likely only useful together with
- '-mrecord-mcount'.
- '-mskip-rax-setup'
- '-mno-skip-rax-setup'
- When generating code for the x86-64 architecture with SSE
- extensions disabled, '-mskip-rax-setup' can be used to skip setting
- up RAX register when there are no variable arguments passed in
- vector registers.
- *Warning:* Since RAX register is used to avoid unnecessarily saving
- vector registers on stack when passing variable arguments, the
- impacts of this option are callees may waste some stack space,
- misbehave or jump to a random location. GCC 4.4 or newer don't
- have those issues, regardless the RAX register value.
- '-m8bit-idiv'
- '-mno-8bit-idiv'
- On some processors, like Intel Atom, 8-bit unsigned integer divide
- is much faster than 32-bit/64-bit integer divide. This option
- generates a run-time check. If both dividend and divisor are
- within range of 0 to 255, 8-bit unsigned integer divide is used
- instead of 32-bit/64-bit integer divide.
- '-mavx256-split-unaligned-load'
- '-mavx256-split-unaligned-store'
- Split 32-byte AVX unaligned load and store.
- '-mstack-protector-guard=GUARD'
- '-mstack-protector-guard-reg=REG'
- '-mstack-protector-guard-offset=OFFSET'
- Generate stack protection code using canary at GUARD. Supported
- locations are 'global' for global canary or 'tls' for per-thread
- canary in the TLS block (the default). This option has effect only
- when '-fstack-protector' or '-fstack-protector-all' is specified.
- With the latter choice the options
- '-mstack-protector-guard-reg=REG' and
- '-mstack-protector-guard-offset=OFFSET' furthermore specify which
- segment register ('%fs' or '%gs') to use as base register for
- reading the canary, and from what offset from that base register.
- The default for those is as specified in the relevant ABI.
- '-mmitigate-rop'
- Try to avoid generating code sequences that contain unintended
- return opcodes, to mitigate against certain forms of attack. At
- the moment, this option is limited in what it can do and should not
- be relied on to provide serious protection.
- '-mgeneral-regs-only'
- Generate code that uses only the general-purpose registers. This
- prevents the compiler from using floating-point, vector, mask and
- bound registers.
- '-mindirect-branch=CHOICE'
- Convert indirect call and jump with CHOICE. The default is 'keep',
- which keeps indirect call and jump unmodified. 'thunk' converts
- indirect call and jump to call and return thunk. 'thunk-inline'
- converts indirect call and jump to inlined call and return thunk.
- 'thunk-extern' converts indirect call and jump to external call and
- return thunk provided in a separate object file. You can control
- this behavior for a specific function by using the function
- attribute 'indirect_branch'. *Note Function Attributes::.
- Note that '-mcmodel=large' is incompatible with
- '-mindirect-branch=thunk' and '-mindirect-branch=thunk-extern'
- since the thunk function may not be reachable in the large code
- model.
- Note that '-mindirect-branch=thunk-extern' is incompatible with
- '-fcf-protection=branch' and '-fcheck-pointer-bounds' since the
- external thunk can not be modified to disable control-flow check.
- '-mfunction-return=CHOICE'
- Convert function return with CHOICE. The default is 'keep', which
- keeps function return unmodified. 'thunk' converts function return
- to call and return thunk. 'thunk-inline' converts function return
- to inlined call and return thunk. 'thunk-extern' converts function
- return to external call and return thunk provided in a separate
- object file. You can control this behavior for a specific function
- by using the function attribute 'function_return'. *Note Function
- Attributes::.
- Note that '-mcmodel=large' is incompatible with
- '-mfunction-return=thunk' and '-mfunction-return=thunk-extern'
- since the thunk function may not be reachable in the large code
- model.
- '-mindirect-branch-register'
- Force indirect call and jump via register.
- These '-m' switches are supported in addition to the above on x86-64
- processors in 64-bit environments.
- '-m32'
- '-m64'
- '-mx32'
- '-m16'
- '-miamcu'
- Generate code for a 16-bit, 32-bit or 64-bit environment. The
- '-m32' option sets 'int', 'long', and pointer types to 32 bits, and
- generates code that runs on any i386 system.
- The '-m64' option sets 'int' to 32 bits and 'long' and pointer
- types to 64 bits, and generates code for the x86-64 architecture.
- For Darwin only the '-m64' option also turns off the '-fno-pic' and
- '-mdynamic-no-pic' options.
- The '-mx32' option sets 'int', 'long', and pointer types to 32
- bits, and generates code for the x86-64 architecture.
- The '-m16' option is the same as '-m32', except for that it outputs
- the '.code16gcc' assembly directive at the beginning of the
- assembly output so that the binary can run in 16-bit mode.
- The '-miamcu' option generates code which conforms to Intel MCU
- psABI. It requires the '-m32' option to be turned on.
- '-mno-red-zone'
- Do not use a so-called "red zone" for x86-64 code. The red zone is
- mandated by the x86-64 ABI; it is a 128-byte area beyond the
- location of the stack pointer that is not modified by signal or
- interrupt handlers and therefore can be used for temporary data
- without adjusting the stack pointer. The flag '-mno-red-zone'
- disables this red zone.
- '-mcmodel=small'
- Generate code for the small code model: the program and its symbols
- must be linked in the lower 2 GB of the address space. Pointers
- are 64 bits. Programs can be statically or dynamically linked.
- This is the default code model.
- '-mcmodel=kernel'
- Generate code for the kernel code model. The kernel runs in the
- negative 2 GB of the address space. This model has to be used for
- Linux kernel code.
- '-mcmodel=medium'
- Generate code for the medium model: the program is linked in the
- lower 2 GB of the address space. Small symbols are also placed
- there. Symbols with sizes larger than '-mlarge-data-threshold' are
- put into large data or BSS sections and can be located above 2GB.
- Programs can be statically or dynamically linked.
- '-mcmodel=large'
- Generate code for the large model. This model makes no assumptions
- about addresses and sizes of sections.
- '-maddress-mode=long'
- Generate code for long address mode. This is only supported for
- 64-bit and x32 environments. It is the default address mode for
- 64-bit environments.
- '-maddress-mode=short'
- Generate code for short address mode. This is only supported for
- 32-bit and x32 environments. It is the default address mode for
- 32-bit and x32 environments.
- File: gcc.info, Node: x86 Windows Options, Next: Xstormy16 Options, Prev: x86 Options, Up: Submodel Options
- 3.18.57 x86 Windows Options
- ---------------------------
- These additional options are available for Microsoft Windows targets:
- '-mconsole'
- This option specifies that a console application is to be
- generated, by instructing the linker to set the PE header subsystem
- type required for console applications. This option is available
- for Cygwin and MinGW targets and is enabled by default on those
- targets.
- '-mdll'
- This option is available for Cygwin and MinGW targets. It
- specifies that a DLL--a dynamic link library--is to be generated,
- enabling the selection of the required runtime startup object and
- entry point.
- '-mnop-fun-dllimport'
- This option is available for Cygwin and MinGW targets. It
- specifies that the 'dllimport' attribute should be ignored.
- '-mthread'
- This option is available for MinGW targets. It specifies that
- MinGW-specific thread support is to be used.
- '-municode'
- This option is available for MinGW-w64 targets. It causes the
- 'UNICODE' preprocessor macro to be predefined, and chooses
- Unicode-capable runtime startup code.
- '-mwin32'
- This option is available for Cygwin and MinGW targets. It
- specifies that the typical Microsoft Windows predefined macros are
- to be set in the pre-processor, but does not influence the choice
- of runtime library/startup code.
- '-mwindows'
- This option is available for Cygwin and MinGW targets. It
- specifies that a GUI application is to be generated by instructing
- the linker to set the PE header subsystem type appropriately.
- '-fno-set-stack-executable'
- This option is available for MinGW targets. It specifies that the
- executable flag for the stack used by nested functions isn't set.
- This is necessary for binaries running in kernel mode of Microsoft
- Windows, as there the User32 API, which is used to set executable
- privileges, isn't available.
- '-fwritable-relocated-rdata'
- This option is available for MinGW and Cygwin targets. It
- specifies that relocated-data in read-only section is put into the
- '.data' section. This is a necessary for older runtimes not
- supporting modification of '.rdata' sections for pseudo-relocation.
- '-mpe-aligned-commons'
- This option is available for Cygwin and MinGW targets. It
- specifies that the GNU extension to the PE file format that permits
- the correct alignment of COMMON variables should be used when
- generating code. It is enabled by default if GCC detects that the
- target assembler found during configuration supports the feature.
- See also under *note x86 Options:: for standard options.
- File: gcc.info, Node: Xstormy16 Options, Next: Xtensa Options, Prev: x86 Windows Options, Up: Submodel Options
- 3.18.58 Xstormy16 Options
- -------------------------
- These options are defined for Xstormy16:
- '-msim'
- Choose startup files and linker script suitable for the simulator.
- File: gcc.info, Node: Xtensa Options, Next: zSeries Options, Prev: Xstormy16 Options, Up: Submodel Options
- 3.18.59 Xtensa Options
- ----------------------
- These options are supported for Xtensa targets:
- '-mconst16'
- '-mno-const16'
- Enable or disable use of 'CONST16' instructions for loading
- constant values. The 'CONST16' instruction is currently not a
- standard option from Tensilica. When enabled, 'CONST16'
- instructions are always used in place of the standard 'L32R'
- instructions. The use of 'CONST16' is enabled by default only if
- the 'L32R' instruction is not available.
- '-mfused-madd'
- '-mno-fused-madd'
- Enable or disable use of fused multiply/add and multiply/subtract
- instructions in the floating-point option. This has no effect if
- the floating-point option is not also enabled. Disabling fused
- multiply/add and multiply/subtract instructions forces the compiler
- to use separate instructions for the multiply and add/subtract
- operations. This may be desirable in some cases where strict IEEE
- 754-compliant results are required: the fused multiply add/subtract
- instructions do not round the intermediate result, thereby
- producing results with _more_ bits of precision than specified by
- the IEEE standard. Disabling fused multiply add/subtract
- instructions also ensures that the program output is not sensitive
- to the compiler's ability to combine multiply and add/subtract
- operations.
- '-mserialize-volatile'
- '-mno-serialize-volatile'
- When this option is enabled, GCC inserts 'MEMW' instructions before
- 'volatile' memory references to guarantee sequential consistency.
- The default is '-mserialize-volatile'. Use
- '-mno-serialize-volatile' to omit the 'MEMW' instructions.
- '-mforce-no-pic'
- For targets, like GNU/Linux, where all user-mode Xtensa code must
- be position-independent code (PIC), this option disables PIC for
- compiling kernel code.
- '-mtext-section-literals'
- '-mno-text-section-literals'
- These options control the treatment of literal pools. The default
- is '-mno-text-section-literals', which places literals in a
- separate section in the output file. This allows the literal pool
- to be placed in a data RAM/ROM, and it also allows the linker to
- combine literal pools from separate object files to remove
- redundant literals and improve code size. With
- '-mtext-section-literals', the literals are interspersed in the
- text section in order to keep them as close as possible to their
- references. This may be necessary for large assembly files.
- Literals for each function are placed right before that function.
- '-mauto-litpools'
- '-mno-auto-litpools'
- These options control the treatment of literal pools. The default
- is '-mno-auto-litpools', which places literals in a separate
- section in the output file unless '-mtext-section-literals' is
- used. With '-mauto-litpools' the literals are interspersed in the
- text section by the assembler. Compiler does not produce explicit
- '.literal' directives and loads literals into registers with 'MOVI'
- instructions instead of 'L32R' to let the assembler do relaxation
- and place literals as necessary. This option allows assembler to
- create several literal pools per function and assemble very big
- functions, which may not be possible with
- '-mtext-section-literals'.
- '-mtarget-align'
- '-mno-target-align'
- When this option is enabled, GCC instructs the assembler to
- automatically align instructions to reduce branch penalties at the
- expense of some code density. The assembler attempts to widen
- density instructions to align branch targets and the instructions
- following call instructions. If there are not enough preceding
- safe density instructions to align a target, no widening is
- performed. The default is '-mtarget-align'. These options do not
- affect the treatment of auto-aligned instructions like 'LOOP',
- which the assembler always aligns, either by widening density
- instructions or by inserting NOP instructions.
- '-mlongcalls'
- '-mno-longcalls'
- When this option is enabled, GCC instructs the assembler to
- translate direct calls to indirect calls unless it can determine
- that the target of a direct call is in the range allowed by the
- call instruction. This translation typically occurs for calls to
- functions in other source files. Specifically, the assembler
- translates a direct 'CALL' instruction into an 'L32R' followed by a
- 'CALLX' instruction. The default is '-mno-longcalls'. This option
- should be used in programs where the call target can potentially be
- out of range. This option is implemented in the assembler, not the
- compiler, so the assembly code generated by GCC still shows direct
- call instructions--look at the disassembled object code to see the
- actual instructions. Note that the assembler uses an indirect call
- for every cross-file call, not just those that really are out of
- range.
- File: gcc.info, Node: zSeries Options, Prev: Xtensa Options, Up: Submodel Options
- 3.18.60 zSeries Options
- -----------------------
- These are listed under *Note S/390 and zSeries Options::.
- File: gcc.info, Node: Spec Files, Next: Environment Variables, Prev: Submodel Options, Up: Invoking GCC
- 3.19 Specifying Subprocesses and the Switches to Pass to Them
- =============================================================
- 'gcc' is a driver program. It performs its job by invoking a sequence
- of other programs to do the work of compiling, assembling and linking.
- GCC interprets its command-line parameters and uses these to deduce
- which programs it should invoke, and which command-line options it ought
- to place on their command lines. This behavior is controlled by "spec
- strings". In most cases there is one spec string for each program that
- GCC can invoke, but a few programs have multiple spec strings to control
- their behavior. The spec strings built into GCC can be overridden by
- using the '-specs=' command-line switch to specify a spec file.
- "Spec files" are plain-text files that are used to construct spec
- strings. They consist of a sequence of directives separated by blank
- lines. The type of directive is determined by the first non-whitespace
- character on the line, which can be one of the following:
- '%COMMAND'
- Issues a COMMAND to the spec file processor. The commands that can
- appear here are:
- '%include <FILE>'
- Search for FILE and insert its text at the current point in
- the specs file.
- '%include_noerr <FILE>'
- Just like '%include', but do not generate an error message if
- the include file cannot be found.
- '%rename OLD_NAME NEW_NAME'
- Rename the spec string OLD_NAME to NEW_NAME.
- '*[SPEC_NAME]:'
- This tells the compiler to create, override or delete the named
- spec string. All lines after this directive up to the next
- directive or blank line are considered to be the text for the spec
- string. If this results in an empty string then the spec is
- deleted. (Or, if the spec did not exist, then nothing happens.)
- Otherwise, if the spec does not currently exist a new spec is
- created. If the spec does exist then its contents are overridden
- by the text of this directive, unless the first character of that
- text is the '+' character, in which case the text is appended to
- the spec.
- '[SUFFIX]:'
- Creates a new '[SUFFIX] spec' pair. All lines after this directive
- and up to the next directive or blank line are considered to make
- up the spec string for the indicated suffix. When the compiler
- encounters an input file with the named suffix, it processes the
- spec string in order to work out how to compile that file. For
- example:
- .ZZ:
- z-compile -input %i
- This says that any input file whose name ends in '.ZZ' should be
- passed to the program 'z-compile', which should be invoked with the
- command-line switch '-input' and with the result of performing the
- '%i' substitution. (See below.)
- As an alternative to providing a spec string, the text following a
- suffix directive can be one of the following:
- '@LANGUAGE'
- This says that the suffix is an alias for a known LANGUAGE.
- This is similar to using the '-x' command-line switch to GCC
- to specify a language explicitly. For example:
- .ZZ:
- @c++
- Says that .ZZ files are, in fact, C++ source files.
- '#NAME'
- This causes an error messages saying:
- NAME compiler not installed on this system.
- GCC already has an extensive list of suffixes built into it. This
- directive adds an entry to the end of the list of suffixes, but
- since the list is searched from the end backwards, it is
- effectively possible to override earlier entries using this
- technique.
- GCC has the following spec strings built into it. Spec files can
- override these strings or create their own. Note that individual
- targets can also add their own spec strings to this list.
- asm Options to pass to the assembler
- asm_final Options to pass to the assembler post-processor
- cpp Options to pass to the C preprocessor
- cc1 Options to pass to the C compiler
- cc1plus Options to pass to the C++ compiler
- endfile Object files to include at the end of the link
- link Options to pass to the linker
- lib Libraries to include on the command line to the linker
- libgcc Decides which GCC support library to pass to the linker
- linker Sets the name of the linker
- predefines Defines to be passed to the C preprocessor
- signed_char Defines to pass to CPP to say whether char is signed
- by default
- startfile Object files to include at the start of the link
- Here is a small example of a spec file:
- %rename lib old_lib
- *lib:
- --start-group -lgcc -lc -leval1 --end-group %(old_lib)
- This example renames the spec called 'lib' to 'old_lib' and then
- overrides the previous definition of 'lib' with a new one. The new
- definition adds in some extra command-line options before including the
- text of the old definition.
- "Spec strings" are a list of command-line options to be passed to their
- corresponding program. In addition, the spec strings can contain
- '%'-prefixed sequences to substitute variable text or to conditionally
- insert text into the command line. Using these constructs it is
- possible to generate quite complex command lines.
- Here is a table of all defined '%'-sequences for spec strings. Note
- that spaces are not generated automatically around the results of
- expanding these sequences. Therefore you can concatenate them together
- or combine them with constant text in a single argument.
- '%%'
- Substitute one '%' into the program name or argument.
- '%i'
- Substitute the name of the input file being processed.
- '%b'
- Substitute the basename of the input file being processed. This is
- the substring up to (and not including) the last period and not
- including the directory.
- '%B'
- This is the same as '%b', but include the file suffix (text after
- the last period).
- '%d'
- Marks the argument containing or following the '%d' as a temporary
- file name, so that that file is deleted if GCC exits successfully.
- Unlike '%g', this contributes no text to the argument.
- '%gSUFFIX'
- Substitute a file name that has suffix SUFFIX and is chosen once
- per compilation, and mark the argument in the same way as '%d'. To
- reduce exposure to denial-of-service attacks, the file name is now
- chosen in a way that is hard to predict even when previously chosen
- file names are known. For example, '%g.s ... %g.o ... %g.s' might
- turn into 'ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s'. SUFFIX matches the
- regexp '[.A-Za-z]*' or the special string '%O', which is treated
- exactly as if '%O' had been preprocessed. Previously, '%g' was
- simply substituted with a file name chosen once per compilation,
- without regard to any appended suffix (which was therefore treated
- just like ordinary text), making such attacks more likely to
- succeed.
- '%uSUFFIX'
- Like '%g', but generates a new temporary file name each time it
- appears instead of once per compilation.
- '%USUFFIX'
- Substitutes the last file name generated with '%uSUFFIX',
- generating a new one if there is no such last file name. In the
- absence of any '%uSUFFIX', this is just like '%gSUFFIX', except
- they don't share the same suffix _space_, so '%g.s ... %U.s ...
- %g.s ... %U.s' involves the generation of two distinct file names,
- one for each '%g.s' and another for each '%U.s'. Previously, '%U'
- was simply substituted with a file name chosen for the previous
- '%u', without regard to any appended suffix.
- '%jSUFFIX'
- Substitutes the name of the 'HOST_BIT_BUCKET', if any, and if it is
- writable, and if '-save-temps' is not used; otherwise, substitute
- the name of a temporary file, just like '%u'. This temporary file
- is not meant for communication between processes, but rather as a
- junk disposal mechanism.
- '%|SUFFIX'
- '%mSUFFIX'
- Like '%g', except if '-pipe' is in effect. In that case '%|'
- substitutes a single dash and '%m' substitutes nothing at all.
- These are the two most common ways to instruct a program that it
- should read from standard input or write to standard output. If
- you need something more elaborate you can use an '%{pipe:'X'}'
- construct: see for example 'f/lang-specs.h'.
- '%.SUFFIX'
- Substitutes .SUFFIX for the suffixes of a matched switch's args
- when it is subsequently output with '%*'. SUFFIX is terminated by
- the next space or %.
- '%w'
- Marks the argument containing or following the '%w' as the
- designated output file of this compilation. This puts the argument
- into the sequence of arguments that '%o' substitutes.
- '%o'
- Substitutes the names of all the output files, with spaces
- automatically placed around them. You should write spaces around
- the '%o' as well or the results are undefined. '%o' is for use in
- the specs for running the linker. Input files whose names have no
- recognized suffix are not compiled at all, but they are included
- among the output files, so they are linked.
- '%O'
- Substitutes the suffix for object files. Note that this is handled
- specially when it immediately follows '%g, %u, or %U', because of
- the need for those to form complete file names. The handling is
- such that '%O' is treated exactly as if it had already been
- substituted, except that '%g, %u, and %U' do not currently support
- additional SUFFIX characters following '%O' as they do following,
- for example, '.o'.
- '%p'
- Substitutes the standard macro predefinitions for the current
- target machine. Use this when running 'cpp'.
- '%P'
- Like '%p', but puts '__' before and after the name of each
- predefined macro, except for macros that start with '__' or with
- '_L', where L is an uppercase letter. This is for ISO C.
- '%I'
- Substitute any of '-iprefix' (made from 'GCC_EXEC_PREFIX'),
- '-isysroot' (made from 'TARGET_SYSTEM_ROOT'), '-isystem' (made from
- 'COMPILER_PATH' and '-B' options) and '-imultilib' as necessary.
- '%s'
- Current argument is the name of a library or startup file of some
- sort. Search for that file in a standard list of directories and
- substitute the full name found. The current working directory is
- included in the list of directories scanned.
- '%T'
- Current argument is the name of a linker script. Search for that
- file in the current list of directories to scan for libraries. If
- the file is located insert a '--script' option into the command
- line followed by the full path name found. If the file is not
- found then generate an error message. Note: the current working
- directory is not searched.
- '%eSTR'
- Print STR as an error message. STR is terminated by a newline.
- Use this when inconsistent options are detected.
- '%(NAME)'
- Substitute the contents of spec string NAME at this point.
- '%x{OPTION}'
- Accumulate an option for '%X'.
- '%X'
- Output the accumulated linker options specified by '-Wl' or a '%x'
- spec string.
- '%Y'
- Output the accumulated assembler options specified by '-Wa'.
- '%Z'
- Output the accumulated preprocessor options specified by '-Wp'.
- '%a'
- Process the 'asm' spec. This is used to compute the switches to be
- passed to the assembler.
- '%A'
- Process the 'asm_final' spec. This is a spec string for passing
- switches to an assembler post-processor, if such a program is
- needed.
- '%l'
- Process the 'link' spec. This is the spec for computing the
- command line passed to the linker. Typically it makes use of the
- '%L %G %S %D and %E' sequences.
- '%D'
- Dump out a '-L' option for each directory that GCC believes might
- contain startup files. If the target supports multilibs then the
- current multilib directory is prepended to each of these paths.
- '%L'
- Process the 'lib' spec. This is a spec string for deciding which
- libraries are included on the command line to the linker.
- '%G'
- Process the 'libgcc' spec. This is a spec string for deciding
- which GCC support library is included on the command line to the
- linker.
- '%S'
- Process the 'startfile' spec. This is a spec for deciding which
- object files are the first ones passed to the linker. Typically
- this might be a file named 'crt0.o'.
- '%E'
- Process the 'endfile' spec. This is a spec string that specifies
- the last object files that are passed to the linker.
- '%C'
- Process the 'cpp' spec. This is used to construct the arguments to
- be passed to the C preprocessor.
- '%1'
- Process the 'cc1' spec. This is used to construct the options to
- be passed to the actual C compiler ('cc1').
- '%2'
- Process the 'cc1plus' spec. This is used to construct the options
- to be passed to the actual C++ compiler ('cc1plus').
- '%*'
- Substitute the variable part of a matched option. See below. Note
- that each comma in the substituted string is replaced by a single
- space.
- '%<S'
- Remove all occurrences of '-S' from the command line. Note--this
- command is position dependent. '%' commands in the spec string
- before this one see '-S', '%' commands in the spec string after
- this one do not.
- '%:FUNCTION(ARGS)'
- Call the named function FUNCTION, passing it ARGS. ARGS is first
- processed as a nested spec string, then split into an argument
- vector in the usual fashion. The function returns a string which
- is processed as if it had appeared literally as part of the current
- spec.
- The following built-in spec functions are provided:
- 'getenv'
- The 'getenv' spec function takes two arguments: an environment
- variable name and a string. If the environment variable is
- not defined, a fatal error is issued. Otherwise, the return
- value is the value of the environment variable concatenated
- with the string. For example, if 'TOPDIR' is defined as
- '/path/to/top', then:
- %:getenv(TOPDIR /include)
- expands to '/path/to/top/include'.
- 'if-exists'
- The 'if-exists' spec function takes one argument, an absolute
- pathname to a file. If the file exists, 'if-exists' returns
- the pathname. Here is a small example of its usage:
- *startfile:
- crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
- 'if-exists-else'
- The 'if-exists-else' spec function is similar to the
- 'if-exists' spec function, except that it takes two arguments.
- The first argument is an absolute pathname to a file. If the
- file exists, 'if-exists-else' returns the pathname. If it
- does not exist, it returns the second argument. This way,
- 'if-exists-else' can be used to select one file or another,
- based on the existence of the first. Here is a small example
- of its usage:
- *startfile:
- crt0%O%s %:if-exists(crti%O%s) \
- %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
- 'replace-outfile'
- The 'replace-outfile' spec function takes two arguments. It
- looks for the first argument in the outfiles array and
- replaces it with the second argument. Here is a small example
- of its usage:
- %{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}
- 'remove-outfile'
- The 'remove-outfile' spec function takes one argument. It
- looks for the first argument in the outfiles array and removes
- it. Here is a small example its usage:
- %:remove-outfile(-lm)
- 'pass-through-libs'
- The 'pass-through-libs' spec function takes any number of
- arguments. It finds any '-l' options and any non-options
- ending in '.a' (which it assumes are the names of linker input
- library archive files) and returns a result containing all the
- found arguments each prepended by '-plugin-opt=-pass-through='
- and joined by spaces. This list is intended to be passed to
- the LTO linker plugin.
- %:pass-through-libs(%G %L %G)
- 'print-asm-header'
- The 'print-asm-header' function takes no arguments and simply
- prints a banner like:
- Assembler options
- =================
- Use "-Wa,OPTION" to pass "OPTION" to the assembler.
- It is used to separate compiler options from assembler options
- in the '--target-help' output.
- '%{S}'
- Substitutes the '-S' switch, if that switch is given to GCC. If
- that switch is not specified, this substitutes nothing. Note that
- the leading dash is omitted when specifying this option, and it is
- automatically inserted if the substitution is performed. Thus the
- spec string '%{foo}' matches the command-line option '-foo' and
- outputs the command-line option '-foo'.
- '%W{S}'
- Like %{'S'} but mark last argument supplied within as a file to be
- deleted on failure.
- '%{S*}'
- Substitutes all the switches specified to GCC whose names start
- with '-S', but which also take an argument. This is used for
- switches like '-o', '-D', '-I', etc. GCC considers '-o foo' as
- being one switch whose name starts with 'o'. %{o*} substitutes
- this text, including the space. Thus two arguments are generated.
- '%{S*&T*}'
- Like %{'S'*}, but preserve order of 'S' and 'T' options (the order
- of 'S' and 'T' in the spec is not significant). There can be any
- number of ampersand-separated variables; for each the wild card is
- optional. Useful for CPP as '%{D*&U*&A*}'.
- '%{S:X}'
- Substitutes 'X', if the '-S' switch is given to GCC.
- '%{!S:X}'
- Substitutes 'X', if the '-S' switch is _not_ given to GCC.
- '%{S*:X}'
- Substitutes 'X' if one or more switches whose names start with '-S'
- are specified to GCC. Normally 'X' is substituted only once, no
- matter how many such switches appeared. However, if '%*' appears
- somewhere in 'X', then 'X' is substituted once for each matching
- switch, with the '%*' replaced by the part of that switch matching
- the '*'.
- If '%*' appears as the last part of a spec sequence then a space is
- added after the end of the last substitution. If there is more
- text in the sequence, however, then a space is not generated. This
- allows the '%*' substitution to be used as part of a larger string.
- For example, a spec string like this:
- %{mcu=*:--script=%*/memory.ld}
- when matching an option like '-mcu=newchip' produces:
- --script=newchip/memory.ld
- '%{.S:X}'
- Substitutes 'X', if processing a file with suffix 'S'.
- '%{!.S:X}'
- Substitutes 'X', if _not_ processing a file with suffix 'S'.
- '%{,S:X}'
- Substitutes 'X', if processing a file for language 'S'.
- '%{!,S:X}'
- Substitutes 'X', if not processing a file for language 'S'.
- '%{S|P:X}'
- Substitutes 'X' if either '-S' or '-P' is given to GCC. This may
- be combined with '!', '.', ',', and '*' sequences as well, although
- they have a stronger binding than the '|'. If '%*' appears in 'X',
- all of the alternatives must be starred, and only the first
- matching alternative is substituted.
- For example, a spec string like this:
- %{.c:-foo} %{!.c:-bar} %{.c|d:-baz} %{!.c|d:-boggle}
- outputs the following command-line options from the following input
- command-line options:
- fred.c -foo -baz
- jim.d -bar -boggle
- -d fred.c -foo -baz -boggle
- -d jim.d -bar -baz -boggle
- '%{S:X; T:Y; :D}'
- If 'S' is given to GCC, substitutes 'X'; else if 'T' is given to
- GCC, substitutes 'Y'; else substitutes 'D'. There can be as many
- clauses as you need. This may be combined with '.', ',', '!', '|',
- and '*' as needed.
- The switch matching text 'S' in a '%{S}', '%{S:X}' or similar construct
- can use a backslash to ignore the special meaning of the character
- following it, thus allowing literal matching of a character that is
- otherwise specially treated. For example, '%{std=iso9899\:1999:X}'
- substitutes 'X' if the '-std=iso9899:1999' option is given.
- The conditional text 'X' in a '%{S:X}' or similar construct may contain
- other nested '%' constructs or spaces, or even newlines. They are
- processed as usual, as described above. Trailing white space in 'X' is
- ignored. White space may also appear anywhere on the left side of the
- colon in these constructs, except between '.' or '*' and the
- corresponding word.
- The '-O', '-f', '-m', and '-W' switches are handled specifically in
- these constructs. If another value of '-O' or the negated form of a
- '-f', '-m', or '-W' switch is found later in the command line, the
- earlier switch value is ignored, except with {'S'*} where 'S' is just
- one letter, which passes all matching options.
- The character '|' at the beginning of the predicate text is used to
- indicate that a command should be piped to the following command, but
- only if '-pipe' is specified.
- It is built into GCC which switches take arguments and which do not.
- (You might think it would be useful to generalize this to allow each
- compiler's spec to say which switches take arguments. But this cannot
- be done in a consistent fashion. GCC cannot even decide which input
- files have been specified without knowing which switches take arguments,
- and it must know which input files to compile in order to tell which
- compilers to run).
- GCC also knows implicitly that arguments starting in '-l' are to be
- treated as compiler output files, and passed to the linker in their
- proper position among the other output files.
- File: gcc.info, Node: Environment Variables, Next: Precompiled Headers, Prev: Spec Files, Up: Invoking GCC
- 3.20 Environment Variables Affecting GCC
- ========================================
- This section describes several environment variables that affect how GCC
- operates. Some of them work by specifying directories or prefixes to
- use when searching for various kinds of files. Some are used to specify
- other aspects of the compilation environment.
- Note that you can also specify places to search using options such as
- '-B', '-I' and '-L' (*note Directory Options::). These take precedence
- over places specified using environment variables, which in turn take
- precedence over those specified by the configuration of GCC. *Note
- Controlling the Compilation Driver 'gcc': (gccint)Driver.
- 'LANG'
- 'LC_CTYPE'
- 'LC_MESSAGES'
- 'LC_ALL'
- These environment variables control the way that GCC uses
- localization information which allows GCC to work with different
- national conventions. GCC inspects the locale categories
- 'LC_CTYPE' and 'LC_MESSAGES' if it has been configured to do so.
- These locale categories can be set to any value supported by your
- installation. A typical value is 'en_GB.UTF-8' for English in the
- United Kingdom encoded in UTF-8.
- The 'LC_CTYPE' environment variable specifies character
- classification. GCC uses it to determine the character boundaries
- in a string; this is needed for some multibyte encodings that
- contain quote and escape characters that are otherwise interpreted
- as a string end or escape.
- The 'LC_MESSAGES' environment variable specifies the language to
- use in diagnostic messages.
- If the 'LC_ALL' environment variable is set, it overrides the value
- of 'LC_CTYPE' and 'LC_MESSAGES'; otherwise, 'LC_CTYPE' and
- 'LC_MESSAGES' default to the value of the 'LANG' environment
- variable. If none of these variables are set, GCC defaults to
- traditional C English behavior.
- 'TMPDIR'
- If 'TMPDIR' is set, it specifies the directory to use for temporary
- files. GCC uses temporary files to hold the output of one stage of
- compilation which is to be used as input to the next stage: for
- example, the output of the preprocessor, which is the input to the
- compiler proper.
- 'GCC_COMPARE_DEBUG'
- Setting 'GCC_COMPARE_DEBUG' is nearly equivalent to passing
- '-fcompare-debug' to the compiler driver. See the documentation of
- this option for more details.
- 'GCC_EXEC_PREFIX'
- If 'GCC_EXEC_PREFIX' is set, it specifies a prefix to use in the
- names of the subprograms executed by the compiler. No slash is
- added when this prefix is combined with the name of a subprogram,
- but you can specify a prefix that ends with a slash if you wish.
- If 'GCC_EXEC_PREFIX' is not set, GCC attempts to figure out an
- appropriate prefix to use based on the pathname it is invoked with.
- If GCC cannot find the subprogram using the specified prefix, it
- tries looking in the usual places for the subprogram.
- The default value of 'GCC_EXEC_PREFIX' is 'PREFIX/lib/gcc/' where
- PREFIX is the prefix to the installed compiler. In many cases
- PREFIX is the value of 'prefix' when you ran the 'configure'
- script.
- Other prefixes specified with '-B' take precedence over this
- prefix.
- This prefix is also used for finding files such as 'crt0.o' that
- are used for linking.
- In addition, the prefix is used in an unusual way in finding the
- directories to search for header files. For each of the standard
- directories whose name normally begins with '/usr/local/lib/gcc'
- (more precisely, with the value of 'GCC_INCLUDE_DIR'), GCC tries
- replacing that beginning with the specified prefix to produce an
- alternate directory name. Thus, with '-Bfoo/', GCC searches
- 'foo/bar' just before it searches the standard directory
- '/usr/local/lib/bar'. If a standard directory begins with the
- configured PREFIX then the value of PREFIX is replaced by
- 'GCC_EXEC_PREFIX' when looking for header files.
- 'COMPILER_PATH'
- The value of 'COMPILER_PATH' is a colon-separated list of
- directories, much like 'PATH'. GCC tries the directories thus
- specified when searching for subprograms, if it cannot find the
- subprograms using 'GCC_EXEC_PREFIX'.
- 'LIBRARY_PATH'
- The value of 'LIBRARY_PATH' is a colon-separated list of
- directories, much like 'PATH'. When configured as a native
- compiler, GCC tries the directories thus specified when searching
- for special linker files, if it cannot find them using
- 'GCC_EXEC_PREFIX'. Linking using GCC also uses these directories
- when searching for ordinary libraries for the '-l' option (but
- directories specified with '-L' come first).
- 'LANG'
- This variable is used to pass locale information to the compiler.
- One way in which this information is used is to determine the
- character set to be used when character literals, string literals
- and comments are parsed in C and C++. When the compiler is
- configured to allow multibyte characters, the following values for
- 'LANG' are recognized:
- 'C-JIS'
- Recognize JIS characters.
- 'C-SJIS'
- Recognize SJIS characters.
- 'C-EUCJP'
- Recognize EUCJP characters.
- If 'LANG' is not defined, or if it has some other value, then the
- compiler uses 'mblen' and 'mbtowc' as defined by the default locale
- to recognize and translate multibyte characters.
- Some additional environment variables affect the behavior of the
- preprocessor.
- 'CPATH'
- 'C_INCLUDE_PATH'
- 'CPLUS_INCLUDE_PATH'
- 'OBJC_INCLUDE_PATH'
- Each variable's value is a list of directories separated by a
- special character, much like 'PATH', in which to look for header
- files. The special character, 'PATH_SEPARATOR', is
- target-dependent and determined at GCC build time. For Microsoft
- Windows-based targets it is a semicolon, and for almost all other
- targets it is a colon.
- 'CPATH' specifies a list of directories to be searched as if
- specified with '-I', but after any paths given with '-I' options on
- the command line. This environment variable is used regardless of
- which language is being preprocessed.
- The remaining environment variables apply only when preprocessing
- the particular language indicated. Each specifies a list of
- directories to be searched as if specified with '-isystem', but
- after any paths given with '-isystem' options on the command line.
- In all these variables, an empty element instructs the compiler to
- search its current working directory. Empty elements can appear at
- the beginning or end of a path. For instance, if the value of
- 'CPATH' is ':/special/include', that has the same effect as
- '-I. -I/special/include'.
- 'DEPENDENCIES_OUTPUT'
- If this variable is set, its value specifies how to output
- dependencies for Make based on the non-system header files
- processed by the compiler. System header files are ignored in the
- dependency output.
- The value of 'DEPENDENCIES_OUTPUT' can be just a file name, in
- which case the Make rules are written to that file, guessing the
- target name from the source file name. Or the value can have the
- form 'FILE TARGET', in which case the rules are written to file
- FILE using TARGET as the target name.
- In other words, this environment variable is equivalent to
- combining the options '-MM' and '-MF' (*note Preprocessor
- Options::), with an optional '-MT' switch too.
- 'SUNPRO_DEPENDENCIES'
- This variable is the same as 'DEPENDENCIES_OUTPUT' (see above),
- except that system header files are not ignored, so it implies '-M'
- rather than '-MM'. However, the dependence on the main input file
- is omitted. *Note Preprocessor Options::.
- 'SOURCE_DATE_EPOCH'
- If this variable is set, its value specifies a UNIX timestamp to be
- used in replacement of the current date and time in the '__DATE__'
- and '__TIME__' macros, so that the embedded timestamps become
- reproducible.
- The value of 'SOURCE_DATE_EPOCH' must be a UNIX timestamp, defined
- as the number of seconds (excluding leap seconds) since 01 Jan 1970
- 00:00:00 represented in ASCII; identical to the output of ''date
- +%s'' on GNU/Linux and other systems that support the '%s'
- extension in the 'date' command.
- The value should be a known timestamp such as the last modification
- time of the source or package and it should be set by the build
- process.
- File: gcc.info, Node: Precompiled Headers, Prev: Environment Variables, Up: Invoking GCC
- 3.21 Using Precompiled Headers
- ==============================
- Often large projects have many header files that are included in every
- source file. The time the compiler takes to process these header files
- over and over again can account for nearly all of the time required to
- build the project. To make builds faster, GCC allows you to
- "precompile" a header file.
- To create a precompiled header file, simply compile it as you would any
- other file, if necessary using the '-x' option to make the driver treat
- it as a C or C++ header file. You may want to use a tool like 'make' to
- keep the precompiled header up-to-date when the headers it contains
- change.
- A precompiled header file is searched for when '#include' is seen in
- the compilation. As it searches for the included file (*note Search
- Path: (cpp)Search Path.) the compiler looks for a precompiled header in
- each directory just before it looks for the include file in that
- directory. The name searched for is the name specified in the
- '#include' with '.gch' appended. If the precompiled header file cannot
- be used, it is ignored.
- For instance, if you have '#include "all.h"', and you have 'all.h.gch'
- in the same directory as 'all.h', then the precompiled header file is
- used if possible, and the original header is used otherwise.
- Alternatively, you might decide to put the precompiled header file in a
- directory and use '-I' to ensure that directory is searched before (or
- instead of) the directory containing the original header. Then, if you
- want to check that the precompiled header file is always used, you can
- put a file of the same name as the original header in this directory
- containing an '#error' command.
- This also works with '-include'. So yet another way to use precompiled
- headers, good for projects not designed with precompiled header files in
- mind, is to simply take most of the header files used by a project,
- include them from another header file, precompile that header file, and
- '-include' the precompiled header. If the header files have guards
- against multiple inclusion, they are skipped because they've already
- been included (in the precompiled header).
- If you need to precompile the same header file for different languages,
- targets, or compiler options, you can instead make a _directory_ named
- like 'all.h.gch', and put each precompiled header in the directory,
- perhaps using '-o'. It doesn't matter what you call the files in the
- directory; every precompiled header in the directory is considered. The
- first precompiled header encountered in the directory that is valid for
- this compilation is used; they're searched in no particular order.
- There are many other possibilities, limited only by your imagination,
- good sense, and the constraints of your build system.
- A precompiled header file can be used only when these conditions apply:
- * Only one precompiled header can be used in a particular
- compilation.
- * A precompiled header cannot be used once the first C token is seen.
- You can have preprocessor directives before a precompiled header;
- you cannot include a precompiled header from inside another header.
- * The precompiled header file must be produced for the same language
- as the current compilation. You cannot use a C precompiled header
- for a C++ compilation.
- * The precompiled header file must have been produced by the same
- compiler binary as the current compilation is using.
- * Any macros defined before the precompiled header is included must
- either be defined in the same way as when the precompiled header
- was generated, or must not affect the precompiled header, which
- usually means that they don't appear in the precompiled header at
- all.
- The '-D' option is one way to define a macro before a precompiled
- header is included; using a '#define' can also do it. There are
- also some options that define macros implicitly, like '-O' and
- '-Wdeprecated'; the same rule applies to macros defined this way.
- * If debugging information is output when using the precompiled
- header, using '-g' or similar, the same kind of debugging
- information must have been output when building the precompiled
- header. However, a precompiled header built using '-g' can be used
- in a compilation when no debugging information is being output.
- * The same '-m' options must generally be used when building and
- using the precompiled header. *Note Submodel Options::, for any
- cases where this rule is relaxed.
- * Each of the following options must be the same when building and
- using the precompiled header:
- -fexceptions
- * Some other command-line options starting with '-f', '-p', or '-O'
- must be defined in the same way as when the precompiled header was
- generated. At present, it's not clear which options are safe to
- change and which are not; the safest choice is to use exactly the
- same options when generating and using the precompiled header. The
- following are known to be safe:
- -fmessage-length= -fpreprocessed -fsched-interblock
- -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous
- -fsched-verbose=NUMBER -fschedule-insns -fvisibility=
- -pedantic-errors
- For all of these except the last, the compiler automatically ignores
- the precompiled header if the conditions aren't met. If you find an
- option combination that doesn't work and doesn't cause the precompiled
- header to be ignored, please consider filing a bug report, see *note
- Bugs::.
- If you do use differing options when generating and using the
- precompiled header, the actual behavior is a mixture of the behavior for
- the options. For instance, if you use '-g' to generate the precompiled
- header but not when using it, you may or may not get debugging
- information for routines in the precompiled header.
- File: gcc.info, Node: C Implementation, Next: C++ Implementation, Prev: Invoking GCC, Up: Top
- 4 C Implementation-Defined Behavior
- ***********************************
- A conforming implementation of ISO C is required to document its choice
- of behavior in each of the areas that are designated "implementation
- defined". The following lists all such areas, along with the section
- numbers from the ISO/IEC 9899:1990, ISO/IEC 9899:1999 and ISO/IEC
- 9899:2011 standards. Some areas are only implementation-defined in one
- version of the standard.
- Some choices depend on the externally determined ABI for the platform
- (including standard character encodings) which GCC follows; these are
- listed as "determined by ABI" below. *Note Binary Compatibility:
- Compatibility, and <http://gcc.gnu.org/readings.html>. Some choices are
- documented in the preprocessor manual. *Note Implementation-defined
- behavior: (cpp)Implementation-defined behavior. Some choices are made
- by the library and operating system (or other environment when compiling
- for a freestanding environment); refer to their documentation for
- details.
- * Menu:
- * Translation implementation::
- * Environment implementation::
- * Identifiers implementation::
- * Characters implementation::
- * Integers implementation::
- * Floating point implementation::
- * Arrays and pointers implementation::
- * Hints implementation::
- * Structures unions enumerations and bit-fields implementation::
- * Qualifiers implementation::
- * Declarators implementation::
- * Statements implementation::
- * Preprocessing directives implementation::
- * Library functions implementation::
- * Architecture implementation::
- * Locale-specific behavior implementation::
- File: gcc.info, Node: Translation implementation, Next: Environment implementation, Up: C Implementation
- 4.1 Translation
- ===============
- * 'How a diagnostic is identified (C90 3.7, C99 and C11 3.10, C90,
- C99 and C11 5.1.1.3).'
- Diagnostics consist of all the output sent to stderr by GCC.
- * 'Whether each nonempty sequence of white-space characters other
- than new-line is retained or replaced by one space character in
- translation phase 3 (C90, C99 and C11 5.1.1.2).'
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
- File: gcc.info, Node: Environment implementation, Next: Identifiers implementation, Prev: Translation implementation, Up: C Implementation
- 4.2 Environment
- ===============
- The behavior of most of these points are dependent on the implementation
- of the C library, and are not defined by GCC itself.
- * 'The mapping between physical source file multibyte characters and
- the source character set in translation phase 1 (C90, C99 and C11
- 5.1.1.2).'
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
- File: gcc.info, Node: Identifiers implementation, Next: Characters implementation, Prev: Environment implementation, Up: C Implementation
- 4.3 Identifiers
- ===============
- * 'Which additional multibyte characters may appear in identifiers
- and their correspondence to universal character names (C99 and C11
- 6.4.2).'
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
- * 'The number of significant initial characters in an identifier (C90
- 6.1.2, C90, C99 and C11 5.2.4.1, C99 and C11 6.4.2).'
- For internal names, all characters are significant. For external
- names, the number of significant characters are defined by the
- linker; for almost all targets, all characters are significant.
- * 'Whether case distinctions are significant in an identifier with
- external linkage (C90 6.1.2).'
- This is a property of the linker. C99 and C11 require that case
- distinctions are always significant in identifiers with external
- linkage and systems without this property are not supported by GCC.
- File: gcc.info, Node: Characters implementation, Next: Integers implementation, Prev: Identifiers implementation, Up: C Implementation
- 4.4 Characters
- ==============
- * 'The number of bits in a byte (C90 3.4, C99 and C11 3.6).'
- Determined by ABI.
- * 'The values of the members of the execution character set (C90, C99
- and C11 5.2.1).'
- Determined by ABI.
- * 'The unique value of the member of the execution character set
- produced for each of the standard alphabetic escape sequences (C90,
- C99 and C11 5.2.2).'
- Determined by ABI.
- * 'The value of a 'char' object into which has been stored any
- character other than a member of the basic execution character set
- (C90 6.1.2.5, C99 and C11 6.2.5).'
- Determined by ABI.
- * 'Which of 'signed char' or 'unsigned char' has the same range,
- representation, and behavior as "plain" 'char' (C90 6.1.2.5, C90
- 6.2.1.1, C99 and C11 6.2.5, C99 and C11 6.3.1.1).'
- Determined by ABI. The options '-funsigned-char' and
- '-fsigned-char' change the default. *Note Options Controlling C
- Dialect: C Dialect Options.
- * 'The mapping of members of the source character set (in character
- constants and string literals) to members of the execution
- character set (C90 6.1.3.4, C99 and C11 6.4.4.4, C90, C99 and C11
- 5.1.1.2).'
- Determined by ABI.
- * 'The value of an integer character constant containing more than
- one character or containing a character or escape sequence that
- does not map to a single-byte execution character (C90 6.1.3.4, C99
- and C11 6.4.4.4).'
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
- * 'The value of a wide character constant containing more than one
- multibyte character or a single multibyte character that maps to
- multiple members of the extended execution character set, or
- containing a multibyte character or escape sequence not represented
- in the extended execution character set (C90 6.1.3.4, C99 and C11
- 6.4.4.4).'
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
- * 'The current locale used to convert a wide character constant
- consisting of a single multibyte character that maps to a member of
- the extended execution character set into a corresponding wide
- character code (C90 6.1.3.4, C99 and C11 6.4.4.4).'
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
- * 'Whether differently-prefixed wide string literal tokens can be
- concatenated and, if so, the treatment of the resulting multibyte
- character sequence (C11 6.4.5).'
- Such tokens may not be concatenated.
- * 'The current locale used to convert a wide string literal into
- corresponding wide character codes (C90 6.1.4, C99 and C11 6.4.5).'
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
- * 'The value of a string literal containing a multibyte character or
- escape sequence not represented in the execution character set (C90
- 6.1.4, C99 and C11 6.4.5).'
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior.
- * 'The encoding of any of 'wchar_t', 'char16_t', and 'char32_t' where
- the corresponding standard encoding macro ('__STDC_ISO_10646__',
- '__STDC_UTF_16__', or '__STDC_UTF_32__') is not defined (C11
- 6.10.8.2).'
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior. 'char16_t' and 'char32_t' literals are always encoded in
- UTF-16 and UTF-32 respectively.
- File: gcc.info, Node: Integers implementation, Next: Floating point implementation, Prev: Characters implementation, Up: C Implementation
- 4.5 Integers
- ============
- * 'Any extended integer types that exist in the implementation (C99
- and C11 6.2.5).'
- GCC does not support any extended integer types.
- * 'Whether signed integer types are represented using sign and
- magnitude, two's complement, or one's complement, and whether the
- extraordinary value is a trap representation or an ordinary value
- (C99 and C11 6.2.6.2).'
- GCC supports only two's complement integer types, and all bit
- patterns are ordinary values.
- * 'The rank of any extended integer type relative to another extended
- integer type with the same precision (C99 and C11 6.3.1.1).'
- GCC does not support any extended integer types.
- * 'The result of, or the signal raised by, converting an integer to a
- signed integer type when the value cannot be represented in an
- object of that type (C90 6.2.1.2, C99 and C11 6.3.1.3).'
- For conversion to a type of width N, the value is reduced modulo
- 2^N to be within range of the type; no signal is raised.
- * 'The results of some bitwise operations on signed integers (C90
- 6.3, C99 and C11 6.5).'
- Bitwise operators act on the representation of the value including
- both the sign and value bits, where the sign bit is considered
- immediately above the highest-value value bit. Signed '>>' acts on
- negative numbers by sign extension.
- As an extension to the C language, GCC does not use the latitude
- given in C99 and C11 only to treat certain aspects of signed '<<'
- as undefined. However, '-fsanitize=shift' (and
- '-fsanitize=undefined') will diagnose such cases. They are also
- diagnosed where constant expressions are required.
- * 'The sign of the remainder on integer division (C90 6.3.5).'
- GCC always follows the C99 and C11 requirement that the result of
- division is truncated towards zero.
- File: gcc.info, Node: Floating point implementation, Next: Arrays and pointers implementation, Prev: Integers implementation, Up: C Implementation
- 4.6 Floating Point
- ==================
- * 'The accuracy of the floating-point operations and of the library
- functions in '<math.h>' and '<complex.h>' that return
- floating-point results (C90, C99 and C11 5.2.4.2.2).'
- The accuracy is unknown.
- * 'The rounding behaviors characterized by non-standard values of
- 'FLT_ROUNDS' (C90, C99 and C11 5.2.4.2.2).'
- GCC does not use such values.
- * 'The evaluation methods characterized by non-standard negative
- values of 'FLT_EVAL_METHOD' (C99 and C11 5.2.4.2.2).'
- GCC does not use such values.
- * 'The direction of rounding when an integer is converted to a
- floating-point number that cannot exactly represent the original
- value (C90 6.2.1.3, C99 and C11 6.3.1.4).'
- C99 Annex F is followed.
- * 'The direction of rounding when a floating-point number is
- converted to a narrower floating-point number (C90 6.2.1.4, C99 and
- C11 6.3.1.5).'
- C99 Annex F is followed.
- * 'How the nearest representable value or the larger or smaller
- representable value immediately adjacent to the nearest
- representable value is chosen for certain floating constants (C90
- 6.1.3.1, C99 and C11 6.4.4.2).'
- C99 Annex F is followed.
- * 'Whether and how floating expressions are contracted when not
- disallowed by the 'FP_CONTRACT' pragma (C99 and C11 6.5).'
- Expressions are currently only contracted if '-ffp-contract=fast',
- '-funsafe-math-optimizations' or '-ffast-math' are used. This is
- subject to change.
- * 'The default state for the 'FENV_ACCESS' pragma (C99 and C11
- 7.6.1).'
- This pragma is not implemented, but the default is to "off" unless
- '-frounding-math' is used in which case it is "on".
- * 'Additional floating-point exceptions, rounding modes,
- environments, and classifications, and their macro names (C99 and
- C11 7.6, C99 and C11 7.12).'
- This is dependent on the implementation of the C library, and is
- not defined by GCC itself.
- * 'The default state for the 'FP_CONTRACT' pragma (C99 and C11
- 7.12.2).'
- This pragma is not implemented. Expressions are currently only
- contracted if '-ffp-contract=fast', '-funsafe-math-optimizations'
- or '-ffast-math' are used. This is subject to change.
- * 'Whether the "inexact" floating-point exception can be raised when
- the rounded result actually does equal the mathematical result in
- an IEC 60559 conformant implementation (C99 F.9).'
- This is dependent on the implementation of the C library, and is
- not defined by GCC itself.
- * 'Whether the "underflow" (and "inexact") floating-point exception
- can be raised when a result is tiny but not inexact in an IEC 60559
- conformant implementation (C99 F.9).'
- This is dependent on the implementation of the C library, and is
- not defined by GCC itself.
- File: gcc.info, Node: Arrays and pointers implementation, Next: Hints implementation, Prev: Floating point implementation, Up: C Implementation
- 4.7 Arrays and Pointers
- =======================
- * 'The result of converting a pointer to an integer or vice versa
- (C90 6.3.4, C99 and C11 6.3.2.3).'
- A cast from pointer to integer discards most-significant bits if
- the pointer representation is larger than the integer type,
- sign-extends(1) if the pointer representation is smaller than the
- integer type, otherwise the bits are unchanged.
- A cast from integer to pointer discards most-significant bits if
- the pointer representation is smaller than the integer type,
- extends according to the signedness of the integer type if the
- pointer representation is larger than the integer type, otherwise
- the bits are unchanged.
- When casting from pointer to integer and back again, the resulting
- pointer must reference the same object as the original pointer,
- otherwise the behavior is undefined. That is, one may not use
- integer arithmetic to avoid the undefined behavior of pointer
- arithmetic as proscribed in C99 and C11 6.5.6/8.
- * 'The size of the result of subtracting two pointers to elements of
- the same array (C90 6.3.6, C99 and C11 6.5.6).'
- The value is as specified in the standard and the type is
- determined by the ABI.
- ---------- Footnotes ----------
- (1) Future versions of GCC may zero-extend, or use a target-defined
- 'ptr_extend' pattern. Do not rely on sign extension.
- File: gcc.info, Node: Hints implementation, Next: Structures unions enumerations and bit-fields implementation, Prev: Arrays and pointers implementation, Up: C Implementation
- 4.8 Hints
- =========
- * 'The extent to which suggestions made by using the 'register'
- storage-class specifier are effective (C90 6.5.1, C99 and C11
- 6.7.1).'
- The 'register' specifier affects code generation only in these
- ways:
- * When used as part of the register variable extension, see
- *note Explicit Register Variables::.
- * When '-O0' is in use, the compiler allocates distinct stack
- memory for all variables that do not have the 'register'
- storage-class specifier; if 'register' is specified, the
- variable may have a shorter lifespan than the code would
- indicate and may never be placed in memory.
- * On some rare x86 targets, 'setjmp' doesn't save the registers
- in all circumstances. In those cases, GCC doesn't allocate
- any variables in registers unless they are marked 'register'.
- * 'The extent to which suggestions made by using the inline function
- specifier are effective (C99 and C11 6.7.4).'
- GCC will not inline any functions if the '-fno-inline' option is
- used or if '-O0' is used. Otherwise, GCC may still be unable to
- inline a function for many reasons; the '-Winline' option may be
- used to determine if a function has not been inlined and why not.
- File: gcc.info, Node: Structures unions enumerations and bit-fields implementation, Next: Qualifiers implementation, Prev: Hints implementation, Up: C Implementation
- 4.9 Structures, Unions, Enumerations, and Bit-Fields
- ====================================================
- * 'A member of a union object is accessed using a member of a
- different type (C90 6.3.2.3).'
- The relevant bytes of the representation of the object are treated
- as an object of the type used for the access. *Note
- Type-punning::. This may be a trap representation.
- * 'Whether a "plain" 'int' bit-field is treated as a 'signed int'
- bit-field or as an 'unsigned int' bit-field (C90 6.5.2, C90
- 6.5.2.1, C99 and C11 6.7.2, C99 and C11 6.7.2.1).'
- By default it is treated as 'signed int' but this may be changed by
- the '-funsigned-bitfields' option.
- * 'Allowable bit-field types other than '_Bool', 'signed int', and
- 'unsigned int' (C99 and C11 6.7.2.1).'
- Other integer types, such as 'long int', and enumerated types are
- permitted even in strictly conforming mode.
- * 'Whether atomic types are permitted for bit-fields (C11 6.7.2.1).'
- Atomic types are not permitted for bit-fields.
- * 'Whether a bit-field can straddle a storage-unit boundary (C90
- 6.5.2.1, C99 and C11 6.7.2.1).'
- Determined by ABI.
- * 'The order of allocation of bit-fields within a unit (C90 6.5.2.1,
- C99 and C11 6.7.2.1).'
- Determined by ABI.
- * 'The alignment of non-bit-field members of structures (C90 6.5.2.1,
- C99 and C11 6.7.2.1).'
- Determined by ABI.
- * 'The integer type compatible with each enumerated type (C90
- 6.5.2.2, C99 and C11 6.7.2.2).'
- Normally, the type is 'unsigned int' if there are no negative
- values in the enumeration, otherwise 'int'. If '-fshort-enums' is
- specified, then if there are negative values it is the first of
- 'signed char', 'short' and 'int' that can represent all the values,
- otherwise it is the first of 'unsigned char', 'unsigned short' and
- 'unsigned int' that can represent all the values.
- On some targets, '-fshort-enums' is the default; this is determined
- by the ABI.
- File: gcc.info, Node: Qualifiers implementation, Next: Declarators implementation, Prev: Structures unions enumerations and bit-fields implementation, Up: C Implementation
- 4.10 Qualifiers
- ===============
- * 'What constitutes an access to an object that has
- volatile-qualified type (C90 6.5.3, C99 and C11 6.7.3).'
- Such an object is normally accessed by pointers and used for
- accessing hardware. In most expressions, it is intuitively obvious
- what is a read and what is a write. For example
- volatile int *dst = SOMEVALUE;
- volatile int *src = SOMEOTHERVALUE;
- *dst = *src;
- will cause a read of the volatile object pointed to by SRC and
- store the value into the volatile object pointed to by DST. There
- is no guarantee that these reads and writes are atomic, especially
- for objects larger than 'int'.
- However, if the volatile storage is not being modified, and the
- value of the volatile storage is not used, then the situation is
- less obvious. For example
- volatile int *src = SOMEVALUE;
- *src;
- According to the C standard, such an expression is an rvalue whose
- type is the unqualified version of its original type, i.e. 'int'.
- Whether GCC interprets this as a read of the volatile object being
- pointed to or only as a request to evaluate the expression for its
- side effects depends on this type.
- If it is a scalar type, or on most targets an aggregate type whose
- only member object is of a scalar type, or a union type whose
- member objects are of scalar types, the expression is interpreted
- by GCC as a read of the volatile object; in the other cases, the
- expression is only evaluated for its side effects.
- File: gcc.info, Node: Declarators implementation, Next: Statements implementation, Prev: Qualifiers implementation, Up: C Implementation
- 4.11 Declarators
- ================
- * 'The maximum number of declarators that may modify an arithmetic,
- structure or union type (C90 6.5.4).'
- GCC is only limited by available memory.
- File: gcc.info, Node: Statements implementation, Next: Preprocessing directives implementation, Prev: Declarators implementation, Up: C Implementation
- 4.12 Statements
- ===============
- * 'The maximum number of 'case' values in a 'switch' statement (C90
- 6.6.4.2).'
- GCC is only limited by available memory.
- File: gcc.info, Node: Preprocessing directives implementation, Next: Library functions implementation, Prev: Statements implementation, Up: C Implementation
- 4.13 Preprocessing Directives
- =============================
- *Note Implementation-defined behavior: (cpp)Implementation-defined
- behavior, for details of these aspects of implementation-defined
- behavior.
- * 'The locations within '#pragma' directives where header name
- preprocessing tokens are recognized (C11 6.4, C11 6.4.7).'
- * 'How sequences in both forms of header names are mapped to headers
- or external source file names (C90 6.1.7, C99 and C11 6.4.7).'
- * 'Whether the value of a character constant in a constant expression
- that controls conditional inclusion matches the value of the same
- character constant in the execution character set (C90 6.8.1, C99
- and C11 6.10.1).'
- * 'Whether the value of a single-character character constant in a
- constant expression that controls conditional inclusion may have a
- negative value (C90 6.8.1, C99 and C11 6.10.1).'
- * 'The places that are searched for an included '<>' delimited
- header, and how the places are specified or the header is
- identified (C90 6.8.2, C99 and C11 6.10.2).'
- * 'How the named source file is searched for in an included '""'
- delimited header (C90 6.8.2, C99 and C11 6.10.2).'
- * 'The method by which preprocessing tokens (possibly resulting from
- macro expansion) in a '#include' directive are combined into a
- header name (C90 6.8.2, C99 and C11 6.10.2).'
- * 'The nesting limit for '#include' processing (C90 6.8.2, C99 and
- C11 6.10.2).'
- * 'Whether the '#' operator inserts a '\' character before the '\'
- character that begins a universal character name in a character
- constant or string literal (C99 and C11 6.10.3.2).'
- * 'The behavior on each recognized non-'STDC #pragma' directive (C90
- 6.8.6, C99 and C11 6.10.6).'
- *Note Pragmas: (cpp)Pragmas, for details of pragmas accepted by GCC
- on all targets. *Note Pragmas Accepted by GCC: Pragmas, for
- details of target-specific pragmas.
- * 'The definitions for '__DATE__' and '__TIME__' when respectively,
- the date and time of translation are not available (C90 6.8.8, C99
- 6.10.8, C11 6.10.8.1).'
- File: gcc.info, Node: Library functions implementation, Next: Architecture implementation, Prev: Preprocessing directives implementation, Up: C Implementation
- 4.14 Library Functions
- ======================
- The behavior of most of these points are dependent on the implementation
- of the C library, and are not defined by GCC itself.
- * 'The null pointer constant to which the macro 'NULL' expands (C90
- 7.1.6, C99 7.17, C11 7.19).'
- In '<stddef.h>', 'NULL' expands to '((void *)0)'. GCC does not
- provide the other headers which define 'NULL' and some library
- implementations may use other definitions in those headers.
- File: gcc.info, Node: Architecture implementation, Next: Locale-specific behavior implementation, Prev: Library functions implementation, Up: C Implementation
- 4.15 Architecture
- =================
- * 'The values or expressions assigned to the macros specified in the
- headers '<float.h>', '<limits.h>', and '<stdint.h>' (C90, C99 and
- C11 5.2.4.2, C99 7.18.2, C99 7.18.3, C11 7.20.2, C11 7.20.3).'
- Determined by ABI.
- * 'The result of attempting to indirectly access an object with
- automatic or thread storage duration from a thread other than the
- one with which it is associated (C11 6.2.4).'
- Such accesses are supported, subject to the same requirements for
- synchronization for concurrent accesses as for concurrent accesses
- to any object.
- * 'The number, order, and encoding of bytes in any object (when not
- explicitly specified in this International Standard) (C99 and C11
- 6.2.6.1).'
- Determined by ABI.
- * 'Whether any extended alignments are supported and the contexts in
- which they are supported (C11 6.2.8).'
- Extended alignments up to 2^{28} (bytes) are supported for objects
- of automatic storage duration. Alignments supported for objects of
- static and thread storage duration are determined by the ABI.
- * 'Valid alignment values other than those returned by an _Alignof
- expression for fundamental types, if any (C11 6.2.8).'
- Valid alignments are powers of 2 up to and including 2^{28}.
- * 'The value of the result of the 'sizeof' and '_Alignof' operators
- (C90 6.3.3.4, C99 and C11 6.5.3.4).'
- Determined by ABI.
- File: gcc.info, Node: Locale-specific behavior implementation, Prev: Architecture implementation, Up: C Implementation
- 4.16 Locale-Specific Behavior
- =============================
- The behavior of these points are dependent on the implementation of the
- C library, and are not defined by GCC itself.
- File: gcc.info, Node: C++ Implementation, Next: C Extensions, Prev: C Implementation, Up: Top
- 5 C++ Implementation-Defined Behavior
- *************************************
- A conforming implementation of ISO C++ is required to document its
- choice of behavior in each of the areas that are designated
- "implementation defined". The following lists all such areas, along
- with the section numbers from the ISO/IEC 14882:1998 and ISO/IEC
- 14882:2003 standards. Some areas are only implementation-defined in one
- version of the standard.
- Some choices depend on the externally determined ABI for the platform
- (including standard character encodings) which GCC follows; these are
- listed as "determined by ABI" below. *Note Binary Compatibility:
- Compatibility, and <http://gcc.gnu.org/readings.html>. Some choices are
- documented in the preprocessor manual. *Note Implementation-defined
- behavior: (cpp)Implementation-defined behavior. Some choices are
- documented in the corresponding document for the C language. *Note C
- Implementation::. Some choices are made by the library and operating
- system (or other environment when compiling for a freestanding
- environment); refer to their documentation for details.
- * Menu:
- * Conditionally-supported behavior::
- * Exception handling::
- File: gcc.info, Node: Conditionally-supported behavior, Next: Exception handling, Up: C++ Implementation
- 5.1 Conditionally-Supported Behavior
- ====================================
- 'Each implementation shall include documentation that identifies all
- conditionally-supported constructs that it does not support (C++0x
- 1.4).'
- * 'Whether an argument of class type with a non-trivial copy
- constructor or destructor can be passed to ... (C++0x 5.2.2).'
- Such argument passing is supported, using the same
- pass-by-invisible-reference approach used for normal function
- arguments of such types.
- File: gcc.info, Node: Exception handling, Prev: Conditionally-supported behavior, Up: C++ Implementation
- 5.2 Exception Handling
- ======================
- * 'In the situation where no matching handler is found, it is
- implementation-defined whether or not the stack is unwound before
- std::terminate() is called (C++98 15.5.1).'
- The stack is not unwound before std::terminate is called.
- c Copyright (C) 1988-2018 Free Software Foundation, Inc.
- File: gcc.info, Node: C Extensions, Next: C++ Extensions, Prev: C++ Implementation, Up: Top
- 6 Extensions to the C Language Family
- *************************************
- GNU C provides several language features not found in ISO standard C.
- (The '-pedantic' option directs GCC to print a warning message if any of
- these features is used.) To test for the availability of these features
- in conditional compilation, check for a predefined macro '__GNUC__',
- which is always defined under GCC.
- These extensions are available in C and Objective-C. Most of them are
- also available in C++. *Note Extensions to the C++ Language: C++
- Extensions, for extensions that apply _only_ to C++.
- Some features that are in ISO C99 but not C90 or C++ are also, as
- extensions, accepted by GCC in C90 mode and in C++.
- * Menu:
- * Statement Exprs:: Putting statements and declarations inside expressions.
- * Local Labels:: Labels local to a block.
- * Labels as Values:: Getting pointers to labels, and computed gotos.
- * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
- * Constructing Calls:: Dispatching a call to another function.
- * Typeof:: 'typeof': referring to the type of an expression.
- * Conditionals:: Omitting the middle operand of a '?:' expression.
- * __int128:: 128-bit integers--'__int128'.
- * Long Long:: Double-word integers--'long long int'.
- * Complex:: Data types for complex numbers.
- * Floating Types:: Additional Floating Types.
- * Half-Precision:: Half-Precision Floating Point.
- * Decimal Float:: Decimal Floating Types.
- * Hex Floats:: Hexadecimal floating-point constants.
- * Fixed-Point:: Fixed-Point Types.
- * Named Address Spaces::Named address spaces.
- * Zero Length:: Zero-length arrays.
- * Empty Structures:: Structures with no members.
- * Variable Length:: Arrays whose length is computed at run time.
- * Variadic Macros:: Macros with a variable number of arguments.
- * Escaped Newlines:: Slightly looser rules for escaped newlines.
- * Subscripting:: Any array can be subscripted, even if not an lvalue.
- * Pointer Arith:: Arithmetic on 'void'-pointers and function pointers.
- * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
- * Initializers:: Non-constant initializers.
- * Compound Literals:: Compound literals give structures, unions
- or arrays as values.
- * Designated Inits:: Labeling elements of initializers.
- * Case Ranges:: 'case 1 ... 9' and such.
- * Cast to Union:: Casting to union type from any member of the union.
- * Mixed Declarations:: Mixing declarations and code.
- * Function Attributes:: Declaring that functions have no side effects,
- or that they can never return.
- * Variable Attributes:: Specifying attributes of variables.
- * Type Attributes:: Specifying attributes of types.
- * Label Attributes:: Specifying attributes on labels.
- * Enumerator Attributes:: Specifying attributes on enumerators.
- * Statement Attributes:: Specifying attributes on statements.
- * Attribute Syntax:: Formal syntax for attributes.
- * Function Prototypes:: Prototype declarations and old-style definitions.
- * C++ Comments:: C++ comments are recognized.
- * Dollar Signs:: Dollar sign is allowed in identifiers.
- * Character Escapes:: '\e' stands for the character <ESC>.
- * Alignment:: Inquiring about the alignment of a type or variable.
- * Inline:: Defining inline functions (as fast as macros).
- * Volatiles:: What constitutes an access to a volatile object.
- * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
- * Alternate Keywords:: '__const__', '__asm__', etc., for header files.
- * Incomplete Enums:: 'enum foo;', with details to follow.
- * Function Names:: Printable strings which are the name of the current
- function.
- * Return Address:: Getting the return or frame address of a function.
- * Vector Extensions:: Using vector instructions through built-in functions.
- * Offsetof:: Special syntax for implementing 'offsetof'.
- * __sync Builtins:: Legacy built-in functions for atomic memory access.
- * __atomic Builtins:: Atomic built-in functions with memory model.
- * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
- arithmetic overflow checking.
- * x86 specific memory model extensions for transactional memory:: x86 memory models.
- * Object Size Checking:: Built-in functions for limited buffer overflow
- checking.
- * Pointer Bounds Checker builtins:: Built-in functions for Pointer Bounds Checker.
- * Other Builtins:: Other built-in functions.
- * Target Builtins:: Built-in functions specific to particular targets.
- * Target Format Checks:: Format checks specific to particular targets.
- * Pragmas:: Pragmas accepted by GCC.
- * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
- * Thread-Local:: Per-thread variables.
- * Binary constants:: Binary constants using the '0b' prefix.
- File: gcc.info, Node: Statement Exprs, Next: Local Labels, Up: C Extensions
- 6.1 Statements and Declarations in Expressions
- ==============================================
- A compound statement enclosed in parentheses may appear as an expression
- in GNU C. This allows you to use loops, switches, and local variables
- within an expression.
- Recall that a compound statement is a sequence of statements surrounded
- by braces; in this construct, parentheses go around the braces. For
- example:
- ({ int y = foo (); int z;
- if (y > 0) z = y;
- else z = - y;
- z; })
- is a valid (though slightly more complex than necessary) expression for
- the absolute value of 'foo ()'.
- The last thing in the compound statement should be an expression
- followed by a semicolon; the value of this subexpression serves as the
- value of the entire construct. (If you use some other kind of statement
- last within the braces, the construct has type 'void', and thus
- effectively no value.)
- This feature is especially useful in making macro definitions "safe"
- (so that they evaluate each operand exactly once). For example, the
- "maximum" function is commonly defined as a macro in standard C as
- follows:
- #define max(a,b) ((a) > (b) ? (a) : (b))
- But this definition computes either A or B twice, with bad results if
- the operand has side effects. In GNU C, if you know the type of the
- operands (here taken as 'int'), you can define the macro safely as
- follows:
- #define maxint(a,b) \
- ({int _a = (a), _b = (b); _a > _b ? _a : _b; })
- Embedded statements are not allowed in constant expressions, such as
- the value of an enumeration constant, the width of a bit-field, or the
- initial value of a static variable.
- If you don't know the type of the operand, you can still do this, but
- you must use 'typeof' or '__auto_type' (*note Typeof::).
- In G++, the result value of a statement expression undergoes array and
- function pointer decay, and is returned by value to the enclosing
- expression. For instance, if 'A' is a class, then
- A a;
- ({a;}).Foo ()
- constructs a temporary 'A' object to hold the result of the statement
- expression, and that is used to invoke 'Foo'. Therefore the 'this'
- pointer observed by 'Foo' is not the address of 'a'.
- In a statement expression, any temporaries created within a statement
- are destroyed at that statement's end. This makes statement expressions
- inside macros slightly different from function calls. In the latter
- case temporaries introduced during argument evaluation are destroyed at
- the end of the statement that includes the function call. In the
- statement expression case they are destroyed during the statement
- expression. For instance,
- #define macro(a) ({__typeof__(a) b = (a); b + 3; })
- template<typename T> T function(T a) { T b = a; return b + 3; }
- void foo ()
- {
- macro (X ());
- function (X ());
- }
- has different places where temporaries are destroyed. For the 'macro'
- case, the temporary 'X' is destroyed just after the initialization of
- 'b'. In the 'function' case that temporary is destroyed when the
- function returns.
- These considerations mean that it is probably a bad idea to use
- statement expressions of this form in header files that are designed to
- work with C++. (Note that some versions of the GNU C Library contained
- header files using statement expressions that lead to precisely this
- bug.)
- Jumping into a statement expression with 'goto' or using a 'switch'
- statement outside the statement expression with a 'case' or 'default'
- label inside the statement expression is not permitted. Jumping into a
- statement expression with a computed 'goto' (*note Labels as Values::)
- has undefined behavior. Jumping out of a statement expression is
- permitted, but if the statement expression is part of a larger
- expression then it is unspecified which other subexpressions of that
- expression have been evaluated except where the language definition
- requires certain subexpressions to be evaluated before or after the
- statement expression. In any case, as with a function call, the
- evaluation of a statement expression is not interleaved with the
- evaluation of other parts of the containing expression. For example,
- foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz();
- calls 'foo' and 'bar1' and does not call 'baz' but may or may not call
- 'bar2'. If 'bar2' is called, it is called after 'foo' and before
- 'bar1'.
- File: gcc.info, Node: Local Labels, Next: Labels as Values, Prev: Statement Exprs, Up: C Extensions
- 6.2 Locally Declared Labels
- ===========================
- GCC allows you to declare "local labels" in any nested block scope. A
- local label is just like an ordinary label, but you can only reference
- it (with a 'goto' statement, or by taking its address) within the block
- in which it is declared.
- A local label declaration looks like this:
- __label__ LABEL;
- or
- __label__ LABEL1, LABEL2, /* ... */;
- Local label declarations must come at the beginning of the block,
- before any ordinary declarations or statements.
- The label declaration defines the label _name_, but does not define the
- label itself. You must do this in the usual way, with 'LABEL:', within
- the statements of the statement expression.
- The local label feature is useful for complex macros. If a macro
- contains nested loops, a 'goto' can be useful for breaking out of them.
- However, an ordinary label whose scope is the whole function cannot be
- used: if the macro can be expanded several times in one function, the
- label is multiply defined in that function. A local label avoids this
- problem. For example:
- #define SEARCH(value, array, target) \
- do { \
- __label__ found; \
- typeof (target) _SEARCH_target = (target); \
- typeof (*(array)) *_SEARCH_array = (array); \
- int i, j; \
- int value; \
- for (i = 0; i < max; i++) \
- for (j = 0; j < max; j++) \
- if (_SEARCH_array[i][j] == _SEARCH_target) \
- { (value) = i; goto found; } \
- (value) = -1; \
- found:; \
- } while (0)
- This could also be written using a statement expression:
- #define SEARCH(array, target) \
- ({ \
- __label__ found; \
- typeof (target) _SEARCH_target = (target); \
- typeof (*(array)) *_SEARCH_array = (array); \
- int i, j; \
- int value; \
- for (i = 0; i < max; i++) \
- for (j = 0; j < max; j++) \
- if (_SEARCH_array[i][j] == _SEARCH_target) \
- { value = i; goto found; } \
- value = -1; \
- found: \
- value; \
- })
- Local label declarations also make the labels they declare visible to
- nested functions, if there are any. *Note Nested Functions::, for
- details.
- File: gcc.info, Node: Labels as Values, Next: Nested Functions, Prev: Local Labels, Up: C Extensions
- 6.3 Labels as Values
- ====================
- You can get the address of a label defined in the current function (or a
- containing function) with the unary operator '&&'. The value has type
- 'void *'. This value is a constant and can be used wherever a constant
- of that type is valid. For example:
- void *ptr;
- /* ... */
- ptr = &&foo;
- To use these values, you need to be able to jump to one. This is done
- with the computed goto statement(1), 'goto *EXP;'. For example,
- goto *ptr;
- Any expression of type 'void *' is allowed.
- One way of using these constants is in initializing a static array that
- serves as a jump table:
- static void *array[] = { &&foo, &&bar, &&hack };
- Then you can select a label with indexing, like this:
- goto *array[i];
- Note that this does not check whether the subscript is in bounds--array
- indexing in C never does that.
- Such an array of label values serves a purpose much like that of the
- 'switch' statement. The 'switch' statement is cleaner, so use that
- rather than an array unless the problem does not fit a 'switch'
- statement very well.
- Another use of label values is in an interpreter for threaded code.
- The labels within the interpreter function can be stored in the threaded
- code for super-fast dispatching.
- You may not use this mechanism to jump to code in a different function.
- If you do that, totally unpredictable things happen. The best way to
- avoid this is to store the label address only in automatic variables and
- never pass it as an argument.
- An alternate way to write the above example is
- static const int array[] = { &&foo - &&foo, &&bar - &&foo,
- &&hack - &&foo };
- goto *(&&foo + array[i]);
- This is more friendly to code living in shared libraries, as it reduces
- the number of dynamic relocations that are needed, and by consequence,
- allows the data to be read-only. This alternative with label
- differences is not supported for the AVR target, please use the first
- approach for AVR programs.
- The '&&foo' expressions for the same label might have different values
- if the containing function is inlined or cloned. If a program relies on
- them being always the same, '__attribute__((__noinline__,__noclone__))'
- should be used to prevent inlining and cloning. If '&&foo' is used in a
- static variable initializer, inlining and cloning is forbidden.
- ---------- Footnotes ----------
- (1) The analogous feature in Fortran is called an assigned goto, but
- that name seems inappropriate in C, where one can do more than simply
- store label addresses in label variables.
- File: gcc.info, Node: Nested Functions, Next: Constructing Calls, Prev: Labels as Values, Up: C Extensions
- 6.4 Nested Functions
- ====================
- A "nested function" is a function defined inside another function.
- Nested functions are supported as an extension in GNU C, but are not
- supported by GNU C++.
- The nested function's name is local to the block where it is defined.
- For example, here we define a nested function named 'square', and call
- it twice:
- foo (double a, double b)
- {
- double square (double z) { return z * z; }
- return square (a) + square (b);
- }
- The nested function can access all the variables of the containing
- function that are visible at the point of its definition. This is
- called "lexical scoping". For example, here we show a nested function
- which uses an inherited variable named 'offset':
- bar (int *array, int offset, int size)
- {
- int access (int *array, int index)
- { return array[index + offset]; }
- int i;
- /* ... */
- for (i = 0; i < size; i++)
- /* ... */ access (array, i) /* ... */
- }
- Nested function definitions are permitted within functions in the
- places where variable definitions are allowed; that is, in any block,
- mixed with the other declarations and statements in the block.
- It is possible to call the nested function from outside the scope of
- its name by storing its address or passing the address to another
- function:
- hack (int *array, int size)
- {
- void store (int index, int value)
- { array[index] = value; }
- intermediate (store, size);
- }
- Here, the function 'intermediate' receives the address of 'store' as an
- argument. If 'intermediate' calls 'store', the arguments given to
- 'store' are used to store into 'array'. But this technique works only
- so long as the containing function ('hack', in this example) does not
- exit.
- If you try to call the nested function through its address after the
- containing function exits, all hell breaks loose. If you try to call it
- after a containing scope level exits, and if it refers to some of the
- variables that are no longer in scope, you may be lucky, but it's not
- wise to take the risk. If, however, the nested function does not refer
- to anything that has gone out of scope, you should be safe.
- GCC implements taking the address of a nested function using a
- technique called "trampolines". This technique was described in
- 'Lexical Closures for C++' (Thomas M. Breuel, USENIX C++ Conference
- Proceedings, October 17-21, 1988).
- A nested function can jump to a label inherited from a containing
- function, provided the label is explicitly declared in the containing
- function (*note Local Labels::). Such a jump returns instantly to the
- containing function, exiting the nested function that did the 'goto' and
- any intermediate functions as well. Here is an example:
- bar (int *array, int offset, int size)
- {
- __label__ failure;
- int access (int *array, int index)
- {
- if (index > size)
- goto failure;
- return array[index + offset];
- }
- int i;
- /* ... */
- for (i = 0; i < size; i++)
- /* ... */ access (array, i) /* ... */
- /* ... */
- return 0;
- /* Control comes here from 'access'
- if it detects an error. */
- failure:
- return -1;
- }
- A nested function always has no linkage. Declaring one with 'extern'
- or 'static' is erroneous. If you need to declare the nested function
- before its definition, use 'auto' (which is otherwise meaningless for
- function declarations).
- bar (int *array, int offset, int size)
- {
- __label__ failure;
- auto int access (int *, int);
- /* ... */
- int access (int *array, int index)
- {
- if (index > size)
- goto failure;
- return array[index + offset];
- }
- /* ... */
- }
- File: gcc.info, Node: Constructing Calls, Next: Typeof, Prev: Nested Functions, Up: C Extensions
- 6.5 Constructing Function Calls
- ===============================
- Using the built-in functions described below, you can record the
- arguments a function received, and call another function with the same
- arguments, without knowing the number or types of the arguments.
- You can also record the return value of that function call, and later
- return that value, without knowing what data type the function tried to
- return (as long as your caller expects that data type).
- However, these built-in functions may interact badly with some
- sophisticated features or other extensions of the language. It is,
- therefore, not recommended to use them outside very simple functions
- acting as mere forwarders for their arguments.
- -- Built-in Function: void * __builtin_apply_args ()
- This built-in function returns a pointer to data describing how to
- perform a call with the same arguments as are passed to the current
- function.
- The function saves the arg pointer register, structure value
- address, and all registers that might be used to pass arguments to
- a function into a block of memory allocated on the stack. Then it
- returns the address of that block.
- -- Built-in Function: void * __builtin_apply (void (*FUNCTION)(), void
- *ARGUMENTS, size_t SIZE)
- This built-in function invokes FUNCTION with a copy of the
- parameters described by ARGUMENTS and SIZE.
- The value of ARGUMENTS should be the value returned by
- '__builtin_apply_args'. The argument SIZE specifies the size of
- the stack argument data, in bytes.
- This function returns a pointer to data describing how to return
- whatever value is returned by FUNCTION. The data is saved in a
- block of memory allocated on the stack.
- It is not always simple to compute the proper value for SIZE. The
- value is used by '__builtin_apply' to compute the amount of data
- that should be pushed on the stack and copied from the incoming
- argument area.
- -- Built-in Function: void __builtin_return (void *RESULT)
- This built-in function returns the value described by RESULT from
- the containing function. You should specify, for RESULT, a value
- returned by '__builtin_apply'.
- -- Built-in Function: __builtin_va_arg_pack ()
- This built-in function represents all anonymous arguments of an
- inline function. It can be used only in inline functions that are
- always inlined, never compiled as a separate function, such as
- those using '__attribute__ ((__always_inline__))' or '__attribute__
- ((__gnu_inline__))' extern inline functions. It must be only
- passed as last argument to some other function with variable
- arguments. This is useful for writing small wrapper inlines for
- variable argument functions, when using preprocessor macros is
- undesirable. For example:
- extern int myprintf (FILE *f, const char *format, ...);
- extern inline __attribute__ ((__gnu_inline__)) int
- myprintf (FILE *f, const char *format, ...)
- {
- int r = fprintf (f, "myprintf: ");
- if (r < 0)
- return r;
- int s = fprintf (f, format, __builtin_va_arg_pack ());
- if (s < 0)
- return s;
- return r + s;
- }
- -- Built-in Function: size_t __builtin_va_arg_pack_len ()
- This built-in function returns the number of anonymous arguments of
- an inline function. It can be used only in inline functions that
- are always inlined, never compiled as a separate function, such as
- those using '__attribute__ ((__always_inline__))' or '__attribute__
- ((__gnu_inline__))' extern inline functions. For example following
- does link- or run-time checking of open arguments for optimized
- code:
- #ifdef __OPTIMIZE__
- extern inline __attribute__((__gnu_inline__)) int
- myopen (const char *path, int oflag, ...)
- {
- if (__builtin_va_arg_pack_len () > 1)
- warn_open_too_many_arguments ();
- if (__builtin_constant_p (oflag))
- {
- if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
- {
- warn_open_missing_mode ();
- return __open_2 (path, oflag);
- }
- return open (path, oflag, __builtin_va_arg_pack ());
- }
- if (__builtin_va_arg_pack_len () < 1)
- return __open_2 (path, oflag);
- return open (path, oflag, __builtin_va_arg_pack ());
- }
- #endif
- File: gcc.info, Node: Typeof, Next: Conditionals, Prev: Constructing Calls, Up: C Extensions
- 6.6 Referring to a Type with 'typeof'
- =====================================
- Another way to refer to the type of an expression is with 'typeof'. The
- syntax of using of this keyword looks like 'sizeof', but the construct
- acts semantically like a type name defined with 'typedef'.
- There are two ways of writing the argument to 'typeof': with an
- expression or with a type. Here is an example with an expression:
- typeof (x[0](1))
- This assumes that 'x' is an array of pointers to functions; the type
- described is that of the values of the functions.
- Here is an example with a typename as the argument:
- typeof (int *)
- Here the type described is that of pointers to 'int'.
- If you are writing a header file that must work when included in ISO C
- programs, write '__typeof__' instead of 'typeof'. *Note Alternate
- Keywords::.
- A 'typeof' construct can be used anywhere a typedef name can be used.
- For example, you can use it in a declaration, in a cast, or inside of
- 'sizeof' or 'typeof'.
- The operand of 'typeof' is evaluated for its side effects if and only
- if it is an expression of variably modified type or the name of such a
- type.
- 'typeof' is often useful in conjunction with statement expressions
- (*note Statement Exprs::). Here is how the two together can be used to
- define a safe "maximum" macro which operates on any arithmetic type and
- evaluates each of its arguments exactly once:
- #define max(a,b) \
- ({ typeof (a) _a = (a); \
- typeof (b) _b = (b); \
- _a > _b ? _a : _b; })
- The reason for using names that start with underscores for the local
- variables is to avoid conflicts with variable names that occur within
- the expressions that are substituted for 'a' and 'b'. Eventually we
- hope to design a new form of declaration syntax that allows you to
- declare variables whose scopes start only after their initializers; this
- will be a more reliable way to prevent such conflicts.
- Some more examples of the use of 'typeof':
- * This declares 'y' with the type of what 'x' points to.
- typeof (*x) y;
- * This declares 'y' as an array of such values.
- typeof (*x) y[4];
- * This declares 'y' as an array of pointers to characters:
- typeof (typeof (char *)[4]) y;
- It is equivalent to the following traditional C declaration:
- char *y[4];
- To see the meaning of the declaration using 'typeof', and why it
- might be a useful way to write, rewrite it with these macros:
- #define pointer(T) typeof(T *)
- #define array(T, N) typeof(T [N])
- Now the declaration can be rewritten this way:
- array (pointer (char), 4) y;
- Thus, 'array (pointer (char), 4)' is the type of arrays of 4
- pointers to 'char'.
- In GNU C, but not GNU C++, you may also declare the type of a variable
- as '__auto_type'. In that case, the declaration must declare only one
- variable, whose declarator must just be an identifier, the declaration
- must be initialized, and the type of the variable is determined by the
- initializer; the name of the variable is not in scope until after the
- initializer. (In C++, you should use C++11 'auto' for this purpose.)
- Using '__auto_type', the "maximum" macro above could be written as:
- #define max(a,b) \
- ({ __auto_type _a = (a); \
- __auto_type _b = (b); \
- _a > _b ? _a : _b; })
- Using '__auto_type' instead of 'typeof' has two advantages:
- * Each argument to the macro appears only once in the expansion of
- the macro. This prevents the size of the macro expansion growing
- exponentially when calls to such macros are nested inside arguments
- of such macros.
- * If the argument to the macro has variably modified type, it is
- evaluated only once when using '__auto_type', but twice if 'typeof'
- is used.
- File: gcc.info, Node: Conditionals, Next: __int128, Prev: Typeof, Up: C Extensions
- 6.7 Conditionals with Omitted Operands
- ======================================
- The middle operand in a conditional expression may be omitted. Then if
- the first operand is nonzero, its value is the value of the conditional
- expression.
- Therefore, the expression
- x ? : y
- has the value of 'x' if that is nonzero; otherwise, the value of 'y'.
- This example is perfectly equivalent to
- x ? x : y
- In this simple case, the ability to omit the middle operand is not
- especially useful. When it becomes useful is when the first operand
- does, or may (if it is a macro argument), contain a side effect. Then
- repeating the operand in the middle would perform the side effect twice.
- Omitting the middle operand uses the value already computed without the
- undesirable effects of recomputing it.
- File: gcc.info, Node: __int128, Next: Long Long, Prev: Conditionals, Up: C Extensions
- 6.8 128-bit Integers
- ====================
- As an extension the integer scalar type '__int128' is supported for
- targets which have an integer mode wide enough to hold 128 bits. Simply
- write '__int128' for a signed 128-bit integer, or 'unsigned __int128'
- for an unsigned 128-bit integer. There is no support in GCC for
- expressing an integer constant of type '__int128' for targets with 'long
- long' integer less than 128 bits wide.
- File: gcc.info, Node: Long Long, Next: Complex, Prev: __int128, Up: C Extensions
- 6.9 Double-Word Integers
- ========================
- ISO C99 supports data types for integers that are at least 64 bits wide,
- and as an extension GCC supports them in C90 mode and in C++. Simply
- write 'long long int' for a signed integer, or 'unsigned long long int'
- for an unsigned integer. To make an integer constant of type 'long long
- int', add the suffix 'LL' to the integer. To make an integer constant
- of type 'unsigned long long int', add the suffix 'ULL' to the integer.
- You can use these types in arithmetic like any other integer types.
- Addition, subtraction, and bitwise boolean operations on these types are
- open-coded on all types of machines. Multiplication is open-coded if
- the machine supports a fullword-to-doubleword widening multiply
- instruction. Division and shifts are open-coded only on machines that
- provide special support. The operations that are not open-coded use
- special library routines that come with GCC.
- There may be pitfalls when you use 'long long' types for function
- arguments without function prototypes. If a function expects type 'int'
- for its argument, and you pass a value of type 'long long int',
- confusion results because the caller and the subroutine disagree about
- the number of bytes for the argument. Likewise, if the function expects
- 'long long int' and you pass 'int'. The best way to avoid such problems
- is to use prototypes.
- File: gcc.info, Node: Complex, Next: Floating Types, Prev: Long Long, Up: C Extensions
- 6.10 Complex Numbers
- ====================
- ISO C99 supports complex floating data types, and as an extension GCC
- supports them in C90 mode and in C++. GCC also supports complex integer
- data types which are not part of ISO C99. You can declare complex types
- using the keyword '_Complex'. As an extension, the older GNU keyword
- '__complex__' is also supported.
- For example, '_Complex double x;' declares 'x' as a variable whose real
- part and imaginary part are both of type 'double'. '_Complex short int
- y;' declares 'y' to have real and imaginary parts of type 'short int';
- this is not likely to be useful, but it shows that the set of complex
- types is complete.
- To write a constant with a complex data type, use the suffix 'i' or 'j'
- (either one; they are equivalent). For example, '2.5fi' has type
- '_Complex float' and '3i' has type '_Complex int'. Such a constant
- always has a pure imaginary value, but you can form any complex value
- you like by adding one to a real constant. This is a GNU extension; if
- you have an ISO C99 conforming C library (such as the GNU C Library),
- and want to construct complex constants of floating type, you should
- include '<complex.h>' and use the macros 'I' or '_Complex_I' instead.
- The ISO C++14 library also defines the 'i' suffix, so C++14 code that
- includes the '<complex>' header cannot use 'i' for the GNU extension.
- The 'j' suffix still has the GNU meaning.
- To extract the real part of a complex-valued expression EXP, write
- '__real__ EXP'. Likewise, use '__imag__' to extract the imaginary part.
- This is a GNU extension; for values of floating type, you should use the
- ISO C99 functions 'crealf', 'creal', 'creall', 'cimagf', 'cimag' and
- 'cimagl', declared in '<complex.h>' and also provided as built-in
- functions by GCC.
- The operator '~' performs complex conjugation when used on a value with
- a complex type. This is a GNU extension; for values of floating type,
- you should use the ISO C99 functions 'conjf', 'conj' and 'conjl',
- declared in '<complex.h>' and also provided as built-in functions by
- GCC.
- GCC can allocate complex automatic variables in a noncontiguous
- fashion; it's even possible for the real part to be in a register while
- the imaginary part is on the stack (or vice versa). Only the DWARF
- debug info format can represent this, so use of DWARF is recommended.
- If you are using the stabs debug info format, GCC describes a
- noncontiguous complex variable as if it were two separate variables of
- noncomplex type. If the variable's actual name is 'foo', the two
- fictitious variables are named 'foo$real' and 'foo$imag'. You can
- examine and set these two fictitious variables with your debugger.
- File: gcc.info, Node: Floating Types, Next: Half-Precision, Prev: Complex, Up: C Extensions
- 6.11 Additional Floating Types
- ==============================
- ISO/IEC TS 18661-3:2015 defines C support for additional floating types
- '_FloatN' and '_FloatNx', and GCC supports these type names; the set of
- types supported depends on the target architecture. These types are not
- supported when compiling C++. Constants with these types use suffixes
- 'fN' or 'FN' and 'fNx' or 'FNx'. These type names can be used together
- with '_Complex' to declare complex types.
- As an extension, GNU C and GNU C++ support additional floating types,
- which are not supported by all targets.
- * '__float128' is available on i386, x86_64, IA-64, and hppa HP-UX,
- as well as on PowerPC GNU/Linux targets that enable the vector
- scalar (VSX) instruction set. '__float128' supports the 128-bit
- floating type. On i386, x86_64, PowerPC, and IA-64 other than
- HP-UX, '__float128' is an alias for '_Float128'. On hppa and IA-64
- HP-UX, '__float128' is an alias for 'long double'.
- * '__float80' is available on the i386, x86_64, and IA-64 targets,
- and supports the 80-bit ('XFmode') floating type. It is an alias
- for the type name '_Float64x' on these targets.
- * '__ibm128' is available on PowerPC targets, and provides access to
- the IBM extended double format which is the current format used for
- 'long double'. When 'long double' transitions to '__float128' on
- PowerPC in the future, '__ibm128' will remain for use in
- conversions between the two types.
- Support for these additional types includes the arithmetic operators:
- add, subtract, multiply, divide; unary arithmetic operators; relational
- operators; equality operators; and conversions to and from integer and
- other floating types. Use a suffix 'w' or 'W' in a literal constant of
- type '__float80' or type '__ibm128'. Use a suffix 'q' or 'Q' for
- '_float128'.
- In order to use '_Float128', '__float128', and '__ibm128' on PowerPC
- Linux systems, you must use the '-mfloat128' option. It is expected in
- future versions of GCC that '_Float128' and '__float128' will be enabled
- automatically.
- The '_Float128' type is supported on all systems where '__float128' is
- supported or where 'long double' has the IEEE binary128 format. The
- '_Float64x' type is supported on all systems where '__float128' is
- supported. The '_Float32' type is supported on all systems supporting
- IEEE binary32; the '_Float64' and '_Float32x' types are supported on all
- systems supporting IEEE binary64. The '_Float16' type is supported on
- AArch64 systems by default, and on ARM systems when the IEEE format for
- 16-bit floating-point types is selected with '-mfp16-format=ieee'. GCC
- does not currently support '_Float128x' on any systems.
- On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
- types using the corresponding internal complex type, 'XCmode' for
- '__float80' type and 'TCmode' for '__float128' type:
- typedef _Complex float __attribute__((mode(TC))) _Complex128;
- typedef _Complex float __attribute__((mode(XC))) _Complex80;
- On the PowerPC Linux VSX targets, you can declare complex types using
- the corresponding internal complex type, 'KCmode' for '__float128' type
- and 'ICmode' for '__ibm128' type:
- typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
- typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
- File: gcc.info, Node: Half-Precision, Next: Decimal Float, Prev: Floating Types, Up: C Extensions
- 6.12 Half-Precision Floating Point
- ==================================
- On ARM and AArch64 targets, GCC supports half-precision (16-bit)
- floating point via the '__fp16' type defined in the ARM C Language
- Extensions. On ARM systems, you must enable this type explicitly with
- the '-mfp16-format' command-line option in order to use it.
- ARM targets support two incompatible representations for half-precision
- floating-point values. You must choose one of the representations and
- use it consistently in your program.
- Specifying '-mfp16-format=ieee' selects the IEEE 754-2008 format. This
- format can represent normalized values in the range of 2^{-14} to 65504.
- There are 11 bits of significand precision, approximately 3 decimal
- digits.
- Specifying '-mfp16-format=alternative' selects the ARM alternative
- format. This representation is similar to the IEEE format, but does not
- support infinities or NaNs. Instead, the range of exponents is
- extended, so that this format can represent normalized values in the
- range of 2^{-14} to 131008.
- The GCC port for AArch64 only supports the IEEE 754-2008 format, and
- does not require use of the '-mfp16-format' command-line option.
- The '__fp16' type may only be used as an argument to intrinsics defined
- in '<arm_fp16.h>', or as a storage format. For purposes of arithmetic
- and other operations, '__fp16' values in C or C++ expressions are
- automatically promoted to 'float'.
- The ARM target provides hardware support for conversions between
- '__fp16' and 'float' values as an extension to VFP and NEON (Advanced
- SIMD), and from ARMv8-A provides hardware support for conversions
- between '__fp16' and 'double' values. GCC generates code using these
- hardware instructions if you compile with options to select an FPU that
- provides them; for example, '-mfpu=neon-fp16 -mfloat-abi=softfp', in
- addition to the '-mfp16-format' option to select a half-precision
- format.
- Language-level support for the '__fp16' data type is independent of
- whether GCC generates code using hardware floating-point instructions.
- In cases where hardware support is not specified, GCC implements
- conversions between '__fp16' and other types as library calls.
- It is recommended that portable code use the '_Float16' type defined by
- ISO/IEC TS 18661-3:2015. *Note Floating Types::.
- File: gcc.info, Node: Decimal Float, Next: Hex Floats, Prev: Half-Precision, Up: C Extensions
- 6.13 Decimal Floating Types
- ===========================
- As an extension, GNU C supports decimal floating types as defined in the
- N1312 draft of ISO/IEC WDTR24732. Support for decimal floating types in
- GCC will evolve as the draft technical report changes. Calling
- conventions for any target might also change. Not all targets support
- decimal floating types.
- The decimal floating types are '_Decimal32', '_Decimal64', and
- '_Decimal128'. They use a radix of ten, unlike the floating types
- 'float', 'double', and 'long double' whose radix is not specified by the
- C standard but is usually two.
- Support for decimal floating types includes the arithmetic operators
- add, subtract, multiply, divide; unary arithmetic operators; relational
- operators; equality operators; and conversions to and from integer and
- other floating types. Use a suffix 'df' or 'DF' in a literal constant
- of type '_Decimal32', 'dd' or 'DD' for '_Decimal64', and 'dl' or 'DL'
- for '_Decimal128'.
- GCC support of decimal float as specified by the draft technical report
- is incomplete:
- * When the value of a decimal floating type cannot be represented in
- the integer type to which it is being converted, the result is
- undefined rather than the result value specified by the draft
- technical report.
- * GCC does not provide the C library functionality associated with
- 'math.h', 'fenv.h', 'stdio.h', 'stdlib.h', and 'wchar.h', which
- must come from a separate C library implementation. Because of
- this the GNU C compiler does not define macro '__STDC_DEC_FP__' to
- indicate that the implementation conforms to the technical report.
- Types '_Decimal32', '_Decimal64', and '_Decimal128' are supported by
- the DWARF debug information format.
- File: gcc.info, Node: Hex Floats, Next: Fixed-Point, Prev: Decimal Float, Up: C Extensions
- 6.14 Hex Floats
- ===============
- ISO C99 supports floating-point numbers written not only in the usual
- decimal notation, such as '1.55e1', but also numbers such as '0x1.fp3'
- written in hexadecimal format. As a GNU extension, GCC supports this in
- C90 mode (except in some cases when strictly conforming) and in C++. In
- that format the '0x' hex introducer and the 'p' or 'P' exponent field
- are mandatory. The exponent is a decimal number that indicates the
- power of 2 by which the significant part is multiplied. Thus '0x1.f' is
- 1 15/16, 'p3' multiplies it by 8, and the value of '0x1.fp3' is the same
- as '1.55e1'.
- Unlike for floating-point numbers in the decimal notation the exponent
- is always required in the hexadecimal notation. Otherwise the compiler
- would not be able to resolve the ambiguity of, e.g., '0x1.f'. This
- could mean '1.0f' or '1.9375' since 'f' is also the extension for
- floating-point constants of type 'float'.
- File: gcc.info, Node: Fixed-Point, Next: Named Address Spaces, Prev: Hex Floats, Up: C Extensions
- 6.15 Fixed-Point Types
- ======================
- As an extension, GNU C supports fixed-point types as defined in the
- N1169 draft of ISO/IEC DTR 18037. Support for fixed-point types in GCC
- will evolve as the draft technical report changes. Calling conventions
- for any target might also change. Not all targets support fixed-point
- types.
- The fixed-point types are 'short _Fract', '_Fract', 'long _Fract',
- 'long long _Fract', 'unsigned short _Fract', 'unsigned _Fract',
- 'unsigned long _Fract', 'unsigned long long _Fract', '_Sat short
- _Fract', '_Sat _Fract', '_Sat long _Fract', '_Sat long long _Fract',
- '_Sat unsigned short _Fract', '_Sat unsigned _Fract', '_Sat unsigned
- long _Fract', '_Sat unsigned long long _Fract', 'short _Accum',
- '_Accum', 'long _Accum', 'long long _Accum', 'unsigned short _Accum',
- 'unsigned _Accum', 'unsigned long _Accum', 'unsigned long long _Accum',
- '_Sat short _Accum', '_Sat _Accum', '_Sat long _Accum', '_Sat long long
- _Accum', '_Sat unsigned short _Accum', '_Sat unsigned _Accum', '_Sat
- unsigned long _Accum', '_Sat unsigned long long _Accum'.
- Fixed-point data values contain fractional and optional integral parts.
- The format of fixed-point data varies and depends on the target machine.
- Support for fixed-point types includes:
- * prefix and postfix increment and decrement operators ('++', '--')
- * unary arithmetic operators ('+', '-', '!')
- * binary arithmetic operators ('+', '-', '*', '/')
- * binary shift operators ('<<', '>>')
- * relational operators ('<', '<=', '>=', '>')
- * equality operators ('==', '!=')
- * assignment operators ('+=', '-=', '*=', '/=', '<<=', '>>=')
- * conversions to and from integer, floating-point, or fixed-point
- types
- Use a suffix in a fixed-point literal constant:
- * 'hr' or 'HR' for 'short _Fract' and '_Sat short _Fract'
- * 'r' or 'R' for '_Fract' and '_Sat _Fract'
- * 'lr' or 'LR' for 'long _Fract' and '_Sat long _Fract'
- * 'llr' or 'LLR' for 'long long _Fract' and '_Sat long long _Fract'
- * 'uhr' or 'UHR' for 'unsigned short _Fract' and '_Sat unsigned short
- _Fract'
- * 'ur' or 'UR' for 'unsigned _Fract' and '_Sat unsigned _Fract'
- * 'ulr' or 'ULR' for 'unsigned long _Fract' and '_Sat unsigned long
- _Fract'
- * 'ullr' or 'ULLR' for 'unsigned long long _Fract' and '_Sat unsigned
- long long _Fract'
- * 'hk' or 'HK' for 'short _Accum' and '_Sat short _Accum'
- * 'k' or 'K' for '_Accum' and '_Sat _Accum'
- * 'lk' or 'LK' for 'long _Accum' and '_Sat long _Accum'
- * 'llk' or 'LLK' for 'long long _Accum' and '_Sat long long _Accum'
- * 'uhk' or 'UHK' for 'unsigned short _Accum' and '_Sat unsigned short
- _Accum'
- * 'uk' or 'UK' for 'unsigned _Accum' and '_Sat unsigned _Accum'
- * 'ulk' or 'ULK' for 'unsigned long _Accum' and '_Sat unsigned long
- _Accum'
- * 'ullk' or 'ULLK' for 'unsigned long long _Accum' and '_Sat unsigned
- long long _Accum'
- GCC support of fixed-point types as specified by the draft technical
- report is incomplete:
- * Pragmas to control overflow and rounding behaviors are not
- implemented.
- Fixed-point types are supported by the DWARF debug information format.
- File: gcc.info, Node: Named Address Spaces, Next: Zero Length, Prev: Fixed-Point, Up: C Extensions
- 6.16 Named Address Spaces
- =========================
- As an extension, GNU C supports named address spaces as defined in the
- N1275 draft of ISO/IEC DTR 18037. Support for named address spaces in
- GCC will evolve as the draft technical report changes. Calling
- conventions for any target might also change. At present, only the AVR,
- SPU, M32C, RL78, and x86 targets support address spaces other than the
- generic address space.
- Address space identifiers may be used exactly like any other C type
- qualifier (e.g., 'const' or 'volatile'). See the N1275 document for
- more details.
- 6.16.1 AVR Named Address Spaces
- -------------------------------
- On the AVR target, there are several address spaces that can be used in
- order to put read-only data into the flash memory and access that data
- by means of the special instructions 'LPM' or 'ELPM' needed to read from
- flash.
- Devices belonging to 'avrtiny' and 'avrxmega3' can access flash memory
- by means of 'LD*' instructions because the flash memory is mapped into
- the RAM address space. There is _no need_ for language extensions like
- '__flash' or attribute *note 'progmem': AVR Variable Attributes. The
- default linker description files for these devices cater for that
- feature and '.rodata' stays in flash: The compiler just generates 'LD*'
- instructions, and the linker script adds core specific offsets to all
- '.rodata' symbols: '0x4000' in the case of 'avrtiny' and '0x8000' in the
- case of 'avrxmega3'. See *note AVR Options:: for a list of respective
- devices.
- For devices not in 'avrtiny' or 'avrxmega3', any data including
- read-only data is located in RAM (the generic address space) because
- flash memory is not visible in the RAM address space. In order to
- locate read-only data in flash memory _and_ to generate the right
- instructions to access this data without using (inline) assembler code,
- special address spaces are needed.
- '__flash'
- The '__flash' qualifier locates data in the '.progmem.data'
- section. Data is read using the 'LPM' instruction. Pointers to
- this address space are 16 bits wide.
- '__flash1'
- '__flash2'
- '__flash3'
- '__flash4'
- '__flash5'
- These are 16-bit address spaces locating data in section
- '.progmemN.data' where N refers to address space '__flashN'. The
- compiler sets the 'RAMPZ' segment register appropriately before
- reading data by means of the 'ELPM' instruction.
- '__memx'
- This is a 24-bit address space that linearizes flash and RAM: If
- the high bit of the address is set, data is read from RAM using the
- lower two bytes as RAM address. If the high bit of the address is
- clear, data is read from flash with 'RAMPZ' set according to the
- high byte of the address. *Note '__builtin_avr_flash_segment': AVR
- Built-in Functions.
- Objects in this address space are located in '.progmemx.data'.
- Example
- char my_read (const __flash char ** p)
- {
- /* p is a pointer to RAM that points to a pointer to flash.
- The first indirection of p reads that flash pointer
- from RAM and the second indirection reads a char from this
- flash address. */
- return **p;
- }
- /* Locate array[] in flash memory */
- const __flash int array[] = { 3, 5, 7, 11, 13, 17, 19 };
- int i = 1;
- int main (void)
- {
- /* Return 17 by reading from flash memory */
- return array[array[i]];
- }
- For each named address space supported by avr-gcc there is an equally
- named but uppercase built-in macro defined. The purpose is to
- facilitate testing if respective address space support is available or
- not:
- #ifdef __FLASH
- const __flash int var = 1;
- int read_var (void)
- {
- return var;
- }
- #else
- #include <avr/pgmspace.h> /* From AVR-LibC */
- const int var PROGMEM = 1;
- int read_var (void)
- {
- return (int) pgm_read_word (&var);
- }
- #endif /* __FLASH */
- Notice that attribute *note 'progmem': AVR Variable Attributes. locates
- data in flash but accesses to these data read from generic address
- space, i.e. from RAM, so that you need special accessors like
- 'pgm_read_byte' from AVR-LibC (http://nongnu.org/avr-libc/user-manual/)
- together with attribute 'progmem'.
- Limitations and caveats
- * Reading across the 64 KiB section boundary of the '__flash' or
- '__flashN' address spaces shows undefined behavior. The only
- address space that supports reading across the 64 KiB flash segment
- boundaries is '__memx'.
- * If you use one of the '__flashN' address spaces you must arrange
- your linker script to locate the '.progmemN.data' sections
- according to your needs.
- * Any data or pointers to the non-generic address spaces must be
- qualified as 'const', i.e. as read-only data. This still applies
- if the data in one of these address spaces like software version
- number or calibration lookup table are intended to be changed after
- load time by, say, a boot loader. In this case the right
- qualification is 'const' 'volatile' so that the compiler must not
- optimize away known values or insert them as immediates into
- operands of instructions.
- * The following code initializes a variable 'pfoo' located in static
- storage with a 24-bit address:
- extern const __memx char foo;
- const __memx void *pfoo = &foo;
- * On the reduced Tiny devices like ATtiny40, no address spaces are
- supported. Just use vanilla C / C++ code without overhead as
- outlined above. Attribute 'progmem' is supported but works
- differently, see *note AVR Variable Attributes::.
- 6.16.2 M32C Named Address Spaces
- --------------------------------
- On the M32C target, with the R8C and M16C CPU variants, variables
- qualified with '__far' are accessed using 32-bit addresses in order to
- access memory beyond the first 64 Ki bytes. If '__far' is used with the
- M32CM or M32C CPU variants, it has no effect.
- 6.16.3 RL78 Named Address Spaces
- --------------------------------
- On the RL78 target, variables qualified with '__far' are accessed with
- 32-bit pointers (20-bit addresses) rather than the default 16-bit
- addresses. Non-far variables are assumed to appear in the topmost
- 64 KiB of the address space.
- 6.16.4 SPU Named Address Spaces
- -------------------------------
- On the SPU target variables may be declared as belonging to another
- address space by qualifying the type with the '__ea' address space
- identifier:
- extern int __ea i;
- The compiler generates special code to access the variable 'i'. It may
- use runtime library support, or generate special machine instructions to
- access that address space.
- 6.16.5 x86 Named Address Spaces
- -------------------------------
- On the x86 target, variables may be declared as being relative to the
- '%fs' or '%gs' segments.
- '__seg_fs'
- '__seg_gs'
- The object is accessed with the respective segment override prefix.
- The respective segment base must be set via some method specific to
- the operating system. Rather than require an expensive system call
- to retrieve the segment base, these address spaces are not
- considered to be subspaces of the generic (flat) address space.
- This means that explicit casts are required to convert pointers
- between these address spaces and the generic address space. In
- practice the application should cast to 'uintptr_t' and apply the
- segment base offset that it installed previously.
- The preprocessor symbols '__SEG_FS' and '__SEG_GS' are defined when
- these address spaces are supported.
- File: gcc.info, Node: Zero Length, Next: Empty Structures, Prev: Named Address Spaces, Up: C Extensions
- 6.17 Arrays of Length Zero
- ==========================
- Zero-length arrays are allowed in GNU C. They are very useful as the
- last element of a structure that is really a header for a
- variable-length object:
- struct line {
- int length;
- char contents[0];
- };
- struct line *thisline = (struct line *)
- malloc (sizeof (struct line) + this_length);
- thisline->length = this_length;
- In ISO C90, you would have to give 'contents' a length of 1, which
- means either you waste space or complicate the argument to 'malloc'.
- In ISO C99, you would use a "flexible array member", which is slightly
- different in syntax and semantics:
- * Flexible array members are written as 'contents[]' without the '0'.
- * Flexible array members have incomplete type, and so the 'sizeof'
- operator may not be applied. As a quirk of the original
- implementation of zero-length arrays, 'sizeof' evaluates to zero.
- * Flexible array members may only appear as the last member of a
- 'struct' that is otherwise non-empty.
- * A structure containing a flexible array member, or a union
- containing such a structure (possibly recursively), may not be a
- member of a structure or an element of an array. (However, these
- uses are permitted by GCC as extensions.)
- Non-empty initialization of zero-length arrays is treated like any case
- where there are more initializer elements than the array holds, in that
- a suitable warning about "excess elements in array" is given, and the
- excess elements (all of them, in this case) are ignored.
- GCC allows static initialization of flexible array members. This is
- equivalent to defining a new structure containing the original structure
- followed by an array of sufficient size to contain the data. E.g. in
- the following, 'f1' is constructed as if it were declared like 'f2'.
- struct f1 {
- int x; int y[];
- } f1 = { 1, { 2, 3, 4 } };
- struct f2 {
- struct f1 f1; int data[3];
- } f2 = { { 1 }, { 2, 3, 4 } };
- The convenience of this extension is that 'f1' has the desired type,
- eliminating the need to consistently refer to 'f2.f1'.
- This has symmetry with normal static arrays, in that an array of
- unknown size is also written with '[]'.
- Of course, this extension only makes sense if the extra data comes at
- the end of a top-level object, as otherwise we would be overwriting data
- at subsequent offsets. To avoid undue complication and confusion with
- initialization of deeply nested arrays, we simply disallow any non-empty
- initialization except when the structure is the top-level object. For
- example:
- struct foo { int x; int y[]; };
- struct bar { struct foo z; };
- struct foo a = { 1, { 2, 3, 4 } }; // Valid.
- struct bar b = { { 1, { 2, 3, 4 } } }; // Invalid.
- struct bar c = { { 1, { } } }; // Valid.
- struct foo d[1] = { { 1, { 2, 3, 4 } } }; // Invalid.
- File: gcc.info, Node: Empty Structures, Next: Variable Length, Prev: Zero Length, Up: C Extensions
- 6.18 Structures with No Members
- ===============================
- GCC permits a C structure to have no members:
- struct empty {
- };
- The structure has size zero. In C++, empty structures are part of the
- language. G++ treats empty structures as if they had a single member of
- type 'char'.
- File: gcc.info, Node: Variable Length, Next: Variadic Macros, Prev: Empty Structures, Up: C Extensions
- 6.19 Arrays of Variable Length
- ==============================
- Variable-length automatic arrays are allowed in ISO C99, and as an
- extension GCC accepts them in C90 mode and in C++. These arrays are
- declared like any other automatic arrays, but with a length that is not
- a constant expression. The storage is allocated at the point of
- declaration and deallocated when the block scope containing the
- declaration exits. For example:
- FILE *
- concat_fopen (char *s1, char *s2, char *mode)
- {
- char str[strlen (s1) + strlen (s2) + 1];
- strcpy (str, s1);
- strcat (str, s2);
- return fopen (str, mode);
- }
- Jumping or breaking out of the scope of the array name deallocates the
- storage. Jumping into the scope is not allowed; you get an error
- message for it.
- As an extension, GCC accepts variable-length arrays as a member of a
- structure or a union. For example:
- void
- foo (int n)
- {
- struct S { int x[n]; };
- }
- You can use the function 'alloca' to get an effect much like
- variable-length arrays. The function 'alloca' is available in many
- other C implementations (but not in all). On the other hand,
- variable-length arrays are more elegant.
- There are other differences between these two methods. Space allocated
- with 'alloca' exists until the containing _function_ returns. The space
- for a variable-length array is deallocated as soon as the array name's
- scope ends, unless you also use 'alloca' in this scope.
- You can also use variable-length arrays as arguments to functions:
- struct entry
- tester (int len, char data[len][len])
- {
- /* ... */
- }
- The length of an array is computed once when the storage is allocated
- and is remembered for the scope of the array in case you access it with
- 'sizeof'.
- If you want to pass the array first and the length afterward, you can
- use a forward declaration in the parameter list--another GNU extension.
- struct entry
- tester (int len; char data[len][len], int len)
- {
- /* ... */
- }
- The 'int len' before the semicolon is a "parameter forward
- declaration", and it serves the purpose of making the name 'len' known
- when the declaration of 'data' is parsed.
- You can write any number of such parameter forward declarations in the
- parameter list. They can be separated by commas or semicolons, but the
- last one must end with a semicolon, which is followed by the "real"
- parameter declarations. Each forward declaration must match a "real"
- declaration in parameter name and data type. ISO C99 does not support
- parameter forward declarations.
- File: gcc.info, Node: Variadic Macros, Next: Escaped Newlines, Prev: Variable Length, Up: C Extensions
- 6.20 Macros with a Variable Number of Arguments.
- ================================================
- In the ISO C standard of 1999, a macro can be declared to accept a
- variable number of arguments much as a function can. The syntax for
- defining the macro is similar to that of a function. Here is an
- example:
- #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
- Here '...' is a "variable argument". In the invocation of such a macro,
- it represents the zero or more tokens until the closing parenthesis that
- ends the invocation, including any commas. This set of tokens replaces
- the identifier '__VA_ARGS__' in the macro body wherever it appears. See
- the CPP manual for more information.
- GCC has long supported variadic macros, and used a different syntax
- that allowed you to give a name to the variable arguments just like any
- other argument. Here is an example:
- #define debug(format, args...) fprintf (stderr, format, args)
- This is in all ways equivalent to the ISO C example above, but arguably
- more readable and descriptive.
- GNU CPP has two further variadic macro extensions, and permits them to
- be used with either of the above forms of macro definition.
- In standard C, you are not allowed to leave the variable argument out
- entirely; but you are allowed to pass an empty argument. For example,
- this invocation is invalid in ISO C, because there is no comma after the
- string:
- debug ("A message")
- GNU CPP permits you to completely omit the variable arguments in this
- way. In the above examples, the compiler would complain, though since
- the expansion of the macro still has the extra comma after the format
- string.
- To help solve this problem, CPP behaves specially for variable
- arguments used with the token paste operator, '##'. If instead you
- write
- #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
- and if the variable arguments are omitted or empty, the '##' operator
- causes the preprocessor to remove the comma before it. If you do
- provide some variable arguments in your macro invocation, GNU CPP does
- not complain about the paste operation and instead places the variable
- arguments after the comma. Just like any other pasted macro argument,
- these arguments are not macro expanded.
- File: gcc.info, Node: Escaped Newlines, Next: Subscripting, Prev: Variadic Macros, Up: C Extensions
- 6.21 Slightly Looser Rules for Escaped Newlines
- ===============================================
- The preprocessor treatment of escaped newlines is more relaxed than that
- specified by the C90 standard, which requires the newline to immediately
- follow a backslash. GCC's implementation allows whitespace in the form
- of spaces, horizontal and vertical tabs, and form feeds between the
- backslash and the subsequent newline. The preprocessor issues a
- warning, but treats it as a valid escaped newline and combines the two
- lines to form a single logical line. This works within comments and
- tokens, as well as between tokens. Comments are _not_ treated as
- whitespace for the purposes of this relaxation, since they have not yet
- been replaced with spaces.
- File: gcc.info, Node: Subscripting, Next: Pointer Arith, Prev: Escaped Newlines, Up: C Extensions
- 6.22 Non-Lvalue Arrays May Have Subscripts
- ==========================================
- In ISO C99, arrays that are not lvalues still decay to pointers, and may
- be subscripted, although they may not be modified or used after the next
- sequence point and the unary '&' operator may not be applied to them.
- As an extension, GNU C allows such arrays to be subscripted in C90 mode,
- though otherwise they do not decay to pointers outside C99 mode. For
- example, this is valid in GNU C though not valid in C90:
- struct foo {int a[4];};
- struct foo f();
- bar (int index)
- {
- return f().a[index];
- }
- File: gcc.info, Node: Pointer Arith, Next: Pointers to Arrays, Prev: Subscripting, Up: C Extensions
- 6.23 Arithmetic on 'void'- and Function-Pointers
- ================================================
- In GNU C, addition and subtraction operations are supported on pointers
- to 'void' and on pointers to functions. This is done by treating the
- size of a 'void' or of a function as 1.
- A consequence of this is that 'sizeof' is also allowed on 'void' and on
- function types, and returns 1.
- The option '-Wpointer-arith' requests a warning if these extensions are
- used.
- File: gcc.info, Node: Pointers to Arrays, Next: Initializers, Prev: Pointer Arith, Up: C Extensions
- 6.24 Pointers to Arrays with Qualifiers Work as Expected
- ========================================================
- In GNU C, pointers to arrays with qualifiers work similar to pointers to
- other qualified types. For example, a value of type 'int (*)[5]' can be
- used to initialize a variable of type 'const int (*)[5]'. These types
- are incompatible in ISO C because the 'const' qualifier is formally
- attached to the element type of the array and not the array itself.
- extern void
- transpose (int N, int M, double out[M][N], const double in[N][M]);
- double x[3][2];
- double y[2][3];
- ...
- transpose(3, 2, y, x);
- File: gcc.info, Node: Initializers, Next: Compound Literals, Prev: Pointers to Arrays, Up: C Extensions
- 6.25 Non-Constant Initializers
- ==============================
- As in standard C++ and ISO C99, the elements of an aggregate initializer
- for an automatic variable are not required to be constant expressions in
- GNU C. Here is an example of an initializer with run-time varying
- elements:
- foo (float f, float g)
- {
- float beat_freqs[2] = { f-g, f+g };
- /* ... */
- }
- File: gcc.info, Node: Compound Literals, Next: Designated Inits, Prev: Initializers, Up: C Extensions
- 6.26 Compound Literals
- ======================
- A compound literal looks like a cast of a brace-enclosed aggregate
- initializer list. Its value is an object of the type specified in the
- cast, containing the elements specified in the initializer. Unlike the
- result of a cast, a compound literal is an lvalue. ISO C99 and later
- support compound literals. As an extension, GCC supports compound
- literals also in C90 mode and in C++, although as explained below, the
- C++ semantics are somewhat different.
- Usually, the specified type of a compound literal is a structure.
- Assume that 'struct foo' and 'structure' are declared as shown:
- struct foo {int a; char b[2];} structure;
- Here is an example of constructing a 'struct foo' with a compound
- literal:
- structure = ((struct foo) {x + y, 'a', 0});
- This is equivalent to writing the following:
- {
- struct foo temp = {x + y, 'a', 0};
- structure = temp;
- }
- You can also construct an array, though this is dangerous in C++, as
- explained below. If all the elements of the compound literal are (made
- up of) simple constant expressions suitable for use in initializers of
- objects of static storage duration, then the compound literal can be
- coerced to a pointer to its first element and used in such an
- initializer, as shown here:
- char **foo = (char *[]) { "x", "y", "z" };
- Compound literals for scalar types and union types are also allowed.
- In the following example the variable 'i' is initialized to the value
- '2', the result of incrementing the unnamed object created by the
- compound literal.
- int i = ++(int) { 1 };
- As a GNU extension, GCC allows initialization of objects with static
- storage duration by compound literals (which is not possible in ISO C99
- because the initializer is not a constant). It is handled as if the
- object were initialized only with the brace-enclosed list if the types
- of the compound literal and the object match. The elements of the
- compound literal must be constant. If the object being initialized has
- array type of unknown size, the size is determined by the size of the
- compound literal.
- static struct foo x = (struct foo) {1, 'a', 'b'};
- static int y[] = (int []) {1, 2, 3};
- static int z[] = (int [3]) {1};
- The above lines are equivalent to the following:
- static struct foo x = {1, 'a', 'b'};
- static int y[] = {1, 2, 3};
- static int z[] = {1, 0, 0};
- In C, a compound literal designates an unnamed object with static or
- automatic storage duration. In C++, a compound literal designates a
- temporary object that only lives until the end of its full-expression.
- As a result, well-defined C code that takes the address of a subobject
- of a compound literal can be undefined in C++, so G++ rejects the
- conversion of a temporary array to a pointer. For instance, if the
- array compound literal example above appeared inside a function, any
- subsequent use of 'foo' in C++ would have undefined behavior because the
- lifetime of the array ends after the declaration of 'foo'.
- As an optimization, G++ sometimes gives array compound literals longer
- lifetimes: when the array either appears outside a function or has a
- 'const'-qualified type. If 'foo' and its initializer had elements of
- type 'char *const' rather than 'char *', or if 'foo' were a global
- variable, the array would have static storage duration. But it is
- probably safest just to avoid the use of array compound literals in C++
- code.
- File: gcc.info, Node: Designated Inits, Next: Case Ranges, Prev: Compound Literals, Up: C Extensions
- 6.27 Designated Initializers
- ============================
- Standard C90 requires the elements of an initializer to appear in a
- fixed order, the same as the order of the elements in the array or
- structure being initialized.
- In ISO C99 you can give the elements in any order, specifying the array
- indices or structure field names they apply to, and GNU C allows this as
- an extension in C90 mode as well. This extension is not implemented in
- GNU C++.
- To specify an array index, write '[INDEX] =' before the element value.
- For example,
- int a[6] = { [4] = 29, [2] = 15 };
- is equivalent to
- int a[6] = { 0, 0, 15, 0, 29, 0 };
- The index values must be constant expressions, even if the array being
- initialized is automatic.
- An alternative syntax for this that has been obsolete since GCC 2.5 but
- GCC still accepts is to write '[INDEX]' before the element value, with
- no '='.
- To initialize a range of elements to the same value, write '[FIRST ...
- LAST] = VALUE'. This is a GNU extension. For example,
- int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };
- If the value in it has side effects, the side effects happen only once,
- not for each initialized field by the range initializer.
- Note that the length of the array is the highest value specified plus
- one.
- In a structure initializer, specify the name of a field to initialize
- with '.FIELDNAME =' before the element value. For example, given the
- following structure,
- struct point { int x, y; };
- the following initialization
- struct point p = { .y = yvalue, .x = xvalue };
- is equivalent to
- struct point p = { xvalue, yvalue };
- Another syntax that has the same meaning, obsolete since GCC 2.5, is
- 'FIELDNAME:', as shown here:
- struct point p = { y: yvalue, x: xvalue };
- Omitted field members are implicitly initialized the same as objects
- that have static storage duration.
- The '[INDEX]' or '.FIELDNAME' is known as a "designator". You can also
- use a designator (or the obsolete colon syntax) when initializing a
- union, to specify which element of the union should be used. For
- example,
- union foo { int i; double d; };
- union foo f = { .d = 4 };
- converts 4 to a 'double' to store it in the union using the second
- element. By contrast, casting 4 to type 'union foo' stores it into the
- union as the integer 'i', since it is an integer. *Note Cast to
- Union::.
- You can combine this technique of naming elements with ordinary C
- initialization of successive elements. Each initializer element that
- does not have a designator applies to the next consecutive element of
- the array or structure. For example,
- int a[6] = { [1] = v1, v2, [4] = v4 };
- is equivalent to
- int a[6] = { 0, v1, v2, 0, v4, 0 };
- Labeling the elements of an array initializer is especially useful when
- the indices are characters or belong to an 'enum' type. For example:
- int whitespace[256]
- = { [' '] = 1, ['\t'] = 1, ['\h'] = 1,
- ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 };
- You can also write a series of '.FIELDNAME' and '[INDEX]' designators
- before an '=' to specify a nested subobject to initialize; the list is
- taken relative to the subobject corresponding to the closest surrounding
- brace pair. For example, with the 'struct point' declaration above:
- struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };
- If the same field is initialized multiple times, it has the value from
- the last initialization. If any such overridden initialization has side
- effect, it is unspecified whether the side effect happens or not.
- Currently, GCC discards them and issues a warning.
- File: gcc.info, Node: Case Ranges, Next: Cast to Union, Prev: Designated Inits, Up: C Extensions
- 6.28 Case Ranges
- ================
- You can specify a range of consecutive values in a single 'case' label,
- like this:
- case LOW ... HIGH:
- This has the same effect as the proper number of individual 'case'
- labels, one for each integer value from LOW to HIGH, inclusive.
- This feature is especially useful for ranges of ASCII character codes:
- case 'A' ... 'Z':
- *Be careful:* Write spaces around the '...', for otherwise it may be
- parsed wrong when you use it with integer values. For example, write
- this:
- case 1 ... 5:
- rather than this:
- case 1...5:
- File: gcc.info, Node: Cast to Union, Next: Mixed Declarations, Prev: Case Ranges, Up: C Extensions
- 6.29 Cast to a Union Type
- =========================
- A cast to union type looks similar to other casts, except that the type
- specified is a union type. You can specify the type either with the
- 'union' keyword or with a 'typedef' name that refers to a union. A cast
- to a union actually creates a compound literal and yields an lvalue, not
- an rvalue like true casts do. *Note Compound Literals::.
- The types that may be cast to the union type are those of the members
- of the union. Thus, given the following union and variables:
- union foo { int i; double d; };
- int x;
- double y;
- both 'x' and 'y' can be cast to type 'union foo'.
- Using the cast as the right-hand side of an assignment to a variable of
- union type is equivalent to storing in a member of the union:
- union foo u;
- /* ... */
- u = (union foo) x == u.i = x
- u = (union foo) y == u.d = y
- You can also use the union cast as a function argument:
- void hack (union foo);
- /* ... */
- hack ((union foo) x);
- File: gcc.info, Node: Mixed Declarations, Next: Function Attributes, Prev: Cast to Union, Up: C Extensions
- 6.30 Mixed Declarations and Code
- ================================
- ISO C99 and ISO C++ allow declarations and code to be freely mixed
- within compound statements. As an extension, GNU C also allows this in
- C90 mode. For example, you could do:
- int i;
- /* ... */
- i++;
- int j = i + 2;
- Each identifier is visible from where it is declared until the end of
- the enclosing block.
- File: gcc.info, Node: Function Attributes, Next: Variable Attributes, Prev: Mixed Declarations, Up: C Extensions
- 6.31 Declaring Attributes of Functions
- ======================================
- In GNU C, you can use function attributes to declare certain things
- about functions called in your program which help the compiler optimize
- calls and check your code more carefully. For example, you can use
- attributes to declare that a function never returns ('noreturn'),
- returns a value depending only on its arguments ('pure'), or has
- 'printf'-style arguments ('format').
- You can also use attributes to control memory placement, code
- generation options or call/return conventions within the function being
- annotated. Many of these attributes are target-specific. For example,
- many targets support attributes for defining interrupt handler
- functions, which typically must follow special register usage and return
- conventions.
- Function attributes are introduced by the '__attribute__' keyword on a
- declaration, followed by an attribute specification inside double
- parentheses. You can specify multiple attributes in a declaration by
- separating them by commas within the double parentheses or by
- immediately following an attribute declaration with another attribute
- declaration. *Note Attribute Syntax::, for the exact rules on attribute
- syntax and placement. Compatible attribute specifications on distinct
- declarations of the same function are merged. An attribute
- specification that is not compatible with attributes already applied to
- a declaration of the same function is ignored with a warning.
- GCC also supports attributes on variable declarations (*note Variable
- Attributes::), labels (*note Label Attributes::), enumerators (*note
- Enumerator Attributes::), statements (*note Statement Attributes::), and
- types (*note Type Attributes::).
- There is some overlap between the purposes of attributes and pragmas
- (*note Pragmas Accepted by GCC: Pragmas.). It has been found convenient
- to use '__attribute__' to achieve a natural attachment of attributes to
- their corresponding declarations, whereas '#pragma' is of use for
- compatibility with other compilers or constructs that do not naturally
- form part of the grammar.
- In addition to the attributes documented here, GCC plugins may provide
- their own attributes.
- * Menu:
- * Common Function Attributes::
- * AArch64 Function Attributes::
- * ARC Function Attributes::
- * ARM Function Attributes::
- * AVR Function Attributes::
- * Blackfin Function Attributes::
- * CR16 Function Attributes::
- * Epiphany Function Attributes::
- * H8/300 Function Attributes::
- * IA-64 Function Attributes::
- * M32C Function Attributes::
- * M32R/D Function Attributes::
- * m68k Function Attributes::
- * MCORE Function Attributes::
- * MeP Function Attributes::
- * MicroBlaze Function Attributes::
- * Microsoft Windows Function Attributes::
- * MIPS Function Attributes::
- * MSP430 Function Attributes::
- * NDS32 Function Attributes::
- * Nios II Function Attributes::
- * Nvidia PTX Function Attributes::
- * PowerPC Function Attributes::
- * RISC-V Function Attributes::
- * RL78 Function Attributes::
- * RX Function Attributes::
- * S/390 Function Attributes::
- * SH Function Attributes::
- * SPU Function Attributes::
- * Symbian OS Function Attributes::
- * V850 Function Attributes::
- * Visium Function Attributes::
- * x86 Function Attributes::
- * Xstormy16 Function Attributes::
- File: gcc.info, Node: Common Function Attributes, Next: AArch64 Function Attributes, Up: Function Attributes
- 6.31.1 Common Function Attributes
- ---------------------------------
- The following attributes are supported on most targets.
- 'alias ("TARGET")'
- The 'alias' attribute causes the declaration to be emitted as an
- alias for another symbol, which must be specified. For instance,
- void __f () { /* Do something. */; }
- void f () __attribute__ ((weak, alias ("__f")));
- defines 'f' to be a weak alias for '__f'. In C++, the mangled name
- for the target must be used. It is an error if '__f' is not
- defined in the same translation unit.
- This attribute requires assembler and object file support, and may
- not be available on all targets.
- 'aligned (ALIGNMENT)'
- This attribute specifies a minimum alignment for the function,
- measured in bytes.
- You cannot use this attribute to decrease the alignment of a
- function, only to increase it. However, when you explicitly
- specify a function alignment this overrides the effect of the
- '-falign-functions' (*note Optimize Options::) option for this
- function.
- Note that the effectiveness of 'aligned' attributes may be limited
- by inherent limitations in your linker. On many systems, the
- linker is only able to arrange for functions to be aligned up to a
- certain maximum alignment. (For some linkers, the maximum
- supported alignment may be very very small.) See your linker
- documentation for further information.
- The 'aligned' attribute can also be used for variables and fields
- (*note Variable Attributes::.)
- 'alloc_align'
- The 'alloc_align' attribute is used to tell the compiler that the
- function return value points to memory, where the returned pointer
- minimum alignment is given by one of the functions parameters. GCC
- uses this information to improve pointer alignment analysis.
- The function parameter denoting the allocated alignment is
- specified by one integer argument, whose number is the argument of
- the attribute. Argument numbering starts at one.
- For instance,
- void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
- declares that 'my_memalign' returns memory with minimum alignment
- given by parameter 1.
- 'alloc_size'
- The 'alloc_size' attribute is used to tell the compiler that the
- function return value points to memory, where the size is given by
- one or two of the functions parameters. GCC uses this information
- to improve the correctness of '__builtin_object_size'.
- The function parameter(s) denoting the allocated size are specified
- by one or two integer arguments supplied to the attribute. The
- allocated size is either the value of the single function argument
- specified or the product of the two function arguments specified.
- Argument numbering starts at one.
- For instance,
- void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
- void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
- declares that 'my_calloc' returns memory of the size given by the
- product of parameter 1 and 2 and that 'my_realloc' returns memory
- of the size given by parameter 2.
- 'always_inline'
- Generally, functions are not inlined unless optimization is
- specified. For functions declared inline, this attribute inlines
- the function independent of any restrictions that otherwise apply
- to inlining. Failure to inline such a function is diagnosed as an
- error. Note that if such a function is called indirectly the
- compiler may or may not inline it depending on optimization level
- and a failure to inline an indirect call may or may not be
- diagnosed.
- 'artificial'
- This attribute is useful for small inline wrappers that if possible
- should appear during debugging as a unit. Depending on the debug
- info format it either means marking the function as artificial or
- using the caller location for all instructions within the inlined
- body.
- 'assume_aligned'
- The 'assume_aligned' attribute is used to tell the compiler that
- the function return value points to memory, where the returned
- pointer minimum alignment is given by the first argument. If the
- attribute has two arguments, the second argument is misalignment
- offset.
- For instance
- void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
- void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
- declares that 'my_alloc1' returns 16-byte aligned pointer and that
- 'my_alloc2' returns a pointer whose value modulo 32 is equal to 8.
- 'bnd_instrument'
- The 'bnd_instrument' attribute on functions is used to inform the
- compiler that the function should be instrumented when compiled
- with the '-fchkp-instrument-marked-only' option.
- 'bnd_legacy'
- The 'bnd_legacy' attribute on functions is used to inform the
- compiler that the function should not be instrumented when compiled
- with the '-fcheck-pointer-bounds' option.
- 'cold'
- The 'cold' attribute on functions is used to inform the compiler
- that the function is unlikely to be executed. The function is
- optimized for size rather than speed and on many targets it is
- placed into a special subsection of the text section so all cold
- functions appear close together, improving code locality of
- non-cold parts of program. The paths leading to calls of cold
- functions within code are marked as unlikely by the branch
- prediction mechanism. It is thus useful to mark functions used to
- handle unlikely conditions, such as 'perror', as cold to improve
- optimization of hot functions that do call marked functions in rare
- occasions.
- When profile feedback is available, via '-fprofile-use', cold
- functions are automatically detected and this attribute is ignored.
- 'const'
- Many functions do not examine any values except their arguments,
- and have no effects except to return a value. Calls to such
- functions lend themselves to optimization such as common
- subexpression elimination. The 'const' attribute imposes greater
- restrictions on a function's definition than the similar 'pure'
- attribute below because it prohibits the function from reading
- global variables. Consequently, the presence of the attribute on a
- function declaration allows GCC to emit more efficient code for
- some calls to the function. Decorating the same function with both
- the 'const' and the 'pure' attribute is diagnosed.
- Note that a function that has pointer arguments and examines the
- data pointed to must _not_ be declared 'const'. Likewise, a
- function that calls a non-'const' function usually must not be
- 'const'. Because a 'const' function cannot have any side effects
- it does not make sense for such a function to return 'void'.
- Declaring such a function is diagnosed.
- 'constructor'
- 'destructor'
- 'constructor (PRIORITY)'
- 'destructor (PRIORITY)'
- The 'constructor' attribute causes the function to be called
- automatically before execution enters 'main ()'. Similarly, the
- 'destructor' attribute causes the function to be called
- automatically after 'main ()' completes or 'exit ()' is called.
- Functions with these attributes are useful for initializing data
- that is used implicitly during the execution of the program.
- You may provide an optional integer priority to control the order
- in which constructor and destructor functions are run. A
- constructor with a smaller priority number runs before a
- constructor with a larger priority number; the opposite
- relationship holds for destructors. So, if you have a constructor
- that allocates a resource and a destructor that deallocates the
- same resource, both functions typically have the same priority.
- The priorities for constructor and destructor functions are the
- same as those specified for namespace-scope C++ objects (*note C++
- Attributes::). However, at present, the order in which
- constructors for C++ objects with static storage duration and
- functions decorated with attribute 'constructor' are invoked is
- unspecified. In mixed declarations, attribute 'init_priority' can
- be used to impose a specific ordering.
- 'deprecated'
- 'deprecated (MSG)'
- The 'deprecated' attribute results in a warning if the function is
- used anywhere in the source file. This is useful when identifying
- functions that are expected to be removed in a future version of a
- program. The warning also includes the location of the declaration
- of the deprecated function, to enable users to easily find further
- information about why the function is deprecated, or what they
- should do instead. Note that the warnings only occurs for uses:
- int old_fn () __attribute__ ((deprecated));
- int old_fn ();
- int (*fn_ptr)() = old_fn;
- results in a warning on line 3 but not line 2. The optional MSG
- argument, which must be a string, is printed in the warning if
- present.
- The 'deprecated' attribute can also be used for variables and types
- (*note Variable Attributes::, *note Type Attributes::.)
- 'error ("MESSAGE")'
- 'warning ("MESSAGE")'
- If the 'error' or 'warning' attribute is used on a function
- declaration and a call to such a function is not eliminated through
- dead code elimination or other optimizations, an error or warning
- (respectively) that includes MESSAGE is diagnosed. This is useful
- for compile-time checking, especially together with
- '__builtin_constant_p' and inline functions where checking the
- inline function arguments is not possible through 'extern char
- [(condition) ? 1 : -1];' tricks.
- While it is possible to leave the function undefined and thus
- invoke a link failure (to define the function with a message in
- '.gnu.warning*' section), when using these attributes the problem
- is diagnosed earlier and with exact location of the call even in
- presence of inline functions or when not emitting debugging
- information.
- 'externally_visible'
- This attribute, attached to a global variable or function,
- nullifies the effect of the '-fwhole-program' command-line option,
- so the object remains visible outside the current compilation unit.
- If '-fwhole-program' is used together with '-flto' and 'gold' is
- used as the linker plugin, 'externally_visible' attributes are
- automatically added to functions (not variable yet due to a current
- 'gold' issue) that are accessed outside of LTO objects according to
- resolution file produced by 'gold'. For other linkers that cannot
- generate resolution file, explicit 'externally_visible' attributes
- are still necessary.
- 'flatten'
- Generally, inlining into a function is limited. For a function
- marked with this attribute, every call inside this function is
- inlined, if possible. Whether the function itself is considered
- for inlining depends on its size and the current inlining
- parameters.
- 'format (ARCHETYPE, STRING-INDEX, FIRST-TO-CHECK)'
- The 'format' attribute specifies that a function takes 'printf',
- 'scanf', 'strftime' or 'strfmon' style arguments that should be
- type-checked against a format string. For example, the
- declaration:
- extern int
- my_printf (void *my_object, const char *my_format, ...)
- __attribute__ ((format (printf, 2, 3)));
- causes the compiler to check the arguments in calls to 'my_printf'
- for consistency with the 'printf' style format string argument
- 'my_format'.
- The parameter ARCHETYPE determines how the format string is
- interpreted, and should be 'printf', 'scanf', 'strftime',
- 'gnu_printf', 'gnu_scanf', 'gnu_strftime' or 'strfmon'. (You can
- also use '__printf__', '__scanf__', '__strftime__' or
- '__strfmon__'.) On MinGW targets, 'ms_printf', 'ms_scanf', and
- 'ms_strftime' are also present. ARCHETYPE values such as 'printf'
- refer to the formats accepted by the system's C runtime library,
- while values prefixed with 'gnu_' always refer to the formats
- accepted by the GNU C Library. On Microsoft Windows targets,
- values prefixed with 'ms_' refer to the formats accepted by the
- 'msvcrt.dll' library. The parameter STRING-INDEX specifies which
- argument is the format string argument (starting from 1), while
- FIRST-TO-CHECK is the number of the first argument to check against
- the format string. For functions where the arguments are not
- available to be checked (such as 'vprintf'), specify the third
- parameter as zero. In this case the compiler only checks the
- format string for consistency. For 'strftime' formats, the third
- parameter is required to be zero. Since non-static C++ methods
- have an implicit 'this' argument, the arguments of such methods
- should be counted from two, not one, when giving values for
- STRING-INDEX and FIRST-TO-CHECK.
- In the example above, the format string ('my_format') is the second
- argument of the function 'my_print', and the arguments to check
- start with the third argument, so the correct parameters for the
- format attribute are 2 and 3.
- The 'format' attribute allows you to identify your own functions
- that take format strings as arguments, so that GCC can check the
- calls to these functions for errors. The compiler always (unless
- '-ffreestanding' or '-fno-builtin' is used) checks formats for the
- standard library functions 'printf', 'fprintf', 'sprintf', 'scanf',
- 'fscanf', 'sscanf', 'strftime', 'vprintf', 'vfprintf' and
- 'vsprintf' whenever such warnings are requested (using '-Wformat'),
- so there is no need to modify the header file 'stdio.h'. In C99
- mode, the functions 'snprintf', 'vsnprintf', 'vscanf', 'vfscanf'
- and 'vsscanf' are also checked. Except in strictly conforming C
- standard modes, the X/Open function 'strfmon' is also checked as
- are 'printf_unlocked' and 'fprintf_unlocked'. *Note Options
- Controlling C Dialect: C Dialect Options.
- For Objective-C dialects, 'NSString' (or '__NSString__') is
- recognized in the same context. Declarations including these
- format attributes are parsed for correct syntax, however the result
- of checking of such format strings is not yet defined, and is not
- carried out by this version of the compiler.
- The target may also provide additional types of format checks.
- *Note Format Checks Specific to Particular Target Machines: Target
- Format Checks.
- 'format_arg (STRING-INDEX)'
- The 'format_arg' attribute specifies that a function takes a format
- string for a 'printf', 'scanf', 'strftime' or 'strfmon' style
- function and modifies it (for example, to translate it into another
- language), so the result can be passed to a 'printf', 'scanf',
- 'strftime' or 'strfmon' style function (with the remaining
- arguments to the format function the same as they would have been
- for the unmodified string). For example, the declaration:
- extern char *
- my_dgettext (char *my_domain, const char *my_format)
- __attribute__ ((format_arg (2)));
- causes the compiler to check the arguments in calls to a 'printf',
- 'scanf', 'strftime' or 'strfmon' type function, whose format string
- argument is a call to the 'my_dgettext' function, for consistency
- with the format string argument 'my_format'. If the 'format_arg'
- attribute had not been specified, all the compiler could tell in
- such calls to format functions would be that the format string
- argument is not constant; this would generate a warning when
- '-Wformat-nonliteral' is used, but the calls could not be checked
- without the attribute.
- The parameter STRING-INDEX specifies which argument is the format
- string argument (starting from one). Since non-static C++ methods
- have an implicit 'this' argument, the arguments of such methods
- should be counted from two.
- The 'format_arg' attribute allows you to identify your own
- functions that modify format strings, so that GCC can check the
- calls to 'printf', 'scanf', 'strftime' or 'strfmon' type function
- whose operands are a call to one of your own function. The
- compiler always treats 'gettext', 'dgettext', and 'dcgettext' in
- this manner except when strict ISO C support is requested by
- '-ansi' or an appropriate '-std' option, or '-ffreestanding' or
- '-fno-builtin' is used. *Note Options Controlling C Dialect: C
- Dialect Options.
- For Objective-C dialects, the 'format-arg' attribute may refer to
- an 'NSString' reference for compatibility with the 'format'
- attribute above.
- The target may also allow additional types in 'format-arg'
- attributes. *Note Format Checks Specific to Particular Target
- Machines: Target Format Checks.
- 'gnu_inline'
- This attribute should be used with a function that is also declared
- with the 'inline' keyword. It directs GCC to treat the function as
- if it were defined in gnu90 mode even when compiling in C99 or
- gnu99 mode.
- If the function is declared 'extern', then this definition of the
- function is used only for inlining. In no case is the function
- compiled as a standalone function, not even if you take its address
- explicitly. Such an address becomes an external reference, as if
- you had only declared the function, and had not defined it. This
- has almost the effect of a macro. The way to use this is to put a
- function definition in a header file with this attribute, and put
- another copy of the function, without 'extern', in a library file.
- The definition in the header file causes most calls to the function
- to be inlined. If any uses of the function remain, they refer to
- the single copy in the library. Note that the two definitions of
- the functions need not be precisely the same, although if they do
- not have the same effect your program may behave oddly.
- In C, if the function is neither 'extern' nor 'static', then the
- function is compiled as a standalone function, as well as being
- inlined where possible.
- This is how GCC traditionally handled functions declared 'inline'.
- Since ISO C99 specifies a different semantics for 'inline', this
- function attribute is provided as a transition measure and as a
- useful feature in its own right. This attribute is available in
- GCC 4.1.3 and later. It is available if either of the preprocessor
- macros '__GNUC_GNU_INLINE__' or '__GNUC_STDC_INLINE__' are defined.
- *Note An Inline Function is As Fast As a Macro: Inline.
- In C++, this attribute does not depend on 'extern' in any way, but
- it still requires the 'inline' keyword to enable its special
- behavior.
- 'hot'
- The 'hot' attribute on a function is used to inform the compiler
- that the function is a hot spot of the compiled program. The
- function is optimized more aggressively and on many targets it is
- placed into a special subsection of the text section so all hot
- functions appear close together, improving locality.
- When profile feedback is available, via '-fprofile-use', hot
- functions are automatically detected and this attribute is ignored.
- 'ifunc ("RESOLVER")'
- The 'ifunc' attribute is used to mark a function as an indirect
- function using the STT_GNU_IFUNC symbol type extension to the ELF
- standard. This allows the resolution of the symbol value to be
- determined dynamically at load time, and an optimized version of
- the routine to be selected for the particular processor or other
- system characteristics determined then. To use this attribute,
- first define the implementation functions available, and a resolver
- function that returns a pointer to the selected implementation
- function. The implementation functions' declarations must match
- the API of the function being implemented. The resolver should be
- declared to be a function taking no arguments and returning a
- pointer to a function of the same type as the implementation. For
- example:
- void *my_memcpy (void *dst, const void *src, size_t len)
- {
- ...
- return dst;
- }
- static void * (*resolve_memcpy (void))(void *, const void *, size_t)
- {
- return my_memcpy; // we will just always select this routine
- }
- The exported header file declaring the function the user calls
- would contain:
- extern void *memcpy (void *, const void *, size_t);
- allowing the user to call 'memcpy' as a regular function, unaware
- of the actual implementation. Finally, the indirect function needs
- to be defined in the same translation unit as the resolver
- function:
- void *memcpy (void *, const void *, size_t)
- __attribute__ ((ifunc ("resolve_memcpy")));
- In C++, the 'ifunc' attribute takes a string that is the mangled
- name of the resolver function. A C++ resolver for a non-static
- member function of class 'C' should be declared to return a pointer
- to a non-member function taking pointer to 'C' as the first
- argument, followed by the same arguments as of the implementation
- function. G++ checks the signatures of the two functions and
- issues a '-Wattribute-alias' warning for mismatches. To suppress a
- warning for the necessary cast from a pointer to the implementation
- member function to the type of the corresponding non-member
- function use the '-Wno-pmf-conversions' option. For example:
- class S
- {
- private:
- int debug_impl (int);
- int optimized_impl (int);
- typedef int Func (S*, int);
- static Func* resolver ();
- public:
- int interface (int);
- };
- int S::debug_impl (int) { /* ... */ }
- int S::optimized_impl (int) { /* ... */ }
- S::Func* S::resolver ()
- {
- int (S::*pimpl) (int)
- = getenv ("DEBUG") ? &S::debug_impl : &S::optimized_impl;
- // Cast triggers -Wno-pmf-conversions.
- return reinterpret_cast<Func*>(pimpl);
- }
- int S::interface (int) __attribute__ ((ifunc ("_ZN1S8resolverEv")));
- Indirect functions cannot be weak. Binutils version 2.20.1 or
- higher and GNU C Library version 2.11.1 are required to use this
- feature.
- 'interrupt'
- 'interrupt_handler'
- Many GCC back ends support attributes to indicate that a function
- is an interrupt handler, which tells the compiler to generate
- function entry and exit sequences that differ from those from
- regular functions. The exact syntax and behavior are
- target-specific; refer to the following subsections for details.
- 'leaf'
- Calls to external functions with this attribute must return to the
- current compilation unit only by return or by exception handling.
- In particular, a leaf function is not allowed to invoke callback
- functions passed to it from the current compilation unit, directly
- call functions exported by the unit, or 'longjmp' into the unit.
- Leaf functions might still call functions from other compilation
- units and thus they are not necessarily leaf in the sense that they
- contain no function calls at all.
- The attribute is intended for library functions to improve dataflow
- analysis. The compiler takes the hint that any data not escaping
- the current compilation unit cannot be used or modified by the leaf
- function. For example, the 'sin' function is a leaf function, but
- 'qsort' is not.
- Note that leaf functions might indirectly run a signal handler
- defined in the current compilation unit that uses static variables.
- Similarly, when lazy symbol resolution is in effect, leaf functions
- might invoke indirect functions whose resolver function or
- implementation function is defined in the current compilation unit
- and uses static variables. There is no standard-compliant way to
- write such a signal handler, resolver function, or implementation
- function, and the best that you can do is to remove the 'leaf'
- attribute or mark all such static variables 'volatile'. Lastly,
- for ELF-based systems that support symbol interposition, care
- should be taken that functions defined in the current compilation
- unit do not unexpectedly interpose other symbols based on the
- defined standards mode and defined feature test macros; otherwise
- an inadvertent callback would be added.
- The attribute has no effect on functions defined within the current
- compilation unit. This is to allow easy merging of multiple
- compilation units into one, for example, by using the link-time
- optimization. For this reason the attribute is not allowed on
- types to annotate indirect calls.
- 'malloc'
- This tells the compiler that a function is 'malloc'-like, i.e.,
- that the pointer P returned by the function cannot alias any other
- pointer valid when the function returns, and moreover no pointers
- to valid objects occur in any storage addressed by P.
- Using this attribute can improve optimization. Functions like
- 'malloc' and 'calloc' have this property because they return a
- pointer to uninitialized or zeroed-out storage. However, functions
- like 'realloc' do not have this property, as they can return a
- pointer to storage containing pointers.
- 'no_icf'
- This function attribute prevents a functions from being merged with
- another semantically equivalent function.
- 'no_instrument_function'
- If '-finstrument-functions' is given, profiling function calls are
- generated at entry and exit of most user-compiled functions.
- Functions with this attribute are not so instrumented.
- 'no_profile_instrument_function'
- The 'no_profile_instrument_function' attribute on functions is used
- to inform the compiler that it should not process any profile
- feedback based optimization code instrumentation.
- 'no_reorder'
- Do not reorder functions or variables marked 'no_reorder' against
- each other or top level assembler statements the executable. The
- actual order in the program will depend on the linker command line.
- Static variables marked like this are also not removed. This has a
- similar effect as the '-fno-toplevel-reorder' option, but only
- applies to the marked symbols.
- 'no_sanitize ("SANITIZE_OPTION")'
- The 'no_sanitize' attribute on functions is used to inform the
- compiler that it should not do sanitization of all options
- mentioned in SANITIZE_OPTION. A list of values acceptable by
- '-fsanitize' option can be provided.
- void __attribute__ ((no_sanitize ("alignment", "object-size")))
- f () { /* Do something. */; }
- void __attribute__ ((no_sanitize ("alignment,object-size")))
- g () { /* Do something. */; }
- 'no_sanitize_address'
- 'no_address_safety_analysis'
- The 'no_sanitize_address' attribute on functions is used to inform
- the compiler that it should not instrument memory accesses in the
- function when compiling with the '-fsanitize=address' option. The
- 'no_address_safety_analysis' is a deprecated alias of the
- 'no_sanitize_address' attribute, new code should use
- 'no_sanitize_address'.
- 'no_sanitize_thread'
- The 'no_sanitize_thread' attribute on functions is used to inform
- the compiler that it should not instrument memory accesses in the
- function when compiling with the '-fsanitize=thread' option.
- 'no_sanitize_undefined'
- The 'no_sanitize_undefined' attribute on functions is used to
- inform the compiler that it should not check for undefined behavior
- in the function when compiling with the '-fsanitize=undefined'
- option.
- 'no_split_stack'
- If '-fsplit-stack' is given, functions have a small prologue which
- decides whether to split the stack. Functions with the
- 'no_split_stack' attribute do not have that prologue, and thus may
- run with only a small amount of stack space available.
- 'no_stack_limit'
- This attribute locally overrides the '-fstack-limit-register' and
- '-fstack-limit-symbol' command-line options; it has the effect of
- disabling stack limit checking in the function it applies to.
- 'noclone'
- This function attribute prevents a function from being considered
- for cloning--a mechanism that produces specialized copies of
- functions and which is (currently) performed by interprocedural
- constant propagation.
- 'noinline'
- This function attribute prevents a function from being considered
- for inlining. If the function does not have side effects, there
- are optimizations other than inlining that cause function calls to
- be optimized away, although the function call is live. To keep
- such calls from being optimized away, put
- asm ("");
- (*note Extended Asm::) in the called function, to serve as a
- special side effect.
- 'noipa'
- Disable interprocedural optimizations between the function with
- this attribute and its callers, as if the body of the function is
- not available when optimizing callers and the callers are
- unavailable when optimizing the body. This attribute implies
- 'noinline', 'noclone' and 'no_icf' attributes. However, this
- attribute is not equivalent to a combination of other attributes,
- because its purpose is to suppress existing and future
- optimizations employing interprocedural analysis, including those
- that do not have an attribute suitable for disabling them
- individually. This attribute is supported mainly for the purpose
- of testing the compiler.
- 'nonnull (ARG-INDEX, ...)'
- The 'nonnull' attribute specifies that some function parameters
- should be non-null pointers. For instance, the declaration:
- extern void *
- my_memcpy (void *dest, const void *src, size_t len)
- __attribute__((nonnull (1, 2)));
- causes the compiler to check that, in calls to 'my_memcpy',
- arguments DEST and SRC are non-null. If the compiler determines
- that a null pointer is passed in an argument slot marked as
- non-null, and the '-Wnonnull' option is enabled, a warning is
- issued. The compiler may also choose to make optimizations based
- on the knowledge that certain function arguments will never be
- null.
- If no argument index list is given to the 'nonnull' attribute, all
- pointer arguments are marked as non-null. To illustrate, the
- following declaration is equivalent to the previous example:
- extern void *
- my_memcpy (void *dest, const void *src, size_t len)
- __attribute__((nonnull));
- 'noplt'
- The 'noplt' attribute is the counterpart to option '-fno-plt'.
- Calls to functions marked with this attribute in
- position-independent code do not use the PLT.
- /* Externally defined function foo. */
- int foo () __attribute__ ((noplt));
- int
- main (/* ... */)
- {
- /* ... */
- foo ();
- /* ... */
- }
- The 'noplt' attribute on function 'foo' tells the compiler to
- assume that the function 'foo' is externally defined and that the
- call to 'foo' must avoid the PLT in position-independent code.
- In position-dependent code, a few targets also convert calls to
- functions that are marked to not use the PLT to use the GOT
- instead.
- 'noreturn'
- A few standard library functions, such as 'abort' and 'exit',
- cannot return. GCC knows this automatically. Some programs define
- their own functions that never return. You can declare them
- 'noreturn' to tell the compiler this fact. For example,
- void fatal () __attribute__ ((noreturn));
- void
- fatal (/* ... */)
- {
- /* ... */ /* Print error message. */ /* ... */
- exit (1);
- }
- The 'noreturn' keyword tells the compiler to assume that 'fatal'
- cannot return. It can then optimize without regard to what would
- happen if 'fatal' ever did return. This makes slightly better
- code. More importantly, it helps avoid spurious warnings of
- uninitialized variables.
- The 'noreturn' keyword does not affect the exceptional path when
- that applies: a 'noreturn'-marked function may still return to the
- caller by throwing an exception or calling 'longjmp'.
- Do not assume that registers saved by the calling function are
- restored before calling the 'noreturn' function.
- It does not make sense for a 'noreturn' function to have a return
- type other than 'void'.
- 'nothrow'
- The 'nothrow' attribute is used to inform the compiler that a
- function cannot throw an exception. For example, most functions in
- the standard C library can be guaranteed not to throw an exception
- with the notable exceptions of 'qsort' and 'bsearch' that take
- function pointer arguments.
- 'optimize'
- The 'optimize' attribute is used to specify that a function is to
- be compiled with different optimization options than specified on
- the command line. Arguments can either be numbers or strings.
- Numbers are assumed to be an optimization level. Strings that
- begin with 'O' are assumed to be an optimization option, while
- other options are assumed to be used with a '-f' prefix. You can
- also use the '#pragma GCC optimize' pragma to set the optimization
- options that affect more than one function. *Note Function
- Specific Option Pragmas::, for details about the '#pragma GCC
- optimize' pragma.
- This attribute should be used for debugging purposes only. It is
- not suitable in production code.
- 'patchable_function_entry'
- In case the target's text segment can be made writable at run time
- by any means, padding the function entry with a number of NOPs can
- be used to provide a universal tool for instrumentation.
- The 'patchable_function_entry' function attribute can be used to
- change the number of NOPs to any desired value. The two-value
- syntax is the same as for the command-line switch
- '-fpatchable-function-entry=N,M', generating N NOPs, with the
- function entry point before the Mth NOP instruction. M defaults to
- 0 if omitted e.g. function entry point is before the first NOP.
- If patchable function entries are enabled globally using the
- command-line option '-fpatchable-function-entry=N,M', then you must
- disable instrumentation on all functions that are part of the
- instrumentation framework with the attribute
- 'patchable_function_entry (0)' to prevent recursion.
- 'pure'
- Many functions have no effects except the return value and their
- return value depends only on the parameters and/or global
- variables. Calls to such functions can be subject to common
- subexpression elimination and loop optimization just as an
- arithmetic operator would be. These functions should be declared
- with the attribute 'pure'. For example,
- int square (int) __attribute__ ((pure));
- says that the hypothetical function 'square' is safe to call fewer
- times than the program says.
- Some common examples of pure functions are 'strlen' or 'memcmp'.
- Interesting non-pure functions are functions with infinite loops or
- those depending on volatile memory or other system resource, that
- may change between two consecutive calls (such as 'feof' in a
- multithreading environment).
- The 'pure' attribute imposes similar but looser restrictions on a
- function's defintion than the 'const' attribute: it allows the
- function to read global variables. Decorating the same function
- with both the 'pure' and the 'const' attribute is diagnosed.
- Because a 'pure' function cannot have any side effects it does not
- make sense for such a function to return 'void'. Declaring such a
- function is diagnosed.
- 'returns_nonnull'
- The 'returns_nonnull' attribute specifies that the function return
- value should be a non-null pointer. For instance, the declaration:
- extern void *
- mymalloc (size_t len) __attribute__((returns_nonnull));
- lets the compiler optimize callers based on the knowledge that the
- return value will never be null.
- 'returns_twice'
- The 'returns_twice' attribute tells the compiler that a function
- may return more than one time. The compiler ensures that all
- registers are dead before calling such a function and emits a
- warning about the variables that may be clobbered after the second
- return from the function. Examples of such functions are 'setjmp'
- and 'vfork'. The 'longjmp'-like counterpart of such function, if
- any, might need to be marked with the 'noreturn' attribute.
- 'section ("SECTION-NAME")'
- Normally, the compiler places the code it generates in the 'text'
- section. Sometimes, however, you need additional sections, or you
- need certain particular functions to appear in special sections.
- The 'section' attribute specifies that a function lives in a
- particular section. For example, the declaration:
- extern void foobar (void) __attribute__ ((section ("bar")));
- puts the function 'foobar' in the 'bar' section.
- Some file formats do not support arbitrary sections so the
- 'section' attribute is not available on all platforms. If you need
- to map the entire contents of a module to a particular section,
- consider using the facilities of the linker instead.
- 'sentinel'
- This function attribute ensures that a parameter in a function call
- is an explicit 'NULL'. The attribute is only valid on variadic
- functions. By default, the sentinel is located at position zero,
- the last parameter of the function call. If an optional integer
- position argument P is supplied to the attribute, the sentinel must
- be located at position P counting backwards from the end of the
- argument list.
- __attribute__ ((sentinel))
- is equivalent to
- __attribute__ ((sentinel(0)))
- The attribute is automatically set with a position of 0 for the
- built-in functions 'execl' and 'execlp'. The built-in function
- 'execle' has the attribute set with a position of 1.
- A valid 'NULL' in this context is defined as zero with any pointer
- type. If your system defines the 'NULL' macro with an integer type
- then you need to add an explicit cast. GCC replaces 'stddef.h'
- with a copy that redefines NULL appropriately.
- The warnings for missing or incorrect sentinels are enabled with
- '-Wformat'.
- 'simd'
- 'simd("MASK")'
- This attribute enables creation of one or more function versions
- that can process multiple arguments using SIMD instructions from a
- single invocation. Specifying this attribute allows compiler to
- assume that such versions are available at link time (provided in
- the same or another translation unit). Generated versions are
- target-dependent and described in the corresponding Vector ABI
- document. For x86_64 target this document can be found
- here (https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt).
- The optional argument MASK may have the value 'notinbranch' or
- 'inbranch', and instructs the compiler to generate non-masked or
- masked clones correspondingly. By default, all clones are
- generated.
- If the attribute is specified and '#pragma omp declare simd' is
- present on a declaration and the '-fopenmp' or '-fopenmp-simd'
- switch is specified, then the attribute is ignored.
- 'stack_protect'
- This attribute adds stack protection code to the function if flags
- '-fstack-protector', '-fstack-protector-strong' or
- '-fstack-protector-explicit' are set.
- 'target (OPTIONS)'
- Multiple target back ends implement the 'target' attribute to
- specify that a function is to be compiled with different target
- options than specified on the command line. This can be used for
- instance to have functions compiled with a different ISA
- (instruction set architecture) than the default. You can also use
- the '#pragma GCC target' pragma to set more than one function to be
- compiled with specific target options. *Note Function Specific
- Option Pragmas::, for details about the '#pragma GCC target'
- pragma.
- For instance, on an x86, you could declare one function with the
- 'target("sse4.1,arch=core2")' attribute and another with
- 'target("sse4a,arch=amdfam10")'. This is equivalent to compiling
- the first function with '-msse4.1' and '-march=core2' options, and
- the second function with '-msse4a' and '-march=amdfam10' options.
- It is up to you to make sure that a function is only invoked on a
- machine that supports the particular ISA it is compiled for (for
- example by using 'cpuid' on x86 to determine what feature bits and
- architecture family are used).
- int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
- int sse3_func (void) __attribute__ ((__target__ ("sse3")));
- You can either use multiple strings separated by commas to specify
- multiple options, or separate the options with a comma (',') within
- a single string.
- The options supported are specific to each target; refer to *note
- x86 Function Attributes::, *note PowerPC Function Attributes::,
- *note ARM Function Attributes::, *note AArch64 Function
- Attributes::, *note Nios II Function Attributes::, and *note S/390
- Function Attributes:: for details.
- 'target_clones (OPTIONS)'
- The 'target_clones' attribute is used to specify that a function be
- cloned into multiple versions compiled with different target
- options than specified on the command line. The supported options
- and restrictions are the same as for 'target' attribute.
- For instance, on an x86, you could compile a function with
- 'target_clones("sse4.1,avx")'. GCC creates two function clones,
- one compiled with '-msse4.1' and another with '-mavx'.
- On a PowerPC, you can compile a function with
- 'target_clones("cpu=power9,default")'. GCC will create two
- function clones, one compiled with '-mcpu=power9' and another with
- the default options. GCC must be configured to use GLIBC 2.23 or
- newer in order to use the 'target_clones' attribute.
- It also creates a resolver function (see the 'ifunc' attribute
- above) that dynamically selects a clone suitable for current
- architecture. The resolver is created only if there is a usage of
- a function with 'target_clones' attribute.
- 'unused'
- This attribute, attached to a function, means that the function is
- meant to be possibly unused. GCC does not produce a warning for
- this function.
- 'used'
- This attribute, attached to a function, means that code must be
- emitted for the function even if it appears that the function is
- not referenced. This is useful, for example, when the function is
- referenced only in inline assembly.
- When applied to a member function of a C++ class template, the
- attribute also means that the function is instantiated if the class
- itself is instantiated.
- 'visibility ("VISIBILITY_TYPE")'
- This attribute affects the linkage of the declaration to which it
- is attached. It can be applied to variables (*note Common Variable
- Attributes::) and types (*note Common Type Attributes::) as well as
- functions.
- There are four supported VISIBILITY_TYPE values: default, hidden,
- protected or internal visibility.
- void __attribute__ ((visibility ("protected")))
- f () { /* Do something. */; }
- int i __attribute__ ((visibility ("hidden")));
- The possible values of VISIBILITY_TYPE correspond to the visibility
- settings in the ELF gABI.
- 'default'
- Default visibility is the normal case for the object file
- format. This value is available for the visibility attribute
- to override other options that may change the assumed
- visibility of entities.
- On ELF, default visibility means that the declaration is
- visible to other modules and, in shared libraries, means that
- the declared entity may be overridden.
- On Darwin, default visibility means that the declaration is
- visible to other modules.
- Default visibility corresponds to "external linkage" in the
- language.
- 'hidden'
- Hidden visibility indicates that the entity declared has a new
- form of linkage, which we call "hidden linkage". Two
- declarations of an object with hidden linkage refer to the
- same object if they are in the same shared object.
- 'internal'
- Internal visibility is like hidden visibility, but with
- additional processor specific semantics. Unless otherwise
- specified by the psABI, GCC defines internal visibility to
- mean that a function is _never_ called from another module.
- Compare this with hidden functions which, while they cannot be
- referenced directly by other modules, can be referenced
- indirectly via function pointers. By indicating that a
- function cannot be called from outside the module, GCC may for
- instance omit the load of a PIC register since it is known
- that the calling function loaded the correct value.
- 'protected'
- Protected visibility is like default visibility except that it
- indicates that references within the defining module bind to
- the definition in that module. That is, the declared entity
- cannot be overridden by another module.
- All visibilities are supported on many, but not all, ELF targets
- (supported when the assembler supports the '.visibility'
- pseudo-op). Default visibility is supported everywhere. Hidden
- visibility is supported on Darwin targets.
- The visibility attribute should be applied only to declarations
- that would otherwise have external linkage. The attribute should
- be applied consistently, so that the same entity should not be
- declared with different settings of the attribute.
- In C++, the visibility attribute applies to types as well as
- functions and objects, because in C++ types have linkage. A class
- must not have greater visibility than its non-static data member
- types and bases, and class members default to the visibility of
- their class. Also, a declaration without explicit visibility is
- limited to the visibility of its type.
- In C++, you can mark member functions and static member variables
- of a class with the visibility attribute. This is useful if you
- know a particular method or static member variable should only be
- used from one shared object; then you can mark it hidden while the
- rest of the class has default visibility. Care must be taken to
- avoid breaking the One Definition Rule; for example, it is usually
- not useful to mark an inline method as hidden without marking the
- whole class as hidden.
- A C++ namespace declaration can also have the visibility attribute.
- namespace nspace1 __attribute__ ((visibility ("protected")))
- { /* Do something. */; }
- This attribute applies only to the particular namespace body, not
- to other definitions of the same namespace; it is equivalent to
- using '#pragma GCC visibility' before and after the namespace
- definition (*note Visibility Pragmas::).
- In C++, if a template argument has limited visibility, this
- restriction is implicitly propagated to the template instantiation.
- Otherwise, template instantiations and specializations default to
- the visibility of their template.
- If both the template and enclosing class have explicit visibility,
- the visibility from the template is used.
- 'warn_unused_result'
- The 'warn_unused_result' attribute causes a warning to be emitted
- if a caller of the function with this attribute does not use its
- return value. This is useful for functions where not checking the
- result is either a security problem or always a bug, such as
- 'realloc'.
- int fn () __attribute__ ((warn_unused_result));
- int foo ()
- {
- if (fn () < 0) return -1;
- fn ();
- return 0;
- }
- results in warning on line 5.
- 'weak'
- The 'weak' attribute causes the declaration to be emitted as a weak
- symbol rather than a global. This is primarily useful in defining
- library functions that can be overridden in user code, though it
- can also be used with non-function declarations. Weak symbols are
- supported for ELF targets, and also for a.out targets when using
- the GNU assembler and linker.
- 'weakref'
- 'weakref ("TARGET")'
- The 'weakref' attribute marks a declaration as a weak reference.
- Without arguments, it should be accompanied by an 'alias' attribute
- naming the target symbol. Optionally, the TARGET may be given as
- an argument to 'weakref' itself. In either case, 'weakref'
- implicitly marks the declaration as 'weak'. Without a TARGET,
- given as an argument to 'weakref' or to 'alias', 'weakref' is
- equivalent to 'weak'.
- static int x() __attribute__ ((weakref ("y")));
- /* is equivalent to... */
- static int x() __attribute__ ((weak, weakref, alias ("y")));
- /* and to... */
- static int x() __attribute__ ((weakref));
- static int x() __attribute__ ((alias ("y")));
- A weak reference is an alias that does not by itself require a
- definition to be given for the target symbol. If the target symbol
- is only referenced through weak references, then it becomes a
- 'weak' undefined symbol. If it is directly referenced, however,
- then such strong references prevail, and a definition is required
- for the symbol, not necessarily in the same translation unit.
- The effect is equivalent to moving all references to the alias to a
- separate translation unit, renaming the alias to the aliased
- symbol, declaring it as weak, compiling the two separate
- translation units and performing a reloadable link on them.
- At present, a declaration to which 'weakref' is attached can only
- be 'static'.
- File: gcc.info, Node: AArch64 Function Attributes, Next: ARC Function Attributes, Prev: Common Function Attributes, Up: Function Attributes
- 6.31.2 AArch64 Function Attributes
- ----------------------------------
- The following target-specific function attributes are available for the
- AArch64 target. For the most part, these options mirror the behavior of
- similar command-line options (*note AArch64 Options::), but on a
- per-function basis.
- 'general-regs-only'
- Indicates that no floating-point or Advanced SIMD registers should
- be used when generating code for this function. If the function
- explicitly uses floating-point code, then the compiler gives an
- error. This is the same behavior as that of the command-line
- option '-mgeneral-regs-only'.
- 'fix-cortex-a53-835769'
- Indicates that the workaround for the Cortex-A53 erratum 835769
- should be applied to this function. To explicitly disable the
- workaround for this function specify the negated form:
- 'no-fix-cortex-a53-835769'. This corresponds to the behavior of
- the command line options '-mfix-cortex-a53-835769' and
- '-mno-fix-cortex-a53-835769'.
- 'cmodel='
- Indicates that code should be generated for a particular code model
- for this function. The behavior and permissible arguments are the
- same as for the command line option '-mcmodel='.
- 'strict-align'
- Indicates that the compiler should not assume that unaligned memory
- references are handled by the system. The behavior is the same as
- for the command-line option '-mstrict-align'.
- 'omit-leaf-frame-pointer'
- Indicates that the frame pointer should be omitted for a leaf
- function call. To keep the frame pointer, the inverse attribute
- 'no-omit-leaf-frame-pointer' can be specified. These attributes
- have the same behavior as the command-line options
- '-momit-leaf-frame-pointer' and '-mno-omit-leaf-frame-pointer'.
- 'tls-dialect='
- Specifies the TLS dialect to use for this function. The behavior
- and permissible arguments are the same as for the command-line
- option '-mtls-dialect='.
- 'arch='
- Specifies the architecture version and architectural extensions to
- use for this function. The behavior and permissible arguments are
- the same as for the '-march=' command-line option.
- 'tune='
- Specifies the core for which to tune the performance of this
- function. The behavior and permissible arguments are the same as
- for the '-mtune=' command-line option.
- 'cpu='
- Specifies the core for which to tune the performance of this
- function and also whose architectural features to use. The
- behavior and valid arguments are the same as for the '-mcpu='
- command-line option.
- 'sign-return-address'
- Select the function scope on which return address signing will be
- applied. The behavior and permissible arguments are the same as
- for the command-line option '-msign-return-address='. The default
- value is 'none'.
- The above target attributes can be specified as follows:
- __attribute__((target("ATTR-STRING")))
- int
- f (int a)
- {
- return a + 5;
- }
- where 'ATTR-STRING' is one of the attribute strings specified above.
- Additionally, the architectural extension string may be specified on
- its own. This can be used to turn on and off particular architectural
- extensions without having to specify a particular architecture version
- or core. Example:
- __attribute__((target("+crc+nocrypto")))
- int
- foo (int a)
- {
- return a + 5;
- }
- In this example 'target("+crc+nocrypto")' enables the 'crc' extension
- and disables the 'crypto' extension for the function 'foo' without
- modifying an existing '-march=' or '-mcpu' option.
- Multiple target function attributes can be specified by separating them
- with a comma. For example:
- __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
- int
- foo (int a)
- {
- return a + 5;
- }
- is valid and compiles function 'foo' for ARMv8-A with 'crc' and
- 'crypto' extensions and tunes it for 'cortex-a53'.
- 6.31.2.1 Inlining rules
- .......................
- Specifying target attributes on individual functions or performing
- link-time optimization across translation units compiled with different
- target options can affect function inlining rules:
- In particular, a caller function can inline a callee function only if
- the architectural features available to the callee are a subset of the
- features available to the caller. For example: A function 'foo'
- compiled with '-march=armv8-a+crc', or tagged with the equivalent
- 'arch=armv8-a+crc' attribute, can inline a function 'bar' compiled with
- '-march=armv8-a+nocrc' because the all the architectural features that
- function 'bar' requires are available to function 'foo'. Conversely,
- function 'bar' cannot inline function 'foo'.
- Additionally inlining a function compiled with '-mstrict-align' into a
- function compiled without '-mstrict-align' is not allowed. However,
- inlining a function compiled without '-mstrict-align' into a function
- compiled with '-mstrict-align' is allowed.
- Note that CPU tuning options and attributes such as the '-mcpu=',
- '-mtune=' do not inhibit inlining unless the CPU specified by the
- '-mcpu=' option or the 'cpu=' attribute conflicts with the architectural
- feature rules specified above.
- File: gcc.info, Node: ARC Function Attributes, Next: ARM Function Attributes, Prev: AArch64 Function Attributes, Up: Function Attributes
- 6.31.3 ARC Function Attributes
- ------------------------------
- These function attributes are supported by the ARC back end:
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- On the ARC, you must specify the kind of interrupt to be handled in
- a parameter to the interrupt attribute like this:
- void f () __attribute__ ((interrupt ("ilink1")));
- Permissible values for this parameter are: 'ilink1' and 'ilink2'.
- 'long_call'
- 'medium_call'
- 'short_call'
- These attributes specify how a particular function is called.
- These attributes override the '-mlong-calls' and '-mmedium-calls'
- (*note ARC Options::) command-line switches and '#pragma
- long_calls' settings.
- For ARC, a function marked with the 'long_call' attribute is always
- called using register-indirect jump-and-link instructions, thereby
- enabling the called function to be placed anywhere within the
- 32-bit address space. A function marked with the 'medium_call'
- attribute will always be close enough to be called with an
- unconditional branch-and-link instruction, which has a 25-bit
- offset from the call site. A function marked with the 'short_call'
- attribute will always be close enough to be called with a
- conditional branch-and-link instruction, which has a 21-bit offset
- from the call site.
- 'jli_always'
- Forces a particular function to be called using 'jli' instruction.
- The 'jli' instruction makes use of a table stored into '.jlitab'
- section, which holds the location of the functions which are
- addressed using this instruction.
- 'jli_fixed'
- Identical like the above one, but the location of the function in
- the 'jli' table is known and given as an attribute parameter.
- 'secure_call'
- This attribute allows one to mark secure-code functions that are
- callable from normal mode. The location of the secure call
- function into the 'sjli' table needs to be passed as argument.
- File: gcc.info, Node: ARM Function Attributes, Next: AVR Function Attributes, Prev: ARC Function Attributes, Up: Function Attributes
- 6.31.4 ARM Function Attributes
- ------------------------------
- These function attributes are supported for ARM targets:
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- You can specify the kind of interrupt to be handled by adding an
- optional parameter to the interrupt attribute like this:
- void f () __attribute__ ((interrupt ("IRQ")));
- Permissible values for this parameter are: 'IRQ', 'FIQ', 'SWI',
- 'ABORT' and 'UNDEF'.
- On ARMv7-M the interrupt type is ignored, and the attribute means
- the function may be called with a word-aligned stack pointer.
- 'isr'
- Use this attribute on ARM to write Interrupt Service Routines.
- This is an alias to the 'interrupt' attribute above.
- 'long_call'
- 'short_call'
- These attributes specify how a particular function is called.
- These attributes override the '-mlong-calls' (*note ARM Options::)
- command-line switch and '#pragma long_calls' settings. For ARM,
- the 'long_call' attribute indicates that the function might be far
- away from the call site and require a different (more expensive)
- calling sequence. The 'short_call' attribute always places the
- offset to the function from the call site into the 'BL' instruction
- directly.
- 'naked'
- This attribute allows the compiler to construct the requisite
- function declaration, while allowing the body of the function to be
- assembly code. The specified function will not have
- prologue/epilogue sequences generated by the compiler. Only basic
- 'asm' statements can safely be included in naked functions (*note
- Basic Asm::). While using extended 'asm' or a mixture of basic
- 'asm' and C code may appear to work, they cannot be depended upon
- to work reliably and are not supported.
- 'pcs'
- The 'pcs' attribute can be used to control the calling convention
- used for a function on ARM. The attribute takes an argument that
- specifies the calling convention to use.
- When compiling using the AAPCS ABI (or a variant of it) then valid
- values for the argument are '"aapcs"' and '"aapcs-vfp"'. In order
- to use a variant other than '"aapcs"' then the compiler must be
- permitted to use the appropriate co-processor registers (i.e., the
- VFP registers must be available in order to use '"aapcs-vfp"').
- For example,
- /* Argument passed in r0, and result returned in r0+r1. */
- double f2d (float) __attribute__((pcs("aapcs")));
- Variadic functions always use the '"aapcs"' calling convention and
- the compiler rejects attempts to specify an alternative.
- 'target (OPTIONS)'
- As discussed in *note Common Function Attributes::, this attribute
- allows specification of target-specific compilation options.
- On ARM, the following options are allowed:
- 'thumb'
- Force code generation in the Thumb (T16/T32) ISA, depending on
- the architecture level.
- 'arm'
- Force code generation in the ARM (A32) ISA.
- Functions from different modes can be inlined in the caller's
- mode.
- 'fpu='
- Specifies the fpu for which to tune the performance of this
- function. The behavior and permissible arguments are the same
- as for the '-mfpu=' command-line option.
- 'arch='
- Specifies the architecture version and architectural
- extensions to use for this function. The behavior and
- permissible arguments are the same as for the '-march='
- command-line option.
- The above target attributes can be specified as follows:
- __attribute__((target("arch=armv8-a+crc")))
- int
- f (int a)
- {
- return a + 5;
- }
- Additionally, the architectural extension string may be
- specified on its own. This can be used to turn on and off
- particular architectural extensions without having to specify
- a particular architecture version or core. Example:
- __attribute__((target("+crc+nocrypto")))
- int
- foo (int a)
- {
- return a + 5;
- }
- In this example 'target("+crc+nocrypto")' enables the 'crc'
- extension and disables the 'crypto' extension for the function
- 'foo' without modifying an existing '-march=' or '-mcpu'
- option.
- File: gcc.info, Node: AVR Function Attributes, Next: Blackfin Function Attributes, Prev: ARM Function Attributes, Up: Function Attributes
- 6.31.5 AVR Function Attributes
- ------------------------------
- These function attributes are supported by the AVR back end:
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- On the AVR, the hardware globally disables interrupts when an
- interrupt is executed. The first instruction of an interrupt
- handler declared with this attribute is a 'SEI' instruction to
- re-enable interrupts. See also the 'signal' function attribute
- that does not insert a 'SEI' instruction. If both 'signal' and
- 'interrupt' are specified for the same function, 'signal' is
- silently ignored.
- 'naked'
- This attribute allows the compiler to construct the requisite
- function declaration, while allowing the body of the function to be
- assembly code. The specified function will not have
- prologue/epilogue sequences generated by the compiler. Only basic
- 'asm' statements can safely be included in naked functions (*note
- Basic Asm::). While using extended 'asm' or a mixture of basic
- 'asm' and C code may appear to work, they cannot be depended upon
- to work reliably and are not supported.
- 'no_gccisr'
- Do not use '__gcc_isr' pseudo instructions in a function with the
- 'interrupt' or 'signal' attribute aka. interrupt service routine
- (ISR). Use this attribute if the preamble of the ISR prologue
- should always read
- push __zero_reg__
- push __tmp_reg__
- in __tmp_reg__, __SREG__
- push __tmp_reg__
- clr __zero_reg__
- and accordingly for the postamble of the epilogue -- no matter
- whether the mentioned registers are actually used in the ISR or
- not. Situations where you might want to use this attribute
- include:
- * Code that (effectively) clobbers bits of 'SREG' other than the
- 'I'-flag by writing to the memory location of 'SREG'.
- * Code that uses inline assembler to jump to a different
- function which expects (parts of) the prologue code as
- outlined above to be present.
- To disable '__gcc_isr' generation for the whole compilation unit,
- there is option '-mno-gas-isr-prologues', *note AVR Options::.
- 'OS_main'
- 'OS_task'
- On AVR, functions with the 'OS_main' or 'OS_task' attribute do not
- save/restore any call-saved register in their prologue/epilogue.
- The 'OS_main' attribute can be used when there _is guarantee_ that
- interrupts are disabled at the time when the function is entered.
- This saves resources when the stack pointer has to be changed to
- set up a frame for local variables.
- The 'OS_task' attribute can be used when there is _no guarantee_
- that interrupts are disabled at that time when the function is
- entered like for, e.g. task functions in a multi-threading
- operating system. In that case, changing the stack pointer
- register is guarded by save/clear/restore of the global interrupt
- enable flag.
- The differences to the 'naked' function attribute are:
- * 'naked' functions do not have a return instruction whereas
- 'OS_main' and 'OS_task' functions have a 'RET' or 'RETI'
- return instruction.
- * 'naked' functions do not set up a frame for local variables or
- a frame pointer whereas 'OS_main' and 'OS_task' do this as
- needed.
- 'signal'
- Use this attribute on the AVR to indicate that the specified
- function is an interrupt handler. The compiler generates function
- entry and exit sequences suitable for use in an interrupt handler
- when this attribute is present.
- See also the 'interrupt' function attribute.
- The AVR hardware globally disables interrupts when an interrupt is
- executed. Interrupt handler functions defined with the 'signal'
- attribute do not re-enable interrupts. It is save to enable
- interrupts in a 'signal' handler. This "save" only applies to the
- code generated by the compiler and not to the IRQ layout of the
- application which is responsibility of the application.
- If both 'signal' and 'interrupt' are specified for the same
- function, 'signal' is silently ignored.
- File: gcc.info, Node: Blackfin Function Attributes, Next: CR16 Function Attributes, Prev: AVR Function Attributes, Up: Function Attributes
- 6.31.6 Blackfin Function Attributes
- -----------------------------------
- These function attributes are supported by the Blackfin back end:
- 'exception_handler'
- Use this attribute on the Blackfin to indicate that the specified
- function is an exception handler. The compiler generates function
- entry and exit sequences suitable for use in an exception handler
- when this attribute is present.
- 'interrupt_handler'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- 'kspisusp'
- When used together with 'interrupt_handler', 'exception_handler' or
- 'nmi_handler', code is generated to load the stack pointer from the
- USP register in the function prologue.
- 'l1_text'
- This attribute specifies a function to be placed into L1
- Instruction SRAM. The function is put into a specific section
- named '.l1.text'. With '-mfdpic', function calls with a such
- function as the callee or caller uses inlined PLT.
- 'l2'
- This attribute specifies a function to be placed into L2 SRAM. The
- function is put into a specific section named '.l2.text'. With
- '-mfdpic', callers of such functions use an inlined PLT.
- 'longcall'
- 'shortcall'
- The 'longcall' attribute indicates that the function might be far
- away from the call site and require a different (more expensive)
- calling sequence. The 'shortcall' attribute indicates that the
- function is always close enough for the shorter calling sequence to
- be used. These attributes override the '-mlongcall' switch.
- 'nesting'
- Use this attribute together with 'interrupt_handler',
- 'exception_handler' or 'nmi_handler' to indicate that the function
- entry code should enable nested interrupts or exceptions.
- 'nmi_handler'
- Use this attribute on the Blackfin to indicate that the specified
- function is an NMI handler. The compiler generates function entry
- and exit sequences suitable for use in an NMI handler when this
- attribute is present.
- 'saveall'
- Use this attribute to indicate that all registers except the stack
- pointer should be saved in the prologue regardless of whether they
- are used or not.
- File: gcc.info, Node: CR16 Function Attributes, Next: Epiphany Function Attributes, Prev: Blackfin Function Attributes, Up: Function Attributes
- 6.31.7 CR16 Function Attributes
- -------------------------------
- These function attributes are supported by the CR16 back end:
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- File: gcc.info, Node: Epiphany Function Attributes, Next: H8/300 Function Attributes, Prev: CR16 Function Attributes, Up: Function Attributes
- 6.31.8 Epiphany Function Attributes
- -----------------------------------
- These function attributes are supported by the Epiphany back end:
- 'disinterrupt'
- This attribute causes the compiler to emit instructions to disable
- interrupts for the duration of the given function.
- 'forwarder_section'
- This attribute modifies the behavior of an interrupt handler. The
- interrupt handler may be in external memory which cannot be reached
- by a branch instruction, so generate a local memory trampoline to
- transfer control. The single parameter identifies the section
- where the trampoline is placed.
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present. It may also generate a special section with
- code to initialize the interrupt vector table.
- On Epiphany targets one or more optional parameters can be added
- like this:
- void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
- Permissible values for these parameters are: 'reset',
- 'software_exception', 'page_miss', 'timer0', 'timer1', 'message',
- 'dma0', 'dma1', 'wand' and 'swi'. Multiple parameters indicate
- that multiple entries in the interrupt vector table should be
- initialized for this function, i.e. for each parameter NAME, a jump
- to the function is emitted in the section ivt_entry_NAME. The
- parameter(s) may be omitted entirely, in which case no interrupt
- vector table entry is provided.
- Note that interrupts are enabled inside the function unless the
- 'disinterrupt' attribute is also specified.
- The following examples are all valid uses of these attributes on
- Epiphany targets:
- void __attribute__ ((interrupt)) universal_handler ();
- void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
- void __attribute__ ((interrupt ("dma0, dma1")))
- universal_dma_handler ();
- void __attribute__ ((interrupt ("timer0"), disinterrupt))
- fast_timer_handler ();
- void __attribute__ ((interrupt ("dma0, dma1"),
- forwarder_section ("tramp")))
- external_dma_handler ();
- 'long_call'
- 'short_call'
- These attributes specify how a particular function is called.
- These attributes override the '-mlong-calls' (*note Adapteva
- Epiphany Options::) command-line switch and '#pragma long_calls'
- settings.
- File: gcc.info, Node: H8/300 Function Attributes, Next: IA-64 Function Attributes, Prev: Epiphany Function Attributes, Up: Function Attributes
- 6.31.9 H8/300 Function Attributes
- ---------------------------------
- These function attributes are available for H8/300 targets:
- 'function_vector'
- Use this attribute on the H8/300, H8/300H, and H8S to indicate that
- the specified function should be called through the function
- vector. Calling a function through the function vector reduces
- code size; however, the function vector has a limited size (maximum
- 128 entries on the H8/300 and 64 entries on the H8/300H and H8S)
- and shares space with the interrupt vector.
- 'interrupt_handler'
- Use this attribute on the H8/300, H8/300H, and H8S to indicate that
- the specified function is an interrupt handler. The compiler
- generates function entry and exit sequences suitable for use in an
- interrupt handler when this attribute is present.
- 'saveall'
- Use this attribute on the H8/300, H8/300H, and H8S to indicate that
- all registers except the stack pointer should be saved in the
- prologue regardless of whether they are used or not.
- File: gcc.info, Node: IA-64 Function Attributes, Next: M32C Function Attributes, Prev: H8/300 Function Attributes, Up: Function Attributes
- 6.31.10 IA-64 Function Attributes
- ---------------------------------
- These function attributes are supported on IA-64 targets:
- 'syscall_linkage'
- This attribute is used to modify the IA-64 calling convention by
- marking all input registers as live at all function exits. This
- makes it possible to restart a system call after an interrupt
- without having to save/restore the input registers. This also
- prevents kernel data from leaking into application code.
- 'version_id'
- This IA-64 HP-UX attribute, attached to a global variable or
- function, renames a symbol to contain a version string, thus
- allowing for function level versioning. HP-UX system header files
- may use function level versioning for some system calls.
- extern int foo () __attribute__((version_id ("20040821")));
- Calls to 'foo' are mapped to calls to 'foo{20040821}'.
- File: gcc.info, Node: M32C Function Attributes, Next: M32R/D Function Attributes, Prev: IA-64 Function Attributes, Up: Function Attributes
- 6.31.11 M32C Function Attributes
- --------------------------------
- These function attributes are supported by the M32C back end:
- 'bank_switch'
- When added to an interrupt handler with the M32C port, causes the
- prologue and epilogue to use bank switching to preserve the
- registers rather than saving them on the stack.
- 'fast_interrupt'
- Use this attribute on the M32C port to indicate that the specified
- function is a fast interrupt handler. This is just like the
- 'interrupt' attribute, except that 'freit' is used to return
- instead of 'reit'.
- 'function_vector'
- On M16C/M32C targets, the 'function_vector' attribute declares a
- special page subroutine call function. Use of this attribute
- reduces the code size by 2 bytes for each call generated to the
- subroutine. The argument to the attribute is the vector number
- entry from the special page vector table which contains the 16
- low-order bits of the subroutine's entry address. Each vector
- table has special page number (18 to 255) that is used in 'jsrs'
- instructions. Jump addresses of the routines are generated by
- adding 0x0F0000 (in case of M16C targets) or 0xFF0000 (in case of
- M32C targets), to the 2-byte addresses set in the vector table.
- Therefore you need to ensure that all the special page vector
- routines should get mapped within the address range 0x0F0000 to
- 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF (for M32C).
- In the following example 2 bytes are saved for each call to
- function 'foo'.
- void foo (void) __attribute__((function_vector(0x18)));
- void foo (void)
- {
- }
- void bar (void)
- {
- foo();
- }
- If functions are defined in one file and are called in another
- file, then be sure to write this declaration in both files.
- This attribute is ignored for R8C target.
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- File: gcc.info, Node: M32R/D Function Attributes, Next: m68k Function Attributes, Prev: M32C Function Attributes, Up: Function Attributes
- 6.31.12 M32R/D Function Attributes
- ----------------------------------
- These function attributes are supported by the M32R/D back end:
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- 'model (MODEL-NAME)'
- On the M32R/D, use this attribute to set the addressability of an
- object, and of the code generated for a function. The identifier
- MODEL-NAME is one of 'small', 'medium', or 'large', representing
- each of the code models.
- Small model objects live in the lower 16MB of memory (so that their
- addresses can be loaded with the 'ld24' instruction), and are
- callable with the 'bl' instruction.
- Medium model objects may live anywhere in the 32-bit address space
- (the compiler generates 'seth/add3' instructions to load their
- addresses), and are callable with the 'bl' instruction.
- Large model objects may live anywhere in the 32-bit address space
- (the compiler generates 'seth/add3' instructions to load their
- addresses), and may not be reachable with the 'bl' instruction (the
- compiler generates the much slower 'seth/add3/jl' instruction
- sequence).
- File: gcc.info, Node: m68k Function Attributes, Next: MCORE Function Attributes, Prev: M32R/D Function Attributes, Up: Function Attributes
- 6.31.13 m68k Function Attributes
- --------------------------------
- These function attributes are supported by the m68k back end:
- 'interrupt'
- 'interrupt_handler'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present. Either name may be used.
- 'interrupt_thread'
- Use this attribute on fido, a subarchitecture of the m68k, to
- indicate that the specified function is an interrupt handler that
- is designed to run as a thread. The compiler omits generate
- prologue/epilogue sequences and replaces the return instruction
- with a 'sleep' instruction. This attribute is available only on
- fido.
- File: gcc.info, Node: MCORE Function Attributes, Next: MeP Function Attributes, Prev: m68k Function Attributes, Up: Function Attributes
- 6.31.14 MCORE Function Attributes
- ---------------------------------
- These function attributes are supported by the MCORE back end:
- 'naked'
- This attribute allows the compiler to construct the requisite
- function declaration, while allowing the body of the function to be
- assembly code. The specified function will not have
- prologue/epilogue sequences generated by the compiler. Only basic
- 'asm' statements can safely be included in naked functions (*note
- Basic Asm::). While using extended 'asm' or a mixture of basic
- 'asm' and C code may appear to work, they cannot be depended upon
- to work reliably and are not supported.
- File: gcc.info, Node: MeP Function Attributes, Next: MicroBlaze Function Attributes, Prev: MCORE Function Attributes, Up: Function Attributes
- 6.31.15 MeP Function Attributes
- -------------------------------
- These function attributes are supported by the MeP back end:
- 'disinterrupt'
- On MeP targets, this attribute causes the compiler to emit
- instructions to disable interrupts for the duration of the given
- function.
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- 'near'
- This attribute causes the compiler to assume the called function is
- close enough to use the normal calling convention, overriding the
- '-mtf' command-line option.
- 'far'
- On MeP targets this causes the compiler to use a calling convention
- that assumes the called function is too far away for the built-in
- addressing modes.
- 'vliw'
- The 'vliw' attribute tells the compiler to emit instructions in
- VLIW mode instead of core mode. Note that this attribute is not
- allowed unless a VLIW coprocessor has been configured and enabled
- through command-line options.
- File: gcc.info, Node: MicroBlaze Function Attributes, Next: Microsoft Windows Function Attributes, Prev: MeP Function Attributes, Up: Function Attributes
- 6.31.16 MicroBlaze Function Attributes
- --------------------------------------
- These function attributes are supported on MicroBlaze targets:
- 'save_volatiles'
- Use this attribute to indicate that the function is an interrupt
- handler. All volatile registers (in addition to non-volatile
- registers) are saved in the function prologue. If the function is
- a leaf function, only volatiles used by the function are saved. A
- normal function return is generated instead of a return from
- interrupt.
- 'break_handler'
- Use this attribute to indicate that the specified function is a
- break handler. The compiler generates function entry and exit
- sequences suitable for use in an break handler when this attribute
- is present. The return from 'break_handler' is done through the
- 'rtbd' instead of 'rtsd'.
- void f () __attribute__ ((break_handler));
- 'interrupt_handler'
- 'fast_interrupt'
- These attributes indicate that the specified function is an
- interrupt handler. Use the 'fast_interrupt' attribute to indicate
- handlers used in low-latency interrupt mode, and
- 'interrupt_handler' for interrupts that do not use low-latency
- handlers. In both cases, GCC emits appropriate prologue code and
- generates a return from the handler using 'rtid' instead of 'rtsd'.
- File: gcc.info, Node: Microsoft Windows Function Attributes, Next: MIPS Function Attributes, Prev: MicroBlaze Function Attributes, Up: Function Attributes
- 6.31.17 Microsoft Windows Function Attributes
- ---------------------------------------------
- The following attributes are available on Microsoft Windows and Symbian
- OS targets.
- 'dllexport'
- On Microsoft Windows targets and Symbian OS targets the 'dllexport'
- attribute causes the compiler to provide a global pointer to a
- pointer in a DLL, so that it can be referenced with the 'dllimport'
- attribute. On Microsoft Windows targets, the pointer name is
- formed by combining '_imp__' and the function or variable name.
- You can use '__declspec(dllexport)' as a synonym for '__attribute__
- ((dllexport))' for compatibility with other compilers.
- On systems that support the 'visibility' attribute, this attribute
- also implies "default" visibility. It is an error to explicitly
- specify any other visibility.
- GCC's default behavior is to emit all inline functions with the
- 'dllexport' attribute. Since this can cause object file-size
- bloat, you can use '-fno-keep-inline-dllexport', which tells GCC to
- ignore the attribute for inlined functions unless the
- '-fkeep-inline-functions' flag is used instead.
- The attribute is ignored for undefined symbols.
- When applied to C++ classes, the attribute marks defined
- non-inlined member functions and static data members as exports.
- Static consts initialized in-class are not marked unless they are
- also defined out-of-class.
- For Microsoft Windows targets there are alternative methods for
- including the symbol in the DLL's export table such as using a
- '.def' file with an 'EXPORTS' section or, with GNU ld, using the
- '--export-all' linker flag.
- 'dllimport'
- On Microsoft Windows and Symbian OS targets, the 'dllimport'
- attribute causes the compiler to reference a function or variable
- via a global pointer to a pointer that is set up by the DLL
- exporting the symbol. The attribute implies 'extern'. On
- Microsoft Windows targets, the pointer name is formed by combining
- '_imp__' and the function or variable name.
- You can use '__declspec(dllimport)' as a synonym for '__attribute__
- ((dllimport))' for compatibility with other compilers.
- On systems that support the 'visibility' attribute, this attribute
- also implies "default" visibility. It is an error to explicitly
- specify any other visibility.
- Currently, the attribute is ignored for inlined functions. If the
- attribute is applied to a symbol _definition_, an error is
- reported. If a symbol previously declared 'dllimport' is later
- defined, the attribute is ignored in subsequent references, and a
- warning is emitted. The attribute is also overridden by a
- subsequent declaration as 'dllexport'.
- When applied to C++ classes, the attribute marks non-inlined member
- functions and static data members as imports. However, the
- attribute is ignored for virtual methods to allow creation of
- vtables using thunks.
- On the SH Symbian OS target the 'dllimport' attribute also has
- another affect--it can cause the vtable and run-time type
- information for a class to be exported. This happens when the
- class has a dllimported constructor or a non-inline, non-pure
- virtual function and, for either of those two conditions, the class
- also has an inline constructor or destructor and has a key function
- that is defined in the current translation unit.
- For Microsoft Windows targets the use of the 'dllimport' attribute
- on functions is not necessary, but provides a small performance
- benefit by eliminating a thunk in the DLL. The use of the
- 'dllimport' attribute on imported variables can be avoided by
- passing the '--enable-auto-import' switch to the GNU linker. As
- with functions, using the attribute for a variable eliminates a
- thunk in the DLL.
- One drawback to using this attribute is that a pointer to a
- _variable_ marked as 'dllimport' cannot be used as a constant
- address. However, a pointer to a _function_ with the 'dllimport'
- attribute can be used as a constant initializer; in this case, the
- address of a stub function in the import lib is referenced. On
- Microsoft Windows targets, the attribute can be disabled for
- functions by setting the '-mnop-fun-dllimport' flag.
- File: gcc.info, Node: MIPS Function Attributes, Next: MSP430 Function Attributes, Prev: Microsoft Windows Function Attributes, Up: Function Attributes
- 6.31.18 MIPS Function Attributes
- --------------------------------
- These function attributes are supported by the MIPS back end:
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present. An optional argument is supported for the
- interrupt attribute which allows the interrupt mode to be
- described. By default GCC assumes the external interrupt
- controller (EIC) mode is in use, this can be explicitly set using
- 'eic'. When interrupts are non-masked then the requested Interrupt
- Priority Level (IPL) is copied to the current IPL which has the
- effect of only enabling higher priority interrupts. To use
- vectored interrupt mode use the argument
- 'vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]', this will change the
- behavior of the non-masked interrupt support and GCC will arrange
- to mask all interrupts from sw0 up to and including the specified
- interrupt vector.
- You can use the following attributes to modify the behavior of an
- interrupt handler:
- 'use_shadow_register_set'
- Assume that the handler uses a shadow register set, instead of
- the main general-purpose registers. An optional argument
- 'intstack' is supported to indicate that the shadow register
- set contains a valid stack pointer.
- 'keep_interrupts_masked'
- Keep interrupts masked for the whole function. Without this
- attribute, GCC tries to reenable interrupts for as much of the
- function as it can.
- 'use_debug_exception_return'
- Return using the 'deret' instruction. Interrupt handlers that
- don't have this attribute return using 'eret' instead.
- You can use any combination of these attributes, as shown below:
- void __attribute__ ((interrupt)) v0 ();
- void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
- void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
- void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
- void __attribute__ ((interrupt, use_shadow_register_set,
- keep_interrupts_masked)) v4 ();
- void __attribute__ ((interrupt, use_shadow_register_set,
- use_debug_exception_return)) v5 ();
- void __attribute__ ((interrupt, keep_interrupts_masked,
- use_debug_exception_return)) v6 ();
- void __attribute__ ((interrupt, use_shadow_register_set,
- keep_interrupts_masked,
- use_debug_exception_return)) v7 ();
- void __attribute__ ((interrupt("eic"))) v8 ();
- void __attribute__ ((interrupt("vector=hw3"))) v9 ();
- 'long_call'
- 'short_call'
- 'near'
- 'far'
- These attributes specify how a particular function is called on
- MIPS. The attributes override the '-mlong-calls' (*note MIPS
- Options::) command-line switch. The 'long_call' and 'far'
- attributes are synonyms, and cause the compiler to always call the
- function by first loading its address into a register, and then
- using the contents of that register. The 'short_call' and 'near'
- attributes are synonyms, and have the opposite effect; they specify
- that non-PIC calls should be made using the more efficient 'jal'
- instruction.
- 'mips16'
- 'nomips16'
- On MIPS targets, you can use the 'mips16' and 'nomips16' function
- attributes to locally select or turn off MIPS16 code generation. A
- function with the 'mips16' attribute is emitted as MIPS16 code,
- while MIPS16 code generation is disabled for functions with the
- 'nomips16' attribute. These attributes override the '-mips16' and
- '-mno-mips16' options on the command line (*note MIPS Options::).
- When compiling files containing mixed MIPS16 and non-MIPS16 code,
- the preprocessor symbol '__mips16' reflects the setting on the
- command line, not that within individual functions. Mixed MIPS16
- and non-MIPS16 code may interact badly with some GCC extensions
- such as '__builtin_apply' (*note Constructing Calls::).
- 'micromips, MIPS'
- 'nomicromips, MIPS'
- On MIPS targets, you can use the 'micromips' and 'nomicromips'
- function attributes to locally select or turn off microMIPS code
- generation. A function with the 'micromips' attribute is emitted
- as microMIPS code, while microMIPS code generation is disabled for
- functions with the 'nomicromips' attribute. These attributes
- override the '-mmicromips' and '-mno-micromips' options on the
- command line (*note MIPS Options::).
- When compiling files containing mixed microMIPS and non-microMIPS
- code, the preprocessor symbol '__mips_micromips' reflects the
- setting on the command line, not that within individual functions.
- Mixed microMIPS and non-microMIPS code may interact badly with some
- GCC extensions such as '__builtin_apply' (*note Constructing
- Calls::).
- 'nocompression'
- On MIPS targets, you can use the 'nocompression' function attribute
- to locally turn off MIPS16 and microMIPS code generation. This
- attribute overrides the '-mips16' and '-mmicromips' options on the
- command line (*note MIPS Options::).
- File: gcc.info, Node: MSP430 Function Attributes, Next: NDS32 Function Attributes, Prev: MIPS Function Attributes, Up: Function Attributes
- 6.31.19 MSP430 Function Attributes
- ----------------------------------
- These function attributes are supported by the MSP430 back end:
- 'critical'
- Critical functions disable interrupts upon entry and restore the
- previous interrupt state upon exit. Critical functions cannot also
- have the 'naked' or 'reentrant' attributes. They can have the
- 'interrupt' attribute.
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- You can provide an argument to the interrupt attribute which
- specifies a name or number. If the argument is a number it
- indicates the slot in the interrupt vector table (0 - 31) to which
- this handler should be assigned. If the argument is a name it is
- treated as a symbolic name for the vector slot. These names should
- match up with appropriate entries in the linker script. By default
- the names 'watchdog' for vector 26, 'nmi' for vector 30 and 'reset'
- for vector 31 are recognized.
- 'naked'
- This attribute allows the compiler to construct the requisite
- function declaration, while allowing the body of the function to be
- assembly code. The specified function will not have
- prologue/epilogue sequences generated by the compiler. Only basic
- 'asm' statements can safely be included in naked functions (*note
- Basic Asm::). While using extended 'asm' or a mixture of basic
- 'asm' and C code may appear to work, they cannot be depended upon
- to work reliably and are not supported.
- 'reentrant'
- Reentrant functions disable interrupts upon entry and enable them
- upon exit. Reentrant functions cannot also have the 'naked' or
- 'critical' attributes. They can have the 'interrupt' attribute.
- 'wakeup'
- This attribute only applies to interrupt functions. It is silently
- ignored if applied to a non-interrupt function. A wakeup interrupt
- function will rouse the processor from any low-power state that it
- might be in when the function exits.
- 'lower'
- 'upper'
- 'either'
- On the MSP430 target these attributes can be used to specify
- whether the function or variable should be placed into low memory,
- high memory, or the placement should be left to the linker to
- decide. The attributes are only significant if compiling for the
- MSP430X architecture.
- The attributes work in conjunction with a linker script that has
- been augmented to specify where to place sections with a '.lower'
- and a '.upper' prefix. So, for example, as well as placing the
- '.data' section, the script also specifies the placement of a
- '.lower.data' and a '.upper.data' section. The intention is that
- 'lower' sections are placed into a small but easier to access
- memory region and the upper sections are placed into a larger, but
- slower to access, region.
- The 'either' attribute is special. It tells the linker to place
- the object into the corresponding 'lower' section if there is room
- for it. If there is insufficient room then the object is placed
- into the corresponding 'upper' section instead. Note that the
- placement algorithm is not very sophisticated. It does not attempt
- to find an optimal packing of the 'lower' sections. It just makes
- one pass over the objects and does the best that it can. Using the
- '-ffunction-sections' and '-fdata-sections' command-line options
- can help the packing, however, since they produce smaller, easier
- to pack regions.
- File: gcc.info, Node: NDS32 Function Attributes, Next: Nios II Function Attributes, Prev: MSP430 Function Attributes, Up: Function Attributes
- 6.31.20 NDS32 Function Attributes
- ---------------------------------
- These function attributes are supported by the NDS32 back end:
- 'exception'
- Use this attribute on the NDS32 target to indicate that the
- specified function is an exception handler. The compiler will
- generate corresponding sections for use in an exception handler.
- 'interrupt'
- On NDS32 target, this attribute indicates that the specified
- function is an interrupt handler. The compiler generates
- corresponding sections for use in an interrupt handler. You can
- use the following attributes to modify the behavior:
- 'nested'
- This interrupt service routine is interruptible.
- 'not_nested'
- This interrupt service routine is not interruptible.
- 'nested_ready'
- This interrupt service routine is interruptible after
- 'PSW.GIE' (global interrupt enable) is set. This allows
- interrupt service routine to finish some short critical code
- before enabling interrupts.
- 'save_all'
- The system will help save all registers into stack before
- entering interrupt handler.
- 'partial_save'
- The system will help save caller registers into stack before
- entering interrupt handler.
- 'naked'
- This attribute allows the compiler to construct the requisite
- function declaration, while allowing the body of the function to be
- assembly code. The specified function will not have
- prologue/epilogue sequences generated by the compiler. Only basic
- 'asm' statements can safely be included in naked functions (*note
- Basic Asm::). While using extended 'asm' or a mixture of basic
- 'asm' and C code may appear to work, they cannot be depended upon
- to work reliably and are not supported.
- 'reset'
- Use this attribute on the NDS32 target to indicate that the
- specified function is a reset handler. The compiler will generate
- corresponding sections for use in a reset handler. You can use the
- following attributes to provide extra exception handling:
- 'nmi'
- Provide a user-defined function to handle NMI exception.
- 'warm'
- Provide a user-defined function to handle warm reset
- exception.
- File: gcc.info, Node: Nios II Function Attributes, Next: Nvidia PTX Function Attributes, Prev: NDS32 Function Attributes, Up: Function Attributes
- 6.31.21 Nios II Function Attributes
- -----------------------------------
- These function attributes are supported by the Nios II back end:
- 'target (OPTIONS)'
- As discussed in *note Common Function Attributes::, this attribute
- allows specification of target-specific compilation options.
- When compiling for Nios II, the following options are allowed:
- 'custom-INSN=N'
- 'no-custom-INSN'
- Each 'custom-INSN=N' attribute locally enables use of a custom
- instruction with encoding N when generating code that uses
- INSN. Similarly, 'no-custom-INSN' locally inhibits use of the
- custom instruction INSN. These target attributes correspond
- to the '-mcustom-INSN=N' and '-mno-custom-INSN' command-line
- options, and support the same set of INSN keywords. *Note
- Nios II Options::, for more information.
- 'custom-fpu-cfg=NAME'
- This attribute corresponds to the '-mcustom-fpu-cfg=NAME'
- command-line option, to select a predefined set of custom
- instructions named NAME. *Note Nios II Options::, for more
- information.
- File: gcc.info, Node: Nvidia PTX Function Attributes, Next: PowerPC Function Attributes, Prev: Nios II Function Attributes, Up: Function Attributes
- 6.31.22 Nvidia PTX Function Attributes
- --------------------------------------
- These function attributes are supported by the Nvidia PTX back end:
- 'kernel'
- This attribute indicates that the corresponding function should be
- compiled as a kernel function, which can be invoked from the host
- via the CUDA RT library. By default functions are only callable
- only from other PTX functions.
- Kernel functions must have 'void' return type.
- File: gcc.info, Node: PowerPC Function Attributes, Next: RISC-V Function Attributes, Prev: Nvidia PTX Function Attributes, Up: Function Attributes
- 6.31.23 PowerPC Function Attributes
- -----------------------------------
- These function attributes are supported by the PowerPC back end:
- 'longcall'
- 'shortcall'
- The 'longcall' attribute indicates that the function might be far
- away from the call site and require a different (more expensive)
- calling sequence. The 'shortcall' attribute indicates that the
- function is always close enough for the shorter calling sequence to
- be used. These attributes override both the '-mlongcall' switch
- and the '#pragma longcall' setting.
- *Note RS/6000 and PowerPC Options::, for more information on
- whether long calls are necessary.
- 'target (OPTIONS)'
- As discussed in *note Common Function Attributes::, this attribute
- allows specification of target-specific compilation options.
- On the PowerPC, the following options are allowed:
- 'altivec'
- 'no-altivec'
- Generate code that uses (does not use) AltiVec instructions.
- In 32-bit code, you cannot enable AltiVec instructions unless
- '-mabi=altivec' is used on the command line.
- 'cmpb'
- 'no-cmpb'
- Generate code that uses (does not use) the compare bytes
- instruction implemented on the POWER6 processor and other
- processors that support the PowerPC V2.05 architecture.
- 'dlmzb'
- 'no-dlmzb'
- Generate code that uses (does not use) the string-search
- 'dlmzb' instruction on the IBM 405, 440, 464 and 476
- processors. This instruction is generated by default when
- targeting those processors.
- 'fprnd'
- 'no-fprnd'
- Generate code that uses (does not use) the FP round to integer
- instructions implemented on the POWER5+ processor and other
- processors that support the PowerPC V2.03 architecture.
- 'hard-dfp'
- 'no-hard-dfp'
- Generate code that uses (does not use) the decimal
- floating-point instructions implemented on some POWER
- processors.
- 'isel'
- 'no-isel'
- Generate code that uses (does not use) ISEL instruction.
- 'mfcrf'
- 'no-mfcrf'
- Generate code that uses (does not use) the move from condition
- register field instruction implemented on the POWER4 processor
- and other processors that support the PowerPC V2.01
- architecture.
- 'mfpgpr'
- 'no-mfpgpr'
- Generate code that uses (does not use) the FP move to/from
- general purpose register instructions implemented on the
- POWER6X processor and other processors that support the
- extended PowerPC V2.05 architecture.
- 'mulhw'
- 'no-mulhw'
- Generate code that uses (does not use) the half-word multiply
- and multiply-accumulate instructions on the IBM 405, 440, 464
- and 476 processors. These instructions are generated by
- default when targeting those processors.
- 'multiple'
- 'no-multiple'
- Generate code that uses (does not use) the load multiple word
- instructions and the store multiple word instructions.
- 'update'
- 'no-update'
- Generate code that uses (does not use) the load or store
- instructions that update the base register to the address of
- the calculated memory location.
- 'popcntb'
- 'no-popcntb'
- Generate code that uses (does not use) the popcount and
- double-precision FP reciprocal estimate instruction
- implemented on the POWER5 processor and other processors that
- support the PowerPC V2.02 architecture.
- 'popcntd'
- 'no-popcntd'
- Generate code that uses (does not use) the popcount
- instruction implemented on the POWER7 processor and other
- processors that support the PowerPC V2.06 architecture.
- 'powerpc-gfxopt'
- 'no-powerpc-gfxopt'
- Generate code that uses (does not use) the optional PowerPC
- architecture instructions in the Graphics group, including
- floating-point select.
- 'powerpc-gpopt'
- 'no-powerpc-gpopt'
- Generate code that uses (does not use) the optional PowerPC
- architecture instructions in the General Purpose group,
- including floating-point square root.
- 'recip-precision'
- 'no-recip-precision'
- Assume (do not assume) that the reciprocal estimate
- instructions provide higher-precision estimates than is
- mandated by the PowerPC ABI.
- 'string'
- 'no-string'
- Generate code that uses (does not use) the load string
- instructions and the store string word instructions to save
- multiple registers and do small block moves.
- 'vsx'
- 'no-vsx'
- Generate code that uses (does not use) vector/scalar (VSX)
- instructions, and also enable the use of built-in functions
- that allow more direct access to the VSX instruction set. In
- 32-bit code, you cannot enable VSX or AltiVec instructions
- unless '-mabi=altivec' is used on the command line.
- 'friz'
- 'no-friz'
- Generate (do not generate) the 'friz' instruction when the
- '-funsafe-math-optimizations' option is used to optimize
- rounding a floating-point value to 64-bit integer and back to
- floating point. The 'friz' instruction does not return the
- same value if the floating-point number is too large to fit in
- an integer.
- 'avoid-indexed-addresses'
- 'no-avoid-indexed-addresses'
- Generate code that tries to avoid (not avoid) the use of
- indexed load or store instructions.
- 'paired'
- 'no-paired'
- Generate code that uses (does not use) the generation of
- PAIRED simd instructions.
- 'longcall'
- 'no-longcall'
- Generate code that assumes (does not assume) that all calls
- are far away so that a longer more expensive calling sequence
- is required.
- 'cpu=CPU'
- Specify the architecture to generate code for when compiling
- the function. If you select the 'target("cpu=power7")'
- attribute when generating 32-bit code, VSX and AltiVec
- instructions are not generated unless you use the
- '-mabi=altivec' option on the command line.
- 'tune=TUNE'
- Specify the architecture to tune for when compiling the
- function. If you do not specify the 'target("tune=TUNE")'
- attribute and you do specify the 'target("cpu=CPU")'
- attribute, compilation tunes for the CPU architecture, and not
- the default tuning specified on the command line.
- On the PowerPC, the inliner does not inline a function that has
- different target options than the caller, unless the callee has a
- subset of the target options of the caller.
- File: gcc.info, Node: RISC-V Function Attributes, Next: RL78 Function Attributes, Prev: PowerPC Function Attributes, Up: Function Attributes
- 6.31.24 RISC-V Function Attributes
- ----------------------------------
- These function attributes are supported by the RISC-V back end:
- 'naked'
- This attribute allows the compiler to construct the requisite
- function declaration, while allowing the body of the function to be
- assembly code. The specified function will not have
- prologue/epilogue sequences generated by the compiler. Only basic
- 'asm' statements can safely be included in naked functions (*note
- Basic Asm::). While using extended 'asm' or a mixture of basic
- 'asm' and C code may appear to work, they cannot be depended upon
- to work reliably and are not supported.
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- You can specify the kind of interrupt to be handled by adding an
- optional parameter to the interrupt attribute like this:
- void f (void) __attribute__ ((interrupt ("user")));
- Permissible values for this parameter are 'user', 'supervisor', and
- 'machine'. If there is no parameter, then it defaults to
- 'machine'.
- You can specify an SiFive CLIC preemptible interrupt handler by
- adding an optional parameter to the interrupt attribute like this:
- void f (void) __attribute__ ((interrupt ("SiFive-CLIC-preemptible")));
- In this type of interrupt handler, in the prologue, the mepc and
- mcause registers are saved, and interrupts are enabled. In the
- epilogue, interrupts are disabled, and the mepc and mcause
- registers are restored. This type of interrupt handler must be
- 'machine' mode, and must not use the frame pointer.
- You can specify an SiFive CLIC stack swapping interrupt handler by
- adding an optional parameter to the interrupt attribute like this:
- void f (void) __attribute__ ((interrupt ("SiFive-CLIC-stack-swap")));
- In this type of interrupt handler, the stack pointer will be
- swapped with the 'mscratch' register in the prologue before the
- first use of the stack pointer, and in the epilogue after the last
- use of the stack pointer. This type of interrupt handler must be
- 'machine' mode.
- File: gcc.info, Node: RL78 Function Attributes, Next: RX Function Attributes, Prev: RISC-V Function Attributes, Up: Function Attributes
- 6.31.25 RL78 Function Attributes
- --------------------------------
- These function attributes are supported by the RL78 back end:
- 'interrupt'
- 'brk_interrupt'
- These attributes indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- Use 'brk_interrupt' instead of 'interrupt' for handlers intended to
- be used with the 'BRK' opcode (i.e. those that must end with 'RETB'
- instead of 'RETI').
- 'naked'
- This attribute allows the compiler to construct the requisite
- function declaration, while allowing the body of the function to be
- assembly code. The specified function will not have
- prologue/epilogue sequences generated by the compiler. Only basic
- 'asm' statements can safely be included in naked functions (*note
- Basic Asm::). While using extended 'asm' or a mixture of basic
- 'asm' and C code may appear to work, they cannot be depended upon
- to work reliably and are not supported.
- File: gcc.info, Node: RX Function Attributes, Next: S/390 Function Attributes, Prev: RL78 Function Attributes, Up: Function Attributes
- 6.31.26 RX Function Attributes
- ------------------------------
- These function attributes are supported by the RX back end:
- 'fast_interrupt'
- Use this attribute on the RX port to indicate that the specified
- function is a fast interrupt handler. This is just like the
- 'interrupt' attribute, except that 'freit' is used to return
- instead of 'reit'.
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- On RX and RL78 targets, you may specify one or more vector numbers
- as arguments to the attribute, as well as naming an alternate table
- name. Parameters are handled sequentially, so one handler can be
- assigned to multiple entries in multiple tables. One may also pass
- the magic string '"$default"' which causes the function to be used
- for any unfilled slots in the current table.
- This example shows a simple assignment of a function to one vector
- in the default table (note that preprocessor macros may be used for
- chip-specific symbolic vector names):
- void __attribute__ ((interrupt (5))) txd1_handler ();
- This example assigns a function to two slots in the default table
- (using preprocessor macros defined elsewhere) and makes it the
- default for the 'dct' table:
- void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
- txd1_handler ();
- 'naked'
- This attribute allows the compiler to construct the requisite
- function declaration, while allowing the body of the function to be
- assembly code. The specified function will not have
- prologue/epilogue sequences generated by the compiler. Only basic
- 'asm' statements can safely be included in naked functions (*note
- Basic Asm::). While using extended 'asm' or a mixture of basic
- 'asm' and C code may appear to work, they cannot be depended upon
- to work reliably and are not supported.
- 'vector'
- This RX attribute is similar to the 'interrupt' attribute,
- including its parameters, but does not make the function an
- interrupt-handler type function (i.e. it retains the normal C
- function calling ABI). See the 'interrupt' attribute for a
- description of its arguments.
- File: gcc.info, Node: S/390 Function Attributes, Next: SH Function Attributes, Prev: RX Function Attributes, Up: Function Attributes
- 6.31.27 S/390 Function Attributes
- ---------------------------------
- These function attributes are supported on the S/390:
- 'hotpatch (HALFWORDS-BEFORE-FUNCTION-LABEL,HALFWORDS-AFTER-FUNCTION-LABEL)'
- On S/390 System z targets, you can use this function attribute to
- make GCC generate a "hot-patching" function prologue. If the
- '-mhotpatch=' command-line option is used at the same time, the
- 'hotpatch' attribute takes precedence. The first of the two
- arguments specifies the number of halfwords to be added before the
- function label. A second argument can be used to specify the
- number of halfwords to be added after the function label. For both
- arguments the maximum allowed value is 1000000.
- If both arguments are zero, hotpatching is disabled.
- 'target (OPTIONS)'
- As discussed in *note Common Function Attributes::, this attribute
- allows specification of target-specific compilation options.
- On S/390, the following options are supported:
- 'arch='
- 'tune='
- 'stack-guard='
- 'stack-size='
- 'branch-cost='
- 'warn-framesize='
- 'backchain'
- 'no-backchain'
- 'hard-dfp'
- 'no-hard-dfp'
- 'hard-float'
- 'soft-float'
- 'htm'
- 'no-htm'
- 'vx'
- 'no-vx'
- 'packed-stack'
- 'no-packed-stack'
- 'small-exec'
- 'no-small-exec'
- 'mvcle'
- 'no-mvcle'
- 'warn-dynamicstack'
- 'no-warn-dynamicstack'
- The options work exactly like the S/390 specific command line
- options (without the prefix '-m') except that they do not change
- any feature macros. For example,
- target("no-vx")
- does not undefine the '__VEC__' macro.
- File: gcc.info, Node: SH Function Attributes, Next: SPU Function Attributes, Prev: S/390 Function Attributes, Up: Function Attributes
- 6.31.28 SH Function Attributes
- ------------------------------
- These function attributes are supported on the SH family of processors:
- 'function_vector'
- On SH2A targets, this attribute declares a function to be called
- using the TBR relative addressing mode. The argument to this
- attribute is the entry number of the same function in a vector
- table containing all the TBR relative addressable functions. For
- correct operation the TBR must be setup accordingly to point to the
- start of the vector table before any functions with this attribute
- are invoked. Usually a good place to do the initialization is the
- startup routine. The TBR relative vector table can have at max 256
- function entries. The jumps to these functions are generated using
- a SH2A specific, non delayed branch instruction JSR/N @(disp8,TBR).
- You must use GAS and GLD from GNU binutils version 2.7 or later for
- this attribute to work correctly.
- In an application, for a function being called once, this attribute
- saves at least 8 bytes of code; and if other successive calls are
- being made to the same function, it saves 2 bytes of code per each
- of these calls.
- 'interrupt_handler'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- 'nosave_low_regs'
- Use this attribute on SH targets to indicate that an
- 'interrupt_handler' function should not save and restore registers
- R0..R7. This can be used on SH3* and SH4* targets that have a
- second R0..R7 register bank for non-reentrant interrupt handlers.
- 'renesas'
- On SH targets this attribute specifies that the function or struct
- follows the Renesas ABI.
- 'resbank'
- On the SH2A target, this attribute enables the high-speed register
- saving and restoration using a register bank for
- 'interrupt_handler' routines. Saving to the bank is performed
- automatically after the CPU accepts an interrupt that uses a
- register bank.
- The nineteen 32-bit registers comprising general register R0 to
- R14, control register GBR, and system registers MACH, MACL, and PR
- and the vector table address offset are saved into a register bank.
- Register banks are stacked in first-in last-out (FILO) sequence.
- Restoration from the bank is executed by issuing a RESBANK
- instruction.
- 'sp_switch'
- Use this attribute on the SH to indicate an 'interrupt_handler'
- function should switch to an alternate stack. It expects a string
- argument that names a global variable holding the address of the
- alternate stack.
- void *alt_stack;
- void f () __attribute__ ((interrupt_handler,
- sp_switch ("alt_stack")));
- 'trap_exit'
- Use this attribute on the SH for an 'interrupt_handler' to return
- using 'trapa' instead of 'rte'. This attribute expects an integer
- argument specifying the trap number to be used.
- 'trapa_handler'
- On SH targets this function attribute is similar to
- 'interrupt_handler' but it does not save and restore all registers.
- File: gcc.info, Node: SPU Function Attributes, Next: Symbian OS Function Attributes, Prev: SH Function Attributes, Up: Function Attributes
- 6.31.29 SPU Function Attributes
- -------------------------------
- These function attributes are supported by the SPU back end:
- 'naked'
- This attribute allows the compiler to construct the requisite
- function declaration, while allowing the body of the function to be
- assembly code. The specified function will not have
- prologue/epilogue sequences generated by the compiler. Only basic
- 'asm' statements can safely be included in naked functions (*note
- Basic Asm::). While using extended 'asm' or a mixture of basic
- 'asm' and C code may appear to work, they cannot be depended upon
- to work reliably and are not supported.
- File: gcc.info, Node: Symbian OS Function Attributes, Next: V850 Function Attributes, Prev: SPU Function Attributes, Up: Function Attributes
- 6.31.30 Symbian OS Function Attributes
- --------------------------------------
- *Note Microsoft Windows Function Attributes::, for discussion of the
- 'dllexport' and 'dllimport' attributes.
- File: gcc.info, Node: V850 Function Attributes, Next: Visium Function Attributes, Prev: Symbian OS Function Attributes, Up: Function Attributes
- 6.31.31 V850 Function Attributes
- --------------------------------
- The V850 back end supports these function attributes:
- 'interrupt'
- 'interrupt_handler'
- Use these attributes to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when either
- attribute is present.
- File: gcc.info, Node: Visium Function Attributes, Next: x86 Function Attributes, Prev: V850 Function Attributes, Up: Function Attributes
- 6.31.32 Visium Function Attributes
- ----------------------------------
- These function attributes are supported by the Visium back end:
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- File: gcc.info, Node: x86 Function Attributes, Next: Xstormy16 Function Attributes, Prev: Visium Function Attributes, Up: Function Attributes
- 6.31.33 x86 Function Attributes
- -------------------------------
- These function attributes are supported by the x86 back end:
- 'cdecl'
- On the x86-32 targets, the 'cdecl' attribute causes the compiler to
- assume that the calling function pops off the stack space used to
- pass arguments. This is useful to override the effects of the
- '-mrtd' switch.
- 'fastcall'
- On x86-32 targets, the 'fastcall' attribute causes the compiler to
- pass the first argument (if of integral type) in the register ECX
- and the second argument (if of integral type) in the register EDX.
- Subsequent and other typed arguments are passed on the stack. The
- called function pops the arguments off the stack. If the number of
- arguments is variable all arguments are pushed on the stack.
- 'thiscall'
- On x86-32 targets, the 'thiscall' attribute causes the compiler to
- pass the first argument (if of integral type) in the register ECX.
- Subsequent and other typed arguments are passed on the stack. The
- called function pops the arguments off the stack. If the number of
- arguments is variable all arguments are pushed on the stack. The
- 'thiscall' attribute is intended for C++ non-static member
- functions. As a GCC extension, this calling convention can be used
- for C functions and for static member methods.
- 'ms_abi'
- 'sysv_abi'
- On 32-bit and 64-bit x86 targets, you can use an ABI attribute to
- indicate which calling convention should be used for a function.
- The 'ms_abi' attribute tells the compiler to use the Microsoft ABI,
- while the 'sysv_abi' attribute tells the compiler to use the ABI
- used on GNU/Linux and other systems. The default is to use the
- Microsoft ABI when targeting Windows. On all other systems, the
- default is the x86/AMD ABI.
- Note, the 'ms_abi' attribute for Microsoft Windows 64-bit targets
- currently requires the '-maccumulate-outgoing-args' option.
- 'callee_pop_aggregate_return (NUMBER)'
- On x86-32 targets, you can use this attribute to control how
- aggregates are returned in memory. If the caller is responsible
- for popping the hidden pointer together with the rest of the
- arguments, specify NUMBER equal to zero. If callee is responsible
- for popping the hidden pointer, specify NUMBER equal to one.
- The default x86-32 ABI assumes that the callee pops the stack for
- hidden pointer. However, on x86-32 Microsoft Windows targets, the
- compiler assumes that the caller pops the stack for hidden pointer.
- 'ms_hook_prologue'
- On 32-bit and 64-bit x86 targets, you can use this function
- attribute to make GCC generate the "hot-patching" function prologue
- used in Win32 API functions in Microsoft Windows XP Service Pack 2
- and newer.
- 'naked'
- This attribute allows the compiler to construct the requisite
- function declaration, while allowing the body of the function to be
- assembly code. The specified function will not have
- prologue/epilogue sequences generated by the compiler. Only basic
- 'asm' statements can safely be included in naked functions (*note
- Basic Asm::). While using extended 'asm' or a mixture of basic
- 'asm' and C code may appear to work, they cannot be depended upon
- to work reliably and are not supported.
- 'regparm (NUMBER)'
- On x86-32 targets, the 'regparm' attribute causes the compiler to
- pass arguments number one to NUMBER if they are of integral type in
- registers EAX, EDX, and ECX instead of on the stack. Functions
- that take a variable number of arguments continue to be passed all
- of their arguments on the stack.
- Beware that on some ELF systems this attribute is unsuitable for
- global functions in shared libraries with lazy binding (which is
- the default). Lazy binding sends the first call via resolving code
- in the loader, which might assume EAX, EDX and ECX can be
- clobbered, as per the standard calling conventions. Solaris 8 is
- affected by this. Systems with the GNU C Library version 2.1 or
- higher and FreeBSD are believed to be safe since the loaders there
- save EAX, EDX and ECX. (Lazy binding can be disabled with the
- linker or the loader if desired, to avoid the problem.)
- 'sseregparm'
- On x86-32 targets with SSE support, the 'sseregparm' attribute
- causes the compiler to pass up to 3 floating-point arguments in SSE
- registers instead of on the stack. Functions that take a variable
- number of arguments continue to pass all of their floating-point
- arguments on the stack.
- 'force_align_arg_pointer'
- On x86 targets, the 'force_align_arg_pointer' attribute may be
- applied to individual function definitions, generating an alternate
- prologue and epilogue that realigns the run-time stack if
- necessary. This supports mixing legacy codes that run with a
- 4-byte aligned stack with modern codes that keep a 16-byte stack
- for SSE compatibility.
- 'stdcall'
- On x86-32 targets, the 'stdcall' attribute causes the compiler to
- assume that the called function pops off the stack space used to
- pass arguments, unless it takes a variable number of arguments.
- 'no_caller_saved_registers'
- Use this attribute to indicate that the specified function has no
- caller-saved registers. That is, all registers are callee-saved.
- For example, this attribute can be used for a function called from
- an interrupt handler. The compiler generates proper function entry
- and exit sequences to save and restore any modified registers,
- except for the EFLAGS register. Since GCC doesn't preserve MPX,
- SSE, MMX nor x87 states, the GCC option '-mgeneral-regs-only'
- should be used to compile functions with
- 'no_caller_saved_registers' attribute.
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler or an exception handler (depending on parameters
- passed to the function, explained further). The compiler generates
- function entry and exit sequences suitable for use in an interrupt
- handler when this attribute is present. The 'IRET' instruction,
- instead of the 'RET' instruction, is used to return from interrupt
- handlers. All registers, except for the EFLAGS register which is
- restored by the 'IRET' instruction, are preserved by the compiler.
- Since GCC doesn't preserve MPX, SSE, MMX nor x87 states, the GCC
- option '-mgeneral-regs-only' should be used to compile interrupt
- and exception handlers.
- Any interruptible-without-stack-switch code must be compiled with
- '-mno-red-zone' since interrupt handlers can and will, because of
- the hardware design, touch the red zone.
- An interrupt handler must be declared with a mandatory pointer
- argument:
- struct interrupt_frame;
- __attribute__ ((interrupt))
- void
- f (struct interrupt_frame *frame)
- {
- }
- and you must define 'struct interrupt_frame' as described in the
- processor's manual.
- Exception handlers differ from interrupt handlers because the
- system pushes an error code on the stack. An exception handler
- declaration is similar to that for an interrupt handler, but with a
- different mandatory function signature. The compiler arranges to
- pop the error code off the stack before the 'IRET' instruction.
- #ifdef __x86_64__
- typedef unsigned long long int uword_t;
- #else
- typedef unsigned int uword_t;
- #endif
- struct interrupt_frame;
- __attribute__ ((interrupt))
- void
- f (struct interrupt_frame *frame, uword_t error_code)
- {
- ...
- }
- Exception handlers should only be used for exceptions that push an
- error code; you should use an interrupt handler in other cases.
- The system will crash if the wrong kind of handler is used.
- 'target (OPTIONS)'
- As discussed in *note Common Function Attributes::, this attribute
- allows specification of target-specific compilation options.
- On the x86, the following options are allowed:
- '3dnow'
- 'no-3dnow'
- Enable/disable the generation of the 3DNow! instructions.
- '3dnowa'
- 'no-3dnowa'
- Enable/disable the generation of the enhanced 3DNow!
- instructions.
- 'abm'
- 'no-abm'
- Enable/disable the generation of the advanced bit
- instructions.
- 'adx'
- 'no-adx'
- Enable/disable the generation of the ADX instructions.
- 'aes'
- 'no-aes'
- Enable/disable the generation of the AES instructions.
- 'avx'
- 'no-avx'
- Enable/disable the generation of the AVX instructions.
- 'avx2'
- 'no-avx2'
- Enable/disable the generation of the AVX2 instructions.
- 'avx5124fmaps'
- 'no-avx5124fmaps'
- Enable/disable the generation of the AVX5124FMAPS
- instructions.
- 'avx5124vnniw'
- 'no-avx5124vnniw'
- Enable/disable the generation of the AVX5124VNNIW
- instructions.
- 'avx512bitalg'
- 'no-avx512bitalg'
- Enable/disable the generation of the AVX512BITALG
- instructions.
- 'avx512bw'
- 'no-avx512bw'
- Enable/disable the generation of the AVX512BW instructions.
- 'avx512cd'
- 'no-avx512cd'
- Enable/disable the generation of the AVX512CD instructions.
- 'avx512dq'
- 'no-avx512dq'
- Enable/disable the generation of the AVX512DQ instructions.
- 'avx512er'
- 'no-avx512er'
- Enable/disable the generation of the AVX512ER instructions.
- 'avx512f'
- 'no-avx512f'
- Enable/disable the generation of the AVX512F instructions.
- 'avx512ifma'
- 'no-avx512ifma'
- Enable/disable the generation of the AVX512IFMA instructions.
- 'avx512pf'
- 'no-avx512pf'
- Enable/disable the generation of the AVX512PF instructions.
- 'avx512vbmi'
- 'no-avx512vbmi'
- Enable/disable the generation of the AVX512VBMI instructions.
- 'avx512vbmi2'
- 'no-avx512vbmi2'
- Enable/disable the generation of the AVX512VBMI2 instructions.
- 'avx512vl'
- 'no-avx512vl'
- Enable/disable the generation of the AVX512VL instructions.
- 'avx512vnni'
- 'no-avx512vnni'
- Enable/disable the generation of the AVX512VNNI instructions.
- 'avx512vpopcntdq'
- 'no-avx512vpopcntdq'
- Enable/disable the generation of the AVX512VPOPCNTDQ
- instructions.
- 'bmi'
- 'no-bmi'
- Enable/disable the generation of the BMI instructions.
- 'bmi2'
- 'no-bmi2'
- Enable/disable the generation of the BMI2 instructions.
- 'clflushopt'
- 'no-clflushopt'
- Enable/disable the generation of the CLFLUSHOPT instructions.
- 'clwb'
- 'no-clwb'
- Enable/disable the generation of the CLWB instructions.
- 'clzero'
- 'no-clzero'
- Enable/disable the generation of the CLZERO instructions.
- 'crc32'
- 'no-crc32'
- Enable/disable the generation of the CRC32 instructions.
- 'cx16'
- 'no-cx16'
- Enable/disable the generation of the CMPXCHG16B instructions.
- 'default'
- *Note Function Multiversioning::, where it is used to specify
- the default function version.
- 'f16c'
- 'no-f16c'
- Enable/disable the generation of the F16C instructions.
- 'fma'
- 'no-fma'
- Enable/disable the generation of the FMA instructions.
- 'fma4'
- 'no-fma4'
- Enable/disable the generation of the FMA4 instructions.
- 'fsgsbase'
- 'no-fsgsbase'
- Enable/disable the generation of the FSGSBASE instructions.
- 'fxsr'
- 'no-fxsr'
- Enable/disable the generation of the FXSR instructions.
- 'gfni'
- 'no-gfni'
- Enable/disable the generation of the GFNI instructions.
- 'hle'
- 'no-hle'
- Enable/disable the generation of the HLE instruction prefixes.
- 'lwp'
- 'no-lwp'
- Enable/disable the generation of the LWP instructions.
- 'lzcnt'
- 'no-lzcnt'
- Enable/disable the generation of the LZCNT instructions.
- 'mmx'
- 'no-mmx'
- Enable/disable the generation of the MMX instructions.
- 'movbe'
- 'no-movbe'
- Enable/disable the generation of the MOVBE instructions.
- 'movdir64b'
- 'no-movdir64b'
- Enable/disable the generation of the MOVDIR64B instructions.
- 'movdiri'
- 'no-movdiri'
- Enable/disable the generation of the MOVDIRI instructions.
- 'mwaitx'
- 'no-mwaitx'
- Enable/disable the generation of the MWAITX instructions.
- 'pclmul'
- 'no-pclmul'
- Enable/disable the generation of the PCLMUL instructions.
- 'pconfig'
- 'no-pconfig'
- Enable/disable the generation of the PCONFIG instructions.
- 'pku'
- 'no-pku'
- Enable/disable the generation of the PKU instructions.
- 'popcnt'
- 'no-popcnt'
- Enable/disable the generation of the POPCNT instruction.
- 'prefetchwt1'
- 'no-prefetchwt1'
- Enable/disable the generation of the PREFETCHWT1 instructions.
- 'prfchw'
- 'no-prfchw'
- Enable/disable the generation of the PREFETCHW instruction.
- 'rdpid'
- 'no-rdpid'
- Enable/disable the generation of the RDPID instructions.
- 'rdrnd'
- 'no-rdrnd'
- Enable/disable the generation of the RDRND instructions.
- 'rdseed'
- 'no-rdseed'
- Enable/disable the generation of the RDSEED instructions.
- 'rtm'
- 'no-rtm'
- Enable/disable the generation of the RTM instructions.
- 'sahf'
- 'no-sahf'
- Enable/disable the generation of the SAHF instructions.
- 'sgx'
- 'no-sgx'
- Enable/disable the generation of the SGX instructions.
- 'sha'
- 'no-sha'
- Enable/disable the generation of the SHA instructions.
- 'shstk'
- 'no-shstk'
- Enable/disable the shadow stack built-in functions from CET.
- 'sse'
- 'no-sse'
- Enable/disable the generation of the SSE instructions.
- 'sse2'
- 'no-sse2'
- Enable/disable the generation of the SSE2 instructions.
- 'sse3'
- 'no-sse3'
- Enable/disable the generation of the SSE3 instructions.
- 'sse4'
- 'no-sse4'
- Enable/disable the generation of the SSE4 instructions (both
- SSE4.1 and SSE4.2).
- 'sse4.1'
- 'no-sse4.1'
- Enable/disable the generation of the sse4.1 instructions.
- 'sse4.2'
- 'no-sse4.2'
- Enable/disable the generation of the sse4.2 instructions.
- 'sse4a'
- 'no-sse4a'
- Enable/disable the generation of the SSE4A instructions.
- 'ssse3'
- 'no-ssse3'
- Enable/disable the generation of the SSSE3 instructions.
- 'tbm'
- 'no-tbm'
- Enable/disable the generation of the TBM instructions.
- 'vaes'
- 'no-vaes'
- Enable/disable the generation of the VAES instructions.
- 'vpclmulqdq'
- 'no-vpclmulqdq'
- Enable/disable the generation of the VPCLMULQDQ instructions.
- 'wbnoinvd'
- 'no-wbnoinvd'
- Enable/disable the generation of the WBNOINVD instructions.
- 'xop'
- 'no-xop'
- Enable/disable the generation of the XOP instructions.
- 'xsave'
- 'no-xsave'
- Enable/disable the generation of the XSAVE instructions.
- 'xsavec'
- 'no-xsavec'
- Enable/disable the generation of the XSAVEC instructions.
- 'xsaveopt'
- 'no-xsaveopt'
- Enable/disable the generation of the XSAVEOPT instructions.
- 'xsaves'
- 'no-xsaves'
- Enable/disable the generation of the XSAVES instructions.
- 'cld'
- 'no-cld'
- Enable/disable the generation of the CLD before string moves.
- 'fancy-math-387'
- 'no-fancy-math-387'
- Enable/disable the generation of the 'sin', 'cos', and 'sqrt'
- instructions on the 387 floating-point unit.
- 'ieee-fp'
- 'no-ieee-fp'
- Enable/disable the generation of floating point that depends
- on IEEE arithmetic.
- 'inline-all-stringops'
- 'no-inline-all-stringops'
- Enable/disable inlining of string operations.
- 'inline-stringops-dynamically'
- 'no-inline-stringops-dynamically'
- Enable/disable the generation of the inline code to do small
- string operations and calling the library routines for large
- operations.
- 'align-stringops'
- 'no-align-stringops'
- Do/do not align destination of inlined string operations.
- 'recip'
- 'no-recip'
- Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and
- RSQRTPS instructions followed an additional Newton-Raphson
- step instead of doing a floating-point division.
- 'arch=ARCH'
- Specify the architecture to generate code for in compiling the
- function.
- 'tune=TUNE'
- Specify the architecture to tune for in compiling the
- function.
- 'fpmath=FPMATH'
- Specify which floating-point unit to use. You must specify
- the 'target("fpmath=sse,387")' option as
- 'target("fpmath=sse+387")' because the comma would separate
- different options.
- 'indirect_branch("CHOICE")'
- On x86 targets, the 'indirect_branch' attribute causes the
- compiler to convert indirect call and jump with CHOICE.
- 'keep' keeps indirect call and jump unmodified. 'thunk'
- converts indirect call and jump to call and return thunk.
- 'thunk-inline' converts indirect call and jump to inlined call
- and return thunk. 'thunk-extern' converts indirect call and
- jump to external call and return thunk provided in a separate
- object file.
- 'function_return("CHOICE")'
- On x86 targets, the 'function_return' attribute causes the
- compiler to convert function return with CHOICE. 'keep' keeps
- function return unmodified. 'thunk' converts function return
- to call and return thunk. 'thunk-inline' converts function
- return to inlined call and return thunk. 'thunk-extern'
- converts function return to external call and return thunk
- provided in a separate object file.
- 'nocf_check'
- The 'nocf_check' attribute on a function is used to inform the
- compiler that the function's prologue should not be
- instrumented when compiled with the '-fcf-protection=branch'
- option. The compiler assumes that the function's address is a
- valid target for a control-flow transfer.
- The 'nocf_check' attribute on a type of pointer to function is
- used to inform the compiler that a call through the pointer
- should not be instrumented when compiled with the
- '-fcf-protection=branch' option. The compiler assumes that
- the function's address from the pointer is a valid target for
- a control-flow transfer. A direct function call through a
- function name is assumed to be a safe call thus direct calls
- are not instrumented by the compiler.
- The 'nocf_check' attribute is applied to an object's type. In
- case of assignment of a function address or a function pointer
- to another pointer, the attribute is not carried over from the
- right-hand object's type; the type of left-hand object stays
- unchanged. The compiler checks for 'nocf_check' attribute
- mismatch and reports a warning in case of mismatch.
- {
- int foo (void) __attribute__(nocf_check);
- void (*foo1)(void) __attribute__(nocf_check);
- void (*foo2)(void);
- /* foo's address is assumed to be valid. */
- int
- foo (void)
- /* This call site is not checked for control-flow
- validity. */
- (*foo1)();
- /* A warning is issued about attribute mismatch. */
- foo1 = foo2;
- /* This call site is still not checked. */
- (*foo1)();
- /* This call site is checked. */
- (*foo2)();
- /* A warning is issued about attribute mismatch. */
- foo2 = foo1;
- /* This call site is still checked. */
- (*foo2)();
- return 0;
- }
- On the x86, the inliner does not inline a function that has
- different target options than the caller, unless the callee has a
- subset of the target options of the caller. For example a function
- declared with 'target("sse3")' can inline a function with
- 'target("sse2")', since '-msse3' implies '-msse2'.
- File: gcc.info, Node: Xstormy16 Function Attributes, Prev: x86 Function Attributes, Up: Function Attributes
- 6.31.34 Xstormy16 Function Attributes
- -------------------------------------
- These function attributes are supported by the Xstormy16 back end:
- 'interrupt'
- Use this attribute to indicate that the specified function is an
- interrupt handler. The compiler generates function entry and exit
- sequences suitable for use in an interrupt handler when this
- attribute is present.
- File: gcc.info, Node: Variable Attributes, Next: Type Attributes, Prev: Function Attributes, Up: C Extensions
- 6.32 Specifying Attributes of Variables
- =======================================
- The keyword '__attribute__' allows you to specify special attributes of
- variables or structure fields. This keyword is followed by an attribute
- specification inside double parentheses. Some attributes are currently
- defined generically for variables. Other attributes are defined for
- variables on particular target systems. Other attributes are available
- for functions (*note Function Attributes::), labels (*note Label
- Attributes::), enumerators (*note Enumerator Attributes::), statements
- (*note Statement Attributes::), and for types (*note Type Attributes::).
- Other front ends might define more attributes (*note Extensions to the
- C++ Language: C++ Extensions.).
- *Note Attribute Syntax::, for details of the exact syntax for using
- attributes.
- * Menu:
- * Common Variable Attributes::
- * ARC Variable Attributes::
- * AVR Variable Attributes::
- * Blackfin Variable Attributes::
- * H8/300 Variable Attributes::
- * IA-64 Variable Attributes::
- * M32R/D Variable Attributes::
- * MeP Variable Attributes::
- * Microsoft Windows Variable Attributes::
- * MSP430 Variable Attributes::
- * Nvidia PTX Variable Attributes::
- * PowerPC Variable Attributes::
- * RL78 Variable Attributes::
- * SPU Variable Attributes::
- * V850 Variable Attributes::
- * x86 Variable Attributes::
- * Xstormy16 Variable Attributes::
- File: gcc.info, Node: Common Variable Attributes, Next: ARC Variable Attributes, Up: Variable Attributes
- 6.32.1 Common Variable Attributes
- ---------------------------------
- The following attributes are supported on most targets.
- 'aligned (ALIGNMENT)'
- This attribute specifies a minimum alignment for the variable or
- structure field, measured in bytes. For example, the declaration:
- int x __attribute__ ((aligned (16))) = 0;
- causes the compiler to allocate the global variable 'x' on a
- 16-byte boundary. On a 68040, this could be used in conjunction
- with an 'asm' expression to access the 'move16' instruction which
- requires 16-byte aligned operands.
- You can also specify the alignment of structure fields. For
- example, to create a double-word aligned 'int' pair, you could
- write:
- struct foo { int x[2] __attribute__ ((aligned (8))); };
- This is an alternative to creating a union with a 'double' member,
- which forces the union to be double-word aligned.
- As in the preceding examples, you can explicitly specify the
- alignment (in bytes) that you wish the compiler to use for a given
- variable or structure field. Alternatively, you can leave out the
- alignment factor and just ask the compiler to align a variable or
- field to the default alignment for the target architecture you are
- compiling for. The default alignment is sufficient for all scalar
- types, but may not be enough for all vector types on a target that
- supports vector operations. The default alignment is fixed for a
- particular target ABI.
- GCC also provides a target specific macro '__BIGGEST_ALIGNMENT__',
- which is the largest alignment ever used for any data type on the
- target machine you are compiling for. For example, you could
- write:
- short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
- The compiler automatically sets the alignment for the declared
- variable or field to '__BIGGEST_ALIGNMENT__'. Doing this can often
- make copy operations more efficient, because the compiler can use
- whatever instructions copy the biggest chunks of memory when
- performing copies to or from the variables or fields that you have
- aligned this way. Note that the value of '__BIGGEST_ALIGNMENT__'
- may change depending on command-line options.
- When used on a struct, or struct member, the 'aligned' attribute
- can only increase the alignment; in order to decrease it, the
- 'packed' attribute must be specified as well. When used as part of
- a typedef, the 'aligned' attribute can both increase and decrease
- alignment, and specifying the 'packed' attribute generates a
- warning.
- Note that the effectiveness of 'aligned' attributes may be limited
- by inherent limitations in your linker. On many systems, the
- linker is only able to arrange for variables to be aligned up to a
- certain maximum alignment. (For some linkers, the maximum
- supported alignment may be very very small.) If your linker is
- only able to align variables up to a maximum of 8-byte alignment,
- then specifying 'aligned(16)' in an '__attribute__' still only
- provides you with 8-byte alignment. See your linker documentation
- for further information.
- The 'aligned' attribute can also be used for functions (*note
- Common Function Attributes::.)
- 'warn_if_not_aligned (ALIGNMENT)'
- This attribute specifies a threshold for the structure field,
- measured in bytes. If the structure field is aligned below the
- threshold, a warning will be issued. For example, the declaration:
- struct foo
- {
- int i1;
- int i2;
- unsigned long long x __attribute__((warn_if_not_aligned(16)));
- };
- causes the compiler to issue an warning on 'struct foo', like
- 'warning: alignment 8 of 'struct foo' is less than 16'. The
- compiler also issues a warning, like 'warning: 'x' offset 8 in
- 'struct foo' isn't aligned to 16', when the structure field has the
- misaligned offset:
- struct foo
- {
- int i1;
- int i2;
- unsigned long long x __attribute__((warn_if_not_aligned(16)));
- } __attribute__((aligned(16)));
- This warning can be disabled by '-Wno-if-not-aligned'. The
- 'warn_if_not_aligned' attribute can also be used for types (*note
- Common Type Attributes::.)
- 'cleanup (CLEANUP_FUNCTION)'
- The 'cleanup' attribute runs a function when the variable goes out
- of scope. This attribute can only be applied to auto function
- scope variables; it may not be applied to parameters or variables
- with static storage duration. The function must take one
- parameter, a pointer to a type compatible with the variable. The
- return value of the function (if any) is ignored.
- If '-fexceptions' is enabled, then CLEANUP_FUNCTION is run during
- the stack unwinding that happens during the processing of the
- exception. Note that the 'cleanup' attribute does not allow the
- exception to be caught, only to perform an action. It is undefined
- what happens if CLEANUP_FUNCTION does not return normally.
- 'common'
- 'nocommon'
- The 'common' attribute requests GCC to place a variable in "common"
- storage. The 'nocommon' attribute requests the opposite--to
- allocate space for it directly.
- These attributes override the default chosen by the '-fno-common'
- and '-fcommon' flags respectively.
- 'deprecated'
- 'deprecated (MSG)'
- The 'deprecated' attribute results in a warning if the variable is
- used anywhere in the source file. This is useful when identifying
- variables that are expected to be removed in a future version of a
- program. The warning also includes the location of the declaration
- of the deprecated variable, to enable users to easily find further
- information about why the variable is deprecated, or what they
- should do instead. Note that the warning only occurs for uses:
- extern int old_var __attribute__ ((deprecated));
- extern int old_var;
- int new_fn () { return old_var; }
- results in a warning on line 3 but not line 2. The optional MSG
- argument, which must be a string, is printed in the warning if
- present.
- The 'deprecated' attribute can also be used for functions and types
- (*note Common Function Attributes::, *note Common Type
- Attributes::).
- 'nonstring'
- The 'nonstring' variable attribute specifies that an object or
- member declaration with type array of 'char', 'signed char', or
- 'unsigned char', or pointer to such a type is intended to store
- character arrays that do not necessarily contain a terminating
- 'NUL'. This is useful in detecting uses of such arrays or pointers
- with functions that expect 'NUL'-terminated strings, and to avoid
- warnings when such an array or pointer is used as an argument to a
- bounded string manipulation function such as 'strncpy'. For
- example, without the attribute, GCC will issue a warning for the
- 'strncpy' call below because it may truncate the copy without
- appending the terminating 'NUL' character. Using the attribute
- makes it possible to suppress the warning. However, when the array
- is declared with the attribute the call to 'strlen' is diagnosed
- because when the array doesn't contain a 'NUL'-terminated string
- the call is undefined. To copy, compare, of search non-string
- character arrays use the 'memcpy', 'memcmp', 'memchr', and other
- functions that operate on arrays of bytes. In addition, calling
- 'strnlen' and 'strndup' with such arrays is safe provided a
- suitable bound is specified, and not diagnosed.
- struct Data
- {
- char name [32] __attribute__ ((nonstring));
- };
- int f (struct Data *pd, const char *s)
- {
- strncpy (pd->name, s, sizeof pd->name);
- ...
- return strlen (pd->name); // unsafe, gets a warning
- }
- 'mode (MODE)'
- This attribute specifies the data type for the
- declaration--whichever type corresponds to the mode MODE. This in
- effect lets you request an integer or floating-point type according
- to its width.
- *Note (gccint)Machine Modes::, for a list of the possible keywords
- for MODE. You may also specify a mode of 'byte' or '__byte__' to
- indicate the mode corresponding to a one-byte integer, 'word' or
- '__word__' for the mode of a one-word integer, and 'pointer' or
- '__pointer__' for the mode used to represent pointers.
- 'packed'
- The 'packed' attribute specifies that a variable or structure field
- should have the smallest possible alignment--one byte for a
- variable, and one bit for a field, unless you specify a larger
- value with the 'aligned' attribute.
- Here is a structure in which the field 'x' is packed, so that it
- immediately follows 'a':
- struct foo
- {
- char a;
- int x[2] __attribute__ ((packed));
- };
- _Note:_ The 4.1, 4.2 and 4.3 series of GCC ignore the 'packed'
- attribute on bit-fields of type 'char'. This has been fixed in GCC
- 4.4 but the change can lead to differences in the structure layout.
- See the documentation of '-Wpacked-bitfield-compat' for more
- information.
- 'section ("SECTION-NAME")'
- Normally, the compiler places the objects it generates in sections
- like 'data' and 'bss'. Sometimes, however, you need additional
- sections, or you need certain particular variables to appear in
- special sections, for example to map to special hardware. The
- 'section' attribute specifies that a variable (or function) lives
- in a particular section. For example, this small program uses
- several specific section names:
- struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
- struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
- char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
- int init_data __attribute__ ((section ("INITDATA")));
- main()
- {
- /* Initialize stack pointer */
- init_sp (stack + sizeof (stack));
- /* Initialize initialized data */
- memcpy (&init_data, &data, &edata - &data);
- /* Turn on the serial ports */
- init_duart (&a);
- init_duart (&b);
- }
- Use the 'section' attribute with _global_ variables and not _local_
- variables, as shown in the example.
- You may use the 'section' attribute with initialized or
- uninitialized global variables but the linker requires each object
- be defined once, with the exception that uninitialized variables
- tentatively go in the 'common' (or 'bss') section and can be
- multiply "defined". Using the 'section' attribute changes what
- section the variable goes into and may cause the linker to issue an
- error if an uninitialized variable has multiple definitions. You
- can force a variable to be initialized with the '-fno-common' flag
- or the 'nocommon' attribute.
- Some file formats do not support arbitrary sections so the
- 'section' attribute is not available on all platforms. If you need
- to map the entire contents of a module to a particular section,
- consider using the facilities of the linker instead.
- 'tls_model ("TLS_MODEL")'
- The 'tls_model' attribute sets thread-local storage model (*note
- Thread-Local::) of a particular '__thread' variable, overriding
- '-ftls-model=' command-line switch on a per-variable basis. The
- TLS_MODEL argument should be one of 'global-dynamic',
- 'local-dynamic', 'initial-exec' or 'local-exec'.
- Not all targets support this attribute.
- 'unused'
- This attribute, attached to a variable, means that the variable is
- meant to be possibly unused. GCC does not produce a warning for
- this variable.
- 'used'
- This attribute, attached to a variable with static storage, means
- that the variable must be emitted even if it appears that the
- variable is not referenced.
- When applied to a static data member of a C++ class template, the
- attribute also means that the member is instantiated if the class
- itself is instantiated.
- 'vector_size (BYTES)'
- This attribute specifies the vector size for the variable, measured
- in bytes. For example, the declaration:
- int foo __attribute__ ((vector_size (16)));
- causes the compiler to set the mode for 'foo', to be 16 bytes,
- divided into 'int' sized units. Assuming a 32-bit int (a vector of
- 4 units of 4 bytes), the corresponding mode of 'foo' is V4SI.
- This attribute is only applicable to integral and float scalars,
- although arrays, pointers, and function return values are allowed
- in conjunction with this construct.
- Aggregates with this attribute are invalid, even if they are of the
- same size as a corresponding scalar. For example, the declaration:
- struct S { int a; };
- struct S __attribute__ ((vector_size (16))) foo;
- is invalid even if the size of the structure is the same as the
- size of the 'int'.
- 'visibility ("VISIBILITY_TYPE")'
- This attribute affects the linkage of the declaration to which it
- is attached. The 'visibility' attribute is described in *note
- Common Function Attributes::.
- 'weak'
- The 'weak' attribute is described in *note Common Function
- Attributes::.
- File: gcc.info, Node: ARC Variable Attributes, Next: AVR Variable Attributes, Prev: Common Variable Attributes, Up: Variable Attributes
- 6.32.2 ARC Variable Attributes
- ------------------------------
- 'aux'
- The 'aux' attribute is used to directly access the ARC's auxiliary
- register space from C. The auxilirary register number is given via
- attribute argument.
- File: gcc.info, Node: AVR Variable Attributes, Next: Blackfin Variable Attributes, Prev: ARC Variable Attributes, Up: Variable Attributes
- 6.32.3 AVR Variable Attributes
- ------------------------------
- 'progmem'
- The 'progmem' attribute is used on the AVR to place read-only data
- in the non-volatile program memory (flash). The 'progmem'
- attribute accomplishes this by putting respective variables into a
- section whose name starts with '.progmem'.
- This attribute works similar to the 'section' attribute but adds
- additional checking.
- * Ordinary AVR cores with 32 general purpose registers:
- 'progmem' affects the location of the data but not how this
- data is accessed. In order to read data located with the
- 'progmem' attribute (inline) assembler must be used.
- /* Use custom macros from AVR-LibC (http://nongnu.org/avr-libc/user-manual/) */
- #include <avr/pgmspace.h>
- /* Locate var in flash memory */
- const int var[2] PROGMEM = { 1, 2 };
- int read_var (int i)
- {
- /* Access var[] by accessor macro from avr/pgmspace.h */
- return (int) pgm_read_word (& var[i]);
- }
- AVR is a Harvard architecture processor and data and read-only
- data normally resides in the data memory (RAM).
- See also the *note AVR Named Address Spaces:: section for an
- alternate way to locate and access data in flash memory.
- * AVR cores with flash memory visible in the RAM address range:
- On such devices, there is no need for attribute 'progmem' or
- *note '__flash': AVR Named Address Spaces. qualifier at all.
- Just use standard C / C++. The compiler will generate 'LD*'
- instructions. As flash memory is visible in the RAM address
- range, and the default linker script does _not_ locate
- '.rodata' in RAM, no special features are needed in order not
- to waste RAM for read-only data or to read from flash. You
- might even get slightly better performance by avoiding
- 'progmem' and '__flash'. This applies to devices from
- families 'avrtiny' and 'avrxmega3', see *note AVR Options::
- for an overview.
- * Reduced AVR Tiny cores like ATtiny40:
- The compiler adds '0x4000' to the addresses of objects and
- declarations in 'progmem' and locates the objects in flash
- memory, namely in section '.progmem.data'. The offset is
- needed because the flash memory is visible in the RAM address
- space starting at address '0x4000'.
- Data in 'progmem' can be accessed by means of ordinary C code,
- no special functions or macros are needed.
- /* var is located in flash memory */
- extern const int var[2] __attribute__((progmem));
- int read_var (int i)
- {
- return var[i];
- }
- Please notice that on these devices, there is no need for
- 'progmem' at all.
- 'io'
- 'io (ADDR)'
- Variables with the 'io' attribute are used to address memory-mapped
- peripherals in the io address range. If an address is specified,
- the variable is assigned that address, and the value is interpreted
- as an address in the data address space. Example:
- volatile int porta __attribute__((io (0x22)));
- The address specified in the address in the data address range.
- Otherwise, the variable it is not assigned an address, but the
- compiler will still use in/out instructions where applicable,
- assuming some other module assigns an address in the io address
- range. Example:
- extern volatile int porta __attribute__((io));
- 'io_low'
- 'io_low (ADDR)'
- This is like the 'io' attribute, but additionally it informs the
- compiler that the object lies in the lower half of the I/O area,
- allowing the use of 'cbi', 'sbi', 'sbic' and 'sbis' instructions.
- 'address'
- 'address (ADDR)'
- Variables with the 'address' attribute are used to address
- memory-mapped peripherals that may lie outside the io address
- range.
- volatile int porta __attribute__((address (0x600)));
- 'absdata'
- Variables in static storage and with the 'absdata' attribute can be
- accessed by the 'LDS' and 'STS' instructions which take absolute
- addresses.
- * This attribute is only supported for the reduced AVR Tiny core
- like ATtiny40.
- * You must make sure that respective data is located in the
- address range '0x40'...'0xbf' accessible by 'LDS' and 'STS'.
- One way to achieve this as an appropriate linker description
- file.
- * If the location does not fit the address range of 'LDS' and
- 'STS', there is currently (Binutils 2.26) just an unspecific
- warning like
- 'module.c:(.text+0x1c): warning: internal error: out of
- range error'
- See also the '-mabsdata' *note command-line option: AVR Options.
- File: gcc.info, Node: Blackfin Variable Attributes, Next: H8/300 Variable Attributes, Prev: AVR Variable Attributes, Up: Variable Attributes
- 6.32.4 Blackfin Variable Attributes
- -----------------------------------
- Three attributes are currently defined for the Blackfin.
- 'l1_data'
- 'l1_data_A'
- 'l1_data_B'
- Use these attributes on the Blackfin to place the variable into L1
- Data SRAM. Variables with 'l1_data' attribute are put into the
- specific section named '.l1.data'. Those with 'l1_data_A'
- attribute are put into the specific section named '.l1.data.A'.
- Those with 'l1_data_B' attribute are put into the specific section
- named '.l1.data.B'.
- 'l2'
- Use this attribute on the Blackfin to place the variable into L2
- SRAM. Variables with 'l2' attribute are put into the specific
- section named '.l2.data'.
- File: gcc.info, Node: H8/300 Variable Attributes, Next: IA-64 Variable Attributes, Prev: Blackfin Variable Attributes, Up: Variable Attributes
- 6.32.5 H8/300 Variable Attributes
- ---------------------------------
- These variable attributes are available for H8/300 targets:
- 'eightbit_data'
- Use this attribute on the H8/300, H8/300H, and H8S to indicate that
- the specified variable should be placed into the eight-bit data
- section. The compiler generates more efficient code for certain
- operations on data in the eight-bit data area. Note the eight-bit
- data area is limited to 256 bytes of data.
- You must use GAS and GLD from GNU binutils version 2.7 or later for
- this attribute to work correctly.
- 'tiny_data'
- Use this attribute on the H8/300H and H8S to indicate that the
- specified variable should be placed into the tiny data section.
- The compiler generates more efficient code for loads and stores on
- data in the tiny data section. Note the tiny data area is limited
- to slightly under 32KB of data.
- File: gcc.info, Node: IA-64 Variable Attributes, Next: M32R/D Variable Attributes, Prev: H8/300 Variable Attributes, Up: Variable Attributes
- 6.32.6 IA-64 Variable Attributes
- --------------------------------
- The IA-64 back end supports the following variable attribute:
- 'model (MODEL-NAME)'
- On IA-64, use this attribute to set the addressability of an
- object. At present, the only supported identifier for MODEL-NAME
- is 'small', indicating addressability via "small" (22-bit)
- addresses (so that their addresses can be loaded with the 'addl'
- instruction). Caveat: such addressing is by definition not
- position independent and hence this attribute must not be used for
- objects defined by shared libraries.
- File: gcc.info, Node: M32R/D Variable Attributes, Next: MeP Variable Attributes, Prev: IA-64 Variable Attributes, Up: Variable Attributes
- 6.32.7 M32R/D Variable Attributes
- ---------------------------------
- One attribute is currently defined for the M32R/D.
- 'model (MODEL-NAME)'
- Use this attribute on the M32R/D to set the addressability of an
- object. The identifier MODEL-NAME is one of 'small', 'medium', or
- 'large', representing each of the code models.
- Small model objects live in the lower 16MB of memory (so that their
- addresses can be loaded with the 'ld24' instruction).
- Medium and large model objects may live anywhere in the 32-bit
- address space (the compiler generates 'seth/add3' instructions to
- load their addresses).
- File: gcc.info, Node: MeP Variable Attributes, Next: Microsoft Windows Variable Attributes, Prev: M32R/D Variable Attributes, Up: Variable Attributes
- 6.32.8 MeP Variable Attributes
- ------------------------------
- The MeP target has a number of addressing modes and busses. The 'near'
- space spans the standard memory space's first 16 megabytes (24 bits).
- The 'far' space spans the entire 32-bit memory space. The 'based' space
- is a 128-byte region in the memory space that is addressed relative to
- the '$tp' register. The 'tiny' space is a 65536-byte region relative to
- the '$gp' register. In addition to these memory regions, the MeP target
- has a separate 16-bit control bus which is specified with 'cb'
- attributes.
- 'based'
- Any variable with the 'based' attribute is assigned to the '.based'
- section, and is accessed with relative to the '$tp' register.
- 'tiny'
- Likewise, the 'tiny' attribute assigned variables to the '.tiny'
- section, relative to the '$gp' register.
- 'near'
- Variables with the 'near' attribute are assumed to have addresses
- that fit in a 24-bit addressing mode. This is the default for
- large variables ('-mtiny=4' is the default) but this attribute can
- override '-mtiny=' for small variables, or override '-ml'.
- 'far'
- Variables with the 'far' attribute are addressed using a full
- 32-bit address. Since this covers the entire memory space, this
- allows modules to make no assumptions about where variables might
- be stored.
- 'io'
- 'io (ADDR)'
- Variables with the 'io' attribute are used to address memory-mapped
- peripherals. If an address is specified, the variable is assigned
- that address, else it is not assigned an address (it is assumed
- some other module assigns an address). Example:
- int timer_count __attribute__((io(0x123)));
- 'cb'
- 'cb (ADDR)'
- Variables with the 'cb' attribute are used to access the control
- bus, using special instructions. 'addr' indicates the control bus
- address. Example:
- int cpu_clock __attribute__((cb(0x123)));
- File: gcc.info, Node: Microsoft Windows Variable Attributes, Next: MSP430 Variable Attributes, Prev: MeP Variable Attributes, Up: Variable Attributes
- 6.32.9 Microsoft Windows Variable Attributes
- --------------------------------------------
- You can use these attributes on Microsoft Windows targets. *note x86
- Variable Attributes:: for additional Windows compatibility attributes
- available on all x86 targets.
- 'dllimport'
- 'dllexport'
- The 'dllimport' and 'dllexport' attributes are described in *note
- Microsoft Windows Function Attributes::.
- 'selectany'
- The 'selectany' attribute causes an initialized global variable to
- have link-once semantics. When multiple definitions of the
- variable are encountered by the linker, the first is selected and
- the remainder are discarded. Following usage by the Microsoft
- compiler, the linker is told _not_ to warn about size or content
- differences of the multiple definitions.
- Although the primary usage of this attribute is for POD types, the
- attribute can also be applied to global C++ objects that are
- initialized by a constructor. In this case, the static
- initialization and destruction code for the object is emitted in
- each translation defining the object, but the calls to the
- constructor and destructor are protected by a link-once guard
- variable.
- The 'selectany' attribute is only available on Microsoft Windows
- targets. You can use '__declspec (selectany)' as a synonym for
- '__attribute__ ((selectany))' for compatibility with other
- compilers.
- 'shared'
- On Microsoft Windows, in addition to putting variable definitions
- in a named section, the section can also be shared among all
- running copies of an executable or DLL. For example, this small
- program defines shared data by putting it in a named section
- 'shared' and marking the section shareable:
- int foo __attribute__((section ("shared"), shared)) = 0;
- int
- main()
- {
- /* Read and write foo. All running
- copies see the same value. */
- return 0;
- }
- You may only use the 'shared' attribute along with 'section'
- attribute with a fully-initialized global definition because of the
- way linkers work. See 'section' attribute for more information.
- The 'shared' attribute is only available on Microsoft Windows.
- File: gcc.info, Node: MSP430 Variable Attributes, Next: Nvidia PTX Variable Attributes, Prev: Microsoft Windows Variable Attributes, Up: Variable Attributes
- 6.32.10 MSP430 Variable Attributes
- ----------------------------------
- 'noinit'
- Any data with the 'noinit' attribute will not be initialised by the
- C runtime startup code, or the program loader. Not initialising
- data in this way can reduce program startup times.
- 'persistent'
- Any variable with the 'persistent' attribute will not be
- initialised by the C runtime startup code. Instead its value will
- be set once, when the application is loaded, and then never
- initialised again, even if the processor is reset or the program
- restarts. Persistent data is intended to be placed into FLASH RAM,
- where its value will be retained across resets. The linker script
- being used to create the application should ensure that persistent
- data is correctly placed.
- 'lower'
- 'upper'
- 'either'
- These attributes are the same as the MSP430 function attributes of
- the same name (*note MSP430 Function Attributes::). These
- attributes can be applied to both functions and variables.
- File: gcc.info, Node: Nvidia PTX Variable Attributes, Next: PowerPC Variable Attributes, Prev: MSP430 Variable Attributes, Up: Variable Attributes
- 6.32.11 Nvidia PTX Variable Attributes
- --------------------------------------
- These variable attributes are supported by the Nvidia PTX back end:
- 'shared'
- Use this attribute to place a variable in the '.shared' memory
- space. This memory space is private to each cooperative thread
- array; only threads within one thread block refer to the same
- instance of the variable. The runtime does not initialize
- variables in this memory space.
- File: gcc.info, Node: PowerPC Variable Attributes, Next: RL78 Variable Attributes, Prev: Nvidia PTX Variable Attributes, Up: Variable Attributes
- 6.32.12 PowerPC Variable Attributes
- -----------------------------------
- Three attributes currently are defined for PowerPC configurations:
- 'altivec', 'ms_struct' and 'gcc_struct'.
- For full documentation of the struct attributes please see the
- documentation in *note x86 Variable Attributes::.
- For documentation of 'altivec' attribute please see the documentation
- in *note PowerPC Type Attributes::.
- File: gcc.info, Node: RL78 Variable Attributes, Next: SPU Variable Attributes, Prev: PowerPC Variable Attributes, Up: Variable Attributes
- 6.32.13 RL78 Variable Attributes
- --------------------------------
- The RL78 back end supports the 'saddr' variable attribute. This
- specifies placement of the corresponding variable in the SADDR area,
- which can be accessed more efficiently than the default memory region.
- File: gcc.info, Node: SPU Variable Attributes, Next: V850 Variable Attributes, Prev: RL78 Variable Attributes, Up: Variable Attributes
- 6.32.14 SPU Variable Attributes
- -------------------------------
- The SPU supports the 'spu_vector' attribute for variables. For
- documentation of this attribute please see the documentation in *note
- SPU Type Attributes::.
- File: gcc.info, Node: V850 Variable Attributes, Next: x86 Variable Attributes, Prev: SPU Variable Attributes, Up: Variable Attributes
- 6.32.15 V850 Variable Attributes
- --------------------------------
- These variable attributes are supported by the V850 back end:
- 'sda'
- Use this attribute to explicitly place a variable in the small data
- area, which can hold up to 64 kilobytes.
- 'tda'
- Use this attribute to explicitly place a variable in the tiny data
- area, which can hold up to 256 bytes in total.
- 'zda'
- Use this attribute to explicitly place a variable in the first 32
- kilobytes of memory.
- File: gcc.info, Node: x86 Variable Attributes, Next: Xstormy16 Variable Attributes, Prev: V850 Variable Attributes, Up: Variable Attributes
- 6.32.16 x86 Variable Attributes
- -------------------------------
- Two attributes are currently defined for x86 configurations: 'ms_struct'
- and 'gcc_struct'.
- 'ms_struct'
- 'gcc_struct'
- If 'packed' is used on a structure, or if bit-fields are used, it
- may be that the Microsoft ABI lays out the structure differently
- than the way GCC normally does. Particularly when moving packed
- data between functions compiled with GCC and the native Microsoft
- compiler (either via function call or as data in a file), it may be
- necessary to access either format.
- The 'ms_struct' and 'gcc_struct' attributes correspond to the
- '-mms-bitfields' and '-mno-ms-bitfields' command-line options,
- respectively; see *note x86 Options::, for details of how structure
- layout is affected. *Note x86 Type Attributes::, for information
- about the corresponding attributes on types.
- File: gcc.info, Node: Xstormy16 Variable Attributes, Prev: x86 Variable Attributes, Up: Variable Attributes
- 6.32.17 Xstormy16 Variable Attributes
- -------------------------------------
- One attribute is currently defined for xstormy16 configurations:
- 'below100'.
- 'below100'
- If a variable has the 'below100' attribute ('BELOW100' is allowed
- also), GCC places the variable in the first 0x100 bytes of memory
- and use special opcodes to access it. Such variables are placed in
- either the '.bss_below100' section or the '.data_below100' section.
- File: gcc.info, Node: Type Attributes, Next: Label Attributes, Prev: Variable Attributes, Up: C Extensions
- 6.33 Specifying Attributes of Types
- ===================================
- The keyword '__attribute__' allows you to specify special attributes of
- types. Some type attributes apply only to 'struct' and 'union' types,
- while others can apply to any type defined via a 'typedef' declaration.
- Other attributes are defined for functions (*note Function
- Attributes::), labels (*note Label Attributes::), enumerators (*note
- Enumerator Attributes::), statements (*note Statement Attributes::), and
- for variables (*note Variable Attributes::).
- The '__attribute__' keyword is followed by an attribute specification
- inside double parentheses.
- You may specify type attributes in an enum, struct or union type
- declaration or definition by placing them immediately after the
- 'struct', 'union' or 'enum' keyword. A less preferred syntax is to
- place them just past the closing curly brace of the definition.
- You can also include type attributes in a 'typedef' declaration. *Note
- Attribute Syntax::, for details of the exact syntax for using
- attributes.
- * Menu:
- * Common Type Attributes::
- * ARC Type Attributes::
- * ARM Type Attributes::
- * MeP Type Attributes::
- * PowerPC Type Attributes::
- * SPU Type Attributes::
- * x86 Type Attributes::
- File: gcc.info, Node: Common Type Attributes, Next: ARC Type Attributes, Up: Type Attributes
- 6.33.1 Common Type Attributes
- -----------------------------
- The following type attributes are supported on most targets.
- 'aligned (ALIGNMENT)'
- This attribute specifies a minimum alignment (in bytes) for
- variables of the specified type. For example, the declarations:
- struct S { short f[3]; } __attribute__ ((aligned (8)));
- typedef int more_aligned_int __attribute__ ((aligned (8)));
- force the compiler to ensure (as far as it can) that each variable
- whose type is 'struct S' or 'more_aligned_int' is allocated and
- aligned _at least_ on a 8-byte boundary. On a SPARC, having all
- variables of type 'struct S' aligned to 8-byte boundaries allows
- the compiler to use the 'ldd' and 'std' (doubleword load and store)
- instructions when copying one variable of type 'struct S' to
- another, thus improving run-time efficiency.
- Note that the alignment of any given 'struct' or 'union' type is
- required by the ISO C standard to be at least a perfect multiple of
- the lowest common multiple of the alignments of all of the members
- of the 'struct' or 'union' in question. This means that you _can_
- effectively adjust the alignment of a 'struct' or 'union' type by
- attaching an 'aligned' attribute to any one of the members of such
- a type, but the notation illustrated in the example above is a more
- obvious, intuitive, and readable way to request the compiler to
- adjust the alignment of an entire 'struct' or 'union' type.
- As in the preceding example, you can explicitly specify the
- alignment (in bytes) that you wish the compiler to use for a given
- 'struct' or 'union' type. Alternatively, you can leave out the
- alignment factor and just ask the compiler to align a type to the
- maximum useful alignment for the target machine you are compiling
- for. For example, you could write:
- struct S { short f[3]; } __attribute__ ((aligned));
- Whenever you leave out the alignment factor in an 'aligned'
- attribute specification, the compiler automatically sets the
- alignment for the type to the largest alignment that is ever used
- for any data type on the target machine you are compiling for.
- Doing this can often make copy operations more efficient, because
- the compiler can use whatever instructions copy the biggest chunks
- of memory when performing copies to or from the variables that have
- types that you have aligned this way.
- In the example above, if the size of each 'short' is 2 bytes, then
- the size of the entire 'struct S' type is 6 bytes. The smallest
- power of two that is greater than or equal to that is 8, so the
- compiler sets the alignment for the entire 'struct S' type to 8
- bytes.
- Note that although you can ask the compiler to select a
- time-efficient alignment for a given type and then declare only
- individual stand-alone objects of that type, the compiler's ability
- to select a time-efficient alignment is primarily useful only when
- you plan to create arrays of variables having the relevant
- (efficiently aligned) type. If you declare or use arrays of
- variables of an efficiently-aligned type, then it is likely that
- your program also does pointer arithmetic (or subscripting, which
- amounts to the same thing) on pointers to the relevant type, and
- the code that the compiler generates for these pointer arithmetic
- operations is often more efficient for efficiently-aligned types
- than for other types.
- Note that the effectiveness of 'aligned' attributes may be limited
- by inherent limitations in your linker. On many systems, the
- linker is only able to arrange for variables to be aligned up to a
- certain maximum alignment. (For some linkers, the maximum
- supported alignment may be very very small.) If your linker is
- only able to align variables up to a maximum of 8-byte alignment,
- then specifying 'aligned(16)' in an '__attribute__' still only
- provides you with 8-byte alignment. See your linker documentation
- for further information.
- The 'aligned' attribute can only increase alignment. Alignment can
- be decreased by specifying the 'packed' attribute. See below.
- 'warn_if_not_aligned (ALIGNMENT)'
- This attribute specifies a threshold for the structure field,
- measured in bytes. If the structure field is aligned below the
- threshold, a warning will be issued. For example, the declaration:
- typedef unsigned long long __u64
- __attribute__((aligned(4),warn_if_not_aligned(8)));
- struct foo
- {
- int i1;
- int i2;
- __u64 x;
- };
- causes the compiler to issue an warning on 'struct foo', like
- 'warning: alignment 4 of 'struct foo' is less than 8'. It is used
- to define 'struct foo' in such a way that 'struct foo' has the same
- layout and the structure field 'x' has the same alignment when
- '__u64' is aligned at either 4 or 8 bytes. Align 'struct foo' to 8
- bytes:
- struct foo
- {
- int i1;
- int i2;
- __u64 x;
- } __attribute__((aligned(8)));
- silences the warning. The compiler also issues a warning, like
- 'warning: 'x' offset 12 in 'struct foo' isn't aligned to 8', when
- the structure field has the misaligned offset:
- struct foo
- {
- int i1;
- int i2;
- int i3;
- __u64 x;
- } __attribute__((aligned(8)));
- This warning can be disabled by '-Wno-if-not-aligned'.
- 'bnd_variable_size'
- When applied to a structure field, this attribute tells Pointer
- Bounds Checker that the size of this field should not be computed
- using static type information. It may be used to mark
- variably-sized static array fields placed at the end of a
- structure.
- struct S
- {
- int size;
- char data[1];
- }
- S *p = (S *)malloc (sizeof(S) + 100);
- p->data[10] = 0; //Bounds violation
- By using an attribute for the field we may avoid unwanted bound
- violation checks:
- struct S
- {
- int size;
- char data[1] __attribute__((bnd_variable_size));
- }
- S *p = (S *)malloc (sizeof(S) + 100);
- p->data[10] = 0; //OK
- 'deprecated'
- 'deprecated (MSG)'
- The 'deprecated' attribute results in a warning if the type is used
- anywhere in the source file. This is useful when identifying types
- that are expected to be removed in a future version of a program.
- If possible, the warning also includes the location of the
- declaration of the deprecated type, to enable users to easily find
- further information about why the type is deprecated, or what they
- should do instead. Note that the warnings only occur for uses and
- then only if the type is being applied to an identifier that itself
- is not being declared as deprecated.
- typedef int T1 __attribute__ ((deprecated));
- T1 x;
- typedef T1 T2;
- T2 y;
- typedef T1 T3 __attribute__ ((deprecated));
- T3 z __attribute__ ((deprecated));
- results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
- warning is issued for line 4 because T2 is not explicitly
- deprecated. Line 5 has no warning because T3 is explicitly
- deprecated. Similarly for line 6. The optional MSG argument,
- which must be a string, is printed in the warning if present.
- The 'deprecated' attribute can also be used for functions and
- variables (*note Function Attributes::, *note Variable
- Attributes::.)
- 'designated_init'
- This attribute may only be applied to structure types. It
- indicates that any initialization of an object of this type must
- use designated initializers rather than positional initializers.
- The intent of this attribute is to allow the programmer to indicate
- that a structure's layout may change, and that therefore relying on
- positional initialization will result in future breakage.
- GCC emits warnings based on this attribute by default; use
- '-Wno-designated-init' to suppress them.
- 'may_alias'
- Accesses through pointers to types with this attribute are not
- subject to type-based alias analysis, but are instead assumed to be
- able to alias any other type of objects. In the context of section
- 6.5 paragraph 7 of the C99 standard, an lvalue expression
- dereferencing such a pointer is treated like having a character
- type. See '-fstrict-aliasing' for more information on aliasing
- issues. This extension exists to support some vector APIs, in
- which pointers to one vector type are permitted to alias pointers
- to a different vector type.
- Note that an object of a type with this attribute does not have any
- special semantics.
- Example of use:
- typedef short __attribute__((__may_alias__)) short_a;
- int
- main (void)
- {
- int a = 0x12345678;
- short_a *b = (short_a *) &a;
- b[1] = 0;
- if (a == 0x12345678)
- abort();
- exit(0);
- }
- If you replaced 'short_a' with 'short' in the variable declaration,
- the above program would abort when compiled with
- '-fstrict-aliasing', which is on by default at '-O2' or above.
- 'packed'
- This attribute, attached to 'struct' or 'union' type definition,
- specifies that each member (other than zero-width bit-fields) of
- the structure or union is placed to minimize the memory required.
- When attached to an 'enum' definition, it indicates that the
- smallest integral type should be used.
- Specifying the 'packed' attribute for 'struct' and 'union' types is
- equivalent to specifying the 'packed' attribute on each of the
- structure or union members. Specifying the '-fshort-enums' flag on
- the command line is equivalent to specifying the 'packed' attribute
- on all 'enum' definitions.
- In the following example 'struct my_packed_struct''s members are
- packed closely together, but the internal layout of its 's' member
- is not packed--to do that, 'struct my_unpacked_struct' needs to be
- packed too.
- struct my_unpacked_struct
- {
- char c;
- int i;
- };
- struct __attribute__ ((__packed__)) my_packed_struct
- {
- char c;
- int i;
- struct my_unpacked_struct s;
- };
- You may only specify the 'packed' attribute attribute on the
- definition of an 'enum', 'struct' or 'union', not on a 'typedef'
- that does not also define the enumerated type, structure or union.
- 'scalar_storage_order ("ENDIANNESS")'
- When attached to a 'union' or a 'struct', this attribute sets the
- storage order, aka endianness, of the scalar fields of the type, as
- well as the array fields whose component is scalar. The supported
- endiannesses are 'big-endian' and 'little-endian'. The attribute
- has no effects on fields which are themselves a 'union', a 'struct'
- or an array whose component is a 'union' or a 'struct', and it is
- possible for these fields to have a different scalar storage order
- than the enclosing type.
- This attribute is supported only for targets that use a uniform
- default scalar storage order (fortunately, most of them), i.e.
- targets that store the scalars either all in big-endian or all in
- little-endian.
- Additional restrictions are enforced for types with the reverse
- scalar storage order with regard to the scalar storage order of the
- target:
- * Taking the address of a scalar field of a 'union' or a
- 'struct' with reverse scalar storage order is not permitted
- and yields an error.
- * Taking the address of an array field, whose component is
- scalar, of a 'union' or a 'struct' with reverse scalar storage
- order is permitted but yields a warning, unless
- '-Wno-scalar-storage-order' is specified.
- * Taking the address of a 'union' or a 'struct' with reverse
- scalar storage order is permitted.
- These restrictions exist because the storage order attribute is
- lost when the address of a scalar or the address of an array with
- scalar component is taken, so storing indirectly through this
- address generally does not work. The second case is nevertheless
- allowed to be able to perform a block copy from or to the array.
- Moreover, the use of type punning or aliasing to toggle the storage
- order is not supported; that is to say, a given scalar object
- cannot be accessed through distinct types that assign a different
- storage order to it.
- 'transparent_union'
- This attribute, attached to a 'union' type definition, indicates
- that any function parameter having that union type causes calls to
- that function to be treated in a special way.
- First, the argument corresponding to a transparent union type can
- be of any type in the union; no cast is required. Also, if the
- union contains a pointer type, the corresponding argument can be a
- null pointer constant or a void pointer expression; and if the
- union contains a void pointer type, the corresponding argument can
- be any pointer expression. If the union member type is a pointer,
- qualifiers like 'const' on the referenced type must be respected,
- just as with normal pointer conversions.
- Second, the argument is passed to the function using the calling
- conventions of the first member of the transparent union, not the
- calling conventions of the union itself. All members of the union
- must have the same machine representation; this is necessary for
- this argument passing to work properly.
- Transparent unions are designed for library functions that have
- multiple interfaces for compatibility reasons. For example,
- suppose the 'wait' function must accept either a value of type 'int
- *' to comply with POSIX, or a value of type 'union wait *' to
- comply with the 4.1BSD interface. If 'wait''s parameter were 'void
- *', 'wait' would accept both kinds of arguments, but it would also
- accept any other pointer type and this would make argument type
- checking less useful. Instead, '<sys/wait.h>' might define the
- interface as follows:
- typedef union __attribute__ ((__transparent_union__))
- {
- int *__ip;
- union wait *__up;
- } wait_status_ptr_t;
- pid_t wait (wait_status_ptr_t);
- This interface allows either 'int *' or 'union wait *' arguments to
- be passed, using the 'int *' calling convention. The program can
- call 'wait' with arguments of either type:
- int w1 () { int w; return wait (&w); }
- int w2 () { union wait w; return wait (&w); }
- With this interface, 'wait''s implementation might look like this:
- pid_t wait (wait_status_ptr_t p)
- {
- return waitpid (-1, p.__ip, 0);
- }
- 'unused'
- When attached to a type (including a 'union' or a 'struct'), this
- attribute means that variables of that type are meant to appear
- possibly unused. GCC does not produce a warning for any variables
- of that type, even if the variable appears to do nothing. This is
- often the case with lock or thread classes, which are usually
- defined and then not referenced, but contain constructors and
- destructors that have nontrivial bookkeeping functions.
- 'visibility'
- In C++, attribute visibility (*note Function Attributes::) can also
- be applied to class, struct, union and enum types. Unlike other
- type attributes, the attribute must appear between the initial
- keyword and the name of the type; it cannot appear after the body
- of the type.
- Note that the type visibility is applied to vague linkage entities
- associated with the class (vtable, typeinfo node, etc.). In
- particular, if a class is thrown as an exception in one shared
- object and caught in another, the class must have default
- visibility. Otherwise the two shared objects are unable to use the
- same typeinfo node and exception handling will break.
- To specify multiple attributes, separate them by commas within the
- double parentheses: for example, '__attribute__ ((aligned (16),
- packed))'.
- File: gcc.info, Node: ARC Type Attributes, Next: ARM Type Attributes, Prev: Common Type Attributes, Up: Type Attributes
- 6.33.2 ARC Type Attributes
- --------------------------
- Declaring objects with 'uncached' allows you to exclude data-cache
- participation in load and store operations on those objects without
- involving the additional semantic implications of 'volatile'. The '.di'
- instruction suffix is used for all loads and stores of data declared
- 'uncached'.
- File: gcc.info, Node: ARM Type Attributes, Next: MeP Type Attributes, Prev: ARC Type Attributes, Up: Type Attributes
- 6.33.3 ARM Type Attributes
- --------------------------
- On those ARM targets that support 'dllimport' (such as Symbian OS), you
- can use the 'notshared' attribute to indicate that the virtual table and
- other similar data for a class should not be exported from a DLL. For
- example:
- class __declspec(notshared) C {
- public:
- __declspec(dllimport) C();
- virtual void f();
- }
- __declspec(dllexport)
- C::C() {}
- In this code, 'C::C' is exported from the current DLL, but the virtual
- table for 'C' is not exported. (You can use '__attribute__' instead of
- '__declspec' if you prefer, but most Symbian OS code uses '__declspec'.)
- File: gcc.info, Node: MeP Type Attributes, Next: PowerPC Type Attributes, Prev: ARM Type Attributes, Up: Type Attributes
- 6.33.4 MeP Type Attributes
- --------------------------
- Many of the MeP variable attributes may be applied to types as well.
- Specifically, the 'based', 'tiny', 'near', and 'far' attributes may be
- applied to either. The 'io' and 'cb' attributes may not be applied to
- types.
- File: gcc.info, Node: PowerPC Type Attributes, Next: SPU Type Attributes, Prev: MeP Type Attributes, Up: Type Attributes
- 6.33.5 PowerPC Type Attributes
- ------------------------------
- Three attributes currently are defined for PowerPC configurations:
- 'altivec', 'ms_struct' and 'gcc_struct'.
- For full documentation of the 'ms_struct' and 'gcc_struct' attributes
- please see the documentation in *note x86 Type Attributes::.
- The 'altivec' attribute allows one to declare AltiVec vector data types
- supported by the AltiVec Programming Interface Manual. The attribute
- requires an argument to specify one of three vector types: 'vector__',
- 'pixel__' (always followed by unsigned short), and 'bool__' (always
- followed by unsigned).
- __attribute__((altivec(vector__)))
- __attribute__((altivec(pixel__))) unsigned short
- __attribute__((altivec(bool__))) unsigned
- These attributes mainly are intended to support the '__vector',
- '__pixel', and '__bool' AltiVec keywords.
- File: gcc.info, Node: SPU Type Attributes, Next: x86 Type Attributes, Prev: PowerPC Type Attributes, Up: Type Attributes
- 6.33.6 SPU Type Attributes
- --------------------------
- The SPU supports the 'spu_vector' attribute for types. This attribute
- allows one to declare vector data types supported by the
- Sony/Toshiba/IBM SPU Language Extensions Specification. It is intended
- to support the '__vector' keyword.
- File: gcc.info, Node: x86 Type Attributes, Prev: SPU Type Attributes, Up: Type Attributes
- 6.33.7 x86 Type Attributes
- --------------------------
- Two attributes are currently defined for x86 configurations: 'ms_struct'
- and 'gcc_struct'.
- 'ms_struct'
- 'gcc_struct'
- If 'packed' is used on a structure, or if bit-fields are used it
- may be that the Microsoft ABI packs them differently than GCC
- normally packs them. Particularly when moving packed data between
- functions compiled with GCC and the native Microsoft compiler
- (either via function call or as data in a file), it may be
- necessary to access either format.
- The 'ms_struct' and 'gcc_struct' attributes correspond to the
- '-mms-bitfields' and '-mno-ms-bitfields' command-line options,
- respectively; see *note x86 Options::, for details of how structure
- layout is affected. *Note x86 Variable Attributes::, for
- information about the corresponding attributes on variables.
- File: gcc.info, Node: Label Attributes, Next: Enumerator Attributes, Prev: Type Attributes, Up: C Extensions
- 6.34 Label Attributes
- =====================
- GCC allows attributes to be set on C labels. *Note Attribute Syntax::,
- for details of the exact syntax for using attributes. Other attributes
- are available for functions (*note Function Attributes::), variables
- (*note Variable Attributes::), enumerators (*note Enumerator
- Attributes::), statements (*note Statement Attributes::), and for types
- (*note Type Attributes::).
- This example uses the 'cold' label attribute to indicate the
- 'ErrorHandling' branch is unlikely to be taken and that the
- 'ErrorHandling' label is unused:
- asm goto ("some asm" : : : : NoError);
- /* This branch (the fall-through from the asm) is less commonly used */
- ErrorHandling:
- __attribute__((cold, unused)); /* Semi-colon is required here */
- printf("error\n");
- return 0;
- NoError:
- printf("no error\n");
- return 1;
- 'unused'
- This feature is intended for program-generated code that may
- contain unused labels, but which is compiled with '-Wall'. It is
- not normally appropriate to use in it human-written code, though it
- could be useful in cases where the code that jumps to the label is
- contained within an '#ifdef' conditional.
- 'hot'
- The 'hot' attribute on a label is used to inform the compiler that
- the path following the label is more likely than paths that are not
- so annotated. This attribute is used in cases where
- '__builtin_expect' cannot be used, for instance with computed goto
- or 'asm goto'.
- 'cold'
- The 'cold' attribute on labels is used to inform the compiler that
- the path following the label is unlikely to be executed. This
- attribute is used in cases where '__builtin_expect' cannot be used,
- for instance with computed goto or 'asm goto'.
- File: gcc.info, Node: Enumerator Attributes, Next: Statement Attributes, Prev: Label Attributes, Up: C Extensions
- 6.35 Enumerator Attributes
- ==========================
- GCC allows attributes to be set on enumerators. *Note Attribute
- Syntax::, for details of the exact syntax for using attributes. Other
- attributes are available for functions (*note Function Attributes::),
- variables (*note Variable Attributes::), labels (*note Label
- Attributes::), statements (*note Statement Attributes::), and for types
- (*note Type Attributes::).
- This example uses the 'deprecated' enumerator attribute to indicate the
- 'oldval' enumerator is deprecated:
- enum E {
- oldval __attribute__((deprecated)),
- newval
- };
- int
- fn (void)
- {
- return oldval;
- }
- 'deprecated'
- The 'deprecated' attribute results in a warning if the enumerator
- is used anywhere in the source file. This is useful when
- identifying enumerators that are expected to be removed in a future
- version of a program. The warning also includes the location of
- the declaration of the deprecated enumerator, to enable users to
- easily find further information about why the enumerator is
- deprecated, or what they should do instead. Note that the warnings
- only occurs for uses.
- File: gcc.info, Node: Statement Attributes, Next: Attribute Syntax, Prev: Enumerator Attributes, Up: C Extensions
- 6.36 Statement Attributes
- =========================
- GCC allows attributes to be set on null statements. *Note Attribute
- Syntax::, for details of the exact syntax for using attributes. Other
- attributes are available for functions (*note Function Attributes::),
- variables (*note Variable Attributes::), labels (*note Label
- Attributes::), enumerators (*note Enumerator Attributes::), and for
- types (*note Type Attributes::).
- This example uses the 'fallthrough' statement attribute to indicate
- that the '-Wimplicit-fallthrough' warning should not be emitted:
- switch (cond)
- {
- case 1:
- bar (1);
- __attribute__((fallthrough));
- case 2:
- ...
- }
- 'fallthrough'
- The 'fallthrough' attribute with a null statement serves as a
- fallthrough statement. It hints to the compiler that a statement
- that falls through to another case label, or user-defined label in
- a switch statement is intentional and thus the
- '-Wimplicit-fallthrough' warning must not trigger. The fallthrough
- attribute may appear at most once in each attribute list, and may
- not be mixed with other attributes. It can only be used in a
- switch statement (the compiler will issue an error otherwise),
- after a preceding statement and before a logically succeeding case
- label, or user-defined label.
- File: gcc.info, Node: Attribute Syntax, Next: Function Prototypes, Prev: Statement Attributes, Up: C Extensions
- 6.37 Attribute Syntax
- =====================
- This section describes the syntax with which '__attribute__' may be
- used, and the constructs to which attribute specifiers bind, for the C
- language. Some details may vary for C++ and Objective-C. Because of
- infelicities in the grammar for attributes, some forms described here
- may not be successfully parsed in all cases.
- There are some problems with the semantics of attributes in C++. For
- example, there are no manglings for attributes, although they may affect
- code generation, so problems may arise when attributed types are used in
- conjunction with templates or overloading. Similarly, 'typeid' does not
- distinguish between types with different attributes. Support for
- attributes in C++ may be restricted in future to attributes on
- declarations only, but not on nested declarators.
- *Note Function Attributes::, for details of the semantics of attributes
- applying to functions. *Note Variable Attributes::, for details of the
- semantics of attributes applying to variables. *Note Type Attributes::,
- for details of the semantics of attributes applying to structure, union
- and enumerated types. *Note Label Attributes::, for details of the
- semantics of attributes applying to labels. *Note Enumerator
- Attributes::, for details of the semantics of attributes applying to
- enumerators. *Note Statement Attributes::, for details of the semantics
- of attributes applying to statements.
- An "attribute specifier" is of the form '__attribute__
- ((ATTRIBUTE-LIST))'. An "attribute list" is a possibly empty
- comma-separated sequence of "attributes", where each attribute is one of
- the following:
- * Empty. Empty attributes are ignored.
- * An attribute name (which may be an identifier such as 'unused', or
- a reserved word such as 'const').
- * An attribute name followed by a parenthesized list of parameters
- for the attribute. These parameters take one of the following
- forms:
- * An identifier. For example, 'mode' attributes use this form.
- * An identifier followed by a comma and a non-empty
- comma-separated list of expressions. For example, 'format'
- attributes use this form.
- * A possibly empty comma-separated list of expressions. For
- example, 'format_arg' attributes use this form with the list
- being a single integer constant expression, and 'alias'
- attributes use this form with the list being a single string
- constant.
- An "attribute specifier list" is a sequence of one or more attribute
- specifiers, not separated by any other tokens.
- You may optionally specify attribute names with '__' preceding and
- following the name. This allows you to use them in header files without
- being concerned about a possible macro of the same name. For example,
- you may use the attribute name '__noreturn__' instead of 'noreturn'.
- Label Attributes
- ................
- In GNU C, an attribute specifier list may appear after the colon
- following a label, other than a 'case' or 'default' label. GNU C++ only
- permits attributes on labels if the attribute specifier is immediately
- followed by a semicolon (i.e., the label applies to an empty statement).
- If the semicolon is missing, C++ label attributes are ambiguous, as it
- is permissible for a declaration, which could begin with an attribute
- list, to be labelled in C++. Declarations cannot be labelled in C90 or
- C99, so the ambiguity does not arise there.
- Enumerator Attributes
- .....................
- In GNU C, an attribute specifier list may appear as part of an
- enumerator. The attribute goes after the enumeration constant, before
- '=', if present. The optional attribute in the enumerator appertains to
- the enumeration constant. It is not possible to place the attribute
- after the constant expression, if present.
- Statement Attributes
- ....................
- In GNU C, an attribute specifier list may appear as part of a null
- statement. The attribute goes before the semicolon.
- Type Attributes
- ...............
- An attribute specifier list may appear as part of a 'struct', 'union' or
- 'enum' specifier. It may go either immediately after the 'struct',
- 'union' or 'enum' keyword, or after the closing brace. The former
- syntax is preferred. Where attribute specifiers follow the closing
- brace, they are considered to relate to the structure, union or
- enumerated type defined, not to any enclosing declaration the type
- specifier appears in, and the type defined is not complete until after
- the attribute specifiers.
- All other attributes
- ....................
- Otherwise, an attribute specifier appears as part of a declaration,
- counting declarations of unnamed parameters and type names, and relates
- to that declaration (which may be nested in another declaration, for
- example in the case of a parameter declaration), or to a particular
- declarator within a declaration. Where an attribute specifier is
- applied to a parameter declared as a function or an array, it should
- apply to the function or array rather than the pointer to which the
- parameter is implicitly converted, but this is not yet correctly
- implemented.
- Any list of specifiers and qualifiers at the start of a declaration may
- contain attribute specifiers, whether or not such a list may in that
- context contain storage class specifiers. (Some attributes, however,
- are essentially in the nature of storage class specifiers, and only make
- sense where storage class specifiers may be used; for example,
- 'section'.) There is one necessary limitation to this syntax: the first
- old-style parameter declaration in a function definition cannot begin
- with an attribute specifier, because such an attribute applies to the
- function instead by syntax described below (which, however, is not yet
- implemented in this case). In some other cases, attribute specifiers
- are permitted by this grammar but not yet supported by the compiler.
- All attribute specifiers in this place relate to the declaration as a
- whole. In the obsolescent usage where a type of 'int' is implied by the
- absence of type specifiers, such a list of specifiers and qualifiers may
- be an attribute specifier list with no other specifiers or qualifiers.
- At present, the first parameter in a function prototype must have some
- type specifier that is not an attribute specifier; this resolves an
- ambiguity in the interpretation of 'void f(int (__attribute__((foo))
- x))', but is subject to change. At present, if the parentheses of a
- function declarator contain only attributes then those attributes are
- ignored, rather than yielding an error or warning or implying a single
- parameter of type int, but this is subject to change.
- An attribute specifier list may appear immediately before a declarator
- (other than the first) in a comma-separated list of declarators in a
- declaration of more than one identifier using a single list of
- specifiers and qualifiers. Such attribute specifiers apply only to the
- identifier before whose declarator they appear. For example, in
- __attribute__((noreturn)) void d0 (void),
- __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
- d2 (void);
- the 'noreturn' attribute applies to all the functions declared; the
- 'format' attribute only applies to 'd1'.
- An attribute specifier list may appear immediately before the comma,
- '=' or semicolon terminating the declaration of an identifier other than
- a function definition. Such attribute specifiers apply to the declared
- object or function. Where an assembler name for an object or function
- is specified (*note Asm Labels::), the attribute must follow the 'asm'
- specification.
- An attribute specifier list may, in future, be permitted to appear
- after the declarator in a function definition (before any old-style
- parameter declarations or the function body).
- Attribute specifiers may be mixed with type qualifiers appearing inside
- the '[]' of a parameter array declarator, in the C99 construct by which
- such qualifiers are applied to the pointer to which the array is
- implicitly converted. Such attribute specifiers apply to the pointer,
- not to the array, but at present this is not implemented and they are
- ignored.
- An attribute specifier list may appear at the start of a nested
- declarator. At present, there are some limitations in this usage: the
- attributes correctly apply to the declarator, but for most individual
- attributes the semantics this implies are not implemented. When
- attribute specifiers follow the '*' of a pointer declarator, they may be
- mixed with any type qualifiers present. The following describes the
- formal semantics of this syntax. It makes the most sense if you are
- familiar with the formal specification of declarators in the ISO C
- standard.
- Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration 'T D1',
- where 'T' contains declaration specifiers that specify a type TYPE (such
- as 'int') and 'D1' is a declarator that contains an identifier IDENT.
- The type specified for IDENT for derived declarators whose type does not
- include an attribute specifier is as in the ISO C standard.
- If 'D1' has the form '( ATTRIBUTE-SPECIFIER-LIST D )', and the
- declaration 'T D' specifies the type "DERIVED-DECLARATOR-TYPE-LIST TYPE"
- for IDENT, then 'T D1' specifies the type "DERIVED-DECLARATOR-TYPE-LIST
- ATTRIBUTE-SPECIFIER-LIST TYPE" for IDENT.
- If 'D1' has the form '* TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST D',
- and the declaration 'T D' specifies the type
- "DERIVED-DECLARATOR-TYPE-LIST TYPE" for IDENT, then 'T D1' specifies the
- type "DERIVED-DECLARATOR-TYPE-LIST
- TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST pointer to TYPE" for IDENT.
- For example,
- void (__attribute__((noreturn)) ****f) (void);
- specifies the type "pointer to pointer to pointer to pointer to
- non-returning function returning 'void'". As another example,
- char *__attribute__((aligned(8))) *f;
- specifies the type "pointer to 8-byte-aligned pointer to 'char'". Note
- again that this does not work with most attributes; for example, the
- usage of 'aligned' and 'noreturn' attributes given above is not yet
- supported.
- For compatibility with existing code written for compiler versions that
- did not implement attributes on nested declarators, some laxity is
- allowed in the placing of attributes. If an attribute that only applies
- to types is applied to a declaration, it is treated as applying to the
- type of that declaration. If an attribute that only applies to
- declarations is applied to the type of a declaration, it is treated as
- applying to that declaration; and, for compatibility with code placing
- the attributes immediately before the identifier declared, such an
- attribute applied to a function return type is treated as applying to
- the function type, and such an attribute applied to an array element
- type is treated as applying to the array type. If an attribute that
- only applies to function types is applied to a pointer-to-function type,
- it is treated as applying to the pointer target type; if such an
- attribute is applied to a function return type that is not a
- pointer-to-function type, it is treated as applying to the function
- type.
- File: gcc.info, Node: Function Prototypes, Next: C++ Comments, Prev: Attribute Syntax, Up: C Extensions
- 6.38 Prototypes and Old-Style Function Definitions
- ==================================================
- GNU C extends ISO C to allow a function prototype to override a later
- old-style non-prototype definition. Consider the following example:
- /* Use prototypes unless the compiler is old-fashioned. */
- #ifdef __STDC__
- #define P(x) x
- #else
- #define P(x) ()
- #endif
- /* Prototype function declaration. */
- int isroot P((uid_t));
- /* Old-style function definition. */
- int
- isroot (x) /* ??? lossage here ??? */
- uid_t x;
- {
- return x == 0;
- }
- Suppose the type 'uid_t' happens to be 'short'. ISO C does not allow
- this example, because subword arguments in old-style non-prototype
- definitions are promoted. Therefore in this example the function
- definition's argument is really an 'int', which does not match the
- prototype argument type of 'short'.
- This restriction of ISO C makes it hard to write code that is portable
- to traditional C compilers, because the programmer does not know whether
- the 'uid_t' type is 'short', 'int', or 'long'. Therefore, in cases like
- these GNU C allows a prototype to override a later old-style definition.
- More precisely, in GNU C, a function prototype argument type overrides
- the argument type specified by a later old-style definition if the
- former type is the same as the latter type before promotion. Thus in
- GNU C the above example is equivalent to the following:
- int isroot (uid_t);
- int
- isroot (uid_t x)
- {
- return x == 0;
- }
- GNU C++ does not support old-style function definitions, so this
- extension is irrelevant.
- File: gcc.info, Node: C++ Comments, Next: Dollar Signs, Prev: Function Prototypes, Up: C Extensions
- 6.39 C++ Style Comments
- =======================
- In GNU C, you may use C++ style comments, which start with '//' and
- continue until the end of the line. Many other C implementations allow
- such comments, and they are included in the 1999 C standard. However,
- C++ style comments are not recognized if you specify an '-std' option
- specifying a version of ISO C before C99, or '-ansi' (equivalent to
- '-std=c90').
- File: gcc.info, Node: Dollar Signs, Next: Character Escapes, Prev: C++ Comments, Up: C Extensions
- 6.40 Dollar Signs in Identifier Names
- =====================================
- In GNU C, you may normally use dollar signs in identifier names. This
- is because many traditional C implementations allow such identifiers.
- However, dollar signs in identifiers are not supported on a few target
- machines, typically because the target assembler does not allow them.
- File: gcc.info, Node: Character Escapes, Next: Alignment, Prev: Dollar Signs, Up: C Extensions
- 6.41 The Character <ESC> in Constants
- =====================================
- You can use the sequence '\e' in a string or character constant to stand
- for the ASCII character <ESC>.
- File: gcc.info, Node: Alignment, Next: Inline, Prev: Character Escapes, Up: C Extensions
- 6.42 Inquiring on Alignment of Types or Variables
- =================================================
- The keyword '__alignof__' allows you to inquire about how an object is
- aligned, or the minimum alignment usually required by a type. Its
- syntax is just like 'sizeof'.
- For example, if the target machine requires a 'double' value to be
- aligned on an 8-byte boundary, then '__alignof__ (double)' is 8. This
- is true on many RISC machines. On more traditional machine designs,
- '__alignof__ (double)' is 4 or even 2.
- Some machines never actually require alignment; they allow reference to
- any data type even at an odd address. For these machines, '__alignof__'
- reports the smallest alignment that GCC gives the data type, usually as
- mandated by the target ABI.
- If the operand of '__alignof__' is an lvalue rather than a type, its
- value is the required alignment for its type, taking into account any
- minimum alignment specified with GCC's '__attribute__' extension (*note
- Variable Attributes::). For example, after this declaration:
- struct foo { int x; char y; } foo1;
- the value of '__alignof__ (foo1.y)' is 1, even though its actual
- alignment is probably 2 or 4, the same as '__alignof__ (int)'.
- It is an error to ask for the alignment of an incomplete type.
- File: gcc.info, Node: Inline, Next: Volatiles, Prev: Alignment, Up: C Extensions
- 6.43 An Inline Function is As Fast As a Macro
- =============================================
- By declaring a function inline, you can direct GCC to make calls to that
- function faster. One way GCC can achieve this is to integrate that
- function's code into the code for its callers. This makes execution
- faster by eliminating the function-call overhead; in addition, if any of
- the actual argument values are constant, their known values may permit
- simplifications at compile time so that not all of the inline function's
- code needs to be included. The effect on code size is less predictable;
- object code may be larger or smaller with function inlining, depending
- on the particular case. You can also direct GCC to try to integrate all
- "simple enough" functions into their callers with the option
- '-finline-functions'.
- GCC implements three different semantics of declaring a function
- inline. One is available with '-std=gnu89' or '-fgnu89-inline' or when
- 'gnu_inline' attribute is present on all inline declarations, another
- when '-std=c99', '-std=gnu99' or an option for a later C version is used
- (without '-fgnu89-inline'), and the third is used when compiling C++.
- To declare a function inline, use the 'inline' keyword in its
- declaration, like this:
- static inline int
- inc (int *a)
- {
- return (*a)++;
- }
- If you are writing a header file to be included in ISO C90 programs,
- write '__inline__' instead of 'inline'. *Note Alternate Keywords::.
- The three types of inlining behave similarly in two important cases:
- when the 'inline' keyword is used on a 'static' function, like the
- example above, and when a function is first declared without using the
- 'inline' keyword and then is defined with 'inline', like this:
- extern int inc (int *a);
- inline int
- inc (int *a)
- {
- return (*a)++;
- }
- In both of these common cases, the program behaves the same as if you
- had not used the 'inline' keyword, except for its speed.
- When a function is both inline and 'static', if all calls to the
- function are integrated into the caller, and the function's address is
- never used, then the function's own assembler code is never referenced.
- In this case, GCC does not actually output assembler code for the
- function, unless you specify the option '-fkeep-inline-functions'. If
- there is a nonintegrated call, then the function is compiled to
- assembler code as usual. The function must also be compiled as usual if
- the program refers to its address, because that cannot be inlined.
- Note that certain usages in a function definition can make it
- unsuitable for inline substitution. Among these usages are: variadic
- functions, use of 'alloca', use of computed goto (*note Labels as
- Values::), use of nonlocal goto, use of nested functions, use of
- 'setjmp', use of '__builtin_longjmp' and use of '__builtin_return' or
- '__builtin_apply_args'. Using '-Winline' warns when a function marked
- 'inline' could not be substituted, and gives the reason for the failure.
- As required by ISO C++, GCC considers member functions defined within
- the body of a class to be marked inline even if they are not explicitly
- declared with the 'inline' keyword. You can override this with
- '-fno-default-inline'; *note Options Controlling C++ Dialect: C++
- Dialect Options.
- GCC does not inline any functions when not optimizing unless you
- specify the 'always_inline' attribute for the function, like this:
- /* Prototype. */
- inline void foo (const char) __attribute__((always_inline));
- The remainder of this section is specific to GNU C90 inlining.
- When an inline function is not 'static', then the compiler must assume
- that there may be calls from other source files; since a global symbol
- can be defined only once in any program, the function must not be
- defined in the other source files, so the calls therein cannot be
- integrated. Therefore, a non-'static' inline function is always
- compiled on its own in the usual fashion.
- If you specify both 'inline' and 'extern' in the function definition,
- then the definition is used only for inlining. In no case is the
- function compiled on its own, not even if you refer to its address
- explicitly. Such an address becomes an external reference, as if you
- had only declared the function, and had not defined it.
- This combination of 'inline' and 'extern' has almost the effect of a
- macro. The way to use it is to put a function definition in a header
- file with these keywords, and put another copy of the definition
- (lacking 'inline' and 'extern') in a library file. The definition in
- the header file causes most calls to the function to be inlined. If any
- uses of the function remain, they refer to the single copy in the
- library.
- File: gcc.info, Node: Volatiles, Next: Using Assembly Language with C, Prev: Inline, Up: C Extensions
- 6.44 When is a Volatile Object Accessed?
- ========================================
- C has the concept of volatile objects. These are normally accessed by
- pointers and used for accessing hardware or inter-thread communication.
- The standard encourages compilers to refrain from optimizations
- concerning accesses to volatile objects, but leaves it implementation
- defined as to what constitutes a volatile access. The minimum
- requirement is that at a sequence point all previous accesses to
- volatile objects have stabilized and no subsequent accesses have
- occurred. Thus an implementation is free to reorder and combine
- volatile accesses that occur between sequence points, but cannot do so
- for accesses across a sequence point. The use of volatile does not
- allow you to violate the restriction on updating objects multiple times
- between two sequence points.
- Accesses to non-volatile objects are not ordered with respect to
- volatile accesses. You cannot use a volatile object as a memory barrier
- to order a sequence of writes to non-volatile memory. For instance:
- int *ptr = SOMETHING;
- volatile int vobj;
- *ptr = SOMETHING;
- vobj = 1;
- Unless *PTR and VOBJ can be aliased, it is not guaranteed that the write
- to *PTR occurs by the time the update of VOBJ happens. If you need this
- guarantee, you must use a stronger memory barrier such as:
- int *ptr = SOMETHING;
- volatile int vobj;
- *ptr = SOMETHING;
- asm volatile ("" : : : "memory");
- vobj = 1;
- A scalar volatile object is read when it is accessed in a void context:
- volatile int *src = SOMEVALUE;
- *src;
- Such expressions are rvalues, and GCC implements this as a read of the
- volatile object being pointed to.
- Assignments are also expressions and have an rvalue. However when
- assigning to a scalar volatile, the volatile object is not reread,
- regardless of whether the assignment expression's rvalue is used or not.
- If the assignment's rvalue is used, the value is that assigned to the
- volatile object. For instance, there is no read of VOBJ in all the
- following cases:
- int obj;
- volatile int vobj;
- vobj = SOMETHING;
- obj = vobj = SOMETHING;
- obj ? vobj = ONETHING : vobj = ANOTHERTHING;
- obj = (SOMETHING, vobj = ANOTHERTHING);
- If you need to read the volatile object after an assignment has
- occurred, you must use a separate expression with an intervening
- sequence point.
- As bit-fields are not individually addressable, volatile bit-fields may
- be implicitly read when written to, or when adjacent bit-fields are
- accessed. Bit-field operations may be optimized such that adjacent
- bit-fields are only partially accessed, if they straddle a storage unit
- boundary. For these reasons it is unwise to use volatile bit-fields to
- access hardware.
- File: gcc.info, Node: Using Assembly Language with C, Next: Alternate Keywords, Prev: Volatiles, Up: C Extensions
- 6.45 How to Use Inline Assembly Language in C Code
- ==================================================
- The 'asm' keyword allows you to embed assembler instructions within C
- code. GCC provides two forms of inline 'asm' statements. A "basic
- 'asm'" statement is one with no operands (*note Basic Asm::), while an
- "extended 'asm'" statement (*note Extended Asm::) includes one or more
- operands. The extended form is preferred for mixing C and assembly
- language within a function, but to include assembly language at top
- level you must use basic 'asm'.
- You can also use the 'asm' keyword to override the assembler name for a
- C symbol, or to place a C variable in a specific register.
- * Menu:
- * Basic Asm:: Inline assembler without operands.
- * Extended Asm:: Inline assembler with operands.
- * Constraints:: Constraints for 'asm' operands
- * Asm Labels:: Specifying the assembler name to use for a C symbol.
- * Explicit Register Variables:: Defining variables residing in specified
- registers.
- * Size of an asm:: How GCC calculates the size of an 'asm' block.
- File: gcc.info, Node: Basic Asm, Next: Extended Asm, Up: Using Assembly Language with C
- 6.45.1 Basic Asm -- Assembler Instructions Without Operands
- -----------------------------------------------------------
- A basic 'asm' statement has the following syntax:
- asm ASM-QUALIFIERS ( ASSEMBLERINSTRUCTIONS )
- The 'asm' keyword is a GNU extension. When writing code that can be
- compiled with '-ansi' and the various '-std' options, use '__asm__'
- instead of 'asm' (*note Alternate Keywords::).
- Qualifiers
- ..........
- 'volatile'
- The optional 'volatile' qualifier has no effect. All basic 'asm'
- blocks are implicitly volatile.
- 'inline'
- If you use the 'inline' qualifier, then for inlining purposes the
- size of the asm is taken as the smallest size possible (*note Size
- of an asm::).
- Parameters
- ..........
- ASSEMBLERINSTRUCTIONS
- This is a literal string that specifies the assembler code. The
- string can contain any instructions recognized by the assembler,
- including directives. GCC does not parse the assembler
- instructions themselves and does not know what they mean or even
- whether they are valid assembler input.
- You may place multiple assembler instructions together in a single
- 'asm' string, separated by the characters normally used in assembly
- code for the system. A combination that works in most places is a
- newline to break the line, plus a tab character (written as
- '\n\t'). Some assemblers allow semicolons as a line separator.
- However, note that some assembler dialects use semicolons to start
- a comment.
- Remarks
- .......
- Using extended 'asm' (*note Extended Asm::) typically produces smaller,
- safer, and more efficient code, and in most cases it is a better
- solution than basic 'asm'. However, there are two situations where only
- basic 'asm' can be used:
- * Extended 'asm' statements have to be inside a C function, so to
- write inline assembly language at file scope ("top-level"), outside
- of C functions, you must use basic 'asm'. You can use this
- technique to emit assembler directives, define assembly language
- macros that can be invoked elsewhere in the file, or write entire
- functions in assembly language.
- * Functions declared with the 'naked' attribute also require basic
- 'asm' (*note Function Attributes::).
- Safely accessing C data and calling functions from basic 'asm' is more
- complex than it may appear. To access C data, it is better to use
- extended 'asm'.
- Do not expect a sequence of 'asm' statements to remain perfectly
- consecutive after compilation. If certain instructions need to remain
- consecutive in the output, put them in a single multi-instruction 'asm'
- statement. Note that GCC's optimizers can move 'asm' statements
- relative to other code, including across jumps.
- 'asm' statements may not perform jumps into other 'asm' statements.
- GCC does not know about these jumps, and therefore cannot take account
- of them when deciding how to optimize. Jumps from 'asm' to C labels are
- only supported in extended 'asm'.
- Under certain circumstances, GCC may duplicate (or remove duplicates
- of) your assembly code when optimizing. This can lead to unexpected
- duplicate symbol errors during compilation if your assembly code defines
- symbols or labels.
- *Warning:* The C standards do not specify semantics for 'asm', making
- it a potential source of incompatibilities between compilers. These
- incompatibilities may not produce compiler warnings/errors.
- GCC does not parse basic 'asm''s ASSEMBLERINSTRUCTIONS, which means
- there is no way to communicate to the compiler what is happening inside
- them. GCC has no visibility of symbols in the 'asm' and may discard
- them as unreferenced. It also does not know about side effects of the
- assembler code, such as modifications to memory or registers. Unlike
- some compilers, GCC assumes that no changes to general purpose registers
- occur. This assumption may change in a future release.
- To avoid complications from future changes to the semantics and the
- compatibility issues between compilers, consider replacing basic 'asm'
- with extended 'asm'. See How to convert from basic asm to extended asm
- (https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended) for information
- about how to perform this conversion.
- The compiler copies the assembler instructions in a basic 'asm'
- verbatim to the assembly language output file, without processing
- dialects or any of the '%' operators that are available with extended
- 'asm'. This results in minor differences between basic 'asm' strings
- and extended 'asm' templates. For example, to refer to registers you
- might use '%eax' in basic 'asm' and '%%eax' in extended 'asm'.
- On targets such as x86 that support multiple assembler dialects, all
- basic 'asm' blocks use the assembler dialect specified by the '-masm'
- command-line option (*note x86 Options::). Basic 'asm' provides no
- mechanism to provide different assembler strings for different dialects.
- For basic 'asm' with non-empty assembler string GCC assumes the
- assembler block does not change any general purpose registers, but it
- may read or write any globally accessible variable.
- Here is an example of basic 'asm' for i386:
- /* Note that this code will not compile with -masm=intel */
- #define DebugBreak() asm("int $3")
- File: gcc.info, Node: Extended Asm, Next: Constraints, Prev: Basic Asm, Up: Using Assembly Language with C
- 6.45.2 Extended Asm - Assembler Instructions with C Expression Operands
- -----------------------------------------------------------------------
- With extended 'asm' you can read and write C variables from assembler
- and perform jumps from assembler code to C labels. Extended 'asm'
- syntax uses colons (':') to delimit the operand parameters after the
- assembler template:
- asm ASM-QUALIFIERS ( ASSEMBLERTEMPLATE
- : OUTPUTOPERANDS
- [ : INPUTOPERANDS
- [ : CLOBBERS ] ])
- asm ASM-QUALIFIERS ( ASSEMBLERTEMPLATE
- :
- : INPUTOPERANDS
- : CLOBBERS
- : GOTOLABELS)
- where in the last form, ASM-QUALIFIERS contains 'goto' (and in the
- first form, not).
- The 'asm' keyword is a GNU extension. When writing code that can be
- compiled with '-ansi' and the various '-std' options, use '__asm__'
- instead of 'asm' (*note Alternate Keywords::).
- Qualifiers
- ..........
- 'volatile'
- The typical use of extended 'asm' statements is to manipulate input
- values to produce output values. However, your 'asm' statements
- may also produce side effects. If so, you may need to use the
- 'volatile' qualifier to disable certain optimizations. *Note
- Volatile::.
- 'inline'
- If you use the 'inline' qualifier, then for inlining purposes the
- size of the asm is taken as the smallest size possible (*note Size
- of an asm::).
- 'goto'
- This qualifier informs the compiler that the 'asm' statement may
- perform a jump to one of the labels listed in the GOTOLABELS.
- *Note GotoLabels::.
- Parameters
- ..........
- ASSEMBLERTEMPLATE
- This is a literal string that is the template for the assembler
- code. It is a combination of fixed text and tokens that refer to
- the input, output, and goto parameters. *Note AssemblerTemplate::.
- OUTPUTOPERANDS
- A comma-separated list of the C variables modified by the
- instructions in the ASSEMBLERTEMPLATE. An empty list is permitted.
- *Note OutputOperands::.
- INPUTOPERANDS
- A comma-separated list of C expressions read by the instructions in
- the ASSEMBLERTEMPLATE. An empty list is permitted. *Note
- InputOperands::.
- CLOBBERS
- A comma-separated list of registers or other values changed by the
- ASSEMBLERTEMPLATE, beyond those listed as outputs. An empty list
- is permitted. *Note Clobbers and Scratch Registers::.
- GOTOLABELS
- When you are using the 'goto' form of 'asm', this section contains
- the list of all C labels to which the code in the ASSEMBLERTEMPLATE
- may jump. *Note GotoLabels::.
- 'asm' statements may not perform jumps into other 'asm' statements,
- only to the listed GOTOLABELS. GCC's optimizers do not know about
- other jumps; therefore they cannot take account of them when
- deciding how to optimize.
- The total number of input + output + goto operands is limited to 30.
- Remarks
- .......
- The 'asm' statement allows you to include assembly instructions directly
- within C code. This may help you to maximize performance in
- time-sensitive code or to access assembly instructions that are not
- readily available to C programs.
- Note that extended 'asm' statements must be inside a function. Only
- basic 'asm' may be outside functions (*note Basic Asm::). Functions
- declared with the 'naked' attribute also require basic 'asm' (*note
- Function Attributes::).
- While the uses of 'asm' are many and varied, it may help to think of an
- 'asm' statement as a series of low-level instructions that convert input
- parameters to output parameters. So a simple (if not particularly
- useful) example for i386 using 'asm' might look like this:
- int src = 1;
- int dst;
- asm ("mov %1, %0\n\t"
- "add $1, %0"
- : "=r" (dst)
- : "r" (src));
- printf("%d\n", dst);
- This code copies 'src' to 'dst' and add 1 to 'dst'.
- 6.45.2.1 Volatile
- .................
- GCC's optimizers sometimes discard 'asm' statements if they determine
- there is no need for the output variables. Also, the optimizers may
- move code out of loops if they believe that the code will always return
- the same result (i.e. none of its input values change between calls).
- Using the 'volatile' qualifier disables these optimizations. 'asm'
- statements that have no output operands, including 'asm goto'
- statements, are implicitly volatile.
- This i386 code demonstrates a case that does not use (or require) the
- 'volatile' qualifier. If it is performing assertion checking, this code
- uses 'asm' to perform the validation. Otherwise, 'dwRes' is
- unreferenced by any code. As a result, the optimizers can discard the
- 'asm' statement, which in turn removes the need for the entire 'DoCheck'
- routine. By omitting the 'volatile' qualifier when it isn't needed you
- allow the optimizers to produce the most efficient code possible.
- void DoCheck(uint32_t dwSomeValue)
- {
- uint32_t dwRes;
- // Assumes dwSomeValue is not zero.
- asm ("bsfl %1,%0"
- : "=r" (dwRes)
- : "r" (dwSomeValue)
- : "cc");
- assert(dwRes > 3);
- }
- The next example shows a case where the optimizers can recognize that
- the input ('dwSomeValue') never changes during the execution of the
- function and can therefore move the 'asm' outside the loop to produce
- more efficient code. Again, using 'volatile' disables this type of
- optimization.
- void do_print(uint32_t dwSomeValue)
- {
- uint32_t dwRes;
- for (uint32_t x=0; x < 5; x++)
- {
- // Assumes dwSomeValue is not zero.
- asm ("bsfl %1,%0"
- : "=r" (dwRes)
- : "r" (dwSomeValue)
- : "cc");
- printf("%u: %u %u\n", x, dwSomeValue, dwRes);
- }
- }
- The following example demonstrates a case where you need to use the
- 'volatile' qualifier. It uses the x86 'rdtsc' instruction, which reads
- the computer's time-stamp counter. Without the 'volatile' qualifier,
- the optimizers might assume that the 'asm' block will always return the
- same value and therefore optimize away the second call.
- uint64_t msr;
- asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
- "shl $32, %%rdx\n\t" // Shift the upper bits left.
- "or %%rdx, %0" // 'Or' in the lower bits.
- : "=a" (msr)
- :
- : "rdx");
- printf("msr: %llx\n", msr);
- // Do other work...
- // Reprint the timestamp
- asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
- "shl $32, %%rdx\n\t" // Shift the upper bits left.
- "or %%rdx, %0" // 'Or' in the lower bits.
- : "=a" (msr)
- :
- : "rdx");
- printf("msr: %llx\n", msr);
- GCC's optimizers do not treat this code like the non-volatile code in
- the earlier examples. They do not move it out of loops or omit it on
- the assumption that the result from a previous call is still valid.
- Note that the compiler can move even volatile 'asm' instructions
- relative to other code, including across jump instructions. For
- example, on many targets there is a system register that controls the
- rounding mode of floating-point operations. Setting it with a volatile
- 'asm', as in the following PowerPC example, does not work reliably.
- asm volatile("mtfsf 255, %0" : : "f" (fpenv));
- sum = x + y;
- The compiler may move the addition back before the volatile 'asm'. To
- make it work as expected, add an artificial dependency to the 'asm' by
- referencing a variable in the subsequent code, for example:
- asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
- sum = x + y;
- Under certain circumstances, GCC may duplicate (or remove duplicates
- of) your assembly code when optimizing. This can lead to unexpected
- duplicate symbol errors during compilation if your asm code defines
- symbols or labels. Using '%=' (*note AssemblerTemplate::) may help
- resolve this problem.
- 6.45.2.2 Assembler Template
- ...........................
- An assembler template is a literal string containing assembler
- instructions. The compiler replaces tokens in the template that refer
- to inputs, outputs, and goto labels, and then outputs the resulting
- string to the assembler. The string can contain any instructions
- recognized by the assembler, including directives. GCC does not parse
- the assembler instructions themselves and does not know what they mean
- or even whether they are valid assembler input. However, it does count
- the statements (*note Size of an asm::).
- You may place multiple assembler instructions together in a single
- 'asm' string, separated by the characters normally used in assembly code
- for the system. A combination that works in most places is a newline to
- break the line, plus a tab character to move to the instruction field
- (written as '\n\t'). Some assemblers allow semicolons as a line
- separator. However, note that some assembler dialects use semicolons to
- start a comment.
- Do not expect a sequence of 'asm' statements to remain perfectly
- consecutive after compilation, even when you are using the 'volatile'
- qualifier. If certain instructions need to remain consecutive in the
- output, put them in a single multi-instruction asm statement.
- Accessing data from C programs without using input/output operands
- (such as by using global symbols directly from the assembler template)
- may not work as expected. Similarly, calling functions directly from an
- assembler template requires a detailed understanding of the target
- assembler and ABI.
- Since GCC does not parse the assembler template, it has no visibility
- of any symbols it references. This may result in GCC discarding those
- symbols as unreferenced unless they are also listed as input, output, or
- goto operands.
- Special format strings
- ......................
- In addition to the tokens described by the input, output, and goto
- operands, these tokens have special meanings in the assembler template:
- '%%'
- Outputs a single '%' into the assembler code.
- '%='
- Outputs a number that is unique to each instance of the 'asm'
- statement in the entire compilation. This option is useful when
- creating local labels and referring to them multiple times in a
- single template that generates multiple assembler instructions.
- '%{'
- '%|'
- '%}'
- Outputs '{', '|', and '}' characters (respectively) into the
- assembler code. When unescaped, these characters have special
- meaning to indicate multiple assembler dialects, as described
- below.
- Multiple assembler dialects in 'asm' templates
- ..............................................
- On targets such as x86, GCC supports multiple assembler dialects. The
- '-masm' option controls which dialect GCC uses as its default for inline
- assembler. The target-specific documentation for the '-masm' option
- contains the list of supported dialects, as well as the default dialect
- if the option is not specified. This information may be important to
- understand, since assembler code that works correctly when compiled
- using one dialect will likely fail if compiled using another. *Note x86
- Options::.
- If your code needs to support multiple assembler dialects (for example,
- if you are writing public headers that need to support a variety of
- compilation options), use constructs of this form:
- { dialect0 | dialect1 | dialect2... }
- This construct outputs 'dialect0' when using dialect #0 to compile the
- code, 'dialect1' for dialect #1, etc. If there are fewer alternatives
- within the braces than the number of dialects the compiler supports, the
- construct outputs nothing.
- For example, if an x86 compiler supports two dialects ('att', 'intel'),
- an assembler template such as this:
- "bt{l %[Offset],%[Base] | %[Base],%[Offset]}; jc %l2"
- is equivalent to one of
- "btl %[Offset],%[Base] ; jc %l2" /* att dialect */
- "bt %[Base],%[Offset]; jc %l2" /* intel dialect */
- Using that same compiler, this code:
- "xchg{l}\t{%%}ebx, %1"
- corresponds to either
- "xchgl\t%%ebx, %1" /* att dialect */
- "xchg\tebx, %1" /* intel dialect */
- There is no support for nesting dialect alternatives.
- 6.45.2.3 Output Operands
- ........................
- An 'asm' statement has zero or more output operands indicating the names
- of C variables modified by the assembler code.
- In this i386 example, 'old' (referred to in the template string as
- '%0') and '*Base' (as '%1') are outputs and 'Offset' ('%2') is an input:
- bool old;
- __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
- "sbb %0,%0" // Use the CF to calculate old.
- : "=r" (old), "+rm" (*Base)
- : "Ir" (Offset)
- : "cc");
- return old;
- Operands are separated by commas. Each operand has this format:
- [ [ASMSYMBOLICNAME] ] CONSTRAINT (CVARIABLENAME)
- ASMSYMBOLICNAME
- Specifies a symbolic name for the operand. Reference the name in
- the assembler template by enclosing it in square brackets (i.e.
- '%[Value]'). The scope of the name is the 'asm' statement that
- contains the definition. Any valid C variable name is acceptable,
- including names already defined in the surrounding code. No two
- operands within the same 'asm' statement can use the same symbolic
- name.
- When not using an ASMSYMBOLICNAME, use the (zero-based) position of
- the operand in the list of operands in the assembler template. For
- example if there are three output operands, use '%0' in the
- template to refer to the first, '%1' for the second, and '%2' for
- the third.
- CONSTRAINT
- A string constant specifying constraints on the placement of the
- operand; *Note Constraints::, for details.
- Output constraints must begin with either '=' (a variable
- overwriting an existing value) or '+' (when reading and writing).
- When using '=', do not assume the location contains the existing
- value on entry to the 'asm', except when the operand is tied to an
- input; *note Input Operands: InputOperands.
- After the prefix, there must be one or more additional constraints
- (*note Constraints::) that describe where the value resides.
- Common constraints include 'r' for register and 'm' for memory.
- When you list more than one possible location (for example,
- '"=rm"'), the compiler chooses the most efficient one based on the
- current context. If you list as many alternates as the 'asm'
- statement allows, you permit the optimizers to produce the best
- possible code. If you must use a specific register, but your
- Machine Constraints do not provide sufficient control to select the
- specific register you want, local register variables may provide a
- solution (*note Local Register Variables::).
- CVARIABLENAME
- Specifies a C lvalue expression to hold the output, typically a
- variable name. The enclosing parentheses are a required part of
- the syntax.
- When the compiler selects the registers to use to represent the output
- operands, it does not use any of the clobbered registers (*note Clobbers
- and Scratch Registers::).
- Output operand expressions must be lvalues. The compiler cannot check
- whether the operands have data types that are reasonable for the
- instruction being executed. For output expressions that are not
- directly addressable (for example a bit-field), the constraint must
- allow a register. In that case, GCC uses the register as the output of
- the 'asm', and then stores that register into the output.
- Operands using the '+' constraint modifier count as two operands (that
- is, both as input and output) towards the total maximum of 30 operands
- per 'asm' statement.
- Use the '&' constraint modifier (*note Modifiers::) on all output
- operands that must not overlap an input. Otherwise, GCC may allocate
- the output operand in the same register as an unrelated input operand,
- on the assumption that the assembler code consumes its inputs before
- producing outputs. This assumption may be false if the assembler code
- actually consists of more than one instruction.
- The same problem can occur if one output parameter (A) allows a
- register constraint and another output parameter (B) allows a memory
- constraint. The code generated by GCC to access the memory address in B
- can contain registers which _might_ be shared by A, and GCC considers
- those registers to be inputs to the asm. As above, GCC assumes that
- such input registers are consumed before any outputs are written. This
- assumption may result in incorrect behavior if the asm writes to A
- before using B. Combining the '&' modifier with the register constraint
- on A ensures that modifying A does not affect the address referenced by
- B. Otherwise, the location of B is undefined if A is modified before
- using B.
- 'asm' supports operand modifiers on operands (for example '%k2' instead
- of simply '%2'). Typically these qualifiers are hardware dependent.
- The list of supported modifiers for x86 is found at *note x86 Operand
- modifiers: x86Operandmodifiers.
- If the C code that follows the 'asm' makes no use of any of the output
- operands, use 'volatile' for the 'asm' statement to prevent the
- optimizers from discarding the 'asm' statement as unneeded (see *note
- Volatile::).
- This code makes no use of the optional ASMSYMBOLICNAME. Therefore it
- references the first output operand as '%0' (were there a second, it
- would be '%1', etc). The number of the first input operand is one
- greater than that of the last output operand. In this i386 example,
- that makes 'Mask' referenced as '%1':
- uint32_t Mask = 1234;
- uint32_t Index;
- asm ("bsfl %1, %0"
- : "=r" (Index)
- : "r" (Mask)
- : "cc");
- That code overwrites the variable 'Index' ('='), placing the value in a
- register ('r'). Using the generic 'r' constraint instead of a
- constraint for a specific register allows the compiler to pick the
- register to use, which can result in more efficient code. This may not
- be possible if an assembler instruction requires a specific register.
- The following i386 example uses the ASMSYMBOLICNAME syntax. It
- produces the same result as the code above, but some may consider it
- more readable or more maintainable since reordering index numbers is not
- necessary when adding or removing operands. The names 'aIndex' and
- 'aMask' are only used in this example to emphasize which names get used
- where. It is acceptable to reuse the names 'Index' and 'Mask'.
- uint32_t Mask = 1234;
- uint32_t Index;
- asm ("bsfl %[aMask], %[aIndex]"
- : [aIndex] "=r" (Index)
- : [aMask] "r" (Mask)
- : "cc");
- Here are some more examples of output operands.
- uint32_t c = 1;
- uint32_t d;
- uint32_t *e = &c;
- asm ("mov %[e], %[d]"
- : [d] "=rm" (d)
- : [e] "rm" (*e));
- Here, 'd' may either be in a register or in memory. Since the compiler
- might already have the current value of the 'uint32_t' location pointed
- to by 'e' in a register, you can enable it to choose the best location
- for 'd' by specifying both constraints.
- 6.45.2.4 Flag Output Operands
- .............................
- Some targets have a special register that holds the "flags" for the
- result of an operation or comparison. Normally, the contents of that
- register are either unmodifed by the asm, or the asm is considered to
- clobber the contents.
- On some targets, a special form of output operand exists by which
- conditions in the flags register may be outputs of the asm. The set of
- conditions supported are target specific, but the general rule is that
- the output variable must be a scalar integer, and the value is boolean.
- When supported, the target defines the preprocessor symbol
- '__GCC_ASM_FLAG_OUTPUTS__'.
- Because of the special nature of the flag output operands, the
- constraint may not include alternatives.
- Most often, the target has only one flags register, and thus is an
- implied operand of many instructions. In this case, the operand should
- not be referenced within the assembler template via '%0' etc, as there's
- no corresponding text in the assembly language.
- x86 family
- The flag output constraints for the x86 family are of the form
- '=@ccCOND' where COND is one of the standard conditions defined in
- the ISA manual for 'jCC' or 'setCC'.
- 'a'
- "above" or unsigned greater than
- 'ae'
- "above or equal" or unsigned greater than or equal
- 'b'
- "below" or unsigned less than
- 'be'
- "below or equal" or unsigned less than or equal
- 'c'
- carry flag set
- 'e'
- 'z'
- "equal" or zero flag set
- 'g'
- signed greater than
- 'ge'
- signed greater than or equal
- 'l'
- signed less than
- 'le'
- signed less than or equal
- 'o'
- overflow flag set
- 'p'
- parity flag set
- 's'
- sign flag set
- 'na'
- 'nae'
- 'nb'
- 'nbe'
- 'nc'
- 'ne'
- 'ng'
- 'nge'
- 'nl'
- 'nle'
- 'no'
- 'np'
- 'ns'
- 'nz'
- "not" FLAG, or inverted versions of those above
- 6.45.2.5 Input Operands
- .......................
- Input operands make values from C variables and expressions available to
- the assembly code.
- Operands are separated by commas. Each operand has this format:
- [ [ASMSYMBOLICNAME] ] CONSTRAINT (CEXPRESSION)
- ASMSYMBOLICNAME
- Specifies a symbolic name for the operand. Reference the name in
- the assembler template by enclosing it in square brackets (i.e.
- '%[Value]'). The scope of the name is the 'asm' statement that
- contains the definition. Any valid C variable name is acceptable,
- including names already defined in the surrounding code. No two
- operands within the same 'asm' statement can use the same symbolic
- name.
- When not using an ASMSYMBOLICNAME, use the (zero-based) position of
- the operand in the list of operands in the assembler template. For
- example if there are two output operands and three inputs, use '%2'
- in the template to refer to the first input operand, '%3' for the
- second, and '%4' for the third.
- CONSTRAINT
- A string constant specifying constraints on the placement of the
- operand; *Note Constraints::, for details.
- Input constraint strings may not begin with either '=' or '+'.
- When you list more than one possible location (for example,
- '"irm"'), the compiler chooses the most efficient one based on the
- current context. If you must use a specific register, but your
- Machine Constraints do not provide sufficient control to select the
- specific register you want, local register variables may provide a
- solution (*note Local Register Variables::).
- Input constraints can also be digits (for example, '"0"'). This
- indicates that the specified input must be in the same place as the
- output constraint at the (zero-based) index in the output
- constraint list. When using ASMSYMBOLICNAME syntax for the output
- operands, you may use these names (enclosed in brackets '[]')
- instead of digits.
- CEXPRESSION
- This is the C variable or expression being passed to the 'asm'
- statement as input. The enclosing parentheses are a required part
- of the syntax.
- When the compiler selects the registers to use to represent the input
- operands, it does not use any of the clobbered registers (*note Clobbers
- and Scratch Registers::).
- If there are no output operands but there are input operands, place two
- consecutive colons where the output operands would go:
- __asm__ ("some instructions"
- : /* No outputs. */
- : "r" (Offset / 8));
- *Warning:* Do _not_ modify the contents of input-only operands (except
- for inputs tied to outputs). The compiler assumes that on exit from the
- 'asm' statement these operands contain the same values as they had
- before executing the statement. It is _not_ possible to use clobbers to
- inform the compiler that the values in these inputs are changing. One
- common work-around is to tie the changing input variable to an output
- variable that never gets used. Note, however, that if the code that
- follows the 'asm' statement makes no use of any of the output operands,
- the GCC optimizers may discard the 'asm' statement as unneeded (see
- *note Volatile::).
- 'asm' supports operand modifiers on operands (for example '%k2' instead
- of simply '%2'). Typically these qualifiers are hardware dependent.
- The list of supported modifiers for x86 is found at *note x86 Operand
- modifiers: x86Operandmodifiers.
- In this example using the fictitious 'combine' instruction, the
- constraint '"0"' for input operand 1 says that it must occupy the same
- location as output operand 0. Only input operands may use numbers in
- constraints, and they must each refer to an output operand. Only a
- number (or the symbolic assembler name) in the constraint can guarantee
- that one operand is in the same place as another. The mere fact that
- 'foo' is the value of both operands is not enough to guarantee that they
- are in the same place in the generated assembler code.
- asm ("combine %2, %0"
- : "=r" (foo)
- : "0" (foo), "g" (bar));
- Here is an example using symbolic names.
- asm ("cmoveq %1, %2, %[result]"
- : [result] "=r"(result)
- : "r" (test), "r" (new), "[result]" (old));
- 6.45.2.6 Clobbers and Scratch Registers
- .......................................
- While the compiler is aware of changes to entries listed in the output
- operands, the inline 'asm' code may modify more than just the outputs.
- For example, calculations may require additional registers, or the
- processor may overwrite a register as a side effect of a particular
- assembler instruction. In order to inform the compiler of these
- changes, list them in the clobber list. Clobber list items are either
- register names or the special clobbers (listed below). Each clobber
- list item is a string constant enclosed in double quotes and separated
- by commas.
- Clobber descriptions may not in any way overlap with an input or output
- operand. For example, you may not have an operand describing a register
- class with one member when listing that register in the clobber list.
- Variables declared to live in specific registers (*note Explicit
- Register Variables::) and used as 'asm' input or output operands must
- have no part mentioned in the clobber description. In particular, there
- is no way to specify that input operands get modified without also
- specifying them as output operands.
- When the compiler selects which registers to use to represent input and
- output operands, it does not use any of the clobbered registers. As a
- result, clobbered registers are available for any use in the assembler
- code.
- Here is a realistic example for the VAX showing the use of clobbered
- registers:
- asm volatile ("movc3 %0, %1, %2"
- : /* No outputs. */
- : "g" (from), "g" (to), "g" (count)
- : "r0", "r1", "r2", "r3", "r4", "r5", "memory");
- Also, there are two special clobber arguments:
- '"cc"'
- The '"cc"' clobber indicates that the assembler code modifies the
- flags register. On some machines, GCC represents the condition
- codes as a specific hardware register; '"cc"' serves to name this
- register. On other machines, condition code handling is different,
- and specifying '"cc"' has no effect. But it is valid no matter
- what the target.
- '"memory"'
- The '"memory"' clobber tells the compiler that the assembly code
- performs memory reads or writes to items other than those listed in
- the input and output operands (for example, accessing the memory
- pointed to by one of the input parameters). To ensure memory
- contains correct values, GCC may need to flush specific register
- values to memory before executing the 'asm'. Further, the compiler
- does not assume that any values read from memory before an 'asm'
- remain unchanged after that 'asm'; it reloads them as needed.
- Using the '"memory"' clobber effectively forms a read/write memory
- barrier for the compiler.
- Note that this clobber does not prevent the _processor_ from doing
- speculative reads past the 'asm' statement. To prevent that, you
- need processor-specific fence instructions.
- Flushing registers to memory has performance implications and may be an
- issue for time-sensitive code. You can provide better information to
- GCC to avoid this, as shown in the following examples. At a minimum,
- aliasing rules allow GCC to know what memory _doesn't_ need to be
- flushed.
- Here is a fictitious sum of squares instruction, that takes two
- pointers to floating point values in memory and produces a floating
- point register output. Notice that 'x', and 'y' both appear twice in
- the 'asm' parameters, once to specify memory accessed, and once to
- specify a base register used by the 'asm'. You won't normally be
- wasting a register by doing this as GCC can use the same register for
- both purposes. However, it would be foolish to use both '%1' and '%3'
- for 'x' in this 'asm' and expect them to be the same. In fact, '%3' may
- well not be a register. It might be a symbolic memory reference to the
- object pointed to by 'x'.
- asm ("sumsq %0, %1, %2"
- : "+f" (result)
- : "r" (x), "r" (y), "m" (*x), "m" (*y));
- Here is a fictitious '*z++ = *x++ * *y++' instruction. Notice that the
- 'x', 'y' and 'z' pointer registers must be specified as input/output
- because the 'asm' modifies them.
- asm ("vecmul %0, %1, %2"
- : "+r" (z), "+r" (x), "+r" (y), "=m" (*z)
- : "m" (*x), "m" (*y));
- An x86 example where the string memory argument is of unknown length.
- asm("repne scasb"
- : "=c" (count), "+D" (p)
- : "m" (*(const char (*)[]) p), "0" (-1), "a" (0));
- If you know the above will only be reading a ten byte array then you
- could instead use a memory input like: '"m" (*(const char (*)[10]) p)'.
- Here is an example of a PowerPC vector scale implemented in assembly,
- complete with vector and condition code clobbers, and some initialized
- offset registers that are unchanged by the 'asm'.
- void
- dscal (size_t n, double *x, double alpha)
- {
- asm ("/* lots of asm here */"
- : "+m" (*(double (*)[n]) x), "+&r" (n), "+b" (x)
- : "d" (alpha), "b" (32), "b" (48), "b" (64),
- "b" (80), "b" (96), "b" (112)
- : "cr0",
- "vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39",
- "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47");
- }
- Rather than allocating fixed registers via clobbers to provide scratch
- registers for an 'asm' statement, an alternative is to define a variable
- and make it an early-clobber output as with 'a2' and 'a3' in the example
- below. This gives the compiler register allocator more freedom. You
- can also define a variable and make it an output tied to an input as
- with 'a0' and 'a1', tied respectively to 'ap' and 'lda'. Of course,
- with tied outputs your 'asm' can't use the input value after modifying
- the output register since they are one and the same register. What's
- more, if you omit the early-clobber on the output, it is possible that
- GCC might allocate the same register to another of the inputs if GCC
- could prove they had the same value on entry to the 'asm'. This is why
- 'a1' has an early-clobber. Its tied input, 'lda' might conceivably be
- known to have the value 16 and without an early-clobber share the same
- register as '%11'. On the other hand, 'ap' can't be the same as any of
- the other inputs, so an early-clobber on 'a0' is not needed. It is also
- not desirable in this case. An early-clobber on 'a0' would cause GCC to
- allocate a separate register for the '"m" (*(const double (*)[]) ap)'
- input. Note that tying an input to an output is the way to set up an
- initialized temporary register modified by an 'asm' statement. An input
- not tied to an output is assumed by GCC to be unchanged, for example
- '"b" (16)' below sets up '%11' to 16, and GCC might use that register in
- following code if the value 16 happened to be needed. You can even use
- a normal 'asm' output for a scratch if all inputs that might share the
- same register are consumed before the scratch is used. The VSX
- registers clobbered by the 'asm' statement could have used this
- technique except for GCC's limit on the number of 'asm' parameters.
- static void
- dgemv_kernel_4x4 (long n, const double *ap, long lda,
- const double *x, double *y, double alpha)
- {
- double *a0;
- double *a1;
- double *a2;
- double *a3;
- __asm__
- (
- /* lots of asm here */
- "#n=%1 ap=%8=%12 lda=%13 x=%7=%10 y=%0=%2 alpha=%9 o16=%11\n"
- "#a0=%3 a1=%4 a2=%5 a3=%6"
- :
- "+m" (*(double (*)[n]) y),
- "+&r" (n), // 1
- "+b" (y), // 2
- "=b" (a0), // 3
- "=&b" (a1), // 4
- "=&b" (a2), // 5
- "=&b" (a3) // 6
- :
- "m" (*(const double (*)[n]) x),
- "m" (*(const double (*)[]) ap),
- "d" (alpha), // 9
- "r" (x), // 10
- "b" (16), // 11
- "3" (ap), // 12
- "4" (lda) // 13
- :
- "cr0",
- "vs32","vs33","vs34","vs35","vs36","vs37",
- "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47"
- );
- }
- 6.45.2.7 Goto Labels
- ....................
- 'asm goto' allows assembly code to jump to one or more C labels. The
- GOTOLABELS section in an 'asm goto' statement contains a comma-separated
- list of all C labels to which the assembler code may jump. GCC assumes
- that 'asm' execution falls through to the next statement (if this is not
- the case, consider using the '__builtin_unreachable' intrinsic after the
- 'asm' statement). Optimization of 'asm goto' may be improved by using
- the 'hot' and 'cold' label attributes (*note Label Attributes::).
- An 'asm goto' statement cannot have outputs. This is due to an
- internal restriction of the compiler: control transfer instructions
- cannot have outputs. If the assembler code does modify anything, use
- the '"memory"' clobber to force the optimizers to flush all register
- values to memory and reload them if necessary after the 'asm' statement.
- Also note that an 'asm goto' statement is always implicitly considered
- volatile.
- To reference a label in the assembler template, prefix it with '%l'
- (lowercase 'L') followed by its (zero-based) position in GOTOLABELS plus
- the number of input operands. For example, if the 'asm' has three
- inputs and references two labels, refer to the first label as '%l3' and
- the second as '%l4').
- Alternately, you can reference labels using the actual C label name
- enclosed in brackets. For example, to reference a label named 'carry',
- you can use '%l[carry]'. The label must still be listed in the
- GOTOLABELS section when using this approach.
- Here is an example of 'asm goto' for i386:
- asm goto (
- "btl %1, %0\n\t"
- "jc %l2"
- : /* No outputs. */
- : "r" (p1), "r" (p2)
- : "cc"
- : carry);
- return 0;
- carry:
- return 1;
- The following example shows an 'asm goto' that uses a memory clobber.
- int frob(int x)
- {
- int y;
- asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
- : /* No outputs. */
- : "r"(x), "r"(&y)
- : "r5", "memory"
- : error);
- return y;
- error:
- return -1;
- }
- 6.45.2.8 x86 Operand Modifiers
- ..............................
- References to input, output, and goto operands in the assembler template
- of extended 'asm' statements can use modifiers to affect the way the
- operands are formatted in the code output to the assembler. For
- example, the following code uses the 'h' and 'b' modifiers for x86:
- uint16_t num;
- asm volatile ("xchg %h0, %b0" : "+a" (num) );
- These modifiers generate this assembler code:
- xchg %ah, %al
- The rest of this discussion uses the following code for illustrative
- purposes.
- int main()
- {
- int iInt = 1;
- top:
- asm volatile goto ("some assembler instructions here"
- : /* No outputs. */
- : "q" (iInt), "X" (sizeof(unsigned char) + 1)
- : /* No clobbers. */
- : top);
- }
- With no modifiers, this is what the output from the operands would be
- for the 'att' and 'intel' dialects of assembler:
- Operand 'att' 'intel'
- -----------------------------------
- '%0' '%eax' 'eax'
- '%1' '$2' '2'
- '%2' '$.L2' 'OFFSET
- FLAT:.L2'
- The table below shows the list of supported modifiers and their
- effects.
- Modifier Description Operand 'att' 'intel'
- ------------------------------------------------------------------------------------
- 'z' Print the opcode suffix for the size of '%z0' 'l'
- the current integer operand (one of
- 'b'/'w'/'l'/'q').
- 'b' Print the QImode name of the register. '%b0' '%al' 'al'
- 'h' Print the QImode name for a "high" '%h0' '%ah' 'ah'
- register.
- 'w' Print the HImode name of the register. '%w0' '%ax' 'ax'
- 'k' Print the SImode name of the register. '%k0' '%eax' 'eax'
- 'q' Print the DImode name of the register. '%q0' '%rax' 'rax'
- 'l' Print the label name with no punctuation. '%l2' '.L2' '.L2'
- 'c' Require a constant operand and print the '%c1' '2' '2'
- constant expression with no punctuation.
- 'V' is a special modifier which prints the name of the full integer
- register without '%'.
- 6.45.2.9 x86 Floating-Point 'asm' Operands
- ..........................................
- On x86 targets, there are several rules on the usage of stack-like
- registers in the operands of an 'asm'. These rules apply only to the
- operands that are stack-like registers:
- 1. Given a set of input registers that die in an 'asm', it is
- necessary to know which are implicitly popped by the 'asm', and
- which must be explicitly popped by GCC.
- An input register that is implicitly popped by the 'asm' must be
- explicitly clobbered, unless it is constrained to match an output
- operand.
- 2. For any input register that is implicitly popped by an 'asm', it is
- necessary to know how to adjust the stack to compensate for the
- pop. If any non-popped input is closer to the top of the reg-stack
- than the implicitly popped register, it would not be possible to
- know what the stack looked like--it's not clear how the rest of the
- stack "slides up".
- All implicitly popped input registers must be closer to the top of
- the reg-stack than any input that is not implicitly popped.
- It is possible that if an input dies in an 'asm', the compiler
- might use the input register for an output reload. Consider this
- example:
- asm ("foo" : "=t" (a) : "f" (b));
- This code says that input 'b' is not popped by the 'asm', and that
- the 'asm' pushes a result onto the reg-stack, i.e., the stack is
- one deeper after the 'asm' than it was before. But, it is possible
- that reload may think that it can use the same register for both
- the input and the output.
- To prevent this from happening, if any input operand uses the 'f'
- constraint, all output register constraints must use the '&'
- early-clobber modifier.
- The example above is correctly written as:
- asm ("foo" : "=&t" (a) : "f" (b));
- 3. Some operands need to be in particular places on the stack. All
- output operands fall in this category--GCC has no other way to know
- which registers the outputs appear in unless you indicate this in
- the constraints.
- Output operands must specifically indicate which register an output
- appears in after an 'asm'. '=f' is not allowed: the operand
- constraints must select a class with a single register.
- 4. Output operands may not be "inserted" between existing stack
- registers. Since no 387 opcode uses a read/write operand, all
- output operands are dead before the 'asm', and are pushed by the
- 'asm'. It makes no sense to push anywhere but the top of the
- reg-stack.
- Output operands must start at the top of the reg-stack: output
- operands may not "skip" a register.
- 5. Some 'asm' statements may need extra stack space for internal
- calculations. This can be guaranteed by clobbering stack registers
- unrelated to the inputs and outputs.
- This 'asm' takes one input, which is internally popped, and produces
- two outputs.
- asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
- This 'asm' takes two inputs, which are popped by the 'fyl2xp1' opcode,
- and replaces them with one output. The 'st(1)' clobber is necessary for
- the compiler to know that 'fyl2xp1' pops both inputs.
- asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
- File: gcc.info, Node: Constraints, Next: Asm Labels, Prev: Extended Asm, Up: Using Assembly Language with C
- 6.45.3 Constraints for 'asm' Operands
- -------------------------------------
- Here are specific details on what constraint letters you can use with
- 'asm' operands. Constraints can say whether an operand may be in a
- register, and which kinds of register; whether the operand can be a
- memory reference, and which kinds of address; whether the operand may be
- an immediate constant, and which possible values it may have.
- Constraints can also require two operands to match. Side-effects aren't
- allowed in operands of inline 'asm', unless '<' or '>' constraints are
- used, because there is no guarantee that the side effects will happen
- exactly once in an instruction that can update the addressing register.
- * Menu:
- * Simple Constraints:: Basic use of constraints.
- * Multi-Alternative:: When an insn has two alternative constraint-patterns.
- * Modifiers:: More precise control over effects of constraints.
- * Machine Constraints:: Special constraints for some particular machines.
- File: gcc.info, Node: Simple Constraints, Next: Multi-Alternative, Up: Constraints
- 6.45.3.1 Simple Constraints
- ...........................
- The simplest kind of constraint is a string full of letters, each of
- which describes one kind of operand that is permitted. Here are the
- letters that are allowed:
- whitespace
- Whitespace characters are ignored and can be inserted at any
- position except the first. This enables each alternative for
- different operands to be visually aligned in the machine
- description even if they have different number of constraints and
- modifiers.
- 'm'
- A memory operand is allowed, with any kind of address that the
- machine supports in general. Note that the letter used for the
- general memory constraint can be re-defined by a back end using the
- 'TARGET_MEM_CONSTRAINT' macro.
- 'o'
- A memory operand is allowed, but only if the address is
- "offsettable". This means that adding a small integer (actually,
- the width in bytes of the operand, as determined by its machine
- mode) may be added to the address and the result is also a valid
- memory address.
- For example, an address which is constant is offsettable; so is an
- address that is the sum of a register and a constant (as long as a
- slightly larger constant is also within the range of
- address-offsets supported by the machine); but an autoincrement or
- autodecrement address is not offsettable. More complicated
- indirect/indexed addresses may or may not be offsettable depending
- on the other addressing modes that the machine supports.
- Note that in an output operand which can be matched by another
- operand, the constraint letter 'o' is valid only when accompanied
- by both '<' (if the target machine has predecrement addressing) and
- '>' (if the target machine has preincrement addressing).
- 'V'
- A memory operand that is not offsettable. In other words, anything
- that would fit the 'm' constraint but not the 'o' constraint.
- '<'
- A memory operand with autodecrement addressing (either predecrement
- or postdecrement) is allowed. In inline 'asm' this constraint is
- only allowed if the operand is used exactly once in an instruction
- that can handle the side effects. Not using an operand with '<' in
- constraint string in the inline 'asm' pattern at all or using it in
- multiple instructions isn't valid, because the side effects
- wouldn't be performed or would be performed more than once.
- Furthermore, on some targets the operand with '<' in constraint
- string must be accompanied by special instruction suffixes like
- '%U0' instruction suffix on PowerPC or '%P0' on IA-64.
- '>'
- A memory operand with autoincrement addressing (either preincrement
- or postincrement) is allowed. In inline 'asm' the same
- restrictions as for '<' apply.
- 'r'
- A register operand is allowed provided that it is in a general
- register.
- 'i'
- An immediate integer operand (one with constant value) is allowed.
- This includes symbolic constants whose values will be known only at
- assembly time or later.
- 'n'
- An immediate integer operand with a known numeric value is allowed.
- Many systems cannot support assembly-time constants for operands
- less than a word wide. Constraints for these operands should use
- 'n' rather than 'i'.
- 'I', 'J', 'K', ... 'P'
- Other letters in the range 'I' through 'P' may be defined in a
- machine-dependent fashion to permit immediate integer operands with
- explicit integer values in specified ranges. For example, on the
- 68000, 'I' is defined to stand for the range of values 1 to 8.
- This is the range permitted as a shift count in the shift
- instructions.
- 'E'
- An immediate floating operand (expression code 'const_double') is
- allowed, but only if the target floating point format is the same
- as that of the host machine (on which the compiler is running).
- 'F'
- An immediate floating operand (expression code 'const_double' or
- 'const_vector') is allowed.
- 'G', 'H'
- 'G' and 'H' may be defined in a machine-dependent fashion to permit
- immediate floating operands in particular ranges of values.
- 's'
- An immediate integer operand whose value is not an explicit integer
- is allowed.
- This might appear strange; if an insn allows a constant operand
- with a value not known at compile time, it certainly must allow any
- known value. So why use 's' instead of 'i'? Sometimes it allows
- better code to be generated.
- For example, on the 68000 in a fullword instruction it is possible
- to use an immediate operand; but if the immediate value is between
- -128 and 127, better code results from loading the value into a
- register and using the register. This is because the load into the
- register can be done with a 'moveq' instruction. We arrange for
- this to happen by defining the letter 'K' to mean "any integer
- outside the range -128 to 127", and then specifying 'Ks' in the
- operand constraints.
- 'g'
- Any register, memory or immediate integer operand is allowed,
- except for registers that are not general registers.
- 'X'
- Any operand whatsoever is allowed.
- '0', '1', '2', ... '9'
- An operand that matches the specified operand number is allowed.
- If a digit is used together with letters within the same
- alternative, the digit should come last.
- This number is allowed to be more than a single digit. If multiple
- digits are encountered consecutively, they are interpreted as a
- single decimal integer. There is scant chance for ambiguity, since
- to-date it has never been desirable that '10' be interpreted as
- matching either operand 1 _or_ operand 0. Should this be desired,
- one can use multiple alternatives instead.
- This is called a "matching constraint" and what it really means is
- that the assembler has only a single operand that fills two roles
- which 'asm' distinguishes. For example, an add instruction uses
- two input operands and an output operand, but on most CISC machines
- an add instruction really has only two operands, one of them an
- input-output operand:
- addl #35,r12
- Matching constraints are used in these circumstances. More
- precisely, the two operands that match must include one input-only
- operand and one output-only operand. Moreover, the digit must be a
- smaller number than the number of the operand that uses it in the
- constraint.
- 'p'
- An operand that is a valid memory address is allowed. This is for
- "load address" and "push address" instructions.
- 'p' in the constraint must be accompanied by 'address_operand' as
- the predicate in the 'match_operand'. This predicate interprets
- the mode specified in the 'match_operand' as the mode of the memory
- reference for which the address would be valid.
- OTHER-LETTERS
- Other letters can be defined in machine-dependent fashion to stand
- for particular classes of registers or other arbitrary operand
- types. 'd', 'a' and 'f' are defined on the 68000/68020 to stand
- for data, address and floating point registers.
- File: gcc.info, Node: Multi-Alternative, Next: Modifiers, Prev: Simple Constraints, Up: Constraints
- 6.45.3.2 Multiple Alternative Constraints
- .........................................
- Sometimes a single instruction has multiple alternative sets of possible
- operands. For example, on the 68000, a logical-or instruction can
- combine register or an immediate value into memory, or it can combine
- any kind of operand into a register; but it cannot combine one memory
- location into another.
- These constraints are represented as multiple alternatives. An
- alternative can be described by a series of letters for each operand.
- The overall constraint for an operand is made from the letters for this
- operand from the first alternative, a comma, the letters for this
- operand from the second alternative, a comma, and so on until the last
- alternative. All operands for a single instruction must have the same
- number of alternatives.
- So the first alternative for the 68000's logical-or could be written as
- '"+m" (output) : "ir" (input)'. The second could be '"+r" (output):
- "irm" (input)'. However, the fact that two memory locations cannot be
- used in a single instruction prevents simply using '"+rm" (output) :
- "irm" (input)'. Using multi-alternatives, this might be written as
- '"+m,r" (output) : "ir,irm" (input)'. This describes all the available
- alternatives to the compiler, allowing it to choose the most efficient
- one for the current conditions.
- There is no way within the template to determine which alternative was
- chosen. However you may be able to wrap your 'asm' statements with
- builtins such as '__builtin_constant_p' to achieve the desired results.
- File: gcc.info, Node: Modifiers, Next: Machine Constraints, Prev: Multi-Alternative, Up: Constraints
- 6.45.3.3 Constraint Modifier Characters
- .......................................
- Here are constraint modifier characters.
- '='
- Means that this operand is written to by this instruction: the
- previous value is discarded and replaced by new data.
- '+'
- Means that this operand is both read and written by the
- instruction.
- When the compiler fixes up the operands to satisfy the constraints,
- it needs to know which operands are read by the instruction and
- which are written by it. '=' identifies an operand which is only
- written; '+' identifies an operand that is both read and written;
- all other operands are assumed to only be read.
- If you specify '=' or '+' in a constraint, you put it in the first
- character of the constraint string.
- '&'
- Means (in a particular alternative) that this operand is an
- "earlyclobber" operand, which is written before the instruction is
- finished using the input operands. Therefore, this operand may not
- lie in a register that is read by the instruction or as part of any
- memory address.
- '&' applies only to the alternative in which it is written. In
- constraints with multiple alternatives, sometimes one alternative
- requires '&' while others do not. See, for example, the 'movdf'
- insn of the 68000.
- A operand which is read by the instruction can be tied to an
- earlyclobber operand if its only use as an input occurs before the
- early result is written. Adding alternatives of this form often
- allows GCC to produce better code when only some of the read
- operands can be affected by the earlyclobber. See, for example,
- the 'mulsi3' insn of the ARM.
- Furthermore, if the "earlyclobber" operand is also a read/write
- operand, then that operand is written only after it's used.
- '&' does not obviate the need to write '=' or '+'. As
- "earlyclobber" operands are always written, a read-only
- "earlyclobber" operand is ill-formed and will be rejected by the
- compiler.
- '%'
- Declares the instruction to be commutative for this operand and the
- following operand. This means that the compiler may interchange
- the two operands if that is the cheapest way to make all operands
- fit the constraints. '%' applies to all alternatives and must
- appear as the first character in the constraint. Only read-only
- operands can use '%'.
- GCC can only handle one commutative pair in an asm; if you use
- more, the compiler may fail. Note that you need not use the
- modifier if the two alternatives are strictly identical; this would
- only waste time in the reload pass.
- File: gcc.info, Node: Machine Constraints, Prev: Modifiers, Up: Constraints
- 6.45.3.4 Constraints for Particular Machines
- ............................................
- Whenever possible, you should use the general-purpose constraint letters
- in 'asm' arguments, since they will convey meaning more readily to
- people reading your code. Failing that, use the constraint letters that
- usually have very similar meanings across architectures. The most
- commonly used constraints are 'm' and 'r' (for memory and
- general-purpose registers respectively; *note Simple Constraints::), and
- 'I', usually the letter indicating the most common immediate-constant
- format.
- Each architecture defines additional constraints. These constraints
- are used by the compiler itself for instruction generation, as well as
- for 'asm' statements; therefore, some of the constraints are not
- particularly useful for 'asm'. Here is a summary of some of the
- machine-dependent constraints available on some particular machines; it
- includes both constraints that are useful for 'asm' and constraints that
- aren't. The compiler source file mentioned in the table heading for
- each architecture is the definitive reference for the meanings of that
- architecture's constraints.
- _AArch64 family--'config/aarch64/constraints.md'_
- 'k'
- The stack pointer register ('SP')
- 'w'
- Floating point register, Advanced SIMD vector register or SVE
- vector register
- 'Upl'
- One of the low eight SVE predicate registers ('P0' to 'P7')
- 'Upa'
- Any of the SVE predicate registers ('P0' to 'P15')
- 'I'
- Integer constant that is valid as an immediate operand in an
- 'ADD' instruction
- 'J'
- Integer constant that is valid as an immediate operand in a
- 'SUB' instruction (once negated)
- 'K'
- Integer constant that can be used with a 32-bit logical
- instruction
- 'L'
- Integer constant that can be used with a 64-bit logical
- instruction
- 'M'
- Integer constant that is valid as an immediate operand in a
- 32-bit 'MOV' pseudo instruction. The 'MOV' may be assembled
- to one of several different machine instructions depending on
- the value
- 'N'
- Integer constant that is valid as an immediate operand in a
- 64-bit 'MOV' pseudo instruction
- 'S'
- An absolute symbolic address or a label reference
- 'Y'
- Floating point constant zero
- 'Z'
- Integer constant zero
- 'Ush'
- The high part (bits 12 and upwards) of the pc-relative address
- of a symbol within 4GB of the instruction
- 'Q'
- A memory address which uses a single base register with no
- offset
- 'Ump'
- A memory address suitable for a load/store pair instruction in
- SI, DI, SF and DF modes
- _ARC --'config/arc/constraints.md'_
- 'q'
- Registers usable in ARCompact 16-bit instructions: 'r0'-'r3',
- 'r12'-'r15'. This constraint can only match when the '-mq'
- option is in effect.
- 'e'
- Registers usable as base-regs of memory addresses in ARCompact
- 16-bit memory instructions: 'r0'-'r3', 'r12'-'r15', 'sp'.
- This constraint can only match when the '-mq' option is in
- effect.
- 'D'
- ARC FPX (dpfp) 64-bit registers. 'D0', 'D1'.
- 'I'
- A signed 12-bit integer constant.
- 'Cal'
- constant for arithmetic/logical operations. This might be any
- constant that can be put into a long immediate by the assmbler
- or linker without involving a PIC relocation.
- 'K'
- A 3-bit unsigned integer constant.
- 'L'
- A 6-bit unsigned integer constant.
- 'CnL'
- One's complement of a 6-bit unsigned integer constant.
- 'CmL'
- Two's complement of a 6-bit unsigned integer constant.
- 'M'
- A 5-bit unsigned integer constant.
- 'O'
- A 7-bit unsigned integer constant.
- 'P'
- A 8-bit unsigned integer constant.
- 'H'
- Any const_double value.
- _ARM family--'config/arm/constraints.md'_
- 'h'
- In Thumb state, the core registers 'r8'-'r15'.
- 'k'
- The stack pointer register.
- 'l'
- In Thumb State the core registers 'r0'-'r7'. In ARM state
- this is an alias for the 'r' constraint.
- 't'
- VFP floating-point registers 's0'-'s31'. Used for 32 bit
- values.
- 'w'
- VFP floating-point registers 'd0'-'d31' and the appropriate
- subset 'd0'-'d15' based on command line options. Used for 64
- bit values only. Not valid for Thumb1.
- 'y'
- The iWMMX co-processor registers.
- 'z'
- The iWMMX GR registers.
- 'G'
- The floating-point constant 0.0
- 'I'
- Integer that is valid as an immediate operand in a data
- processing instruction. That is, an integer in the range 0 to
- 255 rotated by a multiple of 2
- 'J'
- Integer in the range -4095 to 4095
- 'K'
- Integer that satisfies constraint 'I' when inverted (ones
- complement)
- 'L'
- Integer that satisfies constraint 'I' when negated (twos
- complement)
- 'M'
- Integer in the range 0 to 32
- 'Q'
- A memory reference where the exact address is in a single
- register (''m'' is preferable for 'asm' statements)
- 'R'
- An item in the constant pool
- 'S'
- A symbol in the text segment of the current file
- 'Uv'
- A memory reference suitable for VFP load/store insns
- (reg+constant offset)
- 'Uy'
- A memory reference suitable for iWMMXt load/store
- instructions.
- 'Uq'
- A memory reference suitable for the ARMv4 ldrsb instruction.
- _AVR family--'config/avr/constraints.md'_
- 'l'
- Registers from r0 to r15
- 'a'
- Registers from r16 to r23
- 'd'
- Registers from r16 to r31
- 'w'
- Registers from r24 to r31. These registers can be used in
- 'adiw' command
- 'e'
- Pointer register (r26-r31)
- 'b'
- Base pointer register (r28-r31)
- 'q'
- Stack pointer register (SPH:SPL)
- 't'
- Temporary register r0
- 'x'
- Register pair X (r27:r26)
- 'y'
- Register pair Y (r29:r28)
- 'z'
- Register pair Z (r31:r30)
- 'I'
- Constant greater than -1, less than 64
- 'J'
- Constant greater than -64, less than 1
- 'K'
- Constant integer 2
- 'L'
- Constant integer 0
- 'M'
- Constant that fits in 8 bits
- 'N'
- Constant integer -1
- 'O'
- Constant integer 8, 16, or 24
- 'P'
- Constant integer 1
- 'G'
- A floating point constant 0.0
- 'Q'
- A memory address based on Y or Z pointer with displacement.
- _Blackfin family--'config/bfin/constraints.md'_
- 'a'
- P register
- 'd'
- D register
- 'z'
- A call clobbered P register.
- 'qN'
- A single register. If N is in the range 0 to 7, the
- corresponding D register. If it is 'A', then the register P0.
- 'D'
- Even-numbered D register
- 'W'
- Odd-numbered D register
- 'e'
- Accumulator register.
- 'A'
- Even-numbered accumulator register.
- 'B'
- Odd-numbered accumulator register.
- 'b'
- I register
- 'v'
- B register
- 'f'
- M register
- 'c'
- Registers used for circular buffering, i.e. I, B, or L
- registers.
- 'C'
- The CC register.
- 't'
- LT0 or LT1.
- 'k'
- LC0 or LC1.
- 'u'
- LB0 or LB1.
- 'x'
- Any D, P, B, M, I or L register.
- 'y'
- Additional registers typically used only in prologues and
- epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and
- USP.
- 'w'
- Any register except accumulators or CC.
- 'Ksh'
- Signed 16 bit integer (in the range -32768 to 32767)
- 'Kuh'
- Unsigned 16 bit integer (in the range 0 to 65535)
- 'Ks7'
- Signed 7 bit integer (in the range -64 to 63)
- 'Ku7'
- Unsigned 7 bit integer (in the range 0 to 127)
- 'Ku5'
- Unsigned 5 bit integer (in the range 0 to 31)
- 'Ks4'
- Signed 4 bit integer (in the range -8 to 7)
- 'Ks3'
- Signed 3 bit integer (in the range -3 to 4)
- 'Ku3'
- Unsigned 3 bit integer (in the range 0 to 7)
- 'PN'
- Constant N, where N is a single-digit constant in the range 0
- to 4.
- 'PA'
- An integer equal to one of the MACFLAG_XXX constants that is
- suitable for use with either accumulator.
- 'PB'
- An integer equal to one of the MACFLAG_XXX constants that is
- suitable for use only with accumulator A1.
- 'M1'
- Constant 255.
- 'M2'
- Constant 65535.
- 'J'
- An integer constant with exactly a single bit set.
- 'L'
- An integer constant with all bits set except exactly one.
- 'H'
- 'Q'
- Any SYMBOL_REF.
- _CR16 Architecture--'config/cr16/cr16.h'_
- 'b'
- Registers from r0 to r14 (registers without stack pointer)
- 't'
- Register from r0 to r11 (all 16-bit registers)
- 'p'
- Register from r12 to r15 (all 32-bit registers)
- 'I'
- Signed constant that fits in 4 bits
- 'J'
- Signed constant that fits in 5 bits
- 'K'
- Signed constant that fits in 6 bits
- 'L'
- Unsigned constant that fits in 4 bits
- 'M'
- Signed constant that fits in 32 bits
- 'N'
- Check for 64 bits wide constants for add/sub instructions
- 'G'
- Floating point constant that is legal for store immediate
- _Epiphany--'config/epiphany/constraints.md'_
- 'U16'
- An unsigned 16-bit constant.
- 'K'
- An unsigned 5-bit constant.
- 'L'
- A signed 11-bit constant.
- 'Cm1'
- A signed 11-bit constant added to -1. Can only match when the
- '-m1reg-REG' option is active.
- 'Cl1'
- Left-shift of -1, i.e., a bit mask with a block of leading
- ones, the rest being a block of trailing zeroes. Can only
- match when the '-m1reg-REG' option is active.
- 'Cr1'
- Right-shift of -1, i.e., a bit mask with a trailing block of
- ones, the rest being zeroes. Or to put it another way, one
- less than a power of two. Can only match when the
- '-m1reg-REG' option is active.
- 'Cal'
- Constant for arithmetic/logical operations. This is like 'i',
- except that for position independent code, no symbols /
- expressions needing relocations are allowed.
- 'Csy'
- Symbolic constant for call/jump instruction.
- 'Rcs'
- The register class usable in short insns. This is a register
- class constraint, and can thus drive register allocation.
- This constraint won't match unless '-mprefer-short-insn-regs'
- is in effect.
- 'Rsc'
- The the register class of registers that can be used to hold a
- sibcall call address. I.e., a caller-saved register.
- 'Rct'
- Core control register class.
- 'Rgs'
- The register group usable in short insns. This constraint
- does not use a register class, so that it only passively
- matches suitable registers, and doesn't drive register
- allocation.
- 'Rra'
- Matches the return address if it can be replaced with the link
- register.
- 'Rcc'
- Matches the integer condition code register.
- 'Sra'
- Matches the return address if it is in a stack slot.
- 'Cfm'
- Matches control register values to switch fp mode, which are
- encapsulated in 'UNSPEC_FP_MODE'.
- _FRV--'config/frv/frv.h'_
- 'a'
- Register in the class 'ACC_REGS' ('acc0' to 'acc7').
- 'b'
- Register in the class 'EVEN_ACC_REGS' ('acc0' to 'acc7').
- 'c'
- Register in the class 'CC_REGS' ('fcc0' to 'fcc3' and 'icc0'
- to 'icc3').
- 'd'
- Register in the class 'GPR_REGS' ('gr0' to 'gr63').
- 'e'
- Register in the class 'EVEN_REGS' ('gr0' to 'gr63'). Odd
- registers are excluded not in the class but through the use of
- a machine mode larger than 4 bytes.
- 'f'
- Register in the class 'FPR_REGS' ('fr0' to 'fr63').
- 'h'
- Register in the class 'FEVEN_REGS' ('fr0' to 'fr63'). Odd
- registers are excluded not in the class but through the use of
- a machine mode larger than 4 bytes.
- 'l'
- Register in the class 'LR_REG' (the 'lr' register).
- 'q'
- Register in the class 'QUAD_REGS' ('gr2' to 'gr63'). Register
- numbers not divisible by 4 are excluded not in the class but
- through the use of a machine mode larger than 8 bytes.
- 't'
- Register in the class 'ICC_REGS' ('icc0' to 'icc3').
- 'u'
- Register in the class 'FCC_REGS' ('fcc0' to 'fcc3').
- 'v'
- Register in the class 'ICR_REGS' ('cc4' to 'cc7').
- 'w'
- Register in the class 'FCR_REGS' ('cc0' to 'cc3').
- 'x'
- Register in the class 'QUAD_FPR_REGS' ('fr0' to 'fr63').
- Register numbers not divisible by 4 are excluded not in the
- class but through the use of a machine mode larger than 8
- bytes.
- 'z'
- Register in the class 'SPR_REGS' ('lcr' and 'lr').
- 'A'
- Register in the class 'QUAD_ACC_REGS' ('acc0' to 'acc7').
- 'B'
- Register in the class 'ACCG_REGS' ('accg0' to 'accg7').
- 'C'
- Register in the class 'CR_REGS' ('cc0' to 'cc7').
- 'G'
- Floating point constant zero
- 'I'
- 6-bit signed integer constant
- 'J'
- 10-bit signed integer constant
- 'L'
- 16-bit signed integer constant
- 'M'
- 16-bit unsigned integer constant
- 'N'
- 12-bit signed integer constant that is negative--i.e. in the
- range of -2048 to -1
- 'O'
- Constant zero
- 'P'
- 12-bit signed integer constant that is greater than zero--i.e.
- in the range of 1 to 2047.
- _FT32--'config/ft32/constraints.md'_
- 'A'
- An absolute address
- 'B'
- An offset address
- 'W'
- A register indirect memory operand
- 'e'
- An offset address.
- 'f'
- An offset address.
- 'O'
- The constant zero or one
- 'I'
- A 16-bit signed constant (-32768 ... 32767)
- 'w'
- A bitfield mask suitable for bext or bins
- 'x'
- An inverted bitfield mask suitable for bext or bins
- 'L'
- A 16-bit unsigned constant, multiple of 4 (0 ... 65532)
- 'S'
- A 20-bit signed constant (-524288 ... 524287)
- 'b'
- A constant for a bitfield width (1 ... 16)
- 'KA'
- A 10-bit signed constant (-512 ... 511)
- _Hewlett-Packard PA-RISC--'config/pa/pa.h'_
- 'a'
- General register 1
- 'f'
- Floating point register
- 'q'
- Shift amount register
- 'x'
- Floating point register (deprecated)
- 'y'
- Upper floating point register (32-bit), floating point
- register (64-bit)
- 'Z'
- Any register
- 'I'
- Signed 11-bit integer constant
- 'J'
- Signed 14-bit integer constant
- 'K'
- Integer constant that can be deposited with a 'zdepi'
- instruction
- 'L'
- Signed 5-bit integer constant
- 'M'
- Integer constant 0
- 'N'
- Integer constant that can be loaded with a 'ldil' instruction
- 'O'
- Integer constant whose value plus one is a power of 2
- 'P'
- Integer constant that can be used for 'and' operations in
- 'depi' and 'extru' instructions
- 'S'
- Integer constant 31
- 'U'
- Integer constant 63
- 'G'
- Floating-point constant 0.0
- 'A'
- A 'lo_sum' data-linkage-table memory operand
- 'Q'
- A memory operand that can be used as the destination operand
- of an integer store instruction
- 'R'
- A scaled or unscaled indexed memory operand
- 'T'
- A memory operand for floating-point loads and stores
- 'W'
- A register indirect memory operand
- _Intel IA-64--'config/ia64/ia64.h'_
- 'a'
- General register 'r0' to 'r3' for 'addl' instruction
- 'b'
- Branch register
- 'c'
- Predicate register ('c' as in "conditional")
- 'd'
- Application register residing in M-unit
- 'e'
- Application register residing in I-unit
- 'f'
- Floating-point register
- 'm'
- Memory operand. If used together with '<' or '>', the operand
- can have postincrement and postdecrement which require
- printing with '%Pn' on IA-64.
- 'G'
- Floating-point constant 0.0 or 1.0
- 'I'
- 14-bit signed integer constant
- 'J'
- 22-bit signed integer constant
- 'K'
- 8-bit signed integer constant for logical instructions
- 'L'
- 8-bit adjusted signed integer constant for compare pseudo-ops
- 'M'
- 6-bit unsigned integer constant for shift counts
- 'N'
- 9-bit signed integer constant for load and store
- postincrements
- 'O'
- The constant zero
- 'P'
- 0 or -1 for 'dep' instruction
- 'Q'
- Non-volatile memory for floating-point loads and stores
- 'R'
- Integer constant in the range 1 to 4 for 'shladd' instruction
- 'S'
- Memory operand except postincrement and postdecrement. This
- is now roughly the same as 'm' when not used together with '<'
- or '>'.
- _M32C--'config/m32c/m32c.c'_
- 'Rsp'
- 'Rfb'
- 'Rsb'
- '$sp', '$fb', '$sb'.
- 'Rcr'
- Any control register, when they're 16 bits wide (nothing if
- control registers are 24 bits wide)
- 'Rcl'
- Any control register, when they're 24 bits wide.
- 'R0w'
- 'R1w'
- 'R2w'
- 'R3w'
- $r0, $r1, $r2, $r3.
- 'R02'
- $r0 or $r2, or $r2r0 for 32 bit values.
- 'R13'
- $r1 or $r3, or $r3r1 for 32 bit values.
- 'Rdi'
- A register that can hold a 64 bit value.
- 'Rhl'
- $r0 or $r1 (registers with addressable high/low bytes)
- 'R23'
- $r2 or $r3
- 'Raa'
- Address registers
- 'Raw'
- Address registers when they're 16 bits wide.
- 'Ral'
- Address registers when they're 24 bits wide.
- 'Rqi'
- Registers that can hold QI values.
- 'Rad'
- Registers that can be used with displacements ($a0, $a1, $sb).
- 'Rsi'
- Registers that can hold 32 bit values.
- 'Rhi'
- Registers that can hold 16 bit values.
- 'Rhc'
- Registers chat can hold 16 bit values, including all control
- registers.
- 'Rra'
- $r0 through R1, plus $a0 and $a1.
- 'Rfl'
- The flags register.
- 'Rmm'
- The memory-based pseudo-registers $mem0 through $mem15.
- 'Rpi'
- Registers that can hold pointers (16 bit registers for r8c,
- m16c; 24 bit registers for m32cm, m32c).
- 'Rpa'
- Matches multiple registers in a PARALLEL to form a larger
- register. Used to match function return values.
- 'Is3'
- -8 ... 7
- 'IS1'
- -128 ... 127
- 'IS2'
- -32768 ... 32767
- 'IU2'
- 0 ... 65535
- 'In4'
- -8 ... -1 or 1 ... 8
- 'In5'
- -16 ... -1 or 1 ... 16
- 'In6'
- -32 ... -1 or 1 ... 32
- 'IM2'
- -65536 ... -1
- 'Ilb'
- An 8 bit value with exactly one bit set.
- 'Ilw'
- A 16 bit value with exactly one bit set.
- 'Sd'
- The common src/dest memory addressing modes.
- 'Sa'
- Memory addressed using $a0 or $a1.
- 'Si'
- Memory addressed with immediate addresses.
- 'Ss'
- Memory addressed using the stack pointer ($sp).
- 'Sf'
- Memory addressed using the frame base register ($fb).
- 'Ss'
- Memory addressed using the small base register ($sb).
- 'S1'
- $r1h
- _MicroBlaze--'config/microblaze/constraints.md'_
- 'd'
- A general register ('r0' to 'r31').
- 'z'
- A status register ('rmsr', '$fcc1' to '$fcc7').
- _MIPS--'config/mips/constraints.md'_
- 'd'
- A general-purpose register. This is equivalent to 'r' unless
- generating MIPS16 code, in which case the MIPS16 register set
- is used.
- 'f'
- A floating-point register (if available).
- 'h'
- Formerly the 'hi' register. This constraint is no longer
- supported.
- 'l'
- The 'lo' register. Use this register to store values that are
- no bigger than a word.
- 'x'
- The concatenated 'hi' and 'lo' registers. Use this register
- to store doubleword values.
- 'c'
- A register suitable for use in an indirect jump. This will
- always be '$25' for '-mabicalls'.
- 'v'
- Register '$3'. Do not use this constraint in new code; it is
- retained only for compatibility with glibc.
- 'y'
- Equivalent to 'r'; retained for backwards compatibility.
- 'z'
- A floating-point condition code register.
- 'I'
- A signed 16-bit constant (for arithmetic instructions).
- 'J'
- Integer zero.
- 'K'
- An unsigned 16-bit constant (for logic instructions).
- 'L'
- A signed 32-bit constant in which the lower 16 bits are zero.
- Such constants can be loaded using 'lui'.
- 'M'
- A constant that cannot be loaded using 'lui', 'addiu' or
- 'ori'.
- 'N'
- A constant in the range -65535 to -1 (inclusive).
- 'O'
- A signed 15-bit constant.
- 'P'
- A constant in the range 1 to 65535 (inclusive).
- 'G'
- Floating-point zero.
- 'R'
- An address that can be used in a non-macro load or store.
- 'ZC'
- A memory operand whose address is formed by a base register
- and offset that is suitable for use in instructions with the
- same addressing mode as 'll' and 'sc'.
- 'ZD'
- An address suitable for a 'prefetch' instruction, or for any
- other instruction with the same addressing mode as 'prefetch'.
- _Motorola 680x0--'config/m68k/constraints.md'_
- 'a'
- Address register
- 'd'
- Data register
- 'f'
- 68881 floating-point register, if available
- 'I'
- Integer in the range 1 to 8
- 'J'
- 16-bit signed number
- 'K'
- Signed number whose magnitude is greater than 0x80
- 'L'
- Integer in the range -8 to -1
- 'M'
- Signed number whose magnitude is greater than 0x100
- 'N'
- Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
- 'O'
- 16 (for rotate using swap)
- 'P'
- Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
- 'R'
- Numbers that mov3q can handle
- 'G'
- Floating point constant that is not a 68881 constant
- 'S'
- Operands that satisfy 'm' when -mpcrel is in effect
- 'T'
- Operands that satisfy 's' when -mpcrel is not in effect
- 'Q'
- Address register indirect addressing mode
- 'U'
- Register offset addressing
- 'W'
- const_call_operand
- 'Cs'
- symbol_ref or const
- 'Ci'
- const_int
- 'C0'
- const_int 0
- 'Cj'
- Range of signed numbers that don't fit in 16 bits
- 'Cmvq'
- Integers valid for mvq
- 'Capsw'
- Integers valid for a moveq followed by a swap
- 'Cmvz'
- Integers valid for mvz
- 'Cmvs'
- Integers valid for mvs
- 'Ap'
- push_operand
- 'Ac'
- Non-register operands allowed in clr
- _Moxie--'config/moxie/constraints.md'_
- 'A'
- An absolute address
- 'B'
- An offset address
- 'W'
- A register indirect memory operand
- 'I'
- A constant in the range of 0 to 255.
- 'N'
- A constant in the range of 0 to -255.
- _MSP430-'config/msp430/constraints.md'_
- 'R12'
- Register R12.
- 'R13'
- Register R13.
- 'K'
- Integer constant 1.
- 'L'
- Integer constant -1^20..1^19.
- 'M'
- Integer constant 1-4.
- 'Ya'
- Memory references which do not require an extended MOVX
- instruction.
- 'Yl'
- Memory reference, labels only.
- 'Ys'
- Memory reference, stack only.
- _NDS32--'config/nds32/constraints.md'_
- 'w'
- LOW register class $r0 to $r7 constraint for V3/V3M ISA.
- 'l'
- LOW register class $r0 to $r7.
- 'd'
- MIDDLE register class $r0 to $r11, $r16 to $r19.
- 'h'
- HIGH register class $r12 to $r14, $r20 to $r31.
- 't'
- Temporary assist register $ta (i.e. $r15).
- 'k'
- Stack register $sp.
- 'Iu03'
- Unsigned immediate 3-bit value.
- 'In03'
- Negative immediate 3-bit value in the range of -7-0.
- 'Iu04'
- Unsigned immediate 4-bit value.
- 'Is05'
- Signed immediate 5-bit value.
- 'Iu05'
- Unsigned immediate 5-bit value.
- 'In05'
- Negative immediate 5-bit value in the range of -31-0.
- 'Ip05'
- Unsigned immediate 5-bit value for movpi45 instruction with
- range 16-47.
- 'Iu06'
- Unsigned immediate 6-bit value constraint for addri36.sp
- instruction.
- 'Iu08'
- Unsigned immediate 8-bit value.
- 'Iu09'
- Unsigned immediate 9-bit value.
- 'Is10'
- Signed immediate 10-bit value.
- 'Is11'
- Signed immediate 11-bit value.
- 'Is15'
- Signed immediate 15-bit value.
- 'Iu15'
- Unsigned immediate 15-bit value.
- 'Ic15'
- A constant which is not in the range of imm15u but ok for bclr
- instruction.
- 'Ie15'
- A constant which is not in the range of imm15u but ok for bset
- instruction.
- 'It15'
- A constant which is not in the range of imm15u but ok for btgl
- instruction.
- 'Ii15'
- A constant whose compliment value is in the range of imm15u
- and ok for bitci instruction.
- 'Is16'
- Signed immediate 16-bit value.
- 'Is17'
- Signed immediate 17-bit value.
- 'Is19'
- Signed immediate 19-bit value.
- 'Is20'
- Signed immediate 20-bit value.
- 'Ihig'
- The immediate value that can be simply set high 20-bit.
- 'Izeb'
- The immediate value 0xff.
- 'Izeh'
- The immediate value 0xffff.
- 'Ixls'
- The immediate value 0x01.
- 'Ix11'
- The immediate value 0x7ff.
- 'Ibms'
- The immediate value with power of 2.
- 'Ifex'
- The immediate value with power of 2 minus 1.
- 'U33'
- Memory constraint for 333 format.
- 'U45'
- Memory constraint for 45 format.
- 'U37'
- Memory constraint for 37 format.
- _Nios II family--'config/nios2/constraints.md'_
- 'I'
- Integer that is valid as an immediate operand in an
- instruction taking a signed 16-bit number. Range -32768 to
- 32767.
- 'J'
- Integer that is valid as an immediate operand in an
- instruction taking an unsigned 16-bit number. Range 0 to
- 65535.
- 'K'
- Integer that is valid as an immediate operand in an
- instruction taking only the upper 16-bits of a 32-bit number.
- Range 32-bit numbers with the lower 16-bits being 0.
- 'L'
- Integer that is valid as an immediate operand for a shift
- instruction. Range 0 to 31.
- 'M'
- Integer that is valid as an immediate operand for only the
- value 0. Can be used in conjunction with the format modifier
- 'z' to use 'r0' instead of '0' in the assembly output.
- 'N'
- Integer that is valid as an immediate operand for a custom
- instruction opcode. Range 0 to 255.
- 'P'
- An immediate operand for R2 andchi/andci instructions.
- 'S'
- Matches immediates which are addresses in the small data
- section and therefore can be added to 'gp' as a 16-bit
- immediate to re-create their 32-bit value.
- 'U'
- Matches constants suitable as an operand for the rdprs and
- cache instructions.
- 'v'
- A memory operand suitable for Nios II R2 load/store exclusive
- instructions.
- 'w'
- A memory operand suitable for load/store IO and cache
- instructions.
- _PDP-11--'config/pdp11/constraints.md'_
- 'a'
- Floating point registers AC0 through AC3. These can be loaded
- from/to memory with a single instruction.
- 'd'
- Odd numbered general registers (R1, R3, R5). These are used
- for 16-bit multiply operations.
- 'f'
- Any of the floating point registers (AC0 through AC5).
- 'G'
- Floating point constant 0.
- 'I'
- An integer constant that fits in 16 bits.
- 'J'
- An integer constant whose low order 16 bits are zero.
- 'K'
- An integer constant that does not meet the constraints for
- codes 'I' or 'J'.
- 'L'
- The integer constant 1.
- 'M'
- The integer constant -1.
- 'N'
- The integer constant 0.
- 'O'
- Integer constants -4 through -1 and 1 through 4; shifts by
- these amounts are handled as multiple single-bit shifts rather
- than a single variable-length shift.
- 'Q'
- A memory reference which requires an additional word (address
- or offset) after the opcode.
- 'R'
- A memory reference that is encoded within the opcode.
- _PowerPC and IBM RS6000--'config/rs6000/constraints.md'_
- 'b'
- Address base register
- 'd'
- Floating point register (containing 64-bit value)
- 'f'
- Floating point register (containing 32-bit value)
- 'v'
- Altivec vector register
- 'wa'
- Any VSX register if the '-mvsx' option was used or NO_REGS.
- When using any of the register constraints ('wa', 'wd', 'wf',
- 'wg', 'wh', 'wi', 'wj', 'wk', 'wl', 'wm', 'wo', 'wp', 'wq',
- 'ws', 'wt', 'wu', 'wv', 'ww', or 'wy') that take VSX
- registers, you must use '%x<n>' in the template so that the
- correct register is used. Otherwise the register number
- output in the assembly file will be incorrect if an Altivec
- register is an operand of a VSX instruction that expects VSX
- register numbering.
- asm ("xvadddp %x0,%x1,%x2"
- : "=wa" (v1)
- : "wa" (v2), "wa" (v3));
- is correct, but:
- asm ("xvadddp %0,%1,%2"
- : "=wa" (v1)
- : "wa" (v2), "wa" (v3));
- is not correct.
- If an instruction only takes Altivec registers, you do not
- want to use '%x<n>'.
- asm ("xsaddqp %0,%1,%2"
- : "=v" (v1)
- : "v" (v2), "v" (v3));
- is correct because the 'xsaddqp' instruction only takes
- Altivec registers, while:
- asm ("xsaddqp %x0,%x1,%x2"
- : "=v" (v1)
- : "v" (v2), "v" (v3));
- is incorrect.
- 'wb'
- Altivec register if '-mcpu=power9' is used or NO_REGS.
- 'wd'
- VSX vector register to hold vector double data or NO_REGS.
- 'we'
- VSX register if the '-mcpu=power9' and '-m64' options were
- used or NO_REGS.
- 'wf'
- VSX vector register to hold vector float data or NO_REGS.
- 'wg'
- If '-mmfpgpr' was used, a floating point register or NO_REGS.
- 'wh'
- Floating point register if direct moves are available, or
- NO_REGS.
- 'wi'
- FP or VSX register to hold 64-bit integers for VSX insns or
- NO_REGS.
- 'wj'
- FP or VSX register to hold 64-bit integers for direct moves or
- NO_REGS.
- 'wk'
- FP or VSX register to hold 64-bit doubles for direct moves or
- NO_REGS.
- 'wl'
- Floating point register if the LFIWAX instruction is enabled
- or NO_REGS.
- 'wm'
- VSX register if direct move instructions are enabled, or
- NO_REGS.
- 'wn'
- No register (NO_REGS).
- 'wo'
- VSX register to use for ISA 3.0 vector instructions, or
- NO_REGS.
- 'wp'
- VSX register to use for IEEE 128-bit floating point TFmode, or
- NO_REGS.
- 'wq'
- VSX register to use for IEEE 128-bit floating point, or
- NO_REGS.
- 'wr'
- General purpose register if 64-bit instructions are enabled or
- NO_REGS.
- 'ws'
- VSX vector register to hold scalar double values or NO_REGS.
- 'wt'
- VSX vector register to hold 128 bit integer or NO_REGS.
- 'wu'
- Altivec register to use for float/32-bit int loads/stores or
- NO_REGS.
- 'wv'
- Altivec register to use for double loads/stores or NO_REGS.
- 'ww'
- FP or VSX register to perform float operations under '-mvsx'
- or NO_REGS.
- 'wx'
- Floating point register if the STFIWX instruction is enabled
- or NO_REGS.
- 'wy'
- FP or VSX register to perform ISA 2.07 float ops or NO_REGS.
- 'wz'
- Floating point register if the LFIWZX instruction is enabled
- or NO_REGS.
- 'wA'
- Address base register if 64-bit instructions are enabled or
- NO_REGS.
- 'wB'
- Signed 5-bit constant integer that can be loaded into an
- altivec register.
- 'wD'
- Int constant that is the element number of the 64-bit scalar
- in a vector.
- 'wE'
- Vector constant that can be loaded with the XXSPLTIB
- instruction.
- 'wF'
- Memory operand suitable for power9 fusion load/stores.
- 'wG'
- Memory operand suitable for TOC fusion memory references.
- 'wH'
- Altivec register if '-mvsx-small-integer'.
- 'wI'
- Floating point register if '-mvsx-small-integer'.
- 'wJ'
- FP register if '-mvsx-small-integer' and '-mpower9-vector'.
- 'wK'
- Altivec register if '-mvsx-small-integer' and
- '-mpower9-vector'.
- 'wL'
- Int constant that is the element number that the MFVSRLD
- instruction. targets.
- 'wM'
- Match vector constant with all 1's if the XXLORC instruction
- is available.
- 'wO'
- A memory operand suitable for the ISA 3.0 vector d-form
- instructions.
- 'wQ'
- A memory address that will work with the 'lq' and 'stq'
- instructions.
- 'wS'
- Vector constant that can be loaded with XXSPLTIB & sign
- extension.
- 'h'
- 'MQ', 'CTR', or 'LINK' register
- 'c'
- 'CTR' register
- 'l'
- 'LINK' register
- 'x'
- 'CR' register (condition register) number 0
- 'y'
- 'CR' register (condition register)
- 'z'
- 'XER[CA]' carry bit (part of the XER register)
- 'I'
- Signed 16-bit constant
- 'J'
- Unsigned 16-bit constant shifted left 16 bits (use 'L' instead
- for 'SImode' constants)
- 'K'
- Unsigned 16-bit constant
- 'L'
- Signed 16-bit constant shifted left 16 bits
- 'M'
- Constant larger than 31
- 'N'
- Exact power of 2
- 'O'
- Zero
- 'P'
- Constant whose negation is a signed 16-bit constant
- 'G'
- Floating point constant that can be loaded into a register
- with one instruction per word
- 'H'
- Integer/Floating point constant that can be loaded into a
- register using three instructions
- 'm'
- Memory operand. Normally, 'm' does not allow addresses that
- update the base register. If '<' or '>' constraint is also
- used, they are allowed and therefore on PowerPC targets in
- that case it is only safe to use 'm<>' in an 'asm' statement
- if that 'asm' statement accesses the operand exactly once.
- The 'asm' statement must also use '%U<OPNO>' as a placeholder
- for the "update" flag in the corresponding load or store
- instruction. For example:
- asm ("st%U0 %1,%0" : "=m<>" (mem) : "r" (val));
- is correct but:
- asm ("st %1,%0" : "=m<>" (mem) : "r" (val));
- is not.
- 'es'
- A "stable" memory operand; that is, one which does not include
- any automodification of the base register. This used to be
- useful when 'm' allowed automodification of the base register,
- but as those are now only allowed when '<' or '>' is used,
- 'es' is basically the same as 'm' without '<' and '>'.
- 'Q'
- Memory operand that is an offset from a register (it is
- usually better to use 'm' or 'es' in 'asm' statements)
- 'Z'
- Memory operand that is an indexed or indirect from a register
- (it is usually better to use 'm' or 'es' in 'asm' statements)
- 'R'
- AIX TOC entry
- 'a'
- Address operand that is an indexed or indirect from a register
- ('p' is preferable for 'asm' statements)
- 'U'
- System V Release 4 small data area reference
- 'W'
- Vector constant that does not require memory
- 'j'
- Vector constant that is all zeros.
- _RL78--'config/rl78/constraints.md'_
- 'Int3'
- An integer constant in the range 1 ... 7.
- 'Int8'
- An integer constant in the range 0 ... 255.
- 'J'
- An integer constant in the range -255 ... 0
- 'K'
- The integer constant 1.
- 'L'
- The integer constant -1.
- 'M'
- The integer constant 0.
- 'N'
- The integer constant 2.
- 'O'
- The integer constant -2.
- 'P'
- An integer constant in the range 1 ... 15.
- 'Qbi'
- The built-in compare types-eq, ne, gtu, ltu, geu, and leu.
- 'Qsc'
- The synthetic compare types-gt, lt, ge, and le.
- 'Wab'
- A memory reference with an absolute address.
- 'Wbc'
- A memory reference using 'BC' as a base register, with an
- optional offset.
- 'Wca'
- A memory reference using 'AX', 'BC', 'DE', or 'HL' for the
- address, for calls.
- 'Wcv'
- A memory reference using any 16-bit register pair for the
- address, for calls.
- 'Wd2'
- A memory reference using 'DE' as a base register, with an
- optional offset.
- 'Wde'
- A memory reference using 'DE' as a base register, without any
- offset.
- 'Wfr'
- Any memory reference to an address in the far address space.
- 'Wh1'
- A memory reference using 'HL' as a base register, with an
- optional one-byte offset.
- 'Whb'
- A memory reference using 'HL' as a base register, with 'B' or
- 'C' as the index register.
- 'Whl'
- A memory reference using 'HL' as a base register, without any
- offset.
- 'Ws1'
- A memory reference using 'SP' as a base register, with an
- optional one-byte offset.
- 'Y'
- Any memory reference to an address in the near address space.
- 'A'
- The 'AX' register.
- 'B'
- The 'BC' register.
- 'D'
- The 'DE' register.
- 'R'
- 'A' through 'L' registers.
- 'S'
- The 'SP' register.
- 'T'
- The 'HL' register.
- 'Z08W'
- The 16-bit 'R8' register.
- 'Z10W'
- The 16-bit 'R10' register.
- 'Zint'
- The registers reserved for interrupts ('R24' to 'R31').
- 'a'
- The 'A' register.
- 'b'
- The 'B' register.
- 'c'
- The 'C' register.
- 'd'
- The 'D' register.
- 'e'
- The 'E' register.
- 'h'
- The 'H' register.
- 'l'
- The 'L' register.
- 'v'
- The virtual registers.
- 'w'
- The 'PSW' register.
- 'x'
- The 'X' register.
- _RISC-V--'config/riscv/constraints.md'_
- 'f'
- A floating-point register (if availiable).
- 'I'
- An I-type 12-bit signed immediate.
- 'J'
- Integer zero.
- 'K'
- A 5-bit unsigned immediate for CSR access instructions.
- 'C'
- A 12-bit unsigned immediate for CSR register address.
- 'A'
- An address that is held in a general-purpose register.
- _RX--'config/rx/constraints.md'_
- 'Q'
- An address which does not involve register indirect addressing
- or pre/post increment/decrement addressing.
- 'Symbol'
- A symbol reference.
- 'Int08'
- A constant in the range -256 to 255, inclusive.
- 'Sint08'
- A constant in the range -128 to 127, inclusive.
- 'Sint16'
- A constant in the range -32768 to 32767, inclusive.
- 'Sint24'
- A constant in the range -8388608 to 8388607, inclusive.
- 'Uint04'
- A constant in the range 0 to 15, inclusive.
- _S/390 and zSeries--'config/s390/s390.h'_
- 'a'
- Address register (general purpose register except r0)
- 'c'
- Condition code register
- 'd'
- Data register (arbitrary general purpose register)
- 'f'
- Floating-point register
- 'I'
- Unsigned 8-bit constant (0-255)
- 'J'
- Unsigned 12-bit constant (0-4095)
- 'K'
- Signed 16-bit constant (-32768-32767)
- 'L'
- Value appropriate as displacement.
- '(0..4095)'
- for short displacement
- '(-524288..524287)'
- for long displacement
- 'M'
- Constant integer with a value of 0x7fffffff.
- 'N'
- Multiple letter constraint followed by 4 parameter letters.
- '0..9:'
- number of the part counting from most to least
- significant
- 'H,Q:'
- mode of the part
- 'D,S,H:'
- mode of the containing operand
- '0,F:'
- value of the other parts (F--all bits set)
- The constraint matches if the specified part of a constant has
- a value different from its other parts.
- 'Q'
- Memory reference without index register and with short
- displacement.
- 'R'
- Memory reference with index register and short displacement.
- 'S'
- Memory reference without index register but with long
- displacement.
- 'T'
- Memory reference with index register and long displacement.
- 'U'
- Pointer with short displacement.
- 'W'
- Pointer with long displacement.
- 'Y'
- Shift count operand.
- _SPARC--'config/sparc/sparc.h'_
- 'f'
- Floating-point register on the SPARC-V8 architecture and lower
- floating-point register on the SPARC-V9 architecture.
- 'e'
- Floating-point register. It is equivalent to 'f' on the
- SPARC-V8 architecture and contains both lower and upper
- floating-point registers on the SPARC-V9 architecture.
- 'c'
- Floating-point condition code register.
- 'd'
- Lower floating-point register. It is only valid on the
- SPARC-V9 architecture when the Visual Instruction Set is
- available.
- 'b'
- Floating-point register. It is only valid on the SPARC-V9
- architecture when the Visual Instruction Set is available.
- 'h'
- 64-bit global or out register for the SPARC-V8+ architecture.
- 'C'
- The constant all-ones, for floating-point.
- 'A'
- Signed 5-bit constant
- 'D'
- A vector constant
- 'I'
- Signed 13-bit constant
- 'J'
- Zero
- 'K'
- 32-bit constant with the low 12 bits clear (a constant that
- can be loaded with the 'sethi' instruction)
- 'L'
- A constant in the range supported by 'movcc' instructions
- (11-bit signed immediate)
- 'M'
- A constant in the range supported by 'movrcc' instructions
- (10-bit signed immediate)
- 'N'
- Same as 'K', except that it verifies that bits that are not in
- the lower 32-bit range are all zero. Must be used instead of
- 'K' for modes wider than 'SImode'
- 'O'
- The constant 4096
- 'G'
- Floating-point zero
- 'H'
- Signed 13-bit constant, sign-extended to 32 or 64 bits
- 'P'
- The constant -1
- 'Q'
- Floating-point constant whose integral representation can be
- moved into an integer register using a single sethi
- instruction
- 'R'
- Floating-point constant whose integral representation can be
- moved into an integer register using a single mov instruction
- 'S'
- Floating-point constant whose integral representation can be
- moved into an integer register using a high/lo_sum instruction
- sequence
- 'T'
- Memory address aligned to an 8-byte boundary
- 'U'
- Even register
- 'W'
- Memory address for 'e' constraint registers
- 'w'
- Memory address with only a base register
- 'Y'
- Vector zero
- _SPU--'config/spu/spu.h'_
- 'a'
- An immediate which can be loaded with the il/ila/ilh/ilhu
- instructions. const_int is treated as a 64 bit value.
- 'c'
- An immediate for and/xor/or instructions. const_int is
- treated as a 64 bit value.
- 'd'
- An immediate for the 'iohl' instruction. const_int is treated
- as a 64 bit value.
- 'f'
- An immediate which can be loaded with 'fsmbi'.
- 'A'
- An immediate which can be loaded with the il/ila/ilh/ilhu
- instructions. const_int is treated as a 32 bit value.
- 'B'
- An immediate for most arithmetic instructions. const_int is
- treated as a 32 bit value.
- 'C'
- An immediate for and/xor/or instructions. const_int is
- treated as a 32 bit value.
- 'D'
- An immediate for the 'iohl' instruction. const_int is treated
- as a 32 bit value.
- 'I'
- A constant in the range [-64, 63] for shift/rotate
- instructions.
- 'J'
- An unsigned 7-bit constant for conversion/nop/channel
- instructions.
- 'K'
- A signed 10-bit constant for most arithmetic instructions.
- 'M'
- A signed 16 bit immediate for 'stop'.
- 'N'
- An unsigned 16-bit constant for 'iohl' and 'fsmbi'.
- 'O'
- An unsigned 7-bit constant whose 3 least significant bits are
- 0.
- 'P'
- An unsigned 3-bit constant for 16-byte rotates and shifts
- 'R'
- Call operand, reg, for indirect calls
- 'S'
- Call operand, symbol, for relative calls.
- 'T'
- Call operand, const_int, for absolute calls.
- 'U'
- An immediate which can be loaded with the il/ila/ilh/ilhu
- instructions. const_int is sign extended to 128 bit.
- 'W'
- An immediate for shift and rotate instructions. const_int is
- treated as a 32 bit value.
- 'Y'
- An immediate for and/xor/or instructions. const_int is sign
- extended as a 128 bit.
- 'Z'
- An immediate for the 'iohl' instruction. const_int is sign
- extended to 128 bit.
- _TI C6X family--'config/c6x/constraints.md'_
- 'a'
- Register file A (A0-A31).
- 'b'
- Register file B (B0-B31).
- 'A'
- Predicate registers in register file A (A0-A2 on C64X and
- higher, A1 and A2 otherwise).
- 'B'
- Predicate registers in register file B (B0-B2).
- 'C'
- A call-used register in register file B (B0-B9, B16-B31).
- 'Da'
- Register file A, excluding predicate registers (A3-A31, plus
- A0 if not C64X or higher).
- 'Db'
- Register file B, excluding predicate registers (B3-B31).
- 'Iu4'
- Integer constant in the range 0 ... 15.
- 'Iu5'
- Integer constant in the range 0 ... 31.
- 'In5'
- Integer constant in the range -31 ... 0.
- 'Is5'
- Integer constant in the range -16 ... 15.
- 'I5x'
- Integer constant that can be the operand of an ADDA or a SUBA
- insn.
- 'IuB'
- Integer constant in the range 0 ... 65535.
- 'IsB'
- Integer constant in the range -32768 ... 32767.
- 'IsC'
- Integer constant in the range -2^{20} ... 2^{20} - 1.
- 'Jc'
- Integer constant that is a valid mask for the clr instruction.
- 'Js'
- Integer constant that is a valid mask for the set instruction.
- 'Q'
- Memory location with A base register.
- 'R'
- Memory location with B base register.
- 'Z'
- Register B14 (aka DP).
- _TILE-Gx--'config/tilegx/constraints.md'_
- 'R00'
- 'R01'
- 'R02'
- 'R03'
- 'R04'
- 'R05'
- 'R06'
- 'R07'
- 'R08'
- 'R09'
- 'R10'
- Each of these represents a register constraint for an
- individual register, from r0 to r10.
- 'I'
- Signed 8-bit integer constant.
- 'J'
- Signed 16-bit integer constant.
- 'K'
- Unsigned 16-bit integer constant.
- 'L'
- Integer constant that fits in one signed byte when incremented
- by one (-129 ... 126).
- 'm'
- Memory operand. If used together with '<' or '>', the operand
- can have postincrement which requires printing with '%In' and
- '%in' on TILE-Gx. For example:
- asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val));
- 'M'
- A bit mask suitable for the BFINS instruction.
- 'N'
- Integer constant that is a byte tiled out eight times.
- 'O'
- The integer zero constant.
- 'P'
- Integer constant that is a sign-extended byte tiled out as
- four shorts.
- 'Q'
- Integer constant that fits in one signed byte when incremented
- (-129 ... 126), but excluding -1.
- 'S'
- Integer constant that has all 1 bits consecutive and starting
- at bit 0.
- 'T'
- A 16-bit fragment of a got, tls, or pc-relative reference.
- 'U'
- Memory operand except postincrement. This is roughly the same
- as 'm' when not used together with '<' or '>'.
- 'W'
- An 8-element vector constant with identical elements.
- 'Y'
- A 4-element vector constant with identical elements.
- 'Z0'
- The integer constant 0xffffffff.
- 'Z1'
- The integer constant 0xffffffff00000000.
- _TILEPro--'config/tilepro/constraints.md'_
- 'R00'
- 'R01'
- 'R02'
- 'R03'
- 'R04'
- 'R05'
- 'R06'
- 'R07'
- 'R08'
- 'R09'
- 'R10'
- Each of these represents a register constraint for an
- individual register, from r0 to r10.
- 'I'
- Signed 8-bit integer constant.
- 'J'
- Signed 16-bit integer constant.
- 'K'
- Nonzero integer constant with low 16 bits zero.
- 'L'
- Integer constant that fits in one signed byte when incremented
- by one (-129 ... 126).
- 'm'
- Memory operand. If used together with '<' or '>', the operand
- can have postincrement which requires printing with '%In' and
- '%in' on TILEPro. For example:
- asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val));
- 'M'
- A bit mask suitable for the MM instruction.
- 'N'
- Integer constant that is a byte tiled out four times.
- 'O'
- The integer zero constant.
- 'P'
- Integer constant that is a sign-extended byte tiled out as two
- shorts.
- 'Q'
- Integer constant that fits in one signed byte when incremented
- (-129 ... 126), but excluding -1.
- 'T'
- A symbolic operand, or a 16-bit fragment of a got, tls, or
- pc-relative reference.
- 'U'
- Memory operand except postincrement. This is roughly the same
- as 'm' when not used together with '<' or '>'.
- 'W'
- A 4-element vector constant with identical elements.
- 'Y'
- A 2-element vector constant with identical elements.
- _Visium--'config/visium/constraints.md'_
- 'b'
- EAM register 'mdb'
- 'c'
- EAM register 'mdc'
- 'f'
- Floating point register
- 'l'
- General register, but not 'r29', 'r30' and 'r31'
- 't'
- Register 'r1'
- 'u'
- Register 'r2'
- 'v'
- Register 'r3'
- 'G'
- Floating-point constant 0.0
- 'J'
- Integer constant in the range 0 .. 65535 (16-bit immediate)
- 'K'
- Integer constant in the range 1 .. 31 (5-bit immediate)
- 'L'
- Integer constant in the range -65535 .. -1 (16-bit negative
- immediate)
- 'M'
- Integer constant -1
- 'O'
- Integer constant 0
- 'P'
- Integer constant 32
- _x86 family--'config/i386/constraints.md'_
- 'R'
- Legacy register--the eight integer registers available on all
- i386 processors ('a', 'b', 'c', 'd', 'si', 'di', 'bp', 'sp').
- 'q'
- Any register accessible as 'Rl'. In 32-bit mode, 'a', 'b',
- 'c', and 'd'; in 64-bit mode, any integer register.
- 'Q'
- Any register accessible as 'Rh': 'a', 'b', 'c', and 'd'.
- 'a'
- The 'a' register.
- 'b'
- The 'b' register.
- 'c'
- The 'c' register.
- 'd'
- The 'd' register.
- 'S'
- The 'si' register.
- 'D'
- The 'di' register.
- 'A'
- The 'a' and 'd' registers. This class is used for
- instructions that return double word results in the 'ax:dx'
- register pair. Single word values will be allocated either in
- 'ax' or 'dx'. For example on i386 the following implements
- 'rdtsc':
- unsigned long long rdtsc (void)
- {
- unsigned long long tick;
- __asm__ __volatile__("rdtsc":"=A"(tick));
- return tick;
- }
- This is not correct on x86-64 as it would allocate tick in
- either 'ax' or 'dx'. You have to use the following variant
- instead:
- unsigned long long rdtsc (void)
- {
- unsigned int tickl, tickh;
- __asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));
- return ((unsigned long long)tickh << 32)|tickl;
- }
- 'U'
- The call-clobbered integer registers.
- 'f'
- Any 80387 floating-point (stack) register.
- 't'
- Top of 80387 floating-point stack ('%st(0)').
- 'u'
- Second from top of 80387 floating-point stack ('%st(1)').
- 'y'
- Any MMX register.
- 'x'
- Any SSE register.
- 'v'
- Any EVEX encodable SSE register ('%xmm0-%xmm31').
- 'Yz'
- First SSE register ('%xmm0').
- 'I'
- Integer constant in the range 0 ... 31, for 32-bit shifts.
- 'J'
- Integer constant in the range 0 ... 63, for 64-bit shifts.
- 'K'
- Signed 8-bit integer constant.
- 'L'
- '0xFF' or '0xFFFF', for andsi as a zero-extending move.
- 'M'
- 0, 1, 2, or 3 (shifts for the 'lea' instruction).
- 'N'
- Unsigned 8-bit integer constant (for 'in' and 'out'
- instructions).
- 'G'
- Standard 80387 floating point constant.
- 'C'
- SSE constant zero operand.
- 'e'
- 32-bit signed integer constant, or a symbolic reference known
- to fit that range (for immediate operands in sign-extending
- x86-64 instructions).
- 'We'
- 32-bit signed integer constant, or a symbolic reference known
- to fit that range (for sign-extending conversion operations
- that require non-'VOIDmode' immediate operands).
- 'Wz'
- 32-bit unsigned integer constant, or a symbolic reference
- known to fit that range (for zero-extending conversion
- operations that require non-'VOIDmode' immediate operands).
- 'Wd'
- 128-bit integer constant where both the high and low 64-bit
- word satisfy the 'e' constraint.
- 'Z'
- 32-bit unsigned integer constant, or a symbolic reference
- known to fit that range (for immediate operands in
- zero-extending x86-64 instructions).
- 'Tv'
- VSIB address operand.
- 'Ts'
- Address operand without segment register.
- 'Ti'
- MPX address operand without index.
- 'Tb'
- MPX address operand without base.
- _Xstormy16--'config/stormy16/stormy16.h'_
- 'a'
- Register r0.
- 'b'
- Register r1.
- 'c'
- Register r2.
- 'd'
- Register r8.
- 'e'
- Registers r0 through r7.
- 't'
- Registers r0 and r1.
- 'y'
- The carry register.
- 'z'
- Registers r8 and r9.
- 'I'
- A constant between 0 and 3 inclusive.
- 'J'
- A constant that has exactly one bit set.
- 'K'
- A constant that has exactly one bit clear.
- 'L'
- A constant between 0 and 255 inclusive.
- 'M'
- A constant between -255 and 0 inclusive.
- 'N'
- A constant between -3 and 0 inclusive.
- 'O'
- A constant between 1 and 4 inclusive.
- 'P'
- A constant between -4 and -1 inclusive.
- 'Q'
- A memory reference that is a stack push.
- 'R'
- A memory reference that is a stack pop.
- 'S'
- A memory reference that refers to a constant address of known
- value.
- 'T'
- The register indicated by Rx (not implemented yet).
- 'U'
- A constant that is not between 2 and 15 inclusive.
- 'Z'
- The constant 0.
- _Xtensa--'config/xtensa/constraints.md'_
- 'a'
- General-purpose 32-bit register
- 'b'
- One-bit boolean register
- 'A'
- MAC16 40-bit accumulator register
- 'I'
- Signed 12-bit integer constant, for use in MOVI instructions
- 'J'
- Signed 8-bit integer constant, for use in ADDI instructions
- 'K'
- Integer constant valid for BccI instructions
- 'L'
- Unsigned constant valid for BccUI instructions
- File: gcc.info, Node: Asm Labels, Next: Explicit Register Variables, Prev: Constraints, Up: Using Assembly Language with C
- 6.45.4 Controlling Names Used in Assembler Code
- -----------------------------------------------
- You can specify the name to be used in the assembler code for a C
- function or variable by writing the 'asm' (or '__asm__') keyword after
- the declarator. It is up to you to make sure that the assembler names
- you choose do not conflict with any other assembler symbols, or
- reference registers.
- Assembler names for data:
- .........................
- This sample shows how to specify the assembler name for data:
- int foo asm ("myfoo") = 2;
- This specifies that the name to be used for the variable 'foo' in the
- assembler code should be 'myfoo' rather than the usual '_foo'.
- On systems where an underscore is normally prepended to the name of a C
- variable, this feature allows you to define names for the linker that do
- not start with an underscore.
- GCC does not support using this feature with a non-static local
- variable since such variables do not have assembler names. If you are
- trying to put the variable in a particular register, see *note Explicit
- Register Variables::.
- Assembler names for functions:
- ..............................
- To specify the assembler name for functions, write a declaration for the
- function before its definition and put 'asm' there, like this:
- int func (int x, int y) asm ("MYFUNC");
- int func (int x, int y)
- {
- /* ... */
- This specifies that the name to be used for the function 'func' in the
- assembler code should be 'MYFUNC'.
- File: gcc.info, Node: Explicit Register Variables, Next: Size of an asm, Prev: Asm Labels, Up: Using Assembly Language with C
- 6.45.5 Variables in Specified Registers
- ---------------------------------------
- GNU C allows you to associate specific hardware registers with C
- variables. In almost all cases, allowing the compiler to assign
- registers produces the best code. However under certain unusual
- circumstances, more precise control over the variable storage is
- required.
- Both global and local variables can be associated with a register. The
- consequences of performing this association are very different between
- the two, as explained in the sections below.
- * Menu:
- * Global Register Variables:: Variables declared at global scope.
- * Local Register Variables:: Variables declared within a function.
- File: gcc.info, Node: Global Register Variables, Next: Local Register Variables, Up: Explicit Register Variables
- 6.45.5.1 Defining Global Register Variables
- ...........................................
- You can define a global register variable and associate it with a
- specified register like this:
- register int *foo asm ("r12");
- Here 'r12' is the name of the register that should be used. Note that
- this is the same syntax used for defining local register variables, but
- for a global variable the declaration appears outside a function. The
- 'register' keyword is required, and cannot be combined with 'static'.
- The register name must be a valid register name for the target platform.
- Registers are a scarce resource on most systems and allowing the
- compiler to manage their usage usually results in the best code.
- However, under special circumstances it can make sense to reserve some
- globally. For example this may be useful in programs such as
- programming language interpreters that have a couple of global variables
- that are accessed very often.
- After defining a global register variable, for the current compilation
- unit:
- * The register is reserved entirely for this use, and will not be
- allocated for any other purpose.
- * The register is not saved and restored by any functions.
- * Stores into this register are never deleted even if they appear to
- be dead, but references may be deleted, moved or simplified.
- Note that these points _only_ apply to code that is compiled with the
- definition. The behavior of code that is merely linked in (for example
- code from libraries) is not affected.
- If you want to recompile source files that do not actually use your
- global register variable so they do not use the specified register for
- any other purpose, you need not actually add the global register
- declaration to their source code. It suffices to specify the compiler
- option '-ffixed-REG' (*note Code Gen Options::) to reserve the register.
- Declaring the variable
- ......................
- Global register variables can not have initial values, because an
- executable file has no means to supply initial contents for a register.
- When selecting a register, choose one that is normally saved and
- restored by function calls on your machine. This ensures that code
- which is unaware of this reservation (such as library routines) will
- restore it before returning.
- On machines with register windows, be sure to choose a global register
- that is not affected magically by the function call mechanism.
- Using the variable
- ..................
- When calling routines that are not aware of the reservation, be cautious
- if those routines call back into code which uses them. As an example,
- if you call the system library version of 'qsort', it may clobber your
- registers during execution, but (if you have selected appropriate
- registers) it will restore them before returning. However it will _not_
- restore them before calling 'qsort''s comparison function. As a result,
- global values will not reliably be available to the comparison function
- unless the 'qsort' function itself is rebuilt.
- Similarly, it is not safe to access the global register variables from
- signal handlers or from more than one thread of control. Unless you
- recompile them specially for the task at hand, the system library
- routines may temporarily use the register for other things.
- On most machines, 'longjmp' restores to each global register variable
- the value it had at the time of the 'setjmp'. On some machines,
- however, 'longjmp' does not change the value of global register
- variables. To be portable, the function that called 'setjmp' should
- make other arrangements to save the values of the global register
- variables, and to restore them in a 'longjmp'. This way, the same thing
- happens regardless of what 'longjmp' does.
- Eventually there may be a way of asking the compiler to choose a
- register automatically, but first we need to figure out how it should
- choose and how to enable you to guide the choice. No solution is
- evident.
- File: gcc.info, Node: Local Register Variables, Prev: Global Register Variables, Up: Explicit Register Variables
- 6.45.5.2 Specifying Registers for Local Variables
- .................................................
- You can define a local register variable and associate it with a
- specified register like this:
- register int *foo asm ("r12");
- Here 'r12' is the name of the register that should be used. Note that
- this is the same syntax used for defining global register variables, but
- for a local variable the declaration appears within a function. The
- 'register' keyword is required, and cannot be combined with 'static'.
- The register name must be a valid register name for the target platform.
- As with global register variables, it is recommended that you choose a
- register that is normally saved and restored by function calls on your
- machine, so that calls to library routines will not clobber it.
- The only supported use for this feature is to specify registers for
- input and output operands when calling Extended 'asm' (*note Extended
- Asm::). This may be necessary if the constraints for a particular
- machine don't provide sufficient control to select the desired register.
- To force an operand into a register, create a local variable and specify
- the register name after the variable's declaration. Then use the local
- variable for the 'asm' operand and specify any constraint letter that
- matches the register:
- register int *p1 asm ("r0") = ...;
- register int *p2 asm ("r1") = ...;
- register int *result asm ("r0");
- asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
- _Warning:_ In the above example, be aware that a register (for example
- 'r0') can be call-clobbered by subsequent code, including function calls
- and library calls for arithmetic operators on other variables (for
- example the initialization of 'p2'). In this case, use temporary
- variables for expressions between the register assignments:
- int t1 = ...;
- register int *p1 asm ("r0") = ...;
- register int *p2 asm ("r1") = t1;
- register int *result asm ("r0");
- asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
- Defining a register variable does not reserve the register. Other than
- when invoking the Extended 'asm', the contents of the specified register
- are not guaranteed. For this reason, the following uses are explicitly
- _not_ supported. If they appear to work, it is only happenstance, and
- may stop working as intended due to (seemingly) unrelated changes in
- surrounding code, or even minor changes in the optimization of a future
- version of gcc:
- * Passing parameters to or from Basic 'asm'
- * Passing parameters to or from Extended 'asm' without using input or
- output operands.
- * Passing parameters to or from routines written in assembler (or
- other languages) using non-standard calling conventions.
- Some developers use Local Register Variables in an attempt to improve
- gcc's allocation of registers, especially in large functions. In this
- case the register name is essentially a hint to the register allocator.
- While in some instances this can generate better code, improvements are
- subject to the whims of the allocator/optimizers. Since there are no
- guarantees that your improvements won't be lost, this usage of Local
- Register Variables is discouraged.
- On the MIPS platform, there is related use for local register variables
- with slightly different characteristics (*note Defining coprocessor
- specifics for MIPS targets: (gccint)MIPS Coprocessors.).
- File: gcc.info, Node: Size of an asm, Prev: Explicit Register Variables, Up: Using Assembly Language with C
- 6.45.6 Size of an 'asm'
- -----------------------
- Some targets require that GCC track the size of each instruction used in
- order to generate correct code. Because the final length of the code
- produced by an 'asm' statement is only known by the assembler, GCC must
- make an estimate as to how big it will be. It does this by counting the
- number of instructions in the pattern of the 'asm' and multiplying that
- by the length of the longest instruction supported by that processor.
- (When working out the number of instructions, it assumes that any
- occurrence of a newline or of whatever statement separator character is
- supported by the assembler -- typically ';' -- indicates the end of an
- instruction.)
- Normally, GCC's estimate is adequate to ensure that correct code is
- generated, but it is possible to confuse the compiler if you use pseudo
- instructions or assembler macros that expand into multiple real
- instructions, or if you use assembler directives that expand to more
- space in the object file than is needed for a single instruction. If
- this happens then the assembler may produce a diagnostic saying that a
- label is unreachable.
- This size is also used for inlining decisions. If you use 'asm inline'
- instead of just 'asm', then for inlining purposes the size of the asm is
- taken as the minimum size, ignoring how many instructions GCC thinks it
- is.
- File: gcc.info, Node: Alternate Keywords, Next: Incomplete Enums, Prev: Using Assembly Language with C, Up: C Extensions
- 6.46 Alternate Keywords
- =======================
- '-ansi' and the various '-std' options disable certain keywords. This
- causes trouble when you want to use GNU C extensions, or a
- general-purpose header file that should be usable by all programs,
- including ISO C programs. The keywords 'asm', 'typeof' and 'inline' are
- not available in programs compiled with '-ansi' or '-std' (although
- 'inline' can be used in a program compiled with '-std=c99' or
- '-std=c11'). The ISO C99 keyword 'restrict' is only available when
- '-std=gnu99' (which will eventually be the default) or '-std=c99' (or
- the equivalent '-std=iso9899:1999'), or an option for a later standard
- version, is used.
- The way to solve these problems is to put '__' at the beginning and end
- of each problematical keyword. For example, use '__asm__' instead of
- 'asm', and '__inline__' instead of 'inline'.
- Other C compilers won't accept these alternative keywords; if you want
- to compile with another compiler, you can define the alternate keywords
- as macros to replace them with the customary keywords. It looks like
- this:
- #ifndef __GNUC__
- #define __asm__ asm
- #endif
- '-pedantic' and other options cause warnings for many GNU C extensions.
- You can prevent such warnings within one expression by writing
- '__extension__' before the expression. '__extension__' has no effect
- aside from this.
- File: gcc.info, Node: Incomplete Enums, Next: Function Names, Prev: Alternate Keywords, Up: C Extensions
- 6.47 Incomplete 'enum' Types
- ============================
- You can define an 'enum' tag without specifying its possible values.
- This results in an incomplete type, much like what you get if you write
- 'struct foo' without describing the elements. A later declaration that
- does specify the possible values completes the type.
- You cannot allocate variables or storage using the type while it is
- incomplete. However, you can work with pointers to that type.
- This extension may not be very useful, but it makes the handling of
- 'enum' more consistent with the way 'struct' and 'union' are handled.
- This extension is not supported by GNU C++.
- File: gcc.info, Node: Function Names, Next: Return Address, Prev: Incomplete Enums, Up: C Extensions
- 6.48 Function Names as Strings
- ==============================
- GCC provides three magic constants that hold the name of the current
- function as a string. In C++11 and later modes, all three are treated
- as constant expressions and can be used in 'constexpr' constexts. The
- first of these constants is '__func__', which is part of the C99
- standard:
- The identifier '__func__' is implicitly declared by the translator as
- if, immediately following the opening brace of each function definition,
- the declaration
- static const char __func__[] = "function-name";
- appeared, where function-name is the name of the lexically-enclosing
- function. This name is the unadorned name of the function. As an
- extension, at file (or, in C++, namespace scope), '__func__' evaluates
- to the empty string.
- '__FUNCTION__' is another name for '__func__', provided for backward
- compatibility with old versions of GCC.
- In C, '__PRETTY_FUNCTION__' is yet another name for '__func__', except
- that at file (or, in C++, namespace scope), it evaluates to the string
- '"top level"'. In addition, in C++, '__PRETTY_FUNCTION__' contains the
- signature of the function as well as its bare name. For example, this
- program:
- extern "C" int printf (const char *, ...);
- class a {
- public:
- void sub (int i)
- {
- printf ("__FUNCTION__ = %s\n", __FUNCTION__);
- printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
- }
- };
- int
- main (void)
- {
- a ax;
- ax.sub (0);
- return 0;
- }
- gives this output:
- __FUNCTION__ = sub
- __PRETTY_FUNCTION__ = void a::sub(int)
- These identifiers are variables, not preprocessor macros, and may not
- be used to initialize 'char' arrays or be concatenated with string
- literals.
- File: gcc.info, Node: Return Address, Next: Vector Extensions, Prev: Function Names, Up: C Extensions
- 6.49 Getting the Return or Frame Address of a Function
- ======================================================
- These functions may be used to get information about the callers of a
- function.
- -- Built-in Function: void * __builtin_return_address (unsigned int
- LEVEL)
- This function returns the return address of the current function,
- or of one of its callers. The LEVEL argument is number of frames
- to scan up the call stack. A value of '0' yields the return
- address of the current function, a value of '1' yields the return
- address of the caller of the current function, and so forth. When
- inlining the expected behavior is that the function returns the
- address of the function that is returned to. To work around this
- behavior use the 'noinline' function attribute.
- The LEVEL argument must be a constant integer.
- On some machines it may be impossible to determine the return
- address of any function other than the current one; in such cases,
- or when the top of the stack has been reached, this function
- returns '0' or a random value. In addition,
- '__builtin_frame_address' may be used to determine if the top of
- the stack has been reached.
- Additional post-processing of the returned value may be needed, see
- '__builtin_extract_return_addr'.
- Calling this function with a nonzero argument can have
- unpredictable effects, including crashing the calling program. As
- a result, calls that are considered unsafe are diagnosed when the
- '-Wframe-address' option is in effect. Such calls should only be
- made in debugging situations.
- -- Built-in Function: void * __builtin_extract_return_addr (void *ADDR)
- The address as returned by '__builtin_return_address' may have to
- be fed through this function to get the actual encoded address.
- For example, on the 31-bit S/390 platform the highest bit has to be
- masked out, or on SPARC platforms an offset has to be added for the
- true next instruction to be executed.
- If no fixup is needed, this function simply passes through ADDR.
- -- Built-in Function: void * __builtin_frob_return_address (void *ADDR)
- This function does the reverse of '__builtin_extract_return_addr'.
- -- Built-in Function: void * __builtin_frame_address (unsigned int
- LEVEL)
- This function is similar to '__builtin_return_address', but it
- returns the address of the function frame rather than the return
- address of the function. Calling '__builtin_frame_address' with a
- value of '0' yields the frame address of the current function, a
- value of '1' yields the frame address of the caller of the current
- function, and so forth.
- The frame is the area on the stack that holds local variables and
- saved registers. The frame address is normally the address of the
- first word pushed on to the stack by the function. However, the
- exact definition depends upon the processor and the calling
- convention. If the processor has a dedicated frame pointer
- register, and the function has a frame, then
- '__builtin_frame_address' returns the value of the frame pointer
- register.
- On some machines it may be impossible to determine the frame
- address of any function other than the current one; in such cases,
- or when the top of the stack has been reached, this function
- returns '0' if the first frame pointer is properly initialized by
- the startup code.
- Calling this function with a nonzero argument can have
- unpredictable effects, including crashing the calling program. As
- a result, calls that are considered unsafe are diagnosed when the
- '-Wframe-address' option is in effect. Such calls should only be
- made in debugging situations.
- File: gcc.info, Node: Vector Extensions, Next: Offsetof, Prev: Return Address, Up: C Extensions
- 6.50 Using Vector Instructions through Built-in Functions
- =========================================================
- On some targets, the instruction set contains SIMD vector instructions
- which operate on multiple values contained in one large register at the
- same time. For example, on the x86 the MMX, 3DNow! and SSE extensions
- can be used this way.
- The first step in using these extensions is to provide the necessary
- data types. This should be done using an appropriate 'typedef':
- typedef int v4si __attribute__ ((vector_size (16)));
- The 'int' type specifies the base type, while the attribute specifies
- the vector size for the variable, measured in bytes. For example, the
- declaration above causes the compiler to set the mode for the 'v4si'
- type to be 16 bytes wide and divided into 'int' sized units. For a
- 32-bit 'int' this means a vector of 4 units of 4 bytes, and the
- corresponding mode of 'foo' is V4SI.
- The 'vector_size' attribute is only applicable to integral and float
- scalars, although arrays, pointers, and function return values are
- allowed in conjunction with this construct. Only sizes that are a power
- of two are currently allowed.
- All the basic integer types can be used as base types, both as signed
- and as unsigned: 'char', 'short', 'int', 'long', 'long long'. In
- addition, 'float' and 'double' can be used to build floating-point
- vector types.
- Specifying a combination that is not valid for the current architecture
- causes GCC to synthesize the instructions using a narrower mode. For
- example, if you specify a variable of type 'V4SI' and your architecture
- does not allow for this specific SIMD type, GCC produces code that uses
- 4 'SIs'.
- The types defined in this manner can be used with a subset of normal C
- operations. Currently, GCC allows using the following operators on
- these types: '+, -, *, /, unary minus, ^, |, &, ~, %'.
- The operations behave like C++ 'valarrays'. Addition is defined as the
- addition of the corresponding elements of the operands. For example, in
- the code below, each of the 4 elements in A is added to the
- corresponding 4 elements in B and the resulting vector is stored in C.
- typedef int v4si __attribute__ ((vector_size (16)));
- v4si a, b, c;
- c = a + b;
- Subtraction, multiplication, division, and the logical operations
- operate in a similar manner. Likewise, the result of using the unary
- minus or complement operators on a vector type is a vector whose
- elements are the negative or complemented values of the corresponding
- elements in the operand.
- It is possible to use shifting operators '<<', '>>' on integer-type
- vectors. The operation is defined as following: '{a0, a1, ..., an} >>
- {b0, b1, ..., bn} == {a0 >> b0, a1 >> b1, ..., an >> bn}'. Vector
- operands must have the same number of elements.
- For convenience, it is allowed to use a binary vector operation where
- one operand is a scalar. In that case the compiler transforms the
- scalar operand into a vector where each element is the scalar from the
- operation. The transformation happens only if the scalar could be
- safely converted to the vector-element type. Consider the following
- code.
- typedef int v4si __attribute__ ((vector_size (16)));
- v4si a, b, c;
- long l;
- a = b + 1; /* a = b + {1,1,1,1}; */
- a = 2 * b; /* a = {2,2,2,2} * b; */
- a = l + a; /* Error, cannot convert long to int. */
- Vectors can be subscripted as if the vector were an array with the same
- number of elements and base type. Out of bound accesses invoke
- undefined behavior at run time. Warnings for out of bound accesses for
- vector subscription can be enabled with '-Warray-bounds'.
- Vector comparison is supported with standard comparison operators: '==,
- !=, <, <=, >, >='. Comparison operands can be vector expressions of
- integer-type or real-type. Comparison between integer-type vectors and
- real-type vectors are not supported. The result of the comparison is a
- vector of the same width and number of elements as the comparison
- operands with a signed integral element type.
- Vectors are compared element-wise producing 0 when comparison is false
- and -1 (constant of the appropriate type where all bits are set)
- otherwise. Consider the following example.
- typedef int v4si __attribute__ ((vector_size (16)));
- v4si a = {1,2,3,4};
- v4si b = {3,2,1,4};
- v4si c;
- c = a > b; /* The result would be {0, 0,-1, 0} */
- c = a == b; /* The result would be {0,-1, 0,-1} */
- In C++, the ternary operator '?:' is available. 'a?b:c', where 'b' and
- 'c' are vectors of the same type and 'a' is an integer vector with the
- same number of elements of the same size as 'b' and 'c', computes all
- three arguments and creates a vector '{a[0]?b[0]:c[0], a[1]?b[1]:c[1],
- ...}'. Note that unlike in OpenCL, 'a' is thus interpreted as 'a != 0'
- and not 'a < 0'. As in the case of binary operations, this syntax is
- also accepted when one of 'b' or 'c' is a scalar that is then
- transformed into a vector. If both 'b' and 'c' are scalars and the type
- of 'true?b:c' has the same size as the element type of 'a', then 'b' and
- 'c' are converted to a vector type whose elements have this type and
- with the same number of elements as 'a'.
- In C++, the logic operators '!, &&, ||' are available for vectors.
- '!v' is equivalent to 'v == 0', 'a && b' is equivalent to 'a!=0 & b!=0'
- and 'a || b' is equivalent to 'a!=0 | b!=0'. For mixed operations
- between a scalar 's' and a vector 'v', 's && v' is equivalent to
- 's?v!=0:0' (the evaluation is short-circuit) and 'v && s' is equivalent
- to 'v!=0 & (s?-1:0)'.
- Vector shuffling is available using functions '__builtin_shuffle (vec,
- mask)' and '__builtin_shuffle (vec0, vec1, mask)'. Both functions
- construct a permutation of elements from one or two vectors and return a
- vector of the same type as the input vector(s). The MASK is an integral
- vector with the same width (W) and element count (N) as the output
- vector.
- The elements of the input vectors are numbered in memory ordering of
- VEC0 beginning at 0 and VEC1 beginning at N. The elements of MASK are
- considered modulo N in the single-operand case and modulo 2*N in the
- two-operand case.
- Consider the following example,
- typedef int v4si __attribute__ ((vector_size (16)));
- v4si a = {1,2,3,4};
- v4si b = {5,6,7,8};
- v4si mask1 = {0,1,1,3};
- v4si mask2 = {0,4,2,5};
- v4si res;
- res = __builtin_shuffle (a, mask1); /* res is {1,2,2,4} */
- res = __builtin_shuffle (a, b, mask2); /* res is {1,5,3,6} */
- Note that '__builtin_shuffle' is intentionally semantically compatible
- with the OpenCL 'shuffle' and 'shuffle2' functions.
- You can declare variables and use them in function calls and returns,
- as well as in assignments and some casts. You can specify a vector type
- as a return type for a function. Vector types can also be used as
- function arguments. It is possible to cast from one vector type to
- another, provided they are of the same size (in fact, you can also cast
- vectors to and from other datatypes of the same size).
- You cannot operate between vectors of different lengths or different
- signedness without a cast.
- File: gcc.info, Node: Offsetof, Next: __sync Builtins, Prev: Vector Extensions, Up: C Extensions
- 6.51 Support for 'offsetof'
- ===========================
- GCC implements for both C and C++ a syntactic extension to implement the
- 'offsetof' macro.
- primary:
- "__builtin_offsetof" "(" typename "," offsetof_member_designator ")"
- offsetof_member_designator:
- identifier
- | offsetof_member_designator "." identifier
- | offsetof_member_designator "[" expr "]"
- This extension is sufficient such that
- #define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER)
- is a suitable definition of the 'offsetof' macro. In C++, TYPE may be
- dependent. In either case, MEMBER may consist of a single identifier,
- or a sequence of member accesses and array references.
- File: gcc.info, Node: __sync Builtins, Next: __atomic Builtins, Prev: Offsetof, Up: C Extensions
- 6.52 Legacy '__sync' Built-in Functions for Atomic Memory Access
- ================================================================
- The following built-in functions are intended to be compatible with
- those described in the 'Intel Itanium Processor-specific Application
- Binary Interface', section 7.4. As such, they depart from normal GCC
- practice by not using the '__builtin_' prefix and also by being
- overloaded so that they work on multiple types.
- The definition given in the Intel documentation allows only for the use
- of the types 'int', 'long', 'long long' or their unsigned counterparts.
- GCC allows any scalar type that is 1, 2, 4 or 8 bytes in size other than
- the C type '_Bool' or the C++ type 'bool'. Operations on pointer
- arguments are performed as if the operands were of the 'uintptr_t' type.
- That is, they are not scaled by the size of the type to which the
- pointer points.
- These functions are implemented in terms of the '__atomic' builtins
- (*note __atomic Builtins::). They should not be used for new code which
- should use the '__atomic' builtins instead.
- Not all operations are supported by all target processors. If a
- particular operation cannot be implemented on the target processor, a
- warning is generated and a call to an external function is generated.
- The external function carries the same name as the built-in version,
- with an additional suffix '_N' where N is the size of the data type.
- In most cases, these built-in functions are considered a "full
- barrier". That is, no memory operand is moved across the operation,
- either forward or backward. Further, instructions are issued as
- necessary to prevent the processor from speculating loads across the
- operation and from queuing stores after the operation.
- All of the routines are described in the Intel documentation to take
- "an optional list of variables protected by the memory barrier". It's
- not clear what is meant by that; it could mean that _only_ the listed
- variables are protected, or it could mean a list of additional variables
- to be protected. The list is ignored by GCC which treats it as empty.
- GCC interprets an empty list as meaning that all globally accessible
- variables should be protected.
- 'TYPE __sync_fetch_and_add (TYPE *ptr, TYPE value, ...)'
- 'TYPE __sync_fetch_and_sub (TYPE *ptr, TYPE value, ...)'
- 'TYPE __sync_fetch_and_or (TYPE *ptr, TYPE value, ...)'
- 'TYPE __sync_fetch_and_and (TYPE *ptr, TYPE value, ...)'
- 'TYPE __sync_fetch_and_xor (TYPE *ptr, TYPE value, ...)'
- 'TYPE __sync_fetch_and_nand (TYPE *ptr, TYPE value, ...)'
- These built-in functions perform the operation suggested by the
- name, and returns the value that had previously been in memory.
- That is, operations on integer operands have the following
- semantics. Operations on pointer arguments are performed as if the
- operands were of the 'uintptr_t' type. That is, they are not
- scaled by the size of the type to which the pointer points.
- { tmp = *ptr; *ptr OP= value; return tmp; }
- { tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand
- The object pointed to by the first argument must be of integer or
- pointer type. It must not be a boolean type.
- _Note:_ GCC 4.4 and later implement '__sync_fetch_and_nand' as
- '*ptr = ~(tmp & value)' instead of '*ptr = ~tmp & value'.
- 'TYPE __sync_add_and_fetch (TYPE *ptr, TYPE value, ...)'
- 'TYPE __sync_sub_and_fetch (TYPE *ptr, TYPE value, ...)'
- 'TYPE __sync_or_and_fetch (TYPE *ptr, TYPE value, ...)'
- 'TYPE __sync_and_and_fetch (TYPE *ptr, TYPE value, ...)'
- 'TYPE __sync_xor_and_fetch (TYPE *ptr, TYPE value, ...)'
- 'TYPE __sync_nand_and_fetch (TYPE *ptr, TYPE value, ...)'
- These built-in functions perform the operation suggested by the
- name, and return the new value. That is, operations on integer
- operands have the following semantics. Operations on pointer
- operands are performed as if the operand's type were 'uintptr_t'.
- { *ptr OP= value; return *ptr; }
- { *ptr = ~(*ptr & value); return *ptr; } // nand
- The same constraints on arguments apply as for the corresponding
- '__sync_op_and_fetch' built-in functions.
- _Note:_ GCC 4.4 and later implement '__sync_nand_and_fetch' as
- '*ptr = ~(*ptr & value)' instead of '*ptr = ~*ptr & value'.
- 'bool __sync_bool_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)'
- 'TYPE __sync_val_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)'
- These built-in functions perform an atomic compare and swap. That
- is, if the current value of '*PTR' is OLDVAL, then write NEWVAL
- into '*PTR'.
- The "bool" version returns true if the comparison is successful and
- NEWVAL is written. The "val" version returns the contents of
- '*PTR' before the operation.
- '__sync_synchronize (...)'
- This built-in function issues a full memory barrier.
- 'TYPE __sync_lock_test_and_set (TYPE *ptr, TYPE value, ...)'
- This built-in function, as described by Intel, is not a traditional
- test-and-set operation, but rather an atomic exchange operation.
- It writes VALUE into '*PTR', and returns the previous contents of
- '*PTR'.
- Many targets have only minimal support for such locks, and do not
- support a full exchange operation. In this case, a target may
- support reduced functionality here by which the _only_ valid value
- to store is the immediate constant 1. The exact value actually
- stored in '*PTR' is implementation defined.
- This built-in function is not a full barrier, but rather an
- "acquire barrier". This means that references after the operation
- cannot move to (or be speculated to) before the operation, but
- previous memory stores may not be globally visible yet, and
- previous memory loads may not yet be satisfied.
- 'void __sync_lock_release (TYPE *ptr, ...)'
- This built-in function releases the lock acquired by
- '__sync_lock_test_and_set'. Normally this means writing the
- constant 0 to '*PTR'.
- This built-in function is not a full barrier, but rather a "release
- barrier". This means that all previous memory stores are globally
- visible, and all previous memory loads have been satisfied, but
- following memory reads are not prevented from being speculated to
- before the barrier.
- File: gcc.info, Node: __atomic Builtins, Next: Integer Overflow Builtins, Prev: __sync Builtins, Up: C Extensions
- 6.53 Built-in Functions for Memory Model Aware Atomic Operations
- ================================================================
- The following built-in functions approximately match the requirements
- for the C++11 memory model. They are all identified by being prefixed
- with '__atomic' and most are overloaded so that they work with multiple
- types.
- These functions are intended to replace the legacy '__sync' builtins.
- The main difference is that the memory order that is requested is a
- parameter to the functions. New code should always use the '__atomic'
- builtins rather than the '__sync' builtins.
- Note that the '__atomic' builtins assume that programs will conform to
- the C++11 memory model. In particular, they assume that programs are
- free of data races. See the C++11 standard for detailed requirements.
- The '__atomic' builtins can be used with any integral scalar or pointer
- type that is 1, 2, 4, or 8 bytes in length. 16-byte integral types are
- also allowed if '__int128' (*note __int128::) is supported by the
- architecture.
- The four non-arithmetic functions (load, store, exchange, and
- compare_exchange) all have a generic version as well. This generic
- version works on any data type. It uses the lock-free built-in function
- if the specific data type size makes that possible; otherwise, an
- external call is left to be resolved at run time. This external call is
- the same format with the addition of a 'size_t' parameter inserted as
- the first parameter indicating the size of the object being pointed to.
- All objects must be the same size.
- There are 6 different memory orders that can be specified. These map
- to the C++11 memory orders with the same names, see the C++11 standard
- or the GCC wiki on atomic synchronization
- (http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync) for detailed
- definitions. Individual targets may also support additional memory
- orders for use on specific architectures. Refer to the target
- documentation for details of these.
- An atomic operation can both constrain code motion and be mapped to
- hardware instructions for synchronization between threads (e.g., a
- fence). To which extent this happens is controlled by the memory
- orders, which are listed here in approximately ascending order of
- strength. The description of each memory order is only meant to roughly
- illustrate the effects and is not a specification; see the C++11 memory
- model for precise semantics.
- '__ATOMIC_RELAXED'
- Implies no inter-thread ordering constraints.
- '__ATOMIC_CONSUME'
- This is currently implemented using the stronger '__ATOMIC_ACQUIRE'
- memory order because of a deficiency in C++11's semantics for
- 'memory_order_consume'.
- '__ATOMIC_ACQUIRE'
- Creates an inter-thread happens-before constraint from the release
- (or stronger) semantic store to this acquire load. Can prevent
- hoisting of code to before the operation.
- '__ATOMIC_RELEASE'
- Creates an inter-thread happens-before constraint to acquire (or
- stronger) semantic loads that read from this release store. Can
- prevent sinking of code to after the operation.
- '__ATOMIC_ACQ_REL'
- Combines the effects of both '__ATOMIC_ACQUIRE' and
- '__ATOMIC_RELEASE'.
- '__ATOMIC_SEQ_CST'
- Enforces total ordering with all other '__ATOMIC_SEQ_CST'
- operations.
- Note that in the C++11 memory model, _fences_ (e.g.,
- '__atomic_thread_fence') take effect in combination with other atomic
- operations on specific memory locations (e.g., atomic loads); operations
- on specific memory locations do not necessarily affect other operations
- in the same way.
- Target architectures are encouraged to provide their own patterns for
- each of the atomic built-in functions. If no target is provided, the
- original non-memory model set of '__sync' atomic built-in functions are
- used, along with any required synchronization fences surrounding it in
- order to achieve the proper behavior. Execution in this case is subject
- to the same restrictions as those built-in functions.
- If there is no pattern or mechanism to provide a lock-free instruction
- sequence, a call is made to an external routine with the same parameters
- to be resolved at run time.
- When implementing patterns for these built-in functions, the memory
- order parameter can be ignored as long as the pattern implements the
- most restrictive '__ATOMIC_SEQ_CST' memory order. Any of the other
- memory orders execute correctly with this memory order but they may not
- execute as efficiently as they could with a more appropriate
- implementation of the relaxed requirements.
- Note that the C++11 standard allows for the memory order parameter to
- be determined at run time rather than at compile time. These built-in
- functions map any run-time value to '__ATOMIC_SEQ_CST' rather than
- invoke a runtime library call or inline a switch statement. This is
- standard compliant, safe, and the simplest approach for now.
- The memory order parameter is a signed int, but only the lower 16 bits
- are reserved for the memory order. The remainder of the signed int is
- reserved for target use and should be 0. Use of the predefined atomic
- values ensures proper usage.
- -- Built-in Function: TYPE __atomic_load_n (TYPE *ptr, int memorder)
- This built-in function implements an atomic load operation. It
- returns the contents of '*PTR'.
- The valid memory order variants are '__ATOMIC_RELAXED',
- '__ATOMIC_SEQ_CST', '__ATOMIC_ACQUIRE', and '__ATOMIC_CONSUME'.
- -- Built-in Function: void __atomic_load (TYPE *ptr, TYPE *ret, int
- memorder)
- This is the generic version of an atomic load. It returns the
- contents of '*PTR' in '*RET'.
- -- Built-in Function: void __atomic_store_n (TYPE *ptr, TYPE val, int
- memorder)
- This built-in function implements an atomic store operation. It
- writes 'VAL' into '*PTR'.
- The valid memory order variants are '__ATOMIC_RELAXED',
- '__ATOMIC_SEQ_CST', and '__ATOMIC_RELEASE'.
- -- Built-in Function: void __atomic_store (TYPE *ptr, TYPE *val, int
- memorder)
- This is the generic version of an atomic store. It stores the
- value of '*VAL' into '*PTR'.
- -- Built-in Function: TYPE __atomic_exchange_n (TYPE *ptr, TYPE val,
- int memorder)
- This built-in function implements an atomic exchange operation. It
- writes VAL into '*PTR', and returns the previous contents of
- '*PTR'.
- The valid memory order variants are '__ATOMIC_RELAXED',
- '__ATOMIC_SEQ_CST', '__ATOMIC_ACQUIRE', '__ATOMIC_RELEASE', and
- '__ATOMIC_ACQ_REL'.
- -- Built-in Function: void __atomic_exchange (TYPE *ptr, TYPE *val,
- TYPE *ret, int memorder)
- This is the generic version of an atomic exchange. It stores the
- contents of '*VAL' into '*PTR'. The original value of '*PTR' is
- copied into '*RET'.
- -- Built-in Function: bool __atomic_compare_exchange_n (TYPE *ptr, TYPE
- *expected, TYPE desired, bool weak, int success_memorder, int
- failure_memorder)
- This built-in function implements an atomic compare and exchange
- operation. This compares the contents of '*PTR' with the contents
- of '*EXPECTED'. If equal, the operation is a _read-modify-write_
- operation that writes DESIRED into '*PTR'. If they are not equal,
- the operation is a _read_ and the current contents of '*PTR' are
- written into '*EXPECTED'. WEAK is true for weak compare_exchange,
- which may fail spuriously, and false for the strong variation,
- which never fails spuriously. Many targets only offer the strong
- variation and ignore the parameter. When in doubt, use the strong
- variation.
- If DESIRED is written into '*PTR' then true is returned and memory
- is affected according to the memory order specified by
- SUCCESS_MEMORDER. There are no restrictions on what memory order
- can be used here.
- Otherwise, false is returned and memory is affected according to
- FAILURE_MEMORDER. This memory order cannot be '__ATOMIC_RELEASE'
- nor '__ATOMIC_ACQ_REL'. It also cannot be a stronger order than
- that specified by SUCCESS_MEMORDER.
- -- Built-in Function: bool __atomic_compare_exchange (TYPE *ptr, TYPE
- *expected, TYPE *desired, bool weak, int success_memorder, int
- failure_memorder)
- This built-in function implements the generic version of
- '__atomic_compare_exchange'. The function is virtually identical
- to '__atomic_compare_exchange_n', except the desired value is also
- a pointer.
- -- Built-in Function: TYPE __atomic_add_fetch (TYPE *ptr, TYPE val, int
- memorder)
- -- Built-in Function: TYPE __atomic_sub_fetch (TYPE *ptr, TYPE val, int
- memorder)
- -- Built-in Function: TYPE __atomic_and_fetch (TYPE *ptr, TYPE val, int
- memorder)
- -- Built-in Function: TYPE __atomic_xor_fetch (TYPE *ptr, TYPE val, int
- memorder)
- -- Built-in Function: TYPE __atomic_or_fetch (TYPE *ptr, TYPE val, int
- memorder)
- -- Built-in Function: TYPE __atomic_nand_fetch (TYPE *ptr, TYPE val,
- int memorder)
- These built-in functions perform the operation suggested by the
- name, and return the result of the operation. Operations on
- pointer arguments are performed as if the operands were of the
- 'uintptr_t' type. That is, they are not scaled by the size of the
- type to which the pointer points.
- { *ptr OP= val; return *ptr; }
- The object pointed to by the first argument must be of integer or
- pointer type. It must not be a boolean type. All memory orders
- are valid.
- -- Built-in Function: TYPE __atomic_fetch_add (TYPE *ptr, TYPE val, int
- memorder)
- -- Built-in Function: TYPE __atomic_fetch_sub (TYPE *ptr, TYPE val, int
- memorder)
- -- Built-in Function: TYPE __atomic_fetch_and (TYPE *ptr, TYPE val, int
- memorder)
- -- Built-in Function: TYPE __atomic_fetch_xor (TYPE *ptr, TYPE val, int
- memorder)
- -- Built-in Function: TYPE __atomic_fetch_or (TYPE *ptr, TYPE val, int
- memorder)
- -- Built-in Function: TYPE __atomic_fetch_nand (TYPE *ptr, TYPE val,
- int memorder)
- These built-in functions perform the operation suggested by the
- name, and return the value that had previously been in '*PTR'.
- Operations on pointer arguments are performed as if the operands
- were of the 'uintptr_t' type. That is, they are not scaled by the
- size of the type to which the pointer points.
- { tmp = *ptr; *ptr OP= val; return tmp; }
- The same constraints on arguments apply as for the corresponding
- '__atomic_op_fetch' built-in functions. All memory orders are
- valid.
- -- Built-in Function: bool __atomic_test_and_set (void *ptr, int
- memorder)
- This built-in function performs an atomic test-and-set operation on
- the byte at '*PTR'. The byte is set to some implementation defined
- nonzero "set" value and the return value is 'true' if and only if
- the previous contents were "set". It should be only used for
- operands of type 'bool' or 'char'. For other types only part of
- the value may be set.
- All memory orders are valid.
- -- Built-in Function: void __atomic_clear (bool *ptr, int memorder)
- This built-in function performs an atomic clear operation on
- '*PTR'. After the operation, '*PTR' contains 0. It should be only
- used for operands of type 'bool' or 'char' and in conjunction with
- '__atomic_test_and_set'. For other types it may only clear
- partially. If the type is not 'bool' prefer using
- '__atomic_store'.
- The valid memory order variants are '__ATOMIC_RELAXED',
- '__ATOMIC_SEQ_CST', and '__ATOMIC_RELEASE'.
- -- Built-in Function: void __atomic_thread_fence (int memorder)
- This built-in function acts as a synchronization fence between
- threads based on the specified memory order.
- All memory orders are valid.
- -- Built-in Function: void __atomic_signal_fence (int memorder)
- This built-in function acts as a synchronization fence between a
- thread and signal handlers based in the same thread.
- All memory orders are valid.
- -- Built-in Function: bool __atomic_always_lock_free (size_t size, void
- *ptr)
- This built-in function returns true if objects of SIZE bytes always
- generate lock-free atomic instructions for the target architecture.
- SIZE must resolve to a compile-time constant and the result also
- resolves to a compile-time constant.
- PTR is an optional pointer to the object that may be used to
- determine alignment. A value of 0 indicates typical alignment
- should be used. The compiler may also ignore this parameter.
- if (__atomic_always_lock_free (sizeof (long long), 0))
- -- Built-in Function: bool __atomic_is_lock_free (size_t size, void
- *ptr)
- This built-in function returns true if objects of SIZE bytes always
- generate lock-free atomic instructions for the target architecture.
- If the built-in function is not known to be lock-free, a call is
- made to a runtime routine named '__atomic_is_lock_free'.
- PTR is an optional pointer to the object that may be used to
- determine alignment. A value of 0 indicates typical alignment
- should be used. The compiler may also ignore this parameter.
- File: gcc.info, Node: Integer Overflow Builtins, Next: x86 specific memory model extensions for transactional memory, Prev: __atomic Builtins, Up: C Extensions
- 6.54 Built-in Functions to Perform Arithmetic with Overflow Checking
- ====================================================================
- The following built-in functions allow performing simple arithmetic
- operations together with checking whether the operations overflowed.
- -- Built-in Function: bool __builtin_add_overflow (TYPE1 a, TYPE2 b,
- TYPE3 *res)
- -- Built-in Function: bool __builtin_sadd_overflow (int a, int b, int
- *res)
- -- Built-in Function: bool __builtin_saddl_overflow (long int a, long
- int b, long int *res)
- -- Built-in Function: bool __builtin_saddll_overflow (long long int a,
- long long int b, long long int *res)
- -- Built-in Function: bool __builtin_uadd_overflow (unsigned int a,
- unsigned int b, unsigned int *res)
- -- Built-in Function: bool __builtin_uaddl_overflow (unsigned long int
- a, unsigned long int b, unsigned long int *res)
- -- Built-in Function: bool __builtin_uaddll_overflow (unsigned long
- long int a, unsigned long long int b, unsigned long long int
- *res)
- These built-in functions promote the first two operands into
- infinite precision signed type and perform addition on those
- promoted operands. The result is then cast to the type the third
- pointer argument points to and stored there. If the stored result
- is equal to the infinite precision result, the built-in functions
- return false, otherwise they return true. As the addition is
- performed in infinite signed precision, these built-in functions
- have fully defined behavior for all argument values.
- The first built-in function allows arbitrary integral types for
- operands and the result type must be pointer to some integral type
- other than enumerated or boolean type, the rest of the built-in
- functions have explicit integer types.
- The compiler will attempt to use hardware instructions to implement
- these built-in functions where possible, like conditional jump on
- overflow after addition, conditional jump on carry etc.
- -- Built-in Function: bool __builtin_sub_overflow (TYPE1 a, TYPE2 b,
- TYPE3 *res)
- -- Built-in Function: bool __builtin_ssub_overflow (int a, int b, int
- *res)
- -- Built-in Function: bool __builtin_ssubl_overflow (long int a, long
- int b, long int *res)
- -- Built-in Function: bool __builtin_ssubll_overflow (long long int a,
- long long int b, long long int *res)
- -- Built-in Function: bool __builtin_usub_overflow (unsigned int a,
- unsigned int b, unsigned int *res)
- -- Built-in Function: bool __builtin_usubl_overflow (unsigned long int
- a, unsigned long int b, unsigned long int *res)
- -- Built-in Function: bool __builtin_usubll_overflow (unsigned long
- long int a, unsigned long long int b, unsigned long long int
- *res)
- These built-in functions are similar to the add overflow checking
- built-in functions above, except they perform subtraction, subtract
- the second argument from the first one, instead of addition.
- -- Built-in Function: bool __builtin_mul_overflow (TYPE1 a, TYPE2 b,
- TYPE3 *res)
- -- Built-in Function: bool __builtin_smul_overflow (int a, int b, int
- *res)
- -- Built-in Function: bool __builtin_smull_overflow (long int a, long
- int b, long int *res)
- -- Built-in Function: bool __builtin_smulll_overflow (long long int a,
- long long int b, long long int *res)
- -- Built-in Function: bool __builtin_umul_overflow (unsigned int a,
- unsigned int b, unsigned int *res)
- -- Built-in Function: bool __builtin_umull_overflow (unsigned long int
- a, unsigned long int b, unsigned long int *res)
- -- Built-in Function: bool __builtin_umulll_overflow (unsigned long
- long int a, unsigned long long int b, unsigned long long int
- *res)
- These built-in functions are similar to the add overflow checking
- built-in functions above, except they perform multiplication,
- instead of addition.
- The following built-in functions allow checking if simple arithmetic
- operation would overflow.
- -- Built-in Function: bool __builtin_add_overflow_p (TYPE1 a, TYPE2 b,
- TYPE3 c)
- -- Built-in Function: bool __builtin_sub_overflow_p (TYPE1 a, TYPE2 b,
- TYPE3 c)
- -- Built-in Function: bool __builtin_mul_overflow_p (TYPE1 a, TYPE2 b,
- TYPE3 c)
- These built-in functions are similar to '__builtin_add_overflow',
- '__builtin_sub_overflow', or '__builtin_mul_overflow', except that
- they don't store the result of the arithmetic operation anywhere
- and the last argument is not a pointer, but some expression with
- integral type other than enumerated or boolean type.
- The built-in functions promote the first two operands into infinite
- precision signed type and perform addition on those promoted
- operands. The result is then cast to the type of the third
- argument. If the cast result is equal to the infinite precision
- result, the built-in functions return false, otherwise they return
- true. The value of the third argument is ignored, just the side
- effects in the third argument are evaluated, and no integral
- argument promotions are performed on the last argument. If the
- third argument is a bit-field, the type used for the result cast
- has the precision and signedness of the given bit-field, rather
- than precision and signedness of the underlying type.
- For example, the following macro can be used to portably check, at
- compile-time, whether or not adding two constant integers will
- overflow, and perform the addition only when it is known to be safe
- and not to trigger a '-Woverflow' warning.
- #define INT_ADD_OVERFLOW_P(a, b) \
- __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
- enum {
- A = INT_MAX, B = 3,
- C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
- D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
- };
- The compiler will attempt to use hardware instructions to implement
- these built-in functions where possible, like conditional jump on
- overflow after addition, conditional jump on carry etc.
- File: gcc.info, Node: x86 specific memory model extensions for transactional memory, Next: Object Size Checking, Prev: Integer Overflow Builtins, Up: C Extensions
- 6.55 x86-Specific Memory Model Extensions for Transactional Memory
- ==================================================================
- The x86 architecture supports additional memory ordering flags to mark
- critical sections for hardware lock elision. These must be specified in
- addition to an existing memory order to atomic intrinsics.
- '__ATOMIC_HLE_ACQUIRE'
- Start lock elision on a lock variable. Memory order must be
- '__ATOMIC_ACQUIRE' or stronger.
- '__ATOMIC_HLE_RELEASE'
- End lock elision on a lock variable. Memory order must be
- '__ATOMIC_RELEASE' or stronger.
- When a lock acquire fails, it is required for good performance to abort
- the transaction quickly. This can be done with a '_mm_pause'.
- #include <immintrin.h> // For _mm_pause
- int lockvar;
- /* Acquire lock with lock elision */
- while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
- _mm_pause(); /* Abort failed transaction */
- ...
- /* Free lock with lock elision */
- __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
- File: gcc.info, Node: Object Size Checking, Next: Pointer Bounds Checker builtins, Prev: x86 specific memory model extensions for transactional memory, Up: C Extensions
- 6.56 Object Size Checking Built-in Functions
- ============================================
- GCC implements a limited buffer overflow protection mechanism that can
- prevent some buffer overflow attacks by determining the sizes of objects
- into which data is about to be written and preventing the writes when
- the size isn't sufficient. The built-in functions described below yield
- the best results when used together and when optimization is enabled.
- For example, to detect object sizes across function boundaries or to
- follow pointer assignments through non-trivial control flow they rely on
- various optimization passes enabled with '-O2'. However, to a limited
- extent, they can be used without optimization as well.
- -- Built-in Function: size_t __builtin_object_size (const void * PTR,
- int TYPE)
- is a built-in construct that returns a constant number of bytes
- from PTR to the end of the object PTR pointer points to (if known
- at compile time). '__builtin_object_size' never evaluates its
- arguments for side effects. If there are any side effects in them,
- it returns '(size_t) -1' for TYPE 0 or 1 and '(size_t) 0' for TYPE
- 2 or 3. If there are multiple objects PTR can point to and all of
- them are known at compile time, the returned number is the maximum
- of remaining byte counts in those objects if TYPE & 2 is 0 and
- minimum if nonzero. If it is not possible to determine which
- objects PTR points to at compile time, '__builtin_object_size'
- should return '(size_t) -1' for TYPE 0 or 1 and '(size_t) 0' for
- TYPE 2 or 3.
- TYPE is an integer constant from 0 to 3. If the least significant
- bit is clear, objects are whole variables, if it is set, a closest
- surrounding subobject is considered the object a pointer points to.
- The second bit determines if maximum or minimum of remaining bytes
- is computed.
- struct V { char buf1[10]; int b; char buf2[10]; } var;
- char *p = &var.buf1[1], *q = &var.b;
- /* Here the object p points to is var. */
- assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
- /* The subobject p points to is var.buf1. */
- assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
- /* The object q points to is var. */
- assert (__builtin_object_size (q, 0)
- == (char *) (&var + 1) - (char *) &var.b);
- /* The subobject q points to is var.b. */
- assert (__builtin_object_size (q, 1) == sizeof (var.b));
- There are built-in functions added for many common string operation
- functions, e.g., for 'memcpy' '__builtin___memcpy_chk' built-in is
- provided. This built-in has an additional last argument, which is the
- number of bytes remaining in the object the DEST argument points to or
- '(size_t) -1' if the size is not known.
- The built-in functions are optimized into the normal string functions
- like 'memcpy' if the last argument is '(size_t) -1' or if it is known at
- compile time that the destination object will not be overflowed. If the
- compiler can determine at compile time that the object will always be
- overflowed, it issues a warning.
- The intended use can be e.g.
- #undef memcpy
- #define bos0(dest) __builtin_object_size (dest, 0)
- #define memcpy(dest, src, n) \
- __builtin___memcpy_chk (dest, src, n, bos0 (dest))
- char *volatile p;
- char buf[10];
- /* It is unknown what object p points to, so this is optimized
- into plain memcpy - no checking is possible. */
- memcpy (p, "abcde", n);
- /* Destination is known and length too. It is known at compile
- time there will be no overflow. */
- memcpy (&buf[5], "abcde", 5);
- /* Destination is known, but the length is not known at compile time.
- This will result in __memcpy_chk call that can check for overflow
- at run time. */
- memcpy (&buf[5], "abcde", n);
- /* Destination is known and it is known at compile time there will
- be overflow. There will be a warning and __memcpy_chk call that
- will abort the program at run time. */
- memcpy (&buf[6], "abcde", 5);
- Such built-in functions are provided for 'memcpy', 'mempcpy',
- 'memmove', 'memset', 'strcpy', 'stpcpy', 'strncpy', 'strcat' and
- 'strncat'.
- There are also checking built-in functions for formatted output
- functions.
- int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
- int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
- const char *fmt, ...);
- int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
- va_list ap);
- int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
- const char *fmt, va_list ap);
- The added FLAG argument is passed unchanged to '__sprintf_chk' etc.
- functions and can contain implementation specific flags on what
- additional security measures the checking function might take, such as
- handling '%n' differently.
- The OS argument is the object size S points to, like in the other
- built-in functions. There is a small difference in the behavior though,
- if OS is '(size_t) -1', the built-in functions are optimized into the
- non-checking functions only if FLAG is 0, otherwise the checking
- function is called with OS argument set to '(size_t) -1'.
- In addition to this, there are checking built-in functions
- '__builtin___printf_chk', '__builtin___vprintf_chk',
- '__builtin___fprintf_chk' and '__builtin___vfprintf_chk'. These have
- just one additional argument, FLAG, right before format string FMT. If
- the compiler is able to optimize them to 'fputc' etc. functions, it
- does, otherwise the checking function is called and the FLAG argument
- passed to it.
- File: gcc.info, Node: Pointer Bounds Checker builtins, Next: Other Builtins, Prev: Object Size Checking, Up: C Extensions
- 6.57 Pointer Bounds Checker Built-in Functions
- ==============================================
- GCC provides a set of built-in functions to control Pointer Bounds
- Checker instrumentation. Note that all Pointer Bounds Checker builtins
- can be used even if you compile with Pointer Bounds Checker off
- ('-fno-check-pointer-bounds'). The behavior may differ in such case as
- documented below.
- -- Built-in Function: void * __builtin___bnd_set_ptr_bounds (const void
- *Q, size_t SIZE)
- This built-in function returns a new pointer with the value of Q,
- and associate it with the bounds [Q, Q+SIZE-1]. With Pointer
- Bounds Checker off, the built-in function just returns the first
- argument.
- extern void *__wrap_malloc (size_t n)
- {
- void *p = (void *)__real_malloc (n);
- if (!p) return __builtin___bnd_null_ptr_bounds (p);
- return __builtin___bnd_set_ptr_bounds (p, n);
- }
- -- Built-in Function: void * __builtin___bnd_narrow_ptr_bounds (const
- void *P, const void *Q, size_t SIZE)
- This built-in function returns a new pointer with the value of P
- and associates it with the narrowed bounds formed by the
- intersection of bounds associated with Q and the bounds [P, P +
- SIZE - 1]. With Pointer Bounds Checker off, the built-in function
- just returns the first argument.
- void init_objects (object *objs, size_t size)
- {
- size_t i;
- /* Initialize objects one-by-one passing pointers with bounds of
- an object, not the full array of objects. */
- for (i = 0; i < size; i++)
- init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs,
- sizeof(object)));
- }
- -- Built-in Function: void * __builtin___bnd_copy_ptr_bounds (const
- void *Q, const void *R)
- This built-in function returns a new pointer with the value of Q,
- and associates it with the bounds already associated with pointer
- R. With Pointer Bounds Checker off, the built-in function just
- returns the first argument.
- /* Here is a way to get pointer to object's field but
- still with the full object's bounds. */
- int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field,
- objptr);
- -- Built-in Function: void * __builtin___bnd_init_ptr_bounds (const
- void *Q)
- This built-in function returns a new pointer with the value of Q,
- and associates it with INIT (allowing full memory access) bounds.
- With Pointer Bounds Checker off, the built-in function just returns
- the first argument.
- -- Built-in Function: void * __builtin___bnd_null_ptr_bounds (const
- void *Q)
- This built-in function returns a new pointer with the value of Q,
- and associates it with NULL (allowing no memory access) bounds.
- With Pointer Bounds Checker off, the built-in function just returns
- the first argument.
- -- Built-in Function: void __builtin___bnd_store_ptr_bounds (const void
- **PTR_ADDR, const void *PTR_VAL)
- This built-in function stores the bounds associated with pointer
- PTR_VAL and location PTR_ADDR into Bounds Table. This can be
- useful to propagate bounds from legacy code without touching the
- associated pointer's memory when pointers are copied as integers.
- With Pointer Bounds Checker off, the built-in function call is
- ignored.
- -- Built-in Function: void __builtin___bnd_chk_ptr_lbounds (const void
- *Q)
- This built-in function checks if the pointer Q is within the lower
- bound of its associated bounds. With Pointer Bounds Checker off,
- the built-in function call is ignored.
- extern void *__wrap_memset (void *dst, int c, size_t len)
- {
- if (len > 0)
- {
- __builtin___bnd_chk_ptr_lbounds (dst);
- __builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1);
- __real_memset (dst, c, len);
- }
- return dst;
- }
- -- Built-in Function: void __builtin___bnd_chk_ptr_ubounds (const void
- *Q)
- This built-in function checks if the pointer Q is within the upper
- bound of its associated bounds. With Pointer Bounds Checker off,
- the built-in function call is ignored.
- -- Built-in Function: void __builtin___bnd_chk_ptr_bounds (const void
- *Q, size_t SIZE)
- This built-in function checks if [Q, Q + SIZE - 1] is within the
- lower and upper bounds associated with Q. With Pointer Bounds
- Checker off, the built-in function call is ignored.
- extern void *__wrap_memcpy (void *dst, const void *src, size_t n)
- {
- if (n > 0)
- {
- __bnd_chk_ptr_bounds (dst, n);
- __bnd_chk_ptr_bounds (src, n);
- __real_memcpy (dst, src, n);
- }
- return dst;
- }
- -- Built-in Function: const void * __builtin___bnd_get_ptr_lbound
- (const void *Q)
- This built-in function returns the lower bound associated with the
- pointer Q, as a pointer value. This is useful for debugging using
- 'printf'. With Pointer Bounds Checker off, the built-in function
- returns 0.
- void *lb = __builtin___bnd_get_ptr_lbound (q);
- void *ub = __builtin___bnd_get_ptr_ubound (q);
- printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub);
- -- Built-in Function: const void * __builtin___bnd_get_ptr_ubound
- (const void *Q)
- This built-in function returns the upper bound (which is a pointer)
- associated with the pointer Q. With Pointer Bounds Checker off,
- the built-in function returns -1.
- File: gcc.info, Node: Other Builtins, Next: Target Builtins, Prev: Pointer Bounds Checker builtins, Up: C Extensions
- 6.58 Other Built-in Functions Provided by GCC
- =============================================
- GCC provides a large number of built-in functions other than the ones
- mentioned above. Some of these are for internal use in the processing
- of exceptions or variable-length argument lists and are not documented
- here because they may change from time to time; we do not recommend
- general use of these functions.
- The remaining functions are provided for optimization purposes.
- With the exception of built-ins that have library equivalents such as
- the standard C library functions discussed below, or that expand to
- library calls, GCC built-in functions are always expanded inline and
- thus do not have corresponding entry points and their address cannot be
- obtained. Attempting to use them in an expression other than a function
- call results in a compile-time error.
- GCC includes built-in versions of many of the functions in the standard
- C library. These functions come in two forms: one whose names start
- with the '__builtin_' prefix, and the other without. Both forms have
- the same type (including prototype), the same address (when their
- address is taken), and the same meaning as the C library functions even
- if you specify the '-fno-builtin' option *note C Dialect Options::).
- Many of these functions are only optimized in certain cases; if they are
- not optimized in a particular case, a call to the library function is
- emitted.
- Outside strict ISO C mode ('-ansi', '-std=c90', '-std=c99' or
- '-std=c11'), the functions '_exit', 'alloca', 'bcmp', 'bzero',
- 'dcgettext', 'dgettext', 'dremf', 'dreml', 'drem', 'exp10f', 'exp10l',
- 'exp10', 'ffsll', 'ffsl', 'ffs', 'fprintf_unlocked', 'fputs_unlocked',
- 'gammaf', 'gammal', 'gamma', 'gammaf_r', 'gammal_r', 'gamma_r',
- 'gettext', 'index', 'isascii', 'j0f', 'j0l', 'j0', 'j1f', 'j1l', 'j1',
- 'jnf', 'jnl', 'jn', 'lgammaf_r', 'lgammal_r', 'lgamma_r', 'mempcpy',
- 'pow10f', 'pow10l', 'pow10', 'printf_unlocked', 'rindex', 'scalbf',
- 'scalbl', 'scalb', 'signbit', 'signbitf', 'signbitl', 'signbitd32',
- 'signbitd64', 'signbitd128', 'significandf', 'significandl',
- 'significand', 'sincosf', 'sincosl', 'sincos', 'stpcpy', 'stpncpy',
- 'strcasecmp', 'strdup', 'strfmon', 'strncasecmp', 'strndup', 'toascii',
- 'y0f', 'y0l', 'y0', 'y1f', 'y1l', 'y1', 'ynf', 'ynl' and 'yn' may be
- handled as built-in functions. All these functions have corresponding
- versions prefixed with '__builtin_', which may be used even in strict
- C90 mode.
- The ISO C99 functions '_Exit', 'acoshf', 'acoshl', 'acosh', 'asinhf',
- 'asinhl', 'asinh', 'atanhf', 'atanhl', 'atanh', 'cabsf', 'cabsl',
- 'cabs', 'cacosf', 'cacoshf', 'cacoshl', 'cacosh', 'cacosl', 'cacos',
- 'cargf', 'cargl', 'carg', 'casinf', 'casinhf', 'casinhl', 'casinh',
- 'casinl', 'casin', 'catanf', 'catanhf', 'catanhl', 'catanh', 'catanl',
- 'catan', 'cbrtf', 'cbrtl', 'cbrt', 'ccosf', 'ccoshf', 'ccoshl', 'ccosh',
- 'ccosl', 'ccos', 'cexpf', 'cexpl', 'cexp', 'cimagf', 'cimagl', 'cimag',
- 'clogf', 'clogl', 'clog', 'conjf', 'conjl', 'conj', 'copysignf',
- 'copysignl', 'copysign', 'cpowf', 'cpowl', 'cpow', 'cprojf', 'cprojl',
- 'cproj', 'crealf', 'creall', 'creal', 'csinf', 'csinhf', 'csinhl',
- 'csinh', 'csinl', 'csin', 'csqrtf', 'csqrtl', 'csqrt', 'ctanf',
- 'ctanhf', 'ctanhl', 'ctanh', 'ctanl', 'ctan', 'erfcf', 'erfcl', 'erfc',
- 'erff', 'erfl', 'erf', 'exp2f', 'exp2l', 'exp2', 'expm1f', 'expm1l',
- 'expm1', 'fdimf', 'fdiml', 'fdim', 'fmaf', 'fmal', 'fmaxf', 'fmaxl',
- 'fmax', 'fma', 'fminf', 'fminl', 'fmin', 'hypotf', 'hypotl', 'hypot',
- 'ilogbf', 'ilogbl', 'ilogb', 'imaxabs', 'isblank', 'iswblank',
- 'lgammaf', 'lgammal', 'lgamma', 'llabs', 'llrintf', 'llrintl', 'llrint',
- 'llroundf', 'llroundl', 'llround', 'log1pf', 'log1pl', 'log1p', 'log2f',
- 'log2l', 'log2', 'logbf', 'logbl', 'logb', 'lrintf', 'lrintl', 'lrint',
- 'lroundf', 'lroundl', 'lround', 'nearbyintf', 'nearbyintl', 'nearbyint',
- 'nextafterf', 'nextafterl', 'nextafter', 'nexttowardf', 'nexttowardl',
- 'nexttoward', 'remainderf', 'remainderl', 'remainder', 'remquof',
- 'remquol', 'remquo', 'rintf', 'rintl', 'rint', 'roundf', 'roundl',
- 'round', 'scalblnf', 'scalblnl', 'scalbln', 'scalbnf', 'scalbnl',
- 'scalbn', 'snprintf', 'tgammaf', 'tgammal', 'tgamma', 'truncf',
- 'truncl', 'trunc', 'vfscanf', 'vscanf', 'vsnprintf' and 'vsscanf' are
- handled as built-in functions except in strict ISO C90 mode ('-ansi' or
- '-std=c90').
- There are also built-in versions of the ISO C99 functions 'acosf',
- 'acosl', 'asinf', 'asinl', 'atan2f', 'atan2l', 'atanf', 'atanl',
- 'ceilf', 'ceill', 'cosf', 'coshf', 'coshl', 'cosl', 'expf', 'expl',
- 'fabsf', 'fabsl', 'floorf', 'floorl', 'fmodf', 'fmodl', 'frexpf',
- 'frexpl', 'ldexpf', 'ldexpl', 'log10f', 'log10l', 'logf', 'logl',
- 'modfl', 'modf', 'powf', 'powl', 'sinf', 'sinhf', 'sinhl', 'sinl',
- 'sqrtf', 'sqrtl', 'tanf', 'tanhf', 'tanhl' and 'tanl' that are
- recognized in any mode since ISO C90 reserves these names for the
- purpose to which ISO C99 puts them. All these functions have
- corresponding versions prefixed with '__builtin_'.
- There are also built-in functions '__builtin_fabsfN',
- '__builtin_fabsfNx', '__builtin_copysignfN' and '__builtin_copysignfNx',
- corresponding to the TS 18661-3 functions 'fabsfN', 'fabsfNx',
- 'copysignfN' and 'copysignfNx', for supported types '_FloatN' and
- '_FloatNx'.
- There are also GNU extension functions 'clog10', 'clog10f' and
- 'clog10l' which names are reserved by ISO C99 for future use. All these
- functions have versions prefixed with '__builtin_'.
- The ISO C94 functions 'iswalnum', 'iswalpha', 'iswcntrl', 'iswdigit',
- 'iswgraph', 'iswlower', 'iswprint', 'iswpunct', 'iswspace', 'iswupper',
- 'iswxdigit', 'towlower' and 'towupper' are handled as built-in functions
- except in strict ISO C90 mode ('-ansi' or '-std=c90').
- The ISO C90 functions 'abort', 'abs', 'acos', 'asin', 'atan2', 'atan',
- 'calloc', 'ceil', 'cosh', 'cos', 'exit', 'exp', 'fabs', 'floor', 'fmod',
- 'fprintf', 'fputs', 'frexp', 'fscanf', 'isalnum', 'isalpha', 'iscntrl',
- 'isdigit', 'isgraph', 'islower', 'isprint', 'ispunct', 'isspace',
- 'isupper', 'isxdigit', 'tolower', 'toupper', 'labs', 'ldexp', 'log10',
- 'log', 'malloc', 'memchr', 'memcmp', 'memcpy', 'memset', 'modf', 'pow',
- 'printf', 'putchar', 'puts', 'scanf', 'sinh', 'sin', 'snprintf',
- 'sprintf', 'sqrt', 'sscanf', 'strcat', 'strchr', 'strcmp', 'strcpy',
- 'strcspn', 'strlen', 'strncat', 'strncmp', 'strncpy', 'strpbrk',
- 'strrchr', 'strspn', 'strstr', 'tanh', 'tan', 'vfprintf', 'vprintf' and
- 'vsprintf' are all recognized as built-in functions unless
- '-fno-builtin' is specified (or '-fno-builtin-FUNCTION' is specified for
- an individual function). All of these functions have corresponding
- versions prefixed with '__builtin_'.
- GCC provides built-in versions of the ISO C99 floating-point comparison
- macros that avoid raising exceptions for unordered operands. They have
- the same names as the standard macros ( 'isgreater', 'isgreaterequal',
- 'isless', 'islessequal', 'islessgreater', and 'isunordered') , with
- '__builtin_' prefixed. We intend for a library implementor to be able
- to simply '#define' each standard macro to its built-in equivalent. In
- the same fashion, GCC provides 'fpclassify', 'isfinite', 'isinf_sign',
- 'isnormal' and 'signbit' built-ins used with '__builtin_' prefixed. The
- 'isinf' and 'isnan' built-in functions appear both with and without the
- '__builtin_' prefix.
- -- Built-in Function: void *__builtin_alloca (size_t size)
- The '__builtin_alloca' function must be called at block scope. The
- function allocates an object SIZE bytes large on the stack of the
- calling function. The object is aligned on the default stack
- alignment boundary for the target determined by the
- '__BIGGEST_ALIGNMENT__' macro. The '__builtin_alloca' function
- returns a pointer to the first byte of the allocated object. The
- lifetime of the allocated object ends just before the calling
- function returns to its caller. This is so even when
- '__builtin_alloca' is called within a nested block.
- For example, the following function allocates eight objects of 'n'
- bytes each on the stack, storing a pointer to each in consecutive
- elements of the array 'a'. It then passes the array to function
- 'g' which can safely use the storage pointed to by each of the
- array elements.
- void f (unsigned n)
- {
- void *a [8];
- for (int i = 0; i != 8; ++i)
- a [i] = __builtin_alloca (n);
- g (a, n); // safe
- }
- Since the '__builtin_alloca' function doesn't validate its argument
- it is the responsibility of its caller to make sure the argument
- doesn't cause it to exceed the stack size limit. The
- '__builtin_alloca' function is provided to make it possible to
- allocate on the stack arrays of bytes with an upper bound that may
- be computed at run time. Since C99 Variable Length Arrays offer
- similar functionality under a portable, more convenient, and safer
- interface they are recommended instead, in both C99 and C++
- programs where GCC provides them as an extension. *Note Variable
- Length::, for details.
- -- Built-in Function: void *__builtin_alloca_with_align (size_t size,
- size_t alignment)
- The '__builtin_alloca_with_align' function must be called at block
- scope. The function allocates an object SIZE bytes large on the
- stack of the calling function. The allocated object is aligned on
- the boundary specified by the argument ALIGNMENT whose unit is
- given in bits (not bytes). The SIZE argument must be positive and
- not exceed the stack size limit. The ALIGNMENT argument must be a
- constant integer expression that evaluates to a power of 2 greater
- than or equal to 'CHAR_BIT' and less than some unspecified maximum.
- Invocations with other values are rejected with an error indicating
- the valid bounds. The function returns a pointer to the first byte
- of the allocated object. The lifetime of the allocated object ends
- at the end of the block in which the function was called. The
- allocated storage is released no later than just before the calling
- function returns to its caller, but may be released at the end of
- the block in which the function was called.
- For example, in the following function the call to 'g' is unsafe
- because when 'overalign' is non-zero, the space allocated by
- '__builtin_alloca_with_align' may have been released at the end of
- the 'if' statement in which it was called.
- void f (unsigned n, bool overalign)
- {
- void *p;
- if (overalign)
- p = __builtin_alloca_with_align (n, 64 /* bits */);
- else
- p = __builtin_alloc (n);
- g (p, n); // unsafe
- }
- Since the '__builtin_alloca_with_align' function doesn't validate
- its SIZE argument it is the responsibility of its caller to make
- sure the argument doesn't cause it to exceed the stack size limit.
- The '__builtin_alloca_with_align' function is provided to make it
- possible to allocate on the stack overaligned arrays of bytes with
- an upper bound that may be computed at run time. Since C99
- Variable Length Arrays offer the same functionality under a
- portable, more convenient, and safer interface they are recommended
- instead, in both C99 and C++ programs where GCC provides them as an
- extension. *Note Variable Length::, for details.
- -- Built-in Function: void *__builtin_alloca_with_align_and_max (size_t
- size, size_t alignment, size_t max_size)
- Similar to '__builtin_alloca_with_align' but takes an extra
- argument specifying an upper bound for SIZE in case its value
- cannot be computed at compile time, for use by '-fstack-usage',
- '-Wstack-usage' and '-Walloca-larger-than'. MAX_SIZE must be a
- constant integer expression, it has no effect on code generation
- and no attempt is made to check its compatibility with SIZE.
- -- Built-in Function: int __builtin_types_compatible_p (TYPE1, TYPE2)
- You can use the built-in function '__builtin_types_compatible_p' to
- determine whether two types are the same.
- This built-in function returns 1 if the unqualified versions of the
- types TYPE1 and TYPE2 (which are types, not expressions) are
- compatible, 0 otherwise. The result of this built-in function can
- be used in integer constant expressions.
- This built-in function ignores top level qualifiers (e.g., 'const',
- 'volatile'). For example, 'int' is equivalent to 'const int'.
- The type 'int[]' and 'int[5]' are compatible. On the other hand,
- 'int' and 'char *' are not compatible, even if the size of their
- types, on the particular architecture are the same. Also, the
- amount of pointer indirection is taken into account when
- determining similarity. Consequently, 'short *' is not similar to
- 'short **'. Furthermore, two types that are typedefed are
- considered compatible if their underlying types are compatible.
- An 'enum' type is not considered to be compatible with another
- 'enum' type even if both are compatible with the same integer type;
- this is what the C standard specifies. For example, 'enum {foo,
- bar}' is not similar to 'enum {hot, dog}'.
- You typically use this function in code whose execution varies
- depending on the arguments' types. For example:
- #define foo(x) \
- ({ \
- typeof (x) tmp = (x); \
- if (__builtin_types_compatible_p (typeof (x), long double)) \
- tmp = foo_long_double (tmp); \
- else if (__builtin_types_compatible_p (typeof (x), double)) \
- tmp = foo_double (tmp); \
- else if (__builtin_types_compatible_p (typeof (x), float)) \
- tmp = foo_float (tmp); \
- else \
- abort (); \
- tmp; \
- })
- _Note:_ This construct is only available for C.
- -- Built-in Function: TYPE __builtin_call_with_static_chain (CALL_EXP,
- POINTER_EXP)
- The CALL_EXP expression must be a function call, and the
- POINTER_EXP expression must be a pointer. The POINTER_EXP is
- passed to the function call in the target's static chain location.
- The result of builtin is the result of the function call.
- _Note:_ This builtin is only available for C. This builtin can be
- used to call Go closures from C.
- -- Built-in Function: TYPE __builtin_choose_expr (CONST_EXP, EXP1,
- EXP2)
- You can use the built-in function '__builtin_choose_expr' to
- evaluate code depending on the value of a constant expression.
- This built-in function returns EXP1 if CONST_EXP, which is an
- integer constant expression, is nonzero. Otherwise it returns
- EXP2.
- This built-in function is analogous to the '? :' operator in C,
- except that the expression returned has its type unaltered by
- promotion rules. Also, the built-in function does not evaluate the
- expression that is not chosen. For example, if CONST_EXP evaluates
- to true, EXP2 is not evaluated even if it has side effects.
- This built-in function can return an lvalue if the chosen argument
- is an lvalue.
- If EXP1 is returned, the return type is the same as EXP1's type.
- Similarly, if EXP2 is returned, its return type is the same as
- EXP2.
- Example:
- #define foo(x) \
- __builtin_choose_expr ( \
- __builtin_types_compatible_p (typeof (x), double), \
- foo_double (x), \
- __builtin_choose_expr ( \
- __builtin_types_compatible_p (typeof (x), float), \
- foo_float (x), \
- /* The void expression results in a compile-time error \
- when assigning the result to something. */ \
- (void)0))
- _Note:_ This construct is only available for C. Furthermore, the
- unused expression (EXP1 or EXP2 depending on the value of
- CONST_EXP) may still generate syntax errors. This may change in
- future revisions.
- -- Built-in Function: TYPE __builtin_tgmath (FUNCTIONS, ARGUMENTS)
- The built-in function '__builtin_tgmath', available only for C and
- Objective-C, calls a function determined according to the rules of
- '<tgmath.h>' macros. It is intended to be used in implementations
- of that header, so that expansions of macros from that header only
- expand each of their arguments once, to avoid problems when calls
- to such macros are nested inside the arguments of other calls to
- such macros; in addition, it results in better diagnostics for
- invalid calls to '<tgmath.h>' macros than implementations using
- other GNU C language features. For example, the 'pow' type-generic
- macro might be defined as:
- #define pow(a, b) __builtin_tgmath (powf, pow, powl, \
- cpowf, cpow, cpowl, a, b)
- The arguments to '__builtin_tgmath' are at least two pointers to
- functions, followed by the arguments to the type-generic macro
- (which will be passed as arguments to the selected function). All
- the pointers to functions must be pointers to prototyped functions,
- none of which may have variable arguments, and all of which must
- have the same number of parameters; the number of parameters of the
- first function determines how many arguments to '__builtin_tgmath'
- are interpreted as function pointers, and how many as the arguments
- to the called function.
- The types of the specified functions must all be different, but
- related to each other in the same way as a set of functions that
- may be selected between by a macro in '<tgmath.h>'. This means
- that the functions are parameterized by a floating-point type T,
- different for each such function. The function return types may
- all be the same type, or they may be T for each function, or they
- may be the real type corresponding to T for each function (if some
- of the types T are complex). Likewise, for each parameter
- position, the type of the parameter in that position may always be
- the same type, or may be T for each function (this case must apply
- for at least one parameter position), or may be the real type
- corresponding to T for each function.
- The standard rules for '<tgmath.h>' macros are used to find a
- common type U from the types of the arguments for parameters whose
- types vary between the functions; complex integer types (a GNU
- extension) are treated like '_Complex double' for this purpose (or
- '_Complex _Float64' if all the function return types are the same
- '_FloatN' or '_FloatNx' type). If the function return types vary,
- or are all the same integer type, the function called is the one
- for which T is U, and it is an error if there is no such function.
- If the function return types are all the same floating-point type,
- the type-generic macro is taken to be one of those from TS 18661
- that rounds the result to a narrower type; if there is a function
- for which T is U, it is called, and otherwise the first function,
- if any, for which T has at least the range and precision of U is
- called, and it is an error if there is no such function.
- -- Built-in Function: TYPE __builtin_complex (REAL, IMAG)
- The built-in function '__builtin_complex' is provided for use in
- implementing the ISO C11 macros 'CMPLXF', 'CMPLX' and 'CMPLXL'.
- REAL and IMAG must have the same type, a real binary floating-point
- type, and the result has the corresponding complex type with real
- and imaginary parts REAL and IMAG. Unlike 'REAL + I * IMAG', this
- works even when infinities, NaNs and negative zeros are involved.
- -- Built-in Function: int __builtin_constant_p (EXP)
- You can use the built-in function '__builtin_constant_p' to
- determine if a value is known to be constant at compile time and
- hence that GCC can perform constant-folding on expressions
- involving that value. The argument of the function is the value to
- test. The function returns the integer 1 if the argument is known
- to be a compile-time constant and 0 if it is not known to be a
- compile-time constant. A return of 0 does not indicate that the
- value is _not_ a constant, but merely that GCC cannot prove it is a
- constant with the specified value of the '-O' option.
- You typically use this function in an embedded application where
- memory is a critical resource. If you have some complex
- calculation, you may want it to be folded if it involves constants,
- but need to call a function if it does not. For example:
- #define Scale_Value(X) \
- (__builtin_constant_p (X) \
- ? ((X) * SCALE + OFFSET) : Scale (X))
- You may use this built-in function in either a macro or an inline
- function. However, if you use it in an inlined function and pass
- an argument of the function as the argument to the built-in, GCC
- never returns 1 when you call the inline function with a string
- constant or compound literal (*note Compound Literals::) and does
- not return 1 when you pass a constant numeric value to the inline
- function unless you specify the '-O' option.
- You may also use '__builtin_constant_p' in initializers for static
- data. For instance, you can write
- static const int table[] = {
- __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
- /* ... */
- };
- This is an acceptable initializer even if EXPRESSION is not a
- constant expression, including the case where
- '__builtin_constant_p' returns 1 because EXPRESSION can be folded
- to a constant but EXPRESSION contains operands that are not
- otherwise permitted in a static initializer (for example, '0 && foo
- ()'). GCC must be more conservative about evaluating the built-in
- in this case, because it has no opportunity to perform
- optimization.
- -- Built-in Function: long __builtin_expect (long EXP, long C)
- You may use '__builtin_expect' to provide the compiler with branch
- prediction information. In general, you should prefer to use
- actual profile feedback for this ('-fprofile-arcs'), as programmers
- are notoriously bad at predicting how their programs actually
- perform. However, there are applications in which this data is
- hard to collect.
- The return value is the value of EXP, which should be an integral
- expression. The semantics of the built-in are that it is expected
- that EXP == C. For example:
- if (__builtin_expect (x, 0))
- foo ();
- indicates that we do not expect to call 'foo', since we expect 'x'
- to be zero. Since you are limited to integral expressions for EXP,
- you should use constructions such as
- if (__builtin_expect (ptr != NULL, 1))
- foo (*ptr);
- when testing pointer or floating-point values.
- -- Built-in Function: void __builtin_trap (void)
- This function causes the program to exit abnormally. GCC
- implements this function by using a target-dependent mechanism
- (such as intentionally executing an illegal instruction) or by
- calling 'abort'. The mechanism used may vary from release to
- release so you should not rely on any particular implementation.
- -- Built-in Function: void __builtin_unreachable (void)
- If control flow reaches the point of the '__builtin_unreachable',
- the program is undefined. It is useful in situations where the
- compiler cannot deduce the unreachability of the code.
- One such case is immediately following an 'asm' statement that
- either never terminates, or one that transfers control elsewhere
- and never returns. In this example, without the
- '__builtin_unreachable', GCC issues a warning that control reaches
- the end of a non-void function. It also generates code to return
- after the 'asm'.
- int f (int c, int v)
- {
- if (c)
- {
- return v;
- }
- else
- {
- asm("jmp error_handler");
- __builtin_unreachable ();
- }
- }
- Because the 'asm' statement unconditionally transfers control out
- of the function, control never reaches the end of the function
- body. The '__builtin_unreachable' is in fact unreachable and
- communicates this fact to the compiler.
- Another use for '__builtin_unreachable' is following a call a
- function that never returns but that is not declared
- '__attribute__((noreturn))', as in this example:
- void function_that_never_returns (void);
- int g (int c)
- {
- if (c)
- {
- return 1;
- }
- else
- {
- function_that_never_returns ();
- __builtin_unreachable ();
- }
- }
- -- Built-in Function: void * __builtin_assume_aligned (const void *EXP,
- size_t ALIGN, ...)
- This function returns its first argument, and allows the compiler
- to assume that the returned pointer is at least ALIGN bytes
- aligned. This built-in can have either two or three arguments, if
- it has three, the third argument should have integer type, and if
- it is nonzero means misalignment offset. For example:
- void *x = __builtin_assume_aligned (arg, 16);
- means that the compiler can assume 'x', set to 'arg', is at least
- 16-byte aligned, while:
- void *x = __builtin_assume_aligned (arg, 32, 8);
- means that the compiler can assume for 'x', set to 'arg', that
- '(char *) x - 8' is 32-byte aligned.
- -- Built-in Function: int __builtin_LINE ()
- This function is the equivalent of the preprocessor '__LINE__'
- macro and returns a constant integer expression that evaluates to
- the line number of the invocation of the built-in. When used as a
- C++ default argument for a function F, it returns the line number
- of the call to F.
- -- Built-in Function: const char * __builtin_FUNCTION ()
- This function is the equivalent of the '__FUNCTION__' symbol and
- returns an address constant pointing to the name of the function
- from which the built-in was invoked, or the empty string if the
- invocation is not at function scope. When used as a C++ default
- argument for a function F, it returns the name of F's caller or the
- empty string if the call was not made at function scope.
- -- Built-in Function: const char * __builtin_FILE ()
- This function is the equivalent of the preprocessor '__FILE__'
- macro and returns an address constant pointing to the file name
- containing the invocation of the built-in, or the empty string if
- the invocation is not at function scope. When used as a C++
- default argument for a function F, it returns the file name of the
- call to F or the empty string if the call was not made at function
- scope.
- For example, in the following, each call to function 'foo' will
- print a line similar to '"file.c:123: foo: message"' with the name
- of the file and the line number of the 'printf' call, the name of
- the function 'foo', followed by the word 'message'.
- const char*
- function (const char *func = __builtin_FUNCTION ())
- {
- return func;
- }
- void foo (void)
- {
- printf ("%s:%i: %s: message\n", file (), line (), function ());
- }
- -- Built-in Function: void __builtin___clear_cache (char *BEGIN, char
- *END)
- This function is used to flush the processor's instruction cache
- for the region of memory between BEGIN inclusive and END exclusive.
- Some targets require that the instruction cache be flushed, after
- modifying memory containing code, in order to obtain deterministic
- behavior.
- If the target does not require instruction cache flushes,
- '__builtin___clear_cache' has no effect. Otherwise either
- instructions are emitted in-line to clear the instruction cache or
- a call to the '__clear_cache' function in libgcc is made.
- -- Built-in Function: void __builtin_prefetch (const void *ADDR, ...)
- This function is used to minimize cache-miss latency by moving data
- into a cache before it is accessed. You can insert calls to
- '__builtin_prefetch' into code for which you know addresses of data
- in memory that is likely to be accessed soon. If the target
- supports them, data prefetch instructions are generated. If the
- prefetch is done early enough before the access then the data will
- be in the cache by the time it is accessed.
- The value of ADDR is the address of the memory to prefetch. There
- are two optional arguments, RW and LOCALITY. The value of RW is a
- compile-time constant one or zero; one means that the prefetch is
- preparing for a write to the memory address and zero, the default,
- means that the prefetch is preparing for a read. The value
- LOCALITY must be a compile-time constant integer between zero and
- three. A value of zero means that the data has no temporal
- locality, so it need not be left in the cache after the access. A
- value of three means that the data has a high degree of temporal
- locality and should be left in all levels of cache possible.
- Values of one and two mean, respectively, a low or moderate degree
- of temporal locality. The default is three.
- for (i = 0; i < n; i++)
- {
- a[i] = a[i] + b[i];
- __builtin_prefetch (&a[i+j], 1, 1);
- __builtin_prefetch (&b[i+j], 0, 1);
- /* ... */
- }
- Data prefetch does not generate faults if ADDR is invalid, but the
- address expression itself must be valid. For example, a prefetch
- of 'p->next' does not fault if 'p->next' is not a valid address,
- but evaluation faults if 'p' is not a valid address.
- If the target does not support data prefetch, the address
- expression is evaluated if it includes side effects but no other
- code is generated and GCC does not issue a warning.
- -- Built-in Function: double __builtin_huge_val (void)
- Returns a positive infinity, if supported by the floating-point
- format, else 'DBL_MAX'. This function is suitable for implementing
- the ISO C macro 'HUGE_VAL'.
- -- Built-in Function: float __builtin_huge_valf (void)
- Similar to '__builtin_huge_val', except the return type is 'float'.
- -- Built-in Function: long double __builtin_huge_vall (void)
- Similar to '__builtin_huge_val', except the return type is 'long
- double'.
- -- Built-in Function: _FloatN __builtin_huge_valfN (void)
- Similar to '__builtin_huge_val', except the return type is
- '_FloatN'.
- -- Built-in Function: _FloatNx __builtin_huge_valfNx (void)
- Similar to '__builtin_huge_val', except the return type is
- '_FloatNx'.
- -- Built-in Function: int __builtin_fpclassify (int, int, int, int,
- int, ...)
- This built-in implements the C99 fpclassify functionality. The
- first five int arguments should be the target library's notion of
- the possible FP classes and are used for return values. They must
- be constant values and they must appear in this order: 'FP_NAN',
- 'FP_INFINITE', 'FP_NORMAL', 'FP_SUBNORMAL' and 'FP_ZERO'. The
- ellipsis is for exactly one floating-point value to classify. GCC
- treats the last argument as type-generic, which means it does not
- do default promotion from float to double.
- -- Built-in Function: double __builtin_inf (void)
- Similar to '__builtin_huge_val', except a warning is generated if
- the target floating-point format does not support infinities.
- -- Built-in Function: _Decimal32 __builtin_infd32 (void)
- Similar to '__builtin_inf', except the return type is '_Decimal32'.
- -- Built-in Function: _Decimal64 __builtin_infd64 (void)
- Similar to '__builtin_inf', except the return type is '_Decimal64'.
- -- Built-in Function: _Decimal128 __builtin_infd128 (void)
- Similar to '__builtin_inf', except the return type is
- '_Decimal128'.
- -- Built-in Function: float __builtin_inff (void)
- Similar to '__builtin_inf', except the return type is 'float'.
- This function is suitable for implementing the ISO C99 macro
- 'INFINITY'.
- -- Built-in Function: long double __builtin_infl (void)
- Similar to '__builtin_inf', except the return type is 'long
- double'.
- -- Built-in Function: _FloatN __builtin_inffN (void)
- Similar to '__builtin_inf', except the return type is '_FloatN'.
- -- Built-in Function: _FloatN __builtin_inffNx (void)
- Similar to '__builtin_inf', except the return type is '_FloatNx'.
- -- Built-in Function: int __builtin_isinf_sign (...)
- Similar to 'isinf', except the return value is -1 for an argument
- of '-Inf' and 1 for an argument of '+Inf'. Note while the
- parameter list is an ellipsis, this function only accepts exactly
- one floating-point argument. GCC treats this parameter as
- type-generic, which means it does not do default promotion from
- float to double.
- -- Built-in Function: double __builtin_nan (const char *str)
- This is an implementation of the ISO C99 function 'nan'.
- Since ISO C99 defines this function in terms of 'strtod', which we
- do not implement, a description of the parsing is in order. The
- string is parsed as by 'strtol'; that is, the base is recognized by
- leading '0' or '0x' prefixes. The number parsed is placed in the
- significand such that the least significant bit of the number is at
- the least significant bit of the significand. The number is
- truncated to fit the significand field provided. The significand
- is forced to be a quiet NaN.
- This function, if given a string literal all of which would have
- been consumed by 'strtol', is evaluated early enough that it is
- considered a compile-time constant.
- -- Built-in Function: _Decimal32 __builtin_nand32 (const char *str)
- Similar to '__builtin_nan', except the return type is '_Decimal32'.
- -- Built-in Function: _Decimal64 __builtin_nand64 (const char *str)
- Similar to '__builtin_nan', except the return type is '_Decimal64'.
- -- Built-in Function: _Decimal128 __builtin_nand128 (const char *str)
- Similar to '__builtin_nan', except the return type is
- '_Decimal128'.
- -- Built-in Function: float __builtin_nanf (const char *str)
- Similar to '__builtin_nan', except the return type is 'float'.
- -- Built-in Function: long double __builtin_nanl (const char *str)
- Similar to '__builtin_nan', except the return type is 'long
- double'.
- -- Built-in Function: _FloatN __builtin_nanfN (const char *str)
- Similar to '__builtin_nan', except the return type is '_FloatN'.
- -- Built-in Function: _FloatNx __builtin_nanfNx (const char *str)
- Similar to '__builtin_nan', except the return type is '_FloatNx'.
- -- Built-in Function: double __builtin_nans (const char *str)
- Similar to '__builtin_nan', except the significand is forced to be
- a signaling NaN. The 'nans' function is proposed by WG14 N965.
- -- Built-in Function: float __builtin_nansf (const char *str)
- Similar to '__builtin_nans', except the return type is 'float'.
- -- Built-in Function: long double __builtin_nansl (const char *str)
- Similar to '__builtin_nans', except the return type is 'long
- double'.
- -- Built-in Function: _FloatN __builtin_nansfN (const char *str)
- Similar to '__builtin_nans', except the return type is '_FloatN'.
- -- Built-in Function: _FloatNx __builtin_nansfNx (const char *str)
- Similar to '__builtin_nans', except the return type is '_FloatNx'.
- -- Built-in Function: int __builtin_ffs (int x)
- Returns one plus the index of the least significant 1-bit of X, or
- if X is zero, returns zero.
- -- Built-in Function: int __builtin_clz (unsigned int x)
- Returns the number of leading 0-bits in X, starting at the most
- significant bit position. If X is 0, the result is undefined.
- -- Built-in Function: int __builtin_ctz (unsigned int x)
- Returns the number of trailing 0-bits in X, starting at the least
- significant bit position. If X is 0, the result is undefined.
- -- Built-in Function: int __builtin_clrsb (int x)
- Returns the number of leading redundant sign bits in X, i.e. the
- number of bits following the most significant bit that are
- identical to it. There are no special cases for 0 or other values.
- -- Built-in Function: int __builtin_popcount (unsigned int x)
- Returns the number of 1-bits in X.
- -- Built-in Function: int __builtin_parity (unsigned int x)
- Returns the parity of X, i.e. the number of 1-bits in X modulo 2.
- -- Built-in Function: int __builtin_ffsl (long)
- Similar to '__builtin_ffs', except the argument type is 'long'.
- -- Built-in Function: int __builtin_clzl (unsigned long)
- Similar to '__builtin_clz', except the argument type is 'unsigned
- long'.
- -- Built-in Function: int __builtin_ctzl (unsigned long)
- Similar to '__builtin_ctz', except the argument type is 'unsigned
- long'.
- -- Built-in Function: int __builtin_clrsbl (long)
- Similar to '__builtin_clrsb', except the argument type is 'long'.
- -- Built-in Function: int __builtin_popcountl (unsigned long)
- Similar to '__builtin_popcount', except the argument type is
- 'unsigned long'.
- -- Built-in Function: int __builtin_parityl (unsigned long)
- Similar to '__builtin_parity', except the argument type is
- 'unsigned long'.
- -- Built-in Function: int __builtin_ffsll (long long)
- Similar to '__builtin_ffs', except the argument type is 'long
- long'.
- -- Built-in Function: int __builtin_clzll (unsigned long long)
- Similar to '__builtin_clz', except the argument type is 'unsigned
- long long'.
- -- Built-in Function: int __builtin_ctzll (unsigned long long)
- Similar to '__builtin_ctz', except the argument type is 'unsigned
- long long'.
- -- Built-in Function: int __builtin_clrsbll (long long)
- Similar to '__builtin_clrsb', except the argument type is 'long
- long'.
- -- Built-in Function: int __builtin_popcountll (unsigned long long)
- Similar to '__builtin_popcount', except the argument type is
- 'unsigned long long'.
- -- Built-in Function: int __builtin_parityll (unsigned long long)
- Similar to '__builtin_parity', except the argument type is
- 'unsigned long long'.
- -- Built-in Function: double __builtin_powi (double, int)
- Returns the first argument raised to the power of the second.
- Unlike the 'pow' function no guarantees about precision and
- rounding are made.
- -- Built-in Function: float __builtin_powif (float, int)
- Similar to '__builtin_powi', except the argument and return types
- are 'float'.
- -- Built-in Function: long double __builtin_powil (long double, int)
- Similar to '__builtin_powi', except the argument and return types
- are 'long double'.
- -- Built-in Function: uint16_t __builtin_bswap16 (uint16_t x)
- Returns X with the order of the bytes reversed; for example,
- '0xaabb' becomes '0xbbaa'. Byte here always means exactly 8 bits.
- -- Built-in Function: uint32_t __builtin_bswap32 (uint32_t x)
- Similar to '__builtin_bswap16', except the argument and return
- types are 32 bit.
- -- Built-in Function: uint64_t __builtin_bswap64 (uint64_t x)
- Similar to '__builtin_bswap32', except the argument and return
- types are 64 bit.
- -- Built-in Function: Pmode __builtin_extend_pointer (void * x)
- On targets where the user visible pointer size is smaller than the
- size of an actual hardware address this function returns the
- extended user pointer. Targets where this is true included ILP32
- mode on x86_64 or Aarch64. This function is mainly useful when
- writing inline assembly code.
- File: gcc.info, Node: Target Builtins, Next: Target Format Checks, Prev: Other Builtins, Up: C Extensions
- 6.59 Built-in Functions Specific to Particular Target Machines
- ==============================================================
- On some target machines, GCC supports many built-in functions specific
- to those machines. Generally these generate calls to specific machine
- instructions, but allow the compiler to schedule those calls.
- * Menu:
- * AArch64 Built-in Functions::
- * Alpha Built-in Functions::
- * Altera Nios II Built-in Functions::
- * ARC Built-in Functions::
- * ARC SIMD Built-in Functions::
- * ARM iWMMXt Built-in Functions::
- * ARM C Language Extensions (ACLE)::
- * ARM Floating Point Status and Control Intrinsics::
- * ARM ARMv8-M Security Extensions::
- * AVR Built-in Functions::
- * Blackfin Built-in Functions::
- * FR-V Built-in Functions::
- * MIPS DSP Built-in Functions::
- * MIPS Paired-Single Support::
- * MIPS Loongson Built-in Functions::
- * MIPS SIMD Architecture (MSA) Support::
- * Other MIPS Built-in Functions::
- * MSP430 Built-in Functions::
- * NDS32 Built-in Functions::
- * picoChip Built-in Functions::
- * PowerPC Built-in Functions::
- * PowerPC AltiVec/VSX Built-in Functions::
- * PowerPC Hardware Transactional Memory Built-in Functions::
- * PowerPC Atomic Memory Operation Functions::
- * RX Built-in Functions::
- * S/390 System z Built-in Functions::
- * SH Built-in Functions::
- * SPARC VIS Built-in Functions::
- * SPU Built-in Functions::
- * TI C6X Built-in Functions::
- * TILE-Gx Built-in Functions::
- * TILEPro Built-in Functions::
- * x86 Built-in Functions::
- * x86 transactional memory intrinsics::
- * x86 control-flow protection intrinsics::
- File: gcc.info, Node: AArch64 Built-in Functions, Next: Alpha Built-in Functions, Up: Target Builtins
- 6.59.1 AArch64 Built-in Functions
- ---------------------------------
- These built-in functions are available for the AArch64 family of
- processors.
- unsigned int __builtin_aarch64_get_fpcr ()
- void __builtin_aarch64_set_fpcr (unsigned int)
- unsigned int __builtin_aarch64_get_fpsr ()
- void __builtin_aarch64_set_fpsr (unsigned int)
- File: gcc.info, Node: Alpha Built-in Functions, Next: Altera Nios II Built-in Functions, Prev: AArch64 Built-in Functions, Up: Target Builtins
- 6.59.2 Alpha Built-in Functions
- -------------------------------
- These built-in functions are available for the Alpha family of
- processors, depending on the command-line switches used.
- The following built-in functions are always available. They all
- generate the machine instruction that is part of the name.
- long __builtin_alpha_implver (void)
- long __builtin_alpha_rpcc (void)
- long __builtin_alpha_amask (long)
- long __builtin_alpha_cmpbge (long, long)
- long __builtin_alpha_extbl (long, long)
- long __builtin_alpha_extwl (long, long)
- long __builtin_alpha_extll (long, long)
- long __builtin_alpha_extql (long, long)
- long __builtin_alpha_extwh (long, long)
- long __builtin_alpha_extlh (long, long)
- long __builtin_alpha_extqh (long, long)
- long __builtin_alpha_insbl (long, long)
- long __builtin_alpha_inswl (long, long)
- long __builtin_alpha_insll (long, long)
- long __builtin_alpha_insql (long, long)
- long __builtin_alpha_inswh (long, long)
- long __builtin_alpha_inslh (long, long)
- long __builtin_alpha_insqh (long, long)
- long __builtin_alpha_mskbl (long, long)
- long __builtin_alpha_mskwl (long, long)
- long __builtin_alpha_mskll (long, long)
- long __builtin_alpha_mskql (long, long)
- long __builtin_alpha_mskwh (long, long)
- long __builtin_alpha_msklh (long, long)
- long __builtin_alpha_mskqh (long, long)
- long __builtin_alpha_umulh (long, long)
- long __builtin_alpha_zap (long, long)
- long __builtin_alpha_zapnot (long, long)
- The following built-in functions are always with '-mmax' or '-mcpu=CPU'
- where CPU is 'pca56' or later. They all generate the machine
- instruction that is part of the name.
- long __builtin_alpha_pklb (long)
- long __builtin_alpha_pkwb (long)
- long __builtin_alpha_unpkbl (long)
- long __builtin_alpha_unpkbw (long)
- long __builtin_alpha_minub8 (long, long)
- long __builtin_alpha_minsb8 (long, long)
- long __builtin_alpha_minuw4 (long, long)
- long __builtin_alpha_minsw4 (long, long)
- long __builtin_alpha_maxub8 (long, long)
- long __builtin_alpha_maxsb8 (long, long)
- long __builtin_alpha_maxuw4 (long, long)
- long __builtin_alpha_maxsw4 (long, long)
- long __builtin_alpha_perr (long, long)
- The following built-in functions are always with '-mcix' or '-mcpu=CPU'
- where CPU is 'ev67' or later. They all generate the machine instruction
- that is part of the name.
- long __builtin_alpha_cttz (long)
- long __builtin_alpha_ctlz (long)
- long __builtin_alpha_ctpop (long)
- The following built-in functions are available on systems that use the
- OSF/1 PALcode. Normally they invoke the 'rduniq' and 'wruniq' PAL
- calls, but when invoked with '-mtls-kernel', they invoke 'rdval' and
- 'wrval'.
- void *__builtin_thread_pointer (void)
- void __builtin_set_thread_pointer (void *)
- File: gcc.info, Node: Altera Nios II Built-in Functions, Next: ARC Built-in Functions, Prev: Alpha Built-in Functions, Up: Target Builtins
- 6.59.3 Altera Nios II Built-in Functions
- ----------------------------------------
- These built-in functions are available for the Altera Nios II family of
- processors.
- The following built-in functions are always available. They all
- generate the machine instruction that is part of the name.
- int __builtin_ldbio (volatile const void *)
- int __builtin_ldbuio (volatile const void *)
- int __builtin_ldhio (volatile const void *)
- int __builtin_ldhuio (volatile const void *)
- int __builtin_ldwio (volatile const void *)
- void __builtin_stbio (volatile void *, int)
- void __builtin_sthio (volatile void *, int)
- void __builtin_stwio (volatile void *, int)
- void __builtin_sync (void)
- int __builtin_rdctl (int)
- int __builtin_rdprs (int, int)
- void __builtin_wrctl (int, int)
- void __builtin_flushd (volatile void *)
- void __builtin_flushda (volatile void *)
- int __builtin_wrpie (int);
- void __builtin_eni (int);
- int __builtin_ldex (volatile const void *)
- int __builtin_stex (volatile void *, int)
- int __builtin_ldsex (volatile const void *)
- int __builtin_stsex (volatile void *, int)
- The following built-in functions are always available. They all
- generate a Nios II Custom Instruction. The name of the function
- represents the types that the function takes and returns. The letter
- before the 'n' is the return type or void if absent. The 'n' represents
- the first parameter to all the custom instructions, the custom
- instruction number. The two letters after the 'n' represent the up to
- two parameters to the function.
- The letters represent the following data types:
- '<no letter>'
- 'void' for return type and no parameter for parameter types.
- 'i'
- 'int' for return type and parameter type
- 'f'
- 'float' for return type and parameter type
- 'p'
- 'void *' for return type and parameter type
- And the function names are:
- void __builtin_custom_n (void)
- void __builtin_custom_ni (int)
- void __builtin_custom_nf (float)
- void __builtin_custom_np (void *)
- void __builtin_custom_nii (int, int)
- void __builtin_custom_nif (int, float)
- void __builtin_custom_nip (int, void *)
- void __builtin_custom_nfi (float, int)
- void __builtin_custom_nff (float, float)
- void __builtin_custom_nfp (float, void *)
- void __builtin_custom_npi (void *, int)
- void __builtin_custom_npf (void *, float)
- void __builtin_custom_npp (void *, void *)
- int __builtin_custom_in (void)
- int __builtin_custom_ini (int)
- int __builtin_custom_inf (float)
- int __builtin_custom_inp (void *)
- int __builtin_custom_inii (int, int)
- int __builtin_custom_inif (int, float)
- int __builtin_custom_inip (int, void *)
- int __builtin_custom_infi (float, int)
- int __builtin_custom_inff (float, float)
- int __builtin_custom_infp (float, void *)
- int __builtin_custom_inpi (void *, int)
- int __builtin_custom_inpf (void *, float)
- int __builtin_custom_inpp (void *, void *)
- float __builtin_custom_fn (void)
- float __builtin_custom_fni (int)
- float __builtin_custom_fnf (float)
- float __builtin_custom_fnp (void *)
- float __builtin_custom_fnii (int, int)
- float __builtin_custom_fnif (int, float)
- float __builtin_custom_fnip (int, void *)
- float __builtin_custom_fnfi (float, int)
- float __builtin_custom_fnff (float, float)
- float __builtin_custom_fnfp (float, void *)
- float __builtin_custom_fnpi (void *, int)
- float __builtin_custom_fnpf (void *, float)
- float __builtin_custom_fnpp (void *, void *)
- void * __builtin_custom_pn (void)
- void * __builtin_custom_pni (int)
- void * __builtin_custom_pnf (float)
- void * __builtin_custom_pnp (void *)
- void * __builtin_custom_pnii (int, int)
- void * __builtin_custom_pnif (int, float)
- void * __builtin_custom_pnip (int, void *)
- void * __builtin_custom_pnfi (float, int)
- void * __builtin_custom_pnff (float, float)
- void * __builtin_custom_pnfp (float, void *)
- void * __builtin_custom_pnpi (void *, int)
- void * __builtin_custom_pnpf (void *, float)
- void * __builtin_custom_pnpp (void *, void *)
- File: gcc.info, Node: ARC Built-in Functions, Next: ARC SIMD Built-in Functions, Prev: Altera Nios II Built-in Functions, Up: Target Builtins
- 6.59.4 ARC Built-in Functions
- -----------------------------
- The following built-in functions are provided for ARC targets. The
- built-ins generate the corresponding assembly instructions. In the
- examples given below, the generated code often requires an operand or
- result to be in a register. Where necessary further code will be
- generated to ensure this is true, but for brevity this is not described
- in each case.
- _Note:_ Using a built-in to generate an instruction not supported by a
- target may cause problems. At present the compiler is not guaranteed to
- detect such misuse, and as a result an internal compiler error may be
- generated.
- -- Built-in Function: int __builtin_arc_aligned (void *VAL, int
- ALIGNVAL)
- Return 1 if VAL is known to have the byte alignment given by
- ALIGNVAL, otherwise return 0. Note that this is different from
- __alignof__(*(char *)VAL) >= alignval
- because __alignof__ sees only the type of the dereference, whereas
- __builtin_arc_align uses alignment information from the pointer as
- well as from the pointed-to type. The information available will
- depend on optimization level.
- -- Built-in Function: void __builtin_arc_brk (void)
- Generates
- brk
- -- Built-in Function: unsigned int __builtin_arc_core_read (unsigned
- int REGNO)
- The operand is the number of a register to be read. Generates:
- mov DEST, rREGNO
- where the value in DEST will be the result returned from the
- built-in.
- -- Built-in Function: void __builtin_arc_core_write (unsigned int
- REGNO, unsigned int VAL)
- The first operand is the number of a register to be written, the
- second operand is a compile time constant to write into that
- register. Generates:
- mov rREGNO, VAL
- -- Built-in Function: int __builtin_arc_divaw (int A, int B)
- Only available if either '-mcpu=ARC700' or '-meA' is set.
- Generates:
- divaw DEST, A, B
- where the value in DEST will be the result returned from the
- built-in.
- -- Built-in Function: void __builtin_arc_flag (unsigned int A)
- Generates
- flag A
- -- Built-in Function: unsigned int __builtin_arc_lr (unsigned int AUXR)
- The operand, AUXV, is the address of an auxiliary register and must
- be a compile time constant. Generates:
- lr DEST, [AUXR]
- Where the value in DEST will be the result returned from the
- built-in.
- -- Built-in Function: void __builtin_arc_mul64 (int A, int B)
- Only available with '-mmul64'. Generates:
- mul64 A, B
- -- Built-in Function: void __builtin_arc_mulu64 (unsigned int A,
- unsigned int B)
- Only available with '-mmul64'. Generates:
- mulu64 A, B
- -- Built-in Function: void __builtin_arc_nop (void)
- Generates:
- nop
- -- Built-in Function: int __builtin_arc_norm (int SRC)
- Only valid if the 'norm' instruction is available through the
- '-mnorm' option or by default with '-mcpu=ARC700'. Generates:
- norm DEST, SRC
- Where the value in DEST will be the result returned from the
- built-in.
- -- Built-in Function: short int __builtin_arc_normw (short int SRC)
- Only valid if the 'normw' instruction is available through the
- '-mnorm' option or by default with '-mcpu=ARC700'. Generates:
- normw DEST, SRC
- Where the value in DEST will be the result returned from the
- built-in.
- -- Built-in Function: void __builtin_arc_rtie (void)
- Generates:
- rtie
- -- Built-in Function: void __builtin_arc_sleep (int A
- Generates:
- sleep A
- -- Built-in Function: void __builtin_arc_sr (unsigned int AUXR,
- unsigned int VAL)
- The first argument, AUXV, is the address of an auxiliary register,
- the second argument, VAL, is a compile time constant to be written
- to the register. Generates:
- sr AUXR, [VAL]
- -- Built-in Function: int __builtin_arc_swap (int SRC)
- Only valid with '-mswap'. Generates:
- swap DEST, SRC
- Where the value in DEST will be the result returned from the
- built-in.
- -- Built-in Function: void __builtin_arc_swi (void)
- Generates:
- swi
- -- Built-in Function: void __builtin_arc_sync (void)
- Only available with '-mcpu=ARC700'. Generates:
- sync
- -- Built-in Function: void __builtin_arc_trap_s (unsigned int C)
- Only available with '-mcpu=ARC700'. Generates:
- trap_s C
- -- Built-in Function: void __builtin_arc_unimp_s (void)
- Only available with '-mcpu=ARC700'. Generates:
- unimp_s
- The instructions generated by the following builtins are not considered
- as candidates for scheduling. They are not moved around by the compiler
- during scheduling, and thus can be expected to appear where they are put
- in the C code:
- __builtin_arc_brk()
- __builtin_arc_core_read()
- __builtin_arc_core_write()
- __builtin_arc_flag()
- __builtin_arc_lr()
- __builtin_arc_sleep()
- __builtin_arc_sr()
- __builtin_arc_swi()
- File: gcc.info, Node: ARC SIMD Built-in Functions, Next: ARM iWMMXt Built-in Functions, Prev: ARC Built-in Functions, Up: Target Builtins
- 6.59.5 ARC SIMD Built-in Functions
- ----------------------------------
- SIMD builtins provided by the compiler can be used to generate the
- vector instructions. This section describes the available builtins and
- their usage in programs. With the '-msimd' option, the compiler
- provides 128-bit vector types, which can be specified using the
- 'vector_size' attribute. The header file 'arc-simd.h' can be included
- to use the following predefined types:
- typedef int __v4si __attribute__((vector_size(16)));
- typedef short __v8hi __attribute__((vector_size(16)));
- These types can be used to define 128-bit variables. The built-in
- functions listed in the following section can be used on these variables
- to generate the vector operations.
- For all builtins, '__builtin_arc_SOMEINSN', the header file
- 'arc-simd.h' also provides equivalent macros called '_SOMEINSN' that can
- be used for programming ease and improved readability. The following
- macros for DMA control are also provided:
- #define _setup_dma_in_channel_reg _vdiwr
- #define _setup_dma_out_channel_reg _vdowr
- The following is a complete list of all the SIMD built-ins provided for
- ARC, grouped by calling signature.
- The following take two '__v8hi' arguments and return a '__v8hi' result:
- __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vand (__v8hi, __v8hi)
- __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
- __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
- __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
- __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
- __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
- __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
- __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
- __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
- __v8hi __builtin_arc_vor (__v8hi, __v8hi)
- __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
- __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
- __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
- __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
- __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
- The following take one '__v8hi' and one 'int' argument and return a
- '__v8hi' result:
- __v8hi __builtin_arc_vbaddw (__v8hi, int)
- __v8hi __builtin_arc_vbmaxw (__v8hi, int)
- __v8hi __builtin_arc_vbminw (__v8hi, int)
- __v8hi __builtin_arc_vbmulaw (__v8hi, int)
- __v8hi __builtin_arc_vbmulfw (__v8hi, int)
- __v8hi __builtin_arc_vbmulw (__v8hi, int)
- __v8hi __builtin_arc_vbrsubw (__v8hi, int)
- __v8hi __builtin_arc_vbsubw (__v8hi, int)
- The following take one '__v8hi' argument and one 'int' argument which
- must be a 3-bit compile time constant indicating a register number
- I0-I7. They return a '__v8hi' result.
- __v8hi __builtin_arc_vasrw (__v8hi, const int)
- __v8hi __builtin_arc_vsr8 (__v8hi, const int)
- __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
- The following take one '__v8hi' argument and one 'int' argument which
- must be a 6-bit compile time constant. They return a '__v8hi' result.
- __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
- __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
- __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
- __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
- __v8hi __builtin_arc_vasrwi (__v8hi, const int)
- __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
- __v8hi __builtin_arc_vsr8i (__v8hi, const int)
- The following take one '__v8hi' argument and one 'int' argument which
- must be a 8-bit compile time constant. They return a '__v8hi' result.
- __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
- __v8hi __builtin_arc_vmvaw (__v8hi, const int)
- __v8hi __builtin_arc_vmvw (__v8hi, const int)
- __v8hi __builtin_arc_vmvzw (__v8hi, const int)
- The following take two 'int' arguments, the second of which which must
- be a 8-bit compile time constant. They return a '__v8hi' result:
- __v8hi __builtin_arc_vmovaw (int, const int)
- __v8hi __builtin_arc_vmovw (int, const int)
- __v8hi __builtin_arc_vmovzw (int, const int)
- The following take a single '__v8hi' argument and return a '__v8hi'
- result:
- __v8hi __builtin_arc_vabsaw (__v8hi)
- __v8hi __builtin_arc_vabsw (__v8hi)
- __v8hi __builtin_arc_vaddsuw (__v8hi)
- __v8hi __builtin_arc_vexch1 (__v8hi)
- __v8hi __builtin_arc_vexch2 (__v8hi)
- __v8hi __builtin_arc_vexch4 (__v8hi)
- __v8hi __builtin_arc_vsignw (__v8hi)
- __v8hi __builtin_arc_vupbaw (__v8hi)
- __v8hi __builtin_arc_vupbw (__v8hi)
- __v8hi __builtin_arc_vupsbaw (__v8hi)
- __v8hi __builtin_arc_vupsbw (__v8hi)
- The following take two 'int' arguments and return no result:
- void __builtin_arc_vdirun (int, int)
- void __builtin_arc_vdorun (int, int)
- The following take two 'int' arguments and return no result. The first
- argument must a 3-bit compile time constant indicating one of the
- DR0-DR7 DMA setup channels:
- void __builtin_arc_vdiwr (const int, int)
- void __builtin_arc_vdowr (const int, int)
- The following take an 'int' argument and return no result:
- void __builtin_arc_vendrec (int)
- void __builtin_arc_vrec (int)
- void __builtin_arc_vrecrun (int)
- void __builtin_arc_vrun (int)
- The following take a '__v8hi' argument and two 'int' arguments and
- return a '__v8hi' result. The second argument must be a 3-bit compile
- time constants, indicating one the registers I0-I7, and the third
- argument must be an 8-bit compile time constant.
- _Note:_ Although the equivalent hardware instructions do not take an
- SIMD register as an operand, these builtins overwrite the relevant bits
- of the '__v8hi' register provided as the first argument with the value
- loaded from the '[Ib, u8]' location in the SDM.
- __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
- __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
- __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
- __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
- The following take two 'int' arguments and return a '__v8hi' result.
- The first argument must be a 3-bit compile time constants, indicating
- one the registers I0-I7, and the second argument must be an 8-bit
- compile time constant.
- __v8hi __builtin_arc_vld128 (const int, const int)
- __v8hi __builtin_arc_vld64w (const int, const int)
- The following take a '__v8hi' argument and two 'int' arguments and
- return no result. The second argument must be a 3-bit compile time
- constants, indicating one the registers I0-I7, and the third argument
- must be an 8-bit compile time constant.
- void __builtin_arc_vst128 (__v8hi, const int, const int)
- void __builtin_arc_vst64 (__v8hi, const int, const int)
- The following take a '__v8hi' argument and three 'int' arguments and
- return no result. The second argument must be a 3-bit compile-time
- constant, identifying the 16-bit sub-register to be stored, the third
- argument must be a 3-bit compile time constants, indicating one the
- registers I0-I7, and the fourth argument must be an 8-bit compile time
- constant.
- void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
- void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
- File: gcc.info, Node: ARM iWMMXt Built-in Functions, Next: ARM C Language Extensions (ACLE), Prev: ARC SIMD Built-in Functions, Up: Target Builtins
- 6.59.6 ARM iWMMXt Built-in Functions
- ------------------------------------
- These built-in functions are available for the ARM family of processors
- when the '-mcpu=iwmmxt' switch is used:
- typedef int v2si __attribute__ ((vector_size (8)));
- typedef short v4hi __attribute__ ((vector_size (8)));
- typedef char v8qi __attribute__ ((vector_size (8)));
- int __builtin_arm_getwcgr0 (void)
- void __builtin_arm_setwcgr0 (int)
- int __builtin_arm_getwcgr1 (void)
- void __builtin_arm_setwcgr1 (int)
- int __builtin_arm_getwcgr2 (void)
- void __builtin_arm_setwcgr2 (int)
- int __builtin_arm_getwcgr3 (void)
- void __builtin_arm_setwcgr3 (int)
- int __builtin_arm_textrmsb (v8qi, int)
- int __builtin_arm_textrmsh (v4hi, int)
- int __builtin_arm_textrmsw (v2si, int)
- int __builtin_arm_textrmub (v8qi, int)
- int __builtin_arm_textrmuh (v4hi, int)
- int __builtin_arm_textrmuw (v2si, int)
- v8qi __builtin_arm_tinsrb (v8qi, int, int)
- v4hi __builtin_arm_tinsrh (v4hi, int, int)
- v2si __builtin_arm_tinsrw (v2si, int, int)
- long long __builtin_arm_tmia (long long, int, int)
- long long __builtin_arm_tmiabb (long long, int, int)
- long long __builtin_arm_tmiabt (long long, int, int)
- long long __builtin_arm_tmiaph (long long, int, int)
- long long __builtin_arm_tmiatb (long long, int, int)
- long long __builtin_arm_tmiatt (long long, int, int)
- int __builtin_arm_tmovmskb (v8qi)
- int __builtin_arm_tmovmskh (v4hi)
- int __builtin_arm_tmovmskw (v2si)
- long long __builtin_arm_waccb (v8qi)
- long long __builtin_arm_wacch (v4hi)
- long long __builtin_arm_waccw (v2si)
- v8qi __builtin_arm_waddb (v8qi, v8qi)
- v8qi __builtin_arm_waddbss (v8qi, v8qi)
- v8qi __builtin_arm_waddbus (v8qi, v8qi)
- v4hi __builtin_arm_waddh (v4hi, v4hi)
- v4hi __builtin_arm_waddhss (v4hi, v4hi)
- v4hi __builtin_arm_waddhus (v4hi, v4hi)
- v2si __builtin_arm_waddw (v2si, v2si)
- v2si __builtin_arm_waddwss (v2si, v2si)
- v2si __builtin_arm_waddwus (v2si, v2si)
- v8qi __builtin_arm_walign (v8qi, v8qi, int)
- long long __builtin_arm_wand(long long, long long)
- long long __builtin_arm_wandn (long long, long long)
- v8qi __builtin_arm_wavg2b (v8qi, v8qi)
- v8qi __builtin_arm_wavg2br (v8qi, v8qi)
- v4hi __builtin_arm_wavg2h (v4hi, v4hi)
- v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
- v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
- v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
- v2si __builtin_arm_wcmpeqw (v2si, v2si)
- v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
- v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
- v2si __builtin_arm_wcmpgtsw (v2si, v2si)
- v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
- v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
- v2si __builtin_arm_wcmpgtuw (v2si, v2si)
- long long __builtin_arm_wmacs (long long, v4hi, v4hi)
- long long __builtin_arm_wmacsz (v4hi, v4hi)
- long long __builtin_arm_wmacu (long long, v4hi, v4hi)
- long long __builtin_arm_wmacuz (v4hi, v4hi)
- v4hi __builtin_arm_wmadds (v4hi, v4hi)
- v4hi __builtin_arm_wmaddu (v4hi, v4hi)
- v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
- v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
- v2si __builtin_arm_wmaxsw (v2si, v2si)
- v8qi __builtin_arm_wmaxub (v8qi, v8qi)
- v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
- v2si __builtin_arm_wmaxuw (v2si, v2si)
- v8qi __builtin_arm_wminsb (v8qi, v8qi)
- v4hi __builtin_arm_wminsh (v4hi, v4hi)
- v2si __builtin_arm_wminsw (v2si, v2si)
- v8qi __builtin_arm_wminub (v8qi, v8qi)
- v4hi __builtin_arm_wminuh (v4hi, v4hi)
- v2si __builtin_arm_wminuw (v2si, v2si)
- v4hi __builtin_arm_wmulsm (v4hi, v4hi)
- v4hi __builtin_arm_wmulul (v4hi, v4hi)
- v4hi __builtin_arm_wmulum (v4hi, v4hi)
- long long __builtin_arm_wor (long long, long long)
- v2si __builtin_arm_wpackdss (long long, long long)
- v2si __builtin_arm_wpackdus (long long, long long)
- v8qi __builtin_arm_wpackhss (v4hi, v4hi)
- v8qi __builtin_arm_wpackhus (v4hi, v4hi)
- v4hi __builtin_arm_wpackwss (v2si, v2si)
- v4hi __builtin_arm_wpackwus (v2si, v2si)
- long long __builtin_arm_wrord (long long, long long)
- long long __builtin_arm_wrordi (long long, int)
- v4hi __builtin_arm_wrorh (v4hi, long long)
- v4hi __builtin_arm_wrorhi (v4hi, int)
- v2si __builtin_arm_wrorw (v2si, long long)
- v2si __builtin_arm_wrorwi (v2si, int)
- v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
- v2si __builtin_arm_wsadbz (v8qi, v8qi)
- v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
- v2si __builtin_arm_wsadhz (v4hi, v4hi)
- v4hi __builtin_arm_wshufh (v4hi, int)
- long long __builtin_arm_wslld (long long, long long)
- long long __builtin_arm_wslldi (long long, int)
- v4hi __builtin_arm_wsllh (v4hi, long long)
- v4hi __builtin_arm_wsllhi (v4hi, int)
- v2si __builtin_arm_wsllw (v2si, long long)
- v2si __builtin_arm_wsllwi (v2si, int)
- long long __builtin_arm_wsrad (long long, long long)
- long long __builtin_arm_wsradi (long long, int)
- v4hi __builtin_arm_wsrah (v4hi, long long)
- v4hi __builtin_arm_wsrahi (v4hi, int)
- v2si __builtin_arm_wsraw (v2si, long long)
- v2si __builtin_arm_wsrawi (v2si, int)
- long long __builtin_arm_wsrld (long long, long long)
- long long __builtin_arm_wsrldi (long long, int)
- v4hi __builtin_arm_wsrlh (v4hi, long long)
- v4hi __builtin_arm_wsrlhi (v4hi, int)
- v2si __builtin_arm_wsrlw (v2si, long long)
- v2si __builtin_arm_wsrlwi (v2si, int)
- v8qi __builtin_arm_wsubb (v8qi, v8qi)
- v8qi __builtin_arm_wsubbss (v8qi, v8qi)
- v8qi __builtin_arm_wsubbus (v8qi, v8qi)
- v4hi __builtin_arm_wsubh (v4hi, v4hi)
- v4hi __builtin_arm_wsubhss (v4hi, v4hi)
- v4hi __builtin_arm_wsubhus (v4hi, v4hi)
- v2si __builtin_arm_wsubw (v2si, v2si)
- v2si __builtin_arm_wsubwss (v2si, v2si)
- v2si __builtin_arm_wsubwus (v2si, v2si)
- v4hi __builtin_arm_wunpckehsb (v8qi)
- v2si __builtin_arm_wunpckehsh (v4hi)
- long long __builtin_arm_wunpckehsw (v2si)
- v4hi __builtin_arm_wunpckehub (v8qi)
- v2si __builtin_arm_wunpckehuh (v4hi)
- long long __builtin_arm_wunpckehuw (v2si)
- v4hi __builtin_arm_wunpckelsb (v8qi)
- v2si __builtin_arm_wunpckelsh (v4hi)
- long long __builtin_arm_wunpckelsw (v2si)
- v4hi __builtin_arm_wunpckelub (v8qi)
- v2si __builtin_arm_wunpckeluh (v4hi)
- long long __builtin_arm_wunpckeluw (v2si)
- v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
- v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
- v2si __builtin_arm_wunpckihw (v2si, v2si)
- v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
- v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
- v2si __builtin_arm_wunpckilw (v2si, v2si)
- long long __builtin_arm_wxor (long long, long long)
- long long __builtin_arm_wzero ()
- File: gcc.info, Node: ARM C Language Extensions (ACLE), Next: ARM Floating Point Status and Control Intrinsics, Prev: ARM iWMMXt Built-in Functions, Up: Target Builtins
- 6.59.7 ARM C Language Extensions (ACLE)
- ---------------------------------------
- GCC implements extensions for C as described in the ARM C Language
- Extensions (ACLE) specification, which can be found at
- <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>.
- As a part of ACLE, GCC implements extensions for Advanced SIMD as
- described in the ARM C Language Extensions Specification. The complete
- list of Advanced SIMD intrinsics can be found at
- <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf>.
- The built-in intrinsics for the Advanced SIMD extension are available
- when NEON is enabled.
- Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully.
- Both back ends support CRC32 intrinsics and the ARM back end supports
- the Coprocessor intrinsics, all from 'arm_acle.h'. The ARM back end's
- 16-bit floating-point Advanced SIMD intrinsics currently comply to ACLE
- v1.1. AArch64's back end does not have support for 16-bit floating
- point Advanced SIMD intrinsics yet.
- See *note ARM Options:: and *note AArch64 Options:: for more
- information on the availability of extensions.
- File: gcc.info, Node: ARM Floating Point Status and Control Intrinsics, Next: ARM ARMv8-M Security Extensions, Prev: ARM C Language Extensions (ACLE), Up: Target Builtins
- 6.59.8 ARM Floating Point Status and Control Intrinsics
- -------------------------------------------------------
- These built-in functions are available for the ARM family of processors
- with floating-point unit.
- unsigned int __builtin_arm_get_fpscr ()
- void __builtin_arm_set_fpscr (unsigned int)
- File: gcc.info, Node: ARM ARMv8-M Security Extensions, Next: AVR Built-in Functions, Prev: ARM Floating Point Status and Control Intrinsics, Up: Target Builtins
- 6.59.9 ARM ARMv8-M Security Extensions
- --------------------------------------
- GCC implements the ARMv8-M Security Extensions as described in the
- ARMv8-M Security Extensions: Requirements on Development Tools
- Engineering Specification, which can be found at
- <http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf>.
- As part of the Security Extensions GCC implements two new function
- attributes: 'cmse_nonsecure_entry' and 'cmse_nonsecure_call'.
- As part of the Security Extensions GCC implements the intrinsics below.
- FPTR is used here to mean any function pointer type.
- cmse_address_info_t cmse_TT (void *)
- cmse_address_info_t cmse_TT_fptr (FPTR)
- cmse_address_info_t cmse_TTT (void *)
- cmse_address_info_t cmse_TTT_fptr (FPTR)
- cmse_address_info_t cmse_TTA (void *)
- cmse_address_info_t cmse_TTA_fptr (FPTR)
- cmse_address_info_t cmse_TTAT (void *)
- cmse_address_info_t cmse_TTAT_fptr (FPTR)
- void * cmse_check_address_range (void *, size_t, int)
- typeof(p) cmse_nsfptr_create (FPTR p)
- intptr_t cmse_is_nsfptr (FPTR)
- int cmse_nonsecure_caller (void)
- File: gcc.info, Node: AVR Built-in Functions, Next: Blackfin Built-in Functions, Prev: ARM ARMv8-M Security Extensions, Up: Target Builtins
- 6.59.10 AVR Built-in Functions
- ------------------------------
- For each built-in function for AVR, there is an equally named, uppercase
- built-in macro defined. That way users can easily query if or if not a
- specific built-in is implemented or not. For example, if
- '__builtin_avr_nop' is available the macro '__BUILTIN_AVR_NOP' is
- defined to '1' and undefined otherwise.
- 'void __builtin_avr_nop (void)'
- 'void __builtin_avr_sei (void)'
- 'void __builtin_avr_cli (void)'
- 'void __builtin_avr_sleep (void)'
- 'void __builtin_avr_wdr (void)'
- 'unsigned char __builtin_avr_swap (unsigned char)'
- 'unsigned int __builtin_avr_fmul (unsigned char, unsigned char)'
- 'int __builtin_avr_fmuls (char, char)'
- 'int __builtin_avr_fmulsu (char, unsigned char)'
- These built-in functions map to the respective machine instruction,
- i.e. 'nop', 'sei', 'cli', 'sleep', 'wdr', 'swap', 'fmul', 'fmuls'
- resp. 'fmulsu'. The three 'fmul*' built-ins are implemented as
- library call if no hardware multiplier is available.
- 'void __builtin_avr_delay_cycles (unsigned long ticks)'
- Delay execution for TICKS cycles. Note that this built-in does not
- take into account the effect of interrupts that might increase
- delay time. TICKS must be a compile-time integer constant; delays
- with a variable number of cycles are not supported.
- 'char __builtin_avr_flash_segment (const __memx void*)'
- This built-in takes a byte address to the 24-bit *note address
- space: AVR Named Address Spaces. '__memx' and returns the number of
- the flash segment (the 64 KiB chunk) where the address points to.
- Counting starts at '0'. If the address does not point to flash
- memory, return '-1'.
- 'uint8_t __builtin_avr_insert_bits (uint32_t map, uint8_t bits, uint8_t val)'
- Insert bits from BITS into VAL and return the resulting value. The
- nibbles of MAP determine how the insertion is performed: Let X be
- the N-th nibble of MAP
- 1. If X is '0xf', then the N-th bit of VAL is returned unaltered.
- 2. If X is in the range 0...7, then the N-th result bit is set to
- the X-th bit of BITS
- 3. If X is in the range 8...'0xe', then the N-th result bit is
- undefined.
- One typical use case for this built-in is adjusting input and
- output values to non-contiguous port layouts. Some examples:
- // same as val, bits is unused
- __builtin_avr_insert_bits (0xffffffff, bits, val)
- // same as bits, val is unused
- __builtin_avr_insert_bits (0x76543210, bits, val)
- // same as rotating bits by 4
- __builtin_avr_insert_bits (0x32107654, bits, 0)
- // high nibble of result is the high nibble of val
- // low nibble of result is the low nibble of bits
- __builtin_avr_insert_bits (0xffff3210, bits, val)
- // reverse the bit order of bits
- __builtin_avr_insert_bits (0x01234567, bits, 0)
- 'void __builtin_avr_nops (unsigned count)'
- Insert COUNT 'NOP' instructions. The number of instructions must
- be a compile-time integer constant.
- There are many more AVR-specific built-in functions that are used to
- implement the ISO/IEC TR 18037 "Embedded C" fixed-point functions of
- section 7.18a.6. You don't need to use these built-ins directly.
- Instead, use the declarations as supplied by the 'stdfix.h' header with
- GNU-C99:
- #include <stdfix.h>
- // Re-interpret the bit representation of unsigned 16-bit
- // integer UVAL as Q-format 0.16 value.
- unsigned fract get_bits (uint_ur_t uval)
- {
- return urbits (uval);
- }
- File: gcc.info, Node: Blackfin Built-in Functions, Next: FR-V Built-in Functions, Prev: AVR Built-in Functions, Up: Target Builtins
- 6.59.11 Blackfin Built-in Functions
- -----------------------------------
- Currently, there are two Blackfin-specific built-in functions. These
- are used for generating 'CSYNC' and 'SSYNC' machine insns without using
- inline assembly; by using these built-in functions the compiler can
- automatically add workarounds for hardware errata involving these
- instructions. These functions are named as follows:
- void __builtin_bfin_csync (void)
- void __builtin_bfin_ssync (void)
- File: gcc.info, Node: FR-V Built-in Functions, Next: MIPS DSP Built-in Functions, Prev: Blackfin Built-in Functions, Up: Target Builtins
- 6.59.12 FR-V Built-in Functions
- -------------------------------
- GCC provides many FR-V-specific built-in functions. In general, these
- functions are intended to be compatible with those described by 'FR-V
- Family, Softune C/C++ Compiler Manual (V6), Fujitsu Semiconductor'. The
- two exceptions are '__MDUNPACKH' and '__MBTOHE', the GCC forms of which
- pass 128-bit values by pointer rather than by value.
- Most of the functions are named after specific FR-V instructions. Such
- functions are said to be "directly mapped" and are summarized here in
- tabular form.
- * Menu:
- * Argument Types::
- * Directly-mapped Integer Functions::
- * Directly-mapped Media Functions::
- * Raw read/write Functions::
- * Other Built-in Functions::
- File: gcc.info, Node: Argument Types, Next: Directly-mapped Integer Functions, Up: FR-V Built-in Functions
- 6.59.12.1 Argument Types
- ........................
- The arguments to the built-in functions can be divided into three
- groups: register numbers, compile-time constants and run-time values.
- In order to make this classification clear at a glance, the arguments
- and return values are given the following pseudo types:
- Pseudo type Real C type Constant? Description
- 'uh' 'unsigned short' No an unsigned halfword
- 'uw1' 'unsigned int' No an unsigned word
- 'sw1' 'int' No a signed word
- 'uw2' 'unsigned long long' No an unsigned doubleword
- 'sw2' 'long long' No a signed doubleword
- 'const' 'int' Yes an integer constant
- 'acc' 'int' Yes an ACC register number
- 'iacc' 'int' Yes an IACC register number
- These pseudo types are not defined by GCC, they are simply a notational
- convenience used in this manual.
- Arguments of type 'uh', 'uw1', 'sw1', 'uw2' and 'sw2' are evaluated at
- run time. They correspond to register operands in the underlying FR-V
- instructions.
- 'const' arguments represent immediate operands in the underlying FR-V
- instructions. They must be compile-time constants.
- 'acc' arguments are evaluated at compile time and specify the number of
- an accumulator register. For example, an 'acc' argument of 2 selects
- the ACC2 register.
- 'iacc' arguments are similar to 'acc' arguments but specify the number
- of an IACC register. See *note Other Built-in Functions:: for more
- details.
- File: gcc.info, Node: Directly-mapped Integer Functions, Next: Directly-mapped Media Functions, Prev: Argument Types, Up: FR-V Built-in Functions
- 6.59.12.2 Directly-Mapped Integer Functions
- ...........................................
- The functions listed below map directly to FR-V I-type instructions.
- Function prototype Example usage Assembly output
- 'sw1 __ADDSS (sw1, sw1)' 'C = __ADDSS (A, B)' 'ADDSS A,B,C'
- 'sw1 __SCAN (sw1, sw1)' 'C = __SCAN (A, B)' 'SCAN A,B,C'
- 'sw1 __SCUTSS (sw1)' 'B = __SCUTSS (A)' 'SCUTSS A,B'
- 'sw1 __SLASS (sw1, sw1)' 'C = __SLASS (A, B)' 'SLASS A,B,C'
- 'void __SMASS (sw1, sw1)' '__SMASS (A, B)' 'SMASS A,B'
- 'void __SMSSS (sw1, sw1)' '__SMSSS (A, B)' 'SMSSS A,B'
- 'void __SMU (sw1, sw1)' '__SMU (A, B)' 'SMU A,B'
- 'sw2 __SMUL (sw1, sw1)' 'C = __SMUL (A, B)' 'SMUL A,B,C'
- 'sw1 __SUBSS (sw1, sw1)' 'C = __SUBSS (A, B)' 'SUBSS A,B,C'
- 'uw2 __UMUL (uw1, uw1)' 'C = __UMUL (A, B)' 'UMUL A,B,C'
- File: gcc.info, Node: Directly-mapped Media Functions, Next: Raw read/write Functions, Prev: Directly-mapped Integer Functions, Up: FR-V Built-in Functions
- 6.59.12.3 Directly-Mapped Media Functions
- .........................................
- The functions listed below map directly to FR-V M-type instructions.
- Function prototype Example usage Assembly output
- 'uw1 __MABSHS (sw1)' 'B = __MABSHS (A)' 'MABSHS A,B'
- 'void __MADDACCS (acc, acc)' '__MADDACCS (B, A)' 'MADDACCS A,B'
- 'sw1 __MADDHSS (sw1, sw1)' 'C = __MADDHSS (A, 'MADDHSS A,B,C'
- B)'
- 'uw1 __MADDHUS (uw1, uw1)' 'C = __MADDHUS (A, 'MADDHUS A,B,C'
- B)'
- 'uw1 __MAND (uw1, uw1)' 'C = __MAND (A, B)' 'MAND A,B,C'
- 'void __MASACCS (acc, acc)' '__MASACCS (B, A)' 'MASACCS A,B'
- 'uw1 __MAVEH (uw1, uw1)' 'C = __MAVEH (A, B)' 'MAVEH A,B,C'
- 'uw2 __MBTOH (uw1)' 'B = __MBTOH (A)' 'MBTOH A,B'
- 'void __MBTOHE (uw1 *, uw1)' '__MBTOHE (&B, A)' 'MBTOHE A,B'
- 'void __MCLRACC (acc)' '__MCLRACC (A)' 'MCLRACC A'
- 'void __MCLRACCA (void)' '__MCLRACCA ()' 'MCLRACCA'
- 'uw1 __Mcop1 (uw1, uw1)' 'C = __Mcop1 (A, B)' 'Mcop1 A,B,C'
- 'uw1 __Mcop2 (uw1, uw1)' 'C = __Mcop2 (A, B)' 'Mcop2 A,B,C'
- 'uw1 __MCPLHI (uw2, const)' 'C = __MCPLHI (A, B)' 'MCPLHI A,#B,C'
- 'uw1 __MCPLI (uw2, const)' 'C = __MCPLI (A, B)' 'MCPLI A,#B,C'
- 'void __MCPXIS (acc, sw1, '__MCPXIS (C, A, B)' 'MCPXIS A,B,C'
- sw1)'
- 'void __MCPXIU (acc, uw1, '__MCPXIU (C, A, B)' 'MCPXIU A,B,C'
- uw1)'
- 'void __MCPXRS (acc, sw1, '__MCPXRS (C, A, B)' 'MCPXRS A,B,C'
- sw1)'
- 'void __MCPXRU (acc, uw1, '__MCPXRU (C, A, B)' 'MCPXRU A,B,C'
- uw1)'
- 'uw1 __MCUT (acc, uw1)' 'C = __MCUT (A, B)' 'MCUT A,B,C'
- 'uw1 __MCUTSS (acc, sw1)' 'C = __MCUTSS (A, B)' 'MCUTSS A,B,C'
- 'void __MDADDACCS (acc, acc)' '__MDADDACCS (B, A)' 'MDADDACCS A,B'
- 'void __MDASACCS (acc, acc)' '__MDASACCS (B, A)' 'MDASACCS A,B'
- 'uw2 __MDCUTSSI (acc, const)' 'C = __MDCUTSSI (A, 'MDCUTSSI
- B)' A,#B,C'
- 'uw2 __MDPACKH (uw2, uw2)' 'C = __MDPACKH (A, 'MDPACKH A,B,C'
- B)'
- 'uw2 __MDROTLI (uw2, const)' 'C = __MDROTLI (A, 'MDROTLI
- B)' A,#B,C'
- 'void __MDSUBACCS (acc, acc)' '__MDSUBACCS (B, A)' 'MDSUBACCS A,B'
- 'void __MDUNPACKH (uw1 *, '__MDUNPACKH (&B, A)' 'MDUNPACKH A,B'
- uw2)'
- 'uw2 __MEXPDHD (uw1, const)' 'C = __MEXPDHD (A, 'MEXPDHD
- B)' A,#B,C'
- 'uw1 __MEXPDHW (uw1, const)' 'C = __MEXPDHW (A, 'MEXPDHW
- B)' A,#B,C'
- 'uw1 __MHDSETH (uw1, const)' 'C = __MHDSETH (A, 'MHDSETH
- B)' A,#B,C'
- 'sw1 __MHDSETS (const)' 'B = __MHDSETS (A)' 'MHDSETS #A,B'
- 'uw1 __MHSETHIH (uw1, const)' 'B = __MHSETHIH (B, 'MHSETHIH #A,B'
- A)'
- 'sw1 __MHSETHIS (sw1, const)' 'B = __MHSETHIS (B, 'MHSETHIS #A,B'
- A)'
- 'uw1 __MHSETLOH (uw1, const)' 'B = __MHSETLOH (B, 'MHSETLOH #A,B'
- A)'
- 'sw1 __MHSETLOS (sw1, const)' 'B = __MHSETLOS (B, 'MHSETLOS #A,B'
- A)'
- 'uw1 __MHTOB (uw2)' 'B = __MHTOB (A)' 'MHTOB A,B'
- 'void __MMACHS (acc, sw1, '__MMACHS (C, A, B)' 'MMACHS A,B,C'
- sw1)'
- 'void __MMACHU (acc, uw1, '__MMACHU (C, A, B)' 'MMACHU A,B,C'
- uw1)'
- 'void __MMRDHS (acc, sw1, '__MMRDHS (C, A, B)' 'MMRDHS A,B,C'
- sw1)'
- 'void __MMRDHU (acc, uw1, '__MMRDHU (C, A, B)' 'MMRDHU A,B,C'
- uw1)'
- 'void __MMULHS (acc, sw1, '__MMULHS (C, A, B)' 'MMULHS A,B,C'
- sw1)'
- 'void __MMULHU (acc, uw1, '__MMULHU (C, A, B)' 'MMULHU A,B,C'
- uw1)'
- 'void __MMULXHS (acc, sw1, '__MMULXHS (C, A, B)' 'MMULXHS A,B,C'
- sw1)'
- 'void __MMULXHU (acc, uw1, '__MMULXHU (C, A, B)' 'MMULXHU A,B,C'
- uw1)'
- 'uw1 __MNOT (uw1)' 'B = __MNOT (A)' 'MNOT A,B'
- 'uw1 __MOR (uw1, uw1)' 'C = __MOR (A, B)' 'MOR A,B,C'
- 'uw1 __MPACKH (uh, uh)' 'C = __MPACKH (A, B)' 'MPACKH A,B,C'
- 'sw2 __MQADDHSS (sw2, sw2)' 'C = __MQADDHSS (A, 'MQADDHSS
- B)' A,B,C'
- 'uw2 __MQADDHUS (uw2, uw2)' 'C = __MQADDHUS (A, 'MQADDHUS
- B)' A,B,C'
- 'void __MQCPXIS (acc, sw2, '__MQCPXIS (C, A, B)' 'MQCPXIS A,B,C'
- sw2)'
- 'void __MQCPXIU (acc, uw2, '__MQCPXIU (C, A, B)' 'MQCPXIU A,B,C'
- uw2)'
- 'void __MQCPXRS (acc, sw2, '__MQCPXRS (C, A, B)' 'MQCPXRS A,B,C'
- sw2)'
- 'void __MQCPXRU (acc, uw2, '__MQCPXRU (C, A, B)' 'MQCPXRU A,B,C'
- uw2)'
- 'sw2 __MQLCLRHS (sw2, sw2)' 'C = __MQLCLRHS (A, 'MQLCLRHS
- B)' A,B,C'
- 'sw2 __MQLMTHS (sw2, sw2)' 'C = __MQLMTHS (A, 'MQLMTHS A,B,C'
- B)'
- 'void __MQMACHS (acc, sw2, '__MQMACHS (C, A, B)' 'MQMACHS A,B,C'
- sw2)'
- 'void __MQMACHU (acc, uw2, '__MQMACHU (C, A, B)' 'MQMACHU A,B,C'
- uw2)'
- 'void __MQMACXHS (acc, sw2, '__MQMACXHS (C, A, 'MQMACXHS
- sw2)' B)' A,B,C'
- 'void __MQMULHS (acc, sw2, '__MQMULHS (C, A, B)' 'MQMULHS A,B,C'
- sw2)'
- 'void __MQMULHU (acc, uw2, '__MQMULHU (C, A, B)' 'MQMULHU A,B,C'
- uw2)'
- 'void __MQMULXHS (acc, sw2, '__MQMULXHS (C, A, 'MQMULXHS
- sw2)' B)' A,B,C'
- 'void __MQMULXHU (acc, uw2, '__MQMULXHU (C, A, 'MQMULXHU
- uw2)' B)' A,B,C'
- 'sw2 __MQSATHS (sw2, sw2)' 'C = __MQSATHS (A, 'MQSATHS A,B,C'
- B)'
- 'uw2 __MQSLLHI (uw2, int)' 'C = __MQSLLHI (A, 'MQSLLHI A,B,C'
- B)'
- 'sw2 __MQSRAHI (sw2, int)' 'C = __MQSRAHI (A, 'MQSRAHI A,B,C'
- B)'
- 'sw2 __MQSUBHSS (sw2, sw2)' 'C = __MQSUBHSS (A, 'MQSUBHSS
- B)' A,B,C'
- 'uw2 __MQSUBHUS (uw2, uw2)' 'C = __MQSUBHUS (A, 'MQSUBHUS
- B)' A,B,C'
- 'void __MQXMACHS (acc, sw2, '__MQXMACHS (C, A, 'MQXMACHS
- sw2)' B)' A,B,C'
- 'void __MQXMACXHS (acc, sw2, '__MQXMACXHS (C, A, 'MQXMACXHS
- sw2)' B)' A,B,C'
- 'uw1 __MRDACC (acc)' 'B = __MRDACC (A)' 'MRDACC A,B'
- 'uw1 __MRDACCG (acc)' 'B = __MRDACCG (A)' 'MRDACCG A,B'
- 'uw1 __MROTLI (uw1, const)' 'C = __MROTLI (A, B)' 'MROTLI A,#B,C'
- 'uw1 __MROTRI (uw1, const)' 'C = __MROTRI (A, B)' 'MROTRI A,#B,C'
- 'sw1 __MSATHS (sw1, sw1)' 'C = __MSATHS (A, B)' 'MSATHS A,B,C'
- 'uw1 __MSATHU (uw1, uw1)' 'C = __MSATHU (A, B)' 'MSATHU A,B,C'
- 'uw1 __MSLLHI (uw1, const)' 'C = __MSLLHI (A, B)' 'MSLLHI A,#B,C'
- 'sw1 __MSRAHI (sw1, const)' 'C = __MSRAHI (A, B)' 'MSRAHI A,#B,C'
- 'uw1 __MSRLHI (uw1, const)' 'C = __MSRLHI (A, B)' 'MSRLHI A,#B,C'
- 'void __MSUBACCS (acc, acc)' '__MSUBACCS (B, A)' 'MSUBACCS A,B'
- 'sw1 __MSUBHSS (sw1, sw1)' 'C = __MSUBHSS (A, 'MSUBHSS A,B,C'
- B)'
- 'uw1 __MSUBHUS (uw1, uw1)' 'C = __MSUBHUS (A, 'MSUBHUS A,B,C'
- B)'
- 'void __MTRAP (void)' '__MTRAP ()' 'MTRAP'
- 'uw2 __MUNPACKH (uw1)' 'B = __MUNPACKH (A)' 'MUNPACKH A,B'
- 'uw1 __MWCUT (uw2, uw1)' 'C = __MWCUT (A, B)' 'MWCUT A,B,C'
- 'void __MWTACC (acc, uw1)' '__MWTACC (B, A)' 'MWTACC A,B'
- 'void __MWTACCG (acc, uw1)' '__MWTACCG (B, A)' 'MWTACCG A,B'
- 'uw1 __MXOR (uw1, uw1)' 'C = __MXOR (A, B)' 'MXOR A,B,C'
- File: gcc.info, Node: Raw read/write Functions, Next: Other Built-in Functions, Prev: Directly-mapped Media Functions, Up: FR-V Built-in Functions
- 6.59.12.4 Raw Read/Write Functions
- ..................................
- This sections describes built-in functions related to read and write
- instructions to access memory. These functions generate 'membar'
- instructions to flush the I/O load and stores where appropriate, as
- described in Fujitsu's manual described above.
- 'unsigned char __builtin_read8 (void *DATA)'
- 'unsigned short __builtin_read16 (void *DATA)'
- 'unsigned long __builtin_read32 (void *DATA)'
- 'unsigned long long __builtin_read64 (void *DATA)'
- 'void __builtin_write8 (void *DATA, unsigned char DATUM)'
- 'void __builtin_write16 (void *DATA, unsigned short DATUM)'
- 'void __builtin_write32 (void *DATA, unsigned long DATUM)'
- 'void __builtin_write64 (void *DATA, unsigned long long DATUM)'
- File: gcc.info, Node: Other Built-in Functions, Prev: Raw read/write Functions, Up: FR-V Built-in Functions
- 6.59.12.5 Other Built-in Functions
- ..................................
- This section describes built-in functions that are not named after a
- specific FR-V instruction.
- 'sw2 __IACCreadll (iacc REG)'
- Return the full 64-bit value of IACC0. The REG argument is
- reserved for future expansion and must be 0.
- 'sw1 __IACCreadl (iacc REG)'
- Return the value of IACC0H if REG is 0 and IACC0L if REG is 1.
- Other values of REG are rejected as invalid.
- 'void __IACCsetll (iacc REG, sw2 X)'
- Set the full 64-bit value of IACC0 to X. The REG argument is
- reserved for future expansion and must be 0.
- 'void __IACCsetl (iacc REG, sw1 X)'
- Set IACC0H to X if REG is 0 and IACC0L to X if REG is 1. Other
- values of REG are rejected as invalid.
- 'void __data_prefetch0 (const void *X)'
- Use the 'dcpl' instruction to load the contents of address X into
- the data cache.
- 'void __data_prefetch (const void *X)'
- Use the 'nldub' instruction to load the contents of address X into
- the data cache. The instruction is issued in slot I1.
- File: gcc.info, Node: MIPS DSP Built-in Functions, Next: MIPS Paired-Single Support, Prev: FR-V Built-in Functions, Up: Target Builtins
- 6.59.13 MIPS DSP Built-in Functions
- -----------------------------------
- The MIPS DSP Application-Specific Extension (ASE) includes new
- instructions that are designed to improve the performance of DSP and
- media applications. It provides instructions that operate on packed
- 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
- GCC supports MIPS DSP operations using both the generic vector
- extensions (*note Vector Extensions::) and a collection of MIPS-specific
- built-in functions. Both kinds of support are enabled by the '-mdsp'
- command-line option.
- Revision 2 of the ASE was introduced in the second half of 2006. This
- revision adds extra instructions to the original ASE, but is otherwise
- backwards-compatible with it. You can select revision 2 using the
- command-line option '-mdspr2'; this option implies '-mdsp'.
- The SCOUNT and POS bits of the DSP control register are global. The
- WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and POS
- bits. During optimization, the compiler does not delete these
- instructions and it does not delete calls to functions containing these
- instructions.
- At present, GCC only provides support for operations on 32-bit vectors.
- The vector type associated with 8-bit integer data is usually called
- 'v4i8', the vector type associated with Q7 is usually called 'v4q7', the
- vector type associated with 16-bit integer data is usually called
- 'v2i16', and the vector type associated with Q15 is usually called
- 'v2q15'. They can be defined in C as follows:
- typedef signed char v4i8 __attribute__ ((vector_size(4)));
- typedef signed char v4q7 __attribute__ ((vector_size(4)));
- typedef short v2i16 __attribute__ ((vector_size(4)));
- typedef short v2q15 __attribute__ ((vector_size(4)));
- 'v4i8', 'v4q7', 'v2i16' and 'v2q15' values are initialized in the same
- way as aggregates. For example:
- v4i8 a = {1, 2, 3, 4};
- v4i8 b;
- b = (v4i8) {5, 6, 7, 8};
- v2q15 c = {0x0fcb, 0x3a75};
- v2q15 d;
- d = (v2q15) {0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15};
- _Note:_ The CPU's endianness determines the order in which values are
- packed. On little-endian targets, the first value is the least
- significant and the last value is the most significant. The opposite
- order applies to big-endian targets. For example, the code above sets
- the lowest byte of 'a' to '1' on little-endian targets and '4' on
- big-endian targets.
- _Note:_ Q7, Q15 and Q31 values must be initialized with their integer
- representation. As shown in this example, the integer representation of
- a Q7 value can be obtained by multiplying the fractional value by
- '0x1.0p7'. The equivalent for Q15 values is to multiply by '0x1.0p15'.
- The equivalent for Q31 values is to multiply by '0x1.0p31'.
- The table below lists the 'v4i8' and 'v2q15' operations for which
- hardware support exists. 'a' and 'b' are 'v4i8' values, and 'c' and 'd'
- are 'v2q15' values.
- C code MIPS instruction
- 'a + b' 'addu.qb'
- 'c + d' 'addq.ph'
- 'a - b' 'subu.qb'
- 'c - d' 'subq.ph'
- The table below lists the 'v2i16' operation for which hardware support
- exists for the DSP ASE REV 2. 'e' and 'f' are 'v2i16' values.
- C code MIPS instruction
- 'e * f' 'mul.ph'
- It is easier to describe the DSP built-in functions if we first define
- the following types:
- typedef int q31;
- typedef int i32;
- typedef unsigned int ui32;
- typedef long long a64;
- 'q31' and 'i32' are actually the same as 'int', but we use 'q31' to
- indicate a Q31 fractional value and 'i32' to indicate a 32-bit integer
- value. Similarly, 'a64' is the same as 'long long', but we use 'a64' to
- indicate values that are placed in one of the four DSP accumulators
- ('$ac0', '$ac1', '$ac2' or '$ac3').
- Also, some built-in functions prefer or require immediate numbers as
- parameters, because the corresponding DSP instructions accept both
- immediate numbers and register operands, or accept immediate numbers
- only. The immediate parameters are listed as follows.
- imm0_3: 0 to 3.
- imm0_7: 0 to 7.
- imm0_15: 0 to 15.
- imm0_31: 0 to 31.
- imm0_63: 0 to 63.
- imm0_255: 0 to 255.
- imm_n32_31: -32 to 31.
- imm_n512_511: -512 to 511.
- The following built-in functions map directly to a particular MIPS DSP
- instruction. Please refer to the architecture specification for details
- on what each instruction does.
- v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
- v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
- q31 __builtin_mips_addq_s_w (q31, q31)
- v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
- v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
- v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
- v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
- q31 __builtin_mips_subq_s_w (q31, q31)
- v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
- v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
- i32 __builtin_mips_addsc (i32, i32)
- i32 __builtin_mips_addwc (i32, i32)
- i32 __builtin_mips_modsub (i32, i32)
- i32 __builtin_mips_raddu_w_qb (v4i8)
- v2q15 __builtin_mips_absq_s_ph (v2q15)
- q31 __builtin_mips_absq_s_w (q31)
- v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
- v2q15 __builtin_mips_precrq_ph_w (q31, q31)
- v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
- v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
- q31 __builtin_mips_preceq_w_phl (v2q15)
- q31 __builtin_mips_preceq_w_phr (v2q15)
- v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
- v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
- v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
- v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
- v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
- v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
- v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
- v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
- v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
- v4i8 __builtin_mips_shll_qb (v4i8, i32)
- v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
- v2q15 __builtin_mips_shll_ph (v2q15, i32)
- v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
- v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
- q31 __builtin_mips_shll_s_w (q31, imm0_31)
- q31 __builtin_mips_shll_s_w (q31, i32)
- v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
- v4i8 __builtin_mips_shrl_qb (v4i8, i32)
- v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
- v2q15 __builtin_mips_shra_ph (v2q15, i32)
- v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
- v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
- q31 __builtin_mips_shra_r_w (q31, imm0_31)
- q31 __builtin_mips_shra_r_w (q31, i32)
- v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
- v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
- v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
- q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
- q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
- a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
- a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
- a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
- a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
- a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
- a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
- a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
- a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
- a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
- a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
- a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
- a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
- a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
- i32 __builtin_mips_bitrev (i32)
- i32 __builtin_mips_insv (i32, i32)
- v4i8 __builtin_mips_repl_qb (imm0_255)
- v4i8 __builtin_mips_repl_qb (i32)
- v2q15 __builtin_mips_repl_ph (imm_n512_511)
- v2q15 __builtin_mips_repl_ph (i32)
- void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
- void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
- void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
- i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
- i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
- i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
- void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
- void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
- void __builtin_mips_cmp_le_ph (v2q15, v2q15)
- v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
- v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
- v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
- i32 __builtin_mips_extr_w (a64, imm0_31)
- i32 __builtin_mips_extr_w (a64, i32)
- i32 __builtin_mips_extr_r_w (a64, imm0_31)
- i32 __builtin_mips_extr_s_h (a64, i32)
- i32 __builtin_mips_extr_rs_w (a64, imm0_31)
- i32 __builtin_mips_extr_rs_w (a64, i32)
- i32 __builtin_mips_extr_s_h (a64, imm0_31)
- i32 __builtin_mips_extr_r_w (a64, i32)
- i32 __builtin_mips_extp (a64, imm0_31)
- i32 __builtin_mips_extp (a64, i32)
- i32 __builtin_mips_extpdp (a64, imm0_31)
- i32 __builtin_mips_extpdp (a64, i32)
- a64 __builtin_mips_shilo (a64, imm_n32_31)
- a64 __builtin_mips_shilo (a64, i32)
- a64 __builtin_mips_mthlip (a64, i32)
- void __builtin_mips_wrdsp (i32, imm0_63)
- i32 __builtin_mips_rddsp (imm0_63)
- i32 __builtin_mips_lbux (void *, i32)
- i32 __builtin_mips_lhx (void *, i32)
- i32 __builtin_mips_lwx (void *, i32)
- a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
- i32 __builtin_mips_bposge32 (void)
- a64 __builtin_mips_madd (a64, i32, i32);
- a64 __builtin_mips_maddu (a64, ui32, ui32);
- a64 __builtin_mips_msub (a64, i32, i32);
- a64 __builtin_mips_msubu (a64, ui32, ui32);
- a64 __builtin_mips_mult (i32, i32);
- a64 __builtin_mips_multu (ui32, ui32);
- The following built-in functions map directly to a particular MIPS DSP
- REV 2 instruction. Please refer to the architecture specification for
- details on what each instruction does.
- v4q7 __builtin_mips_absq_s_qb (v4q7);
- v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
- v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
- v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
- v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
- i32 __builtin_mips_append (i32, i32, imm0_31);
- i32 __builtin_mips_balign (i32, i32, imm0_3);
- i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
- i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
- i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
- a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
- a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
- v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
- v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
- q31 __builtin_mips_mulq_rs_w (q31, q31);
- v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
- q31 __builtin_mips_mulq_s_w (q31, q31);
- a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
- v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
- v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
- v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
- i32 __builtin_mips_prepend (i32, i32, imm0_31);
- v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
- v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
- v4i8 __builtin_mips_shra_qb (v4i8, i32);
- v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
- v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
- v2i16 __builtin_mips_shrl_ph (v2i16, i32);
- v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
- v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
- v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
- v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
- v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
- v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
- q31 __builtin_mips_addqh_w (q31, q31);
- q31 __builtin_mips_addqh_r_w (q31, q31);
- v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
- v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
- q31 __builtin_mips_subqh_w (q31, q31);
- q31 __builtin_mips_subqh_r_w (q31, q31);
- a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
- a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
- a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
- a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
- a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
- a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
- File: gcc.info, Node: MIPS Paired-Single Support, Next: MIPS Loongson Built-in Functions, Prev: MIPS DSP Built-in Functions, Up: Target Builtins
- 6.59.14 MIPS Paired-Single Support
- ----------------------------------
- The MIPS64 architecture includes a number of instructions that operate
- on pairs of single-precision floating-point values. Each pair is packed
- into a 64-bit floating-point register, with one element being designated
- the "upper half" and the other being designated the "lower half".
- GCC supports paired-single operations using both the generic vector
- extensions (*note Vector Extensions::) and a collection of MIPS-specific
- built-in functions. Both kinds of support are enabled by the
- '-mpaired-single' command-line option.
- The vector type associated with paired-single values is usually called
- 'v2sf'. It can be defined in C as follows:
- typedef float v2sf __attribute__ ((vector_size (8)));
- 'v2sf' values are initialized in the same way as aggregates. For
- example:
- v2sf a = {1.5, 9.1};
- v2sf b;
- float e, f;
- b = (v2sf) {e, f};
- _Note:_ The CPU's endianness determines which value is stored in the
- upper half of a register and which value is stored in the lower half.
- On little-endian targets, the first value is the lower one and the
- second value is the upper one. The opposite order applies to big-endian
- targets. For example, the code above sets the lower half of 'a' to
- '1.5' on little-endian targets and '9.1' on big-endian targets.
- File: gcc.info, Node: MIPS Loongson Built-in Functions, Next: MIPS SIMD Architecture (MSA) Support, Prev: MIPS Paired-Single Support, Up: Target Builtins
- 6.59.15 MIPS Loongson Built-in Functions
- ----------------------------------------
- GCC provides intrinsics to access the SIMD instructions provided by the
- ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
- available after inclusion of the 'loongson.h' header file, operate on
- the following 64-bit vector types:
- * 'uint8x8_t', a vector of eight unsigned 8-bit integers;
- * 'uint16x4_t', a vector of four unsigned 16-bit integers;
- * 'uint32x2_t', a vector of two unsigned 32-bit integers;
- * 'int8x8_t', a vector of eight signed 8-bit integers;
- * 'int16x4_t', a vector of four signed 16-bit integers;
- * 'int32x2_t', a vector of two signed 32-bit integers.
- The intrinsics provided are listed below; each is named after the
- machine instruction to which it corresponds, with suffixes added as
- appropriate to distinguish intrinsics that expand to the same machine
- instruction yet have different argument types. Refer to the
- architecture documentation for a description of the functionality of
- each instruction.
- int16x4_t packsswh (int32x2_t s, int32x2_t t);
- int8x8_t packsshb (int16x4_t s, int16x4_t t);
- uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
- uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
- int32x2_t paddw_s (int32x2_t s, int32x2_t t);
- int16x4_t paddh_s (int16x4_t s, int16x4_t t);
- int8x8_t paddb_s (int8x8_t s, int8x8_t t);
- uint64_t paddd_u (uint64_t s, uint64_t t);
- int64_t paddd_s (int64_t s, int64_t t);
- int16x4_t paddsh (int16x4_t s, int16x4_t t);
- int8x8_t paddsb (int8x8_t s, int8x8_t t);
- uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
- uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
- uint64_t pandn_ud (uint64_t s, uint64_t t);
- uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
- uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
- uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
- int64_t pandn_sd (int64_t s, int64_t t);
- int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
- int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
- int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
- uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
- uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
- uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
- int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
- int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
- int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
- uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
- int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
- int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
- int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
- uint16x4_t pextrh_u (uint16x4_t s, int field);
- int16x4_t pextrh_s (int16x4_t s, int field);
- uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
- uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
- uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
- uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
- int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
- int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
- int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
- int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
- int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
- int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
- uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
- int16x4_t pminsh (int16x4_t s, int16x4_t t);
- uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
- uint8x8_t pmovmskb_u (uint8x8_t s);
- int8x8_t pmovmskb_s (int8x8_t s);
- uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
- int16x4_t pmulhh (int16x4_t s, int16x4_t t);
- int16x4_t pmullh (int16x4_t s, int16x4_t t);
- int64_t pmuluw (uint32x2_t s, uint32x2_t t);
- uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
- uint16x4_t biadd (uint8x8_t s);
- uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
- uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
- int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
- uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
- int16x4_t psllh_s (int16x4_t s, uint8_t amount);
- uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
- int32x2_t psllw_s (int32x2_t s, uint8_t amount);
- uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
- int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
- uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
- int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
- uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
- int16x4_t psrah_s (int16x4_t s, uint8_t amount);
- uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
- int32x2_t psraw_s (int32x2_t s, uint8_t amount);
- uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
- int32x2_t psubw_s (int32x2_t s, int32x2_t t);
- int16x4_t psubh_s (int16x4_t s, int16x4_t t);
- int8x8_t psubb_s (int8x8_t s, int8x8_t t);
- uint64_t psubd_u (uint64_t s, uint64_t t);
- int64_t psubd_s (int64_t s, int64_t t);
- int16x4_t psubsh (int16x4_t s, int16x4_t t);
- int8x8_t psubsb (int8x8_t s, int8x8_t t);
- uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
- uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
- uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
- int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
- int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
- int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
- uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
- uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
- uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
- int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
- int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
- int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
- * Menu:
- * Paired-Single Arithmetic::
- * Paired-Single Built-in Functions::
- * MIPS-3D Built-in Functions::
- File: gcc.info, Node: Paired-Single Arithmetic, Next: Paired-Single Built-in Functions, Up: MIPS Loongson Built-in Functions
- 6.59.15.1 Paired-Single Arithmetic
- ..................................
- The table below lists the 'v2sf' operations for which hardware support
- exists. 'a', 'b' and 'c' are 'v2sf' values and 'x' is an integral
- value.
- C code MIPS instruction
- 'a + b' 'add.ps'
- 'a - b' 'sub.ps'
- '-a' 'neg.ps'
- 'a * b' 'mul.ps'
- 'a * b + c' 'madd.ps'
- 'a * b - c' 'msub.ps'
- '-(a * b + c)' 'nmadd.ps'
- '-(a * b - c)' 'nmsub.ps'
- 'x ? a : b' 'movn.ps'/'movz.ps'
- Note that the multiply-accumulate instructions can be disabled using
- the command-line option '-mno-fused-madd'.
- File: gcc.info, Node: Paired-Single Built-in Functions, Next: MIPS-3D Built-in Functions, Prev: Paired-Single Arithmetic, Up: MIPS Loongson Built-in Functions
- 6.59.15.2 Paired-Single Built-in Functions
- ..........................................
- The following paired-single functions map directly to a particular MIPS
- instruction. Please refer to the architecture specification for details
- on what each instruction does.
- 'v2sf __builtin_mips_pll_ps (v2sf, v2sf)'
- Pair lower lower ('pll.ps').
- 'v2sf __builtin_mips_pul_ps (v2sf, v2sf)'
- Pair upper lower ('pul.ps').
- 'v2sf __builtin_mips_plu_ps (v2sf, v2sf)'
- Pair lower upper ('plu.ps').
- 'v2sf __builtin_mips_puu_ps (v2sf, v2sf)'
- Pair upper upper ('puu.ps').
- 'v2sf __builtin_mips_cvt_ps_s (float, float)'
- Convert pair to paired single ('cvt.ps.s').
- 'float __builtin_mips_cvt_s_pl (v2sf)'
- Convert pair lower to single ('cvt.s.pl').
- 'float __builtin_mips_cvt_s_pu (v2sf)'
- Convert pair upper to single ('cvt.s.pu').
- 'v2sf __builtin_mips_abs_ps (v2sf)'
- Absolute value ('abs.ps').
- 'v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)'
- Align variable ('alnv.ps').
- _Note:_ The value of the third parameter must be 0 or 4 modulo 8,
- otherwise the result is unpredictable. Please read the instruction
- description for details.
- The following multi-instruction functions are also available. In each
- case, COND can be any of the 16 floating-point conditions: 'f', 'un',
- 'eq', 'ueq', 'olt', 'ult', 'ole', 'ule', 'sf', 'ngle', 'seq', 'ngl',
- 'lt', 'nge', 'le' or 'ngt'.
- 'v2sf __builtin_mips_movt_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)'
- 'v2sf __builtin_mips_movf_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)'
- Conditional move based on floating-point comparison ('c.COND.ps',
- 'movt.ps'/'movf.ps').
- The 'movt' functions return the value X computed by:
- c.COND.ps CC,A,B
- mov.ps X,C
- movt.ps X,D,CC
- The 'movf' functions are similar but use 'movf.ps' instead of
- 'movt.ps'.
- 'int __builtin_mips_upper_c_COND_ps (v2sf A, v2sf B)'
- 'int __builtin_mips_lower_c_COND_ps (v2sf A, v2sf B)'
- Comparison of two paired-single values ('c.COND.ps',
- 'bc1t'/'bc1f').
- These functions compare A and B using 'c.COND.ps' and return either
- the upper or lower half of the result. For example:
- v2sf a, b;
- if (__builtin_mips_upper_c_eq_ps (a, b))
- upper_halves_are_equal ();
- else
- upper_halves_are_unequal ();
- if (__builtin_mips_lower_c_eq_ps (a, b))
- lower_halves_are_equal ();
- else
- lower_halves_are_unequal ();
- File: gcc.info, Node: MIPS-3D Built-in Functions, Prev: Paired-Single Built-in Functions, Up: MIPS Loongson Built-in Functions
- 6.59.15.3 MIPS-3D Built-in Functions
- ....................................
- The MIPS-3D Application-Specific Extension (ASE) includes additional
- paired-single instructions that are designed to improve the performance
- of 3D graphics operations. Support for these instructions is controlled
- by the '-mips3d' command-line option.
- The functions listed below map directly to a particular MIPS-3D
- instruction. Please refer to the architecture specification for more
- details on what each instruction does.
- 'v2sf __builtin_mips_addr_ps (v2sf, v2sf)'
- Reduction add ('addr.ps').
- 'v2sf __builtin_mips_mulr_ps (v2sf, v2sf)'
- Reduction multiply ('mulr.ps').
- 'v2sf __builtin_mips_cvt_pw_ps (v2sf)'
- Convert paired single to paired word ('cvt.pw.ps').
- 'v2sf __builtin_mips_cvt_ps_pw (v2sf)'
- Convert paired word to paired single ('cvt.ps.pw').
- 'float __builtin_mips_recip1_s (float)'
- 'double __builtin_mips_recip1_d (double)'
- 'v2sf __builtin_mips_recip1_ps (v2sf)'
- Reduced-precision reciprocal (sequence step 1) ('recip1.FMT').
- 'float __builtin_mips_recip2_s (float, float)'
- 'double __builtin_mips_recip2_d (double, double)'
- 'v2sf __builtin_mips_recip2_ps (v2sf, v2sf)'
- Reduced-precision reciprocal (sequence step 2) ('recip2.FMT').
- 'float __builtin_mips_rsqrt1_s (float)'
- 'double __builtin_mips_rsqrt1_d (double)'
- 'v2sf __builtin_mips_rsqrt1_ps (v2sf)'
- Reduced-precision reciprocal square root (sequence step 1)
- ('rsqrt1.FMT').
- 'float __builtin_mips_rsqrt2_s (float, float)'
- 'double __builtin_mips_rsqrt2_d (double, double)'
- 'v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)'
- Reduced-precision reciprocal square root (sequence step 2)
- ('rsqrt2.FMT').
- The following multi-instruction functions are also available. In each
- case, COND can be any of the 16 floating-point conditions: 'f', 'un',
- 'eq', 'ueq', 'olt', 'ult', 'ole', 'ule', 'sf', 'ngle', 'seq', 'ngl',
- 'lt', 'nge', 'le' or 'ngt'.
- 'int __builtin_mips_cabs_COND_s (float A, float B)'
- 'int __builtin_mips_cabs_COND_d (double A, double B)'
- Absolute comparison of two scalar values ('cabs.COND.FMT',
- 'bc1t'/'bc1f').
- These functions compare A and B using 'cabs.COND.s' or
- 'cabs.COND.d' and return the result as a boolean value. For
- example:
- float a, b;
- if (__builtin_mips_cabs_eq_s (a, b))
- true ();
- else
- false ();
- 'int __builtin_mips_upper_cabs_COND_ps (v2sf A, v2sf B)'
- 'int __builtin_mips_lower_cabs_COND_ps (v2sf A, v2sf B)'
- Absolute comparison of two paired-single values ('cabs.COND.ps',
- 'bc1t'/'bc1f').
- These functions compare A and B using 'cabs.COND.ps' and return
- either the upper or lower half of the result. For example:
- v2sf a, b;
- if (__builtin_mips_upper_cabs_eq_ps (a, b))
- upper_halves_are_equal ();
- else
- upper_halves_are_unequal ();
- if (__builtin_mips_lower_cabs_eq_ps (a, b))
- lower_halves_are_equal ();
- else
- lower_halves_are_unequal ();
- 'v2sf __builtin_mips_movt_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)'
- 'v2sf __builtin_mips_movf_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)'
- Conditional move based on absolute comparison ('cabs.COND.ps',
- 'movt.ps'/'movf.ps').
- The 'movt' functions return the value X computed by:
- cabs.COND.ps CC,A,B
- mov.ps X,C
- movt.ps X,D,CC
- The 'movf' functions are similar but use 'movf.ps' instead of
- 'movt.ps'.
- 'int __builtin_mips_any_c_COND_ps (v2sf A, v2sf B)'
- 'int __builtin_mips_all_c_COND_ps (v2sf A, v2sf B)'
- 'int __builtin_mips_any_cabs_COND_ps (v2sf A, v2sf B)'
- 'int __builtin_mips_all_cabs_COND_ps (v2sf A, v2sf B)'
- Comparison of two paired-single values ('c.COND.ps'/'cabs.COND.ps',
- 'bc1any2t'/'bc1any2f').
- These functions compare A and B using 'c.COND.ps' or
- 'cabs.COND.ps'. The 'any' forms return true if either result is
- true and the 'all' forms return true if both results are true. For
- example:
- v2sf a, b;
- if (__builtin_mips_any_c_eq_ps (a, b))
- one_is_true ();
- else
- both_are_false ();
- if (__builtin_mips_all_c_eq_ps (a, b))
- both_are_true ();
- else
- one_is_false ();
- 'int __builtin_mips_any_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)'
- 'int __builtin_mips_all_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)'
- 'int __builtin_mips_any_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)'
- 'int __builtin_mips_all_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)'
- Comparison of four paired-single values
- ('c.COND.ps'/'cabs.COND.ps', 'bc1any4t'/'bc1any4f').
- These functions use 'c.COND.ps' or 'cabs.COND.ps' to compare A with
- B and to compare C with D. The 'any' forms return true if any of
- the four results are true and the 'all' forms return true if all
- four results are true. For example:
- v2sf a, b, c, d;
- if (__builtin_mips_any_c_eq_4s (a, b, c, d))
- some_are_true ();
- else
- all_are_false ();
- if (__builtin_mips_all_c_eq_4s (a, b, c, d))
- all_are_true ();
- else
- some_are_false ();
- File: gcc.info, Node: MIPS SIMD Architecture (MSA) Support, Next: Other MIPS Built-in Functions, Prev: MIPS Loongson Built-in Functions, Up: Target Builtins
- 6.59.16 MIPS SIMD Architecture (MSA) Support
- --------------------------------------------
- * Menu:
- * MIPS SIMD Architecture Built-in Functions::
- GCC provides intrinsics to access the SIMD instructions provided by the
- MSA MIPS SIMD Architecture. The interface is made available by
- including '<msa.h>' and using '-mmsa -mhard-float -mfp64 -mnan=2008'.
- For each '__builtin_msa_*', there is a shortened name of the intrinsic,
- '__msa_*'.
- MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32-
- and 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit
- floating point data elements. The following vectors typedefs are
- included in 'msa.h':
- * 'v16i8', a vector of sixteen signed 8-bit integers;
- * 'v16u8', a vector of sixteen unsigned 8-bit integers;
- * 'v8i16', a vector of eight signed 16-bit integers;
- * 'v8u16', a vector of eight unsigned 16-bit integers;
- * 'v4i32', a vector of four signed 32-bit integers;
- * 'v4u32', a vector of four unsigned 32-bit integers;
- * 'v2i64', a vector of two signed 64-bit integers;
- * 'v2u64', a vector of two unsigned 64-bit integers;
- * 'v4f32', a vector of four 32-bit floats;
- * 'v2f64', a vector of two 64-bit doubles.
- Instructions and corresponding built-ins may have additional
- restrictions and/or input/output values manipulated:
- * 'imm0_1', an integer literal in range 0 to 1;
- * 'imm0_3', an integer literal in range 0 to 3;
- * 'imm0_7', an integer literal in range 0 to 7;
- * 'imm0_15', an integer literal in range 0 to 15;
- * 'imm0_31', an integer literal in range 0 to 31;
- * 'imm0_63', an integer literal in range 0 to 63;
- * 'imm0_255', an integer literal in range 0 to 255;
- * 'imm_n16_15', an integer literal in range -16 to 15;
- * 'imm_n512_511', an integer literal in range -512 to 511;
- * 'imm_n1024_1022', an integer literal in range -512 to 511 left
- shifted by 1 bit, i.e., -1024, -1022, ..., 1020, 1022;
- * 'imm_n2048_2044', an integer literal in range -512 to 511 left
- shifted by 2 bits, i.e., -2048, -2044, ..., 2040, 2044;
- * 'imm_n4096_4088', an integer literal in range -512 to 511 left
- shifted by 3 bits, i.e., -4096, -4088, ..., 4080, 4088;
- * 'imm1_4', an integer literal in range 1 to 4;
- * 'i32, i64, u32, u64, f32, f64', defined as follows:
- {
- typedef int i32;
- #if __LONG_MAX__ == __LONG_LONG_MAX__
- typedef long i64;
- #else
- typedef long long i64;
- #endif
- typedef unsigned int u32;
- #if __LONG_MAX__ == __LONG_LONG_MAX__
- typedef unsigned long u64;
- #else
- typedef unsigned long long u64;
- #endif
- typedef double f64;
- typedef float f32;
- }
- File: gcc.info, Node: MIPS SIMD Architecture Built-in Functions, Up: MIPS SIMD Architecture (MSA) Support
- 6.59.16.1 MIPS SIMD Architecture Built-in Functions
- ...................................................
- The intrinsics provided are listed below; each is named after the
- machine instruction.
- v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
- v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
- v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
- v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
- v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
- v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
- v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
- v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
- v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
- v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
- v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
- v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
- v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
- v16i8 __builtin_msa_addv_b (v16i8, v16i8);
- v8i16 __builtin_msa_addv_h (v8i16, v8i16);
- v4i32 __builtin_msa_addv_w (v4i32, v4i32);
- v2i64 __builtin_msa_addv_d (v2i64, v2i64);
- v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
- v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
- v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
- v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
- v16u8 __builtin_msa_and_v (v16u8, v16u8);
- v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
- v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
- v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
- v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
- v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
- v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
- v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
- v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
- v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
- v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
- v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
- v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
- v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
- v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
- v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
- v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
- v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
- v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
- v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
- v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
- v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
- v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
- v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
- v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
- v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
- v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
- v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
- v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
- v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
- v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
- v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
- v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
- v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
- v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
- v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
- v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
- v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
- v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
- v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
- v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
- v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
- v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
- v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
- v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
- v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
- v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
- v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
- v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
- v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
- v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
- v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
- v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
- i32 __builtin_msa_bnz_b (v16u8);
- i32 __builtin_msa_bnz_h (v8u16);
- i32 __builtin_msa_bnz_w (v4u32);
- i32 __builtin_msa_bnz_d (v2u64);
- i32 __builtin_msa_bnz_v (v16u8);
- v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
- v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
- v16u8 __builtin_msa_bset_b (v16u8, v16u8);
- v8u16 __builtin_msa_bset_h (v8u16, v8u16);
- v4u32 __builtin_msa_bset_w (v4u32, v4u32);
- v2u64 __builtin_msa_bset_d (v2u64, v2u64);
- v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
- v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
- v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
- v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
- i32 __builtin_msa_bz_b (v16u8);
- i32 __builtin_msa_bz_h (v8u16);
- i32 __builtin_msa_bz_w (v4u32);
- i32 __builtin_msa_bz_d (v2u64);
- i32 __builtin_msa_bz_v (v16u8);
- v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
- v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
- v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
- v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
- v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
- v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
- v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
- v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
- i32 __builtin_msa_cfcmsa (imm0_31);
- v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
- v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
- v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
- v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
- v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
- v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
- v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
- v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
- v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
- v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
- v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
- v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
- v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
- v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
- v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
- v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
- v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
- v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
- v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
- v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
- v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
- v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
- v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
- v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
- v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
- v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
- i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
- i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
- i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
- i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
- u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
- u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
- u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
- u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
- void __builtin_msa_ctcmsa (imm0_31, i32);
- v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
- v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
- v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
- v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
- v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
- v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
- v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
- v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
- v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
- v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
- v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
- v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
- v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
- v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
- v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
- v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
- v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
- v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
- v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
- v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
- v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
- v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
- v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
- v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
- v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
- v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
- v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
- v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
- v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
- v4i32 __builtin_msa_fclass_w (v4f32);
- v2i64 __builtin_msa_fclass_d (v2f64);
- v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
- v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
- v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
- v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
- v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
- v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
- v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
- v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
- v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
- v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
- v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
- v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
- v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
- v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
- v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
- v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
- v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
- v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
- v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
- v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
- v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
- v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
- v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
- v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
- v4f32 __builtin_msa_fexupl_w (v8i16);
- v2f64 __builtin_msa_fexupl_d (v4f32);
- v4f32 __builtin_msa_fexupr_w (v8i16);
- v2f64 __builtin_msa_fexupr_d (v4f32);
- v4f32 __builtin_msa_ffint_s_w (v4i32);
- v2f64 __builtin_msa_ffint_s_d (v2i64);
- v4f32 __builtin_msa_ffint_u_w (v4u32);
- v2f64 __builtin_msa_ffint_u_d (v2u64);
- v4f32 __builtin_msa_ffql_w (v8i16);
- v2f64 __builtin_msa_ffql_d (v4i32);
- v4f32 __builtin_msa_ffqr_w (v8i16);
- v2f64 __builtin_msa_ffqr_d (v4i32);
- v16i8 __builtin_msa_fill_b (i32);
- v8i16 __builtin_msa_fill_h (i32);
- v4i32 __builtin_msa_fill_w (i32);
- v2i64 __builtin_msa_fill_d (i64);
- v4f32 __builtin_msa_flog2_w (v4f32);
- v2f64 __builtin_msa_flog2_d (v2f64);
- v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
- v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
- v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
- v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
- v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
- v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
- v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
- v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
- v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
- v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
- v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
- v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
- v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
- v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
- v4f32 __builtin_msa_frint_w (v4f32);
- v2f64 __builtin_msa_frint_d (v2f64);
- v4f32 __builtin_msa_frcp_w (v4f32);
- v2f64 __builtin_msa_frcp_d (v2f64);
- v4f32 __builtin_msa_frsqrt_w (v4f32);
- v2f64 __builtin_msa_frsqrt_d (v2f64);
- v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
- v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
- v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
- v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
- v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
- v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
- v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
- v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
- v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
- v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
- v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
- v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
- v4f32 __builtin_msa_fsqrt_w (v4f32);
- v2f64 __builtin_msa_fsqrt_d (v2f64);
- v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
- v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
- v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
- v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
- v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
- v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
- v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
- v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
- v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
- v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
- v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
- v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
- v4i32 __builtin_msa_ftint_s_w (v4f32);
- v2i64 __builtin_msa_ftint_s_d (v2f64);
- v4u32 __builtin_msa_ftint_u_w (v4f32);
- v2u64 __builtin_msa_ftint_u_d (v2f64);
- v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
- v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
- v4i32 __builtin_msa_ftrunc_s_w (v4f32);
- v2i64 __builtin_msa_ftrunc_s_d (v2f64);
- v4u32 __builtin_msa_ftrunc_u_w (v4f32);
- v2u64 __builtin_msa_ftrunc_u_d (v2f64);
- v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
- v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
- v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
- v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
- v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
- v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
- v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
- v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
- v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
- v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
- v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
- v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
- v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
- v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
- v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
- v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
- v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
- v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
- v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
- v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
- v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
- v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
- v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
- v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
- v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
- v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
- v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
- v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
- v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
- v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
- v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
- v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
- v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
- v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
- v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
- v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
- v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
- v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
- v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
- v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
- v16i8 __builtin_msa_ldi_b (imm_n512_511);
- v8i16 __builtin_msa_ldi_h (imm_n512_511);
- v4i32 __builtin_msa_ldi_w (imm_n512_511);
- v2i64 __builtin_msa_ldi_d (imm_n512_511);
- v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
- v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
- v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
- v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
- v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
- v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
- v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
- v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
- v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
- v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
- v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
- v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
- v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
- v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
- v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
- v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
- v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
- v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
- v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
- v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
- v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
- v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
- v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
- v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
- v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
- v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
- v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
- v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
- v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
- v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
- v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
- v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
- v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
- v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
- v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
- v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
- v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
- v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
- v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
- v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
- v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
- v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
- v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
- v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
- v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
- v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
- v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
- v16i8 __builtin_msa_move_v (v16i8);
- v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
- v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
- v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
- v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
- v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
- v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
- v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
- v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
- v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
- v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
- v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
- v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
- v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
- v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
- v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
- v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
- v16i8 __builtin_msa_nloc_b (v16i8);
- v8i16 __builtin_msa_nloc_h (v8i16);
- v4i32 __builtin_msa_nloc_w (v4i32);
- v2i64 __builtin_msa_nloc_d (v2i64);
- v16i8 __builtin_msa_nlzc_b (v16i8);
- v8i16 __builtin_msa_nlzc_h (v8i16);
- v4i32 __builtin_msa_nlzc_w (v4i32);
- v2i64 __builtin_msa_nlzc_d (v2i64);
- v16u8 __builtin_msa_nor_v (v16u8, v16u8);
- v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
- v16u8 __builtin_msa_or_v (v16u8, v16u8);
- v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
- v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
- v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
- v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
- v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
- v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
- v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
- v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
- v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
- v16i8 __builtin_msa_pcnt_b (v16i8);
- v8i16 __builtin_msa_pcnt_h (v8i16);
- v4i32 __builtin_msa_pcnt_w (v4i32);
- v2i64 __builtin_msa_pcnt_d (v2i64);
- v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
- v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
- v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
- v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
- v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
- v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
- v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
- v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
- v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
- v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
- v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
- v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
- v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
- v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
- v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
- v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
- v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
- v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
- v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
- v16i8 __builtin_msa_sll_b (v16i8, v16i8);
- v8i16 __builtin_msa_sll_h (v8i16, v8i16);
- v4i32 __builtin_msa_sll_w (v4i32, v4i32);
- v2i64 __builtin_msa_sll_d (v2i64, v2i64);
- v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
- v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
- v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
- v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
- v16i8 __builtin_msa_splat_b (v16i8, i32);
- v8i16 __builtin_msa_splat_h (v8i16, i32);
- v4i32 __builtin_msa_splat_w (v4i32, i32);
- v2i64 __builtin_msa_splat_d (v2i64, i32);
- v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
- v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
- v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
- v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
- v16i8 __builtin_msa_sra_b (v16i8, v16i8);
- v8i16 __builtin_msa_sra_h (v8i16, v8i16);
- v4i32 __builtin_msa_sra_w (v4i32, v4i32);
- v2i64 __builtin_msa_sra_d (v2i64, v2i64);
- v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
- v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
- v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
- v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
- v16i8 __builtin_msa_srar_b (v16i8, v16i8);
- v8i16 __builtin_msa_srar_h (v8i16, v8i16);
- v4i32 __builtin_msa_srar_w (v4i32, v4i32);
- v2i64 __builtin_msa_srar_d (v2i64, v2i64);
- v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
- v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
- v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
- v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
- v16i8 __builtin_msa_srl_b (v16i8, v16i8);
- v8i16 __builtin_msa_srl_h (v8i16, v8i16);
- v4i32 __builtin_msa_srl_w (v4i32, v4i32);
- v2i64 __builtin_msa_srl_d (v2i64, v2i64);
- v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
- v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
- v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
- v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
- v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
- v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
- v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
- v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
- v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
- v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
- v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
- v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
- void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
- void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
- void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
- void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
- v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
- v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
- v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
- v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
- v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
- v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
- v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
- v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
- v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
- v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
- v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
- v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
- v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
- v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
- v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
- v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
- v16i8 __builtin_msa_subv_b (v16i8, v16i8);
- v8i16 __builtin_msa_subv_h (v8i16, v8i16);
- v4i32 __builtin_msa_subv_w (v4i32, v4i32);
- v2i64 __builtin_msa_subv_d (v2i64, v2i64);
- v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
- v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
- v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
- v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
- v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
- v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
- v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
- v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
- v16u8 __builtin_msa_xor_v (v16u8, v16u8);
- v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
- File: gcc.info, Node: Other MIPS Built-in Functions, Next: MSP430 Built-in Functions, Prev: MIPS SIMD Architecture (MSA) Support, Up: Target Builtins
- 6.59.17 Other MIPS Built-in Functions
- -------------------------------------
- GCC provides other MIPS-specific built-in functions:
- 'void __builtin_mips_cache (int OP, const volatile void *ADDR)'
- Insert a 'cache' instruction with operands OP and ADDR. GCC
- defines the preprocessor macro '___GCC_HAVE_BUILTIN_MIPS_CACHE'
- when this function is available.
- 'unsigned int __builtin_mips_get_fcsr (void)'
- 'void __builtin_mips_set_fcsr (unsigned int VALUE)'
- Get and set the contents of the floating-point control and status
- register (FPU control register 31). These functions are only
- available in hard-float code but can be called in both MIPS16 and
- non-MIPS16 contexts.
- '__builtin_mips_set_fcsr' can be used to change any bit of the
- register except the condition codes, which GCC assumes are
- preserved.
- File: gcc.info, Node: MSP430 Built-in Functions, Next: NDS32 Built-in Functions, Prev: Other MIPS Built-in Functions, Up: Target Builtins
- 6.59.18 MSP430 Built-in Functions
- ---------------------------------
- GCC provides a couple of special builtin functions to aid in the writing
- of interrupt handlers in C.
- '__bic_SR_register_on_exit (int MASK)'
- This clears the indicated bits in the saved copy of the status
- register currently residing on the stack. This only works inside
- interrupt handlers and the changes to the status register will only
- take affect once the handler returns.
- '__bis_SR_register_on_exit (int MASK)'
- This sets the indicated bits in the saved copy of the status
- register currently residing on the stack. This only works inside
- interrupt handlers and the changes to the status register will only
- take affect once the handler returns.
- '__delay_cycles (long long CYCLES)'
- This inserts an instruction sequence that takes exactly CYCLES
- cycles (between 0 and about 17E9) to complete. The inserted
- sequence may use jumps, loops, or no-ops, and does not interfere
- with any other instructions. Note that CYCLES must be a
- compile-time constant integer - that is, you must pass a number,
- not a variable that may be optimized to a constant later. The
- number of cycles delayed by this builtin is exact.
- File: gcc.info, Node: NDS32 Built-in Functions, Next: picoChip Built-in Functions, Prev: MSP430 Built-in Functions, Up: Target Builtins
- 6.59.19 NDS32 Built-in Functions
- --------------------------------
- These built-in functions are available for the NDS32 target:
- -- Built-in Function: void __builtin_nds32_isync (int *ADDR)
- Insert an ISYNC instruction into the instruction stream where ADDR
- is an instruction address for serialization.
- -- Built-in Function: void __builtin_nds32_isb (void)
- Insert an ISB instruction into the instruction stream.
- -- Built-in Function: int __builtin_nds32_mfsr (int SR)
- Return the content of a system register which is mapped by SR.
- -- Built-in Function: int __builtin_nds32_mfusr (int USR)
- Return the content of a user space register which is mapped by USR.
- -- Built-in Function: void __builtin_nds32_mtsr (int VALUE, int SR)
- Move the VALUE to a system register which is mapped by SR.
- -- Built-in Function: void __builtin_nds32_mtusr (int VALUE, int USR)
- Move the VALUE to a user space register which is mapped by USR.
- -- Built-in Function: void __builtin_nds32_setgie_en (void)
- Enable global interrupt.
- -- Built-in Function: void __builtin_nds32_setgie_dis (void)
- Disable global interrupt.
- File: gcc.info, Node: picoChip Built-in Functions, Next: PowerPC Built-in Functions, Prev: NDS32 Built-in Functions, Up: Target Builtins
- 6.59.20 picoChip Built-in Functions
- -----------------------------------
- GCC provides an interface to selected machine instructions from the
- picoChip instruction set.
- 'int __builtin_sbc (int VALUE)'
- Sign bit count. Return the number of consecutive bits in VALUE
- that have the same value as the sign bit. The result is the number
- of leading sign bits minus one, giving the number of redundant sign
- bits in VALUE.
- 'int __builtin_byteswap (int VALUE)'
- Byte swap. Return the result of swapping the upper and lower bytes
- of VALUE.
- 'int __builtin_brev (int VALUE)'
- Bit reversal. Return the result of reversing the bits in VALUE.
- Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1, and so
- on.
- 'int __builtin_adds (int X, int Y)'
- Saturating addition. Return the result of adding X and Y, storing
- the value 32767 if the result overflows.
- 'int __builtin_subs (int X, int Y)'
- Saturating subtraction. Return the result of subtracting Y from X,
- storing the value -32768 if the result overflows.
- 'void __builtin_halt (void)'
- Halt. The processor stops execution. This built-in is useful for
- implementing assertions.
- File: gcc.info, Node: PowerPC Built-in Functions, Next: PowerPC AltiVec/VSX Built-in Functions, Prev: picoChip Built-in Functions, Up: Target Builtins
- 6.59.21 PowerPC Built-in Functions
- ----------------------------------
- The following built-in functions are always available and can be used to
- check the PowerPC target platform type:
- -- Built-in Function: void __builtin_cpu_init (void)
- This function is a 'nop' on the PowerPC platform and is included
- solely to maintain API compatibility with the x86 builtins.
- -- Built-in Function: int __builtin_cpu_is (const char *CPUNAME)
- This function returns a value of '1' if the run-time CPU is of type
- CPUNAME and returns '0' otherwise
- The '__builtin_cpu_is' function requires GLIBC 2.23 or newer which
- exports the hardware capability bits. GCC defines the macro
- '__BUILTIN_CPU_SUPPORTS__' if the '__builtin_cpu_supports' built-in
- function is fully supported.
- If GCC was configured to use a GLIBC before 2.23, the built-in
- function '__builtin_cpu_is' always returns a 0 and the compiler
- issues a warning.
- The following CPU names can be detected:
- 'power9'
- IBM POWER9 Server CPU.
- 'power8'
- IBM POWER8 Server CPU.
- 'power7'
- IBM POWER7 Server CPU.
- 'power6x'
- IBM POWER6 Server CPU (RAW mode).
- 'power6'
- IBM POWER6 Server CPU (Architected mode).
- 'power5+'
- IBM POWER5+ Server CPU.
- 'power5'
- IBM POWER5 Server CPU.
- 'ppc970'
- IBM 970 Server CPU (ie, Apple G5).
- 'power4'
- IBM POWER4 Server CPU.
- 'ppca2'
- IBM A2 64-bit Embedded CPU
- 'ppc476'
- IBM PowerPC 476FP 32-bit Embedded CPU.
- 'ppc464'
- IBM PowerPC 464 32-bit Embedded CPU.
- 'ppc440'
- PowerPC 440 32-bit Embedded CPU.
- 'ppc405'
- PowerPC 405 32-bit Embedded CPU.
- 'ppc-cell-be'
- IBM PowerPC Cell Broadband Engine Architecture CPU.
- Here is an example:
- #ifdef __BUILTIN_CPU_SUPPORTS__
- if (__builtin_cpu_is ("power8"))
- {
- do_power8 (); // POWER8 specific implementation.
- }
- else
- #endif
- {
- do_generic (); // Generic implementation.
- }
- -- Built-in Function: int __builtin_cpu_supports (const char *FEATURE)
- This function returns a value of '1' if the run-time CPU supports
- the HWCAP feature FEATURE and returns '0' otherwise.
- The '__builtin_cpu_supports' function requires GLIBC 2.23 or newer
- which exports the hardware capability bits. GCC defines the macro
- '__BUILTIN_CPU_SUPPORTS__' if the '__builtin_cpu_supports' built-in
- function is fully supported.
- If GCC was configured to use a GLIBC before 2.23, the built-in
- function '__builtin_cpu_suports' always returns a 0 and the
- compiler issues a warning.
- The following features can be detected:
- '4xxmac'
- 4xx CPU has a Multiply Accumulator.
- 'altivec'
- CPU has a SIMD/Vector Unit.
- 'arch_2_05'
- CPU supports ISA 2.05 (eg, POWER6)
- 'arch_2_06'
- CPU supports ISA 2.06 (eg, POWER7)
- 'arch_2_07'
- CPU supports ISA 2.07 (eg, POWER8)
- 'arch_3_00'
- CPU supports ISA 3.0 (eg, POWER9)
- 'archpmu'
- CPU supports the set of compatible performance monitoring
- events.
- 'booke'
- CPU supports the Embedded ISA category.
- 'cellbe'
- CPU has a CELL broadband engine.
- 'dfp'
- CPU has a decimal floating point unit.
- 'dscr'
- CPU supports the data stream control register.
- 'ebb'
- CPU supports event base branching.
- 'efpdouble'
- CPU has a SPE double precision floating point unit.
- 'efpsingle'
- CPU has a SPE single precision floating point unit.
- 'fpu'
- CPU has a floating point unit.
- 'htm'
- CPU has hardware transaction memory instructions.
- 'htm-nosc'
- Kernel aborts hardware transactions when a syscall is made.
- 'ic_snoop'
- CPU supports icache snooping capabilities.
- 'ieee128'
- CPU supports 128-bit IEEE binary floating point instructions.
- 'isel'
- CPU supports the integer select instruction.
- 'mmu'
- CPU has a memory management unit.
- 'notb'
- CPU does not have a timebase (eg, 601 and 403gx).
- 'pa6t'
- CPU supports the PA Semi 6T CORE ISA.
- 'power4'
- CPU supports ISA 2.00 (eg, POWER4)
- 'power5'
- CPU supports ISA 2.02 (eg, POWER5)
- 'power5+'
- CPU supports ISA 2.03 (eg, POWER5+)
- 'power6x'
- CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and
- mftgpr.
- 'ppc32'
- CPU supports 32-bit mode execution.
- 'ppc601'
- CPU supports the old POWER ISA (eg, 601)
- 'ppc64'
- CPU supports 64-bit mode execution.
- 'ppcle'
- CPU supports a little-endian mode that uses address swizzling.
- 'smt'
- CPU support simultaneous multi-threading.
- 'spe'
- CPU has a signal processing extension unit.
- 'tar'
- CPU supports the target address register.
- 'true_le'
- CPU supports true little-endian mode.
- 'ucache'
- CPU has unified I/D cache.
- 'vcrypto'
- CPU supports the vector cryptography instructions.
- 'vsx'
- CPU supports the vector-scalar extension.
- Here is an example:
- #ifdef __BUILTIN_CPU_SUPPORTS__
- if (__builtin_cpu_supports ("fpu"))
- {
- asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
- }
- else
- #endif
- {
- dst = __fadd (src1, src2); // Software FP addition function.
- }
- These built-in functions are available for the PowerPC family of
- processors:
- float __builtin_recipdivf (float, float);
- float __builtin_rsqrtf (float);
- double __builtin_recipdiv (double, double);
- double __builtin_rsqrt (double);
- uint64_t __builtin_ppc_get_timebase ();
- unsigned long __builtin_ppc_mftb ();
- double __builtin_unpack_longdouble (long double, int);
- long double __builtin_pack_longdouble (double, double);
- __ibm128 __builtin_unpack_ibm128 (__ibm128, int);
- __ibm128 __builtin_pack_ibm128 (double, double);
- The 'vec_rsqrt', '__builtin_rsqrt', and '__builtin_rsqrtf' functions
- generate multiple instructions to implement the reciprocal sqrt
- functionality using reciprocal sqrt estimate instructions.
- The '__builtin_recipdiv', and '__builtin_recipdivf' functions generate
- multiple instructions to implement division using the reciprocal
- estimate instructions.
- The '__builtin_ppc_get_timebase' and '__builtin_ppc_mftb' functions
- generate instructions to read the Time Base Register. The
- '__builtin_ppc_get_timebase' function may generate multiple instructions
- and always returns the 64 bits of the Time Base Register. The
- '__builtin_ppc_mftb' function always generates one instruction and
- returns the Time Base Register value as an unsigned long, throwing away
- the most significant word on 32-bit environments.
- The '__builtin_unpack_longdouble' function takes a 'long double'
- argument and a compile time constant of 0 or 1. If the constant is 0,
- the first 'double' within the 'long double' is returned, otherwise the
- second 'double' is returned. The '__builtin_unpack_longdouble' function
- is only availble if 'long double' uses the IBM extended double
- representation.
- The '__builtin_pack_longdouble' function takes two 'double' arguments
- and returns a 'long double' value that combines the two arguments. The
- '__builtin_pack_longdouble' function is only availble if 'long double'
- uses the IBM extended double representation.
- The '__builtin_unpack_ibm128' function takes a '__ibm128' argument and
- a compile time constant of 0 or 1. If the constant is 0, the first
- 'double' within the '__ibm128' is returned, otherwise the second
- 'double' is returned.
- The '__builtin_pack_ibm128' function takes two 'double' arguments and
- returns a '__ibm128' value that combines the two arguments.
- Additional built-in functions are available for the 64-bit PowerPC
- family of processors, for efficient use of 128-bit floating point
- ('__float128') values.
- Previous versions of GCC supported some 'q' builtins for IEEE 128-bit
- floating point. These functions are now mapped into the equivalent
- 'f128' builtin functions.
- __builtin_fabsq is mapped into __builtin_fabsf128
- __builtin_copysignq is mapped into __builtin_copysignf128
- __builtin_infq is mapped into __builtin_inff128
- __builtin_huge_valq is mapped into __builtin_huge_valf128
- __builtin_nanq is mapped into __builtin_nanf128
- __builtin_nansq is mapped into __builtin_nansf128
- The following built-in functions are available on Linux 64-bit systems
- that use the ISA 3.0 instruction set.
- '__float128 __builtin_sqrtf128 (__float128)'
- Perform a 128-bit IEEE floating point square root operation.
- '__float128 __builtin_fmaf128 (__float128, __float128, __float128)'
- Perform a 128-bit IEEE floating point fused multiply and add
- operation.
- '__float128 __builtin_addf128_round_to_odd (__float128, __float128)'
- Perform a 128-bit IEEE floating point add using round to odd as the
- rounding mode.
- '__float128 __builtin_subf128_round_to_odd (__float128, __float128)'
- Perform a 128-bit IEEE floating point subtract using round to odd
- as the rounding mode.
- '__float128 __builtin_mulf128_round_to_odd (__float128, __float128)'
- Perform a 128-bit IEEE floating point multiply using round to odd
- as the rounding mode.
- '__float128 __builtin_divf128_round_to_odd (__float128, __float128)'
- Perform a 128-bit IEEE floating point divide using round to odd as
- the rounding mode.
- '__float128 __builtin_sqrtf128_round_to_odd (__float128)'
- Perform a 128-bit IEEE floating point square root using round to
- odd as the rounding mode.
- '__float128 __builtin_fmaf128 (__float128, __float128, __float128)'
- Perform a 128-bit IEEE floating point fused multiply and add
- operation using round to odd as the rounding mode.
- 'double __builtin_truncf128_round_to_odd (__float128)'
- Convert a 128-bit IEEE floating point value to 'double' using round
- to odd as the rounding mode.
- The following built-in functions are available for the PowerPC family
- of processors, starting with ISA 2.05 or later ('-mcpu=power6' or
- '-mcmpb'):
- unsigned long long __builtin_cmpb (unsigned long long int, unsigned long long int);
- unsigned int __builtin_cmpb (unsigned int, unsigned int);
- The '__builtin_cmpb' function performs a byte-wise compare on the
- contents of its two arguments, returning the result of the byte-wise
- comparison as the returned value. For each byte comparison, the
- corresponding byte of the return value holds 0xff if the input bytes are
- equal and 0 if the input bytes are not equal. If either of the
- arguments to this built-in function is wider than 32 bits, the function
- call expands into the form that expects 'unsigned long long int'
- arguments which is only available on 64-bit targets.
- The following built-in functions are available for the PowerPC family
- of processors, starting with ISA 2.06 or later ('-mcpu=power7' or
- '-mpopcntd'):
- long __builtin_bpermd (long, long);
- int __builtin_divwe (int, int);
- unsigned int __builtin_divweu (unsigned int, unsigned int);
- long __builtin_divde (long, long);
- unsigned long __builtin_divdeu (unsigned long, unsigned long);
- unsigned int cdtbcd (unsigned int);
- unsigned int cbcdtd (unsigned int);
- unsigned int addg6s (unsigned int, unsigned int);
- void __builtin_rs6000_speculation_barrier (void);
- The '__builtin_divde' and '__builtin_divdeu' functions require a 64-bit
- environment supporting ISA 2.06 or later.
- The following built-in functions are available for the PowerPC family
- of processors, starting with ISA 3.0 or later ('-mcpu=power9'):
- long long __builtin_darn (void);
- long long __builtin_darn_raw (void);
- int __builtin_darn_32 (void);
- unsigned int scalar_extract_exp (double source);
- unsigned long long int scalar_extract_exp (__ieee128 source);
- unsigned long long int scalar_extract_sig (double source);
- unsigned __int128 scalar_extract_sig (__ieee128 source);
- double
- scalar_insert_exp (unsigned long long int significand, unsigned long long int exponent);
- double
- scalar_insert_exp (double significand, unsigned long long int exponent);
- ieee_128
- scalar_insert_exp (unsigned __int128 significand, unsigned long long int exponent);
- ieee_128
- scalar_insert_exp (ieee_128 significand, unsigned long long int exponent);
- int scalar_cmp_exp_gt (double arg1, double arg2);
- int scalar_cmp_exp_lt (double arg1, double arg2);
- int scalar_cmp_exp_eq (double arg1, double arg2);
- int scalar_cmp_exp_unordered (double arg1, double arg2);
- bool scalar_test_data_class (float source, const int condition);
- bool scalar_test_data_class (double source, const int condition);
- bool scalar_test_data_class (__ieee128 source, const int condition);
- bool scalar_test_neg (float source);
- bool scalar_test_neg (double source);
- bool scalar_test_neg (__ieee128 source);
- int __builtin_byte_in_set (unsigned char u, unsigned long long set);
- int __builtin_byte_in_range (unsigned char u, unsigned int range);
- int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);
- int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
- int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
- int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
- int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
- int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
- int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
- int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
- int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
- int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
- int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
- int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
- int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
- int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
- int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
- int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
- int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
- The '__builtin_darn' and '__builtin_darn_raw' functions require a
- 64-bit environment supporting ISA 3.0 or later. The '__builtin_darn'
- function provides a 64-bit conditioned random number. The
- '__builtin_darn_raw' function provides a 64-bit raw random number. The
- '__builtin_darn_32' function provides a 32-bit random number.
- The 'scalar_extract_exp' and 'scalar_extract_sig' functions require a
- 64-bit environment supporting ISA 3.0 or later. The
- 'scalar_extract_exp' and 'scalar_extract_sig' built-in functions return
- the significand and the biased exponent value respectively of their
- 'source' arguments. When supplied with a 64-bit 'source' argument, the
- result returned by 'scalar_extract_sig' has the '0x0010000000000000' bit
- set if the function's 'source' argument is in normalized form.
- Otherwise, this bit is set to 0. When supplied with a 128-bit 'source'
- argument, the '0x00010000000000000000000000000000' bit of the result is
- treated similarly. Note that the sign of the significand is not
- represented in the result returned from the 'scalar_extract_sig'
- function. Use the 'scalar_test_neg' function to test the sign of its
- 'double' argument.
- The 'scalar_insert_exp' functions require a 64-bit environment
- supporting ISA 3.0 or later. When supplied with a 64-bit first
- argument, the 'scalar_insert_exp' built-in function returns a
- double-precision floating point value that is constructed by assembling
- the values of its 'significand' and 'exponent' arguments. The sign of
- the result is copied from the most significant bit of the 'significand'
- argument. The significand and exponent components of the result are
- composed of the least significant 11 bits of the 'exponent' argument and
- the least significant 52 bits of the 'significand' argument
- respectively.
- When supplied with a 128-bit first argument, the 'scalar_insert_exp'
- built-in function returns a quad-precision ieee floating point value.
- The sign bit of the result is copied from the most significant bit of
- the 'significand' argument. The significand and exponent components of
- the result are composed of the least significant 15 bits of the
- 'exponent' argument and the least significant 112 bits of the
- 'significand' argument respectively.
- The 'scalar_cmp_exp_gt', 'scalar_cmp_exp_lt', 'scalar_cmp_exp_eq', and
- 'scalar_cmp_exp_unordered' built-in functions return a non-zero value if
- 'arg1' is greater than, less than, equal to, or not comparable to 'arg2'
- respectively. The arguments are not comparable if one or the other
- equals NaN (not a number).
- The 'scalar_test_data_class' built-in function returns 1 if any of the
- condition tests enabled by the value of the 'condition' variable are
- true, and 0 otherwise. The 'condition' argument must be a compile-time
- constant integer with value not exceeding 127. The 'condition' argument
- is encoded as a bitmask with each bit enabling the testing of a
- different condition, as characterized by the following:
- 0x40 Test for NaN
- 0x20 Test for +Infinity
- 0x10 Test for -Infinity
- 0x08 Test for +Zero
- 0x04 Test for -Zero
- 0x02 Test for +Denormal
- 0x01 Test for -Denormal
- The 'scalar_test_neg' built-in function returns 1 if its 'source'
- argument holds a negative value, 0 otherwise.
- The '__builtin_byte_in_set' function requires a 64-bit environment
- supporting ISA 3.0 or later. This function returns a non-zero value if
- and only if its 'u' argument exactly equals one of the eight bytes
- contained within its 64-bit 'set' argument.
- The '__builtin_byte_in_range' and '__builtin_byte_in_either_range'
- require an environment supporting ISA 3.0 or later. For these two
- functions, the 'range' argument is encoded as 4 bytes, organized as
- 'hi_1:lo_1:hi_2:lo_2'. The '__builtin_byte_in_range' function returns a
- non-zero value if and only if its 'u' argument is within the range
- bounded between 'lo_2' and 'hi_2' inclusive. The
- '__builtin_byte_in_either_range' function returns non-zero if and only
- if its 'u' argument is within either the range bounded between 'lo_1'
- and 'hi_1' inclusive or the range bounded between 'lo_2' and 'hi_2'
- inclusive.
- The '__builtin_dfp_dtstsfi_lt' function returns a non-zero value if and
- only if the number of signficant digits of its 'value' argument is less
- than its 'comparison' argument. The '__builtin_dfp_dtstsfi_lt_dd' and
- '__builtin_dfp_dtstsfi_lt_td' functions behave similarly, but require
- that the type of the 'value' argument be '__Decimal64' and
- '__Decimal128' respectively.
- The '__builtin_dfp_dtstsfi_gt' function returns a non-zero value if and
- only if the number of signficant digits of its 'value' argument is
- greater than its 'comparison' argument. The
- '__builtin_dfp_dtstsfi_gt_dd' and '__builtin_dfp_dtstsfi_gt_td'
- functions behave similarly, but require that the type of the 'value'
- argument be '__Decimal64' and '__Decimal128' respectively.
- The '__builtin_dfp_dtstsfi_eq' function returns a non-zero value if and
- only if the number of signficant digits of its 'value' argument equals
- its 'comparison' argument. The '__builtin_dfp_dtstsfi_eq_dd' and
- '__builtin_dfp_dtstsfi_eq_td' functions behave similarly, but require
- that the type of the 'value' argument be '__Decimal64' and
- '__Decimal128' respectively.
- The '__builtin_dfp_dtstsfi_ov' function returns a non-zero value if and
- only if its 'value' argument has an undefined number of significant
- digits, such as when 'value' is an encoding of 'NaN'. The
- '__builtin_dfp_dtstsfi_ov_dd' and '__builtin_dfp_dtstsfi_ov_td'
- functions behave similarly, but require that the type of the 'value'
- argument be '__Decimal64' and '__Decimal128' respectively.
- The following built-in functions are also available for the PowerPC
- family of processors, starting with ISA 3.0 or later ('-mcpu=power9').
- These string functions are described separately in order to group the
- descriptions closer to the function prototypes:
- int vec_all_nez (vector signed char, vector signed char);
- int vec_all_nez (vector unsigned char, vector unsigned char);
- int vec_all_nez (vector signed short, vector signed short);
- int vec_all_nez (vector unsigned short, vector unsigned short);
- int vec_all_nez (vector signed int, vector signed int);
- int vec_all_nez (vector unsigned int, vector unsigned int);
- int vec_any_eqz (vector signed char, vector signed char);
- int vec_any_eqz (vector unsigned char, vector unsigned char);
- int vec_any_eqz (vector signed short, vector signed short);
- int vec_any_eqz (vector unsigned short, vector unsigned short);
- int vec_any_eqz (vector signed int, vector signed int);
- int vec_any_eqz (vector unsigned int, vector unsigned int);
- vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
- vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
- vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
- vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
- vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
- vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
- vector signed char vec_cnttz (vector signed char);
- vector unsigned char vec_cnttz (vector unsigned char);
- vector signed short vec_cnttz (vector signed short);
- vector unsigned short vec_cnttz (vector unsigned short);
- vector signed int vec_cnttz (vector signed int);
- vector unsigned int vec_cnttz (vector unsigned int);
- vector signed long long vec_cnttz (vector signed long long);
- vector unsigned long long vec_cnttz (vector unsigned long long);
- signed int vec_cntlz_lsbb (vector signed char);
- signed int vec_cntlz_lsbb (vector unsigned char);
- signed int vec_cnttz_lsbb (vector signed char);
- signed int vec_cnttz_lsbb (vector unsigned char);
- unsigned int vec_first_match_index (vector signed char, vector signed char);
- unsigned int vec_first_match_index (vector unsigned char,
- vector unsigned char);
- unsigned int vec_first_match_index (vector signed int, vector signed int);
- unsigned int vec_first_match_index (vector unsigned int, vector unsigned int);
- unsigned int vec_first_match_index (vector signed short, vector signed short);
- unsigned int vec_first_match_index (vector unsigned short,
- vector unsigned short);
- unsigned int vec_first_match_or_eos_index (vector signed char,
- vector signed char);
- unsigned int vec_first_match_or_eos_index (vector unsigned char,
- vector unsigned char);
- unsigned int vec_first_match_or_eos_index (vector signed int,
- vector signed int);
- unsigned int vec_first_match_or_eos_index (vector unsigned int,
- vector unsigned int);
- unsigned int vec_first_match_or_eos_index (vector signed short,
- vector signed short);
- unsigned int vec_first_match_or_eos_index (vector unsigned short,
- vector unsigned short);
- unsigned int vec_first_mismatch_index (vector signed char,
- vector signed char);
- unsigned int vec_first_mismatch_index (vector unsigned char,
- vector unsigned char);
- unsigned int vec_first_mismatch_index (vector signed int,
- vector signed int);
- unsigned int vec_first_mismatch_index (vector unsigned int,
- vector unsigned int);
- unsigned int vec_first_mismatch_index (vector signed short,
- vector signed short);
- unsigned int vec_first_mismatch_index (vector unsigned short,
- vector unsigned short);
- unsigned int vec_first_mismatch_or_eos_index (vector signed char,
- vector signed char);
- unsigned int vec_first_mismatch_or_eos_index (vector unsigned char,
- vector unsigned char);
- unsigned int vec_first_mismatch_or_eos_index (vector signed int,
- vector signed int);
- unsigned int vec_first_mismatch_or_eos_index (vector unsigned int,
- vector unsigned int);
- unsigned int vec_first_mismatch_or_eos_index (vector signed short,
- vector signed short);
- unsigned int vec_first_mismatch_or_eos_index (vector unsigned short,
- vector unsigned short);
- vector unsigned short vec_pack_to_short_fp32 (vector float, vector float);
- vector signed char vec_xl_be (signed long long, signed char *);
- vector unsigned char vec_xl_be (signed long long, unsigned char *);
- vector signed int vec_xl_be (signed long long, signed int *);
- vector unsigned int vec_xl_be (signed long long, unsigned int *);
- vector signed __int128 vec_xl_be (signed long long, signed __int128 *);
- vector unsigned __int128 vec_xl_be (signed long long, unsigned __int128 *);
- vector signed long long vec_xl_be (signed long long, signed long long *);
- vector unsigned long long vec_xl_be (signed long long, unsigned long long *);
- vector signed short vec_xl_be (signed long long, signed short *);
- vector unsigned short vec_xl_be (signed long long, unsigned short *);
- vector double vec_xl_be (signed long long, double *);
- vector float vec_xl_be (signed long long, float *);
- vector signed char vec_xl_len (signed char *addr, size_t len);
- vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
- vector signed int vec_xl_len (signed int *addr, size_t len);
- vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
- vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
- vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
- vector signed long long vec_xl_len (signed long long *addr, size_t len);
- vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
- vector signed short vec_xl_len (signed short *addr, size_t len);
- vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
- vector double vec_xl_len (double *addr, size_t len);
- vector float vec_xl_len (float *addr, size_t len);
- vector unsigned char vec_xl_len_r (unsigned char *addr, size_t len);
- void vec_xst_len (vector signed char data, signed char *addr, size_t len);
- void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
- void vec_xst_len (vector signed int data, signed int *addr, size_t len);
- void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
- void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
- void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
- void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
- void vec_xst_len (vector signed short data, signed short *addr, size_t len);
- void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
- void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
- void vec_xst_len (vector double data, double *addr, size_t len);
- void vec_xst_len (vector float data, float *addr, size_t len);
- void vec_xst_len_r (vector unsigned char data, unsigned char *addr, size_t len);
- signed char vec_xlx (unsigned int index, vector signed char data);
- unsigned char vec_xlx (unsigned int index, vector unsigned char data);
- signed short vec_xlx (unsigned int index, vector signed short data);
- unsigned short vec_xlx (unsigned int index, vector unsigned short data);
- signed int vec_xlx (unsigned int index, vector signed int data);
- unsigned int vec_xlx (unsigned int index, vector unsigned int data);
- float vec_xlx (unsigned int index, vector float data);
- signed char vec_xrx (unsigned int index, vector signed char data);
- unsigned char vec_xrx (unsigned int index, vector unsigned char data);
- signed short vec_xrx (unsigned int index, vector signed short data);
- unsigned short vec_xrx (unsigned int index, vector unsigned short data);
- signed int vec_xrx (unsigned int index, vector signed int data);
- unsigned int vec_xrx (unsigned int index, vector unsigned int data);
- float vec_xrx (unsigned int index, vector float data);
- The 'vec_all_nez', 'vec_any_eqz', and 'vec_cmpnez' perform pairwise
- comparisons between the elements at the same positions within their two
- vector arguments. The 'vec_all_nez' function returns a non-zero value
- if and only if all pairwise comparisons are not equal and no element of
- either vector argument contains a zero. The 'vec_any_eqz' function
- returns a non-zero value if and only if at least one pairwise comparison
- is equal or if at least one element of either vector argument contains a
- zero. The 'vec_cmpnez' function returns a vector of the same type as
- its two arguments, within which each element consists of all ones to
- denote that either the corresponding elements of the incoming arguments
- are not equal or that at least one of the corresponding elements
- contains zero. Otherwise, the element of the returned vector contains
- all zeros.
- The 'vec_cntlz_lsbb' function returns the count of the number of
- consecutive leading byte elements (starting from position 0 within the
- supplied vector argument) for which the least-significant bit equals
- zero. The 'vec_cnttz_lsbb' function returns the count of the number of
- consecutive trailing byte elements (starting from position 15 and
- counting backwards within the supplied vector argument) for which the
- least-significant bit equals zero.
- The 'vec_xl_len' and 'vec_xst_len' functions require a 64-bit
- environment supporting ISA 3.0 or later. The 'vec_xl_len' function
- loads a variable length vector from memory. The 'vec_xst_len' function
- stores a variable length vector to memory. With both the 'vec_xl_len'
- and 'vec_xst_len' functions, the 'addr' argument represents the memory
- address to or from which data will be transferred, and the 'len'
- argument represents the number of bytes to be transferred, as computed
- by the C expression 'min((len & 0xff), 16)'. If this expression's value
- is not a multiple of the vector element's size, the behavior of this
- function is undefined. In the case that the underlying computer is
- configured to run in big-endian mode, the data transfer moves bytes 0 to
- '(len - 1)' of the corresponding vector. In little-endian mode, the
- data transfer moves bytes '(16 - len)' to '15' of the corresponding
- vector. For the load function, any bytes of the result vector that are
- not loaded from memory are set to zero. The value of the 'addr'
- argument need not be aligned on a multiple of the vector's element size.
- The 'vec_xlx' and 'vec_xrx' functions extract the single element
- selected by the 'index' argument from the vector represented by the
- 'data' argument. The 'index' argument always specifies a byte offset,
- regardless of the size of the vector element. With 'vec_xlx', 'index'
- is the offset of the first byte of the element to be extracted. With
- 'vec_xrx', 'index' represents the last byte of the element to be
- extracted, measured from the right end of the vector. In other words,
- the last byte of the element to be extracted is found at position '(15 -
- index)'. There is no requirement that 'index' be a multiple of the
- vector element size. However, if the size of the vector element added
- to 'index' is greater than 15, the content of the returned value is
- undefined.
- The following built-in functions are available for the PowerPC family
- of processors when hardware decimal floating point ('-mhard-dfp') is
- available:
- long long __builtin_dxex (_Decimal64);
- long long __builtin_dxexq (_Decimal128);
- _Decimal64 __builtin_ddedpd (int, _Decimal64);
- _Decimal128 __builtin_ddedpdq (int, _Decimal128);
- _Decimal64 __builtin_denbcd (int, _Decimal64);
- _Decimal128 __builtin_denbcdq (int, _Decimal128);
- _Decimal64 __builtin_diex (long long, _Decimal64);
- _Decimal128 _builtin_diexq (long long, _Decimal128);
- _Decimal64 __builtin_dscli (_Decimal64, int);
- _Decimal128 __builtin_dscliq (_Decimal128, int);
- _Decimal64 __builtin_dscri (_Decimal64, int);
- _Decimal128 __builtin_dscriq (_Decimal128, int);
- unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
- _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
- The following built-in functions are available for the PowerPC family
- of processors when the Vector Scalar (vsx) instruction set is available:
- unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
- vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
- unsigned long long);
- File: gcc.info, Node: PowerPC AltiVec/VSX Built-in Functions, Next: PowerPC Hardware Transactional Memory Built-in Functions, Prev: PowerPC Built-in Functions, Up: Target Builtins
- 6.59.22 PowerPC AltiVec Built-in Functions
- ------------------------------------------
- GCC provides an interface for the PowerPC family of processors to access
- the AltiVec operations described in Motorola's AltiVec Programming
- Interface Manual. The interface is made available by including
- '<altivec.h>' and using '-maltivec' and '-mabi=altivec'. The interface
- supports the following vector types.
- vector unsigned char
- vector signed char
- vector bool char
- vector unsigned short
- vector signed short
- vector bool short
- vector pixel
- vector unsigned int
- vector signed int
- vector bool int
- vector float
- If '-mvsx' is used the following additional vector types are
- implemented.
- vector unsigned long
- vector signed long
- vector double
- The long types are only implemented for 64-bit code generation, and the
- long type is only used in the floating point/integer conversion
- instructions.
- GCC's implementation of the high-level language interface available
- from C and C++ code differs from Motorola's documentation in several
- ways.
- * A vector constant is a list of constant expressions within curly
- braces.
- * A vector initializer requires no cast if the vector constant is of
- the same type as the variable it is initializing.
- * If 'signed' or 'unsigned' is omitted, the signedness of the vector
- type is the default signedness of the base type. The default
- varies depending on the operating system, so a portable program
- should always specify the signedness.
- * Compiling with '-maltivec' adds keywords '__vector', 'vector',
- '__pixel', 'pixel', '__bool' and 'bool'. When compiling ISO C, the
- context-sensitive substitution of the keywords 'vector', 'pixel'
- and 'bool' is disabled. To use them, you must include
- '<altivec.h>' instead.
- * GCC allows using a 'typedef' name as the type specifier for a
- vector type, but only under the following circumstances:
- * When using '__vector' instead of 'vector'; for example,
- typedef signed short int16;
- __vector int16 data;
- * When using 'vector' in keyword-and-predefine mode; for
- example,
- typedef signed short int16;
- vector int16 data;
- Note that keyword-and-predefine mode is enabled by disabling
- GNU extensions (e.g., by using '-std=c11') and including
- '<altivec.h>'.
- * For C, overloaded functions are implemented with macros so the
- following does not work:
- vec_add ((vector signed int){1, 2, 3, 4}, foo);
- Since 'vec_add' is a macro, the vector constant in the example is
- treated as four separate arguments. Wrap the entire argument in
- parentheses for this to work.
- _Note:_ Only the '<altivec.h>' interface is supported. Internally, GCC
- uses built-in functions to achieve the functionality in the
- aforementioned header file, but they are not supported and are subject
- to change without notice.
- GCC complies with the OpenPOWER 64-Bit ELF V2 ABI Specification, which
- may be found at
- <http://openpowerfoundation.org/wp-content/uploads/resources/leabi-prd/content/index.html>.
- Appendix A of this document lists the vector API interfaces that must be
- provided by compliant compilers. Programmers should preferentially use
- the interfaces described therein. However, historically GCC has
- provided additional interfaces for access to vector instructions. These
- are briefly described below.
- The following interfaces are supported for the generic and specific
- AltiVec operations and the AltiVec predicates. In cases where there is
- a direct mapping between generic and specific operations, only the
- generic names are shown here, although the specific operations can also
- be used.
- Arguments that are documented as 'const int' require literal integral
- values within the range required for that operation.
- vector signed char vec_abs (vector signed char);
- vector signed short vec_abs (vector signed short);
- vector signed int vec_abs (vector signed int);
- vector float vec_abs (vector float);
- vector signed char vec_abss (vector signed char);
- vector signed short vec_abss (vector signed short);
- vector signed int vec_abss (vector signed int);
- vector signed char vec_add (vector bool char, vector signed char);
- vector signed char vec_add (vector signed char, vector bool char);
- vector signed char vec_add (vector signed char, vector signed char);
- vector unsigned char vec_add (vector bool char, vector unsigned char);
- vector unsigned char vec_add (vector unsigned char, vector bool char);
- vector unsigned char vec_add (vector unsigned char,
- vector unsigned char);
- vector signed short vec_add (vector bool short, vector signed short);
- vector signed short vec_add (vector signed short, vector bool short);
- vector signed short vec_add (vector signed short, vector signed short);
- vector unsigned short vec_add (vector bool short,
- vector unsigned short);
- vector unsigned short vec_add (vector unsigned short,
- vector bool short);
- vector unsigned short vec_add (vector unsigned short,
- vector unsigned short);
- vector signed int vec_add (vector bool int, vector signed int);
- vector signed int vec_add (vector signed int, vector bool int);
- vector signed int vec_add (vector signed int, vector signed int);
- vector unsigned int vec_add (vector bool int, vector unsigned int);
- vector unsigned int vec_add (vector unsigned int, vector bool int);
- vector unsigned int vec_add (vector unsigned int, vector unsigned int);
- vector float vec_add (vector float, vector float);
- vector float vec_vaddfp (vector float, vector float);
- vector signed int vec_vadduwm (vector bool int, vector signed int);
- vector signed int vec_vadduwm (vector signed int, vector bool int);
- vector signed int vec_vadduwm (vector signed int, vector signed int);
- vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
- vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
- vector unsigned int vec_vadduwm (vector unsigned int,
- vector unsigned int);
- vector signed short vec_vadduhm (vector bool short,
- vector signed short);
- vector signed short vec_vadduhm (vector signed short,
- vector bool short);
- vector signed short vec_vadduhm (vector signed short,
- vector signed short);
- vector unsigned short vec_vadduhm (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vadduhm (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vadduhm (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vaddubm (vector bool char, vector signed char);
- vector signed char vec_vaddubm (vector signed char, vector bool char);
- vector signed char vec_vaddubm (vector signed char, vector signed char);
- vector unsigned char vec_vaddubm (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vaddubm (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vaddubm (vector unsigned char,
- vector unsigned char);
- vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
- vector unsigned char vec_adds (vector bool char, vector unsigned char);
- vector unsigned char vec_adds (vector unsigned char, vector bool char);
- vector unsigned char vec_adds (vector unsigned char,
- vector unsigned char);
- vector signed char vec_adds (vector bool char, vector signed char);
- vector signed char vec_adds (vector signed char, vector bool char);
- vector signed char vec_adds (vector signed char, vector signed char);
- vector unsigned short vec_adds (vector bool short,
- vector unsigned short);
- vector unsigned short vec_adds (vector unsigned short,
- vector bool short);
- vector unsigned short vec_adds (vector unsigned short,
- vector unsigned short);
- vector signed short vec_adds (vector bool short, vector signed short);
- vector signed short vec_adds (vector signed short, vector bool short);
- vector signed short vec_adds (vector signed short, vector signed short);
- vector unsigned int vec_adds (vector bool int, vector unsigned int);
- vector unsigned int vec_adds (vector unsigned int, vector bool int);
- vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
- vector signed int vec_adds (vector bool int, vector signed int);
- vector signed int vec_adds (vector signed int, vector bool int);
- vector signed int vec_adds (vector signed int, vector signed int);
- vector signed int vec_vaddsws (vector bool int, vector signed int);
- vector signed int vec_vaddsws (vector signed int, vector bool int);
- vector signed int vec_vaddsws (vector signed int, vector signed int);
- vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
- vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
- vector unsigned int vec_vadduws (vector unsigned int,
- vector unsigned int);
- vector signed short vec_vaddshs (vector bool short,
- vector signed short);
- vector signed short vec_vaddshs (vector signed short,
- vector bool short);
- vector signed short vec_vaddshs (vector signed short,
- vector signed short);
- vector unsigned short vec_vadduhs (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vadduhs (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vadduhs (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vaddsbs (vector bool char, vector signed char);
- vector signed char vec_vaddsbs (vector signed char, vector bool char);
- vector signed char vec_vaddsbs (vector signed char, vector signed char);
- vector unsigned char vec_vaddubs (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vaddubs (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vaddubs (vector unsigned char,
- vector unsigned char);
- vector float vec_and (vector float, vector float);
- vector float vec_and (vector float, vector bool int);
- vector float vec_and (vector bool int, vector float);
- vector bool long long vec_and (vector bool long long int,
- vector bool long long);
- vector bool int vec_and (vector bool int, vector bool int);
- vector signed int vec_and (vector bool int, vector signed int);
- vector signed int vec_and (vector signed int, vector bool int);
- vector signed int vec_and (vector signed int, vector signed int);
- vector unsigned int vec_and (vector bool int, vector unsigned int);
- vector unsigned int vec_and (vector unsigned int, vector bool int);
- vector unsigned int vec_and (vector unsigned int, vector unsigned int);
- vector bool short vec_and (vector bool short, vector bool short);
- vector signed short vec_and (vector bool short, vector signed short);
- vector signed short vec_and (vector signed short, vector bool short);
- vector signed short vec_and (vector signed short, vector signed short);
- vector unsigned short vec_and (vector bool short,
- vector unsigned short);
- vector unsigned short vec_and (vector unsigned short,
- vector bool short);
- vector unsigned short vec_and (vector unsigned short,
- vector unsigned short);
- vector signed char vec_and (vector bool char, vector signed char);
- vector bool char vec_and (vector bool char, vector bool char);
- vector signed char vec_and (vector signed char, vector bool char);
- vector signed char vec_and (vector signed char, vector signed char);
- vector unsigned char vec_and (vector bool char, vector unsigned char);
- vector unsigned char vec_and (vector unsigned char, vector bool char);
- vector unsigned char vec_and (vector unsigned char,
- vector unsigned char);
- vector float vec_andc (vector float, vector float);
- vector float vec_andc (vector float, vector bool int);
- vector float vec_andc (vector bool int, vector float);
- vector bool int vec_andc (vector bool int, vector bool int);
- vector signed int vec_andc (vector bool int, vector signed int);
- vector signed int vec_andc (vector signed int, vector bool int);
- vector signed int vec_andc (vector signed int, vector signed int);
- vector unsigned int vec_andc (vector bool int, vector unsigned int);
- vector unsigned int vec_andc (vector unsigned int, vector bool int);
- vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
- vector bool short vec_andc (vector bool short, vector bool short);
- vector signed short vec_andc (vector bool short, vector signed short);
- vector signed short vec_andc (vector signed short, vector bool short);
- vector signed short vec_andc (vector signed short, vector signed short);
- vector unsigned short vec_andc (vector bool short,
- vector unsigned short);
- vector unsigned short vec_andc (vector unsigned short,
- vector bool short);
- vector unsigned short vec_andc (vector unsigned short,
- vector unsigned short);
- vector signed char vec_andc (vector bool char, vector signed char);
- vector bool char vec_andc (vector bool char, vector bool char);
- vector signed char vec_andc (vector signed char, vector bool char);
- vector signed char vec_andc (vector signed char, vector signed char);
- vector unsigned char vec_andc (vector bool char, vector unsigned char);
- vector unsigned char vec_andc (vector unsigned char, vector bool char);
- vector unsigned char vec_andc (vector unsigned char,
- vector unsigned char);
- vector unsigned char vec_avg (vector unsigned char,
- vector unsigned char);
- vector signed char vec_avg (vector signed char, vector signed char);
- vector unsigned short vec_avg (vector unsigned short,
- vector unsigned short);
- vector signed short vec_avg (vector signed short, vector signed short);
- vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
- vector signed int vec_avg (vector signed int, vector signed int);
- vector signed int vec_vavgsw (vector signed int, vector signed int);
- vector unsigned int vec_vavguw (vector unsigned int,
- vector unsigned int);
- vector signed short vec_vavgsh (vector signed short,
- vector signed short);
- vector unsigned short vec_vavguh (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vavgsb (vector signed char, vector signed char);
- vector unsigned char vec_vavgub (vector unsigned char,
- vector unsigned char);
- vector float vec_copysign (vector float);
- vector float vec_ceil (vector float);
- vector signed int vec_cmpb (vector float, vector float);
- vector bool char vec_cmpeq (vector bool char, vector bool char);
- vector bool short vec_cmpeq (vector bool short, vector bool short);
- vector bool int vec_cmpeq (vector bool int, vector bool int);
- vector bool char vec_cmpeq (vector signed char, vector signed char);
- vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
- vector bool short vec_cmpeq (vector signed short, vector signed short);
- vector bool short vec_cmpeq (vector unsigned short,
- vector unsigned short);
- vector bool int vec_cmpeq (vector signed int, vector signed int);
- vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
- vector bool int vec_cmpeq (vector float, vector float);
- vector bool int vec_vcmpeqfp (vector float, vector float);
- vector bool int vec_vcmpequw (vector signed int, vector signed int);
- vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
- vector bool short vec_vcmpequh (vector signed short,
- vector signed short);
- vector bool short vec_vcmpequh (vector unsigned short,
- vector unsigned short);
- vector bool char vec_vcmpequb (vector signed char, vector signed char);
- vector bool char vec_vcmpequb (vector unsigned char,
- vector unsigned char);
- vector bool int vec_cmpge (vector float, vector float);
- vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
- vector bool char vec_cmpgt (vector signed char, vector signed char);
- vector bool short vec_cmpgt (vector unsigned short,
- vector unsigned short);
- vector bool short vec_cmpgt (vector signed short, vector signed short);
- vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
- vector bool int vec_cmpgt (vector signed int, vector signed int);
- vector bool int vec_cmpgt (vector float, vector float);
- vector bool int vec_vcmpgtfp (vector float, vector float);
- vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
- vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
- vector bool short vec_vcmpgtsh (vector signed short,
- vector signed short);
- vector bool short vec_vcmpgtuh (vector unsigned short,
- vector unsigned short);
- vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
- vector bool char vec_vcmpgtub (vector unsigned char,
- vector unsigned char);
- vector bool int vec_cmple (vector float, vector float);
- vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
- vector bool char vec_cmplt (vector signed char, vector signed char);
- vector bool short vec_cmplt (vector unsigned short,
- vector unsigned short);
- vector bool short vec_cmplt (vector signed short, vector signed short);
- vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
- vector bool int vec_cmplt (vector signed int, vector signed int);
- vector bool int vec_cmplt (vector float, vector float);
- vector float vec_cpsgn (vector float, vector float);
- vector float vec_ctf (vector unsigned int, const int);
- vector float vec_ctf (vector signed int, const int);
- vector double vec_ctf (vector unsigned long, const int);
- vector double vec_ctf (vector signed long, const int);
- vector float vec_vcfsx (vector signed int, const int);
- vector float vec_vcfux (vector unsigned int, const int);
- vector signed int vec_cts (vector float, const int);
- vector signed long vec_cts (vector double, const int);
- vector unsigned int vec_ctu (vector float, const int);
- vector unsigned long vec_ctu (vector double, const int);
- vector double vec_doublee (vector float);
- vector double vec_doublee (vector signed int);
- vector double vec_doublee (vector unsigned int);
- vector double vec_doubleo (vector float);
- vector double vec_doubleo (vector signed int);
- vector double vec_doubleo (vector unsigned int);
- vector double vec_doubleh (vector float);
- vector double vec_doubleh (vector signed int);
- vector double vec_doubleh (vector unsigned int);
- vector double vec_doublel (vector float);
- vector double vec_doublel (vector signed int);
- vector double vec_doublel (vector unsigned int);
- void vec_dss (const int);
- void vec_dssall (void);
- void vec_dst (const vector unsigned char *, int, const int);
- void vec_dst (const vector signed char *, int, const int);
- void vec_dst (const vector bool char *, int, const int);
- void vec_dst (const vector unsigned short *, int, const int);
- void vec_dst (const vector signed short *, int, const int);
- void vec_dst (const vector bool short *, int, const int);
- void vec_dst (const vector pixel *, int, const int);
- void vec_dst (const vector unsigned int *, int, const int);
- void vec_dst (const vector signed int *, int, const int);
- void vec_dst (const vector bool int *, int, const int);
- void vec_dst (const vector float *, int, const int);
- void vec_dst (const unsigned char *, int, const int);
- void vec_dst (const signed char *, int, const int);
- void vec_dst (const unsigned short *, int, const int);
- void vec_dst (const short *, int, const int);
- void vec_dst (const unsigned int *, int, const int);
- void vec_dst (const int *, int, const int);
- void vec_dst (const unsigned long *, int, const int);
- void vec_dst (const long *, int, const int);
- void vec_dst (const float *, int, const int);
- void vec_dstst (const vector unsigned char *, int, const int);
- void vec_dstst (const vector signed char *, int, const int);
- void vec_dstst (const vector bool char *, int, const int);
- void vec_dstst (const vector unsigned short *, int, const int);
- void vec_dstst (const vector signed short *, int, const int);
- void vec_dstst (const vector bool short *, int, const int);
- void vec_dstst (const vector pixel *, int, const int);
- void vec_dstst (const vector unsigned int *, int, const int);
- void vec_dstst (const vector signed int *, int, const int);
- void vec_dstst (const vector bool int *, int, const int);
- void vec_dstst (const vector float *, int, const int);
- void vec_dstst (const unsigned char *, int, const int);
- void vec_dstst (const signed char *, int, const int);
- void vec_dstst (const unsigned short *, int, const int);
- void vec_dstst (const short *, int, const int);
- void vec_dstst (const unsigned int *, int, const int);
- void vec_dstst (const int *, int, const int);
- void vec_dstst (const unsigned long *, int, const int);
- void vec_dstst (const long *, int, const int);
- void vec_dstst (const float *, int, const int);
- void vec_dststt (const vector unsigned char *, int, const int);
- void vec_dststt (const vector signed char *, int, const int);
- void vec_dststt (const vector bool char *, int, const int);
- void vec_dststt (const vector unsigned short *, int, const int);
- void vec_dststt (const vector signed short *, int, const int);
- void vec_dststt (const vector bool short *, int, const int);
- void vec_dststt (const vector pixel *, int, const int);
- void vec_dststt (const vector unsigned int *, int, const int);
- void vec_dststt (const vector signed int *, int, const int);
- void vec_dststt (const vector bool int *, int, const int);
- void vec_dststt (const vector float *, int, const int);
- void vec_dststt (const unsigned char *, int, const int);
- void vec_dststt (const signed char *, int, const int);
- void vec_dststt (const unsigned short *, int, const int);
- void vec_dststt (const short *, int, const int);
- void vec_dststt (const unsigned int *, int, const int);
- void vec_dststt (const int *, int, const int);
- void vec_dststt (const unsigned long *, int, const int);
- void vec_dststt (const long *, int, const int);
- void vec_dststt (const float *, int, const int);
- void vec_dstt (const vector unsigned char *, int, const int);
- void vec_dstt (const vector signed char *, int, const int);
- void vec_dstt (const vector bool char *, int, const int);
- void vec_dstt (const vector unsigned short *, int, const int);
- void vec_dstt (const vector signed short *, int, const int);
- void vec_dstt (const vector bool short *, int, const int);
- void vec_dstt (const vector pixel *, int, const int);
- void vec_dstt (const vector unsigned int *, int, const int);
- void vec_dstt (const vector signed int *, int, const int);
- void vec_dstt (const vector bool int *, int, const int);
- void vec_dstt (const vector float *, int, const int);
- void vec_dstt (const unsigned char *, int, const int);
- void vec_dstt (const signed char *, int, const int);
- void vec_dstt (const unsigned short *, int, const int);
- void vec_dstt (const short *, int, const int);
- void vec_dstt (const unsigned int *, int, const int);
- void vec_dstt (const int *, int, const int);
- void vec_dstt (const unsigned long *, int, const int);
- void vec_dstt (const long *, int, const int);
- void vec_dstt (const float *, int, const int);
- vector float vec_expte (vector float);
- vector float vec_floor (vector float);
- vector float vec_float (vector signed int);
- vector float vec_float (vector unsigned int);
- vector float vec_float2 (vector signed long long, vector signed long long);
- vector float vec_float2 (vector unsigned long long, vector signed long long);
- vector float vec_floate (vector double);
- vector float vec_floate (vector signed long long);
- vector float vec_floate (vector unsigned long long);
- vector float vec_floato (vector double);
- vector float vec_floato (vector signed long long);
- vector float vec_floato (vector unsigned long long);
- vector float vec_ld (int, const vector float *);
- vector float vec_ld (int, const float *);
- vector bool int vec_ld (int, const vector bool int *);
- vector signed int vec_ld (int, const vector signed int *);
- vector signed int vec_ld (int, const int *);
- vector signed int vec_ld (int, const long *);
- vector unsigned int vec_ld (int, const vector unsigned int *);
- vector unsigned int vec_ld (int, const unsigned int *);
- vector unsigned int vec_ld (int, const unsigned long *);
- vector bool short vec_ld (int, const vector bool short *);
- vector pixel vec_ld (int, const vector pixel *);
- vector signed short vec_ld (int, const vector signed short *);
- vector signed short vec_ld (int, const short *);
- vector unsigned short vec_ld (int, const vector unsigned short *);
- vector unsigned short vec_ld (int, const unsigned short *);
- vector bool char vec_ld (int, const vector bool char *);
- vector signed char vec_ld (int, const vector signed char *);
- vector signed char vec_ld (int, const signed char *);
- vector unsigned char vec_ld (int, const vector unsigned char *);
- vector unsigned char vec_ld (int, const unsigned char *);
- vector signed char vec_lde (int, const signed char *);
- vector unsigned char vec_lde (int, const unsigned char *);
- vector signed short vec_lde (int, const short *);
- vector unsigned short vec_lde (int, const unsigned short *);
- vector float vec_lde (int, const float *);
- vector signed int vec_lde (int, const int *);
- vector unsigned int vec_lde (int, const unsigned int *);
- vector signed int vec_lde (int, const long *);
- vector unsigned int vec_lde (int, const unsigned long *);
- vector float vec_lvewx (int, float *);
- vector signed int vec_lvewx (int, int *);
- vector unsigned int vec_lvewx (int, unsigned int *);
- vector signed int vec_lvewx (int, long *);
- vector unsigned int vec_lvewx (int, unsigned long *);
- vector signed short vec_lvehx (int, short *);
- vector unsigned short vec_lvehx (int, unsigned short *);
- vector signed char vec_lvebx (int, char *);
- vector unsigned char vec_lvebx (int, unsigned char *);
- vector float vec_ldl (int, const vector float *);
- vector float vec_ldl (int, const float *);
- vector bool int vec_ldl (int, const vector bool int *);
- vector signed int vec_ldl (int, const vector signed int *);
- vector signed int vec_ldl (int, const int *);
- vector signed int vec_ldl (int, const long *);
- vector unsigned int vec_ldl (int, const vector unsigned int *);
- vector unsigned int vec_ldl (int, const unsigned int *);
- vector unsigned int vec_ldl (int, const unsigned long *);
- vector bool short vec_ldl (int, const vector bool short *);
- vector pixel vec_ldl (int, const vector pixel *);
- vector signed short vec_ldl (int, const vector signed short *);
- vector signed short vec_ldl (int, const short *);
- vector unsigned short vec_ldl (int, const vector unsigned short *);
- vector unsigned short vec_ldl (int, const unsigned short *);
- vector bool char vec_ldl (int, const vector bool char *);
- vector signed char vec_ldl (int, const vector signed char *);
- vector signed char vec_ldl (int, const signed char *);
- vector unsigned char vec_ldl (int, const vector unsigned char *);
- vector unsigned char vec_ldl (int, const unsigned char *);
- vector float vec_loge (vector float);
- vector unsigned char vec_lvsl (int, const volatile unsigned char *);
- vector unsigned char vec_lvsl (int, const volatile signed char *);
- vector unsigned char vec_lvsl (int, const volatile unsigned short *);
- vector unsigned char vec_lvsl (int, const volatile short *);
- vector unsigned char vec_lvsl (int, const volatile unsigned int *);
- vector unsigned char vec_lvsl (int, const volatile int *);
- vector unsigned char vec_lvsl (int, const volatile unsigned long *);
- vector unsigned char vec_lvsl (int, const volatile long *);
- vector unsigned char vec_lvsl (int, const volatile float *);
- vector unsigned char vec_lvsr (int, const volatile unsigned char *);
- vector unsigned char vec_lvsr (int, const volatile signed char *);
- vector unsigned char vec_lvsr (int, const volatile unsigned short *);
- vector unsigned char vec_lvsr (int, const volatile short *);
- vector unsigned char vec_lvsr (int, const volatile unsigned int *);
- vector unsigned char vec_lvsr (int, const volatile int *);
- vector unsigned char vec_lvsr (int, const volatile unsigned long *);
- vector unsigned char vec_lvsr (int, const volatile long *);
- vector unsigned char vec_lvsr (int, const volatile float *);
- vector float vec_madd (vector float, vector float, vector float);
- vector signed short vec_madds (vector signed short,
- vector signed short,
- vector signed short);
- vector unsigned char vec_max (vector bool char, vector unsigned char);
- vector unsigned char vec_max (vector unsigned char, vector bool char);
- vector unsigned char vec_max (vector unsigned char,
- vector unsigned char);
- vector signed char vec_max (vector bool char, vector signed char);
- vector signed char vec_max (vector signed char, vector bool char);
- vector signed char vec_max (vector signed char, vector signed char);
- vector unsigned short vec_max (vector bool short,
- vector unsigned short);
- vector unsigned short vec_max (vector unsigned short,
- vector bool short);
- vector unsigned short vec_max (vector unsigned short,
- vector unsigned short);
- vector signed short vec_max (vector bool short, vector signed short);
- vector signed short vec_max (vector signed short, vector bool short);
- vector signed short vec_max (vector signed short, vector signed short);
- vector unsigned int vec_max (vector bool int, vector unsigned int);
- vector unsigned int vec_max (vector unsigned int, vector bool int);
- vector unsigned int vec_max (vector unsigned int, vector unsigned int);
- vector signed int vec_max (vector bool int, vector signed int);
- vector signed int vec_max (vector signed int, vector bool int);
- vector signed int vec_max (vector signed int, vector signed int);
- vector float vec_max (vector float, vector float);
- vector float vec_vmaxfp (vector float, vector float);
- vector signed int vec_vmaxsw (vector bool int, vector signed int);
- vector signed int vec_vmaxsw (vector signed int, vector bool int);
- vector signed int vec_vmaxsw (vector signed int, vector signed int);
- vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
- vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
- vector unsigned int vec_vmaxuw (vector unsigned int,
- vector unsigned int);
- vector signed short vec_vmaxsh (vector bool short, vector signed short);
- vector signed short vec_vmaxsh (vector signed short, vector bool short);
- vector signed short vec_vmaxsh (vector signed short,
- vector signed short);
- vector unsigned short vec_vmaxuh (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vmaxuh (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vmaxuh (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vmaxsb (vector bool char, vector signed char);
- vector signed char vec_vmaxsb (vector signed char, vector bool char);
- vector signed char vec_vmaxsb (vector signed char, vector signed char);
- vector unsigned char vec_vmaxub (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vmaxub (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vmaxub (vector unsigned char,
- vector unsigned char);
- vector bool char vec_mergeh (vector bool char, vector bool char);
- vector signed char vec_mergeh (vector signed char, vector signed char);
- vector unsigned char vec_mergeh (vector unsigned char,
- vector unsigned char);
- vector bool short vec_mergeh (vector bool short, vector bool short);
- vector pixel vec_mergeh (vector pixel, vector pixel);
- vector signed short vec_mergeh (vector signed short,
- vector signed short);
- vector unsigned short vec_mergeh (vector unsigned short,
- vector unsigned short);
- vector float vec_mergeh (vector float, vector float);
- vector bool int vec_mergeh (vector bool int, vector bool int);
- vector signed int vec_mergeh (vector signed int, vector signed int);
- vector unsigned int vec_mergeh (vector unsigned int,
- vector unsigned int);
- vector float vec_vmrghw (vector float, vector float);
- vector bool int vec_vmrghw (vector bool int, vector bool int);
- vector signed int vec_vmrghw (vector signed int, vector signed int);
- vector unsigned int vec_vmrghw (vector unsigned int,
- vector unsigned int);
- vector bool short vec_vmrghh (vector bool short, vector bool short);
- vector signed short vec_vmrghh (vector signed short,
- vector signed short);
- vector unsigned short vec_vmrghh (vector unsigned short,
- vector unsigned short);
- vector pixel vec_vmrghh (vector pixel, vector pixel);
- vector bool char vec_vmrghb (vector bool char, vector bool char);
- vector signed char vec_vmrghb (vector signed char, vector signed char);
- vector unsigned char vec_vmrghb (vector unsigned char,
- vector unsigned char);
- vector bool char vec_mergel (vector bool char, vector bool char);
- vector signed char vec_mergel (vector signed char, vector signed char);
- vector unsigned char vec_mergel (vector unsigned char,
- vector unsigned char);
- vector bool short vec_mergel (vector bool short, vector bool short);
- vector pixel vec_mergel (vector pixel, vector pixel);
- vector signed short vec_mergel (vector signed short,
- vector signed short);
- vector unsigned short vec_mergel (vector unsigned short,
- vector unsigned short);
- vector float vec_mergel (vector float, vector float);
- vector bool int vec_mergel (vector bool int, vector bool int);
- vector signed int vec_mergel (vector signed int, vector signed int);
- vector unsigned int vec_mergel (vector unsigned int,
- vector unsigned int);
- vector float vec_vmrglw (vector float, vector float);
- vector signed int vec_vmrglw (vector signed int, vector signed int);
- vector unsigned int vec_vmrglw (vector unsigned int,
- vector unsigned int);
- vector bool int vec_vmrglw (vector bool int, vector bool int);
- vector bool short vec_vmrglh (vector bool short, vector bool short);
- vector signed short vec_vmrglh (vector signed short,
- vector signed short);
- vector unsigned short vec_vmrglh (vector unsigned short,
- vector unsigned short);
- vector pixel vec_vmrglh (vector pixel, vector pixel);
- vector bool char vec_vmrglb (vector bool char, vector bool char);
- vector signed char vec_vmrglb (vector signed char, vector signed char);
- vector unsigned char vec_vmrglb (vector unsigned char,
- vector unsigned char);
- vector unsigned short vec_mfvscr (void);
- vector unsigned char vec_min (vector bool char, vector unsigned char);
- vector unsigned char vec_min (vector unsigned char, vector bool char);
- vector unsigned char vec_min (vector unsigned char,
- vector unsigned char);
- vector signed char vec_min (vector bool char, vector signed char);
- vector signed char vec_min (vector signed char, vector bool char);
- vector signed char vec_min (vector signed char, vector signed char);
- vector unsigned short vec_min (vector bool short,
- vector unsigned short);
- vector unsigned short vec_min (vector unsigned short,
- vector bool short);
- vector unsigned short vec_min (vector unsigned short,
- vector unsigned short);
- vector signed short vec_min (vector bool short, vector signed short);
- vector signed short vec_min (vector signed short, vector bool short);
- vector signed short vec_min (vector signed short, vector signed short);
- vector unsigned int vec_min (vector bool int, vector unsigned int);
- vector unsigned int vec_min (vector unsigned int, vector bool int);
- vector unsigned int vec_min (vector unsigned int, vector unsigned int);
- vector signed int vec_min (vector bool int, vector signed int);
- vector signed int vec_min (vector signed int, vector bool int);
- vector signed int vec_min (vector signed int, vector signed int);
- vector float vec_min (vector float, vector float);
- vector float vec_vminfp (vector float, vector float);
- vector signed int vec_vminsw (vector bool int, vector signed int);
- vector signed int vec_vminsw (vector signed int, vector bool int);
- vector signed int vec_vminsw (vector signed int, vector signed int);
- vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
- vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
- vector unsigned int vec_vminuw (vector unsigned int,
- vector unsigned int);
- vector signed short vec_vminsh (vector bool short, vector signed short);
- vector signed short vec_vminsh (vector signed short, vector bool short);
- vector signed short vec_vminsh (vector signed short,
- vector signed short);
- vector unsigned short vec_vminuh (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vminuh (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vminuh (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vminsb (vector bool char, vector signed char);
- vector signed char vec_vminsb (vector signed char, vector bool char);
- vector signed char vec_vminsb (vector signed char, vector signed char);
- vector unsigned char vec_vminub (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vminub (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vminub (vector unsigned char,
- vector unsigned char);
- vector signed short vec_mladd (vector signed short,
- vector signed short,
- vector signed short);
- vector signed short vec_mladd (vector signed short,
- vector unsigned short,
- vector unsigned short);
- vector signed short vec_mladd (vector unsigned short,
- vector signed short,
- vector signed short);
- vector unsigned short vec_mladd (vector unsigned short,
- vector unsigned short,
- vector unsigned short);
- vector signed short vec_mradds (vector signed short,
- vector signed short,
- vector signed short);
- vector unsigned int vec_msum (vector unsigned char,
- vector unsigned char,
- vector unsigned int);
- vector signed int vec_msum (vector signed char,
- vector unsigned char,
- vector signed int);
- vector unsigned int vec_msum (vector unsigned short,
- vector unsigned short,
- vector unsigned int);
- vector signed int vec_msum (vector signed short,
- vector signed short,
- vector signed int);
- vector signed int vec_vmsumshm (vector signed short,
- vector signed short,
- vector signed int);
- vector unsigned int vec_vmsumuhm (vector unsigned short,
- vector unsigned short,
- vector unsigned int);
- vector signed int vec_vmsummbm (vector signed char,
- vector unsigned char,
- vector signed int);
- vector unsigned int vec_vmsumubm (vector unsigned char,
- vector unsigned char,
- vector unsigned int);
- vector unsigned int vec_msums (vector unsigned short,
- vector unsigned short,
- vector unsigned int);
- vector signed int vec_msums (vector signed short,
- vector signed short,
- vector signed int);
- vector signed int vec_vmsumshs (vector signed short,
- vector signed short,
- vector signed int);
- vector unsigned int vec_vmsumuhs (vector unsigned short,
- vector unsigned short,
- vector unsigned int);
- void vec_mtvscr (vector signed int);
- void vec_mtvscr (vector unsigned int);
- void vec_mtvscr (vector bool int);
- void vec_mtvscr (vector signed short);
- void vec_mtvscr (vector unsigned short);
- void vec_mtvscr (vector bool short);
- void vec_mtvscr (vector pixel);
- void vec_mtvscr (vector signed char);
- void vec_mtvscr (vector unsigned char);
- void vec_mtvscr (vector bool char);
- vector unsigned short vec_mule (vector unsigned char,
- vector unsigned char);
- vector signed short vec_mule (vector signed char,
- vector signed char);
- vector unsigned int vec_mule (vector unsigned short,
- vector unsigned short);
- vector signed int vec_mule (vector signed short, vector signed short);
- vector unsigned long long vec_mule (vector unsigned int,
- vector unsigned int);
- vector signed long long vec_mule (vector signed int,
- vector signed int);
- vector signed int vec_vmulesh (vector signed short,
- vector signed short);
- vector unsigned int vec_vmuleuh (vector unsigned short,
- vector unsigned short);
- vector signed short vec_vmulesb (vector signed char,
- vector signed char);
- vector unsigned short vec_vmuleub (vector unsigned char,
- vector unsigned char);
- vector unsigned short vec_mulo (vector unsigned char,
- vector unsigned char);
- vector signed short vec_mulo (vector signed char, vector signed char);
- vector unsigned int vec_mulo (vector unsigned short,
- vector unsigned short);
- vector signed int vec_mulo (vector signed short, vector signed short);
- vector unsigned long long vec_mulo (vector unsigned int,
- vector unsigned int);
- vector signed long long vec_mulo (vector signed int,
- vector signed int);
- vector signed int vec_vmulosh (vector signed short,
- vector signed short);
- vector unsigned int vec_vmulouh (vector unsigned short,
- vector unsigned short);
- vector signed short vec_vmulosb (vector signed char,
- vector signed char);
- vector unsigned short vec_vmuloub (vector unsigned char,
- vector unsigned char);
- vector float vec_nmsub (vector float, vector float, vector float);
- vector signed char vec_nabs (vector signed char);
- vector signed short vec_nabs (vector signed short);
- vector signed int vec_nabs (vector signed int);
- vector float vec_nabs (vector float);
- vector double vec_nabs (vector double);
- vector signed char vec_neg (vector signed char);
- vector signed short vec_neg (vector signed short);
- vector signed int vec_neg (vector signed int);
- vector signed long long vec_neg (vector signed long long);
- vector float char vec_neg (vector float);
- vector double vec_neg (vector double);
- vector float vec_nor (vector float, vector float);
- vector signed int vec_nor (vector signed int, vector signed int);
- vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
- vector bool int vec_nor (vector bool int, vector bool int);
- vector signed short vec_nor (vector signed short, vector signed short);
- vector unsigned short vec_nor (vector unsigned short,
- vector unsigned short);
- vector bool short vec_nor (vector bool short, vector bool short);
- vector signed char vec_nor (vector signed char, vector signed char);
- vector unsigned char vec_nor (vector unsigned char,
- vector unsigned char);
- vector bool char vec_nor (vector bool char, vector bool char);
- vector float vec_or (vector float, vector float);
- vector float vec_or (vector float, vector bool int);
- vector float vec_or (vector bool int, vector float);
- vector bool int vec_or (vector bool int, vector bool int);
- vector signed int vec_or (vector bool int, vector signed int);
- vector signed int vec_or (vector signed int, vector bool int);
- vector signed int vec_or (vector signed int, vector signed int);
- vector unsigned int vec_or (vector bool int, vector unsigned int);
- vector unsigned int vec_or (vector unsigned int, vector bool int);
- vector unsigned int vec_or (vector unsigned int, vector unsigned int);
- vector bool short vec_or (vector bool short, vector bool short);
- vector signed short vec_or (vector bool short, vector signed short);
- vector signed short vec_or (vector signed short, vector bool short);
- vector signed short vec_or (vector signed short, vector signed short);
- vector unsigned short vec_or (vector bool short, vector unsigned short);
- vector unsigned short vec_or (vector unsigned short, vector bool short);
- vector unsigned short vec_or (vector unsigned short,
- vector unsigned short);
- vector signed char vec_or (vector bool char, vector signed char);
- vector bool char vec_or (vector bool char, vector bool char);
- vector signed char vec_or (vector signed char, vector bool char);
- vector signed char vec_or (vector signed char, vector signed char);
- vector unsigned char vec_or (vector bool char, vector unsigned char);
- vector unsigned char vec_or (vector unsigned char, vector bool char);
- vector unsigned char vec_or (vector unsigned char,
- vector unsigned char);
- vector signed char vec_pack (vector signed short, vector signed short);
- vector unsigned char vec_pack (vector unsigned short,
- vector unsigned short);
- vector bool char vec_pack (vector bool short, vector bool short);
- vector signed short vec_pack (vector signed int, vector signed int);
- vector unsigned short vec_pack (vector unsigned int,
- vector unsigned int);
- vector bool short vec_pack (vector bool int, vector bool int);
- vector bool short vec_vpkuwum (vector bool int, vector bool int);
- vector signed short vec_vpkuwum (vector signed int, vector signed int);
- vector unsigned short vec_vpkuwum (vector unsigned int,
- vector unsigned int);
- vector bool char vec_vpkuhum (vector bool short, vector bool short);
- vector signed char vec_vpkuhum (vector signed short,
- vector signed short);
- vector unsigned char vec_vpkuhum (vector unsigned short,
- vector unsigned short);
- vector pixel vec_packpx (vector unsigned int, vector unsigned int);
- vector unsigned char vec_packs (vector unsigned short,
- vector unsigned short);
- vector signed char vec_packs (vector signed short, vector signed short);
- vector unsigned short vec_packs (vector unsigned int,
- vector unsigned int);
- vector signed short vec_packs (vector signed int, vector signed int);
- vector signed short vec_vpkswss (vector signed int, vector signed int);
- vector unsigned short vec_vpkuwus (vector unsigned int,
- vector unsigned int);
- vector signed char vec_vpkshss (vector signed short,
- vector signed short);
- vector unsigned char vec_vpkuhus (vector unsigned short,
- vector unsigned short);
- vector unsigned char vec_packsu (vector unsigned short,
- vector unsigned short);
- vector unsigned char vec_packsu (vector signed short,
- vector signed short);
- vector unsigned short vec_packsu (vector unsigned int,
- vector unsigned int);
- vector unsigned short vec_packsu (vector signed int, vector signed int);
- vector unsigned short vec_vpkswus (vector signed int,
- vector signed int);
- vector unsigned char vec_vpkshus (vector signed short,
- vector signed short);
- vector float vec_perm (vector float,
- vector float,
- vector unsigned char);
- vector signed int vec_perm (vector signed int,
- vector signed int,
- vector unsigned char);
- vector unsigned int vec_perm (vector unsigned int,
- vector unsigned int,
- vector unsigned char);
- vector bool int vec_perm (vector bool int,
- vector bool int,
- vector unsigned char);
- vector signed short vec_perm (vector signed short,
- vector signed short,
- vector unsigned char);
- vector unsigned short vec_perm (vector unsigned short,
- vector unsigned short,
- vector unsigned char);
- vector bool short vec_perm (vector bool short,
- vector bool short,
- vector unsigned char);
- vector pixel vec_perm (vector pixel,
- vector pixel,
- vector unsigned char);
- vector signed char vec_perm (vector signed char,
- vector signed char,
- vector unsigned char);
- vector unsigned char vec_perm (vector unsigned char,
- vector unsigned char,
- vector unsigned char);
- vector bool char vec_perm (vector bool char,
- vector bool char,
- vector unsigned char);
- vector float vec_re (vector float);
- vector bool char vec_reve (vector bool char);
- vector signed char vec_reve (vector signed char);
- vector unsigned char vec_reve (vector unsigned char);
- vector bool int vec_reve (vector bool int);
- vector signed int vec_reve (vector signed int);
- vector unsigned int vec_reve (vector unsigned int);
- vector bool long long vec_reve (vector bool long long);
- vector signed long long vec_reve (vector signed long long);
- vector unsigned long long vec_reve (vector unsigned long long);
- vector bool short vec_reve (vector bool short);
- vector signed short vec_reve (vector signed short);
- vector unsigned short vec_reve (vector unsigned short);
- vector signed char vec_rl (vector signed char,
- vector unsigned char);
- vector unsigned char vec_rl (vector unsigned char,
- vector unsigned char);
- vector signed short vec_rl (vector signed short, vector unsigned short);
- vector unsigned short vec_rl (vector unsigned short,
- vector unsigned short);
- vector signed int vec_rl (vector signed int, vector unsigned int);
- vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
- vector signed int vec_vrlw (vector signed int, vector unsigned int);
- vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
- vector signed short vec_vrlh (vector signed short,
- vector unsigned short);
- vector unsigned short vec_vrlh (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vrlb (vector signed char, vector unsigned char);
- vector unsigned char vec_vrlb (vector unsigned char,
- vector unsigned char);
- vector float vec_round (vector float);
- vector float vec_recip (vector float, vector float);
- vector float vec_rsqrt (vector float);
- vector float vec_rsqrte (vector float);
- vector float vec_sel (vector float, vector float, vector bool int);
- vector float vec_sel (vector float, vector float, vector unsigned int);
- vector signed int vec_sel (vector signed int,
- vector signed int,
- vector bool int);
- vector signed int vec_sel (vector signed int,
- vector signed int,
- vector unsigned int);
- vector unsigned int vec_sel (vector unsigned int,
- vector unsigned int,
- vector bool int);
- vector unsigned int vec_sel (vector unsigned int,
- vector unsigned int,
- vector unsigned int);
- vector bool int vec_sel (vector bool int,
- vector bool int,
- vector bool int);
- vector bool int vec_sel (vector bool int,
- vector bool int,
- vector unsigned int);
- vector signed short vec_sel (vector signed short,
- vector signed short,
- vector bool short);
- vector signed short vec_sel (vector signed short,
- vector signed short,
- vector unsigned short);
- vector unsigned short vec_sel (vector unsigned short,
- vector unsigned short,
- vector bool short);
- vector unsigned short vec_sel (vector unsigned short,
- vector unsigned short,
- vector unsigned short);
- vector bool short vec_sel (vector bool short,
- vector bool short,
- vector bool short);
- vector bool short vec_sel (vector bool short,
- vector bool short,
- vector unsigned short);
- vector signed char vec_sel (vector signed char,
- vector signed char,
- vector bool char);
- vector signed char vec_sel (vector signed char,
- vector signed char,
- vector unsigned char);
- vector unsigned char vec_sel (vector unsigned char,
- vector unsigned char,
- vector bool char);
- vector unsigned char vec_sel (vector unsigned char,
- vector unsigned char,
- vector unsigned char);
- vector bool char vec_sel (vector bool char,
- vector bool char,
- vector bool char);
- vector bool char vec_sel (vector bool char,
- vector bool char,
- vector unsigned char);
- vector signed long long vec_signed (vector double);
- vector signed int vec_signed (vector float);
- vector signed int vec_signede (vector double);
- vector signed int vec_signedo (vector double);
- vector signed int vec_signed2 (vector double, vector double);
- vector signed char vec_sl (vector signed char,
- vector unsigned char);
- vector unsigned char vec_sl (vector unsigned char,
- vector unsigned char);
- vector signed short vec_sl (vector signed short, vector unsigned short);
- vector unsigned short vec_sl (vector unsigned short,
- vector unsigned short);
- vector signed int vec_sl (vector signed int, vector unsigned int);
- vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
- vector signed int vec_vslw (vector signed int, vector unsigned int);
- vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
- vector signed short vec_vslh (vector signed short,
- vector unsigned short);
- vector unsigned short vec_vslh (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vslb (vector signed char, vector unsigned char);
- vector unsigned char vec_vslb (vector unsigned char,
- vector unsigned char);
- vector float vec_sld (vector float, vector float, const int);
- vector double vec_sld (vector double, vector double, const int);
- vector signed int vec_sld (vector signed int,
- vector signed int,
- const int);
- vector unsigned int vec_sld (vector unsigned int,
- vector unsigned int,
- const int);
- vector bool int vec_sld (vector bool int,
- vector bool int,
- const int);
- vector signed short vec_sld (vector signed short,
- vector signed short,
- const int);
- vector unsigned short vec_sld (vector unsigned short,
- vector unsigned short,
- const int);
- vector bool short vec_sld (vector bool short,
- vector bool short,
- const int);
- vector pixel vec_sld (vector pixel,
- vector pixel,
- const int);
- vector signed char vec_sld (vector signed char,
- vector signed char,
- const int);
- vector unsigned char vec_sld (vector unsigned char,
- vector unsigned char,
- const int);
- vector bool char vec_sld (vector bool char,
- vector bool char,
- const int);
- vector bool long long int vec_sld (vector bool long long int,
- vector bool long long int, const int);
- vector long long int vec_sld (vector long long int,
- vector long long int, const int);
- vector unsigned long long int vec_sld (vector unsigned long long int,
- vector unsigned long long int,
- const int);
- vector signed char vec_sldw (vector signed char,
- vector signed char,
- const int);
- vector unsigned char vec_sldw (vector unsigned char,
- vector unsigned char,
- const int);
- vector signed short vec_sldw (vector signed short,
- vector signed short,
- const int);
- vector unsigned short vec_sldw (vector unsigned short,
- vector unsigned short,
- const int);
- vector signed int vec_sldw (vector signed int,
- vector signed int,
- const int);
- vector unsigned int vec_sldw (vector unsigned int,
- vector unsigned int,
- const int);
- vector signed long long vec_sldw (vector signed long long,
- vector signed long long,
- const int);
- vector unsigned long long vec_sldw (vector unsigned long long,
- vector unsigned long long,
- const int);
- vector signed int vec_sll (vector signed int,
- vector unsigned int);
- vector signed int vec_sll (vector signed int,
- vector unsigned short);
- vector signed int vec_sll (vector signed int,
- vector unsigned char);
- vector unsigned int vec_sll (vector unsigned int,
- vector unsigned int);
- vector unsigned int vec_sll (vector unsigned int,
- vector unsigned short);
- vector unsigned int vec_sll (vector unsigned int,
- vector unsigned char);
- vector bool int vec_sll (vector bool int,
- vector unsigned int);
- vector bool int vec_sll (vector bool int,
- vector unsigned short);
- vector bool int vec_sll (vector bool int,
- vector unsigned char);
- vector signed short vec_sll (vector signed short,
- vector unsigned int);
- vector signed short vec_sll (vector signed short,
- vector unsigned short);
- vector signed short vec_sll (vector signed short,
- vector unsigned char);
- vector unsigned short vec_sll (vector unsigned short,
- vector unsigned int);
- vector unsigned short vec_sll (vector unsigned short,
- vector unsigned short);
- vector unsigned short vec_sll (vector unsigned short,
- vector unsigned char);
- vector long long int vec_sll (vector long long int,
- vector unsigned char);
- vector unsigned long long int vec_sll (vector unsigned long long int,
- vector unsigned char);
- vector bool short vec_sll (vector bool short, vector unsigned int);
- vector bool short vec_sll (vector bool short, vector unsigned short);
- vector bool short vec_sll (vector bool short, vector unsigned char);
- vector pixel vec_sll (vector pixel, vector unsigned int);
- vector pixel vec_sll (vector pixel, vector unsigned short);
- vector pixel vec_sll (vector pixel, vector unsigned char);
- vector signed char vec_sll (vector signed char, vector unsigned int);
- vector signed char vec_sll (vector signed char, vector unsigned short);
- vector signed char vec_sll (vector signed char, vector unsigned char);
- vector unsigned char vec_sll (vector unsigned char,
- vector unsigned int);
- vector unsigned char vec_sll (vector unsigned char,
- vector unsigned short);
- vector unsigned char vec_sll (vector unsigned char,
- vector unsigned char);
- vector bool char vec_sll (vector bool char, vector unsigned int);
- vector bool char vec_sll (vector bool char, vector unsigned short);
- vector bool char vec_sll (vector bool char, vector unsigned char);
- vector float vec_slo (vector float, vector signed char);
- vector float vec_slo (vector float, vector unsigned char);
- vector signed int vec_slo (vector signed int, vector signed char);
- vector signed int vec_slo (vector signed int, vector unsigned char);
- vector unsigned int vec_slo (vector unsigned int, vector signed char);
- vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
- vector signed short vec_slo (vector signed short, vector signed char);
- vector signed short vec_slo (vector signed short, vector unsigned char);
- vector unsigned short vec_slo (vector unsigned short,
- vector signed char);
- vector unsigned short vec_slo (vector unsigned short,
- vector unsigned char);
- vector pixel vec_slo (vector pixel, vector signed char);
- vector pixel vec_slo (vector pixel, vector unsigned char);
- vector signed char vec_slo (vector signed char, vector signed char);
- vector signed char vec_slo (vector signed char, vector unsigned char);
- vector unsigned char vec_slo (vector unsigned char, vector signed char);
- vector unsigned char vec_slo (vector unsigned char,
- vector unsigned char);
- vector signed long long vec_slo (vector signed long long, vector signed char);
- vector signed long long vec_slo (vector signed long long, vector unsigned char);
- vector unsigned long long vec_slo (vector unsigned long long, vector signed char);
- vector unsigned long long vec_slo (vector unsigned long long, vector unsigned char);
- vector signed char vec_splat (vector signed char, const int);
- vector unsigned char vec_splat (vector unsigned char, const int);
- vector bool char vec_splat (vector bool char, const int);
- vector signed short vec_splat (vector signed short, const int);
- vector unsigned short vec_splat (vector unsigned short, const int);
- vector bool short vec_splat (vector bool short, const int);
- vector pixel vec_splat (vector pixel, const int);
- vector float vec_splat (vector float, const int);
- vector signed int vec_splat (vector signed int, const int);
- vector unsigned int vec_splat (vector unsigned int, const int);
- vector bool int vec_splat (vector bool int, const int);
- vector signed long vec_splat (vector signed long, const int);
- vector unsigned long vec_splat (vector unsigned long, const int);
- vector signed char vec_splats (signed char);
- vector unsigned char vec_splats (unsigned char);
- vector signed short vec_splats (signed short);
- vector unsigned short vec_splats (unsigned short);
- vector signed int vec_splats (signed int);
- vector unsigned int vec_splats (unsigned int);
- vector float vec_splats (float);
- vector float vec_vspltw (vector float, const int);
- vector signed int vec_vspltw (vector signed int, const int);
- vector unsigned int vec_vspltw (vector unsigned int, const int);
- vector bool int vec_vspltw (vector bool int, const int);
- vector bool short vec_vsplth (vector bool short, const int);
- vector signed short vec_vsplth (vector signed short, const int);
- vector unsigned short vec_vsplth (vector unsigned short, const int);
- vector pixel vec_vsplth (vector pixel, const int);
- vector signed char vec_vspltb (vector signed char, const int);
- vector unsigned char vec_vspltb (vector unsigned char, const int);
- vector bool char vec_vspltb (vector bool char, const int);
- vector signed char vec_splat_s8 (const int);
- vector signed short vec_splat_s16 (const int);
- vector signed int vec_splat_s32 (const int);
- vector unsigned char vec_splat_u8 (const int);
- vector unsigned short vec_splat_u16 (const int);
- vector unsigned int vec_splat_u32 (const int);
- vector signed char vec_sr (vector signed char, vector unsigned char);
- vector unsigned char vec_sr (vector unsigned char,
- vector unsigned char);
- vector signed short vec_sr (vector signed short,
- vector unsigned short);
- vector unsigned short vec_sr (vector unsigned short,
- vector unsigned short);
- vector signed int vec_sr (vector signed int, vector unsigned int);
- vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
- vector signed int vec_vsrw (vector signed int, vector unsigned int);
- vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
- vector signed short vec_vsrh (vector signed short,
- vector unsigned short);
- vector unsigned short vec_vsrh (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vsrb (vector signed char, vector unsigned char);
- vector unsigned char vec_vsrb (vector unsigned char,
- vector unsigned char);
- vector signed char vec_sra (vector signed char, vector unsigned char);
- vector unsigned char vec_sra (vector unsigned char,
- vector unsigned char);
- vector signed short vec_sra (vector signed short,
- vector unsigned short);
- vector unsigned short vec_sra (vector unsigned short,
- vector unsigned short);
- vector signed int vec_sra (vector signed int, vector unsigned int);
- vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
- vector signed int vec_vsraw (vector signed int, vector unsigned int);
- vector unsigned int vec_vsraw (vector unsigned int,
- vector unsigned int);
- vector signed short vec_vsrah (vector signed short,
- vector unsigned short);
- vector unsigned short vec_vsrah (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vsrab (vector signed char, vector unsigned char);
- vector unsigned char vec_vsrab (vector unsigned char,
- vector unsigned char);
- vector signed int vec_srl (vector signed int, vector unsigned int);
- vector signed int vec_srl (vector signed int, vector unsigned short);
- vector signed int vec_srl (vector signed int, vector unsigned char);
- vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
- vector unsigned int vec_srl (vector unsigned int,
- vector unsigned short);
- vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
- vector bool int vec_srl (vector bool int, vector unsigned int);
- vector bool int vec_srl (vector bool int, vector unsigned short);
- vector bool int vec_srl (vector bool int, vector unsigned char);
- vector signed short vec_srl (vector signed short, vector unsigned int);
- vector signed short vec_srl (vector signed short,
- vector unsigned short);
- vector signed short vec_srl (vector signed short, vector unsigned char);
- vector unsigned short vec_srl (vector unsigned short,
- vector unsigned int);
- vector unsigned short vec_srl (vector unsigned short,
- vector unsigned short);
- vector unsigned short vec_srl (vector unsigned short,
- vector unsigned char);
- vector long long int vec_srl (vector long long int,
- vector unsigned char);
- vector unsigned long long int vec_srl (vector unsigned long long int,
- vector unsigned char);
- vector bool short vec_srl (vector bool short, vector unsigned int);
- vector bool short vec_srl (vector bool short, vector unsigned short);
- vector bool short vec_srl (vector bool short, vector unsigned char);
- vector pixel vec_srl (vector pixel, vector unsigned int);
- vector pixel vec_srl (vector pixel, vector unsigned short);
- vector pixel vec_srl (vector pixel, vector unsigned char);
- vector signed char vec_srl (vector signed char, vector unsigned int);
- vector signed char vec_srl (vector signed char, vector unsigned short);
- vector signed char vec_srl (vector signed char, vector unsigned char);
- vector unsigned char vec_srl (vector unsigned char,
- vector unsigned int);
- vector unsigned char vec_srl (vector unsigned char,
- vector unsigned short);
- vector unsigned char vec_srl (vector unsigned char,
- vector unsigned char);
- vector bool char vec_srl (vector bool char, vector unsigned int);
- vector bool char vec_srl (vector bool char, vector unsigned short);
- vector bool char vec_srl (vector bool char, vector unsigned char);
- vector float vec_sro (vector float, vector signed char);
- vector float vec_sro (vector float, vector unsigned char);
- vector signed int vec_sro (vector signed int, vector signed char);
- vector signed int vec_sro (vector signed int, vector unsigned char);
- vector unsigned int vec_sro (vector unsigned int, vector signed char);
- vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
- vector signed short vec_sro (vector signed short, vector signed char);
- vector signed short vec_sro (vector signed short, vector unsigned char);
- vector unsigned short vec_sro (vector unsigned short,
- vector signed char);
- vector unsigned short vec_sro (vector unsigned short,
- vector unsigned char);
- vector long long int vec_sro (vector long long int,
- vector char);
- vector long long int vec_sro (vector long long int,
- vector unsigned char);
- vector unsigned long long int vec_sro (vector unsigned long long int,
- vector char);
- vector unsigned long long int vec_sro (vector unsigned long long int,
- vector unsigned char);
- vector pixel vec_sro (vector pixel, vector signed char);
- vector pixel vec_sro (vector pixel, vector unsigned char);
- vector signed char vec_sro (vector signed char, vector signed char);
- vector signed char vec_sro (vector signed char, vector unsigned char);
- vector unsigned char vec_sro (vector unsigned char, vector signed char);
- vector unsigned char vec_sro (vector unsigned char,
- vector unsigned char);
- void vec_st (vector float, int, vector float *);
- void vec_st (vector float, int, float *);
- void vec_st (vector signed int, int, vector signed int *);
- void vec_st (vector signed int, int, int *);
- void vec_st (vector unsigned int, int, vector unsigned int *);
- void vec_st (vector unsigned int, int, unsigned int *);
- void vec_st (vector bool int, int, vector bool int *);
- void vec_st (vector bool int, int, unsigned int *);
- void vec_st (vector bool int, int, int *);
- void vec_st (vector signed short, int, vector signed short *);
- void vec_st (vector signed short, int, short *);
- void vec_st (vector unsigned short, int, vector unsigned short *);
- void vec_st (vector unsigned short, int, unsigned short *);
- void vec_st (vector bool short, int, vector bool short *);
- void vec_st (vector bool short, int, unsigned short *);
- void vec_st (vector pixel, int, vector pixel *);
- void vec_st (vector pixel, int, unsigned short *);
- void vec_st (vector pixel, int, short *);
- void vec_st (vector bool short, int, short *);
- void vec_st (vector signed char, int, vector signed char *);
- void vec_st (vector signed char, int, signed char *);
- void vec_st (vector unsigned char, int, vector unsigned char *);
- void vec_st (vector unsigned char, int, unsigned char *);
- void vec_st (vector bool char, int, vector bool char *);
- void vec_st (vector bool char, int, unsigned char *);
- void vec_st (vector bool char, int, signed char *);
- void vec_ste (vector signed char, int, signed char *);
- void vec_ste (vector unsigned char, int, unsigned char *);
- void vec_ste (vector bool char, int, signed char *);
- void vec_ste (vector bool char, int, unsigned char *);
- void vec_ste (vector signed short, int, short *);
- void vec_ste (vector unsigned short, int, unsigned short *);
- void vec_ste (vector bool short, int, short *);
- void vec_ste (vector bool short, int, unsigned short *);
- void vec_ste (vector pixel, int, short *);
- void vec_ste (vector pixel, int, unsigned short *);
- void vec_ste (vector float, int, float *);
- void vec_ste (vector signed int, int, int *);
- void vec_ste (vector unsigned int, int, unsigned int *);
- void vec_ste (vector bool int, int, int *);
- void vec_ste (vector bool int, int, unsigned int *);
- void vec_stvewx (vector float, int, float *);
- void vec_stvewx (vector signed int, int, int *);
- void vec_stvewx (vector unsigned int, int, unsigned int *);
- void vec_stvewx (vector bool int, int, int *);
- void vec_stvewx (vector bool int, int, unsigned int *);
- void vec_stvehx (vector signed short, int, short *);
- void vec_stvehx (vector unsigned short, int, unsigned short *);
- void vec_stvehx (vector bool short, int, short *);
- void vec_stvehx (vector bool short, int, unsigned short *);
- void vec_stvehx (vector pixel, int, short *);
- void vec_stvehx (vector pixel, int, unsigned short *);
- void vec_stvebx (vector signed char, int, signed char *);
- void vec_stvebx (vector unsigned char, int, unsigned char *);
- void vec_stvebx (vector bool char, int, signed char *);
- void vec_stvebx (vector bool char, int, unsigned char *);
- void vec_stl (vector float, int, vector float *);
- void vec_stl (vector float, int, float *);
- void vec_stl (vector signed int, int, vector signed int *);
- void vec_stl (vector signed int, int, int *);
- void vec_stl (vector unsigned int, int, vector unsigned int *);
- void vec_stl (vector unsigned int, int, unsigned int *);
- void vec_stl (vector bool int, int, vector bool int *);
- void vec_stl (vector bool int, int, unsigned int *);
- void vec_stl (vector bool int, int, int *);
- void vec_stl (vector signed short, int, vector signed short *);
- void vec_stl (vector signed short, int, short *);
- void vec_stl (vector unsigned short, int, vector unsigned short *);
- void vec_stl (vector unsigned short, int, unsigned short *);
- void vec_stl (vector bool short, int, vector bool short *);
- void vec_stl (vector bool short, int, unsigned short *);
- void vec_stl (vector bool short, int, short *);
- void vec_stl (vector pixel, int, vector pixel *);
- void vec_stl (vector pixel, int, unsigned short *);
- void vec_stl (vector pixel, int, short *);
- void vec_stl (vector signed char, int, vector signed char *);
- void vec_stl (vector signed char, int, signed char *);
- void vec_stl (vector unsigned char, int, vector unsigned char *);
- void vec_stl (vector unsigned char, int, unsigned char *);
- void vec_stl (vector bool char, int, vector bool char *);
- void vec_stl (vector bool char, int, unsigned char *);
- void vec_stl (vector bool char, int, signed char *);
- vector signed char vec_sub (vector bool char, vector signed char);
- vector signed char vec_sub (vector signed char, vector bool char);
- vector signed char vec_sub (vector signed char, vector signed char);
- vector unsigned char vec_sub (vector bool char, vector unsigned char);
- vector unsigned char vec_sub (vector unsigned char, vector bool char);
- vector unsigned char vec_sub (vector unsigned char,
- vector unsigned char);
- vector signed short vec_sub (vector bool short, vector signed short);
- vector signed short vec_sub (vector signed short, vector bool short);
- vector signed short vec_sub (vector signed short, vector signed short);
- vector unsigned short vec_sub (vector bool short,
- vector unsigned short);
- vector unsigned short vec_sub (vector unsigned short,
- vector bool short);
- vector unsigned short vec_sub (vector unsigned short,
- vector unsigned short);
- vector signed int vec_sub (vector bool int, vector signed int);
- vector signed int vec_sub (vector signed int, vector bool int);
- vector signed int vec_sub (vector signed int, vector signed int);
- vector unsigned int vec_sub (vector bool int, vector unsigned int);
- vector unsigned int vec_sub (vector unsigned int, vector bool int);
- vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
- vector float vec_sub (vector float, vector float);
- vector float vec_vsubfp (vector float, vector float);
- vector signed int vec_vsubuwm (vector bool int, vector signed int);
- vector signed int vec_vsubuwm (vector signed int, vector bool int);
- vector signed int vec_vsubuwm (vector signed int, vector signed int);
- vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
- vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
- vector unsigned int vec_vsubuwm (vector unsigned int,
- vector unsigned int);
- vector signed short vec_vsubuhm (vector bool short,
- vector signed short);
- vector signed short vec_vsubuhm (vector signed short,
- vector bool short);
- vector signed short vec_vsubuhm (vector signed short,
- vector signed short);
- vector unsigned short vec_vsubuhm (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vsubuhm (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vsubuhm (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vsububm (vector bool char, vector signed char);
- vector signed char vec_vsububm (vector signed char, vector bool char);
- vector signed char vec_vsububm (vector signed char, vector signed char);
- vector unsigned char vec_vsububm (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vsububm (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vsububm (vector unsigned char,
- vector unsigned char);
- vector signed int vec_subc (vector signed int, vector signed int);
- vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
- vector signed __int128 vec_subc (vector signed __int128,
- vector signed __int128);
- vector unsigned __int128 vec_subc (vector unsigned __int128,
- vector unsigned __int128);
- vector signed int vec_sube (vector signed int, vector signed int,
- vector signed int);
- vector unsigned int vec_sube (vector unsigned int, vector unsigned int,
- vector unsigned int);
- vector signed __int128 vec_sube (vector signed __int128,
- vector signed __int128,
- vector signed __int128);
- vector unsigned __int128 vec_sube (vector unsigned __int128,
- vector unsigned __int128,
- vector unsigned __int128);
- vector signed int vec_subec (vector signed int, vector signed int,
- vector signed int);
- vector unsigned int vec_subec (vector unsigned int, vector unsigned int,
- vector unsigned int);
- vector signed __int128 vec_subec (vector signed __int128,
- vector signed __int128,
- vector signed __int128);
- vector unsigned __int128 vec_subec (vector unsigned __int128,
- vector unsigned __int128,
- vector unsigned __int128);
- vector unsigned char vec_subs (vector bool char, vector unsigned char);
- vector unsigned char vec_subs (vector unsigned char, vector bool char);
- vector unsigned char vec_subs (vector unsigned char,
- vector unsigned char);
- vector signed char vec_subs (vector bool char, vector signed char);
- vector signed char vec_subs (vector signed char, vector bool char);
- vector signed char vec_subs (vector signed char, vector signed char);
- vector unsigned short vec_subs (vector bool short,
- vector unsigned short);
- vector unsigned short vec_subs (vector unsigned short,
- vector bool short);
- vector unsigned short vec_subs (vector unsigned short,
- vector unsigned short);
- vector signed short vec_subs (vector bool short, vector signed short);
- vector signed short vec_subs (vector signed short, vector bool short);
- vector signed short vec_subs (vector signed short, vector signed short);
- vector unsigned int vec_subs (vector bool int, vector unsigned int);
- vector unsigned int vec_subs (vector unsigned int, vector bool int);
- vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
- vector signed int vec_subs (vector bool int, vector signed int);
- vector signed int vec_subs (vector signed int, vector bool int);
- vector signed int vec_subs (vector signed int, vector signed int);
- vector signed int vec_vsubsws (vector bool int, vector signed int);
- vector signed int vec_vsubsws (vector signed int, vector bool int);
- vector signed int vec_vsubsws (vector signed int, vector signed int);
- vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
- vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
- vector unsigned int vec_vsubuws (vector unsigned int,
- vector unsigned int);
- vector signed short vec_vsubshs (vector bool short,
- vector signed short);
- vector signed short vec_vsubshs (vector signed short,
- vector bool short);
- vector signed short vec_vsubshs (vector signed short,
- vector signed short);
- vector unsigned short vec_vsubuhs (vector bool short,
- vector unsigned short);
- vector unsigned short vec_vsubuhs (vector unsigned short,
- vector bool short);
- vector unsigned short vec_vsubuhs (vector unsigned short,
- vector unsigned short);
- vector signed char vec_vsubsbs (vector bool char, vector signed char);
- vector signed char vec_vsubsbs (vector signed char, vector bool char);
- vector signed char vec_vsubsbs (vector signed char, vector signed char);
- vector unsigned char vec_vsububs (vector bool char,
- vector unsigned char);
- vector unsigned char vec_vsububs (vector unsigned char,
- vector bool char);
- vector unsigned char vec_vsububs (vector unsigned char,
- vector unsigned char);
- vector unsigned int vec_sum4s (vector unsigned char,
- vector unsigned int);
- vector signed int vec_sum4s (vector signed char, vector signed int);
- vector signed int vec_sum4s (vector signed short, vector signed int);
- vector signed int vec_vsum4shs (vector signed short, vector signed int);
- vector signed int vec_vsum4sbs (vector signed char, vector signed int);
- vector unsigned int vec_vsum4ubs (vector unsigned char,
- vector unsigned int);
- vector signed int vec_sum2s (vector signed int, vector signed int);
- vector signed int vec_sums (vector signed int, vector signed int);
- vector float vec_trunc (vector float);
- vector signed long long vec_unsigned (vector double);
- vector signed int vec_unsigned (vector float);
- vector signed int vec_unsignede (vector double);
- vector signed int vec_unsignedo (vector double);
- vector signed int vec_unsigned2 (vector double, vector double);
- vector signed short vec_unpackh (vector signed char);
- vector bool short vec_unpackh (vector bool char);
- vector signed int vec_unpackh (vector signed short);
- vector bool int vec_unpackh (vector bool short);
- vector unsigned int vec_unpackh (vector pixel);
- vector double vec_unpackh (vector float);
- vector bool int vec_vupkhsh (vector bool short);
- vector signed int vec_vupkhsh (vector signed short);
- vector unsigned int vec_vupkhpx (vector pixel);
- vector bool short vec_vupkhsb (vector bool char);
- vector signed short vec_vupkhsb (vector signed char);
- vector signed short vec_unpackl (vector signed char);
- vector bool short vec_unpackl (vector bool char);
- vector unsigned int vec_unpackl (vector pixel);
- vector signed int vec_unpackl (vector signed short);
- vector bool int vec_unpackl (vector bool short);
- vector double vec_unpackl (vector float);
- vector unsigned int vec_vupklpx (vector pixel);
- vector bool int vec_vupklsh (vector bool short);
- vector signed int vec_vupklsh (vector signed short);
- vector bool short vec_vupklsb (vector bool char);
- vector signed short vec_vupklsb (vector signed char);
- vector float vec_xor (vector float, vector float);
- vector float vec_xor (vector float, vector bool int);
- vector float vec_xor (vector bool int, vector float);
- vector bool int vec_xor (vector bool int, vector bool int);
- vector signed int vec_xor (vector bool int, vector signed int);
- vector signed int vec_xor (vector signed int, vector bool int);
- vector signed int vec_xor (vector signed int, vector signed int);
- vector unsigned int vec_xor (vector bool int, vector unsigned int);
- vector unsigned int vec_xor (vector unsigned int, vector bool int);
- vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
- vector bool short vec_xor (vector bool short, vector bool short);
- vector signed short vec_xor (vector bool short, vector signed short);
- vector signed short vec_xor (vector signed short, vector bool short);
- vector signed short vec_xor (vector signed short, vector signed short);
- vector unsigned short vec_xor (vector bool short,
- vector unsigned short);
- vector unsigned short vec_xor (vector unsigned short,
- vector bool short);
- vector unsigned short vec_xor (vector unsigned short,
- vector unsigned short);
- vector signed char vec_xor (vector bool char, vector signed char);
- vector bool char vec_xor (vector bool char, vector bool char);
- vector signed char vec_xor (vector signed char, vector bool char);
- vector signed char vec_xor (vector signed char, vector signed char);
- vector unsigned char vec_xor (vector bool char, vector unsigned char);
- vector unsigned char vec_xor (vector unsigned char, vector bool char);
- vector unsigned char vec_xor (vector unsigned char,
- vector unsigned char);
- int vec_all_eq (vector signed char, vector bool char);
- int vec_all_eq (vector signed char, vector signed char);
- int vec_all_eq (vector unsigned char, vector bool char);
- int vec_all_eq (vector unsigned char, vector unsigned char);
- int vec_all_eq (vector bool char, vector bool char);
- int vec_all_eq (vector bool char, vector unsigned char);
- int vec_all_eq (vector bool char, vector signed char);
- int vec_all_eq (vector signed short, vector bool short);
- int vec_all_eq (vector signed short, vector signed short);
- int vec_all_eq (vector unsigned short, vector bool short);
- int vec_all_eq (vector unsigned short, vector unsigned short);
- int vec_all_eq (vector bool short, vector bool short);
- int vec_all_eq (vector bool short, vector unsigned short);
- int vec_all_eq (vector bool short, vector signed short);
- int vec_all_eq (vector pixel, vector pixel);
- int vec_all_eq (vector signed int, vector bool int);
- int vec_all_eq (vector signed int, vector signed int);
- int vec_all_eq (vector unsigned int, vector bool int);
- int vec_all_eq (vector unsigned int, vector unsigned int);
- int vec_all_eq (vector bool int, vector bool int);
- int vec_all_eq (vector bool int, vector unsigned int);
- int vec_all_eq (vector bool int, vector signed int);
- int vec_all_eq (vector float, vector float);
- int vec_all_ge (vector bool char, vector unsigned char);
- int vec_all_ge (vector unsigned char, vector bool char);
- int vec_all_ge (vector unsigned char, vector unsigned char);
- int vec_all_ge (vector bool char, vector signed char);
- int vec_all_ge (vector signed char, vector bool char);
- int vec_all_ge (vector signed char, vector signed char);
- int vec_all_ge (vector bool short, vector unsigned short);
- int vec_all_ge (vector unsigned short, vector bool short);
- int vec_all_ge (vector unsigned short, vector unsigned short);
- int vec_all_ge (vector signed short, vector signed short);
- int vec_all_ge (vector bool short, vector signed short);
- int vec_all_ge (vector signed short, vector bool short);
- int vec_all_ge (vector bool int, vector unsigned int);
- int vec_all_ge (vector unsigned int, vector bool int);
- int vec_all_ge (vector unsigned int, vector unsigned int);
- int vec_all_ge (vector bool int, vector signed int);
- int vec_all_ge (vector signed int, vector bool int);
- int vec_all_ge (vector signed int, vector signed int);
- int vec_all_ge (vector float, vector float);
- int vec_all_gt (vector bool char, vector unsigned char);
- int vec_all_gt (vector unsigned char, vector bool char);
- int vec_all_gt (vector unsigned char, vector unsigned char);
- int vec_all_gt (vector bool char, vector signed char);
- int vec_all_gt (vector signed char, vector bool char);
- int vec_all_gt (vector signed char, vector signed char);
- int vec_all_gt (vector bool short, vector unsigned short);
- int vec_all_gt (vector unsigned short, vector bool short);
- int vec_all_gt (vector unsigned short, vector unsigned short);
- int vec_all_gt (vector bool short, vector signed short);
- int vec_all_gt (vector signed short, vector bool short);
- int vec_all_gt (vector signed short, vector signed short);
- int vec_all_gt (vector bool int, vector unsigned int);
- int vec_all_gt (vector unsigned int, vector bool int);
- int vec_all_gt (vector unsigned int, vector unsigned int);
- int vec_all_gt (vector bool int, vector signed int);
- int vec_all_gt (vector signed int, vector bool int);
- int vec_all_gt (vector signed int, vector signed int);
- int vec_all_gt (vector float, vector float);
- int vec_all_in (vector float, vector float);
- int vec_all_le (vector bool char, vector unsigned char);
- int vec_all_le (vector unsigned char, vector bool char);
- int vec_all_le (vector unsigned char, vector unsigned char);
- int vec_all_le (vector bool char, vector signed char);
- int vec_all_le (vector signed char, vector bool char);
- int vec_all_le (vector signed char, vector signed char);
- int vec_all_le (vector bool short, vector unsigned short);
- int vec_all_le (vector unsigned short, vector bool short);
- int vec_all_le (vector unsigned short, vector unsigned short);
- int vec_all_le (vector bool short, vector signed short);
- int vec_all_le (vector signed short, vector bool short);
- int vec_all_le (vector signed short, vector signed short);
- int vec_all_le (vector bool int, vector unsigned int);
- int vec_all_le (vector unsigned int, vector bool int);
- int vec_all_le (vector unsigned int, vector unsigned int);
- int vec_all_le (vector bool int, vector signed int);
- int vec_all_le (vector signed int, vector bool int);
- int vec_all_le (vector signed int, vector signed int);
- int vec_all_le (vector float, vector float);
- int vec_all_lt (vector bool char, vector unsigned char);
- int vec_all_lt (vector unsigned char, vector bool char);
- int vec_all_lt (vector unsigned char, vector unsigned char);
- int vec_all_lt (vector bool char, vector signed char);
- int vec_all_lt (vector signed char, vector bool char);
- int vec_all_lt (vector signed char, vector signed char);
- int vec_all_lt (vector bool short, vector unsigned short);
- int vec_all_lt (vector unsigned short, vector bool short);
- int vec_all_lt (vector unsigned short, vector unsigned short);
- int vec_all_lt (vector bool short, vector signed short);
- int vec_all_lt (vector signed short, vector bool short);
- int vec_all_lt (vector signed short, vector signed short);
- int vec_all_lt (vector bool int, vector unsigned int);
- int vec_all_lt (vector unsigned int, vector bool int);
- int vec_all_lt (vector unsigned int, vector unsigned int);
- int vec_all_lt (vector bool int, vector signed int);
- int vec_all_lt (vector signed int, vector bool int);
- int vec_all_lt (vector signed int, vector signed int);
- int vec_all_lt (vector float, vector float);
- int vec_all_nan (vector float);
- int vec_all_ne (vector signed char, vector bool char);
- int vec_all_ne (vector signed char, vector signed char);
- int vec_all_ne (vector unsigned char, vector bool char);
- int vec_all_ne (vector unsigned char, vector unsigned char);
- int vec_all_ne (vector bool char, vector bool char);
- int vec_all_ne (vector bool char, vector unsigned char);
- int vec_all_ne (vector bool char, vector signed char);
- int vec_all_ne (vector signed short, vector bool short);
- int vec_all_ne (vector signed short, vector signed short);
- int vec_all_ne (vector unsigned short, vector bool short);
- int vec_all_ne (vector unsigned short, vector unsigned short);
- int vec_all_ne (vector bool short, vector bool short);
- int vec_all_ne (vector bool short, vector unsigned short);
- int vec_all_ne (vector bool short, vector signed short);
- int vec_all_ne (vector pixel, vector pixel);
- int vec_all_ne (vector signed int, vector bool int);
- int vec_all_ne (vector signed int, vector signed int);
- int vec_all_ne (vector unsigned int, vector bool int);
- int vec_all_ne (vector unsigned int, vector unsigned int);
- int vec_all_ne (vector bool int, vector bool int);
- int vec_all_ne (vector bool int, vector unsigned int);
- int vec_all_ne (vector bool int, vector signed int);
- int vec_all_ne (vector float, vector float);
- int vec_all_nge (vector float, vector float);
- int vec_all_ngt (vector float, vector float);
- int vec_all_nle (vector float, vector float);
- int vec_all_nlt (vector float, vector float);
- int vec_all_numeric (vector float);
- int vec_any_eq (vector signed char, vector bool char);
- int vec_any_eq (vector signed char, vector signed char);
- int vec_any_eq (vector unsigned char, vector bool char);
- int vec_any_eq (vector unsigned char, vector unsigned char);
- int vec_any_eq (vector bool char, vector bool char);
- int vec_any_eq (vector bool char, vector unsigned char);
- int vec_any_eq (vector bool char, vector signed char);
- int vec_any_eq (vector signed short, vector bool short);
- int vec_any_eq (vector signed short, vector signed short);
- int vec_any_eq (vector unsigned short, vector bool short);
- int vec_any_eq (vector unsigned short, vector unsigned short);
- int vec_any_eq (vector bool short, vector bool short);
- int vec_any_eq (vector bool short, vector unsigned short);
- int vec_any_eq (vector bool short, vector signed short);
- int vec_any_eq (vector pixel, vector pixel);
- int vec_any_eq (vector signed int, vector bool int);
- int vec_any_eq (vector signed int, vector signed int);
- int vec_any_eq (vector unsigned int, vector bool int);
- int vec_any_eq (vector unsigned int, vector unsigned int);
- int vec_any_eq (vector bool int, vector bool int);
- int vec_any_eq (vector bool int, vector unsigned int);
- int vec_any_eq (vector bool int, vector signed int);
- int vec_any_eq (vector float, vector float);
- int vec_any_ge (vector signed char, vector bool char);
- int vec_any_ge (vector unsigned char, vector bool char);
- int vec_any_ge (vector unsigned char, vector unsigned char);
- int vec_any_ge (vector signed char, vector signed char);
- int vec_any_ge (vector bool char, vector unsigned char);
- int vec_any_ge (vector bool char, vector signed char);
- int vec_any_ge (vector unsigned short, vector bool short);
- int vec_any_ge (vector unsigned short, vector unsigned short);
- int vec_any_ge (vector signed short, vector signed short);
- int vec_any_ge (vector signed short, vector bool short);
- int vec_any_ge (vector bool short, vector unsigned short);
- int vec_any_ge (vector bool short, vector signed short);
- int vec_any_ge (vector signed int, vector bool int);
- int vec_any_ge (vector unsigned int, vector bool int);
- int vec_any_ge (vector unsigned int, vector unsigned int);
- int vec_any_ge (vector signed int, vector signed int);
- int vec_any_ge (vector bool int, vector unsigned int);
- int vec_any_ge (vector bool int, vector signed int);
- int vec_any_ge (vector float, vector float);
- int vec_any_gt (vector bool char, vector unsigned char);
- int vec_any_gt (vector unsigned char, vector bool char);
- int vec_any_gt (vector unsigned char, vector unsigned char);
- int vec_any_gt (vector bool char, vector signed char);
- int vec_any_gt (vector signed char, vector bool char);
- int vec_any_gt (vector signed char, vector signed char);
- int vec_any_gt (vector bool short, vector unsigned short);
- int vec_any_gt (vector unsigned short, vector bool short);
- int vec_any_gt (vector unsigned short, vector unsigned short);
- int vec_any_gt (vector bool short, vector signed short);
- int vec_any_gt (vector signed short, vector bool short);
- int vec_any_gt (vector signed short, vector signed short);
- int vec_any_gt (vector bool int, vector unsigned int);
- int vec_any_gt (vector unsigned int, vector bool int);
- int vec_any_gt (vector unsigned int, vector unsigned int);
- int vec_any_gt (vector bool int, vector signed int);
- int vec_any_gt (vector signed int, vector bool int);
- int vec_any_gt (vector signed int, vector signed int);
- int vec_any_gt (vector float, vector float);
- int vec_any_le (vector bool char, vector unsigned char);
- int vec_any_le (vector unsigned char, vector bool char);
- int vec_any_le (vector unsigned char, vector unsigned char);
- int vec_any_le (vector bool char, vector signed char);
- int vec_any_le (vector signed char, vector bool char);
- int vec_any_le (vector signed char, vector signed char);
- int vec_any_le (vector bool short, vector unsigned short);
- int vec_any_le (vector unsigned short, vector bool short);
- int vec_any_le (vector unsigned short, vector unsigned short);
- int vec_any_le (vector bool short, vector signed short);
- int vec_any_le (vector signed short, vector bool short);
- int vec_any_le (vector signed short, vector signed short);
- int vec_any_le (vector bool int, vector unsigned int);
- int vec_any_le (vector unsigned int, vector bool int);
- int vec_any_le (vector unsigned int, vector unsigned int);
- int vec_any_le (vector bool int, vector signed int);
- int vec_any_le (vector signed int, vector bool int);
- int vec_any_le (vector signed int, vector signed int);
- int vec_any_le (vector float, vector float);
- int vec_any_lt (vector bool char, vector unsigned char);
- int vec_any_lt (vector unsigned char, vector bool char);
- int vec_any_lt (vector unsigned char, vector unsigned char);
- int vec_any_lt (vector bool char, vector signed char);
- int vec_any_lt (vector signed char, vector bool char);
- int vec_any_lt (vector signed char, vector signed char);
- int vec_any_lt (vector bool short, vector unsigned short);
- int vec_any_lt (vector unsigned short, vector bool short);
- int vec_any_lt (vector unsigned short, vector unsigned short);
- int vec_any_lt (vector bool short, vector signed short);
- int vec_any_lt (vector signed short, vector bool short);
- int vec_any_lt (vector signed short, vector signed short);
- int vec_any_lt (vector bool int, vector unsigned int);
- int vec_any_lt (vector unsigned int, vector bool int);
- int vec_any_lt (vector unsigned int, vector unsigned int);
- int vec_any_lt (vector bool int, vector signed int);
- int vec_any_lt (vector signed int, vector bool int);
- int vec_any_lt (vector signed int, vector signed int);
- int vec_any_lt (vector float, vector float);
- int vec_any_nan (vector float);
- int vec_any_ne (vector signed char, vector bool char);
- int vec_any_ne (vector signed char, vector signed char);
- int vec_any_ne (vector unsigned char, vector bool char);
- int vec_any_ne (vector unsigned char, vector unsigned char);
- int vec_any_ne (vector bool char, vector bool char);
- int vec_any_ne (vector bool char, vector unsigned char);
- int vec_any_ne (vector bool char, vector signed char);
- int vec_any_ne (vector signed short, vector bool short);
- int vec_any_ne (vector signed short, vector signed short);
- int vec_any_ne (vector unsigned short, vector bool short);
- int vec_any_ne (vector unsigned short, vector unsigned short);
- int vec_any_ne (vector bool short, vector bool short);
- int vec_any_ne (vector bool short, vector unsigned short);
- int vec_any_ne (vector bool short, vector signed short);
- int vec_any_ne (vector pixel, vector pixel);
- int vec_any_ne (vector signed int, vector bool int);
- int vec_any_ne (vector signed int, vector signed int);
- int vec_any_ne (vector unsigned int, vector bool int);
- int vec_any_ne (vector unsigned int, vector unsigned int);
- int vec_any_ne (vector bool int, vector bool int);
- int vec_any_ne (vector bool int, vector unsigned int);
- int vec_any_ne (vector bool int, vector signed int);
- int vec_any_ne (vector float, vector float);
- int vec_any_nge (vector float, vector float);
- int vec_any_ngt (vector float, vector float);
- int vec_any_nle (vector float, vector float);
- int vec_any_nlt (vector float, vector float);
- int vec_any_numeric (vector float);
- int vec_any_out (vector float, vector float);
- If the vector/scalar (VSX) instruction set is available, the following
- additional functions are available:
- vector double vec_abs (vector double);
- vector double vec_add (vector double, vector double);
- vector double vec_and (vector double, vector double);
- vector double vec_and (vector double, vector bool long);
- vector double vec_and (vector bool long, vector double);
- vector long vec_and (vector long, vector long);
- vector long vec_and (vector long, vector bool long);
- vector long vec_and (vector bool long, vector long);
- vector unsigned long vec_and (vector unsigned long, vector unsigned long);
- vector unsigned long vec_and (vector unsigned long, vector bool long);
- vector unsigned long vec_and (vector bool long, vector unsigned long);
- vector double vec_andc (vector double, vector double);
- vector double vec_andc (vector double, vector bool long);
- vector double vec_andc (vector bool long, vector double);
- vector long vec_andc (vector long, vector long);
- vector long vec_andc (vector long, vector bool long);
- vector long vec_andc (vector bool long, vector long);
- vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
- vector unsigned long vec_andc (vector unsigned long, vector bool long);
- vector unsigned long vec_andc (vector bool long, vector unsigned long);
- vector double vec_ceil (vector double);
- vector bool long vec_cmpeq (vector double, vector double);
- vector bool long vec_cmpge (vector double, vector double);
- vector bool long vec_cmpgt (vector double, vector double);
- vector bool long vec_cmple (vector double, vector double);
- vector bool long vec_cmplt (vector double, vector double);
- vector double vec_cpsgn (vector double, vector double);
- vector float vec_div (vector float, vector float);
- vector double vec_div (vector double, vector double);
- vector long vec_div (vector long, vector long);
- vector unsigned long vec_div (vector unsigned long, vector unsigned long);
- vector double vec_floor (vector double);
- vector signed long long vec_ld (int, const vector signed long long *);
- vector signed long long vec_ld (int, const signed long long *);
- vector unsigned long long vec_ld (int, const vector unsigned long long *);
- vector unsigned long long vec_ld (int, const unsigned long long *);
- vector __int128 vec_ld (int, const vector __int128 *);
- vector unsigned __int128 vec_ld (int, const vector unsigned __int128 *);
- vector __int128 vec_ld (int, const __int128 *);
- vector unsigned __int128 vec_ld (int, const unsigned __int128 *);
- vector double vec_ld (int, const vector double *);
- vector double vec_ld (int, const double *);
- vector double vec_ldl (int, const vector double *);
- vector double vec_ldl (int, const double *);
- vector unsigned char vec_lvsl (int, const volatile double *);
- vector unsigned char vec_lvsr (int, const volatile double *);
- vector double vec_madd (vector double, vector double, vector double);
- vector double vec_max (vector double, vector double);
- vector signed long vec_mergeh (vector signed long, vector signed long);
- vector signed long vec_mergeh (vector signed long, vector bool long);
- vector signed long vec_mergeh (vector bool long, vector signed long);
- vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
- vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
- vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
- vector signed long vec_mergel (vector signed long, vector signed long);
- vector signed long vec_mergel (vector signed long, vector bool long);
- vector signed long vec_mergel (vector bool long, vector signed long);
- vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
- vector unsigned long vec_mergel (vector unsigned long, vector bool long);
- vector unsigned long vec_mergel (vector bool long, vector unsigned long);
- vector double vec_min (vector double, vector double);
- vector float vec_msub (vector float, vector float, vector float);
- vector double vec_msub (vector double, vector double, vector double);
- vector float vec_mul (vector float, vector float);
- vector double vec_mul (vector double, vector double);
- vector long vec_mul (vector long, vector long);
- vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
- vector float vec_nearbyint (vector float);
- vector double vec_nearbyint (vector double);
- vector float vec_nmadd (vector float, vector float, vector float);
- vector double vec_nmadd (vector double, vector double, vector double);
- vector double vec_nmsub (vector double, vector double, vector double);
- vector double vec_nor (vector double, vector double);
- vector long vec_nor (vector long, vector long);
- vector long vec_nor (vector long, vector bool long);
- vector long vec_nor (vector bool long, vector long);
- vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
- vector unsigned long vec_nor (vector unsigned long, vector bool long);
- vector unsigned long vec_nor (vector bool long, vector unsigned long);
- vector double vec_or (vector double, vector double);
- vector double vec_or (vector double, vector bool long);
- vector double vec_or (vector bool long, vector double);
- vector long vec_or (vector long, vector long);
- vector long vec_or (vector long, vector bool long);
- vector long vec_or (vector bool long, vector long);
- vector unsigned long vec_or (vector unsigned long, vector unsigned long);
- vector unsigned long vec_or (vector unsigned long, vector bool long);
- vector unsigned long vec_or (vector bool long, vector unsigned long);
- vector double vec_perm (vector double, vector double, vector unsigned char);
- vector long vec_perm (vector long, vector long, vector unsigned char);
- vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
- vector unsigned char);
- vector bool char vec_permxor (vector bool char, vector bool char,
- vector bool char);
- vector unsigned char vec_permxor (vector signed char, vector signed char,
- vector signed char);
- vector unsigned char vec_permxor (vector unsigned char, vector unsigned char,
- vector unsigned char);
- vector double vec_rint (vector double);
- vector double vec_recip (vector double, vector double);
- vector double vec_rsqrt (vector double);
- vector double vec_rsqrte (vector double);
- vector double vec_sel (vector double, vector double, vector bool long);
- vector double vec_sel (vector double, vector double, vector unsigned long);
- vector long vec_sel (vector long, vector long, vector long);
- vector long vec_sel (vector long, vector long, vector unsigned long);
- vector long vec_sel (vector long, vector long, vector bool long);
- vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
- vector long);
- vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
- vector unsigned long);
- vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
- vector bool long);
- vector double vec_splats (double);
- vector signed long vec_splats (signed long);
- vector unsigned long vec_splats (unsigned long);
- vector float vec_sqrt (vector float);
- vector double vec_sqrt (vector double);
- void vec_st (vector signed long long, int, vector signed long long *);
- void vec_st (vector signed long long, int, signed long long *);
- void vec_st (vector unsigned long long, int, vector unsigned long long *);
- void vec_st (vector unsigned long long, int, unsigned long long *);
- void vec_st (vector bool long long, int, vector bool long long *);
- void vec_st (vector bool long long, int, signed long long *);
- void vec_st (vector bool long long, int, unsigned long long *);
- void vec_st (vector double, int, vector double *);
- void vec_st (vector double, int, double *);
- vector double vec_sub (vector double, vector double);
- vector double vec_trunc (vector double);
- vector double vec_xl (int, vector double *);
- vector double vec_xl (int, double *);
- vector long long vec_xl (int, vector long long *);
- vector long long vec_xl (int, long long *);
- vector unsigned long long vec_xl (int, vector unsigned long long *);
- vector unsigned long long vec_xl (int, unsigned long long *);
- vector float vec_xl (int, vector float *);
- vector float vec_xl (int, float *);
- vector int vec_xl (int, vector int *);
- vector int vec_xl (int, int *);
- vector unsigned int vec_xl (int, vector unsigned int *);
- vector unsigned int vec_xl (int, unsigned int *);
- vector double vec_xor (vector double, vector double);
- vector double vec_xor (vector double, vector bool long);
- vector double vec_xor (vector bool long, vector double);
- vector long vec_xor (vector long, vector long);
- vector long vec_xor (vector long, vector bool long);
- vector long vec_xor (vector bool long, vector long);
- vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
- vector unsigned long vec_xor (vector unsigned long, vector bool long);
- vector unsigned long vec_xor (vector bool long, vector unsigned long);
- void vec_xst (vector double, int, vector double *);
- void vec_xst (vector double, int, double *);
- void vec_xst (vector long long, int, vector long long *);
- void vec_xst (vector long long, int, long long *);
- void vec_xst (vector unsigned long long, int, vector unsigned long long *);
- void vec_xst (vector unsigned long long, int, unsigned long long *);
- void vec_xst (vector float, int, vector float *);
- void vec_xst (vector float, int, float *);
- void vec_xst (vector int, int, vector int *);
- void vec_xst (vector int, int, int *);
- void vec_xst (vector unsigned int, int, vector unsigned int *);
- void vec_xst (vector unsigned int, int, unsigned int *);
- int vec_all_eq (vector double, vector double);
- int vec_all_ge (vector double, vector double);
- int vec_all_gt (vector double, vector double);
- int vec_all_le (vector double, vector double);
- int vec_all_lt (vector double, vector double);
- int vec_all_nan (vector double);
- int vec_all_ne (vector double, vector double);
- int vec_all_nge (vector double, vector double);
- int vec_all_ngt (vector double, vector double);
- int vec_all_nle (vector double, vector double);
- int vec_all_nlt (vector double, vector double);
- int vec_all_numeric (vector double);
- int vec_any_eq (vector double, vector double);
- int vec_any_ge (vector double, vector double);
- int vec_any_gt (vector double, vector double);
- int vec_any_le (vector double, vector double);
- int vec_any_lt (vector double, vector double);
- int vec_any_nan (vector double);
- int vec_any_ne (vector double, vector double);
- int vec_any_nge (vector double, vector double);
- int vec_any_ngt (vector double, vector double);
- int vec_any_nle (vector double, vector double);
- int vec_any_nlt (vector double, vector double);
- int vec_any_numeric (vector double);
- vector double vec_vsx_ld (int, const vector double *);
- vector double vec_vsx_ld (int, const double *);
- vector float vec_vsx_ld (int, const vector float *);
- vector float vec_vsx_ld (int, const float *);
- vector bool int vec_vsx_ld (int, const vector bool int *);
- vector signed int vec_vsx_ld (int, const vector signed int *);
- vector signed int vec_vsx_ld (int, const int *);
- vector signed int vec_vsx_ld (int, const long *);
- vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
- vector unsigned int vec_vsx_ld (int, const unsigned int *);
- vector unsigned int vec_vsx_ld (int, const unsigned long *);
- vector bool short vec_vsx_ld (int, const vector bool short *);
- vector pixel vec_vsx_ld (int, const vector pixel *);
- vector signed short vec_vsx_ld (int, const vector signed short *);
- vector signed short vec_vsx_ld (int, const short *);
- vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
- vector unsigned short vec_vsx_ld (int, const unsigned short *);
- vector bool char vec_vsx_ld (int, const vector bool char *);
- vector signed char vec_vsx_ld (int, const vector signed char *);
- vector signed char vec_vsx_ld (int, const signed char *);
- vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
- vector unsigned char vec_vsx_ld (int, const unsigned char *);
- void vec_vsx_st (vector double, int, vector double *);
- void vec_vsx_st (vector double, int, double *);
- void vec_vsx_st (vector float, int, vector float *);
- void vec_vsx_st (vector float, int, float *);
- void vec_vsx_st (vector signed int, int, vector signed int *);
- void vec_vsx_st (vector signed int, int, int *);
- void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
- void vec_vsx_st (vector unsigned int, int, unsigned int *);
- void vec_vsx_st (vector bool int, int, vector bool int *);
- void vec_vsx_st (vector bool int, int, unsigned int *);
- void vec_vsx_st (vector bool int, int, int *);
- void vec_vsx_st (vector signed short, int, vector signed short *);
- void vec_vsx_st (vector signed short, int, short *);
- void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
- void vec_vsx_st (vector unsigned short, int, unsigned short *);
- void vec_vsx_st (vector bool short, int, vector bool short *);
- void vec_vsx_st (vector bool short, int, unsigned short *);
- void vec_vsx_st (vector pixel, int, vector pixel *);
- void vec_vsx_st (vector pixel, int, unsigned short *);
- void vec_vsx_st (vector pixel, int, short *);
- void vec_vsx_st (vector bool short, int, short *);
- void vec_vsx_st (vector signed char, int, vector signed char *);
- void vec_vsx_st (vector signed char, int, signed char *);
- void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
- void vec_vsx_st (vector unsigned char, int, unsigned char *);
- void vec_vsx_st (vector bool char, int, vector bool char *);
- void vec_vsx_st (vector bool char, int, unsigned char *);
- void vec_vsx_st (vector bool char, int, signed char *);
- vector double vec_xxpermdi (vector double, vector double, const int);
- vector float vec_xxpermdi (vector float, vector float, const int);
- vector long long vec_xxpermdi (vector long long, vector long long, const int);
- vector unsigned long long vec_xxpermdi (vector unsigned long long,
- vector unsigned long long, const int);
- vector int vec_xxpermdi (vector int, vector int, const int);
- vector unsigned int vec_xxpermdi (vector unsigned int,
- vector unsigned int, const int);
- vector short vec_xxpermdi (vector short, vector short, const int);
- vector unsigned short vec_xxpermdi (vector unsigned short,
- vector unsigned short, const int);
- vector signed char vec_xxpermdi (vector signed char, vector signed char,
- const int);
- vector unsigned char vec_xxpermdi (vector unsigned char,
- vector unsigned char, const int);
- vector double vec_xxsldi (vector double, vector double, int);
- vector float vec_xxsldi (vector float, vector float, int);
- vector long long vec_xxsldi (vector long long, vector long long, int);
- vector unsigned long long vec_xxsldi (vector unsigned long long,
- vector unsigned long long, int);
- vector int vec_xxsldi (vector int, vector int, int);
- vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
- vector short vec_xxsldi (vector short, vector short, int);
- vector unsigned short vec_xxsldi (vector unsigned short,
- vector unsigned short, int);
- vector signed char vec_xxsldi (vector signed char, vector signed char, int);
- vector unsigned char vec_xxsldi (vector unsigned char,
- vector unsigned char, int);
- Note that the 'vec_ld' and 'vec_st' built-in functions always generate
- the AltiVec 'LVX' and 'STVX' instructions even if the VSX instruction
- set is available. The 'vec_vsx_ld' and 'vec_vsx_st' built-in functions
- always generate the VSX 'LXVD2X', 'LXVW4X', 'STXVD2X', and 'STXVW4X'
- instructions.
- If the ISA 2.07 additions to the vector/scalar (power8-vector)
- instruction set are available, the following additional functions are
- available for both 32-bit and 64-bit targets. For 64-bit targets, you
- can use VECTOR LONG instead of VECTOR LONG LONG, VECTOR BOOL LONG
- instead of VECTOR BOOL LONG LONG, and VECTOR UNSIGNED LONG instead of
- VECTOR UNSIGNED LONG LONG.
- vector long long vec_abs (vector long long);
- vector long long vec_add (vector long long, vector long long);
- vector unsigned long long vec_add (vector unsigned long long,
- vector unsigned long long);
- int vec_all_eq (vector long long, vector long long);
- int vec_all_eq (vector unsigned long long, vector unsigned long long);
- int vec_all_ge (vector long long, vector long long);
- int vec_all_ge (vector unsigned long long, vector unsigned long long);
- int vec_all_gt (vector long long, vector long long);
- int vec_all_gt (vector unsigned long long, vector unsigned long long);
- int vec_all_le (vector long long, vector long long);
- int vec_all_le (vector unsigned long long, vector unsigned long long);
- int vec_all_lt (vector long long, vector long long);
- int vec_all_lt (vector unsigned long long, vector unsigned long long);
- int vec_all_ne (vector long long, vector long long);
- int vec_all_ne (vector unsigned long long, vector unsigned long long);
- int vec_any_eq (vector long long, vector long long);
- int vec_any_eq (vector unsigned long long, vector unsigned long long);
- int vec_any_ge (vector long long, vector long long);
- int vec_any_ge (vector unsigned long long, vector unsigned long long);
- int vec_any_gt (vector long long, vector long long);
- int vec_any_gt (vector unsigned long long, vector unsigned long long);
- int vec_any_le (vector long long, vector long long);
- int vec_any_le (vector unsigned long long, vector unsigned long long);
- int vec_any_lt (vector long long, vector long long);
- int vec_any_lt (vector unsigned long long, vector unsigned long long);
- int vec_any_ne (vector long long, vector long long);
- int vec_any_ne (vector unsigned long long, vector unsigned long long);
- vector bool long long vec_cmpeq (vector bool long long, vector bool long long);
- vector long long vec_eqv (vector long long, vector long long);
- vector long long vec_eqv (vector bool long long, vector long long);
- vector long long vec_eqv (vector long long, vector bool long long);
- vector unsigned long long vec_eqv (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_eqv (vector bool long long,
- vector unsigned long long);
- vector unsigned long long vec_eqv (vector unsigned long long,
- vector bool long long);
- vector int vec_eqv (vector int, vector int);
- vector int vec_eqv (vector bool int, vector int);
- vector int vec_eqv (vector int, vector bool int);
- vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
- vector unsigned int vec_eqv (vector bool unsigned int,
- vector unsigned int);
- vector unsigned int vec_eqv (vector unsigned int,
- vector bool unsigned int);
- vector short vec_eqv (vector short, vector short);
- vector short vec_eqv (vector bool short, vector short);
- vector short vec_eqv (vector short, vector bool short);
- vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
- vector unsigned short vec_eqv (vector bool unsigned short,
- vector unsigned short);
- vector unsigned short vec_eqv (vector unsigned short,
- vector bool unsigned short);
- vector signed char vec_eqv (vector signed char, vector signed char);
- vector signed char vec_eqv (vector bool signed char, vector signed char);
- vector signed char vec_eqv (vector signed char, vector bool signed char);
- vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
- vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
- vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
- vector long long vec_max (vector long long, vector long long);
- vector unsigned long long vec_max (vector unsigned long long,
- vector unsigned long long);
- vector signed int vec_mergee (vector signed int, vector signed int);
- vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
- vector bool int vec_mergee (vector bool int, vector bool int);
- vector signed int vec_mergeo (vector signed int, vector signed int);
- vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
- vector bool int vec_mergeo (vector bool int, vector bool int);
- vector long long vec_min (vector long long, vector long long);
- vector unsigned long long vec_min (vector unsigned long long,
- vector unsigned long long);
- vector signed long long vec_nabs (vector signed long long);
- vector long long vec_nand (vector long long, vector long long);
- vector long long vec_nand (vector bool long long, vector long long);
- vector long long vec_nand (vector long long, vector bool long long);
- vector unsigned long long vec_nand (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_nand (vector bool long long,
- vector unsigned long long);
- vector unsigned long long vec_nand (vector unsigned long long,
- vector bool long long);
- vector int vec_nand (vector int, vector int);
- vector int vec_nand (vector bool int, vector int);
- vector int vec_nand (vector int, vector bool int);
- vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
- vector unsigned int vec_nand (vector bool unsigned int,
- vector unsigned int);
- vector unsigned int vec_nand (vector unsigned int,
- vector bool unsigned int);
- vector short vec_nand (vector short, vector short);
- vector short vec_nand (vector bool short, vector short);
- vector short vec_nand (vector short, vector bool short);
- vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
- vector unsigned short vec_nand (vector bool unsigned short,
- vector unsigned short);
- vector unsigned short vec_nand (vector unsigned short,
- vector bool unsigned short);
- vector signed char vec_nand (vector signed char, vector signed char);
- vector signed char vec_nand (vector bool signed char, vector signed char);
- vector signed char vec_nand (vector signed char, vector bool signed char);
- vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
- vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
- vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
- vector long long vec_orc (vector long long, vector long long);
- vector long long vec_orc (vector bool long long, vector long long);
- vector long long vec_orc (vector long long, vector bool long long);
- vector unsigned long long vec_orc (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_orc (vector bool long long,
- vector unsigned long long);
- vector unsigned long long vec_orc (vector unsigned long long,
- vector bool long long);
- vector int vec_orc (vector int, vector int);
- vector int vec_orc (vector bool int, vector int);
- vector int vec_orc (vector int, vector bool int);
- vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
- vector unsigned int vec_orc (vector bool unsigned int,
- vector unsigned int);
- vector unsigned int vec_orc (vector unsigned int,
- vector bool unsigned int);
- vector short vec_orc (vector short, vector short);
- vector short vec_orc (vector bool short, vector short);
- vector short vec_orc (vector short, vector bool short);
- vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
- vector unsigned short vec_orc (vector bool unsigned short,
- vector unsigned short);
- vector unsigned short vec_orc (vector unsigned short,
- vector bool unsigned short);
- vector signed char vec_orc (vector signed char, vector signed char);
- vector signed char vec_orc (vector bool signed char, vector signed char);
- vector signed char vec_orc (vector signed char, vector bool signed char);
- vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
- vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
- vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
- vector int vec_pack (vector long long, vector long long);
- vector unsigned int vec_pack (vector unsigned long long,
- vector unsigned long long);
- vector bool int vec_pack (vector bool long long, vector bool long long);
- vector float vec_pack (vector double, vector double);
- vector int vec_packs (vector long long, vector long long);
- vector unsigned int vec_packs (vector unsigned long long,
- vector unsigned long long);
- test_vsi_packsu_vssi_vssi (vector signed short x,
- vector unsigned char vec_packsu (vector signed short, vector signed short )
- vector unsigned char vec_packsu (vector unsigned short, vector unsigned short )
- vector unsigned short int vec_packsu (vector signed int, vector signed int);
- vector unsigned short int vec_packsu (vector unsigned int,
- vector unsigned int);
- vector unsigned int vec_packsu (vector long long, vector long long);
- vector unsigned int vec_packsu (vector unsigned long long,
- vector unsigned long long);
- vector unsigned int vec_packsu (vector signed long long,
- vector signed long long);
- vector unsigned char vec_popcnt (vector signed char);
- vector unsigned char vec_popcnt (vector unsigned char);
- vector unsigned short vec_popcnt (vector signed short);
- vector unsigned short vec_popcnt (vector unsigned short);
- vector unsigned int vec_popcnt (vector signed int);
- vector unsigned int vec_popcnt (vector unsigned int);
- vector unsigned long long vec_popcnt (vector signed long long);
- vector unsigned long long vec_popcnt (vector unsigned long long);
- vector long long vec_rl (vector long long,
- vector unsigned long long);
- vector long long vec_rl (vector unsigned long long,
- vector unsigned long long);
- vector long long vec_sl (vector long long, vector unsigned long long);
- vector long long vec_sl (vector unsigned long long,
- vector unsigned long long);
- vector long long vec_sr (vector long long, vector unsigned long long);
- vector unsigned long long char vec_sr (vector unsigned long long,
- vector unsigned long long);
- vector long long vec_sra (vector long long, vector unsigned long long);
- vector unsigned long long vec_sra (vector unsigned long long,
- vector unsigned long long);
- vector long long vec_sub (vector long long, vector long long);
- vector unsigned long long vec_sub (vector unsigned long long,
- vector unsigned long long);
- vector long long vec_unpackh (vector int);
- vector unsigned long long vec_unpackh (vector unsigned int);
- vector long long vec_unpackl (vector int);
- vector unsigned long long vec_unpackl (vector unsigned int);
- vector long long vec_vaddudm (vector long long, vector long long);
- vector long long vec_vaddudm (vector bool long long, vector long long);
- vector long long vec_vaddudm (vector long long, vector bool long long);
- vector unsigned long long vec_vaddudm (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_vaddudm (vector bool unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_vaddudm (vector unsigned long long,
- vector bool unsigned long long);
- vector long long vec_vbpermq (vector signed char, vector signed char);
- vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
- vector unsigned char vec_bperm (vector unsigned char, vector unsigned char);
- vector unsigned char vec_bperm (vector unsigned long long,
- vector unsigned char);
- vector unsigned long long vec_bperm (vector unsigned __int128,
- vector unsigned char);
- vector long long vec_cntlz (vector long long);
- vector unsigned long long vec_cntlz (vector unsigned long long);
- vector int vec_cntlz (vector int);
- vector unsigned int vec_cntlz (vector int);
- vector short vec_cntlz (vector short);
- vector unsigned short vec_cntlz (vector unsigned short);
- vector signed char vec_cntlz (vector signed char);
- vector unsigned char vec_cntlz (vector unsigned char);
- vector long long vec_vclz (vector long long);
- vector unsigned long long vec_vclz (vector unsigned long long);
- vector int vec_vclz (vector int);
- vector unsigned int vec_vclz (vector int);
- vector short vec_vclz (vector short);
- vector unsigned short vec_vclz (vector unsigned short);
- vector signed char vec_vclz (vector signed char);
- vector unsigned char vec_vclz (vector unsigned char);
- vector signed char vec_vclzb (vector signed char);
- vector unsigned char vec_vclzb (vector unsigned char);
- vector long long vec_vclzd (vector long long);
- vector unsigned long long vec_vclzd (vector unsigned long long);
- vector short vec_vclzh (vector short);
- vector unsigned short vec_vclzh (vector unsigned short);
- vector int vec_vclzw (vector int);
- vector unsigned int vec_vclzw (vector int);
- vector signed char vec_vgbbd (vector signed char);
- vector unsigned char vec_vgbbd (vector unsigned char);
- vector long long vec_vmaxsd (vector long long, vector long long);
- vector unsigned long long vec_vmaxud (vector unsigned long long,
- unsigned vector long long);
- vector long long vec_vminsd (vector long long, vector long long);
- vector unsigned long long vec_vminud (vector long long,
- vector long long);
- vector int vec_vpksdss (vector long long, vector long long);
- vector unsigned int vec_vpksdss (vector long long, vector long long);
- vector unsigned int vec_vpkudus (vector unsigned long long,
- vector unsigned long long);
- vector int vec_vpkudum (vector long long, vector long long);
- vector unsigned int vec_vpkudum (vector unsigned long long,
- vector unsigned long long);
- vector bool int vec_vpkudum (vector bool long long, vector bool long long);
- vector long long vec_vpopcnt (vector long long);
- vector unsigned long long vec_vpopcnt (vector unsigned long long);
- vector int vec_vpopcnt (vector int);
- vector unsigned int vec_vpopcnt (vector int);
- vector short vec_vpopcnt (vector short);
- vector unsigned short vec_vpopcnt (vector unsigned short);
- vector signed char vec_vpopcnt (vector signed char);
- vector unsigned char vec_vpopcnt (vector unsigned char);
- vector signed char vec_vpopcntb (vector signed char);
- vector unsigned char vec_vpopcntb (vector unsigned char);
- vector long long vec_vpopcntd (vector long long);
- vector unsigned long long vec_vpopcntd (vector unsigned long long);
- vector short vec_vpopcnth (vector short);
- vector unsigned short vec_vpopcnth (vector unsigned short);
- vector int vec_vpopcntw (vector int);
- vector unsigned int vec_vpopcntw (vector int);
- vector long long vec_vrld (vector long long, vector unsigned long long);
- vector unsigned long long vec_vrld (vector unsigned long long,
- vector unsigned long long);
- vector long long vec_vsld (vector long long, vector unsigned long long);
- vector long long vec_vsld (vector unsigned long long,
- vector unsigned long long);
- vector long long vec_vsrad (vector long long, vector unsigned long long);
- vector unsigned long long vec_vsrad (vector unsigned long long,
- vector unsigned long long);
- vector long long vec_vsrd (vector long long, vector unsigned long long);
- vector unsigned long long char vec_vsrd (vector unsigned long long,
- vector unsigned long long);
- vector long long vec_vsubudm (vector long long, vector long long);
- vector long long vec_vsubudm (vector bool long long, vector long long);
- vector long long vec_vsubudm (vector long long, vector bool long long);
- vector unsigned long long vec_vsubudm (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long vec_vsubudm (vector bool long long,
- vector unsigned long long);
- vector unsigned long long vec_vsubudm (vector unsigned long long,
- vector bool long long);
- vector long long vec_vupkhsw (vector int);
- vector unsigned long long vec_vupkhsw (vector unsigned int);
- vector long long vec_vupklsw (vector int);
- vector unsigned long long vec_vupklsw (vector int);
- If the ISA 2.07 additions to the vector/scalar (power8-vector)
- instruction set are available, the following additional functions are
- available for 64-bit targets. New vector types (VECTOR __INT128_T and
- VECTOR __UINT128_T) are available to hold the __INT128_T and __UINT128_T
- types to use these builtins.
- The normal vector extract, and set operations work on VECTOR __INT128_T
- and VECTOR __UINT128_T types, but the index value must be 0.
- vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
- vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
- vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
- vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
- vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
- vector __int128_t);
- vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
- vector __uint128_t);
- vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
- vector __int128_t);
- vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
- vector __uint128_t);
- vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
- vector __int128_t);
- vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
- vector __uint128_t);
- vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
- vector __int128_t);
- vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
- vector __uint128_t);
- vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
- vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
- __int128_t vec_vsubuqm (__int128_t, __int128_t);
- __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
- vector __int128_t __builtin_bcdadd (vector __int128_t, vector __int128_t);
- int __builtin_bcdadd_lt (vector __int128_t, vector __int128_t);
- int __builtin_bcdadd_eq (vector __int128_t, vector __int128_t);
- int __builtin_bcdadd_gt (vector __int128_t, vector __int128_t);
- int __builtin_bcdadd_ov (vector __int128_t, vector __int128_t);
- vector __int128_t bcdsub (vector __int128_t, vector __int128_t);
- int __builtin_bcdsub_lt (vector __int128_t, vector __int128_t);
- int __builtin_bcdsub_eq (vector __int128_t, vector __int128_t);
- int __builtin_bcdsub_gt (vector __int128_t, vector __int128_t);
- int __builtin_bcdsub_ov (vector __int128_t, vector __int128_t);
- If the ISA 3.0 instruction set additions ('-mcpu=power9') are
- available:
- vector unsigned long long vec_bperm (vector unsigned long long,
- vector unsigned char);
- vector bool char vec_cmpne (vector bool char, vector bool char);
- vector bool char vec_cmpne (vector signed char, vector signed char);
- vector bool char vec_cmpne (vector unsigned char, vector unsigned char);
- vector bool int vec_cmpne (vector bool int, vector bool int);
- vector bool int vec_cmpne (vector signed int, vector signed int);
- vector bool int vec_cmpne (vector unsigned int, vector unsigned int);
- vector bool long long vec_cmpne (vector bool long long, vector bool long long);
- vector bool long long vec_cmpne (vector signed long long,
- vector signed long long);
- vector bool long long vec_cmpne (vector unsigned long long,
- vector unsigned long long);
- vector bool short vec_cmpne (vector bool short, vector bool short);
- vector bool short vec_cmpne (vector signed short, vector signed short);
- vector bool short vec_cmpne (vector unsigned short, vector unsigned short);
- vector bool long long vec_cmpne (vector double, vector double);
- vector bool int vec_cmpne (vector float, vector float);
- vector float vec_extract_fp32_from_shorth (vector unsigned short);
- vector float vec_extract_fp32_from_shortl (vector unsigned short);
- vector long long vec_vctz (vector long long);
- vector unsigned long long vec_vctz (vector unsigned long long);
- vector int vec_vctz (vector int);
- vector unsigned int vec_vctz (vector int);
- vector short vec_vctz (vector short);
- vector unsigned short vec_vctz (vector unsigned short);
- vector signed char vec_vctz (vector signed char);
- vector unsigned char vec_vctz (vector unsigned char);
- vector signed char vec_vctzb (vector signed char);
- vector unsigned char vec_vctzb (vector unsigned char);
- vector long long vec_vctzd (vector long long);
- vector unsigned long long vec_vctzd (vector unsigned long long);
- vector short vec_vctzh (vector short);
- vector unsigned short vec_vctzh (vector unsigned short);
- vector int vec_vctzw (vector int);
- vector unsigned int vec_vctzw (vector int);
- vector unsigned long long vec_extract4b (vector unsigned char, const int);
- vector unsigned char vec_insert4b (vector signed int, vector unsigned char,
- const int);
- vector unsigned char vec_insert4b (vector unsigned int, vector unsigned char,
- const int);
- vector unsigned int vec_parity_lsbb (vector signed int);
- vector unsigned int vec_parity_lsbb (vector unsigned int);
- vector unsigned __int128 vec_parity_lsbb (vector signed __int128);
- vector unsigned __int128 vec_parity_lsbb (vector unsigned __int128);
- vector unsigned long long vec_parity_lsbb (vector signed long long);
- vector unsigned long long vec_parity_lsbb (vector unsigned long long);
- vector int vec_vprtyb (vector int);
- vector unsigned int vec_vprtyb (vector unsigned int);
- vector long long vec_vprtyb (vector long long);
- vector unsigned long long vec_vprtyb (vector unsigned long long);
- vector int vec_vprtybw (vector int);
- vector unsigned int vec_vprtybw (vector unsigned int);
- vector long long vec_vprtybd (vector long long);
- vector unsigned long long vec_vprtybd (vector unsigned long long);
- On 64-bit targets, if the ISA 3.0 additions ('-mcpu=power9') are
- available:
- vector long vec_vprtyb (vector long);
- vector unsigned long vec_vprtyb (vector unsigned long);
- vector __int128_t vec_vprtyb (vector __int128_t);
- vector __uint128_t vec_vprtyb (vector __uint128_t);
- vector long vec_vprtybd (vector long);
- vector unsigned long vec_vprtybd (vector unsigned long);
- vector __int128_t vec_vprtybq (vector __int128_t);
- vector __uint128_t vec_vprtybd (vector __uint128_t);
- The following built-in vector functions are available for the PowerPC
- family of processors, starting with ISA 3.0 or later ('-mcpu=power9'):
- __vector unsigned char
- vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
- __vector unsigned char
- vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
- The 'vec_slv' and 'vec_srv' functions operate on all of the bytes of
- their 'src' and 'shift_distance' arguments in parallel. The behavior of
- the 'vec_slv' is as if there existed a temporary array of 17 unsigned
- characters 'slv_array' within which elements 0 through 15 are the same
- as the entries in the 'src' array and element 16 equals 0. The result
- returned from the 'vec_slv' function is a '__vector' of 16 unsigned
- characters within which element 'i' is computed using the C expression
- '0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
- shift_distance[i]))', with this resulting value coerced to the 'unsigned
- char' type. The behavior of the 'vec_srv' is as if there existed a
- temporary array of 17 unsigned characters 'srv_array' within which
- element 0 equals zero and elements 1 through 16 equal the elements 0
- through 15 of the 'src' array. The result returned from the 'vec_srv'
- function is a '__vector' of 16 unsigned characters within which element
- 'i' is computed using the C expression '0xff & (*((unsigned short
- *)(srv_array + i)) >> (0x07 & shift_distance[i]))', with this resulting
- value coerced to the 'unsigned char' type.
- The following built-in functions are available for the PowerPC family
- of processors, starting with ISA 3.0 or later ('-mcpu=power9'):
- __vector unsigned char
- vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
- __vector unsigned short
- vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
- __vector unsigned int
- vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
- __vector unsigned char
- vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
- __vector unsigned short
- vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
- __vector unsigned int
- vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
- The 'vec_absd', 'vec_absdb', 'vec_absdh', and 'vec_absdw' built-in
- functions each computes the absolute differences of the pairs of vector
- elements supplied in its two vector arguments, placing the absolute
- differences into the corresponding elements of the vector result.
- The following built-in functions are available for the PowerPC family
- of processors, starting with ISA 3.0 or later ('-mcpu=power9'):
- __vector unsigned int
- vec_extract_exp (__vector float source);
- __vector unsigned long long int
- vec_extract_exp (__vector double source);
- __vector unsigned int
- vec_extract_sig (__vector float source);
- __vector unsigned long long int
- vec_extract_sig (__vector double source);
- __vector float
- vec_insert_exp (__vector unsigned int significands,
- __vector unsigned int exponents);
- __vector float
- vec_insert_exp (__vector unsigned float significands,
- __vector unsigned int exponents);
- __vector double
- vec_insert_exp (__vector unsigned long long int significands,
- __vector unsigned long long int exponents);
- __vector double
- vec_insert_exp (__vector unsigned double significands,
- __vector unsigned long long int exponents);
- __vector bool int vec_test_data_class (__vector float source,
- const int condition);
- __vector bool long long int vec_test_data_class (__vector double source,
- const int condition);
- The 'vec_extract_sig' and 'vec_extract_exp' built-in functions return
- vectors representing the significands and biased exponent values of
- their 'source' arguments respectively. Within the result vector
- returned by 'vec_extract_sig', the '0x800000' bit of each vector element
- returned when the function's 'source' argument is of type 'float' is set
- to 1 if the corresponding floating point value is in normalized form.
- Otherwise, this bit is set to 0. When the 'source' argument is of type
- 'double', the '0x10000000000000' bit within each of the result vector's
- elements is set according to the same rules. Note that the sign of the
- significand is not represented in the result returned from the
- 'vec_extract_sig' function. To extract the sign bits, use the
- 'vec_cpsgn' function, which returns a new vector within which all of the
- sign bits of its second argument vector are overwritten with the sign
- bits copied from the coresponding elements of its first argument vector,
- and all other (non-sign) bits of the second argument vector are copied
- unchanged into the result vector.
- The 'vec_insert_exp' built-in functions return a vector of single- or
- double-precision floating point values constructed by assembling the
- values of their 'significands' and 'exponents' arguments into the
- corresponding elements of the returned vector. The sign of each element
- of the result is copied from the most significant bit of the
- corresponding entry within the 'significands' argument. Note that the
- relevant bits of the 'significands' argument are the same, for both
- integer and floating point types. The significand and exponent
- components of each element of the result are composed of the least
- significant bits of the corresponding 'significands' element and the
- least significant bits of the corresponding 'exponents' element.
- The 'vec_test_data_class' built-in function returns a vector
- representing the results of testing the 'source' vector for the
- condition selected by the 'condition' argument. The 'condition'
- argument must be a compile-time constant integer with value not
- exceeding 127. The 'condition' argument is encoded as a bitmask with
- each bit enabling the testing of a different condition, as characterized
- by the following:
- 0x40 Test for NaN
- 0x20 Test for +Infinity
- 0x10 Test for -Infinity
- 0x08 Test for +Zero
- 0x04 Test for -Zero
- 0x02 Test for +Denormal
- 0x01 Test for -Denormal
- If any of the enabled test conditions is true, the corresponding entry
- in the result vector is -1. Otherwise (all of the enabled test
- conditions are false), the corresponding entry of the result vector is
- 0.
- The following built-in functions are available for the PowerPC family
- of processors, starting with ISA 3.0 or later ('-mcpu=power9'):
- vector unsigned int vec_rlmi (vector unsigned int, vector unsigned int,
- vector unsigned int);
- vector unsigned long long vec_rlmi (vector unsigned long long,
- vector unsigned long long,
- vector unsigned long long);
- vector unsigned int vec_rlnm (vector unsigned int, vector unsigned int,
- vector unsigned int);
- vector unsigned long long vec_rlnm (vector unsigned long long,
- vector unsigned long long,
- vector unsigned long long);
- vector unsigned int vec_vrlnm (vector unsigned int, vector unsigned int);
- vector unsigned long long vec_vrlnm (vector unsigned long long,
- vector unsigned long long);
- The result of 'vec_rlmi' is obtained by rotating each element of the
- first argument vector left and inserting it under mask into the second
- argument vector. The third argument vector contains the mask beginning
- in bits 11:15, the mask end in bits 19:23, and the shift count in bits
- 27:31, of each element.
- The result of 'vec_rlnm' is obtained by rotating each element of the
- first argument vector left and ANDing it with a mask specified by the
- second and third argument vectors. The second argument vector contains
- the shift count for each element in the low-order byte. The third
- argument vector contains the mask end for each element in the low-order
- byte, with the mask begin in the next higher byte.
- The result of 'vec_vrlnm' is obtained by rotating each element of the
- first argument vector left and ANDing it with a mask. The second
- argument vector contains the mask beginning in bits 11:15, the mask end
- in bits 19:23, and the shift count in bits 27:31, of each element.
- If the ISA 3.0 instruction set additions ('-mcpu=power9') are
- available:
- vector signed bool char vec_revb (vector signed char);
- vector signed char vec_revb (vector signed char);
- vector unsigned char vec_revb (vector unsigned char);
- vector bool short vec_revb (vector bool short);
- vector short vec_revb (vector short);
- vector unsigned short vec_revb (vector unsigned short);
- vector bool int vec_revb (vector bool int);
- vector int vec_revb (vector int);
- vector unsigned int vec_revb (vector unsigned int);
- vector float vec_revb (vector float);
- vector bool long long vec_revb (vector bool long long);
- vector long long vec_revb (vector long long);
- vector unsigned long long vec_revb (vector unsigned long long);
- vector double vec_revb (vector double);
- On 64-bit targets, if the ISA 3.0 additions ('-mcpu=power9') are
- available:
- vector long vec_revb (vector long);
- vector unsigned long vec_revb (vector unsigned long);
- vector __int128_t vec_revb (vector __int128_t);
- vector __uint128_t vec_revb (vector __uint128_t);
- The 'vec_revb' built-in function reverses the bytes on an element by
- element basis. A vector of 'vector unsigned char' or 'vector signed
- char' reverses the bytes in the whole word.
- If the cryptographic instructions are enabled ('-mcrypto' or
- '-mcpu=power8'), the following builtins are enabled.
- vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
- vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long __builtin_crypto_vcipherlast
- (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long __builtin_crypto_vncipherlast
- (vector unsigned long long,
- vector unsigned long long);
- vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
- vector unsigned char,
- vector unsigned char);
- vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
- vector unsigned short,
- vector unsigned short);
- vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
- vector unsigned int,
- vector unsigned int);
- vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
- vector unsigned long long,
- vector unsigned long long);
- vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
- vector unsigned char);
- vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
- vector unsigned short);
- vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
- vector unsigned int);
- vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
- vector unsigned long long);
- vector unsigned long long __builtin_crypto_vshasigmad
- (vector unsigned long long, int, int);
- vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
- int, int);
- The second argument to __BUILTIN_CRYPTO_VSHASIGMAD and
- __BUILTIN_CRYPTO_VSHASIGMAW must be a constant integer that is 0 or 1.
- The third argument to these built-in functions must be a constant
- integer in the range of 0 to 15.
- If the ISA 3.0 instruction set additions are enabled ('-mcpu=power9'),
- the following additional functions are available for both 32-bit and
- 64-bit targets.
- vector short vec_xl (int, vector short *); vector short vec_xl (int,
- short *); vector unsigned short vec_xl (int, vector unsigned short *);
- vector unsigned short vec_xl (int, unsigned short *); vector char vec_xl
- (int, vector char *); vector char vec_xl (int, char *); vector unsigned
- char vec_xl (int, vector unsigned char *); vector unsigned char vec_xl
- (int, unsigned char *);
- void vec_xst (vector short, int, vector short *); void vec_xst (vector
- short, int, short *); void vec_xst (vector unsigned short, int, vector
- unsigned short *); void vec_xst (vector unsigned short, int, unsigned
- short *); void vec_xst (vector char, int, vector char *); void vec_xst
- (vector char, int, char *); void vec_xst (vector unsigned char, int,
- vector unsigned char *); void vec_xst (vector unsigned char, int,
- unsigned char *);
- File: gcc.info, Node: PowerPC Hardware Transactional Memory Built-in Functions, Next: PowerPC Atomic Memory Operation Functions, Prev: PowerPC AltiVec/VSX Built-in Functions, Up: Target Builtins
- 6.59.23 PowerPC Hardware Transactional Memory Built-in Functions
- ----------------------------------------------------------------
- GCC provides two interfaces for accessing the Hardware Transactional
- Memory (HTM) instructions available on some of the PowerPC family of
- processors (eg, POWER8). The two interfaces come in a low level
- interface, consisting of built-in functions specific to PowerPC and a
- higher level interface consisting of inline functions that are common
- between PowerPC and S/390.
- 6.59.23.1 PowerPC HTM Low Level Built-in Functions
- ..................................................
- The following low level built-in functions are available with '-mhtm' or
- '-mcpu=CPU' where CPU is 'power8' or later. They all generate the
- machine instruction that is part of the name.
- The HTM builtins (with the exception of '__builtin_tbegin') return the
- full 4-bit condition register value set by their associated hardware
- instruction. The header file 'htmintrin.h' defines some macros that can
- be used to decipher the return value. The '__builtin_tbegin' builtin
- returns a simple true or false value depending on whether a transaction
- was successfully started or not. The arguments of the builtins match
- exactly the type and order of the associated hardware instruction's
- operands, except for the '__builtin_tcheck' builtin, which does not take
- any input arguments. Refer to the ISA manual for a description of each
- instruction's operands.
- unsigned int __builtin_tbegin (unsigned int)
- unsigned int __builtin_tend (unsigned int)
- unsigned int __builtin_tabort (unsigned int)
- unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
- unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
- unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
- unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
- unsigned int __builtin_tcheck (void)
- unsigned int __builtin_treclaim (unsigned int)
- unsigned int __builtin_trechkpt (void)
- unsigned int __builtin_tsr (unsigned int)
- In addition to the above HTM built-ins, we have added built-ins for
- some common extended mnemonics of the HTM instructions:
- unsigned int __builtin_tendall (void)
- unsigned int __builtin_tresume (void)
- unsigned int __builtin_tsuspend (void)
- Note that the semantics of the above HTM builtins are required to mimic
- the locking semantics used for critical sections. Builtins that are
- used to create a new transaction or restart a suspended transaction must
- have lock acquisition like semantics while those builtins that end or
- suspend a transaction must have lock release like semantics.
- Specifically, this must mimic lock semantics as specified by C++11, for
- example: Lock acquisition is as-if an execution of
- __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE) that returns 0, and
- lock release is as-if an execution of
- __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
- implicit implementation-defined lock used for all transactions. The HTM
- instructions associated with with the builtins inherently provide the
- correct acquisition and release hardware barriers required. However,
- the compiler must also be prohibited from moving loads and stores across
- the builtins in a way that would violate their semantics. This has been
- accomplished by adding memory barriers to the associated HTM
- instructions (which is a conservative approach to provide acquire and
- release semantics). Earlier versions of the compiler did not treat the
- HTM instructions as memory barriers. A '__TM_FENCE__' macro has been
- added, which can be used to determine whether the current compiler
- treats HTM instructions as memory barriers or not. This allows the user
- to explicitly add memory barriers to their code when using an older
- version of the compiler.
- The following set of built-in functions are available to gain access to
- the HTM specific special purpose registers.
- unsigned long __builtin_get_texasr (void)
- unsigned long __builtin_get_texasru (void)
- unsigned long __builtin_get_tfhar (void)
- unsigned long __builtin_get_tfiar (void)
- void __builtin_set_texasr (unsigned long);
- void __builtin_set_texasru (unsigned long);
- void __builtin_set_tfhar (unsigned long);
- void __builtin_set_tfiar (unsigned long);
- Example usage of these low level built-in functions may look like:
- #include <htmintrin.h>
- int num_retries = 10;
- while (1)
- {
- if (__builtin_tbegin (0))
- {
- /* Transaction State Initiated. */
- if (is_locked (lock))
- __builtin_tabort (0);
- ... transaction code...
- __builtin_tend (0);
- break;
- }
- else
- {
- /* Transaction State Failed. Use locks if the transaction
- failure is "persistent" or we've tried too many times. */
- if (num_retries-- <= 0
- || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
- {
- acquire_lock (lock);
- ... non transactional fallback path...
- release_lock (lock);
- break;
- }
- }
- }
- One final built-in function has been added that returns the value of
- the 2-bit Transaction State field of the Machine Status Register (MSR)
- as stored in 'CR0'.
- unsigned long __builtin_ttest (void)
- This built-in can be used to determine the current transaction state
- using the following code example:
- #include <htmintrin.h>
- unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
- if (tx_state == _HTM_TRANSACTIONAL)
- {
- /* Code to use in transactional state. */
- }
- else if (tx_state == _HTM_NONTRANSACTIONAL)
- {
- /* Code to use in non-transactional state. */
- }
- else if (tx_state == _HTM_SUSPENDED)
- {
- /* Code to use in transaction suspended state. */
- }
- 6.59.23.2 PowerPC HTM High Level Inline Functions
- .................................................
- The following high level HTM interface is made available by including
- '<htmxlintrin.h>' and using '-mhtm' or '-mcpu=CPU' where CPU is 'power8'
- or later. This interface is common between PowerPC and S/390, allowing
- users to write one HTM source implementation that can be compiled and
- executed on either system.
- long __TM_simple_begin (void)
- long __TM_begin (void* const TM_buff)
- long __TM_end (void)
- void __TM_abort (void)
- void __TM_named_abort (unsigned char const code)
- void __TM_resume (void)
- void __TM_suspend (void)
- long __TM_is_user_abort (void* const TM_buff)
- long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
- long __TM_is_illegal (void* const TM_buff)
- long __TM_is_footprint_exceeded (void* const TM_buff)
- long __TM_nesting_depth (void* const TM_buff)
- long __TM_is_nested_too_deep(void* const TM_buff)
- long __TM_is_conflict(void* const TM_buff)
- long __TM_is_failure_persistent(void* const TM_buff)
- long __TM_failure_address(void* const TM_buff)
- long long __TM_failure_code(void* const TM_buff)
- Using these common set of HTM inline functions, we can create a more
- portable version of the HTM example in the previous section that will
- work on either PowerPC or S/390:
- #include <htmxlintrin.h>
- int num_retries = 10;
- TM_buff_type TM_buff;
- while (1)
- {
- if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
- {
- /* Transaction State Initiated. */
- if (is_locked (lock))
- __TM_abort ();
- ... transaction code...
- __TM_end ();
- break;
- }
- else
- {
- /* Transaction State Failed. Use locks if the transaction
- failure is "persistent" or we've tried too many times. */
- if (num_retries-- <= 0
- || __TM_is_failure_persistent (TM_buff))
- {
- acquire_lock (lock);
- ... non transactional fallback path...
- release_lock (lock);
- break;
- }
- }
- }
- File: gcc.info, Node: PowerPC Atomic Memory Operation Functions, Next: RX Built-in Functions, Prev: PowerPC Hardware Transactional Memory Built-in Functions, Up: Target Builtins
- 6.59.24 PowerPC Atomic Memory Operation Functions
- -------------------------------------------------
- ISA 3.0 of the PowerPC added new atomic memory operation (amo)
- instructions. GCC provides support for these instructions in 64-bit
- environments. All of the functions are declared in the include file
- 'amo.h'.
- The functions supported are:
- #include <amo.h>
- uint32_t amo_lwat_add (uint32_t *, uint32_t);
- uint32_t amo_lwat_xor (uint32_t *, uint32_t);
- uint32_t amo_lwat_ior (uint32_t *, uint32_t);
- uint32_t amo_lwat_and (uint32_t *, uint32_t);
- uint32_t amo_lwat_umax (uint32_t *, uint32_t);
- uint32_t amo_lwat_umin (uint32_t *, uint32_t);
- uint32_t amo_lwat_swap (uint32_t *, uint32_t);
- int32_t amo_lwat_sadd (int32_t *, int32_t);
- int32_t amo_lwat_smax (int32_t *, int32_t);
- int32_t amo_lwat_smin (int32_t *, int32_t);
- int32_t amo_lwat_sswap (int32_t *, int32_t);
- uint64_t amo_ldat_add (uint64_t *, uint64_t);
- uint64_t amo_ldat_xor (uint64_t *, uint64_t);
- uint64_t amo_ldat_ior (uint64_t *, uint64_t);
- uint64_t amo_ldat_and (uint64_t *, uint64_t);
- uint64_t amo_ldat_umax (uint64_t *, uint64_t);
- uint64_t amo_ldat_umin (uint64_t *, uint64_t);
- uint64_t amo_ldat_swap (uint64_t *, uint64_t);
- int64_t amo_ldat_sadd (int64_t *, int64_t);
- int64_t amo_ldat_smax (int64_t *, int64_t);
- int64_t amo_ldat_smin (int64_t *, int64_t);
- int64_t amo_ldat_sswap (int64_t *, int64_t);
- void amo_stwat_add (uint32_t *, uint32_t);
- void amo_stwat_xor (uint32_t *, uint32_t);
- void amo_stwat_ior (uint32_t *, uint32_t);
- void amo_stwat_and (uint32_t *, uint32_t);
- void amo_stwat_umax (uint32_t *, uint32_t);
- void amo_stwat_umin (uint32_t *, uint32_t);
- void amo_stwat_sadd (int32_t *, int32_t);
- void amo_stwat_smax (int32_t *, int32_t);
- void amo_stwat_smin (int32_t *, int32_t);
- void amo_stdat_add (uint64_t *, uint64_t);
- void amo_stdat_xor (uint64_t *, uint64_t);
- void amo_stdat_ior (uint64_t *, uint64_t);
- void amo_stdat_and (uint64_t *, uint64_t);
- void amo_stdat_umax (uint64_t *, uint64_t);
- void amo_stdat_umin (uint64_t *, uint64_t);
- void amo_stdat_sadd (int64_t *, int64_t);
- void amo_stdat_smax (int64_t *, int64_t);
- void amo_stdat_smin (int64_t *, int64_t);
- File: gcc.info, Node: RX Built-in Functions, Next: S/390 System z Built-in Functions, Prev: PowerPC Atomic Memory Operation Functions, Up: Target Builtins
- 6.59.25 RX Built-in Functions
- -----------------------------
- GCC supports some of the RX instructions which cannot be expressed in
- the C programming language via the use of built-in functions. The
- following functions are supported:
- -- Built-in Function: void __builtin_rx_brk (void)
- Generates the 'brk' machine instruction.
- -- Built-in Function: void __builtin_rx_clrpsw (int)
- Generates the 'clrpsw' machine instruction to clear the specified
- bit in the processor status word.
- -- Built-in Function: void __builtin_rx_int (int)
- Generates the 'int' machine instruction to generate an interrupt
- with the specified value.
- -- Built-in Function: void __builtin_rx_machi (int, int)
- Generates the 'machi' machine instruction to add the result of
- multiplying the top 16 bits of the two arguments into the
- accumulator.
- -- Built-in Function: void __builtin_rx_maclo (int, int)
- Generates the 'maclo' machine instruction to add the result of
- multiplying the bottom 16 bits of the two arguments into the
- accumulator.
- -- Built-in Function: void __builtin_rx_mulhi (int, int)
- Generates the 'mulhi' machine instruction to place the result of
- multiplying the top 16 bits of the two arguments into the
- accumulator.
- -- Built-in Function: void __builtin_rx_mullo (int, int)
- Generates the 'mullo' machine instruction to place the result of
- multiplying the bottom 16 bits of the two arguments into the
- accumulator.
- -- Built-in Function: int __builtin_rx_mvfachi (void)
- Generates the 'mvfachi' machine instruction to read the top 32 bits
- of the accumulator.
- -- Built-in Function: int __builtin_rx_mvfacmi (void)
- Generates the 'mvfacmi' machine instruction to read the middle 32
- bits of the accumulator.
- -- Built-in Function: int __builtin_rx_mvfc (int)
- Generates the 'mvfc' machine instruction which reads the control
- register specified in its argument and returns its value.
- -- Built-in Function: void __builtin_rx_mvtachi (int)
- Generates the 'mvtachi' machine instruction to set the top 32 bits
- of the accumulator.
- -- Built-in Function: void __builtin_rx_mvtaclo (int)
- Generates the 'mvtaclo' machine instruction to set the bottom 32
- bits of the accumulator.
- -- Built-in Function: void __builtin_rx_mvtc (int reg, int val)
- Generates the 'mvtc' machine instruction which sets control
- register number 'reg' to 'val'.
- -- Built-in Function: void __builtin_rx_mvtipl (int)
- Generates the 'mvtipl' machine instruction set the interrupt
- priority level.
- -- Built-in Function: void __builtin_rx_racw (int)
- Generates the 'racw' machine instruction to round the accumulator
- according to the specified mode.
- -- Built-in Function: int __builtin_rx_revw (int)
- Generates the 'revw' machine instruction which swaps the bytes in
- the argument so that bits 0-7 now occupy bits 8-15 and vice versa,
- and also bits 16-23 occupy bits 24-31 and vice versa.
- -- Built-in Function: void __builtin_rx_rmpa (void)
- Generates the 'rmpa' machine instruction which initiates a repeated
- multiply and accumulate sequence.
- -- Built-in Function: void __builtin_rx_round (float)
- Generates the 'round' machine instruction which returns the
- floating-point argument rounded according to the current rounding
- mode set in the floating-point status word register.
- -- Built-in Function: int __builtin_rx_sat (int)
- Generates the 'sat' machine instruction which returns the saturated
- value of the argument.
- -- Built-in Function: void __builtin_rx_setpsw (int)
- Generates the 'setpsw' machine instruction to set the specified bit
- in the processor status word.
- -- Built-in Function: void __builtin_rx_wait (void)
- Generates the 'wait' machine instruction.
- File: gcc.info, Node: S/390 System z Built-in Functions, Next: SH Built-in Functions, Prev: RX Built-in Functions, Up: Target Builtins
- 6.59.26 S/390 System z Built-in Functions
- -----------------------------------------
- -- Built-in Function: int __builtin_tbegin (void*)
- Generates the 'tbegin' machine instruction starting a
- non-constrained hardware transaction. If the parameter is non-NULL
- the memory area is used to store the transaction diagnostic buffer
- and will be passed as first operand to 'tbegin'. This buffer can
- be defined using the 'struct __htm_tdb' C struct defined in
- 'htmintrin.h' and must reside on a double-word boundary. The
- second tbegin operand is set to '0xff0c'. This enables
- save/restore of all GPRs and disables aborts for FPR and AR
- manipulations inside the transaction body. The condition code set
- by the tbegin instruction is returned as integer value. The tbegin
- instruction by definition overwrites the content of all FPRs. The
- compiler will generate code which saves and restores the FPRs. For
- soft-float code it is recommended to used the '*_nofloat' variant.
- In order to prevent a TDB from being written it is required to pass
- a constant zero value as parameter. Passing a zero value through a
- variable is not sufficient. Although modifications of access
- registers inside the transaction will not trigger an transaction
- abort it is not supported to actually modify them. Access
- registers do not get saved when entering a transaction. They will
- have undefined state when reaching the abort code.
- Macros for the possible return codes of tbegin are defined in the
- 'htmintrin.h' header file:
- '_HTM_TBEGIN_STARTED'
- 'tbegin' has been executed as part of normal processing. The
- transaction body is supposed to be executed.
- '_HTM_TBEGIN_INDETERMINATE'
- The transaction was aborted due to an indeterminate condition which
- might be persistent.
- '_HTM_TBEGIN_TRANSIENT'
- The transaction aborted due to a transient failure. The
- transaction should be re-executed in that case.
- '_HTM_TBEGIN_PERSISTENT'
- The transaction aborted due to a persistent failure. Re-execution
- under same circumstances will not be productive.
- -- Macro: _HTM_FIRST_USER_ABORT_CODE
- The '_HTM_FIRST_USER_ABORT_CODE' defined in 'htmintrin.h' specifies
- the first abort code which can be used for '__builtin_tabort'.
- Values below this threshold are reserved for machine use.
- -- Data type: struct __htm_tdb
- The 'struct __htm_tdb' defined in 'htmintrin.h' describes the
- structure of the transaction diagnostic block as specified in the
- Principles of Operation manual chapter 5-91.
- -- Built-in Function: int __builtin_tbegin_nofloat (void*)
- Same as '__builtin_tbegin' but without FPR saves and restores.
- Using this variant in code making use of FPRs will leave the FPRs
- in undefined state when entering the transaction abort handler
- code.
- -- Built-in Function: int __builtin_tbegin_retry (void*, int)
- In addition to '__builtin_tbegin' a loop for transient failures is
- generated. If tbegin returns a condition code of 2 the transaction
- will be retried as often as specified in the second argument. The
- perform processor assist instruction is used to tell the CPU about
- the number of fails so far.
- -- Built-in Function: int __builtin_tbegin_retry_nofloat (void*, int)
- Same as '__builtin_tbegin_retry' but without FPR saves and
- restores. Using this variant in code making use of FPRs will leave
- the FPRs in undefined state when entering the transaction abort
- handler code.
- -- Built-in Function: void __builtin_tbeginc (void)
- Generates the 'tbeginc' machine instruction starting a constrained
- hardware transaction. The second operand is set to '0xff08'.
- -- Built-in Function: int __builtin_tend (void)
- Generates the 'tend' machine instruction finishing a transaction
- and making the changes visible to other threads. The condition
- code generated by tend is returned as integer value.
- -- Built-in Function: void __builtin_tabort (int)
- Generates the 'tabort' machine instruction with the specified abort
- code. Abort codes from 0 through 255 are reserved and will result
- in an error message.
- -- Built-in Function: void __builtin_tx_assist (int)
- Generates the 'ppa rX,rY,1' machine instruction. Where the integer
- parameter is loaded into rX and a value of zero is loaded into rY.
- The integer parameter specifies the number of times the transaction
- repeatedly aborted.
- -- Built-in Function: int __builtin_tx_nesting_depth (void)
- Generates the 'etnd' machine instruction. The current nesting
- depth is returned as integer value. For a nesting depth of 0 the
- code is not executed as part of an transaction.
- -- Built-in Function: void __builtin_non_tx_store (uint64_t *,
- uint64_t)
- Generates the 'ntstg' machine instruction. The second argument is
- written to the first arguments location. The store operation will
- not be rolled-back in case of an transaction abort.
- File: gcc.info, Node: SH Built-in Functions, Next: SPARC VIS Built-in Functions, Prev: S/390 System z Built-in Functions, Up: Target Builtins
- 6.59.27 SH Built-in Functions
- -----------------------------
- The following built-in functions are supported on the SH1, SH2, SH3 and
- SH4 families of processors:
- -- Built-in Function: void __builtin_set_thread_pointer (void *PTR)
- Sets the 'GBR' register to the specified value PTR. This is
- usually used by system code that manages threads and execution
- contexts. The compiler normally does not generate code that
- modifies the contents of 'GBR' and thus the value is preserved
- across function calls. Changing the 'GBR' value in user code must
- be done with caution, since the compiler might use 'GBR' in order
- to access thread local variables.
- -- Built-in Function: void * __builtin_thread_pointer (void)
- Returns the value that is currently set in the 'GBR' register.
- Memory loads and stores that use the thread pointer as a base
- address are turned into 'GBR' based displacement loads and stores,
- if possible. For example:
- struct my_tcb
- {
- int a, b, c, d, e;
- };
- int get_tcb_value (void)
- {
- // Generate 'mov.l @(8,gbr),r0' instruction
- return ((my_tcb*)__builtin_thread_pointer ())->c;
- }
- -- Built-in Function: unsigned int __builtin_sh_get_fpscr (void)
- Returns the value that is currently set in the 'FPSCR' register.
- -- Built-in Function: void __builtin_sh_set_fpscr (unsigned int VAL)
- Sets the 'FPSCR' register to the specified value VAL, while
- preserving the current values of the FR, SZ and PR bits.
- File: gcc.info, Node: SPARC VIS Built-in Functions, Next: SPU Built-in Functions, Prev: SH Built-in Functions, Up: Target Builtins
- 6.59.28 SPARC VIS Built-in Functions
- ------------------------------------
- GCC supports SIMD operations on the SPARC using both the generic vector
- extensions (*note Vector Extensions::) as well as built-in functions for
- the SPARC Visual Instruction Set (VIS). When you use the '-mvis' switch,
- the VIS extension is exposed as the following built-in functions:
- typedef int v1si __attribute__ ((vector_size (4)));
- typedef int v2si __attribute__ ((vector_size (8)));
- typedef short v4hi __attribute__ ((vector_size (8)));
- typedef short v2hi __attribute__ ((vector_size (4)));
- typedef unsigned char v8qi __attribute__ ((vector_size (8)));
- typedef unsigned char v4qi __attribute__ ((vector_size (4)));
- void __builtin_vis_write_gsr (int64_t);
- int64_t __builtin_vis_read_gsr (void);
- void * __builtin_vis_alignaddr (void *, long);
- void * __builtin_vis_alignaddrl (void *, long);
- int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
- v2si __builtin_vis_faligndatav2si (v2si, v2si);
- v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
- v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
- v4hi __builtin_vis_fexpand (v4qi);
- v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
- v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
- v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
- v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
- v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
- v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
- v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
- v4qi __builtin_vis_fpack16 (v4hi);
- v8qi __builtin_vis_fpack32 (v2si, v8qi);
- v2hi __builtin_vis_fpackfix (v2si);
- v8qi __builtin_vis_fpmerge (v4qi, v4qi);
- int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
- long __builtin_vis_edge8 (void *, void *);
- long __builtin_vis_edge8l (void *, void *);
- long __builtin_vis_edge16 (void *, void *);
- long __builtin_vis_edge16l (void *, void *);
- long __builtin_vis_edge32 (void *, void *);
- long __builtin_vis_edge32l (void *, void *);
- long __builtin_vis_fcmple16 (v4hi, v4hi);
- long __builtin_vis_fcmple32 (v2si, v2si);
- long __builtin_vis_fcmpne16 (v4hi, v4hi);
- long __builtin_vis_fcmpne32 (v2si, v2si);
- long __builtin_vis_fcmpgt16 (v4hi, v4hi);
- long __builtin_vis_fcmpgt32 (v2si, v2si);
- long __builtin_vis_fcmpeq16 (v4hi, v4hi);
- long __builtin_vis_fcmpeq32 (v2si, v2si);
- v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
- v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
- v2si __builtin_vis_fpadd32 (v2si, v2si);
- v1si __builtin_vis_fpadd32s (v1si, v1si);
- v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
- v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
- v2si __builtin_vis_fpsub32 (v2si, v2si);
- v1si __builtin_vis_fpsub32s (v1si, v1si);
- long __builtin_vis_array8 (long, long);
- long __builtin_vis_array16 (long, long);
- long __builtin_vis_array32 (long, long);
- When you use the '-mvis2' switch, the VIS version 2.0 built-in
- functions also become available:
- long __builtin_vis_bmask (long, long);
- int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
- v2si __builtin_vis_bshufflev2si (v2si, v2si);
- v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
- v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
- long __builtin_vis_edge8n (void *, void *);
- long __builtin_vis_edge8ln (void *, void *);
- long __builtin_vis_edge16n (void *, void *);
- long __builtin_vis_edge16ln (void *, void *);
- long __builtin_vis_edge32n (void *, void *);
- long __builtin_vis_edge32ln (void *, void *);
- When you use the '-mvis3' switch, the VIS version 3.0 built-in
- functions also become available:
- void __builtin_vis_cmask8 (long);
- void __builtin_vis_cmask16 (long);
- void __builtin_vis_cmask32 (long);
- v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
- v4hi __builtin_vis_fsll16 (v4hi, v4hi);
- v4hi __builtin_vis_fslas16 (v4hi, v4hi);
- v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
- v4hi __builtin_vis_fsra16 (v4hi, v4hi);
- v2si __builtin_vis_fsll16 (v2si, v2si);
- v2si __builtin_vis_fslas16 (v2si, v2si);
- v2si __builtin_vis_fsrl16 (v2si, v2si);
- v2si __builtin_vis_fsra16 (v2si, v2si);
- long __builtin_vis_pdistn (v8qi, v8qi);
- v4hi __builtin_vis_fmean16 (v4hi, v4hi);
- int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
- int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
- v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
- v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
- v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
- v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
- v2si __builtin_vis_fpadds32 (v2si, v2si);
- v1si __builtin_vis_fpadds32s (v1si, v1si);
- v2si __builtin_vis_fpsubs32 (v2si, v2si);
- v1si __builtin_vis_fpsubs32s (v1si, v1si);
- long __builtin_vis_fucmple8 (v8qi, v8qi);
- long __builtin_vis_fucmpne8 (v8qi, v8qi);
- long __builtin_vis_fucmpgt8 (v8qi, v8qi);
- long __builtin_vis_fucmpeq8 (v8qi, v8qi);
- float __builtin_vis_fhadds (float, float);
- double __builtin_vis_fhaddd (double, double);
- float __builtin_vis_fhsubs (float, float);
- double __builtin_vis_fhsubd (double, double);
- float __builtin_vis_fnhadds (float, float);
- double __builtin_vis_fnhaddd (double, double);
- int64_t __builtin_vis_umulxhi (int64_t, int64_t);
- int64_t __builtin_vis_xmulx (int64_t, int64_t);
- int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
- When you use the '-mvis4' switch, the VIS version 4.0 built-in
- functions also become available:
- v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
- v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
- v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
- v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
- v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
- v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
- v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
- v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
- long __builtin_vis_fpcmple8 (v8qi, v8qi);
- long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
- long __builtin_vis_fpcmpule16 (v4hi, v4hi);
- long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
- long __builtin_vis_fpcmpule32 (v2si, v2si);
- long __builtin_vis_fpcmpugt32 (v2si, v2si);
- v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
- v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
- v2si __builtin_vis_fpmax32 (v2si, v2si);
- v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
- v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
- v2si __builtin_vis_fpmaxu32 (v2si, v2si);
- v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
- v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
- v2si __builtin_vis_fpmin32 (v2si, v2si);
- v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
- v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
- v2si __builtin_vis_fpminu32 (v2si, v2si);
- When you use the '-mvis4b' switch, the VIS version 4.0B built-in
- functions also become available:
- v8qi __builtin_vis_dictunpack8 (double, int);
- v4hi __builtin_vis_dictunpack16 (double, int);
- v2si __builtin_vis_dictunpack32 (double, int);
- long __builtin_vis_fpcmple8shl (v8qi, v8qi, int);
- long __builtin_vis_fpcmpgt8shl (v8qi, v8qi, int);
- long __builtin_vis_fpcmpeq8shl (v8qi, v8qi, int);
- long __builtin_vis_fpcmpne8shl (v8qi, v8qi, int);
- long __builtin_vis_fpcmple16shl (v4hi, v4hi, int);
- long __builtin_vis_fpcmpgt16shl (v4hi, v4hi, int);
- long __builtin_vis_fpcmpeq16shl (v4hi, v4hi, int);
- long __builtin_vis_fpcmpne16shl (v4hi, v4hi, int);
- long __builtin_vis_fpcmple32shl (v2si, v2si, int);
- long __builtin_vis_fpcmpgt32shl (v2si, v2si, int);
- long __builtin_vis_fpcmpeq32shl (v2si, v2si, int);
- long __builtin_vis_fpcmpne32shl (v2si, v2si, int);
- long __builtin_vis_fpcmpule8shl (v8qi, v8qi, int);
- long __builtin_vis_fpcmpugt8shl (v8qi, v8qi, int);
- long __builtin_vis_fpcmpule16shl (v4hi, v4hi, int);
- long __builtin_vis_fpcmpugt16shl (v4hi, v4hi, int);
- long __builtin_vis_fpcmpule32shl (v2si, v2si, int);
- long __builtin_vis_fpcmpugt32shl (v2si, v2si, int);
- long __builtin_vis_fpcmpde8shl (v8qi, v8qi, int);
- long __builtin_vis_fpcmpde16shl (v4hi, v4hi, int);
- long __builtin_vis_fpcmpde32shl (v2si, v2si, int);
- long __builtin_vis_fpcmpur8shl (v8qi, v8qi, int);
- long __builtin_vis_fpcmpur16shl (v4hi, v4hi, int);
- long __builtin_vis_fpcmpur32shl (v2si, v2si, int);
- File: gcc.info, Node: SPU Built-in Functions, Next: TI C6X Built-in Functions, Prev: SPARC VIS Built-in Functions, Up: Target Builtins
- 6.59.29 SPU Built-in Functions
- ------------------------------
- GCC provides extensions for the SPU processor as described in the
- Sony/Toshiba/IBM SPU Language Extensions Specification. GCC's
- implementation differs in several ways.
- * The optional extension of specifying vector constants in
- parentheses is not supported.
- * A vector initializer requires no cast if the vector constant is of
- the same type as the variable it is initializing.
- * If 'signed' or 'unsigned' is omitted, the signedness of the vector
- type is the default signedness of the base type. The default
- varies depending on the operating system, so a portable program
- should always specify the signedness.
- * By default, the keyword '__vector' is added. The macro 'vector' is
- defined in '<spu_intrinsics.h>' and can be undefined.
- * GCC allows using a 'typedef' name as the type specifier for a
- vector type.
- * For C, overloaded functions are implemented with macros so the
- following does not work:
- spu_add ((vector signed int){1, 2, 3, 4}, foo);
- Since 'spu_add' is a macro, the vector constant in the example is
- treated as four separate arguments. Wrap the entire argument in
- parentheses for this to work.
- * The extended version of '__builtin_expect' is not supported.
- _Note:_ Only the interface described in the aforementioned
- specification is supported. Internally, GCC uses built-in functions to
- implement the required functionality, but these are not supported and
- are subject to change without notice.
- File: gcc.info, Node: TI C6X Built-in Functions, Next: TILE-Gx Built-in Functions, Prev: SPU Built-in Functions, Up: Target Builtins
- 6.59.30 TI C6X Built-in Functions
- ---------------------------------
- GCC provides intrinsics to access certain instructions of the TI C6X
- processors. These intrinsics, listed below, are available after
- inclusion of the 'c6x_intrinsics.h' header file. They map directly to
- C6X instructions.
- int _sadd (int, int)
- int _ssub (int, int)
- int _sadd2 (int, int)
- int _ssub2 (int, int)
- long long _mpy2 (int, int)
- long long _smpy2 (int, int)
- int _add4 (int, int)
- int _sub4 (int, int)
- int _saddu4 (int, int)
- int _smpy (int, int)
- int _smpyh (int, int)
- int _smpyhl (int, int)
- int _smpylh (int, int)
- int _sshl (int, int)
- int _subc (int, int)
- int _avg2 (int, int)
- int _avgu4 (int, int)
- int _clrr (int, int)
- int _extr (int, int)
- int _extru (int, int)
- int _abs (int)
- int _abs2 (int)
- File: gcc.info, Node: TILE-Gx Built-in Functions, Next: TILEPro Built-in Functions, Prev: TI C6X Built-in Functions, Up: Target Builtins
- 6.59.31 TILE-Gx Built-in Functions
- ----------------------------------
- GCC provides intrinsics to access every instruction of the TILE-Gx
- processor. The intrinsics are of the form:
- unsigned long long __insn_OP (...)
- Where OP is the name of the instruction. Refer to the ISA manual for
- the complete list of instructions.
- GCC also provides intrinsics to directly access the network registers.
- The intrinsics are:
- unsigned long long __tile_idn0_receive (void)
- unsigned long long __tile_idn1_receive (void)
- unsigned long long __tile_udn0_receive (void)
- unsigned long long __tile_udn1_receive (void)
- unsigned long long __tile_udn2_receive (void)
- unsigned long long __tile_udn3_receive (void)
- void __tile_idn_send (unsigned long long)
- void __tile_udn_send (unsigned long long)
- The intrinsic 'void __tile_network_barrier (void)' is used to guarantee
- that no network operations before it are reordered with those after it.
- File: gcc.info, Node: TILEPro Built-in Functions, Next: x86 Built-in Functions, Prev: TILE-Gx Built-in Functions, Up: Target Builtins
- 6.59.32 TILEPro Built-in Functions
- ----------------------------------
- GCC provides intrinsics to access every instruction of the TILEPro
- processor. The intrinsics are of the form:
- unsigned __insn_OP (...)
- where OP is the name of the instruction. Refer to the ISA manual for
- the complete list of instructions.
- GCC also provides intrinsics to directly access the network registers.
- The intrinsics are:
- unsigned __tile_idn0_receive (void)
- unsigned __tile_idn1_receive (void)
- unsigned __tile_sn_receive (void)
- unsigned __tile_udn0_receive (void)
- unsigned __tile_udn1_receive (void)
- unsigned __tile_udn2_receive (void)
- unsigned __tile_udn3_receive (void)
- void __tile_idn_send (unsigned)
- void __tile_sn_send (unsigned)
- void __tile_udn_send (unsigned)
- The intrinsic 'void __tile_network_barrier (void)' is used to guarantee
- that no network operations before it are reordered with those after it.
- File: gcc.info, Node: x86 Built-in Functions, Next: x86 transactional memory intrinsics, Prev: TILEPro Built-in Functions, Up: Target Builtins
- 6.59.33 x86 Built-in Functions
- ------------------------------
- These built-in functions are available for the x86-32 and x86-64 family
- of computers, depending on the command-line switches used.
- If you specify command-line switches such as '-msse', the compiler
- could use the extended instruction sets even if the built-ins are not
- used explicitly in the program. For this reason, applications that
- perform run-time CPU detection must compile separate files for each
- supported architecture, using the appropriate flags. In particular, the
- file containing the CPU detection code should be compiled without these
- options.
- The following machine modes are available for use with MMX built-in
- functions (*note Vector Extensions::): 'V2SI' for a vector of two 32-bit
- integers, 'V4HI' for a vector of four 16-bit integers, and 'V8QI' for a
- vector of eight 8-bit integers. Some of the built-in functions operate
- on MMX registers as a whole 64-bit entity, these use 'V1DI' as their
- mode.
- If 3DNow! extensions are enabled, 'V2SF' is used as a mode for a vector
- of two 32-bit floating-point values.
- If SSE extensions are enabled, 'V4SF' is used for a vector of four
- 32-bit floating-point values. Some instructions use a vector of four
- 32-bit integers, these use 'V4SI'. Finally, some instructions operate
- on an entire vector register, interpreting it as a 128-bit integer,
- these use mode 'TI'.
- The x86-32 and x86-64 family of processors use additional built-in
- functions for efficient use of 'TF' ('__float128') 128-bit floating
- point and 'TC' 128-bit complex floating-point values.
- The following floating-point built-in functions are always available.
- All of them implement the function that is part of the name.
- __float128 __builtin_fabsq (__float128)
- __float128 __builtin_copysignq (__float128, __float128)
- The following built-in functions are always available.
- '__float128 __builtin_infq (void)'
- Similar to '__builtin_inf', except the return type is '__float128'.
- '__float128 __builtin_huge_valq (void)'
- Similar to '__builtin_huge_val', except the return type is
- '__float128'.
- '__float128 __builtin_nanq (void)'
- Similar to '__builtin_nan', except the return type is '__float128'.
- '__float128 __builtin_nansq (void)'
- Similar to '__builtin_nans', except the return type is
- '__float128'.
- The following built-in function is always available.
- 'void __builtin_ia32_pause (void)'
- Generates the 'pause' machine instruction with a compiler memory
- barrier.
- The following built-in functions are always available and can be used
- to check the target platform type.
- -- Built-in Function: void __builtin_cpu_init (void)
- This function runs the CPU detection code to check the type of CPU
- and the features supported. This built-in function needs to be
- invoked along with the built-in functions to check CPU type and
- features, '__builtin_cpu_is' and '__builtin_cpu_supports', only
- when used in a function that is executed before any constructors
- are called. The CPU detection code is automatically executed in a
- very high priority constructor.
- For example, this function has to be used in 'ifunc' resolvers that
- check for CPU type using the built-in functions '__builtin_cpu_is'
- and '__builtin_cpu_supports', or in constructors on targets that
- don't support constructor priority.
- static void (*resolve_memcpy (void)) (void)
- {
- // ifunc resolvers fire before constructors, explicitly call the init
- // function.
- __builtin_cpu_init ();
- if (__builtin_cpu_supports ("ssse3"))
- return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
- else
- return default_memcpy;
- }
- void *memcpy (void *, const void *, size_t)
- __attribute__ ((ifunc ("resolve_memcpy")));
- -- Built-in Function: int __builtin_cpu_is (const char *CPUNAME)
- This function returns a positive integer if the run-time CPU is of
- type CPUNAME and returns '0' otherwise. The following CPU names
- can be detected:
- 'intel'
- Intel CPU.
- 'atom'
- Intel Atom CPU.
- 'core2'
- Intel Core 2 CPU.
- 'corei7'
- Intel Core i7 CPU.
- 'nehalem'
- Intel Core i7 Nehalem CPU.
- 'westmere'
- Intel Core i7 Westmere CPU.
- 'sandybridge'
- Intel Core i7 Sandy Bridge CPU.
- 'amd'
- AMD CPU.
- 'amdfam10h'
- AMD Family 10h CPU.
- 'barcelona'
- AMD Family 10h Barcelona CPU.
- 'shanghai'
- AMD Family 10h Shanghai CPU.
- 'istanbul'
- AMD Family 10h Istanbul CPU.
- 'btver1'
- AMD Family 14h CPU.
- 'amdfam15h'
- AMD Family 15h CPU.
- 'bdver1'
- AMD Family 15h Bulldozer version 1.
- 'bdver2'
- AMD Family 15h Bulldozer version 2.
- 'bdver3'
- AMD Family 15h Bulldozer version 3.
- 'bdver4'
- AMD Family 15h Bulldozer version 4.
- 'btver2'
- AMD Family 16h CPU.
- 'amdfam17h'
- AMD Family 17h CPU.
- 'znver1'
- AMD Family 17h Zen version 1.
- Here is an example:
- if (__builtin_cpu_is ("corei7"))
- {
- do_corei7 (); // Core i7 specific implementation.
- }
- else
- {
- do_generic (); // Generic implementation.
- }
- -- Built-in Function: int __builtin_cpu_supports (const char *FEATURE)
- This function returns a positive integer if the run-time CPU
- supports FEATURE and returns '0' otherwise. The following features
- can be detected:
- 'cmov'
- CMOV instruction.
- 'mmx'
- MMX instructions.
- 'popcnt'
- POPCNT instruction.
- 'sse'
- SSE instructions.
- 'sse2'
- SSE2 instructions.
- 'sse3'
- SSE3 instructions.
- 'ssse3'
- SSSE3 instructions.
- 'sse4.1'
- SSE4.1 instructions.
- 'sse4.2'
- SSE4.2 instructions.
- 'avx'
- AVX instructions.
- 'avx2'
- AVX2 instructions.
- 'avx512f'
- AVX512F instructions.
- Here is an example:
- if (__builtin_cpu_supports ("popcnt"))
- {
- asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
- }
- else
- {
- count = generic_countbits (n); //generic implementation.
- }
- The following built-in functions are made available by '-mmmx'. All of
- them generate the machine instruction that is part of the name.
- v8qi __builtin_ia32_paddb (v8qi, v8qi)
- v4hi __builtin_ia32_paddw (v4hi, v4hi)
- v2si __builtin_ia32_paddd (v2si, v2si)
- v8qi __builtin_ia32_psubb (v8qi, v8qi)
- v4hi __builtin_ia32_psubw (v4hi, v4hi)
- v2si __builtin_ia32_psubd (v2si, v2si)
- v8qi __builtin_ia32_paddsb (v8qi, v8qi)
- v4hi __builtin_ia32_paddsw (v4hi, v4hi)
- v8qi __builtin_ia32_psubsb (v8qi, v8qi)
- v4hi __builtin_ia32_psubsw (v4hi, v4hi)
- v8qi __builtin_ia32_paddusb (v8qi, v8qi)
- v4hi __builtin_ia32_paddusw (v4hi, v4hi)
- v8qi __builtin_ia32_psubusb (v8qi, v8qi)
- v4hi __builtin_ia32_psubusw (v4hi, v4hi)
- v4hi __builtin_ia32_pmullw (v4hi, v4hi)
- v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
- di __builtin_ia32_pand (di, di)
- di __builtin_ia32_pandn (di,di)
- di __builtin_ia32_por (di, di)
- di __builtin_ia32_pxor (di, di)
- v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
- v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
- v2si __builtin_ia32_pcmpeqd (v2si, v2si)
- v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
- v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
- v2si __builtin_ia32_pcmpgtd (v2si, v2si)
- v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
- v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
- v2si __builtin_ia32_punpckhdq (v2si, v2si)
- v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
- v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
- v2si __builtin_ia32_punpckldq (v2si, v2si)
- v8qi __builtin_ia32_packsswb (v4hi, v4hi)
- v4hi __builtin_ia32_packssdw (v2si, v2si)
- v8qi __builtin_ia32_packuswb (v4hi, v4hi)
- v4hi __builtin_ia32_psllw (v4hi, v4hi)
- v2si __builtin_ia32_pslld (v2si, v2si)
- v1di __builtin_ia32_psllq (v1di, v1di)
- v4hi __builtin_ia32_psrlw (v4hi, v4hi)
- v2si __builtin_ia32_psrld (v2si, v2si)
- v1di __builtin_ia32_psrlq (v1di, v1di)
- v4hi __builtin_ia32_psraw (v4hi, v4hi)
- v2si __builtin_ia32_psrad (v2si, v2si)
- v4hi __builtin_ia32_psllwi (v4hi, int)
- v2si __builtin_ia32_pslldi (v2si, int)
- v1di __builtin_ia32_psllqi (v1di, int)
- v4hi __builtin_ia32_psrlwi (v4hi, int)
- v2si __builtin_ia32_psrldi (v2si, int)
- v1di __builtin_ia32_psrlqi (v1di, int)
- v4hi __builtin_ia32_psrawi (v4hi, int)
- v2si __builtin_ia32_psradi (v2si, int)
- The following built-in functions are made available either with
- '-msse', or with '-m3dnowa'. All of them generate the machine
- instruction that is part of the name.
- v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
- v8qi __builtin_ia32_pavgb (v8qi, v8qi)
- v4hi __builtin_ia32_pavgw (v4hi, v4hi)
- v1di __builtin_ia32_psadbw (v8qi, v8qi)
- v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
- v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
- v8qi __builtin_ia32_pminub (v8qi, v8qi)
- v4hi __builtin_ia32_pminsw (v4hi, v4hi)
- int __builtin_ia32_pmovmskb (v8qi)
- void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
- void __builtin_ia32_movntq (di *, di)
- void __builtin_ia32_sfence (void)
- The following built-in functions are available when '-msse' is used.
- All of them generate the machine instruction that is part of the name.
- int __builtin_ia32_comieq (v4sf, v4sf)
- int __builtin_ia32_comineq (v4sf, v4sf)
- int __builtin_ia32_comilt (v4sf, v4sf)
- int __builtin_ia32_comile (v4sf, v4sf)
- int __builtin_ia32_comigt (v4sf, v4sf)
- int __builtin_ia32_comige (v4sf, v4sf)
- int __builtin_ia32_ucomieq (v4sf, v4sf)
- int __builtin_ia32_ucomineq (v4sf, v4sf)
- int __builtin_ia32_ucomilt (v4sf, v4sf)
- int __builtin_ia32_ucomile (v4sf, v4sf)
- int __builtin_ia32_ucomigt (v4sf, v4sf)
- int __builtin_ia32_ucomige (v4sf, v4sf)
- v4sf __builtin_ia32_addps (v4sf, v4sf)
- v4sf __builtin_ia32_subps (v4sf, v4sf)
- v4sf __builtin_ia32_mulps (v4sf, v4sf)
- v4sf __builtin_ia32_divps (v4sf, v4sf)
- v4sf __builtin_ia32_addss (v4sf, v4sf)
- v4sf __builtin_ia32_subss (v4sf, v4sf)
- v4sf __builtin_ia32_mulss (v4sf, v4sf)
- v4sf __builtin_ia32_divss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
- v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpless (v4sf, v4sf)
- v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
- v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
- v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
- v4sf __builtin_ia32_maxps (v4sf, v4sf)
- v4sf __builtin_ia32_maxss (v4sf, v4sf)
- v4sf __builtin_ia32_minps (v4sf, v4sf)
- v4sf __builtin_ia32_minss (v4sf, v4sf)
- v4sf __builtin_ia32_andps (v4sf, v4sf)
- v4sf __builtin_ia32_andnps (v4sf, v4sf)
- v4sf __builtin_ia32_orps (v4sf, v4sf)
- v4sf __builtin_ia32_xorps (v4sf, v4sf)
- v4sf __builtin_ia32_movss (v4sf, v4sf)
- v4sf __builtin_ia32_movhlps (v4sf, v4sf)
- v4sf __builtin_ia32_movlhps (v4sf, v4sf)
- v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
- v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
- v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
- v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
- v2si __builtin_ia32_cvtps2pi (v4sf)
- int __builtin_ia32_cvtss2si (v4sf)
- v2si __builtin_ia32_cvttps2pi (v4sf)
- int __builtin_ia32_cvttss2si (v4sf)
- v4sf __builtin_ia32_rcpps (v4sf)
- v4sf __builtin_ia32_rsqrtps (v4sf)
- v4sf __builtin_ia32_sqrtps (v4sf)
- v4sf __builtin_ia32_rcpss (v4sf)
- v4sf __builtin_ia32_rsqrtss (v4sf)
- v4sf __builtin_ia32_sqrtss (v4sf)
- v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
- void __builtin_ia32_movntps (float *, v4sf)
- int __builtin_ia32_movmskps (v4sf)
- The following built-in functions are available when '-msse' is used.
- 'v4sf __builtin_ia32_loadups (float *)'
- Generates the 'movups' machine instruction as a load from memory.
- 'void __builtin_ia32_storeups (float *, v4sf)'
- Generates the 'movups' machine instruction as a store to memory.
- 'v4sf __builtin_ia32_loadss (float *)'
- Generates the 'movss' machine instruction as a load from memory.
- 'v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)'
- Generates the 'movhps' machine instruction as a load from memory.
- 'v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)'
- Generates the 'movlps' machine instruction as a load from memory
- 'void __builtin_ia32_storehps (v2sf *, v4sf)'
- Generates the 'movhps' machine instruction as a store to memory.
- 'void __builtin_ia32_storelps (v2sf *, v4sf)'
- Generates the 'movlps' machine instruction as a store to memory.
- The following built-in functions are available when '-msse2' is used.
- All of them generate the machine instruction that is part of the name.
- int __builtin_ia32_comisdeq (v2df, v2df)
- int __builtin_ia32_comisdlt (v2df, v2df)
- int __builtin_ia32_comisdle (v2df, v2df)
- int __builtin_ia32_comisdgt (v2df, v2df)
- int __builtin_ia32_comisdge (v2df, v2df)
- int __builtin_ia32_comisdneq (v2df, v2df)
- int __builtin_ia32_ucomisdeq (v2df, v2df)
- int __builtin_ia32_ucomisdlt (v2df, v2df)
- int __builtin_ia32_ucomisdle (v2df, v2df)
- int __builtin_ia32_ucomisdgt (v2df, v2df)
- int __builtin_ia32_ucomisdge (v2df, v2df)
- int __builtin_ia32_ucomisdneq (v2df, v2df)
- v2df __builtin_ia32_cmpeqpd (v2df, v2df)
- v2df __builtin_ia32_cmpltpd (v2df, v2df)
- v2df __builtin_ia32_cmplepd (v2df, v2df)
- v2df __builtin_ia32_cmpgtpd (v2df, v2df)
- v2df __builtin_ia32_cmpgepd (v2df, v2df)
- v2df __builtin_ia32_cmpunordpd (v2df, v2df)
- v2df __builtin_ia32_cmpneqpd (v2df, v2df)
- v2df __builtin_ia32_cmpnltpd (v2df, v2df)
- v2df __builtin_ia32_cmpnlepd (v2df, v2df)
- v2df __builtin_ia32_cmpngtpd (v2df, v2df)
- v2df __builtin_ia32_cmpngepd (v2df, v2df)
- v2df __builtin_ia32_cmpordpd (v2df, v2df)
- v2df __builtin_ia32_cmpeqsd (v2df, v2df)
- v2df __builtin_ia32_cmpltsd (v2df, v2df)
- v2df __builtin_ia32_cmplesd (v2df, v2df)
- v2df __builtin_ia32_cmpunordsd (v2df, v2df)
- v2df __builtin_ia32_cmpneqsd (v2df, v2df)
- v2df __builtin_ia32_cmpnltsd (v2df, v2df)
- v2df __builtin_ia32_cmpnlesd (v2df, v2df)
- v2df __builtin_ia32_cmpordsd (v2df, v2df)
- v2di __builtin_ia32_paddq (v2di, v2di)
- v2di __builtin_ia32_psubq (v2di, v2di)
- v2df __builtin_ia32_addpd (v2df, v2df)
- v2df __builtin_ia32_subpd (v2df, v2df)
- v2df __builtin_ia32_mulpd (v2df, v2df)
- v2df __builtin_ia32_divpd (v2df, v2df)
- v2df __builtin_ia32_addsd (v2df, v2df)
- v2df __builtin_ia32_subsd (v2df, v2df)
- v2df __builtin_ia32_mulsd (v2df, v2df)
- v2df __builtin_ia32_divsd (v2df, v2df)
- v2df __builtin_ia32_minpd (v2df, v2df)
- v2df __builtin_ia32_maxpd (v2df, v2df)
- v2df __builtin_ia32_minsd (v2df, v2df)
- v2df __builtin_ia32_maxsd (v2df, v2df)
- v2df __builtin_ia32_andpd (v2df, v2df)
- v2df __builtin_ia32_andnpd (v2df, v2df)
- v2df __builtin_ia32_orpd (v2df, v2df)
- v2df __builtin_ia32_xorpd (v2df, v2df)
- v2df __builtin_ia32_movsd (v2df, v2df)
- v2df __builtin_ia32_unpckhpd (v2df, v2df)
- v2df __builtin_ia32_unpcklpd (v2df, v2df)
- v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
- v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
- v4si __builtin_ia32_paddd128 (v4si, v4si)
- v2di __builtin_ia32_paddq128 (v2di, v2di)
- v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
- v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
- v4si __builtin_ia32_psubd128 (v4si, v4si)
- v2di __builtin_ia32_psubq128 (v2di, v2di)
- v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
- v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
- v2di __builtin_ia32_pand128 (v2di, v2di)
- v2di __builtin_ia32_pandn128 (v2di, v2di)
- v2di __builtin_ia32_por128 (v2di, v2di)
- v2di __builtin_ia32_pxor128 (v2di, v2di)
- v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
- v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
- v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
- v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
- v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
- v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
- v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
- v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
- v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
- v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
- v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
- v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
- v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
- v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
- v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
- v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
- v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
- v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
- v4si __builtin_ia32_punpckldq128 (v4si, v4si)
- v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
- v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
- v8hi __builtin_ia32_packssdw128 (v4si, v4si)
- v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
- v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
- void __builtin_ia32_maskmovdqu (v16qi, v16qi)
- v2df __builtin_ia32_loadupd (double *)
- void __builtin_ia32_storeupd (double *, v2df)
- v2df __builtin_ia32_loadhpd (v2df, double const *)
- v2df __builtin_ia32_loadlpd (v2df, double const *)
- int __builtin_ia32_movmskpd (v2df)
- int __builtin_ia32_pmovmskb128 (v16qi)
- void __builtin_ia32_movnti (int *, int)
- void __builtin_ia32_movnti64 (long long int *, long long int)
- void __builtin_ia32_movntpd (double *, v2df)
- void __builtin_ia32_movntdq (v2df *, v2df)
- v4si __builtin_ia32_pshufd (v4si, int)
- v8hi __builtin_ia32_pshuflw (v8hi, int)
- v8hi __builtin_ia32_pshufhw (v8hi, int)
- v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
- v2df __builtin_ia32_sqrtpd (v2df)
- v2df __builtin_ia32_sqrtsd (v2df)
- v2df __builtin_ia32_shufpd (v2df, v2df, int)
- v2df __builtin_ia32_cvtdq2pd (v4si)
- v4sf __builtin_ia32_cvtdq2ps (v4si)
- v4si __builtin_ia32_cvtpd2dq (v2df)
- v2si __builtin_ia32_cvtpd2pi (v2df)
- v4sf __builtin_ia32_cvtpd2ps (v2df)
- v4si __builtin_ia32_cvttpd2dq (v2df)
- v2si __builtin_ia32_cvttpd2pi (v2df)
- v2df __builtin_ia32_cvtpi2pd (v2si)
- int __builtin_ia32_cvtsd2si (v2df)
- int __builtin_ia32_cvttsd2si (v2df)
- long long __builtin_ia32_cvtsd2si64 (v2df)
- long long __builtin_ia32_cvttsd2si64 (v2df)
- v4si __builtin_ia32_cvtps2dq (v4sf)
- v2df __builtin_ia32_cvtps2pd (v4sf)
- v4si __builtin_ia32_cvttps2dq (v4sf)
- v2df __builtin_ia32_cvtsi2sd (v2df, int)
- v2df __builtin_ia32_cvtsi642sd (v2df, long long)
- v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
- v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
- void __builtin_ia32_clflush (const void *)
- void __builtin_ia32_lfence (void)
- void __builtin_ia32_mfence (void)
- v16qi __builtin_ia32_loaddqu (const char *)
- void __builtin_ia32_storedqu (char *, v16qi)
- v1di __builtin_ia32_pmuludq (v2si, v2si)
- v2di __builtin_ia32_pmuludq128 (v4si, v4si)
- v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
- v4si __builtin_ia32_pslld128 (v4si, v4si)
- v2di __builtin_ia32_psllq128 (v2di, v2di)
- v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
- v4si __builtin_ia32_psrld128 (v4si, v4si)
- v2di __builtin_ia32_psrlq128 (v2di, v2di)
- v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
- v4si __builtin_ia32_psrad128 (v4si, v4si)
- v2di __builtin_ia32_pslldqi128 (v2di, int)
- v8hi __builtin_ia32_psllwi128 (v8hi, int)
- v4si __builtin_ia32_pslldi128 (v4si, int)
- v2di __builtin_ia32_psllqi128 (v2di, int)
- v2di __builtin_ia32_psrldqi128 (v2di, int)
- v8hi __builtin_ia32_psrlwi128 (v8hi, int)
- v4si __builtin_ia32_psrldi128 (v4si, int)
- v2di __builtin_ia32_psrlqi128 (v2di, int)
- v8hi __builtin_ia32_psrawi128 (v8hi, int)
- v4si __builtin_ia32_psradi128 (v4si, int)
- v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
- v2di __builtin_ia32_movq128 (v2di)
- The following built-in functions are available when '-msse3' is used.
- All of them generate the machine instruction that is part of the name.
- v2df __builtin_ia32_addsubpd (v2df, v2df)
- v4sf __builtin_ia32_addsubps (v4sf, v4sf)
- v2df __builtin_ia32_haddpd (v2df, v2df)
- v4sf __builtin_ia32_haddps (v4sf, v4sf)
- v2df __builtin_ia32_hsubpd (v2df, v2df)
- v4sf __builtin_ia32_hsubps (v4sf, v4sf)
- v16qi __builtin_ia32_lddqu (char const *)
- void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
- v4sf __builtin_ia32_movshdup (v4sf)
- v4sf __builtin_ia32_movsldup (v4sf)
- void __builtin_ia32_mwait (unsigned int, unsigned int)
- The following built-in functions are available when '-mssse3' is used.
- All of them generate the machine instruction that is part of the name.
- v2si __builtin_ia32_phaddd (v2si, v2si)
- v4hi __builtin_ia32_phaddw (v4hi, v4hi)
- v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
- v2si __builtin_ia32_phsubd (v2si, v2si)
- v4hi __builtin_ia32_phsubw (v4hi, v4hi)
- v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
- v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
- v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
- v8qi __builtin_ia32_pshufb (v8qi, v8qi)
- v8qi __builtin_ia32_psignb (v8qi, v8qi)
- v2si __builtin_ia32_psignd (v2si, v2si)
- v4hi __builtin_ia32_psignw (v4hi, v4hi)
- v1di __builtin_ia32_palignr (v1di, v1di, int)
- v8qi __builtin_ia32_pabsb (v8qi)
- v2si __builtin_ia32_pabsd (v2si)
- v4hi __builtin_ia32_pabsw (v4hi)
- The following built-in functions are available when '-mssse3' is used.
- All of them generate the machine instruction that is part of the name.
- v4si __builtin_ia32_phaddd128 (v4si, v4si)
- v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
- v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
- v4si __builtin_ia32_phsubd128 (v4si, v4si)
- v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
- v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
- v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
- v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
- v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
- v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
- v4si __builtin_ia32_psignd128 (v4si, v4si)
- v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
- v2di __builtin_ia32_palignr128 (v2di, v2di, int)
- v16qi __builtin_ia32_pabsb128 (v16qi)
- v4si __builtin_ia32_pabsd128 (v4si)
- v8hi __builtin_ia32_pabsw128 (v8hi)
- The following built-in functions are available when '-msse4.1' is used.
- All of them generate the machine instruction that is part of the name.
- v2df __builtin_ia32_blendpd (v2df, v2df, const int)
- v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
- v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_dppd (v2df, v2df, const int)
- v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
- v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
- v2di __builtin_ia32_movntdqa (v2di *);
- v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
- v8hi __builtin_ia32_packusdw128 (v4si, v4si)
- v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
- v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
- v2di __builtin_ia32_pcmpeqq (v2di, v2di)
- v8hi __builtin_ia32_phminposuw128 (v8hi)
- v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
- v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
- v4si __builtin_ia32_pmaxud128 (v4si, v4si)
- v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
- v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
- v4si __builtin_ia32_pminsd128 (v4si, v4si)
- v4si __builtin_ia32_pminud128 (v4si, v4si)
- v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
- v4si __builtin_ia32_pmovsxbd128 (v16qi)
- v2di __builtin_ia32_pmovsxbq128 (v16qi)
- v8hi __builtin_ia32_pmovsxbw128 (v16qi)
- v2di __builtin_ia32_pmovsxdq128 (v4si)
- v4si __builtin_ia32_pmovsxwd128 (v8hi)
- v2di __builtin_ia32_pmovsxwq128 (v8hi)
- v4si __builtin_ia32_pmovzxbd128 (v16qi)
- v2di __builtin_ia32_pmovzxbq128 (v16qi)
- v8hi __builtin_ia32_pmovzxbw128 (v16qi)
- v2di __builtin_ia32_pmovzxdq128 (v4si)
- v4si __builtin_ia32_pmovzxwd128 (v8hi)
- v2di __builtin_ia32_pmovzxwq128 (v8hi)
- v2di __builtin_ia32_pmuldq128 (v4si, v4si)
- v4si __builtin_ia32_pmulld128 (v4si, v4si)
- int __builtin_ia32_ptestc128 (v2di, v2di)
- int __builtin_ia32_ptestnzc128 (v2di, v2di)
- int __builtin_ia32_ptestz128 (v2di, v2di)
- v2df __builtin_ia32_roundpd (v2df, const int)
- v4sf __builtin_ia32_roundps (v4sf, const int)
- v2df __builtin_ia32_roundsd (v2df, v2df, const int)
- v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
- The following built-in functions are available when '-msse4.1' is used.
- 'v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)'
- Generates the 'insertps' machine instruction.
- 'int __builtin_ia32_vec_ext_v16qi (v16qi, const int)'
- Generates the 'pextrb' machine instruction.
- 'v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)'
- Generates the 'pinsrb' machine instruction.
- 'v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)'
- Generates the 'pinsrd' machine instruction.
- 'v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)'
- Generates the 'pinsrq' machine instruction in 64bit mode.
- The following built-in functions are changed to generate new SSE4.1
- instructions when '-msse4.1' is used.
- 'float __builtin_ia32_vec_ext_v4sf (v4sf, const int)'
- Generates the 'extractps' machine instruction.
- 'int __builtin_ia32_vec_ext_v4si (v4si, const int)'
- Generates the 'pextrd' machine instruction.
- 'long long __builtin_ia32_vec_ext_v2di (v2di, const int)'
- Generates the 'pextrq' machine instruction in 64bit mode.
- The following built-in functions are available when '-msse4.2' is used.
- All of them generate the machine instruction that is part of the name.
- v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
- int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
- v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
- int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
- v2di __builtin_ia32_pcmpgtq (v2di, v2di)
- The following built-in functions are available when '-msse4.2' is used.
- 'unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)'
- Generates the 'crc32b' machine instruction.
- 'unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)'
- Generates the 'crc32w' machine instruction.
- 'unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)'
- Generates the 'crc32l' machine instruction.
- 'unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)'
- Generates the 'crc32q' machine instruction.
- The following built-in functions are changed to generate new SSE4.2
- instructions when '-msse4.2' is used.
- 'int __builtin_popcount (unsigned int)'
- Generates the 'popcntl' machine instruction.
- 'int __builtin_popcountl (unsigned long)'
- Generates the 'popcntl' or 'popcntq' machine instruction, depending
- on the size of 'unsigned long'.
- 'int __builtin_popcountll (unsigned long long)'
- Generates the 'popcntq' machine instruction.
- The following built-in functions are available when '-mavx' is used.
- All of them generate the machine instruction that is part of the name.
- v4df __builtin_ia32_addpd256 (v4df,v4df)
- v8sf __builtin_ia32_addps256 (v8sf,v8sf)
- v4df __builtin_ia32_addsubpd256 (v4df,v4df)
- v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
- v4df __builtin_ia32_andnpd256 (v4df,v4df)
- v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
- v4df __builtin_ia32_andpd256 (v4df,v4df)
- v8sf __builtin_ia32_andps256 (v8sf,v8sf)
- v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
- v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
- v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
- v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
- v2df __builtin_ia32_cmppd (v2df,v2df,int)
- v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
- v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
- v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
- v2df __builtin_ia32_cmpsd (v2df,v2df,int)
- v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
- v4df __builtin_ia32_cvtdq2pd256 (v4si)
- v8sf __builtin_ia32_cvtdq2ps256 (v8si)
- v4si __builtin_ia32_cvtpd2dq256 (v4df)
- v4sf __builtin_ia32_cvtpd2ps256 (v4df)
- v8si __builtin_ia32_cvtps2dq256 (v8sf)
- v4df __builtin_ia32_cvtps2pd256 (v4sf)
- v4si __builtin_ia32_cvttpd2dq256 (v4df)
- v8si __builtin_ia32_cvttps2dq256 (v8sf)
- v4df __builtin_ia32_divpd256 (v4df,v4df)
- v8sf __builtin_ia32_divps256 (v8sf,v8sf)
- v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
- v4df __builtin_ia32_haddpd256 (v4df,v4df)
- v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
- v4df __builtin_ia32_hsubpd256 (v4df,v4df)
- v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
- v32qi __builtin_ia32_lddqu256 (pcchar)
- v32qi __builtin_ia32_loaddqu256 (pcchar)
- v4df __builtin_ia32_loadupd256 (pcdouble)
- v8sf __builtin_ia32_loadups256 (pcfloat)
- v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
- v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
- v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
- v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
- void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
- void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
- void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
- void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
- v4df __builtin_ia32_maxpd256 (v4df,v4df)
- v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
- v4df __builtin_ia32_minpd256 (v4df,v4df)
- v8sf __builtin_ia32_minps256 (v8sf,v8sf)
- v4df __builtin_ia32_movddup256 (v4df)
- int __builtin_ia32_movmskpd256 (v4df)
- int __builtin_ia32_movmskps256 (v8sf)
- v8sf __builtin_ia32_movshdup256 (v8sf)
- v8sf __builtin_ia32_movsldup256 (v8sf)
- v4df __builtin_ia32_mulpd256 (v4df,v4df)
- v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
- v4df __builtin_ia32_orpd256 (v4df,v4df)
- v8sf __builtin_ia32_orps256 (v8sf,v8sf)
- v2df __builtin_ia32_pd_pd256 (v4df)
- v4df __builtin_ia32_pd256_pd (v2df)
- v4sf __builtin_ia32_ps_ps256 (v8sf)
- v8sf __builtin_ia32_ps256_ps (v4sf)
- int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
- int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
- int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
- v8sf __builtin_ia32_rcpps256 (v8sf)
- v4df __builtin_ia32_roundpd256 (v4df,int)
- v8sf __builtin_ia32_roundps256 (v8sf,int)
- v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
- v8sf __builtin_ia32_rsqrtps256 (v8sf)
- v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
- v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
- v4si __builtin_ia32_si_si256 (v8si)
- v8si __builtin_ia32_si256_si (v4si)
- v4df __builtin_ia32_sqrtpd256 (v4df)
- v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
- v8sf __builtin_ia32_sqrtps256 (v8sf)
- void __builtin_ia32_storedqu256 (pchar,v32qi)
- void __builtin_ia32_storeupd256 (pdouble,v4df)
- void __builtin_ia32_storeups256 (pfloat,v8sf)
- v4df __builtin_ia32_subpd256 (v4df,v4df)
- v8sf __builtin_ia32_subps256 (v8sf,v8sf)
- v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
- v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
- v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
- v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
- v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
- v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
- v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
- v4sf __builtin_ia32_vbroadcastss (pcfloat)
- v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
- v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
- v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
- v4si __builtin_ia32_vextractf128_si256 (v8si,int)
- v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
- v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
- v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
- v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
- v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
- v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
- v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
- v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
- v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
- v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
- v2df __builtin_ia32_vpermilpd (v2df,int)
- v4df __builtin_ia32_vpermilpd256 (v4df,int)
- v4sf __builtin_ia32_vpermilps (v4sf,int)
- v8sf __builtin_ia32_vpermilps256 (v8sf,int)
- v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
- v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
- v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
- v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
- int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
- int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
- int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
- int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
- int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
- int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
- int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
- int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
- int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
- int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
- int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
- int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
- void __builtin_ia32_vzeroall (void)
- void __builtin_ia32_vzeroupper (void)
- v4df __builtin_ia32_xorpd256 (v4df,v4df)
- v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
- The following built-in functions are available when '-mavx2' is used.
- All of them generate the machine instruction that is part of the name.
- v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
- v32qi __builtin_ia32_pabsb256 (v32qi)
- v16hi __builtin_ia32_pabsw256 (v16hi)
- v8si __builtin_ia32_pabsd256 (v8si)
- v16hi __builtin_ia32_packssdw256 (v8si,v8si)
- v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
- v16hi __builtin_ia32_packusdw256 (v8si,v8si)
- v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
- v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
- v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
- v8si __builtin_ia32_paddd256 (v8si,v8si)
- v4di __builtin_ia32_paddq256 (v4di,v4di)
- v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
- v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
- v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
- v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
- v4di __builtin_ia32_palignr256 (v4di,v4di,int)
- v4di __builtin_ia32_andsi256 (v4di,v4di)
- v4di __builtin_ia32_andnotsi256 (v4di,v4di)
- v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
- v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
- v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
- v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
- v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
- v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
- v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
- v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
- v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
- v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
- v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
- v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
- v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
- v8si __builtin_ia32_phaddd256 (v8si,v8si)
- v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
- v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
- v8si __builtin_ia32_phsubd256 (v8si,v8si)
- v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
- v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
- v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
- v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
- v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
- v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
- v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
- v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
- v8si __builtin_ia32_pmaxud256 (v8si,v8si)
- v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
- v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
- v8si __builtin_ia32_pminsd256 (v8si,v8si)
- v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
- v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
- v8si __builtin_ia32_pminud256 (v8si,v8si)
- int __builtin_ia32_pmovmskb256 (v32qi)
- v16hi __builtin_ia32_pmovsxbw256 (v16qi)
- v8si __builtin_ia32_pmovsxbd256 (v16qi)
- v4di __builtin_ia32_pmovsxbq256 (v16qi)
- v8si __builtin_ia32_pmovsxwd256 (v8hi)
- v4di __builtin_ia32_pmovsxwq256 (v8hi)
- v4di __builtin_ia32_pmovsxdq256 (v4si)
- v16hi __builtin_ia32_pmovzxbw256 (v16qi)
- v8si __builtin_ia32_pmovzxbd256 (v16qi)
- v4di __builtin_ia32_pmovzxbq256 (v16qi)
- v8si __builtin_ia32_pmovzxwd256 (v8hi)
- v4di __builtin_ia32_pmovzxwq256 (v8hi)
- v4di __builtin_ia32_pmovzxdq256 (v4si)
- v4di __builtin_ia32_pmuldq256 (v8si,v8si)
- v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
- v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
- v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
- v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
- v8si __builtin_ia32_pmulld256 (v8si,v8si)
- v4di __builtin_ia32_pmuludq256 (v8si,v8si)
- v4di __builtin_ia32_por256 (v4di,v4di)
- v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
- v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
- v8si __builtin_ia32_pshufd256 (v8si,int)
- v16hi __builtin_ia32_pshufhw256 (v16hi,int)
- v16hi __builtin_ia32_pshuflw256 (v16hi,int)
- v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
- v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
- v8si __builtin_ia32_psignd256 (v8si,v8si)
- v4di __builtin_ia32_pslldqi256 (v4di,int)
- v16hi __builtin_ia32_psllwi256 (16hi,int)
- v16hi __builtin_ia32_psllw256(v16hi,v8hi)
- v8si __builtin_ia32_pslldi256 (v8si,int)
- v8si __builtin_ia32_pslld256(v8si,v4si)
- v4di __builtin_ia32_psllqi256 (v4di,int)
- v4di __builtin_ia32_psllq256(v4di,v2di)
- v16hi __builtin_ia32_psrawi256 (v16hi,int)
- v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
- v8si __builtin_ia32_psradi256 (v8si,int)
- v8si __builtin_ia32_psrad256 (v8si,v4si)
- v4di __builtin_ia32_psrldqi256 (v4di, int)
- v16hi __builtin_ia32_psrlwi256 (v16hi,int)
- v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
- v8si __builtin_ia32_psrldi256 (v8si,int)
- v8si __builtin_ia32_psrld256 (v8si,v4si)
- v4di __builtin_ia32_psrlqi256 (v4di,int)
- v4di __builtin_ia32_psrlq256(v4di,v2di)
- v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
- v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
- v8si __builtin_ia32_psubd256 (v8si,v8si)
- v4di __builtin_ia32_psubq256 (v4di,v4di)
- v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
- v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
- v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
- v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
- v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
- v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
- v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
- v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
- v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
- v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
- v8si __builtin_ia32_punpckldq256 (v8si,v8si)
- v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
- v4di __builtin_ia32_pxor256 (v4di,v4di)
- v4di __builtin_ia32_movntdqa256 (pv4di)
- v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
- v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
- v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
- v4di __builtin_ia32_vbroadcastsi256 (v2di)
- v4si __builtin_ia32_pblendd128 (v4si,v4si)
- v8si __builtin_ia32_pblendd256 (v8si,v8si)
- v32qi __builtin_ia32_pbroadcastb256 (v16qi)
- v16hi __builtin_ia32_pbroadcastw256 (v8hi)
- v8si __builtin_ia32_pbroadcastd256 (v4si)
- v4di __builtin_ia32_pbroadcastq256 (v2di)
- v16qi __builtin_ia32_pbroadcastb128 (v16qi)
- v8hi __builtin_ia32_pbroadcastw128 (v8hi)
- v4si __builtin_ia32_pbroadcastd128 (v4si)
- v2di __builtin_ia32_pbroadcastq128 (v2di)
- v8si __builtin_ia32_permvarsi256 (v8si,v8si)
- v4df __builtin_ia32_permdf256 (v4df,int)
- v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
- v4di __builtin_ia32_permdi256 (v4di,int)
- v4di __builtin_ia32_permti256 (v4di,v4di,int)
- v4di __builtin_ia32_extract128i256 (v4di,int)
- v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
- v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
- v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
- v4si __builtin_ia32_maskloadd (pcv4si,v4si)
- v2di __builtin_ia32_maskloadq (pcv2di,v2di)
- void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
- void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
- void __builtin_ia32_maskstored (pv4si,v4si,v4si)
- void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
- v8si __builtin_ia32_psllv8si (v8si,v8si)
- v4si __builtin_ia32_psllv4si (v4si,v4si)
- v4di __builtin_ia32_psllv4di (v4di,v4di)
- v2di __builtin_ia32_psllv2di (v2di,v2di)
- v8si __builtin_ia32_psrav8si (v8si,v8si)
- v4si __builtin_ia32_psrav4si (v4si,v4si)
- v8si __builtin_ia32_psrlv8si (v8si,v8si)
- v4si __builtin_ia32_psrlv4si (v4si,v4si)
- v4di __builtin_ia32_psrlv4di (v4di,v4di)
- v2di __builtin_ia32_psrlv2di (v2di,v2di)
- v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
- v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
- v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
- v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
- v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
- v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
- v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
- v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
- v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
- v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
- v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
- v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
- v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
- v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
- v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
- v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
- The following built-in functions are available when '-maes' is used.
- All of them generate the machine instruction that is part of the name.
- v2di __builtin_ia32_aesenc128 (v2di, v2di)
- v2di __builtin_ia32_aesenclast128 (v2di, v2di)
- v2di __builtin_ia32_aesdec128 (v2di, v2di)
- v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
- v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
- v2di __builtin_ia32_aesimc128 (v2di)
- The following built-in function is available when '-mpclmul' is used.
- 'v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)'
- Generates the 'pclmulqdq' machine instruction.
- The following built-in function is available when '-mfsgsbase' is used.
- All of them generate the machine instruction that is part of the name.
- unsigned int __builtin_ia32_rdfsbase32 (void)
- unsigned long long __builtin_ia32_rdfsbase64 (void)
- unsigned int __builtin_ia32_rdgsbase32 (void)
- unsigned long long __builtin_ia32_rdgsbase64 (void)
- void _writefsbase_u32 (unsigned int)
- void _writefsbase_u64 (unsigned long long)
- void _writegsbase_u32 (unsigned int)
- void _writegsbase_u64 (unsigned long long)
- The following built-in function is available when '-mrdrnd' is used.
- All of them generate the machine instruction that is part of the name.
- unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
- unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
- unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
- The following built-in functions are available when '-msse4a' is used.
- All of them generate the machine instruction that is part of the name.
- void __builtin_ia32_movntsd (double *, v2df)
- void __builtin_ia32_movntss (float *, v4sf)
- v2di __builtin_ia32_extrq (v2di, v16qi)
- v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
- v2di __builtin_ia32_insertq (v2di, v2di)
- v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
- The following built-in functions are available when '-mxop' is used.
- v2df __builtin_ia32_vfrczpd (v2df)
- v4sf __builtin_ia32_vfrczps (v4sf)
- v2df __builtin_ia32_vfrczsd (v2df)
- v4sf __builtin_ia32_vfrczss (v4sf)
- v4df __builtin_ia32_vfrczpd256 (v4df)
- v8sf __builtin_ia32_vfrczps256 (v8sf)
- v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
- v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
- v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
- v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
- v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
- v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
- v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
- v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
- v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
- v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
- v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
- v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
- v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
- v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
- v4si __builtin_ia32_vpcomeqd (v4si, v4si)
- v2di __builtin_ia32_vpcomeqq (v2di, v2di)
- v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomequd (v4si, v4si)
- v2di __builtin_ia32_vpcomequq (v2di, v2di)
- v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
- v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
- v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
- v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomged (v4si, v4si)
- v2di __builtin_ia32_vpcomgeq (v2di, v2di)
- v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomgeud (v4si, v4si)
- v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomgtd (v4si, v4si)
- v2di __builtin_ia32_vpcomgtq (v2di, v2di)
- v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomgtud (v4si, v4si)
- v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomled (v4si, v4si)
- v2di __builtin_ia32_vpcomleq (v2di, v2di)
- v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomleud (v4si, v4si)
- v2di __builtin_ia32_vpcomleuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomltd (v4si, v4si)
- v2di __builtin_ia32_vpcomltq (v2di, v2di)
- v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomltud (v4si, v4si)
- v2di __builtin_ia32_vpcomltuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomned (v4si, v4si)
- v2di __builtin_ia32_vpcomneq (v2di, v2di)
- v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomneud (v4si, v4si)
- v2di __builtin_ia32_vpcomneuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
- v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
- v4si __builtin_ia32_vpcomtrued (v4si, v4si)
- v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
- v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
- v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
- v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
- v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
- v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
- v4si __builtin_ia32_vphaddbd (v16qi)
- v2di __builtin_ia32_vphaddbq (v16qi)
- v8hi __builtin_ia32_vphaddbw (v16qi)
- v2di __builtin_ia32_vphadddq (v4si)
- v4si __builtin_ia32_vphaddubd (v16qi)
- v2di __builtin_ia32_vphaddubq (v16qi)
- v8hi __builtin_ia32_vphaddubw (v16qi)
- v2di __builtin_ia32_vphaddudq (v4si)
- v4si __builtin_ia32_vphadduwd (v8hi)
- v2di __builtin_ia32_vphadduwq (v8hi)
- v4si __builtin_ia32_vphaddwd (v8hi)
- v2di __builtin_ia32_vphaddwq (v8hi)
- v8hi __builtin_ia32_vphsubbw (v16qi)
- v2di __builtin_ia32_vphsubdq (v4si)
- v4si __builtin_ia32_vphsubwd (v8hi)
- v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
- v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
- v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
- v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
- v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
- v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
- v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
- v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
- v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
- v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
- v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
- v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
- v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
- v16qi __builtin_ia32_vprotb (v16qi, v16qi)
- v4si __builtin_ia32_vprotd (v4si, v4si)
- v2di __builtin_ia32_vprotq (v2di, v2di)
- v8hi __builtin_ia32_vprotw (v8hi, v8hi)
- v16qi __builtin_ia32_vpshab (v16qi, v16qi)
- v4si __builtin_ia32_vpshad (v4si, v4si)
- v2di __builtin_ia32_vpshaq (v2di, v2di)
- v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
- v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
- v4si __builtin_ia32_vpshld (v4si, v4si)
- v2di __builtin_ia32_vpshlq (v2di, v2di)
- v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
- The following built-in functions are available when '-mfma4' is used.
- All of them generate the machine instruction that is part of the name.
- v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
- v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
- v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
- v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
- v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
- v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
- v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
- v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
- v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
- v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
- The following built-in functions are available when '-mlwp' is used.
- void __builtin_ia32_llwpcb16 (void *);
- void __builtin_ia32_llwpcb32 (void *);
- void __builtin_ia32_llwpcb64 (void *);
- void * __builtin_ia32_llwpcb16 (void);
- void * __builtin_ia32_llwpcb32 (void);
- void * __builtin_ia32_llwpcb64 (void);
- void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
- void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
- void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
- unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
- unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
- unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
- The following built-in functions are available when '-mbmi' is used.
- All of them generate the machine instruction that is part of the name.
- unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
- unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
- The following built-in functions are available when '-mbmi2' is used.
- All of them generate the machine instruction that is part of the name.
- unsigned int _bzhi_u32 (unsigned int, unsigned int)
- unsigned int _pdep_u32 (unsigned int, unsigned int)
- unsigned int _pext_u32 (unsigned int, unsigned int)
- unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
- unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
- unsigned long long _pext_u64 (unsigned long long, unsigned long long)
- The following built-in functions are available when '-mlzcnt' is used.
- All of them generate the machine instruction that is part of the name.
- unsigned short __builtin_ia32_lzcnt_u16(unsigned short);
- unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
- unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
- The following built-in functions are available when '-mfxsr' is used.
- All of them generate the machine instruction that is part of the name.
- void __builtin_ia32_fxsave (void *)
- void __builtin_ia32_fxrstor (void *)
- void __builtin_ia32_fxsave64 (void *)
- void __builtin_ia32_fxrstor64 (void *)
- The following built-in functions are available when '-mxsave' is used.
- All of them generate the machine instruction that is part of the name.
- void __builtin_ia32_xsave (void *, long long)
- void __builtin_ia32_xrstor (void *, long long)
- void __builtin_ia32_xsave64 (void *, long long)
- void __builtin_ia32_xrstor64 (void *, long long)
- The following built-in functions are available when '-mxsaveopt' is
- used. All of them generate the machine instruction that is part of the
- name.
- void __builtin_ia32_xsaveopt (void *, long long)
- void __builtin_ia32_xsaveopt64 (void *, long long)
- The following built-in functions are available when '-mtbm' is used.
- Both of them generate the immediate form of the bextr machine
- instruction.
- unsigned int __builtin_ia32_bextri_u32 (unsigned int,
- const unsigned int);
- unsigned long long __builtin_ia32_bextri_u64 (unsigned long long,
- const unsigned long long);
- The following built-in functions are available when '-m3dnow' is used.
- All of them generate the machine instruction that is part of the name.
- void __builtin_ia32_femms (void)
- v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
- v2si __builtin_ia32_pf2id (v2sf)
- v2sf __builtin_ia32_pfacc (v2sf, v2sf)
- v2sf __builtin_ia32_pfadd (v2sf, v2sf)
- v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
- v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
- v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
- v2sf __builtin_ia32_pfmax (v2sf, v2sf)
- v2sf __builtin_ia32_pfmin (v2sf, v2sf)
- v2sf __builtin_ia32_pfmul (v2sf, v2sf)
- v2sf __builtin_ia32_pfrcp (v2sf)
- v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
- v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
- v2sf __builtin_ia32_pfrsqrt (v2sf)
- v2sf __builtin_ia32_pfsub (v2sf, v2sf)
- v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
- v2sf __builtin_ia32_pi2fd (v2si)
- v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
- The following built-in functions are available when '-m3dnowa' is used.
- All of them generate the machine instruction that is part of the name.
- v2si __builtin_ia32_pf2iw (v2sf)
- v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
- v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
- v2sf __builtin_ia32_pi2fw (v2si)
- v2sf __builtin_ia32_pswapdsf (v2sf)
- v2si __builtin_ia32_pswapdsi (v2si)
- The following built-in functions are available when '-mrtm' is used
- They are used for restricted transactional memory. These are the
- internal low level functions. Normally the functions in *note x86
- transactional memory intrinsics:: should be used instead.
- int __builtin_ia32_xbegin ()
- void __builtin_ia32_xend ()
- void __builtin_ia32_xabort (status)
- int __builtin_ia32_xtest ()
- The following built-in functions are available when '-mmwaitx' is used.
- All of them generate the machine instruction that is part of the name.
- void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
- void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
- The following built-in functions are available when '-mclzero' is used.
- All of them generate the machine instruction that is part of the name.
- void __builtin_i32_clzero (void *)
- The following built-in functions are available when '-mpku' is used.
- They generate reads and writes to PKRU.
- void __builtin_ia32_wrpkru (unsigned int)
- unsigned int __builtin_ia32_rdpkru ()
- The following built-in functions are available when '-mcet' or
- '-mshstk' option is used. They support shadow stack machine
- instructions from Intel Control-flow Enforcement Technology (CET). Each
- built-in function generates the machine instruction that is part of the
- function's name. These are the internal low-level functions. Normally
- the functions in *note x86 control-flow protection intrinsics:: should
- be used instead.
- unsigned int __builtin_ia32_rdsspd (void)
- unsigned long long __builtin_ia32_rdsspq (void)
- void __builtin_ia32_incsspd (unsigned int)
- void __builtin_ia32_incsspq (unsigned long long)
- void __builtin_ia32_saveprevssp(void);
- void __builtin_ia32_rstorssp(void *);
- void __builtin_ia32_wrssd(unsigned int, void *);
- void __builtin_ia32_wrssq(unsigned long long, void *);
- void __builtin_ia32_wrussd(unsigned int, void *);
- void __builtin_ia32_wrussq(unsigned long long, void *);
- void __builtin_ia32_setssbsy(void);
- void __builtin_ia32_clrssbsy(void *);
- File: gcc.info, Node: x86 transactional memory intrinsics, Next: x86 control-flow protection intrinsics, Prev: x86 Built-in Functions, Up: Target Builtins
- 6.59.34 x86 Transactional Memory Intrinsics
- -------------------------------------------
- These hardware transactional memory intrinsics for x86 allow you to use
- memory transactions with RTM (Restricted Transactional Memory). This
- support is enabled with the '-mrtm' option. For using HLE (Hardware
- Lock Elision) see *note x86 specific memory model extensions for
- transactional memory:: instead.
- A memory transaction commits all changes to memory in an atomic way, as
- visible to other threads. If the transaction fails it is rolled back
- and all side effects discarded.
- Generally there is no guarantee that a memory transaction ever succeeds
- and suitable fallback code always needs to be supplied.
- -- RTM Function: unsigned _xbegin ()
- Start a RTM (Restricted Transactional Memory) transaction. Returns
- '_XBEGIN_STARTED' when the transaction started successfully (note
- this is not 0, so the constant has to be explicitly tested).
- If the transaction aborts, all side effects are undone and an abort
- code encoded as a bit mask is returned. The following macros are
- defined:
- '_XABORT_EXPLICIT'
- Transaction was explicitly aborted with '_xabort'. The
- parameter passed to '_xabort' is available with
- '_XABORT_CODE(status)'.
- '_XABORT_RETRY'
- Transaction retry is possible.
- '_XABORT_CONFLICT'
- Transaction abort due to a memory conflict with another
- thread.
- '_XABORT_CAPACITY'
- Transaction abort due to the transaction using too much
- memory.
- '_XABORT_DEBUG'
- Transaction abort due to a debug trap.
- '_XABORT_NESTED'
- Transaction abort in an inner nested transaction.
- There is no guarantee any transaction ever succeeds, so there
- always needs to be a valid fallback path.
- -- RTM Function: void _xend ()
- Commit the current transaction. When no transaction is active this
- faults. All memory side effects of the transaction become visible
- to other threads in an atomic manner.
- -- RTM Function: int _xtest ()
- Return a nonzero value if a transaction is currently active,
- otherwise 0.
- -- RTM Function: void _xabort (status)
- Abort the current transaction. When no transaction is active this
- is a no-op. The STATUS is an 8-bit constant; its value is encoded
- in the return value from '_xbegin'.
- Here is an example showing handling for '_XABORT_RETRY' and a fallback
- path for other failures:
- #include <immintrin.h>
- int n_tries, max_tries;
- unsigned status = _XABORT_EXPLICIT;
- ...
- for (n_tries = 0; n_tries < max_tries; n_tries++)
- {
- status = _xbegin ();
- if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
- break;
- }
- if (status == _XBEGIN_STARTED)
- {
- ... transaction code...
- _xend ();
- }
- else
- {
- ... non-transactional fallback path...
- }
- Note that, in most cases, the transactional and non-transactional code
- must synchronize together to ensure consistency.
- File: gcc.info, Node: x86 control-flow protection intrinsics, Prev: x86 transactional memory intrinsics, Up: Target Builtins
- 6.59.35 x86 Control-Flow Protection Intrinsics
- ----------------------------------------------
- -- CET Function: ret_type _get_ssp (void)
- Get the current value of shadow stack pointer if shadow stack
- support from Intel CET is enabled in the hardware or '0' otherwise.
- The 'ret_type' is 'unsigned long long' for 64-bit targets and
- 'unsigned int' for 32-bit targets.
- -- CET Function: void _inc_ssp (unsigned int)
- Increment the current shadow stack pointer by the size specified by
- the function argument. The argument is masked to a byte value for
- security reasons, so to increment by more than 255 bytes you must
- call the function multiple times.
- The shadow stack unwind code looks like:
- #include <immintrin.h>
- /* Unwind the shadow stack for EH. */
- #define _Unwind_Frames_Extra(x) \
- do \
- { \
- _Unwind_Word ssp = _get_ssp (); \
- if (ssp != 0) \
- { \
- _Unwind_Word tmp = (x); \
- while (tmp > 255) \
- { \
- _inc_ssp (tmp); \
- tmp -= 255; \
- } \
- _inc_ssp (tmp); \
- } \
- } \
- while (0)
- This code runs unconditionally on all 64-bit processors. For 32-bit
- processors the code runs on those that support multi-byte NOP
- instructions.
- File: gcc.info, Node: Target Format Checks, Next: Pragmas, Prev: Target Builtins, Up: C Extensions
- 6.60 Format Checks Specific to Particular Target Machines
- =========================================================
- For some target machines, GCC supports additional options to the format
- attribute (*note Declaring Attributes of Functions: Function
- Attributes.).
- * Menu:
- * Solaris Format Checks::
- * Darwin Format Checks::
- File: gcc.info, Node: Solaris Format Checks, Next: Darwin Format Checks, Up: Target Format Checks
- 6.60.1 Solaris Format Checks
- ----------------------------
- Solaris targets support the 'cmn_err' (or '__cmn_err__') format check.
- 'cmn_err' accepts a subset of the standard 'printf' conversions, and the
- two-argument '%b' conversion for displaying bit-fields. See the Solaris
- man page for 'cmn_err' for more information.
- File: gcc.info, Node: Darwin Format Checks, Prev: Solaris Format Checks, Up: Target Format Checks
- 6.60.2 Darwin Format Checks
- ---------------------------
- Darwin targets support the 'CFString' (or '__CFString__') in the format
- attribute context. Declarations made with such attribution are parsed
- for correct syntax and format argument types. However, parsing of the
- format string itself is currently undefined and is not carried out by
- this version of the compiler.
- Additionally, 'CFStringRefs' (defined by the 'CoreFoundation' headers)
- may also be used as format arguments. Note that the relevant headers
- are only likely to be available on Darwin (OSX) installations. On such
- installations, the XCode and system documentation provide descriptions
- of 'CFString', 'CFStringRefs' and associated functions.
- File: gcc.info, Node: Pragmas, Next: Unnamed Fields, Prev: Target Format Checks, Up: C Extensions
- 6.61 Pragmas Accepted by GCC
- ============================
- GCC supports several types of pragmas, primarily in order to compile
- code originally written for other compilers. Note that in general we do
- not recommend the use of pragmas; *Note Function Attributes::, for
- further explanation.
- * Menu:
- * AArch64 Pragmas::
- * ARM Pragmas::
- * M32C Pragmas::
- * MeP Pragmas::
- * RS/6000 and PowerPC Pragmas::
- * S/390 Pragmas::
- * Darwin Pragmas::
- * Solaris Pragmas::
- * Symbol-Renaming Pragmas::
- * Structure-Layout Pragmas::
- * Weak Pragmas::
- * Diagnostic Pragmas::
- * Visibility Pragmas::
- * Push/Pop Macro Pragmas::
- * Function Specific Option Pragmas::
- * Loop-Specific Pragmas::
- File: gcc.info, Node: AArch64 Pragmas, Next: ARM Pragmas, Up: Pragmas
- 6.61.1 AArch64 Pragmas
- ----------------------
- The pragmas defined by the AArch64 target correspond to the AArch64
- target function attributes. They can be specified as below:
- #pragma GCC target("string")
- where 'STRING' can be any string accepted as an AArch64 target
- attribute. *Note AArch64 Function Attributes::, for more details on the
- permissible values of 'string'.
- File: gcc.info, Node: ARM Pragmas, Next: M32C Pragmas, Prev: AArch64 Pragmas, Up: Pragmas
- 6.61.2 ARM Pragmas
- ------------------
- The ARM target defines pragmas for controlling the default addition of
- 'long_call' and 'short_call' attributes to functions. *Note Function
- Attributes::, for information about the effects of these attributes.
- 'long_calls'
- Set all subsequent functions to have the 'long_call' attribute.
- 'no_long_calls'
- Set all subsequent functions to have the 'short_call' attribute.
- 'long_calls_off'
- Do not affect the 'long_call' or 'short_call' attributes of
- subsequent functions.
- File: gcc.info, Node: M32C Pragmas, Next: MeP Pragmas, Prev: ARM Pragmas, Up: Pragmas
- 6.61.3 M32C Pragmas
- -------------------
- 'GCC memregs NUMBER'
- Overrides the command-line option '-memregs=' for the current file.
- Use with care! This pragma must be before any function in the
- file, and mixing different memregs values in different objects may
- make them incompatible. This pragma is useful when a
- performance-critical function uses a memreg for temporary values,
- as it may allow you to reduce the number of memregs used.
- 'ADDRESS NAME ADDRESS'
- For any declared symbols matching NAME, this does three things to
- that symbol: it forces the symbol to be located at the given
- address (a number), it forces the symbol to be volatile, and it
- changes the symbol's scope to be static. This pragma exists for
- compatibility with other compilers, but note that the common
- '1234H' numeric syntax is not supported (use '0x1234' instead).
- Example:
- #pragma ADDRESS port3 0x103
- char port3;
- File: gcc.info, Node: MeP Pragmas, Next: RS/6000 and PowerPC Pragmas, Prev: M32C Pragmas, Up: Pragmas
- 6.61.4 MeP Pragmas
- ------------------
- 'custom io_volatile (on|off)'
- Overrides the command-line option '-mio-volatile' for the current
- file. Note that for compatibility with future GCC releases, this
- option should only be used once before any 'io' variables in each
- file.
- 'GCC coprocessor available REGISTERS'
- Specifies which coprocessor registers are available to the register
- allocator. REGISTERS may be a single register, register range
- separated by ellipses, or comma-separated list of those. Example:
- #pragma GCC coprocessor available $c0...$c10, $c28
- 'GCC coprocessor call_saved REGISTERS'
- Specifies which coprocessor registers are to be saved and restored
- by any function using them. REGISTERS may be a single register,
- register range separated by ellipses, or comma-separated list of
- those. Example:
- #pragma GCC coprocessor call_saved $c4...$c6, $c31
- 'GCC coprocessor subclass '(A|B|C|D)' = REGISTERS'
- Creates and defines a register class. These register classes can
- be used by inline 'asm' constructs. REGISTERS may be a single
- register, register range separated by ellipses, or comma-separated
- list of those. Example:
- #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
- asm ("cpfoo %0" : "=B" (x));
- 'GCC disinterrupt NAME , NAME ...'
- For the named functions, the compiler adds code to disable
- interrupts for the duration of those functions. If any functions
- so named are not encountered in the source, a warning is emitted
- that the pragma is not used. Examples:
- #pragma disinterrupt foo
- #pragma disinterrupt bar, grill
- int foo () { ... }
- 'GCC call NAME , NAME ...'
- For the named functions, the compiler always uses a
- register-indirect call model when calling the named functions.
- Examples:
- extern int foo ();
- #pragma call foo
- File: gcc.info, Node: RS/6000 and PowerPC Pragmas, Next: S/390 Pragmas, Prev: MeP Pragmas, Up: Pragmas
- 6.61.5 RS/6000 and PowerPC Pragmas
- ----------------------------------
- The RS/6000 and PowerPC targets define one pragma for controlling
- whether or not the 'longcall' attribute is added to function
- declarations by default. This pragma overrides the '-mlongcall' option,
- but not the 'longcall' and 'shortcall' attributes. *Note RS/6000 and
- PowerPC Options::, for more information about when long calls are and
- are not necessary.
- 'longcall (1)'
- Apply the 'longcall' attribute to all subsequent function
- declarations.
- 'longcall (0)'
- Do not apply the 'longcall' attribute to subsequent function
- declarations.
- File: gcc.info, Node: S/390 Pragmas, Next: Darwin Pragmas, Prev: RS/6000 and PowerPC Pragmas, Up: Pragmas
- 6.61.6 S/390 Pragmas
- --------------------
- The pragmas defined by the S/390 target correspond to the S/390 target
- function attributes and some the additional options:
- 'zvector'
- 'no-zvector'
- Note that options of the pragma, unlike options of the target
- attribute, do change the value of preprocessor macros like '__VEC__'.
- They can be specified as below:
- #pragma GCC target("string[,string]...")
- #pragma GCC target("string"[,"string"]...)
- File: gcc.info, Node: Darwin Pragmas, Next: Solaris Pragmas, Prev: S/390 Pragmas, Up: Pragmas
- 6.61.7 Darwin Pragmas
- ---------------------
- The following pragmas are available for all architectures running the
- Darwin operating system. These are useful for compatibility with other
- Mac OS compilers.
- 'mark TOKENS...'
- This pragma is accepted, but has no effect.
- 'options align=ALIGNMENT'
- This pragma sets the alignment of fields in structures. The values
- of ALIGNMENT may be 'mac68k', to emulate m68k alignment, or
- 'power', to emulate PowerPC alignment. Uses of this pragma nest
- properly; to restore the previous setting, use 'reset' for the
- ALIGNMENT.
- 'segment TOKENS...'
- This pragma is accepted, but has no effect.
- 'unused (VAR [, VAR]...)'
- This pragma declares variables to be possibly unused. GCC does not
- produce warnings for the listed variables. The effect is similar
- to that of the 'unused' attribute, except that this pragma may
- appear anywhere within the variables' scopes.
- File: gcc.info, Node: Solaris Pragmas, Next: Symbol-Renaming Pragmas, Prev: Darwin Pragmas, Up: Pragmas
- 6.61.8 Solaris Pragmas
- ----------------------
- The Solaris target supports '#pragma redefine_extname' (*note
- Symbol-Renaming Pragmas::). It also supports additional '#pragma'
- directives for compatibility with the system compiler.
- 'align ALIGNMENT (VARIABLE [, VARIABLE]...)'
- Increase the minimum alignment of each VARIABLE to ALIGNMENT. This
- is the same as GCC's 'aligned' attribute *note Variable
- Attributes::). Macro expansion occurs on the arguments to this
- pragma when compiling C and Objective-C. It does not currently
- occur when compiling C++, but this is a bug which may be fixed in a
- future release.
- 'fini (FUNCTION [, FUNCTION]...)'
- This pragma causes each listed FUNCTION to be called after main, or
- during shared module unloading, by adding a call to the '.fini'
- section.
- 'init (FUNCTION [, FUNCTION]...)'
- This pragma causes each listed FUNCTION to be called during
- initialization (before 'main') or during shared module loading, by
- adding a call to the '.init' section.
- File: gcc.info, Node: Symbol-Renaming Pragmas, Next: Structure-Layout Pragmas, Prev: Solaris Pragmas, Up: Pragmas
- 6.61.9 Symbol-Renaming Pragmas
- ------------------------------
- GCC supports a '#pragma' directive that changes the name used in
- assembly for a given declaration. While this pragma is supported on all
- platforms, it is intended primarily to provide compatibility with the
- Solaris system headers. This effect can also be achieved using the asm
- labels extension (*note Asm Labels::).
- 'redefine_extname OLDNAME NEWNAME'
- This pragma gives the C function OLDNAME the assembly symbol
- NEWNAME. The preprocessor macro '__PRAGMA_REDEFINE_EXTNAME' is
- defined if this pragma is available (currently on all platforms).
- This pragma and the asm labels extension interact in a complicated
- manner. Here are some corner cases you may want to be aware of:
- 1. This pragma silently applies only to declarations with external
- linkage. Asm labels do not have this restriction.
- 2. In C++, this pragma silently applies only to declarations with "C"
- linkage. Again, asm labels do not have this restriction.
- 3. If either of the ways of changing the assembly name of a
- declaration are applied to a declaration whose assembly name has
- already been determined (either by a previous use of one of these
- features, or because the compiler needed the assembly name in order
- to generate code), and the new name is different, a warning issues
- and the name does not change.
- 4. The OLDNAME used by '#pragma redefine_extname' is always the
- C-language name.
- File: gcc.info, Node: Structure-Layout Pragmas, Next: Weak Pragmas, Prev: Symbol-Renaming Pragmas, Up: Pragmas
- 6.61.10 Structure-Layout Pragmas
- --------------------------------
- For compatibility with Microsoft Windows compilers, GCC supports a set
- of '#pragma' directives that change the maximum alignment of members of
- structures (other than zero-width bit-fields), unions, and classes
- subsequently defined. The N value below always is required to be a
- small power of two and specifies the new alignment in bytes.
- 1. '#pragma pack(N)' simply sets the new alignment.
- 2. '#pragma pack()' sets the alignment to the one that was in effect
- when compilation started (see also command-line option
- '-fpack-struct[=N]' *note Code Gen Options::).
- 3. '#pragma pack(push[,N])' pushes the current alignment setting on an
- internal stack and then optionally sets the new alignment.
- 4. '#pragma pack(pop)' restores the alignment setting to the one saved
- at the top of the internal stack (and removes that stack entry).
- Note that '#pragma pack([N])' does not influence this internal
- stack; thus it is possible to have '#pragma pack(push)' followed by
- multiple '#pragma pack(N)' instances and finalized by a single
- '#pragma pack(pop)'.
- Some targets, e.g. x86 and PowerPC, support the '#pragma ms_struct'
- directive which lays out structures and unions subsequently defined as
- the documented '__attribute__ ((ms_struct))'.
- 1. '#pragma ms_struct on' turns on the Microsoft layout.
- 2. '#pragma ms_struct off' turns off the Microsoft layout.
- 3. '#pragma ms_struct reset' goes back to the default layout.
- Most targets also support the '#pragma scalar_storage_order' directive
- which lays out structures and unions subsequently defined as the
- documented '__attribute__ ((scalar_storage_order))'.
- 1. '#pragma scalar_storage_order big-endian' sets the storage order of
- the scalar fields to big-endian.
- 2. '#pragma scalar_storage_order little-endian' sets the storage order
- of the scalar fields to little-endian.
- 3. '#pragma scalar_storage_order default' goes back to the endianness
- that was in effect when compilation started (see also command-line
- option '-fsso-struct=ENDIANNESS' *note C Dialect Options::).
- File: gcc.info, Node: Weak Pragmas, Next: Diagnostic Pragmas, Prev: Structure-Layout Pragmas, Up: Pragmas
- 6.61.11 Weak Pragmas
- --------------------
- For compatibility with SVR4, GCC supports a set of '#pragma' directives
- for declaring symbols to be weak, and defining weak aliases.
- '#pragma weak SYMBOL'
- This pragma declares SYMBOL to be weak, as if the declaration had
- the attribute of the same name. The pragma may appear before or
- after the declaration of SYMBOL. It is not an error for SYMBOL to
- never be defined at all.
- '#pragma weak SYMBOL1 = SYMBOL2'
- This pragma declares SYMBOL1 to be a weak alias of SYMBOL2. It is
- an error if SYMBOL2 is not defined in the current translation unit.
- File: gcc.info, Node: Diagnostic Pragmas, Next: Visibility Pragmas, Prev: Weak Pragmas, Up: Pragmas
- 6.61.12 Diagnostic Pragmas
- --------------------------
- GCC allows the user to selectively enable or disable certain types of
- diagnostics, and change the kind of the diagnostic. For example, a
- project's policy might require that all sources compile with '-Werror'
- but certain files might have exceptions allowing specific types of
- warnings. Or, a project might selectively enable diagnostics and treat
- them as errors depending on which preprocessor macros are defined.
- '#pragma GCC diagnostic KIND OPTION'
- Modifies the disposition of a diagnostic. Note that not all
- diagnostics are modifiable; at the moment only warnings (normally
- controlled by '-W...') can be controlled, and not all of them. Use
- '-fdiagnostics-show-option' to determine which diagnostics are
- controllable and which option controls them.
- KIND is 'error' to treat this diagnostic as an error, 'warning' to
- treat it like a warning (even if '-Werror' is in effect), or
- 'ignored' if the diagnostic is to be ignored. OPTION is a double
- quoted string that matches the command-line option.
- #pragma GCC diagnostic warning "-Wformat"
- #pragma GCC diagnostic error "-Wformat"
- #pragma GCC diagnostic ignored "-Wformat"
- Note that these pragmas override any command-line options. GCC
- keeps track of the location of each pragma, and issues diagnostics
- according to the state as of that point in the source file. Thus,
- pragmas occurring after a line do not affect diagnostics caused by
- that line.
- '#pragma GCC diagnostic push'
- '#pragma GCC diagnostic pop'
- Causes GCC to remember the state of the diagnostics as of each
- 'push', and restore to that point at each 'pop'. If a 'pop' has no
- matching 'push', the command-line options are restored.
- #pragma GCC diagnostic error "-Wuninitialized"
- foo(a); /* error is given for this one */
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wuninitialized"
- foo(b); /* no diagnostic for this one */
- #pragma GCC diagnostic pop
- foo(c); /* error is given for this one */
- #pragma GCC diagnostic pop
- foo(d); /* depends on command-line options */
- GCC also offers a simple mechanism for printing messages during
- compilation.
- '#pragma message STRING'
- Prints STRING as a compiler message on compilation. The message is
- informational only, and is neither a compilation warning nor an
- error.
- #pragma message "Compiling " __FILE__ "..."
- STRING may be parenthesized, and is printed with location
- information. For example,
- #define DO_PRAGMA(x) _Pragma (#x)
- #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
- TODO(Remember to fix this)
- prints '/tmp/file.c:4: note: #pragma message: TODO - Remember to
- fix this'.
- File: gcc.info, Node: Visibility Pragmas, Next: Push/Pop Macro Pragmas, Prev: Diagnostic Pragmas, Up: Pragmas
- 6.61.13 Visibility Pragmas
- --------------------------
- '#pragma GCC visibility push(VISIBILITY)'
- '#pragma GCC visibility pop'
- This pragma allows the user to set the visibility for multiple
- declarations without having to give each a visibility attribute
- (*note Function Attributes::).
- In C++, '#pragma GCC visibility' affects only namespace-scope
- declarations. Class members and template specializations are not
- affected; if you want to override the visibility for a particular
- member or instantiation, you must use an attribute.
- File: gcc.info, Node: Push/Pop Macro Pragmas, Next: Function Specific Option Pragmas, Prev: Visibility Pragmas, Up: Pragmas
- 6.61.14 Push/Pop Macro Pragmas
- ------------------------------
- For compatibility with Microsoft Windows compilers, GCC supports
- '#pragma push_macro("MACRO_NAME")' and '#pragma
- pop_macro("MACRO_NAME")'.
- '#pragma push_macro("MACRO_NAME")'
- This pragma saves the value of the macro named as MACRO_NAME to the
- top of the stack for this macro.
- '#pragma pop_macro("MACRO_NAME")'
- This pragma sets the value of the macro named as MACRO_NAME to the
- value on top of the stack for this macro. If the stack for
- MACRO_NAME is empty, the value of the macro remains unchanged.
- For example:
- #define X 1
- #pragma push_macro("X")
- #undef X
- #define X -1
- #pragma pop_macro("X")
- int x [X];
- In this example, the definition of X as 1 is saved by '#pragma
- push_macro' and restored by '#pragma pop_macro'.
- File: gcc.info, Node: Function Specific Option Pragmas, Next: Loop-Specific Pragmas, Prev: Push/Pop Macro Pragmas, Up: Pragmas
- 6.61.15 Function Specific Option Pragmas
- ----------------------------------------
- '#pragma GCC target ("STRING"...)'
- This pragma allows you to set target specific options for functions
- defined later in the source file. One or more strings can be
- specified. Each function that is defined after this point is as if
- 'attribute((target("STRING")))' was specified for that function.
- The parenthesis around the options is optional. *Note Function
- Attributes::, for more information about the 'target' attribute and
- the attribute syntax.
- The '#pragma GCC target' pragma is presently implemented for x86,
- ARM, AArch64, PowerPC, S/390, and Nios II targets only.
- '#pragma GCC optimize ("STRING"...)'
- This pragma allows you to set global optimization options for
- functions defined later in the source file. One or more strings
- can be specified. Each function that is defined after this point
- is as if 'attribute((optimize("STRING")))' was specified for that
- function. The parenthesis around the options is optional. *Note
- Function Attributes::, for more information about the 'optimize'
- attribute and the attribute syntax.
- '#pragma GCC push_options'
- '#pragma GCC pop_options'
- These pragmas maintain a stack of the current target and
- optimization options. It is intended for include files where you
- temporarily want to switch to using a different '#pragma GCC
- target' or '#pragma GCC optimize' and then to pop back to the
- previous options.
- '#pragma GCC reset_options'
- This pragma clears the current '#pragma GCC target' and '#pragma
- GCC optimize' to use the default switches as specified on the
- command line.
- File: gcc.info, Node: Loop-Specific Pragmas, Prev: Function Specific Option Pragmas, Up: Pragmas
- 6.61.16 Loop-Specific Pragmas
- -----------------------------
- '#pragma GCC ivdep'
- With this pragma, the programmer asserts that there are no
- loop-carried dependencies which would prevent consecutive
- iterations of the following loop from executing concurrently with
- SIMD (single instruction multiple data) instructions.
- For example, the compiler can only unconditionally vectorize the
- following loop with the pragma:
- void foo (int n, int *a, int *b, int *c)
- {
- int i, j;
- #pragma GCC ivdep
- for (i = 0; i < n; ++i)
- a[i] = b[i] + c[i];
- }
- In this example, using the 'restrict' qualifier had the same
- effect. In the following example, that would not be possible.
- Assume k < -m or k >= m. Only with the pragma, the compiler knows
- that it can unconditionally vectorize the following loop:
- void ignore_vec_dep (int *a, int k, int c, int m)
- {
- #pragma GCC ivdep
- for (int i = 0; i < m; i++)
- a[i] = a[i + k] * c;
- }
- '#pragma GCC unroll N'
- You can use this pragma to control how many times a loop should be
- unrolled. It must be placed immediately before a 'for', 'while' or
- 'do' loop or a '#pragma GCC ivdep', and applies only to the loop
- that follows. N is an integer constant expression specifying the
- unrolling factor. The values of 0 and 1 block any unrolling of the
- loop.
- File: gcc.info, Node: Unnamed Fields, Next: Thread-Local, Prev: Pragmas, Up: C Extensions
- 6.62 Unnamed Structure and Union Fields
- =======================================
- As permitted by ISO C11 and for compatibility with other compilers, GCC
- allows you to define a structure or union that contains, as fields,
- structures and unions without names. For example:
- struct {
- int a;
- union {
- int b;
- float c;
- };
- int d;
- } foo;
- In this example, you are able to access members of the unnamed union
- with code like 'foo.b'. Note that only unnamed structs and unions are
- allowed, you may not have, for example, an unnamed 'int'.
- You must never create such structures that cause ambiguous field
- definitions. For example, in this structure:
- struct {
- int a;
- struct {
- int a;
- };
- } foo;
- it is ambiguous which 'a' is being referred to with 'foo.a'. The
- compiler gives errors for such constructs.
- Unless '-fms-extensions' is used, the unnamed field must be a structure
- or union definition without a tag (for example, 'struct { int a; };').
- If '-fms-extensions' is used, the field may also be a definition with a
- tag such as 'struct foo { int a; };', a reference to a previously
- defined structure or union such as 'struct foo;', or a reference to a
- 'typedef' name for a previously defined structure or union type.
- The option '-fplan9-extensions' enables '-fms-extensions' as well as
- two other extensions. First, a pointer to a structure is automatically
- converted to a pointer to an anonymous field for assignments and
- function calls. For example:
- struct s1 { int a; };
- struct s2 { struct s1; };
- extern void f1 (struct s1 *);
- void f2 (struct s2 *p) { f1 (p); }
- In the call to 'f1' inside 'f2', the pointer 'p' is converted into a
- pointer to the anonymous field.
- Second, when the type of an anonymous field is a 'typedef' for a
- 'struct' or 'union', code may refer to the field using the name of the
- 'typedef'.
- typedef struct { int a; } s1;
- struct s2 { s1; };
- s1 f1 (struct s2 *p) { return p->s1; }
- These usages are only permitted when they are not ambiguous.
- File: gcc.info, Node: Thread-Local, Next: Binary constants, Prev: Unnamed Fields, Up: C Extensions
- 6.63 Thread-Local Storage
- =========================
- Thread-local storage (TLS) is a mechanism by which variables are
- allocated such that there is one instance of the variable per extant
- thread. The runtime model GCC uses to implement this originates in the
- IA-64 processor-specific ABI, but has since been migrated to other
- processors as well. It requires significant support from the linker
- ('ld'), dynamic linker ('ld.so'), and system libraries ('libc.so' and
- 'libpthread.so'), so it is not available everywhere.
- At the user level, the extension is visible with a new storage class
- keyword: '__thread'. For example:
- __thread int i;
- extern __thread struct state s;
- static __thread char *p;
- The '__thread' specifier may be used alone, with the 'extern' or
- 'static' specifiers, but with no other storage class specifier. When
- used with 'extern' or 'static', '__thread' must appear immediately after
- the other storage class specifier.
- The '__thread' specifier may be applied to any global, file-scoped
- static, function-scoped static, or static data member of a class. It
- may not be applied to block-scoped automatic or non-static data member.
- When the address-of operator is applied to a thread-local variable, it
- is evaluated at run time and returns the address of the current thread's
- instance of that variable. An address so obtained may be used by any
- thread. When a thread terminates, any pointers to thread-local
- variables in that thread become invalid.
- No static initialization may refer to the address of a thread-local
- variable.
- In C++, if an initializer is present for a thread-local variable, it
- must be a CONSTANT-EXPRESSION, as defined in 5.19.2 of the ANSI/ISO C++
- standard.
- See ELF Handling For Thread-Local Storage
- (https://www.akkadia.org/drepper/tls.pdf) for a detailed explanation of
- the four thread-local storage addressing models, and how the runtime is
- expected to function.
- * Menu:
- * C99 Thread-Local Edits::
- * C++98 Thread-Local Edits::
- File: gcc.info, Node: C99 Thread-Local Edits, Next: C++98 Thread-Local Edits, Up: Thread-Local
- 6.63.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage
- -------------------------------------------------------
- The following are a set of changes to ISO/IEC 9899:1999 (aka C99) that
- document the exact semantics of the language extension.
- * '5.1.2 Execution environments'
- Add new text after paragraph 1
- Within either execution environment, a "thread" is a flow of
- control within a program. It is implementation defined
- whether or not there may be more than one thread associated
- with a program. It is implementation defined how threads
- beyond the first are created, the name and type of the
- function called at thread startup, and how threads may be
- terminated. However, objects with thread storage duration
- shall be initialized before thread startup.
- * '6.2.4 Storage durations of objects'
- Add new text before paragraph 3
- An object whose identifier is declared with the storage-class
- specifier '__thread' has "thread storage duration". Its
- lifetime is the entire execution of the thread, and its stored
- value is initialized only once, prior to thread startup.
- * '6.4.1 Keywords'
- Add '__thread'.
- * '6.7.1 Storage-class specifiers'
- Add '__thread' to the list of storage class specifiers in paragraph
- 1.
- Change paragraph 2 to
- With the exception of '__thread', at most one storage-class
- specifier may be given [...]. The '__thread' specifier may be
- used alone, or immediately following 'extern' or 'static'.
- Add new text after paragraph 6
- The declaration of an identifier for a variable that has block
- scope that specifies '__thread' shall also specify either
- 'extern' or 'static'.
- The '__thread' specifier shall be used only with variables.
- File: gcc.info, Node: C++98 Thread-Local Edits, Prev: C99 Thread-Local Edits, Up: Thread-Local
- 6.63.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage
- --------------------------------------------------------
- The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
- that document the exact semantics of the language extension.
- * [intro.execution]
- New text after paragraph 4
- A "thread" is a flow of control within the abstract machine.
- It is implementation defined whether or not there may be more
- than one thread.
- New text after paragraph 7
- It is unspecified whether additional action must be taken to
- ensure when and whether side effects are visible to other
- threads.
- * [lex.key]
- Add '__thread'.
- * [basic.start.main]
- Add after paragraph 5
- The thread that begins execution at the 'main' function is
- called the "main thread". It is implementation defined how
- functions beginning threads other than the main thread are
- designated or typed. A function so designated, as well as the
- 'main' function, is called a "thread startup function". It is
- implementation defined what happens if a thread startup
- function returns. It is implementation defined what happens
- to other threads when any thread calls 'exit'.
- * [basic.start.init]
- Add after paragraph 4
- The storage for an object of thread storage duration shall be
- statically initialized before the first statement of the
- thread startup function. An object of thread storage duration
- shall not require dynamic initialization.
- * [basic.start.term]
- Add after paragraph 3
- The type of an object with thread storage duration shall not
- have a non-trivial destructor, nor shall it be an array type
- whose elements (directly or indirectly) have non-trivial
- destructors.
- * [basic.stc]
- Add "thread storage duration" to the list in paragraph 1.
- Change paragraph 2
- Thread, static, and automatic storage durations are associated
- with objects introduced by declarations [...].
- Add '__thread' to the list of specifiers in paragraph 3.
- * [basic.stc.thread]
- New section before [basic.stc.static]
- The keyword '__thread' applied to a non-local object gives the
- object thread storage duration.
- A local variable or class data member declared both 'static'
- and '__thread' gives the variable or member thread storage
- duration.
- * [basic.stc.static]
- Change paragraph 1
- All objects that have neither thread storage duration, dynamic
- storage duration nor are local [...].
- * [dcl.stc]
- Add '__thread' to the list in paragraph 1.
- Change paragraph 1
- With the exception of '__thread', at most one
- STORAGE-CLASS-SPECIFIER shall appear in a given
- DECL-SPECIFIER-SEQ. The '__thread' specifier may be used
- alone, or immediately following the 'extern' or 'static'
- specifiers. [...]
- Add after paragraph 5
- The '__thread' specifier can be applied only to the names of
- objects and to anonymous unions.
- * [class.mem]
- Add after paragraph 6
- Non-'static' members shall not be '__thread'.
- File: gcc.info, Node: Binary constants, Prev: Thread-Local, Up: C Extensions
- 6.64 Binary Constants using the '0b' Prefix
- ===========================================
- Integer constants can be written as binary constants, consisting of a
- sequence of '0' and '1' digits, prefixed by '0b' or '0B'. This is
- particularly useful in environments that operate a lot on the bit level
- (like microcontrollers).
- The following statements are identical:
- i = 42;
- i = 0x2a;
- i = 052;
- i = 0b101010;
- The type of these constants follows the same rules as for octal or
- hexadecimal integer constants, so suffixes like 'L' or 'UL' can be
- applied.
- File: gcc.info, Node: C++ Extensions, Next: Objective-C, Prev: C Extensions, Up: Top
- 7 Extensions to the C++ Language
- ********************************
- The GNU compiler provides these extensions to the C++ language (and you
- can also use most of the C language extensions in your C++ programs).
- If you want to write code that checks whether these features are
- available, you can test for the GNU compiler the same way as for C
- programs: check for a predefined macro '__GNUC__'. You can also use
- '__GNUG__' to test specifically for GNU C++ (*note Predefined Macros:
- (cpp)Common Predefined Macros.).
- * Menu:
- * C++ Volatiles:: What constitutes an access to a volatile object.
- * Restricted Pointers:: C99 restricted pointers and references.
- * Vague Linkage:: Where G++ puts inlines, vtables and such.
- * C++ Interface:: You can use a single C++ header file for both
- declarations and definitions.
- * Template Instantiation:: Methods for ensuring that exactly one copy of
- each needed template instantiation is emitted.
- * Bound member functions:: You can extract a function pointer to the
- method denoted by a '->*' or '.*' expression.
- * C++ Attributes:: Variable, function, and type attributes for C++ only.
- * Function Multiversioning:: Declaring multiple function versions.
- * Type Traits:: Compiler support for type traits.
- * C++ Concepts:: Improved support for generic programming.
- * Deprecated Features:: Things will disappear from G++.
- * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
- File: gcc.info, Node: C++ Volatiles, Next: Restricted Pointers, Up: C++ Extensions
- 7.1 When is a Volatile C++ Object Accessed?
- ===========================================
- The C++ standard differs from the C standard in its treatment of
- volatile objects. It fails to specify what constitutes a volatile
- access, except to say that C++ should behave in a similar manner to C
- with respect to volatiles, where possible. However, the different
- lvalueness of expressions between C and C++ complicate the behavior.
- G++ behaves the same as GCC for volatile access, *Note Volatiles: C
- Extensions, for a description of GCC's behavior.
- The C and C++ language specifications differ when an object is accessed
- in a void context:
- volatile int *src = SOMEVALUE;
- *src;
- The C++ standard specifies that such expressions do not undergo lvalue
- to rvalue conversion, and that the type of the dereferenced object may
- be incomplete. The C++ standard does not specify explicitly that it is
- lvalue to rvalue conversion that is responsible for causing an access.
- There is reason to believe that it is, because otherwise certain simple
- expressions become undefined. However, because it would surprise most
- programmers, G++ treats dereferencing a pointer to volatile object of
- complete type as GCC would do for an equivalent type in C. When the
- object has incomplete type, G++ issues a warning; if you wish to force
- an error, you must force a conversion to rvalue with, for instance, a
- static cast.
- When using a reference to volatile, G++ does not treat equivalent
- expressions as accesses to volatiles, but instead issues a warning that
- no volatile is accessed. The rationale for this is that otherwise it
- becomes difficult to determine where volatile access occur, and not
- possible to ignore the return value from functions returning volatile
- references. Again, if you wish to force a read, cast the reference to
- an rvalue.
- G++ implements the same behavior as GCC does when assigning to a
- volatile object--there is no reread of the assigned-to object, the
- assigned rvalue is reused. Note that in C++ assignment expressions are
- lvalues, and if used as an lvalue, the volatile object is referred to.
- For instance, VREF refers to VOBJ, as expected, in the following
- example:
- volatile int vobj;
- volatile int &vref = vobj = SOMETHING;
- File: gcc.info, Node: Restricted Pointers, Next: Vague Linkage, Prev: C++ Volatiles, Up: C++ Extensions
- 7.2 Restricting Pointer Aliasing
- ================================
- As with the C front end, G++ understands the C99 feature of restricted
- pointers, specified with the '__restrict__', or '__restrict' type
- qualifier. Because you cannot compile C++ by specifying the '-std=c99'
- language flag, 'restrict' is not a keyword in C++.
- In addition to allowing restricted pointers, you can specify restricted
- references, which indicate that the reference is not aliased in the
- local context.
- void fn (int *__restrict__ rptr, int &__restrict__ rref)
- {
- /* ... */
- }
- In the body of 'fn', RPTR points to an unaliased integer and RREF refers
- to a (different) unaliased integer.
- You may also specify whether a member function's THIS pointer is
- unaliased by using '__restrict__' as a member function qualifier.
- void T::fn () __restrict__
- {
- /* ... */
- }
- Within the body of 'T::fn', THIS has the effective definition 'T
- *__restrict__ const this'. Notice that the interpretation of a
- '__restrict__' member function qualifier is different to that of 'const'
- or 'volatile' qualifier, in that it is applied to the pointer rather
- than the object. This is consistent with other compilers that implement
- restricted pointers.
- As with all outermost parameter qualifiers, '__restrict__' is ignored
- in function definition matching. This means you only need to specify
- '__restrict__' in a function definition, rather than in a function
- prototype as well.
- File: gcc.info, Node: Vague Linkage, Next: C++ Interface, Prev: Restricted Pointers, Up: C++ Extensions
- 7.3 Vague Linkage
- =================
- There are several constructs in C++ that require space in the object
- file but are not clearly tied to a single translation unit. We say that
- these constructs have "vague linkage". Typically such constructs are
- emitted wherever they are needed, though sometimes we can be more
- clever.
- Inline Functions
- Inline functions are typically defined in a header file which can
- be included in many different compilations. Hopefully they can
- usually be inlined, but sometimes an out-of-line copy is necessary,
- if the address of the function is taken or if inlining fails. In
- general, we emit an out-of-line copy in all translation units where
- one is needed. As an exception, we only emit inline virtual
- functions with the vtable, since it always requires a copy.
- Local static variables and string constants used in an inline
- function are also considered to have vague linkage, since they must
- be shared between all inlined and out-of-line instances of the
- function.
- VTables
- C++ virtual functions are implemented in most compilers using a
- lookup table, known as a vtable. The vtable contains pointers to
- the virtual functions provided by a class, and each object of the
- class contains a pointer to its vtable (or vtables, in some
- multiple-inheritance situations). If the class declares any
- non-inline, non-pure virtual functions, the first one is chosen as
- the "key method" for the class, and the vtable is only emitted in
- the translation unit where the key method is defined.
- _Note:_ If the chosen key method is later defined as inline, the
- vtable is still emitted in every translation unit that defines it.
- Make sure that any inline virtuals are declared inline in the class
- body, even if they are not defined there.
- 'type_info' objects
- C++ requires information about types to be written out in order to
- implement 'dynamic_cast', 'typeid' and exception handling. For
- polymorphic classes (classes with virtual functions), the
- 'type_info' object is written out along with the vtable so that
- 'dynamic_cast' can determine the dynamic type of a class object at
- run time. For all other types, we write out the 'type_info' object
- when it is used: when applying 'typeid' to an expression, throwing
- an object, or referring to a type in a catch clause or exception
- specification.
- Template Instantiations
- Most everything in this section also applies to template
- instantiations, but there are other options as well. *Note Where's
- the Template?: Template Instantiation.
- When used with GNU ld version 2.8 or later on an ELF system such as
- GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
- these constructs will be discarded at link time. This is known as
- COMDAT support.
- On targets that don't support COMDAT, but do support weak symbols, GCC
- uses them. This way one copy overrides all the others, but the unused
- copies still take up space in the executable.
- For targets that do not support either COMDAT or weak symbols, most
- entities with vague linkage are emitted as local symbols to avoid
- duplicate definition errors from the linker. This does not happen for
- local statics in inlines, however, as having multiple copies almost
- certainly breaks things.
- *Note Declarations and Definitions in One Header: C++ Interface, for
- another way to control placement of these constructs.
- File: gcc.info, Node: C++ Interface, Next: Template Instantiation, Prev: Vague Linkage, Up: C++ Extensions
- 7.4 C++ Interface and Implementation Pragmas
- ============================================
- '#pragma interface' and '#pragma implementation' provide the user with a
- way of explicitly directing the compiler to emit entities with vague
- linkage (and debugging information) in a particular translation unit.
- _Note:_ These '#pragma's have been superceded as of GCC 2.7.2 by COMDAT
- support and the "key method" heuristic mentioned in *note Vague
- Linkage::. Using them can actually cause your program to grow due to
- unnecessary out-of-line copies of inline functions.
- '#pragma interface'
- '#pragma interface "SUBDIR/OBJECTS.h"'
- Use this directive in _header files_ that define object classes, to
- save space in most of the object files that use those classes.
- Normally, local copies of certain information (backup copies of
- inline member functions, debugging information, and the internal
- tables that implement virtual functions) must be kept in each
- object file that includes class definitions. You can use this
- pragma to avoid such duplication. When a header file containing
- '#pragma interface' is included in a compilation, this auxiliary
- information is not generated (unless the main input source file
- itself uses '#pragma implementation'). Instead, the object files
- contain references to be resolved at link time.
- The second form of this directive is useful for the case where you
- have multiple headers with the same name in different directories.
- If you use this form, you must specify the same string to '#pragma
- implementation'.
- '#pragma implementation'
- '#pragma implementation "OBJECTS.h"'
- Use this pragma in a _main input file_, when you want full output
- from included header files to be generated (and made globally
- visible). The included header file, in turn, should use '#pragma
- interface'. Backup copies of inline member functions, debugging
- information, and the internal tables used to implement virtual
- functions are all generated in implementation files.
- If you use '#pragma implementation' with no argument, it applies to
- an include file with the same basename(1) as your source file. For
- example, in 'allclass.cc', giving just '#pragma implementation' by
- itself is equivalent to '#pragma implementation "allclass.h"'.
- Use the string argument if you want a single implementation file to
- include code from multiple header files. (You must also use
- '#include' to include the header file; '#pragma implementation'
- only specifies how to use the file--it doesn't actually include
- it.)
- There is no way to split up the contents of a single header file
- into multiple implementation files.
- '#pragma implementation' and '#pragma interface' also have an effect on
- function inlining.
- If you define a class in a header file marked with '#pragma interface',
- the effect on an inline function defined in that class is similar to an
- explicit 'extern' declaration--the compiler emits no code at all to
- define an independent version of the function. Its definition is used
- only for inlining with its callers.
- Conversely, when you include the same header file in a main source file
- that declares it as '#pragma implementation', the compiler emits code
- for the function itself; this defines a version of the function that can
- be found via pointers (or by callers compiled without inlining). If all
- calls to the function can be inlined, you can avoid emitting the
- function by compiling with '-fno-implement-inlines'. If any calls are
- not inlined, you will get linker errors.
- ---------- Footnotes ----------
- (1) A file's "basename" is the name stripped of all leading path
- information and of trailing suffixes, such as '.h' or '.C' or '.cc'.
- File: gcc.info, Node: Template Instantiation, Next: Bound member functions, Prev: C++ Interface, Up: C++ Extensions
- 7.5 Where's the Template?
- =========================
- C++ templates were the first language feature to require more
- intelligence from the environment than was traditionally found on a UNIX
- system. Somehow the compiler and linker have to make sure that each
- template instance occurs exactly once in the executable if it is needed,
- and not at all otherwise. There are two basic approaches to this
- problem, which are referred to as the Borland model and the Cfront
- model.
- Borland model
- Borland C++ solved the template instantiation problem by adding the
- code equivalent of common blocks to their linker; the compiler
- emits template instances in each translation unit that uses them,
- and the linker collapses them together. The advantage of this
- model is that the linker only has to consider the object files
- themselves; there is no external complexity to worry about. The
- disadvantage is that compilation time is increased because the
- template code is being compiled repeatedly. Code written for this
- model tends to include definitions of all templates in the header
- file, since they must be seen to be instantiated.
- Cfront model
- The AT&T C++ translator, Cfront, solved the template instantiation
- problem by creating the notion of a template repository, an
- automatically maintained place where template instances are stored.
- A more modern version of the repository works as follows: As
- individual object files are built, the compiler places any template
- definitions and instantiations encountered in the repository. At
- link time, the link wrapper adds in the objects in the repository
- and compiles any needed instances that were not previously emitted.
- The advantages of this model are more optimal compilation speed and
- the ability to use the system linker; to implement the Borland
- model a compiler vendor also needs to replace the linker. The
- disadvantages are vastly increased complexity, and thus potential
- for error; for some code this can be just as transparent, but in
- practice it can been very difficult to build multiple programs in
- one directory and one program in multiple directories. Code
- written for this model tends to separate definitions of non-inline
- member templates into a separate file, which should be compiled
- separately.
- G++ implements the Borland model on targets where the linker supports
- it, including ELF targets (such as GNU/Linux), Mac OS X and Microsoft
- Windows. Otherwise G++ implements neither automatic model.
- You have the following options for dealing with template
- instantiations:
- 1. Do nothing. Code written for the Borland model works fine, but
- each translation unit contains instances of each of the templates
- it uses. The duplicate instances will be discarded by the linker,
- but in a large program, this can lead to an unacceptable amount of
- code duplication in object files or shared libraries.
- Duplicate instances of a template can be avoided by defining an
- explicit instantiation in one object file, and preventing the
- compiler from doing implicit instantiations in any other object
- files by using an explicit instantiation declaration, using the
- 'extern template' syntax:
- extern template int max (int, int);
- This syntax is defined in the C++ 2011 standard, but has been
- supported by G++ and other compilers since well before 2011.
- Explicit instantiations can be used for the largest or most
- frequently duplicated instances, without having to know exactly
- which other instances are used in the rest of the program. You can
- scatter the explicit instantiations throughout your program,
- perhaps putting them in the translation units where the instances
- are used or the translation units that define the templates
- themselves; you can put all of the explicit instantiations you need
- into one big file; or you can create small files like
- #include "Foo.h"
- #include "Foo.cc"
- template class Foo<int>;
- template ostream& operator <<
- (ostream&, const Foo<int>&);
- for each of the instances you need, and create a template
- instantiation library from those.
- This is the simplest option, but also offers flexibility and
- fine-grained control when necessary. It is also the most portable
- alternative and programs using this approach will work with most
- modern compilers.
- 2. Compile your template-using code with '-frepo'. The compiler
- generates files with the extension '.rpo' listing all of the
- template instantiations used in the corresponding object files that
- could be instantiated there; the link wrapper, 'collect2', then
- updates the '.rpo' files to tell the compiler where to place those
- instantiations and rebuild any affected object files. The
- link-time overhead is negligible after the first pass, as the
- compiler continues to place the instantiations in the same files.
- This can be a suitable option for application code written for the
- Borland model, as it usually just works. Code written for the
- Cfront model needs to be modified so that the template definitions
- are available at one or more points of instantiation; usually this
- is as simple as adding '#include <tmethods.cc>' to the end of each
- template header.
- For library code, if you want the library to provide all of the
- template instantiations it needs, just try to link all of its
- object files together; the link will fail, but cause the
- instantiations to be generated as a side effect. Be warned,
- however, that this may cause conflicts if multiple libraries try to
- provide the same instantiations. For greater control, use explicit
- instantiation as described in the next option.
- 3. Compile your code with '-fno-implicit-templates' to disable the
- implicit generation of template instances, and explicitly
- instantiate all the ones you use. This approach requires more
- knowledge of exactly which instances you need than do the others,
- but it's less mysterious and allows greater control if you want to
- ensure that only the intended instances are used.
- If you are using Cfront-model code, you can probably get away with
- not using '-fno-implicit-templates' when compiling files that don't
- '#include' the member template definitions.
- If you use one big file to do the instantiations, you may want to
- compile it without '-fno-implicit-templates' so you get all of the
- instances required by your explicit instantiations (but not by any
- other files) without having to specify them as well.
- In addition to forward declaration of explicit instantiations (with
- 'extern'), G++ has extended the template instantiation syntax to
- support instantiation of the compiler support data for a template
- class (i.e. the vtable) without instantiating any of its members
- (with 'inline'), and instantiation of only the static data members
- of a template class, without the support data or member functions
- (with 'static'):
- inline template class Foo<int>;
- static template class Foo<int>;
- File: gcc.info, Node: Bound member functions, Next: C++ Attributes, Prev: Template Instantiation, Up: C++ Extensions
- 7.6 Extracting the Function Pointer from a Bound Pointer to Member Function
- ===========================================================================
- In C++, pointer to member functions (PMFs) are implemented using a wide
- pointer of sorts to handle all the possible call mechanisms; the PMF
- needs to store information about how to adjust the 'this' pointer, and
- if the function pointed to is virtual, where to find the vtable, and
- where in the vtable to look for the member function. If you are using
- PMFs in an inner loop, you should really reconsider that decision. If
- that is not an option, you can extract the pointer to the function that
- would be called for a given object/PMF pair and call it directly inside
- the inner loop, to save a bit of time.
- Note that you still pay the penalty for the call through a function
- pointer; on most modern architectures, such a call defeats the branch
- prediction features of the CPU. This is also true of normal virtual
- function calls.
- The syntax for this extension is
- extern A a;
- extern int (A::*fp)();
- typedef int (*fptr)(A *);
- fptr p = (fptr)(a.*fp);
- For PMF constants (i.e. expressions of the form '&Klasse::Member'), no
- object is needed to obtain the address of the function. They can be
- converted to function pointers directly:
- fptr p1 = (fptr)(&A::foo);
- You must specify '-Wno-pmf-conversions' to use this extension.
- File: gcc.info, Node: C++ Attributes, Next: Function Multiversioning, Prev: Bound member functions, Up: C++ Extensions
- 7.7 C++-Specific Variable, Function, and Type Attributes
- ========================================================
- Some attributes only make sense for C++ programs.
- 'abi_tag ("TAG", ...)'
- The 'abi_tag' attribute can be applied to a function, variable, or
- class declaration. It modifies the mangled name of the entity to
- incorporate the tag name, in order to distinguish the function or
- class from an earlier version with a different ABI; perhaps the
- class has changed size, or the function has a different return type
- that is not encoded in the mangled name.
- The attribute can also be applied to an inline namespace, but does
- not affect the mangled name of the namespace; in this case it is
- only used for '-Wabi-tag' warnings and automatic tagging of
- functions and variables. Tagging inline namespaces is generally
- preferable to tagging individual declarations, but the latter is
- sometimes necessary, such as when only certain members of a class
- need to be tagged.
- The argument can be a list of strings of arbitrary length. The
- strings are sorted on output, so the order of the list is
- unimportant.
- A redeclaration of an entity must not add new ABI tags, since doing
- so would change the mangled name.
- The ABI tags apply to a name, so all instantiations and
- specializations of a template have the same tags. The attribute
- will be ignored if applied to an explicit specialization or
- instantiation.
- The '-Wabi-tag' flag enables a warning about a class which does not
- have all the ABI tags used by its subobjects and virtual functions;
- for users with code that needs to coexist with an earlier ABI,
- using this option can help to find all affected types that need to
- be tagged.
- When a type involving an ABI tag is used as the type of a variable
- or return type of a function where that tag is not already present
- in the signature of the function, the tag is automatically applied
- to the variable or function. '-Wabi-tag' also warns about this
- situation; this warning can be avoided by explicitly tagging the
- variable or function or moving it into a tagged inline namespace.
- 'init_priority (PRIORITY)'
- In Standard C++, objects defined at namespace scope are guaranteed
- to be initialized in an order in strict accordance with that of
- their definitions _in a given translation unit_. No guarantee is
- made for initializations across translation units. However, GNU
- C++ allows users to control the order of initialization of objects
- defined at namespace scope with the 'init_priority' attribute by
- specifying a relative PRIORITY, a constant integral expression
- currently bounded between 101 and 65535 inclusive. Lower numbers
- indicate a higher priority.
- In the following example, 'A' would normally be created before 'B',
- but the 'init_priority' attribute reverses that order:
- Some_Class A __attribute__ ((init_priority (2000)));
- Some_Class B __attribute__ ((init_priority (543)));
- Note that the particular values of PRIORITY do not matter; only
- their relative ordering.
- 'warn_unused'
- For C++ types with non-trivial constructors and/or destructors it
- is impossible for the compiler to determine whether a variable of
- this type is truly unused if it is not referenced. This type
- attribute informs the compiler that variables of this type should
- be warned about if they appear to be unused, just like variables of
- fundamental types.
- This attribute is appropriate for types which just represent a
- value, such as 'std::string'; it is not appropriate for types which
- control a resource, such as 'std::lock_guard'.
- This attribute is also accepted in C, but it is unnecessary because
- C does not have constructors or destructors.
- File: gcc.info, Node: Function Multiversioning, Next: Type Traits, Prev: C++ Attributes, Up: C++ Extensions
- 7.8 Function Multiversioning
- ============================
- With the GNU C++ front end, for x86 targets, you may specify multiple
- versions of a function, where each function is specialized for a
- specific target feature. At runtime, the appropriate version of the
- function is automatically executed depending on the characteristics of
- the execution platform. Here is an example.
- __attribute__ ((target ("default")))
- int foo ()
- {
- // The default version of foo.
- return 0;
- }
- __attribute__ ((target ("sse4.2")))
- int foo ()
- {
- // foo version for SSE4.2
- return 1;
- }
- __attribute__ ((target ("arch=atom")))
- int foo ()
- {
- // foo version for the Intel ATOM processor
- return 2;
- }
- __attribute__ ((target ("arch=amdfam10")))
- int foo ()
- {
- // foo version for the AMD Family 0x10 processors.
- return 3;
- }
- int main ()
- {
- int (*p)() = &foo;
- assert ((*p) () == foo ());
- return 0;
- }
- In the above example, four versions of function foo are created. The
- first version of foo with the target attribute "default" is the default
- version. This version gets executed when no other target specific
- version qualifies for execution on a particular platform. A new version
- of foo is created by using the same function signature but with a
- different target string. Function foo is called or a pointer to it is
- taken just like a regular function. GCC takes care of doing the
- dispatching to call the right version at runtime. Refer to the GCC wiki
- on Function Multiversioning
- (http://gcc.gnu.org/wiki/FunctionMultiVersioning) for more details.
- File: gcc.info, Node: Type Traits, Next: C++ Concepts, Prev: Function Multiversioning, Up: C++ Extensions
- 7.9 Type Traits
- ===============
- The C++ front end implements syntactic extensions that allow
- compile-time determination of various characteristics of a type (or of a
- pair of types).
- '__has_nothrow_assign (type)'
- If 'type' is const qualified or is a reference type then the trait
- is false. Otherwise if '__has_trivial_assign (type)' is true then
- the trait is true, else if 'type' is a cv class or union type with
- copy assignment operators that are known not to throw an exception
- then the trait is true, else it is false. Requires: 'type' shall
- be a complete type, (possibly cv-qualified) 'void', or an array of
- unknown bound.
- '__has_nothrow_copy (type)'
- If '__has_trivial_copy (type)' is true then the trait is true, else
- if 'type' is a cv class or union type with copy constructors that
- are known not to throw an exception then the trait is true, else it
- is false. Requires: 'type' shall be a complete type, (possibly
- cv-qualified) 'void', or an array of unknown bound.
- '__has_nothrow_constructor (type)'
- If '__has_trivial_constructor (type)' is true then the trait is
- true, else if 'type' is a cv class or union type (or array thereof)
- with a default constructor that is known not to throw an exception
- then the trait is true, else it is false. Requires: 'type' shall
- be a complete type, (possibly cv-qualified) 'void', or an array of
- unknown bound.
- '__has_trivial_assign (type)'
- If 'type' is const qualified or is a reference type then the trait
- is false. Otherwise if '__is_pod (type)' is true then the trait is
- true, else if 'type' is a cv class or union type with a trivial
- copy assignment ([class.copy]) then the trait is true, else it is
- false. Requires: 'type' shall be a complete type, (possibly
- cv-qualified) 'void', or an array of unknown bound.
- '__has_trivial_copy (type)'
- If '__is_pod (type)' is true or 'type' is a reference type then the
- trait is true, else if 'type' is a cv class or union type with a
- trivial copy constructor ([class.copy]) then the trait is true,
- else it is false. Requires: 'type' shall be a complete type,
- (possibly cv-qualified) 'void', or an array of unknown bound.
- '__has_trivial_constructor (type)'
- If '__is_pod (type)' is true then the trait is true, else if 'type'
- is a cv class or union type (or array thereof) with a trivial
- default constructor ([class.ctor]) then the trait is true, else it
- is false. Requires: 'type' shall be a complete type, (possibly
- cv-qualified) 'void', or an array of unknown bound.
- '__has_trivial_destructor (type)'
- If '__is_pod (type)' is true or 'type' is a reference type then the
- trait is true, else if 'type' is a cv class or union type (or array
- thereof) with a trivial destructor ([class.dtor]) then the trait is
- true, else it is false. Requires: 'type' shall be a complete type,
- (possibly cv-qualified) 'void', or an array of unknown bound.
- '__has_virtual_destructor (type)'
- If 'type' is a class type with a virtual destructor ([class.dtor])
- then the trait is true, else it is false. Requires: 'type' shall
- be a complete type, (possibly cv-qualified) 'void', or an array of
- unknown bound.
- '__is_abstract (type)'
- If 'type' is an abstract class ([class.abstract]) then the trait is
- true, else it is false. Requires: 'type' shall be a complete type,
- (possibly cv-qualified) 'void', or an array of unknown bound.
- '__is_base_of (base_type, derived_type)'
- If 'base_type' is a base class of 'derived_type' ([class.derived])
- then the trait is true, otherwise it is false. Top-level cv
- qualifications of 'base_type' and 'derived_type' are ignored. For
- the purposes of this trait, a class type is considered is own base.
- Requires: if '__is_class (base_type)' and '__is_class
- (derived_type)' are true and 'base_type' and 'derived_type' are not
- the same type (disregarding cv-qualifiers), 'derived_type' shall be
- a complete type. A diagnostic is produced if this requirement is
- not met.
- '__is_class (type)'
- If 'type' is a cv class type, and not a union type
- ([basic.compound]) the trait is true, else it is false.
- '__is_empty (type)'
- If '__is_class (type)' is false then the trait is false. Otherwise
- 'type' is considered empty if and only if: 'type' has no non-static
- data members, or all non-static data members, if any, are
- bit-fields of length 0, and 'type' has no virtual members, and
- 'type' has no virtual base classes, and 'type' has no base classes
- 'base_type' for which '__is_empty (base_type)' is false. Requires:
- 'type' shall be a complete type, (possibly cv-qualified) 'void', or
- an array of unknown bound.
- '__is_enum (type)'
- If 'type' is a cv enumeration type ([basic.compound]) the trait is
- true, else it is false.
- '__is_literal_type (type)'
- If 'type' is a literal type ([basic.types]) the trait is true, else
- it is false. Requires: 'type' shall be a complete type, (possibly
- cv-qualified) 'void', or an array of unknown bound.
- '__is_pod (type)'
- If 'type' is a cv POD type ([basic.types]) then the trait is true,
- else it is false. Requires: 'type' shall be a complete type,
- (possibly cv-qualified) 'void', or an array of unknown bound.
- '__is_polymorphic (type)'
- If 'type' is a polymorphic class ([class.virtual]) then the trait
- is true, else it is false. Requires: 'type' shall be a complete
- type, (possibly cv-qualified) 'void', or an array of unknown bound.
- '__is_standard_layout (type)'
- If 'type' is a standard-layout type ([basic.types]) the trait is
- true, else it is false. Requires: 'type' shall be a complete type,
- (possibly cv-qualified) 'void', or an array of unknown bound.
- '__is_trivial (type)'
- If 'type' is a trivial type ([basic.types]) the trait is true, else
- it is false. Requires: 'type' shall be a complete type, (possibly
- cv-qualified) 'void', or an array of unknown bound.
- '__is_union (type)'
- If 'type' is a cv union type ([basic.compound]) the trait is true,
- else it is false.
- '__underlying_type (type)'
- The underlying type of 'type'. Requires: 'type' shall be an
- enumeration type ([dcl.enum]).
- '__integer_pack (length)'
- When used as the pattern of a pack expansion within a template
- definition, expands to a template argument pack containing integers
- from '0' to 'length-1'. This is provided for efficient
- implementation of 'std::make_integer_sequence'.
- File: gcc.info, Node: C++ Concepts, Next: Deprecated Features, Prev: Type Traits, Up: C++ Extensions
- 7.10 C++ Concepts
- =================
- C++ concepts provide much-improved support for generic programming. In
- particular, they allow the specification of constraints on template
- arguments. The constraints are used to extend the usual overloading and
- partial specialization capabilities of the language, allowing generic
- data structures and algorithms to be "refined" based on their properties
- rather than their type names.
- The following keywords are reserved for concepts.
- 'assumes'
- States an expression as an assumption, and if possible, verifies
- that the assumption is valid. For example, 'assume(n > 0)'.
- 'axiom'
- Introduces an axiom definition. Axioms introduce requirements on
- values.
- 'forall'
- Introduces a universally quantified object in an axiom. For
- example, 'forall (int n) n + 0 == n').
- 'concept'
- Introduces a concept definition. Concepts are sets of syntactic
- and semantic requirements on types and their values.
- 'requires'
- Introduces constraints on template arguments or requirements for a
- member function of a class template.
- The front end also exposes a number of internal mechanism that can be
- used to simplify the writing of type traits. Note that some of these
- traits are likely to be removed in the future.
- '__is_same (type1, type2)'
- A binary type trait: true whenever the type arguments are the same.
- File: gcc.info, Node: Deprecated Features, Next: Backwards Compatibility, Prev: C++ Concepts, Up: C++ Extensions
- 7.11 Deprecated Features
- ========================
- In the past, the GNU C++ compiler was extended to experiment with new
- features, at a time when the C++ language was still evolving. Now that
- the C++ standard is complete, some of those features are superseded by
- superior alternatives. Using the old features might cause a warning in
- some cases that the feature will be dropped in the future. In other
- cases, the feature might be gone already.
- While the list below is not exhaustive, it documents some of the
- options that are now deprecated or have been removed:
- '-fno-for-scope'
- '-ffriend-injection'
- These two options provide compatibility with pre-standard C++.
- *Note Backwards Compatibility::.
- G++ allows a virtual function returning 'void *' to be overridden by
- one returning a different pointer type. This extension to the covariant
- return type rules is now deprecated and will be removed from a future
- version.
- The use of default arguments in function pointers, function typedefs
- and other places where they are not permitted by the standard is
- deprecated and will be removed from a future version of G++.
- G++ allows floating-point literals to appear in integral constant
- expressions, e.g. ' enum E { e = int(2.2 * 3.7) } ' This extension is
- deprecated and will be removed from a future version.
- G++ allows static data members of const floating-point type to be
- declared with an initializer in a class definition. The standard only
- allows initializers for static members of const integral types and const
- enumeration types so this extension has been deprecated and will be
- removed from a future version.
- G++ allows attributes to follow a parenthesized direct initializer,
- e.g. ' int f (0) __attribute__ ((something)); ' This extension has been
- ignored since G++ 3.3 and is deprecated.
- G++ allows anonymous structs and unions to have members that are not
- public non-static data members (i.e. fields). These extensions are
- deprecated.
- File: gcc.info, Node: Backwards Compatibility, Prev: Deprecated Features, Up: C++ Extensions
- 7.12 Backwards Compatibility
- ============================
- Now that there is a definitive ISO standard C++, G++ has a specification
- to adhere to. The C++ language evolved over time, and features that
- used to be acceptable in previous drafts of the standard, such as the
- ARM [Annotated C++ Reference Manual], are no longer accepted. In order
- to allow compilation of C++ written to such drafts, G++ contains some
- backwards compatibilities. _All such backwards compatibility features
- are liable to disappear in future versions of G++._ They should be
- considered deprecated. *Note Deprecated Features::.
- 'For scope'
- If a variable is declared at for scope, it used to remain in scope
- until the end of the scope that contained the for statement (rather
- than just within the for scope). The deprecated '-fno-for-scope'
- option enables this non-standard behavior. Without the option, G++
- retains this, but issues a warning, if such a variable is accessed
- outside the for scope.
- The behavior is deprecated, only available with '-std=c++98'
- '-std=gnu++98' languages and you must use the '-fpermissive' option
- to enable it. The behavior will be removed.
- 'Friend Injection'
- The '-ffriend-injection' option makes injected friends visible to
- regular name lookup, unlike standard C++. This option is
- deprecated and will be removed.
- 'Implicit C language'
- Old C system header files did not contain an 'extern "C" {...}'
- scope to set the language. On such systems, all header files are
- implicitly scoped inside a C language scope. Also, an empty
- prototype '()' is treated as an unspecified number of arguments,
- rather than no arguments, as C++ demands.
- File: gcc.info, Node: Objective-C, Next: Compatibility, Prev: C++ Extensions, Up: Top
- 8 GNU Objective-C Features
- **************************
- This document is meant to describe some of the GNU Objective-C features.
- It is not intended to teach you Objective-C. There are several resources
- on the Internet that present the language.
- * Menu:
- * GNU Objective-C runtime API::
- * Executing code before main::
- * Type encoding::
- * Garbage Collection::
- * Constant string objects::
- * compatibility_alias::
- * Exceptions::
- * Synchronization::
- * Fast enumeration::
- * Messaging with the GNU Objective-C runtime::
- File: gcc.info, Node: GNU Objective-C runtime API, Next: Executing code before main, Up: Objective-C
- 8.1 GNU Objective-C Runtime API
- ===============================
- This section is specific for the GNU Objective-C runtime. If you are
- using a different runtime, you can skip it.
- The GNU Objective-C runtime provides an API that allows you to interact
- with the Objective-C runtime system, querying the live runtime
- structures and even manipulating them. This allows you for example to
- inspect and navigate classes, methods and protocols; to define new
- classes or new methods, and even to modify existing classes or
- protocols.
- If you are using a "Foundation" library such as GNUstep-Base, this
- library will provide you with a rich set of functionality to do most of
- the inspection tasks, and you probably will only need direct access to
- the GNU Objective-C runtime API to define new classes or methods.
- * Menu:
- * Modern GNU Objective-C runtime API::
- * Traditional GNU Objective-C runtime API::
- File: gcc.info, Node: Modern GNU Objective-C runtime API, Next: Traditional GNU Objective-C runtime API, Up: GNU Objective-C runtime API
- 8.1.1 Modern GNU Objective-C Runtime API
- ----------------------------------------
- The GNU Objective-C runtime provides an API which is similar to the one
- provided by the "Objective-C 2.0" Apple/NeXT Objective-C runtime. The
- API is documented in the public header files of the GNU Objective-C
- runtime:
- * 'objc/objc.h': this is the basic Objective-C header file, defining
- the basic Objective-C types such as 'id', 'Class' and 'BOOL'. You
- have to include this header to do almost anything with Objective-C.
- * 'objc/runtime.h': this header declares most of the public runtime
- API functions allowing you to inspect and manipulate the
- Objective-C runtime data structures. These functions are fairly
- standardized across Objective-C runtimes and are almost identical
- to the Apple/NeXT Objective-C runtime ones. It does not declare
- functions in some specialized areas (constructing and forwarding
- message invocations, threading) which are in the other headers
- below. You have to include 'objc/objc.h' and 'objc/runtime.h' to
- use any of the functions, such as 'class_getName()', declared in
- 'objc/runtime.h'.
- * 'objc/message.h': this header declares public functions used to
- construct, deconstruct and forward message invocations. Because
- messaging is done in quite a different way on different runtimes,
- functions in this header are specific to the GNU Objective-C
- runtime implementation.
- * 'objc/objc-exception.h': this header declares some public functions
- related to Objective-C exceptions. For example functions in this
- header allow you to throw an Objective-C exception from plain C/C++
- code.
- * 'objc/objc-sync.h': this header declares some public functions
- related to the Objective-C '@synchronized()' syntax, allowing you
- to emulate an Objective-C '@synchronized()' block in plain C/C++
- code.
- * 'objc/thr.h': this header declares a public runtime API threading
- layer that is only provided by the GNU Objective-C runtime. It
- declares functions such as 'objc_mutex_lock()', which provide a
- platform-independent set of threading functions.
- The header files contain detailed documentation for each function in
- the GNU Objective-C runtime API.
- File: gcc.info, Node: Traditional GNU Objective-C runtime API, Prev: Modern GNU Objective-C runtime API, Up: GNU Objective-C runtime API
- 8.1.2 Traditional GNU Objective-C Runtime API
- ---------------------------------------------
- The GNU Objective-C runtime used to provide a different API, which we
- call the "traditional" GNU Objective-C runtime API. Functions belonging
- to this API are easy to recognize because they use a different naming
- convention, such as 'class_get_super_class()' (traditional API) instead
- of 'class_getSuperclass()' (modern API). Software using this API
- includes the file 'objc/objc-api.h' where it is declared.
- Starting with GCC 4.7.0, the traditional GNU runtime API is no longer
- available.
- File: gcc.info, Node: Executing code before main, Next: Type encoding, Prev: GNU Objective-C runtime API, Up: Objective-C
- 8.2 '+load': Executing Code before 'main'
- =========================================
- This section is specific for the GNU Objective-C runtime. If you are
- using a different runtime, you can skip it.
- The GNU Objective-C runtime provides a way that allows you to execute
- code before the execution of the program enters the 'main' function.
- The code is executed on a per-class and a per-category basis, through a
- special class method '+load'.
- This facility is very useful if you want to initialize global variables
- which can be accessed by the program directly, without sending a message
- to the class first. The usual way to initialize global variables, in
- the '+initialize' method, might not be useful because '+initialize' is
- only called when the first message is sent to a class object, which in
- some cases could be too late.
- Suppose for example you have a 'FileStream' class that declares
- 'Stdin', 'Stdout' and 'Stderr' as global variables, like below:
- FileStream *Stdin = nil;
- FileStream *Stdout = nil;
- FileStream *Stderr = nil;
- @implementation FileStream
- + (void)initialize
- {
- Stdin = [[FileStream new] initWithFd:0];
- Stdout = [[FileStream new] initWithFd:1];
- Stderr = [[FileStream new] initWithFd:2];
- }
- /* Other methods here */
- @end
- In this example, the initialization of 'Stdin', 'Stdout' and 'Stderr'
- in '+initialize' occurs too late. The programmer can send a message to
- one of these objects before the variables are actually initialized, thus
- sending messages to the 'nil' object. The '+initialize' method which
- actually initializes the global variables is not invoked until the first
- message is sent to the class object. The solution would require these
- variables to be initialized just before entering 'main'.
- The correct solution of the above problem is to use the '+load' method
- instead of '+initialize':
- @implementation FileStream
- + (void)load
- {
- Stdin = [[FileStream new] initWithFd:0];
- Stdout = [[FileStream new] initWithFd:1];
- Stderr = [[FileStream new] initWithFd:2];
- }
- /* Other methods here */
- @end
- The '+load' is a method that is not overridden by categories. If a
- class and a category of it both implement '+load', both methods are
- invoked. This allows some additional initializations to be performed in
- a category.
- This mechanism is not intended to be a replacement for '+initialize'.
- You should be aware of its limitations when you decide to use it instead
- of '+initialize'.
- * Menu:
- * What you can and what you cannot do in +load::
- File: gcc.info, Node: What you can and what you cannot do in +load, Up: Executing code before main
- 8.2.1 What You Can and Cannot Do in '+load'
- -------------------------------------------
- '+load' is to be used only as a last resort. Because it is executed
- very early, most of the Objective-C runtime machinery will not be ready
- when '+load' is executed; hence '+load' works best for executing C code
- that is independent on the Objective-C runtime.
- The '+load' implementation in the GNU runtime guarantees you the
- following things:
- * you can write whatever C code you like;
- * you can allocate and send messages to objects whose class is
- implemented in the same file;
- * the '+load' implementation of all super classes of a class are
- executed before the '+load' of that class is executed;
- * the '+load' implementation of a class is executed before the
- '+load' implementation of any category.
- In particular, the following things, even if they can work in a
- particular case, are not guaranteed:
- * allocation of or sending messages to arbitrary objects;
- * allocation of or sending messages to objects whose classes have a
- category implemented in the same file;
- * sending messages to Objective-C constant strings ('@"this is a
- constant string"');
- You should make no assumptions about receiving '+load' in sibling
- classes when you write '+load' of a class. The order in which sibling
- classes receive '+load' is not guaranteed.
- The order in which '+load' and '+initialize' are called could be
- problematic if this matters. If you don't allocate objects inside
- '+load', it is guaranteed that '+load' is called before '+initialize'.
- If you create an object inside '+load' the '+initialize' method of
- object's class is invoked even if '+load' was not invoked. Note if you
- explicitly call '+load' on a class, '+initialize' will be called first.
- To avoid possible problems try to implement only one of these methods.
- The '+load' method is also invoked when a bundle is dynamically loaded
- into your running program. This happens automatically without any
- intervening operation from you. When you write bundles and you need to
- write '+load' you can safely create and send messages to objects whose
- classes already exist in the running program. The same restrictions as
- above apply to classes defined in bundle.
- File: gcc.info, Node: Type encoding, Next: Garbage Collection, Prev: Executing code before main, Up: Objective-C
- 8.3 Type Encoding
- =================
- This is an advanced section. Type encodings are used extensively by the
- compiler and by the runtime, but you generally do not need to know about
- them to use Objective-C.
- The Objective-C compiler generates type encodings for all the types.
- These type encodings are used at runtime to find out information about
- selectors and methods and about objects and classes.
- The types are encoded in the following way:
- '_Bool' 'B'
- 'char' 'c'
- 'unsigned char' 'C'
- 'short' 's'
- 'unsigned short' 'S'
- 'int' 'i'
- 'unsigned int' 'I'
- 'long' 'l'
- 'unsigned long' 'L'
- 'long long' 'q'
- 'unsigned long 'Q'
- long'
- 'float' 'f'
- 'double' 'd'
- 'long double' 'D'
- 'void' 'v'
- 'id' '@'
- 'Class' '#'
- 'SEL' ':'
- 'char*' '*'
- 'enum' an 'enum' is encoded exactly as the integer type
- that the compiler uses for it, which depends on the
- enumeration values. Often the compiler users
- 'unsigned int', which is then encoded as 'I'.
- unknown type '?'
- Complex types 'j' followed by the inner type. For example
- '_Complex double' is encoded as "jd".
- bit-fields 'b' followed by the starting position of the
- bit-field, the type of the bit-field and the size of
- the bit-field (the bit-fields encoding was changed
- from the NeXT's compiler encoding, see below)
- The encoding of bit-fields has changed to allow bit-fields to be
- properly handled by the runtime functions that compute sizes and
- alignments of types that contain bit-fields. The previous encoding
- contained only the size of the bit-field. Using only this information
- it is not possible to reliably compute the size occupied by the
- bit-field. This is very important in the presence of the Boehm's
- garbage collector because the objects are allocated using the typed
- memory facility available in this collector. The typed memory
- allocation requires information about where the pointers are located
- inside the object.
- The position in the bit-field is the position, counting in bits, of the
- bit closest to the beginning of the structure.
- The non-atomic types are encoded as follows:
- pointers '^' followed by the pointed type.
- arrays '[' followed by the number of elements in the array
- followed by the type of the elements followed by ']'
- structures '{' followed by the name of the structure (or '?' if the
- structure is unnamed), the '=' sign, the type of the
- members and by '}'
- unions '(' followed by the name of the structure (or '?' if the
- union is unnamed), the '=' sign, the type of the members
- followed by ')'
- vectors '![' followed by the vector_size (the number of bytes
- composing the vector) followed by a comma, followed by
- the alignment (in bytes) of the vector, followed by the
- type of the elements followed by ']'
- Here are some types and their encodings, as they are generated by the
- compiler on an i386 machine:
- Objective-C type Compiler encoding
- int a[10]; '[10i]'
- struct { '{?=i[3f]b128i3b131i2c}'
- int i;
- float f[3];
- int a:3;
- int b:2;
- char c;
- }
- int a __attribute__ ((vector_size (16)));'![16,16i]' (alignment
- depends on the machine)
- In addition to the types the compiler also encodes the type specifiers.
- The table below describes the encoding of the current Objective-C type
- specifiers:
- Specifier Encoding
- 'const' 'r'
- 'in' 'n'
- 'inout' 'N'
- 'out' 'o'
- 'bycopy' 'O'
- 'byref' 'R'
- 'oneway' 'V'
- The type specifiers are encoded just before the type. Unlike types
- however, the type specifiers are only encoded when they appear in method
- argument types.
- Note how 'const' interacts with pointers:
- Objective-C type Compiler encoding
- const int 'ri'
- const int* '^ri'
- int *const 'r^i'
- 'const int*' is a pointer to a 'const int', and so is encoded as '^ri'.
- 'int* const', instead, is a 'const' pointer to an 'int', and so is
- encoded as 'r^i'.
- Finally, there is a complication when encoding 'const char *' versus
- 'char * const'. Because 'char *' is encoded as '*' and not as '^c',
- there is no way to express the fact that 'r' applies to the pointer or
- to the pointee.
- Hence, it is assumed as a convention that 'r*' means 'const char *'
- (since it is what is most often meant), and there is no way to encode
- 'char *const'. 'char *const' would simply be encoded as '*', and the
- 'const' is lost.
- * Menu:
- * Legacy type encoding::
- * @encode::
- * Method signatures::
- File: gcc.info, Node: Legacy type encoding, Next: @encode, Up: Type encoding
- 8.3.1 Legacy Type Encoding
- --------------------------
- Unfortunately, historically GCC used to have a number of bugs in its
- encoding code. The NeXT runtime expects GCC to emit type encodings in
- this historical format (compatible with GCC-3.3), so when using the NeXT
- runtime, GCC will introduce on purpose a number of incorrect encodings:
- * the read-only qualifier of the pointee gets emitted before the '^'.
- The read-only qualifier of the pointer itself gets ignored, unless
- it is a typedef. Also, the 'r' is only emitted for the outermost
- type.
- * 32-bit longs are encoded as 'l' or 'L', but not always. For
- typedefs, the compiler uses 'i' or 'I' instead if encoding a struct
- field or a pointer.
- * 'enum's are always encoded as 'i' (int) even if they are actually
- unsigned or long.
- In addition to that, the NeXT runtime uses a different encoding for
- bitfields. It encodes them as 'b' followed by the size, without a bit
- offset or the underlying field type.
- File: gcc.info, Node: @encode, Next: Method signatures, Prev: Legacy type encoding, Up: Type encoding
- 8.3.2 '@encode'
- ---------------
- GNU Objective-C supports the '@encode' syntax that allows you to create
- a type encoding from a C/Objective-C type. For example, '@encode(int)'
- is compiled by the compiler into '"i"'.
- '@encode' does not support type qualifiers other than 'const'. For
- example, '@encode(const char*)' is valid and is compiled into '"r*"',
- while '@encode(bycopy char *)' is invalid and will cause a compilation
- error.
- File: gcc.info, Node: Method signatures, Prev: @encode, Up: Type encoding
- 8.3.3 Method Signatures
- -----------------------
- This section documents the encoding of method types, which is rarely
- needed to use Objective-C. You should skip it at a first reading; the
- runtime provides functions that will work on methods and can walk
- through the list of parameters and interpret them for you. These
- functions are part of the public "API" and are the preferred way to
- interact with method signatures from user code.
- But if you need to debug a problem with method signatures and need to
- know how they are implemented (i.e., the "ABI"), read on.
- Methods have their "signature" encoded and made available to the
- runtime. The "signature" encodes all the information required to
- dynamically build invocations of the method at runtime: return type and
- arguments.
- The "signature" is a null-terminated string, composed of the following:
- * The return type, including type qualifiers. For example, a method
- returning 'int' would have 'i' here.
- * The total size (in bytes) required to pass all the parameters.
- This includes the two hidden parameters (the object 'self' and the
- method selector '_cmd').
- * Each argument, with the type encoding, followed by the offset (in
- bytes) of the argument in the list of parameters.
- For example, a method with no arguments and returning 'int' would have
- the signature 'i8@0:4' if the size of a pointer is 4. The signature is
- interpreted as follows: the 'i' is the return type (an 'int'), the '8'
- is the total size of the parameters in bytes (two pointers each of size
- 4), the '@0' is the first parameter (an object at byte offset '0') and
- ':4' is the second parameter (a 'SEL' at byte offset '4').
- You can easily find more examples by running the "strings" program on
- an Objective-C object file compiled by GCC. You'll see a lot of strings
- that look very much like 'i8@0:4'. They are signatures of Objective-C
- methods.
- File: gcc.info, Node: Garbage Collection, Next: Constant string objects, Prev: Type encoding, Up: Objective-C
- 8.4 Garbage Collection
- ======================
- This section is specific for the GNU Objective-C runtime. If you are
- using a different runtime, you can skip it.
- Support for garbage collection with the GNU runtime has been added by
- using a powerful conservative garbage collector, known as the
- Boehm-Demers-Weiser conservative garbage collector.
- To enable the support for it you have to configure the compiler using
- an additional argument, '--enable-objc-gc'. This will build the
- boehm-gc library, and build an additional runtime library which has
- several enhancements to support the garbage collector. The new library
- has a new name, 'libobjc_gc.a' to not conflict with the
- non-garbage-collected library.
- When the garbage collector is used, the objects are allocated using the
- so-called typed memory allocation mechanism available in the
- Boehm-Demers-Weiser collector. This mode requires precise information
- on where pointers are located inside objects. This information is
- computed once per class, immediately after the class has been
- initialized.
- There is a new runtime function 'class_ivar_set_gcinvisible()' which
- can be used to declare a so-called "weak pointer" reference. Such a
- pointer is basically hidden for the garbage collector; this can be
- useful in certain situations, especially when you want to keep track of
- the allocated objects, yet allow them to be collected. This kind of
- pointers can only be members of objects, you cannot declare a global
- pointer as a weak reference. Every type which is a pointer type can be
- declared a weak pointer, including 'id', 'Class' and 'SEL'.
- Here is an example of how to use this feature. Suppose you want to
- implement a class whose instances hold a weak pointer reference; the
- following class does this:
- @interface WeakPointer : Object
- {
- const void* weakPointer;
- }
- - initWithPointer:(const void*)p;
- - (const void*)weakPointer;
- @end
- @implementation WeakPointer
- + (void)initialize
- {
- if (self == objc_lookUpClass ("WeakPointer"))
- class_ivar_set_gcinvisible (self, "weakPointer", YES);
- }
- - initWithPointer:(const void*)p
- {
- weakPointer = p;
- return self;
- }
- - (const void*)weakPointer
- {
- return weakPointer;
- }
- @end
- Weak pointers are supported through a new type character specifier
- represented by the '!' character. The 'class_ivar_set_gcinvisible()'
- function adds or removes this specifier to the string type description
- of the instance variable named as argument.
- File: gcc.info, Node: Constant string objects, Next: compatibility_alias, Prev: Garbage Collection, Up: Objective-C
- 8.5 Constant String Objects
- ===========================
- GNU Objective-C provides constant string objects that are generated
- directly by the compiler. You declare a constant string object by
- prefixing a C constant string with the character '@':
- id myString = @"this is a constant string object";
- The constant string objects are by default instances of the
- 'NXConstantString' class which is provided by the GNU Objective-C
- runtime. To get the definition of this class you must include the
- 'objc/NXConstStr.h' header file.
- User defined libraries may want to implement their own constant string
- class. To be able to support them, the GNU Objective-C compiler
- provides a new command line options
- '-fconstant-string-class=CLASS-NAME'. The provided class should adhere
- to a strict structure, the same as 'NXConstantString''s structure:
- @interface MyConstantStringClass
- {
- Class isa;
- char *c_string;
- unsigned int len;
- }
- @end
- 'NXConstantString' inherits from 'Object'; user class libraries may
- choose to inherit the customized constant string class from a different
- class than 'Object'. There is no requirement in the methods the
- constant string class has to implement, but the final ivar layout of the
- class must be the compatible with the given structure.
- When the compiler creates the statically allocated constant string
- object, the 'c_string' field will be filled by the compiler with the
- string; the 'length' field will be filled by the compiler with the
- string length; the 'isa' pointer will be filled with 'NULL' by the
- compiler, and it will later be fixed up automatically at runtime by the
- GNU Objective-C runtime library to point to the class which was set by
- the '-fconstant-string-class' option when the object file is loaded (if
- you wonder how it works behind the scenes, the name of the class to use,
- and the list of static objects to fixup, are stored by the compiler in
- the object file in a place where the GNU runtime library will find them
- at runtime).
- As a result, when a file is compiled with the '-fconstant-string-class'
- option, all the constant string objects will be instances of the class
- specified as argument to this option. It is possible to have multiple
- compilation units referring to different constant string classes,
- neither the compiler nor the linker impose any restrictions in doing
- this.
- File: gcc.info, Node: compatibility_alias, Next: Exceptions, Prev: Constant string objects, Up: Objective-C
- 8.6 'compatibility_alias'
- =========================
- The keyword '@compatibility_alias' allows you to define a class name as
- equivalent to another class name. For example:
- @compatibility_alias WOApplication GSWApplication;
- tells the compiler that each time it encounters 'WOApplication' as a
- class name, it should replace it with 'GSWApplication' (that is,
- 'WOApplication' is just an alias for 'GSWApplication').
- There are some constraints on how this can be used--
- * 'WOApplication' (the alias) must not be an existing class;
- * 'GSWApplication' (the real class) must be an existing class.
- File: gcc.info, Node: Exceptions, Next: Synchronization, Prev: compatibility_alias, Up: Objective-C
- 8.7 Exceptions
- ==============
- GNU Objective-C provides exception support built into the language, as
- in the following example:
- @try {
- ...
- @throw expr;
- ...
- }
- @catch (AnObjCClass *exc) {
- ...
- @throw expr;
- ...
- @throw;
- ...
- }
- @catch (AnotherClass *exc) {
- ...
- }
- @catch (id allOthers) {
- ...
- }
- @finally {
- ...
- @throw expr;
- ...
- }
- The '@throw' statement may appear anywhere in an Objective-C or
- Objective-C++ program; when used inside of a '@catch' block, the
- '@throw' may appear without an argument (as shown above), in which case
- the object caught by the '@catch' will be rethrown.
- Note that only (pointers to) Objective-C objects may be thrown and
- caught using this scheme. When an object is thrown, it will be caught
- by the nearest '@catch' clause capable of handling objects of that type,
- analogously to how 'catch' blocks work in C++ and Java. A '@catch(id
- ...)' clause (as shown above) may also be provided to catch any and all
- Objective-C exceptions not caught by previous '@catch' clauses (if any).
- The '@finally' clause, if present, will be executed upon exit from the
- immediately preceding '@try ... @catch' section. This will happen
- regardless of whether any exceptions are thrown, caught or rethrown
- inside the '@try ... @catch' section, analogously to the behavior of the
- 'finally' clause in Java.
- There are several caveats to using the new exception mechanism:
- * The '-fobjc-exceptions' command line option must be used when
- compiling Objective-C files that use exceptions.
- * With the GNU runtime, exceptions are always implemented as "native"
- exceptions and it is recommended that the '-fexceptions' and
- '-shared-libgcc' options are used when linking.
- * With the NeXT runtime, although currently designed to be binary
- compatible with 'NS_HANDLER'-style idioms provided by the
- 'NSException' class, the new exceptions can only be used on Mac OS
- X 10.3 (Panther) and later systems, due to additional functionality
- needed in the NeXT Objective-C runtime.
- * As mentioned above, the new exceptions do not support handling
- types other than Objective-C objects. Furthermore, when used from
- Objective-C++, the Objective-C exception model does not
- interoperate with C++ exceptions at this time. This means you
- cannot '@throw' an exception from Objective-C and 'catch' it in
- C++, or vice versa (i.e., 'throw ... @catch').
- File: gcc.info, Node: Synchronization, Next: Fast enumeration, Prev: Exceptions, Up: Objective-C
- 8.8 Synchronization
- ===================
- GNU Objective-C provides support for synchronized blocks:
- @synchronized (ObjCClass *guard) {
- ...
- }
- Upon entering the '@synchronized' block, a thread of execution shall
- first check whether a lock has been placed on the corresponding 'guard'
- object by another thread. If it has, the current thread shall wait
- until the other thread relinquishes its lock. Once 'guard' becomes
- available, the current thread will place its own lock on it, execute the
- code contained in the '@synchronized' block, and finally relinquish the
- lock (thereby making 'guard' available to other threads).
- Unlike Java, Objective-C does not allow for entire methods to be marked
- '@synchronized'. Note that throwing exceptions out of '@synchronized'
- blocks is allowed, and will cause the guarding object to be unlocked
- properly.
- Because of the interactions between synchronization and exception
- handling, you can only use '@synchronized' when compiling with
- exceptions enabled, that is with the command line option
- '-fobjc-exceptions'.
- File: gcc.info, Node: Fast enumeration, Next: Messaging with the GNU Objective-C runtime, Prev: Synchronization, Up: Objective-C
- 8.9 Fast Enumeration
- ====================
- * Menu:
- * Using fast enumeration::
- * c99-like fast enumeration syntax::
- * Fast enumeration details::
- * Fast enumeration protocol::
- File: gcc.info, Node: Using fast enumeration, Next: c99-like fast enumeration syntax, Up: Fast enumeration
- 8.9.1 Using Fast Enumeration
- ----------------------------
- GNU Objective-C provides support for the fast enumeration syntax:
- id array = ...;
- id object;
- for (object in array)
- {
- /* Do something with 'object' */
- }
- 'array' needs to be an Objective-C object (usually a collection object,
- for example an array, a dictionary or a set) which implements the "Fast
- Enumeration Protocol" (see below). If you are using a Foundation
- library such as GNUstep Base or Apple Cocoa Foundation, all collection
- objects in the library implement this protocol and can be used in this
- way.
- The code above would iterate over all objects in 'array'. For each of
- them, it assigns it to 'object', then executes the 'Do something with
- 'object'' statements.
- Here is a fully worked-out example using a Foundation library (which
- provides the implementation of 'NSArray', 'NSString' and 'NSLog'):
- NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", nil];
- NSString *object;
- for (object in array)
- NSLog (@"Iterating over %@", object);
- File: gcc.info, Node: c99-like fast enumeration syntax, Next: Fast enumeration details, Prev: Using fast enumeration, Up: Fast enumeration
- 8.9.2 C99-Like Fast Enumeration Syntax
- --------------------------------------
- A c99-like declaration syntax is also allowed:
- id array = ...;
- for (id object in array)
- {
- /* Do something with 'object' */
- }
- this is completely equivalent to:
- id array = ...;
- {
- id object;
- for (object in array)
- {
- /* Do something with 'object' */
- }
- }
- but can save some typing.
- Note that the option '-std=c99' is not required to allow this syntax in
- Objective-C.
- File: gcc.info, Node: Fast enumeration details, Next: Fast enumeration protocol, Prev: c99-like fast enumeration syntax, Up: Fast enumeration
- 8.9.3 Fast Enumeration Details
- ------------------------------
- Here is a more technical description with the gory details. Consider
- the code
- for (OBJECT EXPRESSION in COLLECTION EXPRESSION)
- {
- STATEMENTS
- }
- here is what happens when you run it:
- * 'COLLECTION EXPRESSION' is evaluated exactly once and the result is
- used as the collection object to iterate over. This means it is
- safe to write code such as 'for (object in [NSDictionary
- keyEnumerator]) ...'.
- * the iteration is implemented by the compiler by repeatedly getting
- batches of objects from the collection object using the fast
- enumeration protocol (see below), then iterating over all objects
- in the batch. This is faster than a normal enumeration where
- objects are retrieved one by one (hence the name "fast
- enumeration").
- * if there are no objects in the collection, then 'OBJECT EXPRESSION'
- is set to 'nil' and the loop immediately terminates.
- * if there are objects in the collection, then for each object in the
- collection (in the order they are returned) 'OBJECT EXPRESSION' is
- set to the object, then 'STATEMENTS' are executed.
- * 'STATEMENTS' can contain 'break' and 'continue' commands, which
- will abort the iteration or skip to the next loop iteration as
- expected.
- * when the iteration ends because there are no more objects to
- iterate over, 'OBJECT EXPRESSION' is set to 'nil'. This allows you
- to determine whether the iteration finished because a 'break'
- command was used (in which case 'OBJECT EXPRESSION' will remain set
- to the last object that was iterated over) or because it iterated
- over all the objects (in which case 'OBJECT EXPRESSION' will be set
- to 'nil').
- * 'STATEMENTS' must not make any changes to the collection object; if
- they do, it is a hard error and the fast enumeration terminates by
- invoking 'objc_enumerationMutation', a runtime function that
- normally aborts the program but which can be customized by
- Foundation libraries via 'objc_set_mutation_handler' to do
- something different, such as raising an exception.
- File: gcc.info, Node: Fast enumeration protocol, Prev: Fast enumeration details, Up: Fast enumeration
- 8.9.4 Fast Enumeration Protocol
- -------------------------------
- If you want your own collection object to be usable with fast
- enumeration, you need to have it implement the method
- - (unsigned long) countByEnumeratingWithState: (NSFastEnumerationState *)state
- objects: (id *)objects
- count: (unsigned long)len;
- where 'NSFastEnumerationState' must be defined in your code as follows:
- typedef struct
- {
- unsigned long state;
- id *itemsPtr;
- unsigned long *mutationsPtr;
- unsigned long extra[5];
- } NSFastEnumerationState;
- If no 'NSFastEnumerationState' is defined in your code, the compiler
- will automatically replace 'NSFastEnumerationState *' with 'struct
- __objcFastEnumerationState *', where that type is silently defined by
- the compiler in an identical way. This can be confusing and we
- recommend that you define 'NSFastEnumerationState' (as shown above)
- instead.
- The method is called repeatedly during a fast enumeration to retrieve
- batches of objects. Each invocation of the method should retrieve the
- next batch of objects.
- The return value of the method is the number of objects in the current
- batch; this should not exceed 'len', which is the maximum size of a
- batch as requested by the caller. The batch itself is returned in the
- 'itemsPtr' field of the 'NSFastEnumerationState' struct.
- To help with returning the objects, the 'objects' array is a C array
- preallocated by the caller (on the stack) of size 'len'. In many cases
- you can put the objects you want to return in that 'objects' array, then
- do 'itemsPtr = objects'. But you don't have to; if your collection
- already has the objects to return in some form of C array, it could
- return them from there instead.
- The 'state' and 'extra' fields of the 'NSFastEnumerationState'
- structure allows your collection object to keep track of the state of
- the enumeration. In a simple array implementation, 'state' may keep
- track of the index of the last object that was returned, and 'extra' may
- be unused.
- The 'mutationsPtr' field of the 'NSFastEnumerationState' is used to
- keep track of mutations. It should point to a number; before working on
- each object, the fast enumeration loop will check that this number has
- not changed. If it has, a mutation has happened and the fast
- enumeration will abort. So, 'mutationsPtr' could be set to point to
- some sort of version number of your collection, which is increased by
- one every time there is a change (for example when an object is added or
- removed). Or, if you are content with less strict mutation checks, it
- could point to the number of objects in your collection or some other
- value that can be checked to perform an approximate check that the
- collection has not been mutated.
- Finally, note how we declared the 'len' argument and the return value
- to be of type 'unsigned long'. They could also be declared to be of
- type 'unsigned int' and everything would still work.
- File: gcc.info, Node: Messaging with the GNU Objective-C runtime, Prev: Fast enumeration, Up: Objective-C
- 8.10 Messaging with the GNU Objective-C Runtime
- ===============================================
- This section is specific for the GNU Objective-C runtime. If you are
- using a different runtime, you can skip it.
- The implementation of messaging in the GNU Objective-C runtime is
- designed to be portable, and so is based on standard C.
- Sending a message in the GNU Objective-C runtime is composed of two
- separate steps. First, there is a call to the lookup function,
- 'objc_msg_lookup ()' (or, in the case of messages to super,
- 'objc_msg_lookup_super ()'). This runtime function takes as argument
- the receiver and the selector of the method to be called; it returns the
- 'IMP', that is a pointer to the function implementing the method. The
- second step of method invocation consists of casting this pointer
- function to the appropriate function pointer type, and calling the
- function pointed to it with the right arguments.
- For example, when the compiler encounters a method invocation such as
- '[object init]', it compiles it into a call to 'objc_msg_lookup (object,
- @selector(init))' followed by a cast of the returned value to the
- appropriate function pointer type, and then it calls it.
- * Menu:
- * Dynamically registering methods::
- * Forwarding hook::
- File: gcc.info, Node: Dynamically registering methods, Next: Forwarding hook, Up: Messaging with the GNU Objective-C runtime
- 8.10.1 Dynamically Registering Methods
- --------------------------------------
- If 'objc_msg_lookup()' does not find a suitable method implementation,
- because the receiver does not implement the required method, it tries to
- see if the class can dynamically register the method.
- To do so, the runtime checks if the class of the receiver implements
- the method
- + (BOOL) resolveInstanceMethod: (SEL)selector;
- in the case of an instance method, or
- + (BOOL) resolveClassMethod: (SEL)selector;
- in the case of a class method. If the class implements it, the runtime
- invokes it, passing as argument the selector of the original method, and
- if it returns 'YES', the runtime tries the lookup again, which could now
- succeed if a matching method was added dynamically by
- '+resolveInstanceMethod:' or '+resolveClassMethod:'.
- This allows classes to dynamically register methods (by adding them to
- the class using 'class_addMethod') when they are first called. To do
- so, a class should implement '+resolveInstanceMethod:' (or, depending on
- the case, '+resolveClassMethod:') and have it recognize the selectors of
- methods that can be registered dynamically at runtime, register them,
- and return 'YES'. It should return 'NO' for methods that it does not
- dynamically registered at runtime.
- If '+resolveInstanceMethod:' (or '+resolveClassMethod:') is not
- implemented or returns 'NO', the runtime then tries the forwarding hook.
- Support for '+resolveInstanceMethod:' and 'resolveClassMethod:' was
- added to the GNU Objective-C runtime in GCC version 4.6.
- File: gcc.info, Node: Forwarding hook, Prev: Dynamically registering methods, Up: Messaging with the GNU Objective-C runtime
- 8.10.2 Forwarding Hook
- ----------------------
- The GNU Objective-C runtime provides a hook, called
- '__objc_msg_forward2', which is called by 'objc_msg_lookup()' when it
- cannot find a method implementation in the runtime tables and after
- calling '+resolveInstanceMethod:' and '+resolveClassMethod:' has been
- attempted and did not succeed in dynamically registering the method.
- To configure the hook, you set the global variable
- '__objc_msg_forward2' to a function with the same argument and return
- types of 'objc_msg_lookup()'. When 'objc_msg_lookup()' can not find a
- method implementation, it invokes the hook function you provided to get
- a method implementation to return. So, in practice
- '__objc_msg_forward2' allows you to extend 'objc_msg_lookup()' by adding
- some custom code that is called to do a further lookup when no standard
- method implementation can be found using the normal lookup.
- This hook is generally reserved for "Foundation" libraries such as
- GNUstep Base, which use it to implement their high-level method
- forwarding API, typically based around the 'forwardInvocation:' method.
- So, unless you are implementing your own "Foundation" library, you
- should not set this hook.
- In a typical forwarding implementation, the '__objc_msg_forward2' hook
- function determines the argument and return type of the method that is
- being looked up, and then creates a function that takes these arguments
- and has that return type, and returns it to the caller. Creating this
- function is non-trivial and is typically performed using a dedicated
- library such as 'libffi'.
- The forwarding method implementation thus created is returned by
- 'objc_msg_lookup()' and is executed as if it was a normal method
- implementation. When the forwarding method implementation is called, it
- is usually expected to pack all arguments into some sort of object
- (typically, an 'NSInvocation' in a "Foundation" library), and hand it
- over to the programmer ('forwardInvocation:') who is then allowed to
- manipulate the method invocation using a high-level API provided by the
- "Foundation" library. For example, the programmer may want to examine
- the method invocation arguments and name and potentially change them
- before forwarding the method invocation to one or more local objects
- ('performInvocation:') or even to remote objects (by using Distributed
- Objects or some other mechanism). When all this completes, the return
- value is passed back and must be returned correctly to the original
- caller.
- Note that the GNU Objective-C runtime currently provides no support for
- method forwarding or method invocations other than the
- '__objc_msg_forward2' hook.
- If the forwarding hook does not exist or returns 'NULL', the runtime
- currently attempts forwarding using an older, deprecated API, and if
- that fails, it aborts the program. In future versions of the GNU
- Objective-C runtime, the runtime will immediately abort.
- File: gcc.info, Node: Compatibility, Next: Gcov, Prev: Objective-C, Up: Top
- 9 Binary Compatibility
- **********************
- Binary compatibility encompasses several related concepts:
- "application binary interface (ABI)"
- The set of runtime conventions followed by all of the tools that
- deal with binary representations of a program, including compilers,
- assemblers, linkers, and language runtime support. Some ABIs are
- formal with a written specification, possibly designed by multiple
- interested parties. Others are simply the way things are actually
- done by a particular set of tools.
- "ABI conformance"
- A compiler conforms to an ABI if it generates code that follows all
- of the specifications enumerated by that ABI. A library conforms
- to an ABI if it is implemented according to that ABI. An
- application conforms to an ABI if it is built using tools that
- conform to that ABI and does not contain source code that
- specifically changes behavior specified by the ABI.
- "calling conventions"
- Calling conventions are a subset of an ABI that specify of how
- arguments are passed and function results are returned.
- "interoperability"
- Different sets of tools are interoperable if they generate files
- that can be used in the same program. The set of tools includes
- compilers, assemblers, linkers, libraries, header files, startup
- files, and debuggers. Binaries produced by different sets of tools
- are not interoperable unless they implement the same ABI. This
- applies to different versions of the same tools as well as tools
- from different vendors.
- "intercallability"
- Whether a function in a binary built by one set of tools can call a
- function in a binary built by a different set of tools is a subset
- of interoperability.
- "implementation-defined features"
- Language standards include lists of implementation-defined features
- whose behavior can vary from one implementation to another. Some
- of these features are normally covered by a platform's ABI and
- others are not. The features that are not covered by an ABI
- generally affect how a program behaves, but not intercallability.
- "compatibility"
- Conformance to the same ABI and the same behavior of
- implementation-defined features are both relevant for
- compatibility.
- The application binary interface implemented by a C or C++ compiler
- affects code generation and runtime support for:
- * size and alignment of data types
- * layout of structured types
- * calling conventions
- * register usage conventions
- * interfaces for runtime arithmetic support
- * object file formats
- In addition, the application binary interface implemented by a C++
- compiler affects code generation and runtime support for:
- * name mangling
- * exception handling
- * invoking constructors and destructors
- * layout, alignment, and padding of classes
- * layout and alignment of virtual tables
- Some GCC compilation options cause the compiler to generate code that
- does not conform to the platform's default ABI. Other options cause
- different program behavior for implementation-defined features that are
- not covered by an ABI. These options are provided for consistency with
- other compilers that do not follow the platform's default ABI or the
- usual behavior of implementation-defined features for the platform. Be
- very careful about using such options.
- Most platforms have a well-defined ABI that covers C code, but ABIs
- that cover C++ functionality are not yet common.
- Starting with GCC 3.2, GCC binary conventions for C++ are based on a
- written, vendor-neutral C++ ABI that was designed to be specific to
- 64-bit Itanium but also includes generic specifications that apply to
- any platform. This C++ ABI is also implemented by other compiler
- vendors on some platforms, notably GNU/Linux and BSD systems. We have
- tried hard to provide a stable ABI that will be compatible with future
- GCC releases, but it is possible that we will encounter problems that
- make this difficult. Such problems could include different
- interpretations of the C++ ABI by different vendors, bugs in the ABI, or
- bugs in the implementation of the ABI in different compilers. GCC's
- '-Wabi' switch warns when G++ generates code that is probably not
- compatible with the C++ ABI.
- The C++ library used with a C++ compiler includes the Standard C++
- Library, with functionality defined in the C++ Standard, plus language
- runtime support. The runtime support is included in a C++ ABI, but
- there is no formal ABI for the Standard C++ Library. Two
- implementations of that library are interoperable if one follows the
- de-facto ABI of the other and if they are both built with the same
- compiler, or with compilers that conform to the same ABI for C++
- compiler and runtime support.
- When G++ and another C++ compiler conform to the same C++ ABI, but the
- implementations of the Standard C++ Library that they normally use do
- not follow the same ABI for the Standard C++ Library, object files built
- with those compilers can be used in the same program only if they use
- the same C++ library. This requires specifying the location of the C++
- library header files when invoking the compiler whose usual library is
- not being used. The location of GCC's C++ header files depends on how
- the GCC build was configured, but can be seen by using the G++ '-v'
- option. With default configuration options for G++ 3.3 the compile line
- for a different C++ compiler needs to include
- -IGCC_INSTALL_DIRECTORY/include/c++/3.3
- Similarly, compiling code with G++ that must use a C++ library other
- than the GNU C++ library requires specifying the location of the header
- files for that other library.
- The most straightforward way to link a program to use a particular C++
- library is to use a C++ driver that specifies that C++ library by
- default. The 'g++' driver, for example, tells the linker where to find
- GCC's C++ library ('libstdc++') plus the other libraries and startup
- files it needs, in the proper order.
- If a program must use a different C++ library and it's not possible to
- do the final link using a C++ driver that uses that library by default,
- it is necessary to tell 'g++' the location and name of that library. It
- might also be necessary to specify different startup files and other
- runtime support libraries, and to suppress the use of GCC's support
- libraries with one or more of the options '-nostdlib', '-nostartfiles',
- and '-nodefaultlibs'.
- File: gcc.info, Node: Gcov, Next: Gcov-tool, Prev: Compatibility, Up: Top
- 10 'gcov'--a Test Coverage Program
- **********************************
- 'gcov' is a tool you can use in conjunction with GCC to test code
- coverage in your programs.
- * Menu:
- * Gcov Intro:: Introduction to gcov.
- * Invoking Gcov:: How to use gcov.
- * Gcov and Optimization:: Using gcov with GCC optimization.
- * Gcov Data Files:: The files used by gcov.
- * Cross-profiling:: Data file relocation.
- File: gcc.info, Node: Gcov Intro, Next: Invoking Gcov, Up: Gcov
- 10.1 Introduction to 'gcov'
- ===========================
- 'gcov' is a test coverage program. Use it in concert with GCC to
- analyze your programs to help create more efficient, faster running code
- and to discover untested parts of your program. You can use 'gcov' as a
- profiling tool to help discover where your optimization efforts will
- best affect your code. You can also use 'gcov' along with the other
- profiling tool, 'gprof', to assess which parts of your code use the
- greatest amount of computing time.
- Profiling tools help you analyze your code's performance. Using a
- profiler such as 'gcov' or 'gprof', you can find out some basic
- performance statistics, such as:
- * how often each line of code executes
- * what lines of code are actually executed
- * how much computing time each section of code uses
- Once you know these things about how your code works when compiled, you
- can look at each module to see which modules should be optimized.
- 'gcov' helps you determine where to work on optimization.
- Software developers also use coverage testing in concert with
- testsuites, to make sure software is actually good enough for a release.
- Testsuites can verify that a program works as expected; a coverage
- program tests to see how much of the program is exercised by the
- testsuite. Developers can then determine what kinds of test cases need
- to be added to the testsuites to create both better testing and a better
- final product.
- You should compile your code without optimization if you plan to use
- 'gcov' because the optimization, by combining some lines of code into
- one function, may not give you as much information as you need to look
- for 'hot spots' where the code is using a great deal of computer time.
- Likewise, because 'gcov' accumulates statistics by line (at the lowest
- resolution), it works best with a programming style that places only one
- statement on each line. If you use complicated macros that expand to
- loops or to other control structures, the statistics are less
- helpful--they only report on the line where the macro call appears. If
- your complex macros behave like functions, you can replace them with
- inline functions to solve this problem.
- 'gcov' creates a logfile called 'SOURCEFILE.gcov' which indicates how
- many times each line of a source file 'SOURCEFILE.c' has executed. You
- can use these logfiles along with 'gprof' to aid in fine-tuning the
- performance of your programs. 'gprof' gives timing information you can
- use along with the information you get from 'gcov'.
- 'gcov' works only on code compiled with GCC. It is not compatible with
- any other profiling or test coverage mechanism.
- File: gcc.info, Node: Invoking Gcov, Next: Gcov and Optimization, Prev: Gcov Intro, Up: Gcov
- 10.2 Invoking 'gcov'
- ====================
- gcov [OPTIONS] FILES
- 'gcov' accepts the following options:
- '-a'
- '--all-blocks'
- Write individual execution counts for every basic block. Normally
- gcov outputs execution counts only for the main blocks of a line.
- With this option you can determine if blocks within a single line
- are not being executed.
- '-b'
- '--branch-probabilities'
- Write branch frequencies to the output file, and write branch
- summary info to the standard output. This option allows you to see
- how often each branch in your program was taken. Unconditional
- branches will not be shown, unless the '-u' option is given.
- '-c'
- '--branch-counts'
- Write branch frequencies as the number of branches taken, rather
- than the percentage of branches taken.
- '-d'
- '--display-progress'
- Display the progress on the standard output.
- '-f'
- '--function-summaries'
- Output summaries for each function in addition to the file level
- summary.
- '-h'
- '--help'
- Display help about using 'gcov' (on the standard output), and exit
- without doing any further processing.
- '-i'
- '--intermediate-format'
- Output gcov file in an easy-to-parse intermediate text format that
- can be used by 'lcov' or other tools. The output is a single
- '.gcov' file per '.gcda' file. No source code is required.
- The format of the intermediate '.gcov' file is plain text with one
- entry per line
- version:GCC_VERSION
- file:SOURCE_FILE_NAME
- function:START_LINE_NUMBER,END_LINE_NUMBER,EXECUTION_COUNT,FUNCTION_NAME
- lcount:LINE NUMBER,EXECUTION_COUNT,HAS_UNEXECUTED_BLOCK
- branch:LINE_NUMBER,BRANCH_COVERAGE_TYPE
- Where the BRANCH_COVERAGE_TYPE is
- notexec (Branch not executed)
- taken (Branch executed and taken)
- nottaken (Branch executed, but not taken)
- There can be multiple FILE entries in an intermediate gcov file.
- All entries following a FILE pertain to that source file until the
- next FILE entry. If there are multiple functions that start on a
- single line, then corresponding lcount is repeated multiple times.
- Here is a sample when '-i' is used in conjunction with '-b' option:
- version: 8.1.0 20180103
- file:tmp.cpp
- function:7,7,0,_ZN3FooIcEC2Ev
- function:7,7,1,_ZN3FooIiEC2Ev
- function:8,8,0,_ZN3FooIcE3incEv
- function:8,8,2,_ZN3FooIiE3incEv
- function:18,37,1,main
- lcount:7,0,1
- lcount:7,1,0
- lcount:8,0,1
- lcount:8,2,0
- lcount:18,1,0
- lcount:21,1,0
- branch:21,taken
- branch:21,nottaken
- lcount:23,1,0
- branch:23,taken
- branch:23,nottaken
- lcount:24,1,0
- branch:24,taken
- branch:24,nottaken
- lcount:25,1,0
- lcount:27,11,0
- branch:27,taken
- branch:27,taken
- lcount:28,10,0
- lcount:30,1,1
- branch:30,nottaken
- branch:30,taken
- lcount:32,1,0
- branch:32,nottaken
- branch:32,taken
- lcount:33,0,1
- branch:33,notexec
- branch:33,notexec
- lcount:35,1,0
- branch:35,taken
- branch:35,nottaken
- lcount:36,1,0
- '-j'
- '--human-readable'
- Write counts in human readable format (like 24k).
- '-k'
- '--use-colors'
- Use colors for lines of code that have zero coverage. We use red
- color for non-exceptional lines and cyan for exceptional. Same
- colors are used for basic blocks with '-a' option.
- '-l'
- '--long-file-names'
- Create long file names for included source files. For example, if
- the header file 'x.h' contains code, and was included in the file
- 'a.c', then running 'gcov' on the file 'a.c' will produce an output
- file called 'a.c##x.h.gcov' instead of 'x.h.gcov'. This can be
- useful if 'x.h' is included in multiple source files and you want
- to see the individual contributions. If you use the '-p' option,
- both the including and included file names will be complete path
- names.
- '-m'
- '--demangled-names'
- Display demangled function names in output. The default is to show
- mangled function names.
- '-n'
- '--no-output'
- Do not create the 'gcov' output file.
- '-o DIRECTORY|FILE'
- '--object-directory DIRECTORY'
- '--object-file FILE'
- Specify either the directory containing the gcov data files, or the
- object path name. The '.gcno', and '.gcda' data files are searched
- for using this option. If a directory is specified, the data files
- are in that directory and named after the input file name, without
- its extension. If a file is specified here, the data files are
- named after that file, without its extension.
- '-p'
- '--preserve-paths'
- Preserve complete path information in the names of generated
- '.gcov' files. Without this option, just the filename component is
- used. With this option, all directories are used, with '/'
- characters translated to '#' characters, '.' directory components
- removed and unremoveable '..' components renamed to '^'. This is
- useful if sourcefiles are in several different directories.
- '-r'
- '--relative-only'
- Only output information about source files with a relative pathname
- (after source prefix elision). Absolute paths are usually system
- header files and coverage of any inline functions therein is
- normally uninteresting.
- '-s DIRECTORY'
- '--source-prefix DIRECTORY'
- A prefix for source file names to remove when generating the output
- coverage files. This option is useful when building in a separate
- directory, and the pathname to the source directory is not wanted
- when determining the output file names. Note that this prefix
- detection is applied before determining whether the source file is
- absolute.
- '-u'
- '--unconditional-branches'
- When branch probabilities are given, include those of unconditional
- branches. Unconditional branches are normally not interesting.
- '-v'
- '--version'
- Display the 'gcov' version number (on the standard output), and
- exit without doing any further processing.
- '-w'
- '--verbose'
- Print verbose informations related to basic blocks and arcs.
- '-x'
- '--hash-filenames'
- By default, gcov uses the full pathname of the source files to
- create an output filename. This can lead to long filenames that
- can overflow filesystem limits. This option creates names of the
- form 'SOURCE-FILE##MD5.gcov', where the SOURCE-FILE component is
- the final filename part and the MD5 component is calculated from
- the full mangled name that would have been used otherwise.
- 'gcov' should be run with the current directory the same as that when
- you invoked the compiler. Otherwise it will not be able to locate the
- source files. 'gcov' produces files called 'MANGLEDNAME.gcov' in the
- current directory. These contain the coverage information of the source
- file they correspond to. One '.gcov' file is produced for each source
- (or header) file containing code, which was compiled to produce the data
- files. The MANGLEDNAME part of the output file name is usually simply
- the source file name, but can be something more complicated if the '-l'
- or '-p' options are given. Refer to those options for details.
- If you invoke 'gcov' with multiple input files, the contributions from
- each input file are summed. Typically you would invoke it with the same
- list of files as the final link of your executable.
- The '.gcov' files contain the ':' separated fields along with program
- source code. The format is
- EXECUTION_COUNT:LINE_NUMBER:SOURCE LINE TEXT
- Additional block information may succeed each line, when requested by
- command line option. The EXECUTION_COUNT is '-' for lines containing no
- code. Unexecuted lines are marked '#####' or '=====', depending on
- whether they are reachable by non-exceptional paths or only exceptional
- paths such as C++ exception handlers, respectively. Given '-a' option,
- unexecuted blocks are marked '$$$$$' or '%%%%%', depending on whether a
- basic block is reachable via non-exceptional or exceptional paths.
- Executed basic blocks having a statement with zero EXECUTION_COUNT end
- with '*' character and are colored with magenta color with '-k' option.
- The functionality is not supported in Ada.
- Note that GCC can completely remove the bodies of functions that are
- not needed - for instance if they are inlined everywhere. Such
- functions are marked with '-', which can be confusing. Use the
- '-fkeep-inline-functions' and '-fkeep-static-functions' options to
- retain these functions and allow gcov to properly show their
- EXECUTION_COUNT.
- Some lines of information at the start have LINE_NUMBER of zero. These
- preamble lines are of the form
- -:0:TAG:VALUE
- The ordering and number of these preamble lines will be augmented as
- 'gcov' development progresses -- do not rely on them remaining
- unchanged. Use TAG to locate a particular preamble line.
- The additional block information is of the form
- TAG INFORMATION
- The INFORMATION is human readable, but designed to be simple enough for
- machine parsing too.
- When printing percentages, 0% and 100% are only printed when the values
- are _exactly_ 0% and 100% respectively. Other values which would
- conventionally be rounded to 0% or 100% are instead printed as the
- nearest non-boundary value.
- When using 'gcov', you must first compile your program with two special
- GCC options: '-fprofile-arcs -ftest-coverage'. This tells the compiler
- to generate additional information needed by gcov (basically a flow
- graph of the program) and also includes additional code in the object
- files for generating the extra profiling information needed by gcov.
- These additional files are placed in the directory where the object file
- is located.
- Running the program will cause profile output to be generated. For
- each source file compiled with '-fprofile-arcs', an accompanying '.gcda'
- file will be placed in the object file directory.
- Running 'gcov' with your program's source file names as arguments will
- now produce a listing of the code along with frequency of execution for
- each line. For example, if your program is called 'tmp.cpp', this is
- what you see when you use the basic 'gcov' facility:
- $ g++ -fprofile-arcs -ftest-coverage tmp.cpp
- $ a.out
- $ gcov tmp.cpp -m
- File 'tmp.cpp'
- Lines executed:92.86% of 14
- Creating 'tmp.cpp.gcov'
- The file 'tmp.cpp.gcov' contains output from 'gcov'. Here is a sample:
- -: 0:Source:tmp.cpp
- -: 0:Graph:tmp.gcno
- -: 0:Data:tmp.gcda
- -: 0:Runs:1
- -: 0:Programs:1
- -: 1:#include <stdio.h>
- -: 2:
- -: 3:template<class T>
- -: 4:class Foo
- -: 5:{
- -: 6: public:
- 1*: 7: Foo(): b (1000) {}
- ------------------
- Foo<char>::Foo():
- #####: 7: Foo(): b (1000) {}
- ------------------
- Foo<int>::Foo():
- 1: 7: Foo(): b (1000) {}
- ------------------
- 2*: 8: void inc () { b++; }
- ------------------
- Foo<char>::inc():
- #####: 8: void inc () { b++; }
- ------------------
- Foo<int>::inc():
- 2: 8: void inc () { b++; }
- ------------------
- -: 9:
- -: 10: private:
- -: 11: int b;
- -: 12:};
- -: 13:
- -: 14:template class Foo<int>;
- -: 15:template class Foo<char>;
- -: 16:
- -: 17:int
- 1: 18:main (void)
- -: 19:{
- -: 20: int i, total;
- 1: 21: Foo<int> counter;
- -: 22:
- 1: 23: counter.inc();
- 1: 24: counter.inc();
- 1: 25: total = 0;
- -: 26:
- 11: 27: for (i = 0; i < 10; i++)
- 10: 28: total += i;
- -: 29:
- 1*: 30: int v = total > 100 ? 1 : 2;
- -: 31:
- 1: 32: if (total != 45)
- #####: 33: printf ("Failure\n");
- -: 34: else
- 1: 35: printf ("Success\n");
- 1: 36: return 0;
- -: 37:}
- Note that line 7 is shown in the report multiple times. First
- occurrence presents total number of execution of the line and the next
- two belong to instances of class Foo constructors. As you can also see,
- line 30 contains some unexecuted basic blocks and thus execution count
- has asterisk symbol.
- When you use the '-a' option, you will get individual block counts, and
- the output looks like this:
- -: 0:Source:tmp.cpp
- -: 0:Graph:tmp.gcno
- -: 0:Data:tmp.gcda
- -: 0:Runs:1
- -: 0:Programs:1
- -: 1:#include <stdio.h>
- -: 2:
- -: 3:template<class T>
- -: 4:class Foo
- -: 5:{
- -: 6: public:
- 1*: 7: Foo(): b (1000) {}
- ------------------
- Foo<char>::Foo():
- #####: 7: Foo(): b (1000) {}
- ------------------
- Foo<int>::Foo():
- 1: 7: Foo(): b (1000) {}
- ------------------
- 2*: 8: void inc () { b++; }
- ------------------
- Foo<char>::inc():
- #####: 8: void inc () { b++; }
- ------------------
- Foo<int>::inc():
- 2: 8: void inc () { b++; }
- ------------------
- -: 9:
- -: 10: private:
- -: 11: int b;
- -: 12:};
- -: 13:
- -: 14:template class Foo<int>;
- -: 15:template class Foo<char>;
- -: 16:
- -: 17:int
- 1: 18:main (void)
- -: 19:{
- -: 20: int i, total;
- 1: 21: Foo<int> counter;
- 1: 21-block 0
- -: 22:
- 1: 23: counter.inc();
- 1: 23-block 0
- 1: 24: counter.inc();
- 1: 24-block 0
- 1: 25: total = 0;
- -: 26:
- 11: 27: for (i = 0; i < 10; i++)
- 1: 27-block 0
- 11: 27-block 1
- 10: 28: total += i;
- 10: 28-block 0
- -: 29:
- 1*: 30: int v = total > 100 ? 1 : 2;
- 1: 30-block 0
- %%%%%: 30-block 1
- 1: 30-block 2
- -: 31:
- 1: 32: if (total != 45)
- 1: 32-block 0
- #####: 33: printf ("Failure\n");
- %%%%%: 33-block 0
- -: 34: else
- 1: 35: printf ("Success\n");
- 1: 35-block 0
- 1: 36: return 0;
- 1: 36-block 0
- -: 37:}
- In this mode, each basic block is only shown on one line - the last
- line of the block. A multi-line block will only contribute to the
- execution count of that last line, and other lines will not be shown to
- contain code, unless previous blocks end on those lines. The total
- execution count of a line is shown and subsequent lines show the
- execution counts for individual blocks that end on that line. After
- each block, the branch and call counts of the block will be shown, if
- the '-b' option is given.
- Because of the way GCC instruments calls, a call count can be shown
- after a line with no individual blocks. As you can see, line 33
- contains a basic block that was not executed.
- When you use the '-b' option, your output looks like this:
- -: 0:Source:tmp.cpp
- -: 0:Graph:tmp.gcno
- -: 0:Data:tmp.gcda
- -: 0:Runs:1
- -: 0:Programs:1
- -: 1:#include <stdio.h>
- -: 2:
- -: 3:template<class T>
- -: 4:class Foo
- -: 5:{
- -: 6: public:
- 1*: 7: Foo(): b (1000) {}
- ------------------
- Foo<char>::Foo():
- function Foo<char>::Foo() called 0 returned 0% blocks executed 0%
- #####: 7: Foo(): b (1000) {}
- ------------------
- Foo<int>::Foo():
- function Foo<int>::Foo() called 1 returned 100% blocks executed 100%
- 1: 7: Foo(): b (1000) {}
- ------------------
- 2*: 8: void inc () { b++; }
- ------------------
- Foo<char>::inc():
- function Foo<char>::inc() called 0 returned 0% blocks executed 0%
- #####: 8: void inc () { b++; }
- ------------------
- Foo<int>::inc():
- function Foo<int>::inc() called 2 returned 100% blocks executed 100%
- 2: 8: void inc () { b++; }
- ------------------
- -: 9:
- -: 10: private:
- -: 11: int b;
- -: 12:};
- -: 13:
- -: 14:template class Foo<int>;
- -: 15:template class Foo<char>;
- -: 16:
- -: 17:int
- function main called 1 returned 100% blocks executed 81%
- 1: 18:main (void)
- -: 19:{
- -: 20: int i, total;
- 1: 21: Foo<int> counter;
- call 0 returned 100%
- branch 1 taken 100% (fallthrough)
- branch 2 taken 0% (throw)
- -: 22:
- 1: 23: counter.inc();
- call 0 returned 100%
- branch 1 taken 100% (fallthrough)
- branch 2 taken 0% (throw)
- 1: 24: counter.inc();
- call 0 returned 100%
- branch 1 taken 100% (fallthrough)
- branch 2 taken 0% (throw)
- 1: 25: total = 0;
- -: 26:
- 11: 27: for (i = 0; i < 10; i++)
- branch 0 taken 91% (fallthrough)
- branch 1 taken 9%
- 10: 28: total += i;
- -: 29:
- 1*: 30: int v = total > 100 ? 1 : 2;
- branch 0 taken 0% (fallthrough)
- branch 1 taken 100%
- -: 31:
- 1: 32: if (total != 45)
- branch 0 taken 0% (fallthrough)
- branch 1 taken 100%
- #####: 33: printf ("Failure\n");
- call 0 never executed
- branch 1 never executed
- branch 2 never executed
- -: 34: else
- 1: 35: printf ("Success\n");
- call 0 returned 100%
- branch 1 taken 100% (fallthrough)
- branch 2 taken 0% (throw)
- 1: 36: return 0;
- -: 37:}
- For each function, a line is printed showing how many times the
- function is called, how many times it returns and what percentage of the
- function's blocks were executed.
- For each basic block, a line is printed after the last line of the
- basic block describing the branch or call that ends the basic block.
- There can be multiple branches and calls listed for a single source line
- if there are multiple basic blocks that end on that line. In this case,
- the branches and calls are each given a number. There is no simple way
- to map these branches and calls back to source constructs. In general,
- though, the lowest numbered branch or call will correspond to the
- leftmost construct on the source line.
- For a branch, if it was executed at least once, then a percentage
- indicating the number of times the branch was taken divided by the
- number of times the branch was executed will be printed. Otherwise, the
- message "never executed" is printed.
- For a call, if it was executed at least once, then a percentage
- indicating the number of times the call returned divided by the number
- of times the call was executed will be printed. This will usually be
- 100%, but may be less for functions that call 'exit' or 'longjmp', and
- thus may not return every time they are called.
- The execution counts are cumulative. If the example program were
- executed again without removing the '.gcda' file, the count for the
- number of times each line in the source was executed would be added to
- the results of the previous run(s). This is potentially useful in
- several ways. For example, it could be used to accumulate data over a
- number of program runs as part of a test verification suite, or to
- provide more accurate long-term information over a large number of
- program runs.
- The data in the '.gcda' files is saved immediately before the program
- exits. For each source file compiled with '-fprofile-arcs', the
- profiling code first attempts to read in an existing '.gcda' file; if
- the file doesn't match the executable (differing number of basic block
- counts) it will ignore the contents of the file. It then adds in the
- new execution counts and finally writes the data to the file.
- File: gcc.info, Node: Gcov and Optimization, Next: Gcov Data Files, Prev: Invoking Gcov, Up: Gcov
- 10.3 Using 'gcov' with GCC Optimization
- =======================================
- If you plan to use 'gcov' to help optimize your code, you must first
- compile your program with two special GCC options: '-fprofile-arcs
- -ftest-coverage'. Aside from that, you can use any other GCC options;
- but if you want to prove that every single line in your program was
- executed, you should not compile with optimization at the same time. On
- some machines the optimizer can eliminate some simple code lines by
- combining them with other lines. For example, code like this:
- if (a != b)
- c = 1;
- else
- c = 0;
- can be compiled into one instruction on some machines. In this case,
- there is no way for 'gcov' to calculate separate execution counts for
- each line because there isn't separate code for each line. Hence the
- 'gcov' output looks like this if you compiled the program with
- optimization:
- 100: 12:if (a != b)
- 100: 13: c = 1;
- 100: 14:else
- 100: 15: c = 0;
- The output shows that this block of code, combined by optimization,
- executed 100 times. In one sense this result is correct, because there
- was only one instruction representing all four of these lines. However,
- the output does not indicate how many times the result was 0 and how
- many times the result was 1.
- Inlineable functions can create unexpected line counts. Line counts
- are shown for the source code of the inlineable function, but what is
- shown depends on where the function is inlined, or if it is not inlined
- at all.
- If the function is not inlined, the compiler must emit an out of line
- copy of the function, in any object file that needs it. If 'fileA.o'
- and 'fileB.o' both contain out of line bodies of a particular inlineable
- function, they will also both contain coverage counts for that function.
- When 'fileA.o' and 'fileB.o' are linked together, the linker will, on
- many systems, select one of those out of line bodies for all calls to
- that function, and remove or ignore the other. Unfortunately, it will
- not remove the coverage counters for the unused function body. Hence
- when instrumented, all but one use of that function will show zero
- counts.
- If the function is inlined in several places, the block structure in
- each location might not be the same. For instance, a condition might
- now be calculable at compile time in some instances. Because the
- coverage of all the uses of the inline function will be shown for the
- same source lines, the line counts themselves might seem inconsistent.
- Long-running applications can use the '__gcov_reset' and '__gcov_dump'
- facilities to restrict profile collection to the program region of
- interest. Calling '__gcov_reset(void)' will clear all profile counters
- to zero, and calling '__gcov_dump(void)' will cause the profile
- information collected at that point to be dumped to '.gcda' output
- files. Instrumented applications use a static destructor with priority
- 99 to invoke the '__gcov_dump' function. Thus '__gcov_dump' is executed
- after all user defined static destructors, as well as handlers
- registered with 'atexit'. If an executable loads a dynamic shared
- object via dlopen functionality, '-Wl,--dynamic-list-data' is needed to
- dump all profile data.
- File: gcc.info, Node: Gcov Data Files, Next: Cross-profiling, Prev: Gcov and Optimization, Up: Gcov
- 10.4 Brief Description of 'gcov' Data Files
- ===========================================
- 'gcov' uses two files for profiling. The names of these files are
- derived from the original _object_ file by substituting the file suffix
- with either '.gcno', or '.gcda'. The files contain coverage and profile
- data stored in a platform-independent format. The '.gcno' files are
- placed in the same directory as the object file. By default, the
- '.gcda' files are also stored in the same directory as the object file,
- but the GCC '-fprofile-dir' option may be used to store the '.gcda'
- files in a separate directory.
- The '.gcno' notes file is generated when the source file is compiled
- with the GCC '-ftest-coverage' option. It contains information to
- reconstruct the basic block graphs and assign source line numbers to
- blocks.
- The '.gcda' count data file is generated when a program containing
- object files built with the GCC '-fprofile-arcs' option is executed. A
- separate '.gcda' file is created for each object file compiled with this
- option. It contains arc transition counts, value profile counts, and
- some summary information.
- It is not recommended to access the coverage files directly. Consumers
- should use the intermediate format that is provided by 'gcov' tool via
- '--intermediate-format' option.
- File: gcc.info, Node: Cross-profiling, Prev: Gcov Data Files, Up: Gcov
- 10.5 Data File Relocation to Support Cross-Profiling
- ====================================================
- Running the program will cause profile output to be generated. For each
- source file compiled with '-fprofile-arcs', an accompanying '.gcda' file
- will be placed in the object file directory. That implicitly requires
- running the program on the same system as it was built or having the
- same absolute directory structure on the target system. The program
- will try to create the needed directory structure, if it is not already
- present.
- To support cross-profiling, a program compiled with '-fprofile-arcs'
- can relocate the data files based on two environment variables:
- * GCOV_PREFIX contains the prefix to add to the absolute paths in the
- object file. Prefix can be absolute, or relative. The default is
- no prefix.
- * GCOV_PREFIX_STRIP indicates the how many initial directory names to
- strip off the hardwired absolute paths. Default value is 0.
- _Note:_ If GCOV_PREFIX_STRIP is set without GCOV_PREFIX is
- undefined, then a relative path is made out of the hardwired
- absolute paths.
- For example, if the object file '/user/build/foo.o' was built with
- '-fprofile-arcs', the final executable will try to create the data file
- '/user/build/foo.gcda' when running on the target system. This will
- fail if the corresponding directory does not exist and it is unable to
- create it. This can be overcome by, for example, setting the
- environment as 'GCOV_PREFIX=/target/run' and 'GCOV_PREFIX_STRIP=1'.
- Such a setting will name the data file '/target/run/build/foo.gcda'.
- You must move the data files to the expected directory tree in order to
- use them for profile directed optimizations ('-fprofile-use'), or to use
- the 'gcov' tool.
- File: gcc.info, Node: Gcov-tool, Next: Gcov-dump, Prev: Gcov, Up: Top
- 11 'gcov-tool'--an Offline Gcda Profile Processing Tool
- *******************************************************
- 'gcov-tool' is a tool you can use in conjunction with GCC to manipulate
- or process gcda profile files offline.
- * Menu:
- * Gcov-tool Intro:: Introduction to gcov-tool.
- * Invoking Gcov-tool:: How to use gcov-tool.
- File: gcc.info, Node: Gcov-tool Intro, Next: Invoking Gcov-tool, Up: Gcov-tool
- 11.1 Introduction to 'gcov-tool'
- ================================
- 'gcov-tool' is an offline tool to process gcc's gcda profile files.
- Current gcov-tool supports the following functionalities:
- * merge two sets of profiles with weights.
- * read one set of profile and rewrite profile contents. One can
- scale or normalize the count values.
- Examples of the use cases for this tool are:
- * Collect the profiles for different set of inputs, and use this tool
- to merge them. One can specify the weight to factor in the
- relative importance of each input.
- * Rewrite the profile after removing a subset of the gcda files,
- while maintaining the consistency of the summary and the histogram.
- * It can also be used to debug or libgcov code as the tools shares
- the majority code as the runtime library.
- Note that for the merging operation, this profile generated offline may
- contain slight different values from the online merged profile. Here
- are a list of typical differences:
- * histogram difference: This offline tool recomputes the histogram
- after merging the counters. The resulting histogram, therefore, is
- precise. The online merging does not have this capability - the
- histogram is merged from two histograms and the result is an
- approximation.
- * summary checksum difference: Summary checksum uses a CRC32
- operation. The value depends on the link list order of gcov-info
- objects. This order is different in gcov-tool from that in the
- online merge. It's expected to have different summary checksums.
- It does not really matter as the compiler does not use this
- checksum anywhere.
- * value profile counter values difference: Some counter values for
- value profile are runtime dependent, like heap addresses. It's
- normal to see some difference in these kind of counters.
- File: gcc.info, Node: Invoking Gcov-tool, Prev: Gcov-tool Intro, Up: Gcov-tool
- 11.2 Invoking 'gcov-tool'
- =========================
- gcov-tool [GLOBAL-OPTIONS] SUB_COMMAND [SUB_COMMAND-OPTIONS] PROFILE_DIR
- 'gcov-tool' accepts the following options:
- '-h'
- '--help'
- Display help about using 'gcov-tool' (on the standard output), and
- exit without doing any further processing.
- '-v'
- '--version'
- Display the 'gcov-tool' version number (on the standard output),
- and exit without doing any further processing.
- 'merge'
- Merge two profile directories.
- '-o DIRECTORY'
- '--output DIRECTORY'
- Set the output profile directory. Default output directory
- name is MERGED_PROFILE.
- '-v'
- '--verbose'
- Set the verbose mode.
- '-w W1,W2'
- '--weight W1,W2'
- Set the merge weights of the DIRECTORY1 and DIRECTORY2,
- respectively. The default weights are 1 for both.
- 'rewrite'
- Read the specified profile directory and rewrite to a new
- directory.
- '-n LONG_LONG_VALUE'
- '--normalize <long_long_value>'
- Normalize the profile. The specified value is the max counter
- value in the new profile.
- '-o DIRECTORY'
- '--output DIRECTORY'
- Set the output profile directory. Default output name is
- REWRITE_PROFILE.
- '-s FLOAT_OR_SIMPLE-FRAC_VALUE'
- '--scale FLOAT_OR_SIMPLE-FRAC_VALUE'
- Scale the profile counters. The specified value can be in
- floating point value, or simple fraction value form, such 1,
- 2, 2/3, and 5/3.
- '-v'
- '--verbose'
- Set the verbose mode.
- 'overlap'
- Compute the overlap score between the two specified profile
- directories. The overlap score is computed based on the arc
- profiles. It is defined as the sum of min (p1_counter[i] /
- p1_sum_all, p2_counter[i] / p2_sum_all), for all arc counter i,
- where p1_counter[i] and p2_counter[i] are two matched counters and
- p1_sum_all and p2_sum_all are the sum of counter values in profile
- 1 and profile 2, respectively.
- '-f'
- '--function'
- Print function level overlap score.
- '-F'
- '--fullname'
- Print full gcda filename.
- '-h'
- '--hotonly'
- Only print info for hot objects/functions.
- '-o'
- '--object'
- Print object level overlap score.
- '-t FLOAT'
- '--hot_threshold <float>'
- Set the threshold for hot counter value.
- '-v'
- '--verbose'
- Set the verbose mode.
- File: gcc.info, Node: Gcov-dump, Next: Trouble, Prev: Gcov-tool, Up: Top
- 12 'gcov-dump'--an Offline Gcda and Gcno Profile Dump Tool
- **********************************************************
- * Menu:
- * Gcov-dump Intro:: Introduction to gcov-dump.
- * Invoking Gcov-dump:: How to use gcov-dump.
- File: gcc.info, Node: Gcov-dump Intro, Next: Invoking Gcov-dump, Up: Gcov-dump
- 12.1 Introduction to 'gcov-dump'
- ================================
- 'gcov-dump' is a tool you can use in conjunction with GCC to dump
- content of gcda and gcno profile files offline.
- File: gcc.info, Node: Invoking Gcov-dump, Prev: Gcov-dump Intro, Up: Gcov-dump
- 12.2 Invoking 'gcov-dump'
- =========================
- Usage: gcov-dump [OPTION] ... GCOVFILES
- 'gcov-dump' accepts the following options:
- '-h'
- '--help'
- Display help about using 'gcov-dump' (on the standard output), and
- exit without doing any further processing.
- '-l'
- '--long'
- Dump content of records.
- '-p'
- '--positions'
- Dump positions of records.
- '-v'
- '--version'
- Display the 'gcov-dump' version number (on the standard output),
- and exit without doing any further processing.
- '-w'
- '--working-sets'
- Dump working set computed from summary.
- File: gcc.info, Node: Trouble, Next: Bugs, Prev: Gcov-dump, Up: Top
- 13 Known Causes of Trouble with GCC
- ***********************************
- This section describes known problems that affect users of GCC. Most of
- these are not GCC bugs per se--if they were, we would fix them. But the
- result for a user may be like the result of a bug.
- Some of these problems are due to bugs in other software, some are
- missing features that are too much work to add, and some are places
- where people's opinions differ as to what is best.
- * Menu:
- * Actual Bugs:: Bugs we will fix later.
- * Interoperation:: Problems using GCC with other compilers,
- and with certain linkers, assemblers and debuggers.
- * Incompatibilities:: GCC is incompatible with traditional C.
- * Fixed Headers:: GCC uses corrected versions of system header files.
- This is necessary, but doesn't always work smoothly.
- * Standard Libraries:: GCC uses the system C library, which might not be
- compliant with the ISO C standard.
- * Disappointments:: Regrettable things we cannot change, but not quite bugs.
- * C++ Misunderstandings:: Common misunderstandings with GNU C++.
- * Non-bugs:: Things we think are right, but some others disagree.
- * Warnings and Errors:: Which problems in your code get warnings,
- and which get errors.
- File: gcc.info, Node: Actual Bugs, Next: Interoperation, Up: Trouble
- 13.1 Actual Bugs We Haven't Fixed Yet
- =====================================
- * The 'fixincludes' script interacts badly with automounters; if the
- directory of system header files is automounted, it tends to be
- unmounted while 'fixincludes' is running. This would seem to be a
- bug in the automounter. We don't know any good way to work around
- it.
- File: gcc.info, Node: Interoperation, Next: Incompatibilities, Prev: Actual Bugs, Up: Trouble
- 13.2 Interoperation
- ===================
- This section lists various difficulties encountered in using GCC
- together with other compilers or with the assemblers, linkers, libraries
- and debuggers on certain systems.
- * On many platforms, GCC supports a different ABI for C++ than do
- other compilers, so the object files compiled by GCC cannot be used
- with object files generated by another C++ compiler.
- An area where the difference is most apparent is name mangling.
- The use of different name mangling is intentional, to protect you
- from more subtle problems. Compilers differ as to many internal
- details of C++ implementation, including: how class instances are
- laid out, how multiple inheritance is implemented, and how virtual
- function calls are handled. If the name encoding were made the
- same, your programs would link against libraries provided from
- other compilers--but the programs would then crash when run.
- Incompatible libraries are then detected at link time, rather than
- at run time.
- * On some BSD systems, including some versions of Ultrix, use of
- profiling causes static variable destructors (currently used only
- in C++) not to be run.
- * On a SPARC, GCC aligns all values of type 'double' on an 8-byte
- boundary, and it expects every 'double' to be so aligned. The Sun
- compiler usually gives 'double' values 8-byte alignment, with one
- exception: function arguments of type 'double' may not be aligned.
- As a result, if a function compiled with Sun CC takes the address
- of an argument of type 'double' and passes this pointer of type
- 'double *' to a function compiled with GCC, dereferencing the
- pointer may cause a fatal signal.
- One way to solve this problem is to compile your entire program
- with GCC. Another solution is to modify the function that is
- compiled with Sun CC to copy the argument into a local variable;
- local variables are always properly aligned. A third solution is
- to modify the function that uses the pointer to dereference it via
- the following function 'access_double' instead of directly with
- '*':
- inline double
- access_double (double *unaligned_ptr)
- {
- union d2i { double d; int i[2]; };
- union d2i *p = (union d2i *) unaligned_ptr;
- union d2i u;
- u.i[0] = p->i[0];
- u.i[1] = p->i[1];
- return u.d;
- }
- Storing into the pointer can be done likewise with the same union.
- * On Solaris, the 'malloc' function in the 'libmalloc.a' library may
- allocate memory that is only 4 byte aligned. Since GCC on the
- SPARC assumes that doubles are 8 byte aligned, this may result in a
- fatal signal if doubles are stored in memory allocated by the
- 'libmalloc.a' library.
- The solution is to not use the 'libmalloc.a' library. Use instead
- 'malloc' and related functions from 'libc.a'; they do not have this
- problem.
- * On the HP PA machine, ADB sometimes fails to work on functions
- compiled with GCC. Specifically, it fails to work on functions
- that use 'alloca' or variable-size arrays. This is because GCC
- doesn't generate HP-UX unwind descriptors for such functions. It
- may even be impossible to generate them.
- * Debugging ('-g') is not supported on the HP PA machine, unless you
- use the preliminary GNU tools.
- * Taking the address of a label may generate errors from the HP-UX PA
- assembler. GAS for the PA does not have this problem.
- * Using floating point parameters for indirect calls to static
- functions will not work when using the HP assembler. There simply
- is no way for GCC to specify what registers hold arguments for
- static functions when using the HP assembler. GAS for the PA does
- not have this problem.
- * In extremely rare cases involving some very large functions you may
- receive errors from the HP linker complaining about an out of
- bounds unconditional branch offset. This used to occur more often
- in previous versions of GCC, but is now exceptionally rare. If you
- should run into it, you can work around by making your function
- smaller.
- * GCC compiled code sometimes emits warnings from the HP-UX assembler
- of the form:
- (warning) Use of GR3 when
- frame >= 8192 may cause conflict.
- These warnings are harmless and can be safely ignored.
- * In extremely rare cases involving some very large functions you may
- receive errors from the AIX Assembler complaining about a
- displacement that is too large. If you should run into it, you can
- work around by making your function smaller.
- * The 'libstdc++.a' library in GCC relies on the SVR4 dynamic linker
- semantics which merges global symbols between libraries and
- applications, especially necessary for C++ streams functionality.
- This is not the default behavior of AIX shared libraries and
- dynamic linking. 'libstdc++.a' is built on AIX with
- "runtime-linking" enabled so that symbol merging can occur. To
- utilize this feature, the application linked with 'libstdc++.a'
- must include the '-Wl,-brtl' flag on the link line. G++ cannot
- impose this because this option may interfere with the semantics of
- the user program and users may not always use 'g++' to link his or
- her application. Applications are not required to use the
- '-Wl,-brtl' flag on the link line--the rest of the 'libstdc++.a'
- library which is not dependent on the symbol merging semantics will
- continue to function correctly.
- * An application can interpose its own definition of functions for
- functions invoked by 'libstdc++.a' with "runtime-linking" enabled
- on AIX. To accomplish this the application must be linked with
- "runtime-linking" option and the functions explicitly must be
- exported by the application ('-Wl,-brtl,-bE:exportfile').
- * AIX on the RS/6000 provides support (NLS) for environments outside
- of the United States. Compilers and assemblers use NLS to support
- locale-specific representations of various objects including
- floating-point numbers ('.' vs ',' for separating decimal
- fractions). There have been problems reported where the library
- linked with GCC does not produce the same floating-point formats
- that the assembler accepts. If you have this problem, set the
- 'LANG' environment variable to 'C' or 'En_US'.
- * Even if you specify '-fdollars-in-identifiers', you cannot
- successfully use '$' in identifiers on the RS/6000 due to a
- restriction in the IBM assembler. GAS supports these identifiers.
- File: gcc.info, Node: Incompatibilities, Next: Fixed Headers, Prev: Interoperation, Up: Trouble
- 13.3 Incompatibilities of GCC
- =============================
- There are several noteworthy incompatibilities between GNU C and K&R
- (non-ISO) versions of C.
- * GCC normally makes string constants read-only. If several
- identical-looking string constants are used, GCC stores only one
- copy of the string.
- One consequence is that you cannot call 'mktemp' with a string
- constant argument. The function 'mktemp' always alters the string
- its argument points to.
- Another consequence is that 'sscanf' does not work on some very old
- systems when passed a string constant as its format control string
- or input. This is because 'sscanf' incorrectly tries to write into
- the string constant. Likewise 'fscanf' and 'scanf'.
- The solution to these problems is to change the program to use
- 'char'-array variables with initialization strings for these
- purposes instead of string constants.
- * '-2147483648' is positive.
- This is because 2147483648 cannot fit in the type 'int', so
- (following the ISO C rules) its data type is 'unsigned long int'.
- Negating this value yields 2147483648 again.
- * GCC does not substitute macro arguments when they appear inside of
- string constants. For example, the following macro in GCC
- #define foo(a) "a"
- will produce output '"a"' regardless of what the argument A is.
- * When you use 'setjmp' and 'longjmp', the only automatic variables
- guaranteed to remain valid are those declared 'volatile'. This is
- a consequence of automatic register allocation. Consider this
- function:
- jmp_buf j;
- foo ()
- {
- int a, b;
- a = fun1 ();
- if (setjmp (j))
- return a;
- a = fun2 ();
- /* 'longjmp (j)' may occur in 'fun3'. */
- return a + fun3 ();
- }
- Here 'a' may or may not be restored to its first value when the
- 'longjmp' occurs. If 'a' is allocated in a register, then its
- first value is restored; otherwise, it keeps the last value stored
- in it.
- If you use the '-W' option with the '-O' option, you will get a
- warning when GCC thinks such a problem might be possible.
- * Programs that use preprocessing directives in the middle of macro
- arguments do not work with GCC. For example, a program like this
- will not work:
- foobar (
- #define luser
- hack)
- ISO C does not permit such a construct.
- * K&R compilers allow comments to cross over an inclusion boundary
- (i.e. started in an include file and ended in the including file).
- * Declarations of external variables and functions within a block
- apply only to the block containing the declaration. In other
- words, they have the same scope as any other declaration in the
- same place.
- In some other C compilers, an 'extern' declaration affects all the
- rest of the file even if it happens within a block.
- * In traditional C, you can combine 'long', etc., with a typedef
- name, as shown here:
- typedef int foo;
- typedef long foo bar;
- In ISO C, this is not allowed: 'long' and other type modifiers
- require an explicit 'int'.
- * PCC allows typedef names to be used as function parameters.
- * Traditional C allows the following erroneous pair of declarations
- to appear together in a given scope:
- typedef int foo;
- typedef foo foo;
- * GCC treats all characters of identifiers as significant. According
- to K&R-1 (2.2), "No more than the first eight characters are
- significant, although more may be used.". Also according to K&R-1
- (2.2), "An identifier is a sequence of letters and digits; the
- first character must be a letter. The underscore _ counts as a
- letter.", but GCC also allows dollar signs in identifiers.
- * PCC allows whitespace in the middle of compound assignment
- operators such as '+='. GCC, following the ISO standard, does not
- allow this.
- * GCC complains about unterminated character constants inside of
- preprocessing conditionals that fail. Some programs have English
- comments enclosed in conditionals that are guaranteed to fail; if
- these comments contain apostrophes, GCC will probably report an
- error. For example, this code would produce an error:
- #if 0
- You can't expect this to work.
- #endif
- The best solution to such a problem is to put the text into an
- actual C comment delimited by '/*...*/'.
- * Many user programs contain the declaration 'long time ();'. In the
- past, the system header files on many systems did not actually
- declare 'time', so it did not matter what type your program
- declared it to return. But in systems with ISO C headers, 'time'
- is declared to return 'time_t', and if that is not the same as
- 'long', then 'long time ();' is erroneous.
- The solution is to change your program to use appropriate system
- headers ('<time.h>' on systems with ISO C headers) and not to
- declare 'time' if the system header files declare it, or failing
- that to use 'time_t' as the return type of 'time'.
- * When compiling functions that return 'float', PCC converts it to a
- double. GCC actually returns a 'float'. If you are concerned with
- PCC compatibility, you should declare your functions to return
- 'double'; you might as well say what you mean.
- * When compiling functions that return structures or unions, GCC
- output code normally uses a method different from that used on most
- versions of Unix. As a result, code compiled with GCC cannot call
- a structure-returning function compiled with PCC, and vice versa.
- The method used by GCC is as follows: a structure or union which is
- 1, 2, 4 or 8 bytes long is returned like a scalar. A structure or
- union with any other size is stored into an address supplied by the
- caller (usually in a special, fixed register, but on some machines
- it is passed on the stack). The target hook
- 'TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address.
- By contrast, PCC on most target machines returns structures and
- unions of any size by copying the data into an area of static
- storage, and then returning the address of that storage as if it
- were a pointer value. The caller must copy the data from that
- memory area to the place where the value is wanted. GCC does not
- use this method because it is slower and nonreentrant.
- On some newer machines, PCC uses a reentrant convention for all
- structure and union returning. GCC on most of these machines uses
- a compatible convention when returning structures and unions in
- memory, but still returns small structures and unions in registers.
- You can tell GCC to use a compatible convention for all structure
- and union returning with the option '-fpcc-struct-return'.
- * GCC complains about program fragments such as '0x74ae-0x4000' which
- appear to be two hexadecimal constants separated by the minus
- operator. Actually, this string is a single "preprocessing token".
- Each such token must correspond to one token in C. Since this does
- not, GCC prints an error message. Although it may appear obvious
- that what is meant is an operator and two values, the ISO C
- standard specifically requires that this be treated as erroneous.
- A "preprocessing token" is a "preprocessing number" if it begins
- with a digit and is followed by letters, underscores, digits,
- periods and 'e+', 'e-', 'E+', 'E-', 'p+', 'p-', 'P+', or 'P-'
- character sequences. (In strict C90 mode, the sequences 'p+',
- 'p-', 'P+' and 'P-' cannot appear in preprocessing numbers.)
- To make the above program fragment valid, place whitespace in front
- of the minus sign. This whitespace will end the preprocessing
- number.
- File: gcc.info, Node: Fixed Headers, Next: Standard Libraries, Prev: Incompatibilities, Up: Trouble
- 13.4 Fixed Header Files
- =======================
- GCC needs to install corrected versions of some system header files.
- This is because most target systems have some header files that won't
- work with GCC unless they are changed. Some have bugs, some are
- incompatible with ISO C, and some depend on special features of other
- compilers.
- Installing GCC automatically creates and installs the fixed header
- files, by running a program called 'fixincludes'. Normally, you don't
- need to pay attention to this. But there are cases where it doesn't do
- the right thing automatically.
- * If you update the system's header files, such as by installing a
- new system version, the fixed header files of GCC are not
- automatically updated. They can be updated using the 'mkheaders'
- script installed in 'LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'.
- * On some systems, header file directories contain machine-specific
- symbolic links in certain places. This makes it possible to share
- most of the header files among hosts running the same version of
- the system on different machine models.
- The programs that fix the header files do not understand this
- special way of using symbolic links; therefore, the directory of
- fixed header files is good only for the machine model used to build
- it.
- It is possible to make separate sets of fixed header files for the
- different machine models, and arrange a structure of symbolic links
- so as to use the proper set, but you'll have to do this by hand.
- File: gcc.info, Node: Standard Libraries, Next: Disappointments, Prev: Fixed Headers, Up: Trouble
- 13.5 Standard Libraries
- =======================
- GCC by itself attempts to be a conforming freestanding implementation.
- *Note Language Standards Supported by GCC: Standards, for details of
- what this means. Beyond the library facilities required of such an
- implementation, the rest of the C library is supplied by the vendor of
- the operating system. If that C library doesn't conform to the C
- standards, then your programs might get warnings (especially when using
- '-Wall') that you don't expect.
- For example, the 'sprintf' function on SunOS 4.1.3 returns 'char *'
- while the C standard says that 'sprintf' returns an 'int'. The
- 'fixincludes' program could make the prototype for this function match
- the Standard, but that would be wrong, since the function will still
- return 'char *'.
- If you need a Standard compliant library, then you need to find one, as
- GCC does not provide one. The GNU C library (called 'glibc') provides
- ISO C, POSIX, BSD, SystemV and X/Open compatibility for GNU/Linux and
- HURD-based GNU systems; no recent version of it supports other systems,
- though some very old versions did. Version 2.2 of the GNU C library
- includes nearly complete C99 support. You could also ask your operating
- system vendor if newer libraries are available.
- File: gcc.info, Node: Disappointments, Next: C++ Misunderstandings, Prev: Standard Libraries, Up: Trouble
- 13.6 Disappointments and Misunderstandings
- ==========================================
- These problems are perhaps regrettable, but we don't know any practical
- way around them.
- * Certain local variables aren't recognized by debuggers when you
- compile with optimization.
- This occurs because sometimes GCC optimizes the variable out of
- existence. There is no way to tell the debugger how to compute the
- value such a variable "would have had", and it is not clear that
- would be desirable anyway. So GCC simply does not mention the
- eliminated variable when it writes debugging information.
- You have to expect a certain amount of disagreement between the
- executable and your source code, when you use optimization.
- * Users often think it is a bug when GCC reports an error for code
- like this:
- int foo (struct mumble *);
- struct mumble { ... };
- int foo (struct mumble *x)
- { ... }
- This code really is erroneous, because the scope of 'struct mumble'
- in the prototype is limited to the argument list containing it. It
- does not refer to the 'struct mumble' defined with file scope
- immediately below--they are two unrelated types with similar names
- in different scopes.
- But in the definition of 'foo', the file-scope type is used because
- that is available to be inherited. Thus, the definition and the
- prototype do not match, and you get an error.
- This behavior may seem silly, but it's what the ISO standard
- specifies. It is easy enough for you to make your code work by
- moving the definition of 'struct mumble' above the prototype. It's
- not worth being incompatible with ISO C just to avoid an error for
- the example shown above.
- * Accesses to bit-fields even in volatile objects works by accessing
- larger objects, such as a byte or a word. You cannot rely on what
- size of object is accessed in order to read or write the bit-field;
- it may even vary for a given bit-field according to the precise
- usage.
- If you care about controlling the amount of memory that is
- accessed, use volatile but do not use bit-fields.
- * GCC comes with shell scripts to fix certain known problems in
- system header files. They install corrected copies of various
- header files in a special directory where only GCC will normally
- look for them. The scripts adapt to various systems by searching
- all the system header files for the problem cases that we know
- about.
- If new system header files are installed, nothing automatically
- arranges to update the corrected header files. They can be updated
- using the 'mkheaders' script installed in
- 'LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'.
- * On 68000 and x86 systems, for instance, you can get paradoxical
- results if you test the precise values of floating point numbers.
- For example, you can find that a floating point value which is not
- a NaN is not equal to itself. This results from the fact that the
- floating point registers hold a few more bits of precision than fit
- in a 'double' in memory. Compiled code moves values between memory
- and floating point registers at its convenience, and moving them
- into memory truncates them.
- You can partially avoid this problem by using the '-ffloat-store'
- option (*note Optimize Options::).
- * On AIX and other platforms without weak symbol support, templates
- need to be instantiated explicitly and symbols for static members
- of templates will not be generated.
- * On AIX, GCC scans object files and library archives for static
- constructors and destructors when linking an application before the
- linker prunes unreferenced symbols. This is necessary to prevent
- the AIX linker from mistakenly assuming that static constructor or
- destructor are unused and removing them before the scanning can
- occur. All static constructors and destructors found will be
- referenced even though the modules in which they occur may not be
- used by the program. This may lead to both increased executable
- size and unexpected symbol references.
- File: gcc.info, Node: C++ Misunderstandings, Next: Non-bugs, Prev: Disappointments, Up: Trouble
- 13.7 Common Misunderstandings with GNU C++
- ==========================================
- C++ is a complex language and an evolving one, and its standard
- definition (the ISO C++ standard) was only recently completed. As a
- result, your C++ compiler may occasionally surprise you, even when its
- behavior is correct. This section discusses some areas that frequently
- give rise to questions of this sort.
- * Menu:
- * Static Definitions:: Static member declarations are not definitions
- * Name lookup:: Name lookup, templates, and accessing members of base classes
- * Temporaries:: Temporaries may vanish before you expect
- * Copy Assignment:: Copy Assignment operators copy virtual bases twice
- File: gcc.info, Node: Static Definitions, Next: Name lookup, Up: C++ Misunderstandings
- 13.7.1 Declare _and_ Define Static Members
- ------------------------------------------
- When a class has static data members, it is not enough to _declare_ the
- static member; you must also _define_ it. For example:
- class Foo
- {
- ...
- void method();
- static int bar;
- };
- This declaration only establishes that the class 'Foo' has an 'int'
- named 'Foo::bar', and a member function named 'Foo::method'. But you
- still need to define _both_ 'method' and 'bar' elsewhere. According to
- the ISO standard, you must supply an initializer in one (and only one)
- source file, such as:
- int Foo::bar = 0;
- Other C++ compilers may not correctly implement the standard behavior.
- As a result, when you switch to 'g++' from one of these compilers, you
- may discover that a program that appeared to work correctly in fact does
- not conform to the standard: 'g++' reports as undefined symbols any
- static data members that lack definitions.
- File: gcc.info, Node: Name lookup, Next: Temporaries, Prev: Static Definitions, Up: C++ Misunderstandings
- 13.7.2 Name Lookup, Templates, and Accessing Members of Base Classes
- --------------------------------------------------------------------
- The C++ standard prescribes that all names that are not dependent on
- template parameters are bound to their present definitions when parsing
- a template function or class.(1) Only names that are dependent are
- looked up at the point of instantiation. For example, consider
- void foo(double);
- struct A {
- template <typename T>
- void f () {
- foo (1); // 1
- int i = N; // 2
- T t;
- t.bar(); // 3
- foo (t); // 4
- }
- static const int N;
- };
- Here, the names 'foo' and 'N' appear in a context that does not depend
- on the type of 'T'. The compiler will thus require that they are
- defined in the context of use in the template, not only before the point
- of instantiation, and will here use '::foo(double)' and 'A::N',
- respectively. In particular, it will convert the integer value to a
- 'double' when passing it to '::foo(double)'.
- Conversely, 'bar' and the call to 'foo' in the fourth marked line are
- used in contexts that do depend on the type of 'T', so they are only
- looked up at the point of instantiation, and you can provide
- declarations for them after declaring the template, but before
- instantiating it. In particular, if you instantiate 'A::f<int>', the
- last line will call an overloaded '::foo(int)' if one was provided, even
- if after the declaration of 'struct A'.
- This distinction between lookup of dependent and non-dependent names is
- called two-stage (or dependent) name lookup. G++ implements it since
- version 3.4.
- Two-stage name lookup sometimes leads to situations with behavior
- different from non-template codes. The most common is probably this:
- template <typename T> struct Base {
- int i;
- };
- template <typename T> struct Derived : public Base<T> {
- int get_i() { return i; }
- };
- In 'get_i()', 'i' is not used in a dependent context, so the compiler
- will look for a name declared at the enclosing namespace scope (which is
- the global scope here). It will not look into the base class, since
- that is dependent and you may declare specializations of 'Base' even
- after declaring 'Derived', so the compiler cannot really know what 'i'
- would refer to. If there is no global variable 'i', then you will get
- an error message.
- In order to make it clear that you want the member of the base class,
- you need to defer lookup until instantiation time, at which the base
- class is known. For this, you need to access 'i' in a dependent
- context, by either using 'this->i' (remember that 'this' is of type
- 'Derived<T>*', so is obviously dependent), or using 'Base<T>::i'.
- Alternatively, 'Base<T>::i' might be brought into scope by a
- 'using'-declaration.
- Another, similar example involves calling member functions of a base
- class:
- template <typename T> struct Base {
- int f();
- };
- template <typename T> struct Derived : Base<T> {
- int g() { return f(); };
- };
- Again, the call to 'f()' is not dependent on template arguments (there
- are no arguments that depend on the type 'T', and it is also not
- otherwise specified that the call should be in a dependent context).
- Thus a global declaration of such a function must be available, since
- the one in the base class is not visible until instantiation time. The
- compiler will consequently produce the following error message:
- x.cc: In member function `int Derived<T>::g()':
- x.cc:6: error: there are no arguments to `f' that depend on a template
- parameter, so a declaration of `f' must be available
- x.cc:6: error: (if you use `-fpermissive', G++ will accept your code, but
- allowing the use of an undeclared name is deprecated)
- To make the code valid either use 'this->f()', or 'Base<T>::f()'.
- Using the '-fpermissive' flag will also let the compiler accept the
- code, by marking all function calls for which no declaration is visible
- at the time of definition of the template for later lookup at
- instantiation time, as if it were a dependent call. We do not recommend
- using '-fpermissive' to work around invalid code, and it will also only
- catch cases where functions in base classes are called, not where
- variables in base classes are used (as in the example above).
- Note that some compilers (including G++ versions prior to 3.4) get
- these examples wrong and accept above code without an error. Those
- compilers do not implement two-stage name lookup correctly.
- ---------- Footnotes ----------
- (1) The C++ standard just uses the term "dependent" for names that
- depend on the type or value of template parameters. This shorter term
- will also be used in the rest of this section.
- File: gcc.info, Node: Temporaries, Next: Copy Assignment, Prev: Name lookup, Up: C++ Misunderstandings
- 13.7.3 Temporaries May Vanish Before You Expect
- -----------------------------------------------
- It is dangerous to use pointers or references to _portions_ of a
- temporary object. The compiler may very well delete the object before
- you expect it to, leaving a pointer to garbage. The most common place
- where this problem crops up is in classes like string classes,
- especially ones that define a conversion function to type 'char *' or
- 'const char *'--which is one reason why the standard 'string' class
- requires you to call the 'c_str' member function. However, any class
- that returns a pointer to some internal structure is potentially subject
- to this problem.
- For example, a program may use a function 'strfunc' that returns
- 'string' objects, and another function 'charfunc' that operates on
- pointers to 'char':
- string strfunc ();
- void charfunc (const char *);
- void
- f ()
- {
- const char *p = strfunc().c_str();
- ...
- charfunc (p);
- ...
- charfunc (p);
- }
- In this situation, it may seem reasonable to save a pointer to the C
- string returned by the 'c_str' member function and use that rather than
- call 'c_str' repeatedly. However, the temporary string created by the
- call to 'strfunc' is destroyed after 'p' is initialized, at which point
- 'p' is left pointing to freed memory.
- Code like this may run successfully under some other compilers,
- particularly obsolete cfront-based compilers that delete temporaries
- along with normal local variables. However, the GNU C++ behavior is
- standard-conforming, so if your program depends on late destruction of
- temporaries it is not portable.
- The safe way to write such code is to give the temporary a name, which
- forces it to remain until the end of the scope of the name. For
- example:
- const string& tmp = strfunc ();
- charfunc (tmp.c_str ());
- File: gcc.info, Node: Copy Assignment, Prev: Temporaries, Up: C++ Misunderstandings
- 13.7.4 Implicit Copy-Assignment for Virtual Bases
- -------------------------------------------------
- When a base class is virtual, only one subobject of the base class
- belongs to each full object. Also, the constructors and destructors are
- invoked only once, and called from the most-derived class. However,
- such objects behave unspecified when being assigned. For example:
- struct Base{
- char *name;
- Base(char *n) : name(strdup(n)){}
- Base& operator= (const Base& other){
- free (name);
- name = strdup (other.name);
- }
- };
- struct A:virtual Base{
- int val;
- A():Base("A"){}
- };
- struct B:virtual Base{
- int bval;
- B():Base("B"){}
- };
- struct Derived:public A, public B{
- Derived():Base("Derived"){}
- };
- void func(Derived &d1, Derived &d2)
- {
- d1 = d2;
- }
- The C++ standard specifies that 'Base::Base' is only called once when
- constructing or copy-constructing a Derived object. It is unspecified
- whether 'Base::operator=' is called more than once when the implicit
- copy-assignment for Derived objects is invoked (as it is inside 'func'
- in the example).
- G++ implements the "intuitive" algorithm for copy-assignment: assign
- all direct bases, then assign all members. In that algorithm, the
- virtual base subobject can be encountered more than once. In the
- example, copying proceeds in the following order: 'val', 'name' (via
- 'strdup'), 'bval', and 'name' again.
- If application code relies on copy-assignment, a user-defined
- copy-assignment operator removes any uncertainties. With such an
- operator, the application can define whether and how the virtual base
- subobject is assigned.
- File: gcc.info, Node: Non-bugs, Next: Warnings and Errors, Prev: C++ Misunderstandings, Up: Trouble
- 13.8 Certain Changes We Don't Want to Make
- ==========================================
- This section lists changes that people frequently request, but which we
- do not make because we think GCC is better without them.
- * Checking the number and type of arguments to a function which has
- an old-fashioned definition and no prototype.
- Such a feature would work only occasionally--only for calls that
- appear in the same file as the called function, following the
- definition. The only way to check all calls reliably is to add a
- prototype for the function. But adding a prototype eliminates the
- motivation for this feature. So the feature is not worthwhile.
- * Warning about using an expression whose type is signed as a shift
- count.
- Shift count operands are probably signed more often than unsigned.
- Warning about this would cause far more annoyance than good.
- * Warning about assigning a signed value to an unsigned variable.
- Such assignments must be very common; warning about them would
- cause more annoyance than good.
- * Warning when a non-void function value is ignored.
- C contains many standard functions that return a value that most
- programs choose to ignore. One obvious example is 'printf'.
- Warning about this practice only leads the defensive programmer to
- clutter programs with dozens of casts to 'void'. Such casts are
- required so frequently that they become visual noise. Writing
- those casts becomes so automatic that they no longer convey useful
- information about the intentions of the programmer. For functions
- where the return value should never be ignored, use the
- 'warn_unused_result' function attribute (*note Function
- Attributes::).
- * Making '-fshort-enums' the default.
- This would cause storage layout to be incompatible with most other
- C compilers. And it doesn't seem very important, given that you
- can get the same result in other ways. The case where it matters
- most is when the enumeration-valued object is inside a structure,
- and in that case you can specify a field width explicitly.
- * Making bit-fields unsigned by default on particular machines where
- "the ABI standard" says to do so.
- The ISO C standard leaves it up to the implementation whether a
- bit-field declared plain 'int' is signed or not. This in effect
- creates two alternative dialects of C.
- The GNU C compiler supports both dialects; you can specify the
- signed dialect with '-fsigned-bitfields' and the unsigned dialect
- with '-funsigned-bitfields'. However, this leaves open the
- question of which dialect to use by default.
- Currently, the preferred dialect makes plain bit-fields signed,
- because this is simplest. Since 'int' is the same as 'signed int'
- in every other context, it is cleanest for them to be the same in
- bit-fields as well.
- Some computer manufacturers have published Application Binary
- Interface standards which specify that plain bit-fields should be
- unsigned. It is a mistake, however, to say anything about this
- issue in an ABI. This is because the handling of plain bit-fields
- distinguishes two dialects of C. Both dialects are meaningful on
- every type of machine. Whether a particular object file was
- compiled using signed bit-fields or unsigned is of no concern to
- other object files, even if they access the same bit-fields in the
- same data structures.
- A given program is written in one or the other of these two
- dialects. The program stands a chance to work on most any machine
- if it is compiled with the proper dialect. It is unlikely to work
- at all if compiled with the wrong dialect.
- Many users appreciate the GNU C compiler because it provides an
- environment that is uniform across machines. These users would be
- inconvenienced if the compiler treated plain bit-fields differently
- on certain machines.
- Occasionally users write programs intended only for a particular
- machine type. On these occasions, the users would benefit if the
- GNU C compiler were to support by default the same dialect as the
- other compilers on that machine. But such applications are rare.
- And users writing a program to run on more than one type of machine
- cannot possibly benefit from this kind of compatibility.
- This is why GCC does and will treat plain bit-fields in the same
- fashion on all types of machines (by default).
- There are some arguments for making bit-fields unsigned by default
- on all machines. If, for example, this becomes a universal de
- facto standard, it would make sense for GCC to go along with it.
- This is something to be considered in the future.
- (Of course, users strongly concerned about portability should
- indicate explicitly in each bit-field whether it is signed or not.
- In this way, they write programs which have the same meaning in
- both C dialects.)
- * Undefining '__STDC__' when '-ansi' is not used.
- Currently, GCC defines '__STDC__' unconditionally. This provides
- good results in practice.
- Programmers normally use conditionals on '__STDC__' to ask whether
- it is safe to use certain features of ISO C, such as function
- prototypes or ISO token concatenation. Since plain 'gcc' supports
- all the features of ISO C, the correct answer to these questions is
- "yes".
- Some users try to use '__STDC__' to check for the availability of
- certain library facilities. This is actually incorrect usage in an
- ISO C program, because the ISO C standard says that a conforming
- freestanding implementation should define '__STDC__' even though it
- does not have the library facilities. 'gcc -ansi -pedantic' is a
- conforming freestanding implementation, and it is therefore
- required to define '__STDC__', even though it does not come with an
- ISO C library.
- Sometimes people say that defining '__STDC__' in a compiler that
- does not completely conform to the ISO C standard somehow violates
- the standard. This is illogical. The standard is a standard for
- compilers that claim to support ISO C, such as 'gcc -ansi'--not for
- other compilers such as plain 'gcc'. Whatever the ISO C standard
- says is relevant to the design of plain 'gcc' without '-ansi' only
- for pragmatic reasons, not as a requirement.
- GCC normally defines '__STDC__' to be 1, and in addition defines
- '__STRICT_ANSI__' if you specify the '-ansi' option, or a '-std'
- option for strict conformance to some version of ISO C. On some
- hosts, system include files use a different convention, where
- '__STDC__' is normally 0, but is 1 if the user specifies strict
- conformance to the C Standard. GCC follows the host convention
- when processing system include files, but when processing user
- files it follows the usual GNU C convention.
- * Undefining '__STDC__' in C++.
- Programs written to compile with C++-to-C translators get the value
- of '__STDC__' that goes with the C compiler that is subsequently
- used. These programs must test '__STDC__' to determine what kind
- of C preprocessor that compiler uses: whether they should
- concatenate tokens in the ISO C fashion or in the traditional
- fashion.
- These programs work properly with GNU C++ if '__STDC__' is defined.
- They would not work otherwise.
- In addition, many header files are written to provide prototypes in
- ISO C but not in traditional C. Many of these header files can
- work without change in C++ provided '__STDC__' is defined. If
- '__STDC__' is not defined, they will all fail, and will all need to
- be changed to test explicitly for C++ as well.
- * Deleting "empty" loops.
- Historically, GCC has not deleted "empty" loops under the
- assumption that the most likely reason you would put one in a
- program is to have a delay, so deleting them will not make real
- programs run any faster.
- However, the rationale here is that optimization of a nonempty loop
- cannot produce an empty one. This held for carefully written C
- compiled with less powerful optimizers but is not always the case
- for carefully written C++ or with more powerful optimizers. Thus
- GCC will remove operations from loops whenever it can determine
- those operations are not externally visible (apart from the time
- taken to execute them, of course). In case the loop can be proved
- to be finite, GCC will also remove the loop itself.
- Be aware of this when performing timing tests, for instance the
- following loop can be completely removed, provided
- 'some_expression' can provably not change any global state.
- {
- int sum = 0;
- int ix;
- for (ix = 0; ix != 10000; ix++)
- sum += some_expression;
- }
- Even though 'sum' is accumulated in the loop, no use is made of
- that summation, so the accumulation can be removed.
- * Making side effects happen in the same order as in some other
- compiler.
- It is never safe to depend on the order of evaluation of side
- effects. For example, a function call like this may very well
- behave differently from one compiler to another:
- void func (int, int);
- int i = 2;
- func (i++, i++);
- There is no guarantee (in either the C or the C++ standard language
- definitions) that the increments will be evaluated in any
- particular order. Either increment might happen first. 'func'
- might get the arguments '2, 3', or it might get '3, 2', or even '2,
- 2'.
- * Making certain warnings into errors by default.
- Some ISO C testsuites report failure when the compiler does not
- produce an error message for a certain program.
- ISO C requires a "diagnostic" message for certain kinds of invalid
- programs, but a warning is defined by GCC to count as a diagnostic.
- If GCC produces a warning but not an error, that is correct ISO C
- support. If testsuites call this "failure", they should be run
- with the GCC option '-pedantic-errors', which will turn these
- warnings into errors.
- File: gcc.info, Node: Warnings and Errors, Prev: Non-bugs, Up: Trouble
- 13.9 Warning Messages and Error Messages
- ========================================
- The GNU compiler can produce two kinds of diagnostics: errors and
- warnings. Each kind has a different purpose:
- "Errors" report problems that make it impossible to compile your
- program. GCC reports errors with the source file name and line
- number where the problem is apparent.
- "Warnings" report other unusual conditions in your code that _may_
- indicate a problem, although compilation can (and does) proceed.
- Warning messages also report the source file name and line number,
- but include the text 'warning:' to distinguish them from error
- messages.
- Warnings may indicate danger points where you should check to make sure
- that your program really does what you intend; or the use of obsolete
- features; or the use of nonstandard features of GNU C or C++. Many
- warnings are issued only if you ask for them, with one of the '-W'
- options (for instance, '-Wall' requests a variety of useful warnings).
- GCC always tries to compile your program if possible; it never
- gratuitously rejects a program whose meaning is clear merely because
- (for instance) it fails to conform to a standard. In some cases,
- however, the C and C++ standards specify that certain extensions are
- forbidden, and a diagnostic _must_ be issued by a conforming compiler.
- The '-pedantic' option tells GCC to issue warnings in such cases;
- '-pedantic-errors' says to make them errors instead. This does not mean
- that _all_ non-ISO constructs get warnings or errors.
- *Note Options to Request or Suppress Warnings: Warning Options, for
- more detail on these and related command-line options.
- File: gcc.info, Node: Bugs, Next: Service, Prev: Trouble, Up: Top
- 14 Reporting Bugs
- *****************
- Your bug reports play an essential role in making GCC reliable.
- When you encounter a problem, the first thing to do is to see if it is
- already known. *Note Trouble::. If it isn't known, then you should
- report the problem.
- * Menu:
- * Criteria: Bug Criteria. Have you really found a bug?
- * Reporting: Bug Reporting. How to report a bug effectively.
- File: gcc.info, Node: Bug Criteria, Next: Bug Reporting, Up: Bugs
- 14.1 Have You Found a Bug?
- ==========================
- If you are not sure whether you have found a bug, here are some
- guidelines:
- * If the compiler gets a fatal signal, for any input whatever, that
- is a compiler bug. Reliable compilers never crash.
- * If the compiler produces invalid assembly code, for any input
- whatever (except an 'asm' statement), that is a compiler bug,
- unless the compiler reports errors (not just warnings) which would
- ordinarily prevent the assembler from being run.
- * If the compiler produces valid assembly code that does not
- correctly execute the input source code, that is a compiler bug.
- However, you must double-check to make sure, because you may have a
- program whose behavior is undefined, which happened by chance to
- give the desired results with another C or C++ compiler.
- For example, in many nonoptimizing compilers, you can write 'x;' at
- the end of a function instead of 'return x;', with the same
- results. But the value of the function is undefined if 'return' is
- omitted; it is not a bug when GCC produces different results.
- Problems often result from expressions with two increment
- operators, as in 'f (*p++, *p++)'. Your previous compiler might
- have interpreted that expression the way you intended; GCC might
- interpret it another way. Neither compiler is wrong. The bug is
- in your code.
- After you have localized the error to a single source line, it
- should be easy to check for these things. If your program is
- correct and well defined, you have found a compiler bug.
- * If the compiler produces an error message for valid input, that is
- a compiler bug.
- * If the compiler does not produce an error message for invalid
- input, that is a compiler bug. However, you should note that your
- idea of "invalid input" might be someone else's idea of "an
- extension" or "support for traditional practice".
- * If you are an experienced user of one of the languages GCC
- supports, your suggestions for improvement of GCC are welcome in
- any case.
- File: gcc.info, Node: Bug Reporting, Prev: Bug Criteria, Up: Bugs
- 14.2 How and Where to Report Bugs
- =================================
- Bugs should be reported to the bug database at
- <https://github.com/sifive/freedom-tools/issues>.
- File: gcc.info, Node: Service, Next: Contributing, Prev: Bugs, Up: Top
- 15 How To Get Help with GCC
- ***************************
- If you need help installing, using or changing GCC, there are two ways
- to find it:
- * Send a message to a suitable network mailing list. First try
- <gcc-help@gcc.gnu.org> (for help installing or using GCC), and if
- that brings no response, try <gcc@gcc.gnu.org>. For help changing
- GCC, ask <gcc@gcc.gnu.org>. If you think you have found a bug in
- GCC, please report it following the instructions at *note Bug
- Reporting::.
- * Look in the service directory for someone who might help you for a
- fee. The service directory is found at
- <http://www.fsf.org/resources/service>.
- For further information, see <http://gcc.gnu.org/faq.html#support>.
- File: gcc.info, Node: Contributing, Next: Funding, Prev: Service, Up: Top
- 16 Contributing to GCC Development
- **********************************
- If you would like to help pretest GCC releases to assure they work well,
- current development sources are available by SVN (see
- <http://gcc.gnu.org/svn.html>). Source and binary snapshots are also
- available for FTP; see <http://gcc.gnu.org/snapshots.html>.
- If you would like to work on improvements to GCC, please read the
- advice at these URLs:
- <http://gcc.gnu.org/contribute.html>
- <http://gcc.gnu.org/contributewhy.html>
- for information on how to make useful contributions and avoid
- duplication of effort. Suggested projects are listed at
- <http://gcc.gnu.org/projects/>.
- File: gcc.info, Node: Funding, Next: GNU Project, Prev: Contributing, Up: Top
- Funding Free Software
- *********************
- If you want to have more free software a few years from now, it makes
- sense for you to help encourage people to contribute funds for its
- development. The most effective approach known is to encourage
- commercial redistributors to donate.
- Users of free software systems can boost the pace of development by
- encouraging for-a-fee distributors to donate part of their selling price
- to free software developers--the Free Software Foundation, and others.
- The way to convince distributors to do this is to demand it and expect
- it from them. So when you compare distributors, judge them partly by
- how much they give to free software development. Show distributors they
- must compete to be the one who gives the most.
- To make this approach work, you must insist on numbers that you can
- compare, such as, "We will donate ten dollars to the Frobnitz project
- for each disk sold." Don't be satisfied with a vague promise, such as
- "A portion of the profits are donated," since it doesn't give a basis
- for comparison.
- Even a precise fraction "of the profits from this disk" is not very
- meaningful, since creative accounting and unrelated business decisions
- can greatly alter what fraction of the sales price counts as profit. If
- the price you pay is $50, ten percent of the profit is probably less
- than a dollar; it might be a few cents, or nothing at all.
- Some redistributors do development work themselves. This is useful
- too; but to keep everyone honest, you need to inquire how much they do,
- and what kind. Some kinds of development make much more long-term
- difference than others. For example, maintaining a separate version of
- a program contributes very little; maintaining the standard version of a
- program for the whole community contributes much. Easy new ports
- contribute little, since someone else would surely do them; difficult
- ports such as adding a new CPU to the GNU Compiler Collection contribute
- more; major new features or packages contribute the most.
- By establishing the idea that supporting further development is "the
- proper thing to do" when distributing free software for a fee, we can
- assure a steady flow of resources into making more free software.
- Copyright (C) 1994 Free Software Foundation, Inc.
- Verbatim copying and redistribution of this section is permitted
- without royalty; alteration is not permitted.
- File: gcc.info, Node: GNU Project, Next: Copying, Prev: Funding, Up: Top
- The GNU Project and GNU/Linux
- *****************************
- The GNU Project was launched in 1984 to develop a complete Unix-like
- operating system which is free software: the GNU system. (GNU is a
- recursive acronym for "GNU's Not Unix"; it is pronounced "guh-NEW".)
- Variants of the GNU operating system, which use the kernel Linux, are
- now widely used; though these systems are often referred to as "Linux",
- they are more accurately called GNU/Linux systems.
- For more information, see:
- <http://www.gnu.org/>
- <http://www.gnu.org/gnu/linux-and-gnu.html>
- File: gcc.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top
- GNU General Public License
- **************************
- Version 3, 29 June 2007
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies of this
- license document, but changing it is not allowed.
- Preamble
- ========
- The GNU General Public License is a free, copyleft license for software
- and other kinds of works.
- The licenses for most software and other practical works are designed
- to take away your freedom to share and change the works. By contrast,
- the GNU General Public License is intended to guarantee your freedom to
- share and change all versions of a program-to make sure it remains free
- software for all its users. We, the Free Software Foundation, use the
- GNU General Public License for most of our software; it applies also to
- any other work released this way by its authors. You can apply it to
- your programs, too.
- When we speak of free software, we are referring to freedom, not price.
- Our General Public Licenses are designed to make sure that you have the
- freedom to distribute copies of free software (and charge for them if
- you wish), that you receive source code or can get it if you want it,
- that you can change the software or use pieces of it in new free
- programs, and that you know you can do these things.
- To protect your rights, we need to prevent others from denying you
- these rights or asking you to surrender the rights. Therefore, you have
- certain responsibilities if you distribute copies of the software, or if
- you modify it: responsibilities to respect the freedom of others.
- For example, if you distribute copies of such a program, whether gratis
- or for a fee, you must pass on to the recipients the same freedoms that
- you received. You must make sure that they, too, receive or can get the
- source code. And you must show them these terms so they know their
- rights.
- Developers that use the GNU GPL protect your rights with two steps: (1)
- assert copyright on the software, and (2) offer you this License giving
- you legal permission to copy, distribute and/or modify it.
- For the developers' and authors' protection, the GPL clearly explains
- that there is no warranty for this free software. For both users' and
- authors' sake, the GPL requires that modified versions be marked as
- changed, so that their problems will not be attributed erroneously to
- authors of previous versions.
- Some devices are designed to deny users access to install or run
- modified versions of the software inside them, although the manufacturer
- can do so. This is fundamentally incompatible with the aim of
- protecting users' freedom to change the software. The systematic
- pattern of such abuse occurs in the area of products for individuals to
- use, which is precisely where it is most unacceptable. Therefore, we
- have designed this version of the GPL to prohibit the practice for those
- products. If such problems arise substantially in other domains, we
- stand ready to extend this provision to those domains in future versions
- of the GPL, as needed to protect the freedom of users.
- Finally, every program is threatened constantly by software patents.
- States should not allow patents to restrict development and use of
- software on general-purpose computers, but in those that do, we wish to
- avoid the special danger that patents applied to a free program could
- make it effectively proprietary. To prevent this, the GPL assures that
- patents cannot be used to render the program non-free.
- The precise terms and conditions for copying, distribution and
- modification follow.
- TERMS AND CONDITIONS
- ====================
- 0. Definitions.
- "This License" refers to version 3 of the GNU General Public
- License.
- "Copyright" also means copyright-like laws that apply to other
- kinds of works, such as semiconductor masks.
- "The Program" refers to any copyrightable work licensed under this
- License. Each licensee is addressed as "you". "Licensees" and
- "recipients" may be individuals or organizations.
- To "modify" a work means to copy from or adapt all or part of the
- work in a fashion requiring copyright permission, other than the
- making of an exact copy. The resulting work is called a "modified
- version" of the earlier work or a work "based on" the earlier work.
- A "covered work" means either the unmodified Program or a work
- based on the Program.
- To "propagate" a work means to do anything with it that, without
- permission, would make you directly or secondarily liable for
- infringement under applicable copyright law, except executing it on
- a computer or modifying a private copy. Propagation includes
- copying, distribution (with or without modification), making
- available to the public, and in some countries other activities as
- well.
- To "convey" a work means any kind of propagation that enables other
- parties to make or receive copies. Mere interaction with a user
- through a computer network, with no transfer of a copy, is not
- conveying.
- An interactive user interface displays "Appropriate Legal Notices"
- to the extent that it includes a convenient and prominently visible
- feature that (1) displays an appropriate copyright notice, and (2)
- tells the user that there is no warranty for the work (except to
- the extent that warranties are provided), that licensees may convey
- the work under this License, and how to view a copy of this
- License. If the interface presents a list of user commands or
- options, such as a menu, a prominent item in the list meets this
- criterion.
- 1. Source Code.
- The "source code" for a work means the preferred form of the work
- for making modifications to it. "Object code" means any non-source
- form of a work.
- A "Standard Interface" means an interface that either is an
- official standard defined by a recognized standards body, or, in
- the case of interfaces specified for a particular programming
- language, one that is widely used among developers working in that
- language.
- The "System Libraries" of an executable work include anything,
- other than the work as a whole, that (a) is included in the normal
- form of packaging a Major Component, but which is not part of that
- Major Component, and (b) serves only to enable use of the work with
- that Major Component, or to implement a Standard Interface for
- which an implementation is available to the public in source code
- form. A "Major Component", in this context, means a major
- essential component (kernel, window system, and so on) of the
- specific operating system (if any) on which the executable work
- runs, or a compiler used to produce the work, or an object code
- interpreter used to run it.
- The "Corresponding Source" for a work in object code form means all
- the source code needed to generate, install, and (for an executable
- work) run the object code and to modify the work, including scripts
- to control those activities. However, it does not include the
- work's System Libraries, or general-purpose tools or generally
- available free programs which are used unmodified in performing
- those activities but which are not part of the work. For example,
- Corresponding Source includes interface definition files associated
- with source files for the work, and the source code for shared
- libraries and dynamically linked subprograms that the work is
- specifically designed to require, such as by intimate data
- communication or control flow between those subprograms and other
- parts of the work.
- The Corresponding Source need not include anything that users can
- regenerate automatically from other parts of the Corresponding
- Source.
- The Corresponding Source for a work in source code form is that
- same work.
- 2. Basic Permissions.
- All rights granted under this License are granted for the term of
- copyright on the Program, and are irrevocable provided the stated
- conditions are met. This License explicitly affirms your unlimited
- permission to run the unmodified Program. The output from running
- a covered work is covered by this License only if the output, given
- its content, constitutes a covered work. This License acknowledges
- your rights of fair use or other equivalent, as provided by
- copyright law.
- You may make, run and propagate covered works that you do not
- convey, without conditions so long as your license otherwise
- remains in force. You may convey covered works to others for the
- sole purpose of having them make modifications exclusively for you,
- or provide you with facilities for running those works, provided
- that you comply with the terms of this License in conveying all
- material for which you do not control copyright. Those thus making
- or running the covered works for you must do so exclusively on your
- behalf, under your direction and control, on terms that prohibit
- them from making any copies of your copyrighted material outside
- their relationship with you.
- Conveying under any other circumstances is permitted solely under
- the conditions stated below. Sublicensing is not allowed; section
- 10 makes it unnecessary.
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
- No covered work shall be deemed part of an effective technological
- measure under any applicable law fulfilling obligations under
- article 11 of the WIPO copyright treaty adopted on 20 December
- 1996, or similar laws prohibiting or restricting circumvention of
- such measures.
- When you convey a covered work, you waive any legal power to forbid
- circumvention of technological measures to the extent such
- circumvention is effected by exercising rights under this License
- with respect to the covered work, and you disclaim any intention to
- limit operation or modification of the work as a means of
- enforcing, against the work's users, your or third parties' legal
- rights to forbid circumvention of technological measures.
- 4. Conveying Verbatim Copies.
- You may convey verbatim copies of the Program's source code as you
- receive it, in any medium, provided that you conspicuously and
- appropriately publish on each copy an appropriate copyright notice;
- keep intact all notices stating that this License and any
- non-permissive terms added in accord with section 7 apply to the
- code; keep intact all notices of the absence of any warranty; and
- give all recipients a copy of this License along with the Program.
- You may charge any price or no price for each copy that you convey,
- and you may offer support or warranty protection for a fee.
- 5. Conveying Modified Source Versions.
- You may convey a work based on the Program, or the modifications to
- produce it from the Program, in the form of source code under the
- terms of section 4, provided that you also meet all of these
- conditions:
- a. The work must carry prominent notices stating that you
- modified it, and giving a relevant date.
- b. The work must carry prominent notices stating that it is
- released under this License and any conditions added under
- section 7. This requirement modifies the requirement in
- section 4 to "keep intact all notices".
- c. You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable
- section 7 additional terms, to the whole of the work, and all
- its parts, regardless of how they are packaged. This License
- gives no permission to license the work in any other way, but
- it does not invalidate such permission if you have separately
- received it.
- d. If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has
- interactive interfaces that do not display Appropriate Legal
- Notices, your work need not make them do so.
- A compilation of a covered work with other separate and independent
- works, which are not by their nature extensions of the covered
- work, and which are not combined with it such as to form a larger
- program, in or on a volume of a storage or distribution medium, is
- called an "aggregate" if the compilation and its resulting
- copyright are not used to limit the access or legal rights of the
- compilation's users beyond what the individual works permit.
- Inclusion of a covered work in an aggregate does not cause this
- License to apply to the other parts of the aggregate.
- 6. Conveying Non-Source Forms.
- You may convey a covered work in object code form under the terms
- of sections 4 and 5, provided that you also convey the
- machine-readable Corresponding Source under the terms of this
- License, in one of these ways:
- a. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
- b. Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that
- product model, to give anyone who possesses the object code
- either (1) a copy of the Corresponding Source for all the
- software in the product that is covered by this License, on a
- durable physical medium customarily used for software
- interchange, for a price no more than your reasonable cost of
- physically performing this conveying of source, or (2) access
- to copy the Corresponding Source from a network server at no
- charge.
- c. Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially,
- and only if you received the object code with such an offer,
- in accord with subsection 6b.
- d. Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to
- the Corresponding Source in the same way through the same
- place at no further charge. You need not require recipients
- to copy the Corresponding Source along with the object code.
- If the place to copy the object code is a network server, the
- Corresponding Source may be on a different server (operated by
- you or a third party) that supports equivalent copying
- facilities, provided you maintain clear directions next to the
- object code saying where to find the Corresponding Source.
- Regardless of what server hosts the Corresponding Source, you
- remain obligated to ensure that it is available for as long as
- needed to satisfy these requirements.
- e. Convey the object code using peer-to-peer transmission,
- provided you inform other peers where the object code and
- Corresponding Source of the work are being offered to the
- general public at no charge under subsection 6d.
- A separable portion of the object code, whose source code is
- excluded from the Corresponding Source as a System Library, need
- not be included in conveying the object code work.
- A "User Product" is either (1) a "consumer product", which means
- any tangible personal property which is normally used for personal,
- family, or household purposes, or (2) anything designed or sold for
- incorporation into a dwelling. In determining whether a product is
- a consumer product, doubtful cases shall be resolved in favor of
- coverage. For a particular product received by a particular user,
- "normally used" refers to a typical or common use of that class of
- product, regardless of the status of the particular user or of the
- way in which the particular user actually uses, or expects or is
- expected to use, the product. A product is a consumer product
- regardless of whether the product has substantial commercial,
- industrial or non-consumer uses, unless such uses represent the
- only significant mode of use of the product.
- "Installation Information" for a User Product means any methods,
- procedures, authorization keys, or other information required to
- install and execute modified versions of a covered work in that
- User Product from a modified version of its Corresponding Source.
- The information must suffice to ensure that the continued
- functioning of the modified object code is in no case prevented or
- interfered with solely because modification has been made.
- If you convey an object code work under this section in, or with,
- or specifically for use in, a User Product, and the conveying
- occurs as part of a transaction in which the right of possession
- and use of the User Product is transferred to the recipient in
- perpetuity or for a fixed term (regardless of how the transaction
- is characterized), the Corresponding Source conveyed under this
- section must be accompanied by the Installation Information. But
- this requirement does not apply if neither you nor any third party
- retains the ability to install modified object code on the User
- Product (for example, the work has been installed in ROM).
- The requirement to provide Installation Information does not
- include a requirement to continue to provide support service,
- warranty, or updates for a work that has been modified or installed
- by the recipient, or for the User Product in which it has been
- modified or installed. Access to a network may be denied when the
- modification itself materially and adversely affects the operation
- of the network or violates the rules and protocols for
- communication across the network.
- Corresponding Source conveyed, and Installation Information
- provided, in accord with this section must be in a format that is
- publicly documented (and with an implementation available to the
- public in source code form), and must require no special password
- or key for unpacking, reading or copying.
- 7. Additional Terms.
- "Additional permissions" are terms that supplement the terms of
- this License by making exceptions from one or more of its
- conditions. Additional permissions that are applicable to the
- entire Program shall be treated as though they were included in
- this License, to the extent that they are valid under applicable
- law. If additional permissions apply only to part of the Program,
- that part may be used separately under those permissions, but the
- entire Program remains governed by this License without regard to
- the additional permissions.
- When you convey a copy of a covered work, you may at your option
- remove any additional permissions from that copy, or from any part
- of it. (Additional permissions may be written to require their own
- removal in certain cases when you modify the work.) You may place
- additional permissions on material, added by you to a covered work,
- for which you have or can give appropriate copyright permission.
- Notwithstanding any other provision of this License, for material
- you add to a covered work, you may (if authorized by the copyright
- holders of that material) supplement the terms of this License with
- terms:
- a. Disclaiming warranty or limiting liability differently from
- the terms of sections 15 and 16 of this License; or
- b. Requiring preservation of specified reasonable legal notices
- or author attributions in that material or in the Appropriate
- Legal Notices displayed by works containing it; or
- c. Prohibiting misrepresentation of the origin of that material,
- or requiring that modified versions of such material be marked
- in reasonable ways as different from the original version; or
- d. Limiting the use for publicity purposes of names of licensors
- or authors of the material; or
- e. Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
- f. Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified
- versions of it) with contractual assumptions of liability to
- the recipient, for any liability that these contractual
- assumptions directly impose on those licensors and authors.
- All other non-permissive additional terms are considered "further
- restrictions" within the meaning of section 10. If the Program as
- you received it, or any part of it, contains a notice stating that
- it is governed by this License along with a term that is a further
- restriction, you may remove that term. If a license document
- contains a further restriction but permits relicensing or conveying
- under this License, you may add to a covered work material governed
- by the terms of that license document, provided that the further
- restriction does not survive such relicensing or conveying.
- If you add terms to a covered work in accord with this section, you
- must place, in the relevant source files, a statement of the
- additional terms that apply to those files, or a notice indicating
- where to find the applicable terms.
- Additional terms, permissive or non-permissive, may be stated in
- the form of a separately written license, or stated as exceptions;
- the above requirements apply either way.
- 8. Termination.
- You may not propagate or modify a covered work except as expressly
- provided under this License. Any attempt otherwise to propagate or
- modify it is void, and will automatically terminate your rights
- under this License (including any patent licenses granted under the
- third paragraph of section 11).
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, you do not qualify to receive new licenses
- for the same material under section 10.
- 9. Acceptance Not Required for Having Copies.
- You are not required to accept this License in order to receive or
- run a copy of the Program. Ancillary propagation of a covered work
- occurring solely as a consequence of using peer-to-peer
- transmission to receive a copy likewise does not require
- acceptance. However, nothing other than this License grants you
- permission to propagate or modify any covered work. These actions
- infringe copyright if you do not accept this License. Therefore,
- by modifying or propagating a covered work, you indicate your
- acceptance of this License to do so.
- 10. Automatic Licensing of Downstream Recipients.
- Each time you convey a covered work, the recipient automatically
- receives a license from the original licensors, to run, modify and
- propagate that work, subject to this License. You are not
- responsible for enforcing compliance by third parties with this
- License.
- An "entity transaction" is a transaction transferring control of an
- organization, or substantially all assets of one, or subdividing an
- organization, or merging organizations. If propagation of a
- covered work results from an entity transaction, each party to that
- transaction who receives a copy of the work also receives whatever
- licenses to the work the party's predecessor in interest had or
- could give under the previous paragraph, plus a right to possession
- of the Corresponding Source of the work from the predecessor in
- interest, if the predecessor has it or can get it with reasonable
- efforts.
- You may not impose any further restrictions on the exercise of the
- rights granted or affirmed under this License. For example, you
- may not impose a license fee, royalty, or other charge for exercise
- of rights granted under this License, and you may not initiate
- litigation (including a cross-claim or counterclaim in a lawsuit)
- alleging that any patent claim is infringed by making, using,
- selling, offering for sale, or importing the Program or any portion
- of it.
- 11. Patents.
- A "contributor" is a copyright holder who authorizes use under this
- License of the Program or a work on which the Program is based.
- The work thus licensed is called the contributor's "contributor
- version".
- A contributor's "essential patent claims" are all patent claims
- owned or controlled by the contributor, whether already acquired or
- hereafter acquired, that would be infringed by some manner,
- permitted by this License, of making, using, or selling its
- contributor version, but do not include claims that would be
- infringed only as a consequence of further modification of the
- contributor version. For purposes of this definition, "control"
- includes the right to grant patent sublicenses in a manner
- consistent with the requirements of this License.
- Each contributor grants you a non-exclusive, worldwide,
- royalty-free patent license under the contributor's essential
- patent claims, to make, use, sell, offer for sale, import and
- otherwise run, modify and propagate the contents of its contributor
- version.
- In the following three paragraphs, a "patent license" is any
- express agreement or commitment, however denominated, not to
- enforce a patent (such as an express permission to practice a
- patent or covenant not to sue for patent infringement). To "grant"
- such a patent license to a party means to make such an agreement or
- commitment not to enforce a patent against the party.
- If you convey a covered work, knowingly relying on a patent
- license, and the Corresponding Source of the work is not available
- for anyone to copy, free of charge and under the terms of this
- License, through a publicly available network server or other
- readily accessible means, then you must either (1) cause the
- Corresponding Source to be so available, or (2) arrange to deprive
- yourself of the benefit of the patent license for this particular
- work, or (3) arrange, in a manner consistent with the requirements
- of this License, to extend the patent license to downstream
- recipients. "Knowingly relying" means you have actual knowledge
- that, but for the patent license, your conveying the covered work
- in a country, or your recipient's use of the covered work in a
- country, would infringe one or more identifiable patents in that
- country that you have reason to believe are valid.
- If, pursuant to or in connection with a single transaction or
- arrangement, you convey, or propagate by procuring conveyance of, a
- covered work, and grant a patent license to some of the parties
- receiving the covered work authorizing them to use, propagate,
- modify or convey a specific copy of the covered work, then the
- patent license you grant is automatically extended to all
- recipients of the covered work and works based on it.
- A patent license is "discriminatory" if it does not include within
- the scope of its coverage, prohibits the exercise of, or is
- conditioned on the non-exercise of one or more of the rights that
- are specifically granted under this License. You may not convey a
- covered work if you are a party to an arrangement with a third
- party that is in the business of distributing software, under which
- you make payment to the third party based on the extent of your
- activity of conveying the work, and under which the third party
- grants, to any of the parties who would receive the covered work
- from you, a discriminatory patent license (a) in connection with
- copies of the covered work conveyed by you (or copies made from
- those copies), or (b) primarily for and in connection with specific
- products or compilations that contain the covered work, unless you
- entered into that arrangement, or that patent license was granted,
- prior to 28 March 2007.
- Nothing in this License shall be construed as excluding or limiting
- any implied license or other defenses to infringement that may
- otherwise be available to you under applicable patent law.
- 12. No Surrender of Others' Freedom.
- If conditions are imposed on you (whether by court order, agreement
- or otherwise) that contradict the conditions of this License, they
- do not excuse you from the conditions of this License. If you
- cannot convey a covered work so as to satisfy simultaneously your
- obligations under this License and any other pertinent obligations,
- then as a consequence you may not convey it at all. For example,
- if you agree to terms that obligate you to collect a royalty for
- further conveying from those to whom you convey the Program, the
- only way you could satisfy both those terms and this License would
- be to refrain entirely from conveying the Program.
- 13. Use with the GNU Affero General Public License.
- Notwithstanding any other provision of this License, you have
- permission to link or combine any covered work with a work licensed
- under version 3 of the GNU Affero General Public License into a
- single combined work, and to convey the resulting work. The terms
- of this License will continue to apply to the part which is the
- covered work, but the special requirements of the GNU Affero
- General Public License, section 13, concerning interaction through
- a network will apply to the combination as such.
- 14. Revised Versions of this License.
- The Free Software Foundation may publish revised and/or new
- versions of the GNU General Public License from time to time. Such
- new versions will be similar in spirit to the present version, but
- may differ in detail to address new problems or concerns.
- Each version is given a distinguishing version number. If the
- Program specifies that a certain numbered version of the GNU
- General Public License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that numbered version or of any later version published by the Free
- Software Foundation. If the Program does not specify a version
- number of the GNU General Public License, you may choose any
- version ever published by the Free Software Foundation.
- If the Program specifies that a proxy can decide which future
- versions of the GNU General Public License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Program.
- Later license versions may give you additional or different
- permissions. However, no additional obligations are imposed on any
- author or copyright holder as a result of your choosing to follow a
- later version.
- 15. Disclaimer of Warranty.
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
- COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
- WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
- MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
- RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
- SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
- NECESSARY SERVICING, REPAIR OR CORRECTION.
- 16. Limitation of Liability.
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
- WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
- AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
- DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
- CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
- THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
- BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
- THE POSSIBILITY OF SUCH DAMAGES.
- 17. Interpretation of Sections 15 and 16.
- If the disclaimer of warranty and limitation of liability provided
- above cannot be given local legal effect according to their terms,
- reviewing courts shall apply local law that most closely
- approximates an absolute waiver of all civil liability in
- connection with the Program, unless a warranty or assumption of
- liability accompanies a copy of the Program in return for a fee.
- END OF TERMS AND CONDITIONS
- ===========================
- How to Apply These Terms to Your New Programs
- =============================================
- If you develop a new program, and you want it to be of the greatest
- possible use to the public, the best way to achieve this is to make it
- free software which everyone can redistribute and change under these
- terms.
- To do so, attach the following notices to the program. It is safest to
- attach them to the start of each source file to most effectively state
- the exclusion of warranty; and each file should have at least the
- "copyright" line and a pointer to where the full notice is found.
- ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
- Copyright (C) YEAR NAME OF AUTHOR
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or (at
- your option) any later version.
- This program is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- Also add information on how to contact you by electronic and paper
- mail.
- If the program does terminal interaction, make it output a short notice
- like this when it starts in an interactive mode:
- PROGRAM Copyright (C) YEAR NAME OF AUTHOR
- This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type 'show c' for details.
- The hypothetical commands 'show w' and 'show c' should show the
- appropriate parts of the General Public License. Of course, your
- program's commands might be different; for a GUI interface, you would
- use an "about box".
- You should also get your employer (if you work as a programmer) or
- school, if any, to sign a "copyright disclaimer" for the program, if
- necessary. For more information on this, and how to apply and follow
- the GNU GPL, see <http://www.gnu.org/licenses/>.
- The GNU General Public License does not permit incorporating your
- program into proprietary programs. If your program is a subroutine
- library, you may consider it more useful to permit linking proprietary
- applications with the library. If this is what you want to do, use the
- GNU Lesser General Public License instead of this License. But first,
- please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
- File: gcc.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top
- GNU Free Documentation License
- ******************************
- Version 1.3, 3 November 2008
- Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
- <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
- 0. PREAMBLE
- The purpose of this License is to make a manual, textbook, or other
- functional and useful document "free" in the sense of freedom: to
- assure everyone the effective freedom to copy and redistribute it,
- with or without modifying it, either commercially or
- noncommercially. Secondarily, this License preserves for the
- author and publisher a way to get credit for their work, while not
- being considered responsible for modifications made by others.
- This License is a kind of "copyleft", which means that derivative
- works of the document must themselves be free in the same sense.
- It complements the GNU General Public License, which is a copyleft
- license designed for free software.
- We have designed this License in order to use it for manuals for
- free software, because free software needs free documentation: a
- free program should come with manuals providing the same freedoms
- that the software does. But this License is not limited to
- software manuals; it can be used for any textual work, regardless
- of subject matter or whether it is published as a printed book. We
- recommend this License principally for works whose purpose is
- instruction or reference.
- 1. APPLICABILITY AND DEFINITIONS
- This License applies to any manual or other work, in any medium,
- that contains a notice placed by the copyright holder saying it can
- be distributed under the terms of this License. Such a notice
- grants a world-wide, royalty-free license, unlimited in duration,
- to use that work under the conditions stated herein. The
- "Document", below, refers to any such manual or work. Any member
- of the public is a licensee, and is addressed as "you". You accept
- the license if you copy, modify or distribute the work in a way
- requiring permission under copyright law.
- A "Modified Version" of the Document means any work containing the
- Document or a portion of it, either copied verbatim, or with
- modifications and/or translated into another language.
- A "Secondary Section" is a named appendix or a front-matter section
- of the Document that deals exclusively with the relationship of the
- publishers or authors of the Document to the Document's overall
- subject (or to related matters) and contains nothing that could
- fall directly within that overall subject. (Thus, if the Document
- is in part a textbook of mathematics, a Secondary Section may not
- explain any mathematics.) The relationship could be a matter of
- historical connection with the subject or with related matters, or
- of legal, commercial, philosophical, ethical or political position
- regarding them.
- The "Invariant Sections" are certain Secondary Sections whose
- titles are designated, as being those of Invariant Sections, in the
- notice that says that the Document is released under this License.
- If a section does not fit the above definition of Secondary then it
- is not allowed to be designated as Invariant. The Document may
- contain zero Invariant Sections. If the Document does not identify
- any Invariant Sections then there are none.
- The "Cover Texts" are certain short passages of text that are
- listed, as Front-Cover Texts or Back-Cover Texts, in the notice
- that says that the Document is released under this License. A
- Front-Cover Text may be at most 5 words, and a Back-Cover Text may
- be at most 25 words.
- A "Transparent" copy of the Document means a machine-readable copy,
- represented in a format whose specification is available to the
- general public, that is suitable for revising the document
- straightforwardly with generic text editors or (for images composed
- of pixels) generic paint programs or (for drawings) some widely
- available drawing editor, and that is suitable for input to text
- formatters or for automatic translation to a variety of formats
- suitable for input to text formatters. A copy made in an otherwise
- Transparent file format whose markup, or absence of markup, has
- been arranged to thwart or discourage subsequent modification by
- readers is not Transparent. An image format is not Transparent if
- used for any substantial amount of text. A copy that is not
- "Transparent" is called "Opaque".
- Examples of suitable formats for Transparent copies include plain
- ASCII without markup, Texinfo input format, LaTeX input format,
- SGML or XML using a publicly available DTD, and standard-conforming
- simple HTML, PostScript or PDF designed for human modification.
- Examples of transparent image formats include PNG, XCF and JPG.
- Opaque formats include proprietary formats that can be read and
- edited only by proprietary word processors, SGML or XML for which
- the DTD and/or processing tools are not generally available, and
- the machine-generated HTML, PostScript or PDF produced by some word
- processors for output purposes only.
- The "Title Page" means, for a printed book, the title page itself,
- plus such following pages as are needed to hold, legibly, the
- material this License requires to appear in the title page. For
- works in formats which do not have any title page as such, "Title
- Page" means the text near the most prominent appearance of the
- work's title, preceding the beginning of the body of the text.
- The "publisher" means any person or entity that distributes copies
- of the Document to the public.
- A section "Entitled XYZ" means a named subunit of the Document
- whose title either is precisely XYZ or contains XYZ in parentheses
- following text that translates XYZ in another language. (Here XYZ
- stands for a specific section name mentioned below, such as
- "Acknowledgements", "Dedications", "Endorsements", or "History".)
- To "Preserve the Title" of such a section when you modify the
- Document means that it remains a section "Entitled XYZ" according
- to this definition.
- The Document may include Warranty Disclaimers next to the notice
- which states that this License applies to the Document. These
- Warranty Disclaimers are considered to be included by reference in
- this License, but only as regards disclaiming warranties: any other
- implication that these Warranty Disclaimers may have is void and
- has no effect on the meaning of this License.
- 2. VERBATIM COPYING
- You may copy and distribute the Document in any medium, either
- commercially or noncommercially, provided that this License, the
- copyright notices, and the license notice saying this License
- applies to the Document are reproduced in all copies, and that you
- add no other conditions whatsoever to those of this License. You
- may not use technical measures to obstruct or control the reading
- or further copying of the copies you make or distribute. However,
- you may accept compensation in exchange for copies. If you
- distribute a large enough number of copies you must also follow the
- conditions in section 3.
- You may also lend copies, under the same conditions stated above,
- and you may publicly display copies.
- 3. COPYING IN QUANTITY
- If you publish printed copies (or copies in media that commonly
- have printed covers) of the Document, numbering more than 100, and
- the Document's license notice requires Cover Texts, you must
- enclose the copies in covers that carry, clearly and legibly, all
- these Cover Texts: Front-Cover Texts on the front cover, and
- Back-Cover Texts on the back cover. Both covers must also clearly
- and legibly identify you as the publisher of these copies. The
- front cover must present the full title with all words of the title
- equally prominent and visible. You may add other material on the
- covers in addition. Copying with changes limited to the covers, as
- long as they preserve the title of the Document and satisfy these
- conditions, can be treated as verbatim copying in other respects.
- If the required texts for either cover are too voluminous to fit
- legibly, you should put the first ones listed (as many as fit
- reasonably) on the actual cover, and continue the rest onto
- adjacent pages.
- If you publish or distribute Opaque copies of the Document
- numbering more than 100, you must either include a machine-readable
- Transparent copy along with each Opaque copy, or state in or with
- each Opaque copy a computer-network location from which the general
- network-using public has access to download using public-standard
- network protocols a complete Transparent copy of the Document, free
- of added material. If you use the latter option, you must take
- reasonably prudent steps, when you begin distribution of Opaque
- copies in quantity, to ensure that this Transparent copy will
- remain thus accessible at the stated location until at least one
- year after the last time you distribute an Opaque copy (directly or
- through your agents or retailers) of that edition to the public.
- It is requested, but not required, that you contact the authors of
- the Document well before redistributing any large number of copies,
- to give them a chance to provide you with an updated version of the
- Document.
- 4. MODIFICATIONS
- You may copy and distribute a Modified Version of the Document
- under the conditions of sections 2 and 3 above, provided that you
- release the Modified Version under precisely this License, with the
- Modified Version filling the role of the Document, thus licensing
- distribution and modification of the Modified Version to whoever
- possesses a copy of it. In addition, you must do these things in
- the Modified Version:
- A. Use in the Title Page (and on the covers, if any) a title
- distinct from that of the Document, and from those of previous
- versions (which should, if there were any, be listed in the
- History section of the Document). You may use the same title
- as a previous version if the original publisher of that
- version gives permission.
- B. List on the Title Page, as authors, one or more persons or
- entities responsible for authorship of the modifications in
- the Modified Version, together with at least five of the
- principal authors of the Document (all of its principal
- authors, if it has fewer than five), unless they release you
- from this requirement.
- C. State on the Title page the name of the publisher of the
- Modified Version, as the publisher.
- D. Preserve all the copyright notices of the Document.
- E. Add an appropriate copyright notice for your modifications
- adjacent to the other copyright notices.
- F. Include, immediately after the copyright notices, a license
- notice giving the public permission to use the Modified
- Version under the terms of this License, in the form shown in
- the Addendum below.
- G. Preserve in that license notice the full lists of Invariant
- Sections and required Cover Texts given in the Document's
- license notice.
- H. Include an unaltered copy of this License.
- I. Preserve the section Entitled "History", Preserve its Title,
- and add to it an item stating at least the title, year, new
- authors, and publisher of the Modified Version as given on the
- Title Page. If there is no section Entitled "History" in the
- Document, create one stating the title, year, authors, and
- publisher of the Document as given on its Title Page, then add
- an item describing the Modified Version as stated in the
- previous sentence.
- J. Preserve the network location, if any, given in the Document
- for public access to a Transparent copy of the Document, and
- likewise the network locations given in the Document for
- previous versions it was based on. These may be placed in the
- "History" section. You may omit a network location for a work
- that was published at least four years before the Document
- itself, or if the original publisher of the version it refers
- to gives permission.
- K. For any section Entitled "Acknowledgements" or "Dedications",
- Preserve the Title of the section, and preserve in the section
- all the substance and tone of each of the contributor
- acknowledgements and/or dedications given therein.
- L. Preserve all the Invariant Sections of the Document, unaltered
- in their text and in their titles. Section numbers or the
- equivalent are not considered part of the section titles.
- M. Delete any section Entitled "Endorsements". Such a section
- may not be included in the Modified Version.
- N. Do not retitle any existing section to be Entitled
- "Endorsements" or to conflict in title with any Invariant
- Section.
- O. Preserve any Warranty Disclaimers.
- If the Modified Version includes new front-matter sections or
- appendices that qualify as Secondary Sections and contain no
- material copied from the Document, you may at your option designate
- some or all of these sections as invariant. To do this, add their
- titles to the list of Invariant Sections in the Modified Version's
- license notice. These titles must be distinct from any other
- section titles.
- You may add a section Entitled "Endorsements", provided it contains
- nothing but endorsements of your Modified Version by various
- parties--for example, statements of peer review or that the text
- has been approved by an organization as the authoritative
- definition of a standard.
- You may add a passage of up to five words as a Front-Cover Text,
- and a passage of up to 25 words as a Back-Cover Text, to the end of
- the list of Cover Texts in the Modified Version. Only one passage
- of Front-Cover Text and one of Back-Cover Text may be added by (or
- through arrangements made by) any one entity. If the Document
- already includes a cover text for the same cover, previously added
- by you or by arrangement made by the same entity you are acting on
- behalf of, you may not add another; but you may replace the old
- one, on explicit permission from the previous publisher that added
- the old one.
- The author(s) and publisher(s) of the Document do not by this
- License give permission to use their names for publicity for or to
- assert or imply endorsement of any Modified Version.
- 5. COMBINING DOCUMENTS
- You may combine the Document with other documents released under
- this License, under the terms defined in section 4 above for
- modified versions, provided that you include in the combination all
- of the Invariant Sections of all of the original documents,
- unmodified, and list them all as Invariant Sections of your
- combined work in its license notice, and that you preserve all
- their Warranty Disclaimers.
- The combined work need only contain one copy of this License, and
- multiple identical Invariant Sections may be replaced with a single
- copy. If there are multiple Invariant Sections with the same name
- but different contents, make the title of each such section unique
- by adding at the end of it, in parentheses, the name of the
- original author or publisher of that section if known, or else a
- unique number. Make the same adjustment to the section titles in
- the list of Invariant Sections in the license notice of the
- combined work.
- In the combination, you must combine any sections Entitled
- "History" in the various original documents, forming one section
- Entitled "History"; likewise combine any sections Entitled
- "Acknowledgements", and any sections Entitled "Dedications". You
- must delete all sections Entitled "Endorsements."
- 6. COLLECTIONS OF DOCUMENTS
- You may make a collection consisting of the Document and other
- documents released under this License, and replace the individual
- copies of this License in the various documents with a single copy
- that is included in the collection, provided that you follow the
- rules of this License for verbatim copying of each of the documents
- in all other respects.
- You may extract a single document from such a collection, and
- distribute it individually under this License, provided you insert
- a copy of this License into the extracted document, and follow this
- License in all other respects regarding verbatim copying of that
- document.
- 7. AGGREGATION WITH INDEPENDENT WORKS
- A compilation of the Document or its derivatives with other
- separate and independent documents or works, in or on a volume of a
- storage or distribution medium, is called an "aggregate" if the
- copyright resulting from the compilation is not used to limit the
- legal rights of the compilation's users beyond what the individual
- works permit. When the Document is included in an aggregate, this
- License does not apply to the other works in the aggregate which
- are not themselves derivative works of the Document.
- If the Cover Text requirement of section 3 is applicable to these
- copies of the Document, then if the Document is less than one half
- of the entire aggregate, the Document's Cover Texts may be placed
- on covers that bracket the Document within the aggregate, or the
- electronic equivalent of covers if the Document is in electronic
- form. Otherwise they must appear on printed covers that bracket
- the whole aggregate.
- 8. TRANSLATION
- Translation is considered a kind of modification, so you may
- distribute translations of the Document under the terms of section
- 4. Replacing Invariant Sections with translations requires special
- permission from their copyright holders, but you may include
- translations of some or all Invariant Sections in addition to the
- original versions of these Invariant Sections. You may include a
- translation of this License, and all the license notices in the
- Document, and any Warranty Disclaimers, provided that you also
- include the original English version of this License and the
- original versions of those notices and disclaimers. In case of a
- disagreement between the translation and the original version of
- this License or a notice or disclaimer, the original version will
- prevail.
- If a section in the Document is Entitled "Acknowledgements",
- "Dedications", or "History", the requirement (section 4) to
- Preserve its Title (section 1) will typically require changing the
- actual title.
- 9. TERMINATION
- You may not copy, modify, sublicense, or distribute the Document
- except as expressly provided under this License. Any attempt
- otherwise to copy, modify, sublicense, or distribute it is void,
- and will automatically terminate your rights under this License.
- However, if you cease all violation of this License, then your
- license from a particular copyright holder is reinstated (a)
- provisionally, unless and until the copyright holder explicitly and
- finally terminates your license, and (b) permanently, if the
- copyright holder fails to notify you of the violation by some
- reasonable means prior to 60 days after the cessation.
- Moreover, your license from a particular copyright holder is
- reinstated permanently if the copyright holder notifies you of the
- violation by some reasonable means, this is the first time you have
- received notice of violation of this License (for any work) from
- that copyright holder, and you cure the violation prior to 30 days
- after your receipt of the notice.
- Termination of your rights under this section does not terminate
- the licenses of parties who have received copies or rights from you
- under this License. If your rights have been terminated and not
- permanently reinstated, receipt of a copy of some or all of the
- same material does not give you any rights to use it.
- 10. FUTURE REVISIONS OF THIS LICENSE
- The Free Software Foundation may publish new, revised versions of
- the GNU Free Documentation License from time to time. Such new
- versions will be similar in spirit to the present version, but may
- differ in detail to address new problems or concerns. See
- <http://www.gnu.org/copyleft/>.
- Each version of the License is given a distinguishing version
- number. If the Document specifies that a particular numbered
- version of this License "or any later version" applies to it, you
- have the option of following the terms and conditions either of
- that specified version or of any later version that has been
- published (not as a draft) by the Free Software Foundation. If the
- Document does not specify a version number of this License, you may
- choose any version ever published (not as a draft) by the Free
- Software Foundation. If the Document specifies that a proxy can
- decide which future versions of this License can be used, that
- proxy's public statement of acceptance of a version permanently
- authorizes you to choose that version for the Document.
- 11. RELICENSING
- "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
- World Wide Web server that publishes copyrightable works and also
- provides prominent facilities for anybody to edit those works. A
- public wiki that anybody can edit is an example of such a server.
- A "Massive Multiauthor Collaboration" (or "MMC") contained in the
- site means any set of copyrightable works thus published on the MMC
- site.
- "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
- license published by Creative Commons Corporation, a not-for-profit
- corporation with a principal place of business in San Francisco,
- California, as well as future copyleft versions of that license
- published by that same organization.
- "Incorporate" means to publish or republish a Document, in whole or
- in part, as part of another Document.
- An MMC is "eligible for relicensing" if it is licensed under this
- License, and if all works that were first published under this
- License somewhere other than this MMC, and subsequently
- incorporated in whole or in part into the MMC, (1) had no cover
- texts or invariant sections, and (2) were thus incorporated prior
- to November 1, 2008.
- The operator of an MMC Site may republish an MMC contained in the
- site under CC-BY-SA on the same site at any time before August 1,
- 2009, provided the MMC is eligible for relicensing.
- ADDENDUM: How to use this License for your documents
- ====================================================
- To use this License in a document you have written, include a copy of
- the License in the document and put the following copyright and license
- notices just after the title page:
- Copyright (C) YEAR YOUR NAME.
- Permission is granted to copy, distribute and/or modify this document
- under the terms of the GNU Free Documentation License, Version 1.3
- or any later version published by the Free Software Foundation;
- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
- Texts. A copy of the license is included in the section entitled ``GNU
- Free Documentation License''.
- If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
- replace the "with...Texts." line with this:
- with the Invariant Sections being LIST THEIR TITLES, with
- the Front-Cover Texts being LIST, and with the Back-Cover Texts
- being LIST.
- If you have Invariant Sections without Cover Texts, or some other
- combination of the three, merge those two alternatives to suit the
- situation.
- If your document contains nontrivial examples of program code, we
- recommend releasing these examples in parallel under your choice of free
- software license, such as the GNU General Public License, to permit
- their use in free software.
- File: gcc.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top
- Contributors to GCC
- *******************
- The GCC project would like to thank its many contributors. Without them
- the project would not have been nearly as successful as it has been.
- Any omissions in this list are accidental. Feel free to contact
- <law@redhat.com> or <gerald@pfeifer.com> if you have been left out or
- some of your contributions are not listed. Please keep this list in
- alphabetical order.
- * Analog Devices helped implement the support for complex data types
- and iterators.
- * John David Anglin for threading-related fixes and improvements to
- libstdc++-v3, and the HP-UX port.
- * James van Artsdalen wrote the code that makes efficient use of the
- Intel 80387 register stack.
- * Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta
- Series port.
- * Alasdair Baird for various bug fixes.
- * Giovanni Bajo for analyzing lots of complicated C++ problem
- reports.
- * Peter Barada for his work to improve code generation for new
- ColdFire cores.
- * Gerald Baumgartner added the signature extension to the C++ front
- end.
- * Godmar Back for his Java improvements and encouragement.
- * Scott Bambrough for help porting the Java compiler.
- * Wolfgang Bangerth for processing tons of bug reports.
- * Jon Beniston for his Microsoft Windows port of Java and port to
- Lattice Mico32.
- * Daniel Berlin for better DWARF 2 support, faster/better
- optimizations, improved alias analysis, plus migrating GCC to
- Bugzilla.
- * Geoff Berry for his Java object serialization work and various
- patches.
- * David Binderman tests weekly snapshots of GCC trunk against Fedora
- Rawhide for several architectures.
- * Laurynas Biveinis for memory management work and DJGPP port fixes.
- * Uros Bizjak for the implementation of x87 math built-in functions
- and for various middle end and i386 back end improvements and bug
- fixes.
- * Eric Blake for helping to make GCJ and libgcj conform to the
- specifications.
- * Janne Blomqvist for contributions to GNU Fortran.
- * Hans-J. Boehm for his garbage collector, IA-64 libffi port, and
- other Java work.
- * Segher Boessenkool for helping maintain the PowerPC port and the
- instruction combiner plus various contributions to the middle end.
- * Neil Booth for work on cpplib, lang hooks, debug hooks and other
- miscellaneous clean-ups.
- * Steven Bosscher for integrating the GNU Fortran front end into GCC
- and for contributing to the tree-ssa branch.
- * Eric Botcazou for fixing middle- and backend bugs left and right.
- * Per Bothner for his direction via the steering committee and
- various improvements to the infrastructure for supporting new
- languages. Chill front end implementation. Initial
- implementations of cpplib, fix-header, config.guess, libio, and
- past C++ library (libg++) maintainer. Dreaming up, designing and
- implementing much of GCJ.
- * Devon Bowen helped port GCC to the Tahoe.
- * Don Bowman for mips-vxworks contributions.
- * James Bowman for the FT32 port.
- * Dave Brolley for work on cpplib and Chill.
- * Paul Brook for work on the ARM architecture and maintaining GNU
- Fortran.
- * Robert Brown implemented the support for Encore 32000 systems.
- * Christian Bruel for improvements to local store elimination.
- * Herman A.J. ten Brugge for various fixes.
- * Joerg Brunsmann for Java compiler hacking and help with the GCJ
- FAQ.
- * Joe Buck for his direction via the steering committee from its
- creation to 2013.
- * Craig Burley for leadership of the G77 Fortran effort.
- * Tobias Burnus for contributions to GNU Fortran.
- * Stephan Buys for contributing Doxygen notes for libstdc++.
- * Paolo Carlini for libstdc++ work: lots of efficiency improvements
- to the C++ strings, streambufs and formatted I/O, hard detective
- work on the frustrating localization issues, and keeping up with
- the problem reports.
- * John Carr for his alias work, SPARC hacking, infrastructure
- improvements, previous contributions to the steering committee,
- loop optimizations, etc.
- * Stephane Carrez for 68HC11 and 68HC12 ports.
- * Steve Chamberlain for support for the Renesas SH and H8 processors
- and the PicoJava processor, and for GCJ config fixes.
- * Glenn Chambers for help with the GCJ FAQ.
- * John-Marc Chandonia for various libgcj patches.
- * Denis Chertykov for contributing and maintaining the AVR port, the
- first GCC port for an 8-bit architecture.
- * Kito Cheng for his work on the RISC-V port, including bringing up
- the test suite and maintenance.
- * Scott Christley for his Objective-C contributions.
- * Eric Christopher for his Java porting help and clean-ups.
- * Branko Cibej for more warning contributions.
- * The GNU Classpath project for all of their merged runtime code.
- * Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work,
- '--help', and other random hacking.
- * Michael Cook for libstdc++ cleanup patches to reduce warnings.
- * R. Kelley Cook for making GCC buildable from a read-only directory
- as well as other miscellaneous build process and documentation
- clean-ups.
- * Ralf Corsepius for SH testing and minor bug fixing.
- * François-Xavier Coudert for contributions to GNU Fortran.
- * Stan Cox for care and feeding of the x86 port and lots of behind
- the scenes hacking.
- * Alex Crain provided changes for the 3b1.
- * Ian Dall for major improvements to the NS32k port.
- * Paul Dale for his work to add uClinux platform support to the m68k
- backend.
- * Palmer Dabbelt for his work maintaining the RISC-V port.
- * Dario Dariol contributed the four varieties of sample programs that
- print a copy of their source.
- * Russell Davidson for fstream and stringstream fixes in libstdc++.
- * Bud Davis for work on the G77 and GNU Fortran compilers.
- * Mo DeJong for GCJ and libgcj bug fixes.
- * Jerry DeLisle for contributions to GNU Fortran.
- * DJ Delorie for the DJGPP port, build and libiberty maintenance,
- various bug fixes, and the M32C, MeP, MSP430, and RL78 ports.
- * Arnaud Desitter for helping to debug GNU Fortran.
- * Gabriel Dos Reis for contributions to G++, contributions and
- maintenance of GCC diagnostics infrastructure, libstdc++-v3,
- including 'valarray<>', 'complex<>', maintaining the numerics
- library (including that pesky '<limits>' :-) and keeping up-to-date
- anything to do with numbers.
- * Ulrich Drepper for his work on glibc, testing of GCC using glibc,
- ISO C99 support, CFG dumping support, etc., plus support of the C++
- runtime libraries including for all kinds of C interface issues,
- contributing and maintaining 'complex<>', sanity checking and
- disbursement, configuration architecture, libio maintenance, and
- early math work.
- * François Dumont for his work on libstdc++-v3, especially
- maintaining and improving 'debug-mode' and associative and
- unordered containers.
- * Zdenek Dvorak for a new loop unroller and various fixes.
- * Michael Eager for his work on the Xilinx MicroBlaze port.
- * Richard Earnshaw for his ongoing work with the ARM.
- * David Edelsohn for his direction via the steering committee,
- ongoing work with the RS6000/PowerPC port, help cleaning up Haifa
- loop changes, doing the entire AIX port of libstdc++ with his bare
- hands, and for ensuring GCC properly keeps working on AIX.
- * Kevin Ediger for the floating point formatting of num_put::do_put
- in libstdc++.
- * Phil Edwards for libstdc++ work including configuration hackery,
- documentation maintainer, chief breaker of the web pages, the
- occasional iostream bug fix, and work on shared library symbol
- versioning.
- * Paul Eggert for random hacking all over GCC.
- * Mark Elbrecht for various DJGPP improvements, and for libstdc++
- configuration support for locales and fstream-related fixes.
- * Vadim Egorov for libstdc++ fixes in strings, streambufs, and
- iostreams.
- * Christian Ehrhardt for dealing with bug reports.
- * Ben Elliston for his work to move the Objective-C runtime into its
- own subdirectory and for his work on autoconf.
- * Revital Eres for work on the PowerPC 750CL port.
- * Marc Espie for OpenBSD support.
- * Doug Evans for much of the global optimization framework, arc,
- m32r, and SPARC work.
- * Christopher Faylor for his work on the Cygwin port and for caring
- and feeding the gcc.gnu.org box and saving its users tons of spam.
- * Fred Fish for BeOS support and Ada fixes.
- * Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.
- * Peter Gerwinski for various bug fixes and the Pascal front end.
- * Kaveh R. Ghazi for his direction via the steering committee,
- amazing work to make '-W -Wall -W* -Werror' useful, and testing GCC
- on a plethora of platforms. Kaveh extends his gratitude to the
- CAIP Center at Rutgers University for providing him with computing
- resources to work on Free Software from the late 1980s to 2010.
- * John Gilmore for a donation to the FSF earmarked improving GNU
- Java.
- * Judy Goldberg for c++ contributions.
- * Torbjorn Granlund for various fixes and the c-torture testsuite,
- multiply- and divide-by-constant optimization, improved long long
- support, improved leaf function register allocation, and his
- direction via the steering committee.
- * Jonny Grant for improvements to 'collect2's' '--help'
- documentation.
- * Anthony Green for his '-Os' contributions, the moxie port, and Java
- front end work.
- * Stu Grossman for gdb hacking, allowing GCJ developers to debug Java
- code.
- * Michael K. Gschwind contributed the port to the PDP-11.
- * Richard Biener for his ongoing middle-end contributions and bug
- fixes and for release management.
- * Ron Guilmette implemented the 'protoize' and 'unprotoize' tools,
- the support for DWARF 1 symbolic debugging information, and much of
- the support for System V Release 4. He has also worked heavily on
- the Intel 386 and 860 support.
- * Sumanth Gundapaneni for contributing the CR16 port.
- * Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload
- GCSE.
- * Bruno Haible for improvements in the runtime overhead for EH, new
- warnings and assorted bug fixes.
- * Andrew Haley for his amazing Java compiler and library efforts.
- * Chris Hanson assisted in making GCC work on HP-UX for the 9000
- series 300.
- * Michael Hayes for various thankless work he's done trying to get
- the c30/c40 ports functional. Lots of loop and unroll improvements
- and fixes.
- * Dara Hazeghi for wading through myriads of target-specific bug
- reports.
- * Kate Hedstrom for staking the G77 folks with an initial testsuite.
- * Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64
- work, loop opts, and generally fixing lots of old problems we've
- ignored for years, flow rewrite and lots of further stuff,
- including reviewing tons of patches.
- * Aldy Hernandez for working on the PowerPC port, SIMD support, and
- various fixes.
- * Nobuyuki Hikichi of Software Research Associates, Tokyo,
- contributed the support for the Sony NEWS machine.
- * Kazu Hirata for caring and feeding the Renesas H8/300 port and
- various fixes.
- * Katherine Holcomb for work on GNU Fortran.
- * Manfred Hollstein for his ongoing work to keep the m88k alive, lots
- of testing and bug fixing, particularly of GCC configury code.
- * Steve Holmgren for MachTen patches.
- * Mat Hostetter for work on the TILE-Gx and TILEPro ports.
- * Jan Hubicka for his x86 port improvements.
- * Falk Hueffner for working on C and optimization bug reports.
- * Bernardo Innocenti for his m68k work, including merging of ColdFire
- improvements and uClinux support.
- * Christian Iseli for various bug fixes.
- * Kamil Iskra for general m68k hacking.
- * Lee Iverson for random fixes and MIPS testing.
- * Balaji V. Iyer for Cilk+ development and merging.
- * Andreas Jaeger for testing and benchmarking of GCC and various bug
- fixes.
- * Martin Jambor for his work on inter-procedural optimizations, the
- switch conversion pass, and scalar replacement of aggregates.
- * Jakub Jelinek for his SPARC work and sibling call optimizations as
- well as lots of bug fixes and test cases, and for improving the
- Java build system.
- * Janis Johnson for ia64 testing and fixes, her quality improvement
- sidetracks, and web page maintenance.
- * Kean Johnston for SCO OpenServer support and various fixes.
- * Tim Josling for the sample language treelang based originally on
- Richard Kenner's "toy" language.
- * Nicolai Josuttis for additional libstdc++ documentation.
- * Klaus Kaempf for his ongoing work to make alpha-vms a viable
- target.
- * Steven G. Kargl for work on GNU Fortran.
- * David Kashtan of SRI adapted GCC to VMS.
- * Ryszard Kabatek for many, many libstdc++ bug fixes and
- optimizations of strings, especially member functions, and for
- auto_ptr fixes.
- * Geoffrey Keating for his ongoing work to make the PPC work for
- GNU/Linux and his automatic regression tester.
- * Brendan Kehoe for his ongoing work with G++ and for a lot of early
- work in just about every part of libstdc++.
- * Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
- MIL-STD-1750A.
- * Richard Kenner of the New York University Ultracomputer Research
- Laboratory wrote the machine descriptions for the AMD 29000, the
- DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the
- support for instruction attributes. He also made changes to better
- support RISC processors including changes to common subexpression
- elimination, strength reduction, function calling sequence
- handling, and condition code support, in addition to generalizing
- the code for frame pointer elimination and delay slot scheduling.
- Richard Kenner was also the head maintainer of GCC for several
- years.
- * Mumit Khan for various contributions to the Cygwin and Mingw32
- ports and maintaining binary releases for Microsoft Windows hosts,
- and for massive libstdc++ porting work to Cygwin/Mingw32.
- * Robin Kirkham for cpu32 support.
- * Mark Klein for PA improvements.
- * Thomas Koenig for various bug fixes.
- * Bruce Korb for the new and improved fixincludes code.
- * Benjamin Kosnik for his G++ work and for leading the libstdc++-v3
- effort.
- * Maxim Kuvyrkov for contributions to the instruction scheduler, the
- Android and m68k/Coldfire ports, and optimizations.
- * Charles LaBrec contributed the support for the Integrated Solutions
- 68020 system.
- * Asher Langton and Mike Kumbera for contributing Cray pointer
- support to GNU Fortran, and for other GNU Fortran improvements.
- * Jeff Law for his direction via the steering committee, coordinating
- the entire egcs project and GCC 2.95, rolling out snapshots and
- releases, handling merges from GCC2, reviewing tons of patches that
- might have fallen through the cracks else, and random but extensive
- hacking.
- * Walter Lee for work on the TILE-Gx and TILEPro ports.
- * Marc Lehmann for his direction via the steering committee and
- helping with analysis and improvements of x86 performance.
- * Victor Leikehman for work on GNU Fortran.
- * Ted Lemon wrote parts of the RTL reader and printer.
- * Kriang Lerdsuwanakij for C++ improvements including template as
- template parameter support, and many C++ fixes.
- * Warren Levy for tremendous work on libgcj (Java Runtime Library)
- and random work on the Java front end.
- * Alain Lichnewsky ported GCC to the MIPS CPU.
- * Oskar Liljeblad for hacking on AWT and his many Java bug reports
- and patches.
- * Robert Lipe for OpenServer support, new testsuites, testing, etc.
- * Chen Liqin for various S+core related fixes/improvement, and for
- maintaining the S+core port.
- * Martin Liska for his work on identical code folding, the
- sanitizers, HSA, general bug fixing and for running automated
- regression testing of GCC and reporting numerous bugs.
- * Weiwen Liu for testing and various bug fixes.
- * Manuel López-Ibáñez for improving '-Wconversion' and many other
- diagnostics fixes and improvements.
- * Dave Love for his ongoing work with the Fortran front end and
- runtime libraries.
- * Martin von Löwis for internal consistency checking infrastructure,
- various C++ improvements including namespace support, and tons of
- assistance with libstdc++/compiler merges.
- * H.J. Lu for his previous contributions to the steering committee,
- many x86 bug reports, prototype patches, and keeping the GNU/Linux
- ports working.
- * Greg McGary for random fixes and (someday) bounded pointers.
- * Andrew MacLeod for his ongoing work in building a real EH system,
- various code generation improvements, work on the global optimizer,
- etc.
- * Vladimir Makarov for hacking some ugly i960 problems, PowerPC
- hacking improvements to compile-time performance, overall knowledge
- and direction in the area of instruction scheduling, design and
- implementation of the automaton based instruction scheduler and
- design and implementation of the integrated and local register
- allocators.
- * David Malcolm for his work on improving GCC diagnostics, JIT,
- self-tests and unit testing.
- * Bob Manson for his behind the scenes work on dejagnu.
- * John Marino for contributing the DragonFly BSD port.
- * Philip Martin for lots of libstdc++ string and vector iterator
- fixes and improvements, and string clean up and testsuites.
- * Michael Matz for his work on dominance tree discovery, the x86-64
- port, link-time optimization framework and general optimization
- improvements.
- * All of the Mauve project contributors for Java test code.
- * Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
- * Adam Megacz for his work on the Microsoft Windows port of GCJ.
- * Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS,
- powerpc, haifa, ECOFF debug support, and other assorted hacking.
- * Jason Merrill for his direction via the steering committee and
- leading the G++ effort.
- * Martin Michlmayr for testing GCC on several architectures using the
- entire Debian archive.
- * David Miller for his direction via the steering committee, lots of
- SPARC work, improvements in jump.c and interfacing with the Linux
- kernel developers.
- * Gary Miller ported GCC to Charles River Data Systems machines.
- * Alfred Minarik for libstdc++ string and ios bug fixes, and turning
- the entire libstdc++ testsuite namespace-compatible.
- * Mark Mitchell for his direction via the steering committee,
- mountains of C++ work, load/store hoisting out of loops, alias
- analysis improvements, ISO C 'restrict' support, and serving as
- release manager from 2000 to 2011.
- * Alan Modra for various GNU/Linux bits and testing.
- * Toon Moene for his direction via the steering committee, Fortran
- maintenance, and his ongoing work to make us make Fortran run fast.
- * Jason Molenda for major help in the care and feeding of all the
- services on the gcc.gnu.org (formerly egcs.cygnus.com)
- machine--mail, web services, ftp services, etc etc. Doing all this
- work on scrap paper and the backs of envelopes would have been...
- difficult.
- * Catherine Moore for fixing various ugly problems we have sent her
- way, including the haifa bug which was killing the Alpha & PowerPC
- Linux kernels.
- * Mike Moreton for his various Java patches.
- * David Mosberger-Tang for various Alpha improvements, and for the
- initial IA-64 port.
- * Stephen Moshier contributed the floating point emulator that
- assists in cross-compilation and permits support for floating point
- numbers wider than 64 bits and for ISO C99 support.
- * Bill Moyer for his behind the scenes work on various issues.
- * Philippe De Muyter for his work on the m68k port.
- * Joseph S. Myers for his work on the PDP-11 port, format checking
- and ISO C99 support, and continuous emphasis on (and contributions
- to) documentation.
- * Nathan Myers for his work on libstdc++-v3: architecture and
- authorship through the first three snapshots, including
- implementation of locale infrastructure, string, shadow C headers,
- and the initial project documentation (DESIGN, CHECKLIST, and so
- forth). Later, more work on MT-safe string and shadow headers.
- * Felix Natter for documentation on porting libstdc++.
- * Nathanael Nerode for cleaning up the configuration/build process.
- * NeXT, Inc. donated the front end that supports the Objective-C
- language.
- * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the
- search engine setup, various documentation fixes and other small
- fixes.
- * Geoff Noer for his work on getting cygwin native builds working.
- * Vegard Nossum for running automated regression testing of GCC and
- reporting numerous bugs.
- * Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance
- tracking web pages, GIMPLE tuples, and assorted fixes.
- * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64,
- FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related
- infrastructure improvements.
- * Alexandre Oliva for various build infrastructure improvements,
- scripts and amazing testing work, including keeping libtool issues
- sane and happy.
- * Stefan Olsson for work on mt_alloc.
- * Melissa O'Neill for various NeXT fixes.
- * Rainer Orth for random MIPS work, including improvements to GCC's
- o32 ABI support, improvements to dejagnu's MIPS support, Java
- configuration clean-ups and porting work, and maintaining the IRIX,
- Solaris 2, and Tru64 UNIX ports.
- * Steven Pemberton for his contribution of 'enquire' which allowed
- GCC to determine various properties of the floating point unit and
- generate 'float.h' in older versions of GCC.
- * Hartmut Penner for work on the s390 port.
- * Paul Petersen wrote the machine description for the Alliant FX/8.
- * Alexandre Petit-Bianco for implementing much of the Java compiler
- and continued Java maintainership.
- * Matthias Pfaller for major improvements to the NS32k port.
- * Gerald Pfeifer for his direction via the steering committee,
- pointing out lots of problems we need to solve, maintenance of the
- web pages, and taking care of documentation maintenance in general.
- * Marek Polacek for his work on the C front end, the sanitizers and
- general bug fixing.
- * Andrew Pinski for processing bug reports by the dozen.
- * Ovidiu Predescu for his work on the Objective-C front end and
- runtime libraries.
- * Jerry Quinn for major performance improvements in C++ formatted
- I/O.
- * Ken Raeburn for various improvements to checker, MIPS ports and
- various cleanups in the compiler.
- * Rolf W. Rasmussen for hacking on AWT.
- * David Reese of Sun Microsystems contributed to the Solaris on
- PowerPC port.
- * John Regehr for running automated regression testing of GCC and
- reporting numerous bugs.
- * Volker Reichelt for running automated regression testing of GCC and
- reporting numerous bugs and for keeping up with the problem
- reports.
- * Joern Rennecke for maintaining the sh port, loop, regmove & reload
- hacking and developing and maintaining the Epiphany port.
- * Loren J. Rittle for improvements to libstdc++-v3 including the
- FreeBSD port, threading fixes, thread-related configury changes,
- critical threading documentation, and solutions to really tricky
- I/O problems, as well as keeping GCC properly working on FreeBSD
- and continuous testing.
- * Craig Rodrigues for processing tons of bug reports.
- * Ola Rönnerup for work on mt_alloc.
- * Gavin Romig-Koch for lots of behind the scenes MIPS work.
- * David Ronis inspired and encouraged Craig to rewrite the G77
- documentation in texinfo format by contributing a first pass at a
- translation of the old 'g77-0.5.16/f/DOC' file.
- * Ken Rose for fixes to GCC's delay slot filling code.
- * Ira Rosen for her contributions to the auto-vectorizer.
- * Paul Rubin wrote most of the preprocessor.
- * Pétur Runólfsson for major performance improvements in C++
- formatted I/O and large file support in C++ filebuf.
- * Chip Salzenberg for libstdc++ patches and improvements to locales,
- traits, Makefiles, libio, libtool hackery, and "long long" support.
- * Juha Sarlin for improvements to the H8 code generator.
- * Greg Satz assisted in making GCC work on HP-UX for the 9000 series
- 300.
- * Roger Sayle for improvements to constant folding and GCC's RTL
- optimizers as well as for fixing numerous bugs.
- * Bradley Schatz for his work on the GCJ FAQ.
- * Peter Schauer wrote the code to allow debugging to work on the
- Alpha.
- * William Schelter did most of the work on the Intel 80386 support.
- * Tobias Schlüter for work on GNU Fortran.
- * Bernd Schmidt for various code generation improvements and major
- work in the reload pass, serving as release manager for GCC 2.95.3,
- and work on the Blackfin and C6X ports.
- * Peter Schmid for constant testing of libstdc++--especially
- application testing, going above and beyond what was requested for
- the release criteria--and libstdc++ header file tweaks.
- * Jason Schroeder for jcf-dump patches.
- * Andreas Schwab for his work on the m68k port.
- * Lars Segerlund for work on GNU Fortran.
- * Dodji Seketeli for numerous C++ bug fixes and debug info
- improvements.
- * Tim Shen for major work on '<regex>'.
- * Joel Sherrill for his direction via the steering committee, RTEMS
- contributions and RTEMS testing.
- * Nathan Sidwell for many C++ fixes/improvements.
- * Jeffrey Siegal for helping RMS with the original design of GCC,
- some code which handles the parse tree and RTL data structures,
- constant folding and help with the original VAX & m68k ports.
- * Kenny Simpson for prompting libstdc++ fixes due to defect reports
- from the LWG (thereby keeping GCC in line with updates from the
- ISO).
- * Franz Sirl for his ongoing work with making the PPC port stable for
- GNU/Linux.
- * Andrey Slepuhin for assorted AIX hacking.
- * Trevor Smigiel for contributing the SPU port.
- * Christopher Smith did the port for Convex machines.
- * Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
- Retired from GCC maintainership August 2010, having mentored two
- new maintainers into the role.
- * Randy Smith finished the Sun FPA support.
- * Ed Smith-Rowland for his continuous work on libstdc++-v3, special
- functions, '<random>', and various improvements to C++11 features.
- * Scott Snyder for queue, iterator, istream, and string fixes and
- libstdc++ testsuite entries. Also for providing the patch to G77
- to add rudimentary support for 'INTEGER*1', 'INTEGER*2', and
- 'LOGICAL*1'.
- * Zdenek Sojka for running automated regression testing of GCC and
- reporting numerous bugs.
- * Arseny Solokha for running automated regression testing of GCC and
- reporting numerous bugs.
- * Jayant Sonar for contributing the CR16 port.
- * Brad Spencer for contributions to the GLIBCPP_FORCE_NEW technique.
- * Richard Stallman, for writing the original GCC and launching the
- GNU project.
- * Jan Stein of the Chalmers Computer Society provided support for
- Genix, as well as part of the 32000 machine description.
- * Gerhard Steinmetz for running automated regression testing of GCC
- and reporting numerous bugs.
- * Nigel Stephens for various mips16 related fixes/improvements.
- * Jonathan Stone wrote the machine description for the Pyramid
- computer.
- * Graham Stott for various infrastructure improvements.
- * John Stracke for his Java HTTP protocol fixes.
- * Mike Stump for his Elxsi port, G++ contributions over the years and
- more recently his vxworks contributions
- * Jeff Sturm for Java porting help, bug fixes, and encouragement.
- * Zhendong Su for running automated regression testing of GCC and
- reporting numerous bugs.
- * Chengnian Sun for running automated regression testing of GCC and
- reporting numerous bugs.
- * Shigeya Suzuki for this fixes for the bsdi platforms.
- * Ian Lance Taylor for the Go frontend, the initial mips16 and mips64
- support, general configury hacking, fixincludes, etc.
- * Holger Teutsch provided the support for the Clipper CPU.
- * Gary Thomas for his ongoing work to make the PPC work for
- GNU/Linux.
- * Paul Thomas for contributions to GNU Fortran.
- * Philipp Thomas for random bug fixes throughout the compiler
- * Jason Thorpe for thread support in libstdc++ on NetBSD.
- * Kresten Krab Thorup wrote the run time support for the Objective-C
- language and the fantastic Java bytecode interpreter.
- * Michael Tiemann for random bug fixes, the first instruction
- scheduler, initial C++ support, function integration, NS32k, SPARC
- and M88k machine description work, delay slot scheduling.
- * Andreas Tobler for his work porting libgcj to Darwin.
- * Teemu Torma for thread safe exception handling support.
- * Leonard Tower wrote parts of the parser, RTL generator, and RTL
- definitions, and of the VAX machine description.
- * Daniel Towner and Hariharan Sandanagobalane contributed and
- maintain the picoChip port.
- * Tom Tromey for internationalization support and for his many Java
- contributions and libgcj maintainership.
- * Lassi Tuura for improvements to config.guess to determine HP
- processor types.
- * Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.
- * Andy Vaught for the design and initial implementation of the GNU
- Fortran front end.
- * Brent Verner for work with the libstdc++ cshadow files and their
- associated configure steps.
- * Todd Vierling for contributions for NetBSD ports.
- * Andrew Waterman for contributing the RISC-V port, as well as
- maintaining it.
- * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML
- guidance and maintaining libstdc++.
- * Dean Wakerley for converting the install documentation from HTML to
- texinfo in time for GCC 3.0.
- * Krister Walfridsson for random bug fixes.
- * Feng Wang for contributions to GNU Fortran.
- * Stephen M. Webb for time and effort on making libstdc++ shadow
- files work with the tricky Solaris 8+ headers, and for pushing the
- build-time header tree. Also, for starting and driving the
- '<regex>' effort.
- * John Wehle for various improvements for the x86 code generator,
- related infrastructure improvements to help x86 code generation,
- value range propagation and other work, WE32k port.
- * Ulrich Weigand for work on the s390 port.
- * Janus Weil for contributions to GNU Fortran.
- * Zack Weinberg for major work on cpplib and various other bug fixes.
- * Matt Welsh for help with Linux Threads support in GCJ.
- * Urban Widmark for help fixing java.io.
- * Mark Wielaard for new Java library code and his work integrating
- with Classpath.
- * Dale Wiles helped port GCC to the Tahoe.
- * Bob Wilson from Tensilica, Inc. for the Xtensa port.
- * Jim Wilson for his direction via the steering committee, tackling
- hard problems in various places that nobody else wanted to work on,
- strength reduction and other loop optimizations.
- * Paul Woegerer and Tal Agmon for the CRX port.
- * Carlo Wood for various fixes.
- * Tom Wood for work on the m88k port.
- * Chung-Ju Wu for his work on the Andes NDS32 port.
- * Canqun Yang for work on GNU Fortran.
- * Masanobu Yuhara of Fujitsu Laboratories implemented the machine
- description for the Tron architecture (specifically, the Gmicro).
- * Kevin Zachmann helped port GCC to the Tahoe.
- * Ayal Zaks for Swing Modulo Scheduling (SMS).
- * Qirun Zhang for running automated regression testing of GCC and
- reporting numerous bugs.
- * Xiaoqiang Zhang for work on GNU Fortran.
- * Gilles Zunino for help porting Java to Irix.
- The following people are recognized for their contributions to GNAT,
- the Ada front end of GCC:
- * Bernard Banner
- * Romain Berrendonner
- * Geert Bosch
- * Emmanuel Briot
- * Joel Brobecker
- * Ben Brosgol
- * Vincent Celier
- * Arnaud Charlet
- * Chien Chieng
- * Cyrille Comar
- * Cyrille Crozes
- * Robert Dewar
- * Gary Dismukes
- * Robert Duff
- * Ed Falis
- * Ramon Fernandez
- * Sam Figueroa
- * Vasiliy Fofanov
- * Michael Friess
- * Franco Gasperoni
- * Ted Giering
- * Matthew Gingell
- * Laurent Guerby
- * Jerome Guitton
- * Olivier Hainque
- * Jerome Hugues
- * Hristian Kirtchev
- * Jerome Lambourg
- * Bruno Leclerc
- * Albert Lee
- * Sean McNeil
- * Javier Miranda
- * Laurent Nana
- * Pascal Obry
- * Dong-Ik Oh
- * Laurent Pautet
- * Brett Porter
- * Thomas Quinot
- * Nicolas Roche
- * Pat Rogers
- * Jose Ruiz
- * Douglas Rupp
- * Sergey Rybin
- * Gail Schenker
- * Ed Schonberg
- * Nicolas Setton
- * Samuel Tardieu
- The following people are recognized for their contributions of new
- features, bug reports, testing and integration of classpath/libgcj for
- GCC version 4.1:
- * Lillian Angel for 'JTree' implementation and lots Free Swing
- additions and bug fixes.
- * Wolfgang Baer for 'GapContent' bug fixes.
- * Anthony Balkissoon for 'JList', Free Swing 1.5 updates and mouse
- event fixes, lots of Free Swing work including 'JTable' editing.
- * Stuart Ballard for RMI constant fixes.
- * Goffredo Baroncelli for 'HTTPURLConnection' fixes.
- * Gary Benson for 'MessageFormat' fixes.
- * Daniel Bonniot for 'Serialization' fixes.
- * Chris Burdess for lots of gnu.xml and http protocol fixes, 'StAX'
- and 'DOM xml:id' support.
- * Ka-Hing Cheung for 'TreePath' and 'TreeSelection' fixes.
- * Archie Cobbs for build fixes, VM interface updates,
- 'URLClassLoader' updates.
- * Kelley Cook for build fixes.
- * Martin Cordova for Suggestions for better 'SocketTimeoutException'.
- * David Daney for 'BitSet' bug fixes, 'HttpURLConnection' rewrite and
- improvements.
- * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo
- 2D support. Lots of imageio framework additions, lots of AWT and
- Free Swing bug fixes.
- * Jeroen Frijters for 'ClassLoader' and nio cleanups, serialization
- fixes, better 'Proxy' support, bug fixes and IKVM integration.
- * Santiago Gala for 'AccessControlContext' fixes.
- * Nicolas Geoffray for 'VMClassLoader' and 'AccessController'
- improvements.
- * David Gilbert for 'basic' and 'metal' icon and plaf support and
- lots of documenting, Lots of Free Swing and metal theme additions.
- 'MetalIconFactory' implementation.
- * Anthony Green for 'MIDI' framework, 'ALSA' and 'DSSI' providers.
- * Andrew Haley for 'Serialization' and 'URLClassLoader' fixes, gcj
- build speedups.
- * Kim Ho for 'JFileChooser' implementation.
- * Andrew John Hughes for 'Locale' and net fixes, URI RFC2986 updates,
- 'Serialization' fixes, 'Properties' XML support and generic branch
- work, VMIntegration guide update.
- * Bastiaan Huisman for 'TimeZone' bug fixing.
- * Andreas Jaeger for mprec updates.
- * Paul Jenner for better '-Werror' support.
- * Ito Kazumitsu for 'NetworkInterface' implementation and updates.
- * Roman Kennke for 'BoxLayout', 'GrayFilter' and 'SplitPane', plus
- bug fixes all over. Lots of Free Swing work including styled text.
- * Simon Kitching for 'String' cleanups and optimization suggestions.
- * Michael Koch for configuration fixes, 'Locale' updates, bug and
- build fixes.
- * Guilhem Lavaux for configuration, thread and channel fixes and
- Kaffe integration. JCL native 'Pointer' updates. Logger bug
- fixes.
- * David Lichteblau for JCL support library global/local reference
- cleanups.
- * Aaron Luchko for JDWP updates and documentation fixes.
- * Ziga Mahkovec for 'Graphics2D' upgraded to Cairo 0.5 and new regex
- features.
- * Sven de Marothy for BMP imageio support, CSS and 'TextLayout'
- fixes. 'GtkImage' rewrite, 2D, awt, free swing and date/time fixes
- and implementing the Qt4 peers.
- * Casey Marshall for crypto algorithm fixes, 'FileChannel' lock,
- 'SystemLogger' and 'FileHandler' rotate implementations, NIO
- 'FileChannel.map' support, security and policy updates.
- * Bryce McKinlay for RMI work.
- * Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus
- testing and documenting.
- * Kalle Olavi Niemitalo for build fixes.
- * Rainer Orth for build fixes.
- * Andrew Overholt for 'File' locking fixes.
- * Ingo Proetel for 'Image', 'Logger' and 'URLClassLoader' updates.
- * Olga Rodimina for 'MenuSelectionManager' implementation.
- * Jan Roehrich for 'BasicTreeUI' and 'JTree' fixes.
- * Julian Scheid for documentation updates and gjdoc support.
- * Christian Schlichtherle for zip fixes and cleanups.
- * Robert Schuster for documentation updates and beans fixes,
- 'TreeNode' enumerations and 'ActionCommand' and various fixes, XML
- and URL, AWT and Free Swing bug fixes.
- * Keith Seitz for lots of JDWP work.
- * Christian Thalinger for 64-bit cleanups, Configuration and VM
- interface fixes and 'CACAO' integration, 'fdlibm' updates.
- * Gael Thomas for 'VMClassLoader' boot packages support suggestions.
- * Andreas Tobler for Darwin and Solaris testing and fixing, 'Qt4'
- support for Darwin/OS X, 'Graphics2D' support, 'gtk+' updates.
- * Dalibor Topic for better 'DEBUG' support, build cleanups and Kaffe
- integration. 'Qt4' build infrastructure, 'SHA1PRNG' and
- 'GdkPixbugDecoder' updates.
- * Tom Tromey for Eclipse integration, generics work, lots of bug
- fixes and gcj integration including coordinating The Big Merge.
- * Mark Wielaard for bug fixes, packaging and release management,
- 'Clipboard' implementation, system call interrupts and network
- timeouts and 'GdkPixpufDecoder' fixes.
- In addition to the above, all of which also contributed time and energy
- in testing GCC, we would like to thank the following for their
- contributions to testing:
- * Michael Abd-El-Malek
- * Thomas Arend
- * Bonzo Armstrong
- * Steven Ashe
- * Chris Baldwin
- * David Billinghurst
- * Jim Blandy
- * Stephane Bortzmeyer
- * Horst von Brand
- * Frank Braun
- * Rodney Brown
- * Sidney Cadot
- * Bradford Castalia
- * Robert Clark
- * Jonathan Corbet
- * Ralph Doncaster
- * Richard Emberson
- * Levente Farkas
- * Graham Fawcett
- * Mark Fernyhough
- * Robert A. French
- * Jörgen Freyh
- * Mark K. Gardner
- * Charles-Antoine Gauthier
- * Yung Shing Gene
- * David Gilbert
- * Simon Gornall
- * Fred Gray
- * John Griffin
- * Patrik Hagglund
- * Phil Hargett
- * Amancio Hasty
- * Takafumi Hayashi
- * Bryan W. Headley
- * Kevin B. Hendricks
- * Joep Jansen
- * Christian Joensson
- * Michel Kern
- * David Kidd
- * Tobias Kuipers
- * Anand Krishnaswamy
- * A. O. V. Le Blanc
- * llewelly
- * Damon Love
- * Brad Lucier
- * Matthias Klose
- * Martin Knoblauch
- * Rick Lutowski
- * Jesse Macnish
- * Stefan Morrell
- * Anon A. Mous
- * Matthias Mueller
- * Pekka Nikander
- * Rick Niles
- * Jon Olson
- * Magnus Persson
- * Chris Pollard
- * Richard Polton
- * Derk Reefman
- * David Rees
- * Paul Reilly
- * Tom Reilly
- * Torsten Rueger
- * Danny Sadinoff
- * Marc Schifer
- * Erik Schnetter
- * Wayne K. Schroll
- * David Schuler
- * Vin Shelton
- * Tim Souder
- * Adam Sulmicki
- * Bill Thorson
- * George Talbot
- * Pedro A. M. Vazquez
- * Gregory Warnes
- * Ian Watson
- * David E. Young
- * And many others
- And finally we'd like to thank everyone who uses the compiler, provides
- feedback and generally reminds us why we're doing this work in the first
- place.
- File: gcc.info, Node: Option Index, Next: Keyword Index, Prev: Contributors, Up: Top
- Option Index
- ************
- GCC's command line options are indexed here without any initial '-' or
- '--'. Where an option has both positive and negative forms (such as
- '-fOPTION' and '-fno-OPTION'), relevant entries in the manual are
- indexed under the most appropriate form; it may sometimes be useful to
- look up both forms.
- �[index�]
- * Menu:
- * ###: Overall Options. (line 204)
- * -fipa-bit-cp: Optimize Options. (line 1026)
- * -fipa-vrp: Optimize Options. (line 1031)
- * -mfunction-return: x86 Options. (line 1305)
- * -mindirect-branch: x86 Options. (line 1286)
- * -mindirect-branch-register: x86 Options. (line 1320)
- * -mlow-precision-div: AArch64 Options. (line 103)
- * -mlow-precision-sqrt: AArch64 Options. (line 94)
- * -mno-low-precision-div: AArch64 Options. (line 103)
- * -mno-low-precision-sqrt: AArch64 Options. (line 94)
- * -Wabi-tag: C++ Dialect Options.
- (line 559)
- * -Wno-scalar-storage-order: Warning Options. (line 2230)
- * -Wscalar-storage-order: Warning Options. (line 2230)
- * 80387: x86 Options. (line 465)
- * A: Preprocessor Options.
- (line 328)
- * allowable_client: Darwin Options. (line 196)
- * all_load: Darwin Options. (line 110)
- * ansi: Standards. (line 13)
- * ansi <1>: C Dialect Options. (line 11)
- * ansi <2>: Other Builtins. (line 31)
- * ansi <3>: Non-bugs. (line 107)
- * arch_errors_fatal: Darwin Options. (line 114)
- * aux-info: C Dialect Options. (line 217)
- * B: Directory Options. (line 122)
- * Bdynamic: VxWorks Options. (line 22)
- * bind_at_load: Darwin Options. (line 118)
- * Bstatic: VxWorks Options. (line 22)
- * bundle: Darwin Options. (line 123)
- * bundle_loader: Darwin Options. (line 127)
- * c: Overall Options. (line 159)
- * C: Preprocessor Options.
- (line 337)
- * c <1>: Link Options. (line 20)
- * CC: Preprocessor Options.
- (line 349)
- * client_name: Darwin Options. (line 196)
- * compatibility_version: Darwin Options. (line 196)
- * coverage: Instrumentation Options.
- (line 51)
- * current_version: Darwin Options. (line 196)
- * D: Preprocessor Options.
- (line 19)
- * d: Preprocessor Options.
- (line 403)
- * d <1>: Developer Options. (line 18)
- * da: Developer Options. (line 225)
- * dA: Developer Options. (line 228)
- * dD: Preprocessor Options.
- (line 427)
- * dD <1>: Developer Options. (line 232)
- * dead_strip: Darwin Options. (line 196)
- * dependency-file: Darwin Options. (line 196)
- * dH: Developer Options. (line 236)
- * dI: Preprocessor Options.
- (line 437)
- * dM: Preprocessor Options.
- (line 412)
- * dN: Preprocessor Options.
- (line 433)
- * dp: Developer Options. (line 239)
- * dP: Developer Options. (line 244)
- * dU: Preprocessor Options.
- (line 441)
- * dumpfullversion: Developer Options. (line 951)
- * dumpmachine: Developer Options. (line 939)
- * dumpspecs: Developer Options. (line 955)
- * dumpversion: Developer Options. (line 943)
- * dx: Developer Options. (line 248)
- * dylib_file: Darwin Options. (line 196)
- * dylinker_install_name: Darwin Options. (line 196)
- * dynamic: Darwin Options. (line 196)
- * dynamiclib: Darwin Options. (line 131)
- * E: Overall Options. (line 180)
- * E <1>: Link Options. (line 20)
- * EB: ARC Options. (line 589)
- * EB <1>: MIPS Options. (line 7)
- * EL: ARC Options. (line 598)
- * EL <1>: MIPS Options. (line 10)
- * exported_symbols_list: Darwin Options. (line 196)
- * F: Darwin Options. (line 31)
- * fabi-compat-version: C++ Dialect Options.
- (line 85)
- * fabi-version: C++ Dialect Options.
- (line 24)
- * fada-spec-parent: Overall Options. (line 384)
- * faggressive-loop-optimizations: Optimize Options. (line 524)
- * falign-functions: Optimize Options. (line 1537)
- * falign-jumps: Optimize Options. (line 1595)
- * falign-labels: Optimize Options. (line 1562)
- * falign-loops: Optimize Options. (line 1581)
- * faligned-new: C++ Dialect Options.
- (line 105)
- * fallow-parameterless-variadic-functions: C Dialect Options.
- (line 233)
- * fasan-shadow-offset: Instrumentation Options.
- (line 380)
- * fassociative-math: Optimize Options. (line 2077)
- * fasynchronous-unwind-tables: Code Gen Options. (line 156)
- * fauto-inc-dec: Optimize Options. (line 546)
- * fauto-profile: Optimize Options. (line 1956)
- * fbounds-check: Instrumentation Options.
- (line 453)
- * fbranch-probabilities: Optimize Options. (line 2222)
- * fbranch-target-load-optimize: Optimize Options. (line 2358)
- * fbranch-target-load-optimize2: Optimize Options. (line 2364)
- * fbtr-bb-exclusive: Optimize Options. (line 2368)
- * fcall-saved: Code Gen Options. (line 454)
- * fcall-used: Code Gen Options. (line 440)
- * fcaller-saves: Optimize Options. (line 904)
- * fcf-protection: Instrumentation Options.
- (line 581)
- * fcheck-new: C++ Dialect Options.
- (line 114)
- * fcheck-pointer-bounds: Instrumentation Options.
- (line 459)
- * fchecking: Developer Options. (line 633)
- * fchkp-check-incomplete-type: Instrumentation Options.
- (line 497)
- * fchkp-check-read: Instrumentation Options.
- (line 553)
- * fchkp-check-write: Instrumentation Options.
- (line 557)
- * fchkp-first-field-has-own-bounds: Instrumentation Options.
- (line 508)
- * fchkp-flexible-struct-trailing-arrays: Instrumentation Options.
- (line 514)
- * fchkp-instrument-calls: Instrumentation Options.
- (line 565)
- * fchkp-instrument-marked-only: Instrumentation Options.
- (line 569)
- * fchkp-narrow-bounds: Instrumentation Options.
- (line 501)
- * fchkp-narrow-to-innermost-array: Instrumentation Options.
- (line 520)
- * fchkp-optimize: Instrumentation Options.
- (line 525)
- * fchkp-store-bounds: Instrumentation Options.
- (line 561)
- * fchkp-treat-zero-dynamic-size-as-infinite: Instrumentation Options.
- (line 546)
- * fchkp-use-fast-string-functions: Instrumentation Options.
- (line 529)
- * fchkp-use-nochk-string-functions: Instrumentation Options.
- (line 533)
- * fchkp-use-static-bounds: Instrumentation Options.
- (line 537)
- * fchkp-use-static-const-bounds: Instrumentation Options.
- (line 541)
- * fchkp-use-wrappers: Instrumentation Options.
- (line 574)
- * fcode-hoisting: Optimize Options. (line 945)
- * fcombine-stack-adjustments: Optimize Options. (line 916)
- * fcommon: Common Variable Attributes.
- (line 118)
- * fcompare-debug: Developer Options. (line 727)
- * fcompare-debug-second: Developer Options. (line 753)
- * fcompare-elim: Optimize Options. (line 1909)
- * fconcepts: C++ Dialect Options.
- (line 124)
- * fcond-mismatch: C Dialect Options. (line 384)
- * fconserve-stack: Optimize Options. (line 935)
- * fconstant-string-class: Objective-C and Objective-C++ Dialect Options.
- (line 30)
- * fconstexpr-depth: C++ Dialect Options.
- (line 131)
- * fconstexpr-loop-limit: C++ Dialect Options.
- (line 137)
- * fcprop-registers: Optimize Options. (line 1921)
- * fcrossjumping: Optimize Options. (line 539)
- * fcse-follow-jumps: Optimize Options. (line 460)
- * fcse-skip-blocks: Optimize Options. (line 469)
- * fcx-fortran-rules: Optimize Options. (line 2209)
- * fcx-limited-range: Optimize Options. (line 2197)
- * fdata-sections: Optimize Options. (line 2329)
- * fdbg-cnt: Developer Options. (line 863)
- * fdbg-cnt-list: Developer Options. (line 860)
- * fdce: Optimize Options. (line 552)
- * fdebug-cpp: Preprocessor Options.
- (line 448)
- * fdebug-prefix-map: Debugging Options. (line 137)
- * fdebug-types-section: Debugging Options. (line 183)
- * fdeclone-ctor-dtor: Optimize Options. (line 575)
- * fdeduce-init-list: C++ Dialect Options.
- (line 142)
- * fdelayed-branch: Optimize Options. (line 728)
- * fdelete-dead-exceptions: Code Gen Options. (line 141)
- * fdelete-null-pointer-checks: Optimize Options. (line 586)
- * fdevirtualize: Optimize Options. (line 607)
- * fdevirtualize-at-ltrans: Optimize Options. (line 624)
- * fdevirtualize-speculatively: Optimize Options. (line 614)
- * fdiagnostics-color: Diagnostic Message Formatting Options.
- (line 35)
- * fdiagnostics-generate-patch: Diagnostic Message Formatting Options.
- (line 160)
- * fdiagnostics-parseable-fixits: Diagnostic Message Formatting Options.
- (line 133)
- * fdiagnostics-show-caret: Diagnostic Message Formatting Options.
- (line 124)
- * fdiagnostics-show-location: Diagnostic Message Formatting Options.
- (line 20)
- * fdiagnostics-show-option: Diagnostic Message Formatting Options.
- (line 118)
- * fdiagnostics-show-template-tree: Diagnostic Message Formatting Options.
- (line 178)
- * fdirectives-only: Preprocessor Options.
- (line 202)
- * fdisable-: Developer Options. (line 564)
- * fdollars-in-identifiers: Preprocessor Options.
- (line 223)
- * fdollars-in-identifiers <1>: Interoperation. (line 141)
- * fdpic: SH Options. (line 388)
- * fdse: Optimize Options. (line 556)
- * fdump-ada-spec: Overall Options. (line 379)
- * fdump-final-insns: Developer Options. (line 721)
- * fdump-go-spec: Overall Options. (line 388)
- * fdump-ipa: Developer Options. (line 273)
- * fdump-lang: Developer Options. (line 293)
- * fdump-lang-all: Developer Options. (line 293)
- * fdump-noaddr: Developer Options. (line 252)
- * fdump-passes: Developer Options. (line 311)
- * fdump-rtl-alignments: Developer Options. (line 44)
- * fdump-rtl-all: Developer Options. (line 225)
- * fdump-rtl-asmcons: Developer Options. (line 47)
- * fdump-rtl-auto_inc_dec: Developer Options. (line 51)
- * fdump-rtl-barriers: Developer Options. (line 55)
- * fdump-rtl-bbpart: Developer Options. (line 58)
- * fdump-rtl-bbro: Developer Options. (line 61)
- * fdump-rtl-btl2: Developer Options. (line 65)
- * fdump-rtl-btl2 <1>: Developer Options. (line 65)
- * fdump-rtl-bypass: Developer Options. (line 69)
- * fdump-rtl-ce1: Developer Options. (line 80)
- * fdump-rtl-ce2: Developer Options. (line 80)
- * fdump-rtl-ce3: Developer Options. (line 80)
- * fdump-rtl-combine: Developer Options. (line 72)
- * fdump-rtl-compgotos: Developer Options. (line 75)
- * fdump-rtl-cprop_hardreg: Developer Options. (line 84)
- * fdump-rtl-csa: Developer Options. (line 87)
- * fdump-rtl-cse1: Developer Options. (line 91)
- * fdump-rtl-cse2: Developer Options. (line 91)
- * fdump-rtl-dbr: Developer Options. (line 98)
- * fdump-rtl-dce: Developer Options. (line 95)
- * fdump-rtl-dce1: Developer Options. (line 102)
- * fdump-rtl-dce2: Developer Options. (line 102)
- * fdump-rtl-dfinish: Developer Options. (line 221)
- * fdump-rtl-dfinit: Developer Options. (line 221)
- * fdump-rtl-eh: Developer Options. (line 106)
- * fdump-rtl-eh_ranges: Developer Options. (line 109)
- * fdump-rtl-expand: Developer Options. (line 112)
- * fdump-rtl-fwprop1: Developer Options. (line 116)
- * fdump-rtl-fwprop2: Developer Options. (line 116)
- * fdump-rtl-gcse1: Developer Options. (line 121)
- * fdump-rtl-gcse2: Developer Options. (line 121)
- * fdump-rtl-init-regs: Developer Options. (line 125)
- * fdump-rtl-initvals: Developer Options. (line 128)
- * fdump-rtl-into_cfglayout: Developer Options. (line 131)
- * fdump-rtl-ira: Developer Options. (line 134)
- * fdump-rtl-jump: Developer Options. (line 137)
- * fdump-rtl-loop2: Developer Options. (line 140)
- * fdump-rtl-mach: Developer Options. (line 144)
- * fdump-rtl-mode_sw: Developer Options. (line 148)
- * fdump-rtl-outof_cfglayout: Developer Options. (line 154)
- * fdump-rtl-PASS: Developer Options. (line 18)
- * fdump-rtl-peephole2: Developer Options. (line 157)
- * fdump-rtl-postreload: Developer Options. (line 160)
- * fdump-rtl-pro_and_epilogue: Developer Options. (line 163)
- * fdump-rtl-ree: Developer Options. (line 171)
- * fdump-rtl-regclass: Developer Options. (line 221)
- * fdump-rtl-rnreg: Developer Options. (line 151)
- * fdump-rtl-sched1: Developer Options. (line 167)
- * fdump-rtl-sched2: Developer Options. (line 167)
- * fdump-rtl-seqabstr: Developer Options. (line 174)
- * fdump-rtl-shorten: Developer Options. (line 177)
- * fdump-rtl-sibling: Developer Options. (line 180)
- * fdump-rtl-sms: Developer Options. (line 191)
- * fdump-rtl-split1: Developer Options. (line 187)
- * fdump-rtl-split2: Developer Options. (line 187)
- * fdump-rtl-split3: Developer Options. (line 187)
- * fdump-rtl-split4: Developer Options. (line 187)
- * fdump-rtl-split5: Developer Options. (line 187)
- * fdump-rtl-stack: Developer Options. (line 195)
- * fdump-rtl-subreg1: Developer Options. (line 201)
- * fdump-rtl-subreg2: Developer Options. (line 201)
- * fdump-rtl-subregs_of_mode_finish: Developer Options. (line 221)
- * fdump-rtl-subregs_of_mode_init: Developer Options. (line 221)
- * fdump-rtl-unshare: Developer Options. (line 205)
- * fdump-rtl-vartrack: Developer Options. (line 208)
- * fdump-rtl-vregs: Developer Options. (line 211)
- * fdump-rtl-web: Developer Options. (line 214)
- * fdump-statistics: Developer Options. (line 315)
- * fdump-tree: Developer Options. (line 328)
- * fdump-tree-all: Developer Options. (line 328)
- * fdump-unnumbered: Developer Options. (line 262)
- * fdump-unnumbered-links: Developer Options. (line 268)
- * fdwarf2-cfi-asm: Debugging Options. (line 388)
- * fearly-inlining: Optimize Options. (line 305)
- * felide-type: Diagnostic Message Formatting Options.
- (line 198)
- * feliminate-unused-debug-symbols: Debugging Options. (line 118)
- * feliminate-unused-debug-types: Debugging Options. (line 392)
- * femit-class-debug-always: Debugging Options. (line 122)
- * femit-struct-debug-baseonly: Debugging Options. (line 319)
- * femit-struct-debug-detailed: Debugging Options. (line 346)
- * femit-struct-debug-reduced: Debugging Options. (line 332)
- * fenable-: Developer Options. (line 564)
- * fexceptions: Code Gen Options. (line 119)
- * fexcess-precision: Optimize Options. (line 2003)
- * fexec-charset: Preprocessor Options.
- (line 266)
- * fexpensive-optimizations: Optimize Options. (line 631)
- * fext-numeric-literals: C++ Dialect Options.
- (line 695)
- * fextended-identifiers: Preprocessor Options.
- (line 226)
- * fextern-tls-init: C++ Dialect Options.
- (line 195)
- * ffast-math: Optimize Options. (line 2027)
- * ffat-lto-objects: Optimize Options. (line 1886)
- * ffile-prefix-map: Overall Options. (line 359)
- * ffinite-math-only: Optimize Options. (line 2104)
- * ffix-and-continue: Darwin Options. (line 104)
- * ffixed: Code Gen Options. (line 428)
- * ffloat-store: Optimize Options. (line 1989)
- * ffloat-store <1>: Disappointments. (line 77)
- * ffor-scope: C++ Dialect Options.
- (line 216)
- * fforward-propagate: Optimize Options. (line 213)
- * ffp-contract: Optimize Options. (line 222)
- * ffreestanding: Standards. (line 94)
- * ffreestanding <1>: C Dialect Options. (line 302)
- * ffreestanding <2>: Warning Options. (line 294)
- * ffreestanding <3>: Common Function Attributes.
- (line 283)
- * ffriend-injection: C++ Dialect Options.
- (line 163)
- * ffunction-sections: Optimize Options. (line 2329)
- * fgcse: Optimize Options. (line 483)
- * fgcse-after-reload: Optimize Options. (line 519)
- * fgcse-las: Optimize Options. (line 512)
- * fgcse-lm: Optimize Options. (line 494)
- * fgcse-sm: Optimize Options. (line 503)
- * fgimple: C Dialect Options. (line 288)
- * fgnu-runtime: Objective-C and Objective-C++ Dialect Options.
- (line 39)
- * fgnu-tm: C Dialect Options. (line 341)
- * fgnu89-inline: C Dialect Options. (line 178)
- * fgraphite-identity: Optimize Options. (line 1147)
- * fhoist-adjacent-loads: Optimize Options. (line 975)
- * fhosted: C Dialect Options. (line 294)
- * fif-conversion: Optimize Options. (line 560)
- * fif-conversion2: Optimize Options. (line 569)
- * filelist: Darwin Options. (line 196)
- * findirect-data: Darwin Options. (line 104)
- * findirect-inlining: Optimize Options. (line 277)
- * finhibit-size-directive: Code Gen Options. (line 261)
- * finline-functions: Optimize Options. (line 286)
- * finline-functions-called-once: Optimize Options. (line 297)
- * finline-limit: Optimize Options. (line 321)
- * finline-small-functions: Optimize Options. (line 268)
- * finput-charset: Preprocessor Options.
- (line 279)
- * finstrument-functions: Instrumentation Options.
- (line 774)
- * finstrument-functions <1>: Common Function Attributes.
- (line 543)
- * finstrument-functions-exclude-file-list: Instrumentation Options.
- (line 809)
- * finstrument-functions-exclude-function-list: Instrumentation Options.
- (line 830)
- * fipa-cp: Optimize Options. (line 1008)
- * fipa-cp-clone: Optimize Options. (line 1016)
- * fipa-icf: Optimize Options. (line 1036)
- * fipa-profile: Optimize Options. (line 1000)
- * fipa-pta: Optimize Options. (line 994)
- * fipa-pure-const: Optimize Options. (line 986)
- * fipa-ra: Optimize Options. (line 922)
- * fipa-reference: Optimize Options. (line 990)
- * fipa-sra: Optimize Options. (line 314)
- * fira-algorithm: Optimize Options. (line 665)
- * fira-hoist-pressure: Optimize Options. (line 694)
- * fira-loop-pressure: Optimize Options. (line 701)
- * fira-region: Optimize Options. (line 673)
- * fira-verbose: Developer Options. (line 790)
- * fisolate-erroneous-paths-attribute: Optimize Options. (line 1058)
- * fisolate-erroneous-paths-dereference: Optimize Options. (line 1050)
- * fivar-visibility: Objective-C and Objective-C++ Dialect Options.
- (line 161)
- * fivopts: Optimize Options. (line 1258)
- * fkeep-inline-functions: Optimize Options. (line 352)
- * fkeep-inline-functions <1>: Inline. (line 51)
- * fkeep-static-consts: Optimize Options. (line 363)
- * fkeep-static-functions: Optimize Options. (line 359)
- * flat_namespace: Darwin Options. (line 196)
- * flax-vector-conversions: C Dialect Options. (line 389)
- * fleading-underscore: Code Gen Options. (line 484)
- * flive-range-shrinkage: Optimize Options. (line 660)
- * flocal-ivars: Objective-C and Objective-C++ Dialect Options.
- (line 152)
- * floop-block: Optimize Options. (line 1141)
- * floop-interchange: Optimize Options. (line 1221)
- * floop-nest-optimize: Optimize Options. (line 1155)
- * floop-parallelize-all: Optimize Options. (line 1161)
- * floop-strip-mine: Optimize Options. (line 1141)
- * floop-unroll-and-jam: Optimize Options. (line 1237)
- * flra-remat: Optimize Options. (line 721)
- * flto: Optimize Options. (line 1650)
- * flto-compression-level: Optimize Options. (line 1860)
- * flto-odr-type-merging: Optimize Options. (line 1855)
- * flto-partition: Optimize Options. (line 1841)
- * flto-report: Developer Options. (line 796)
- * flto-report-wpa: Developer Options. (line 804)
- * fmacro-prefix-map: Preprocessor Options.
- (line 257)
- * fmax-errors: Warning Options. (line 18)
- * fmem-report: Developer Options. (line 808)
- * fmem-report-wpa: Developer Options. (line 812)
- * fmerge-all-constants: Optimize Options. (line 382)
- * fmerge-constants: Optimize Options. (line 372)
- * fmerge-debug-strings: Debugging Options. (line 130)
- * fmessage-length: Diagnostic Message Formatting Options.
- (line 14)
- * fmodulo-sched: Optimize Options. (line 393)
- * fmodulo-sched-allow-regmoves: Optimize Options. (line 398)
- * fmove-loop-invariants: Optimize Options. (line 2315)
- * fms-extensions: C Dialect Options. (line 356)
- * fms-extensions <1>: C++ Dialect Options.
- (line 250)
- * fms-extensions <2>: Unnamed Fields. (line 36)
- * fnew-inheriting-ctors: C++ Dialect Options.
- (line 255)
- * fnew-ttp-matching: C++ Dialect Options.
- (line 261)
- * fnext-runtime: Objective-C and Objective-C++ Dialect Options.
- (line 43)
- * fno-access-control: C++ Dialect Options.
- (line 101)
- * fno-asm: C Dialect Options. (line 240)
- * fno-branch-count-reg: Optimize Options. (line 405)
- * fno-builtin: C Dialect Options. (line 254)
- * fno-builtin <1>: Warning Options. (line 294)
- * fno-builtin <2>: Common Function Attributes.
- (line 283)
- * fno-builtin <3>: Other Builtins. (line 21)
- * fno-canonical-system-headers: Preprocessor Options.
- (line 230)
- * fno-check-pointer-bounds: Instrumentation Options.
- (line 459)
- * fno-checking: Developer Options. (line 633)
- * fno-chkp-check-incomplete-type: Instrumentation Options.
- (line 497)
- * fno-chkp-check-read: Instrumentation Options.
- (line 553)
- * fno-chkp-check-write: Instrumentation Options.
- (line 557)
- * fno-chkp-first-field-has-own-bounds: Instrumentation Options.
- (line 508)
- * fno-chkp-flexible-struct-trailing-arrays: Instrumentation Options.
- (line 514)
- * fno-chkp-instrument-calls: Instrumentation Options.
- (line 565)
- * fno-chkp-instrument-marked-only: Instrumentation Options.
- (line 569)
- * fno-chkp-narrow-bounds: Instrumentation Options.
- (line 501)
- * fno-chkp-narrow-to-innermost-array: Instrumentation Options.
- (line 520)
- * fno-chkp-optimize: Instrumentation Options.
- (line 525)
- * fno-chkp-store-bounds: Instrumentation Options.
- (line 561)
- * fno-chkp-treat-zero-dynamic-size-as-infinite: Instrumentation Options.
- (line 546)
- * fno-chkp-use-fast-string-functions: Instrumentation Options.
- (line 529)
- * fno-chkp-use-nochk-string-functions: Instrumentation Options.
- (line 533)
- * fno-chkp-use-static-bounds: Instrumentation Options.
- (line 537)
- * fno-chkp-use-static-const-bounds: Instrumentation Options.
- (line 541)
- * fno-chkp-use-wrappers: Instrumentation Options.
- (line 574)
- * fno-common: Code Gen Options. (line 231)
- * fno-common <1>: Common Variable Attributes.
- (line 118)
- * fno-compare-debug: Developer Options. (line 727)
- * fno-debug-types-section: Debugging Options. (line 183)
- * fno-default-inline: Inline. (line 68)
- * fno-defer-pop: Optimize Options. (line 205)
- * fno-diagnostics-show-caret: Diagnostic Message Formatting Options.
- (line 124)
- * fno-diagnostics-show-option: Diagnostic Message Formatting Options.
- (line 118)
- * fno-dwarf2-cfi-asm: Debugging Options. (line 388)
- * fno-elide-constructors: C++ Dialect Options.
- (line 174)
- * fno-elide-type: Diagnostic Message Formatting Options.
- (line 198)
- * fno-eliminate-unused-debug-types: Debugging Options. (line 392)
- * fno-enforce-eh-specs: C++ Dialect Options.
- (line 185)
- * fno-ext-numeric-literals: C++ Dialect Options.
- (line 695)
- * fno-extern-tls-init: C++ Dialect Options.
- (line 195)
- * fno-for-scope: C++ Dialect Options.
- (line 216)
- * fno-fp-int-builtin-inexact: Optimize Options. (line 2176)
- * fno-function-cse: Optimize Options. (line 420)
- * fno-gnu-keywords: C++ Dialect Options.
- (line 227)
- * fno-gnu-unique: Code Gen Options. (line 162)
- * fno-guess-branch-probability: Optimize Options. (line 1426)
- * fno-ident: Code Gen Options. (line 258)
- * fno-implement-inlines: C++ Dialect Options.
- (line 245)
- * fno-implement-inlines <1>: C++ Interface. (line 66)
- * fno-implicit-inline-templates: C++ Dialect Options.
- (line 239)
- * fno-implicit-templates: C++ Dialect Options.
- (line 233)
- * fno-implicit-templates <1>: Template Instantiation.
- (line 118)
- * fno-inline: Optimize Options. (line 260)
- * fno-ira-share-save-slots: Optimize Options. (line 709)
- * fno-ira-share-spill-slots: Optimize Options. (line 715)
- * fno-jump-tables: Code Gen Options. (line 420)
- * fno-keep-inline-dllexport: Optimize Options. (line 346)
- * fno-lifetime-dse: Optimize Options. (line 645)
- * fno-local-ivars: Objective-C and Objective-C++ Dialect Options.
- (line 152)
- * fno-math-errno: Optimize Options. (line 2041)
- * fno-merge-debug-strings: Debugging Options. (line 130)
- * fno-nil-receivers: Objective-C and Objective-C++ Dialect Options.
- (line 49)
- * fno-nonansi-builtins: C++ Dialect Options.
- (line 268)
- * fno-operator-names: C++ Dialect Options.
- (line 284)
- * fno-optional-diags: C++ Dialect Options.
- (line 288)
- * fno-peephole: Optimize Options. (line 1417)
- * fno-peephole2: Optimize Options. (line 1417)
- * fno-plt: Code Gen Options. (line 402)
- * fno-pretty-templates: C++ Dialect Options.
- (line 298)
- * fno-printf-return-value: Optimize Options. (line 1394)
- * fno-rtti: C++ Dialect Options.
- (line 315)
- * fno-sanitize-recover: Instrumentation Options.
- (line 389)
- * fno-sanitize=all: Instrumentation Options.
- (line 374)
- * fno-sched-interblock: Optimize Options. (line 754)
- * fno-sched-spec: Optimize Options. (line 759)
- * fno-set-stack-executable: x86 Windows Options.
- (line 46)
- * fno-show-column: Diagnostic Message Formatting Options.
- (line 210)
- * fno-signed-bitfields: C Dialect Options. (line 422)
- * fno-signed-zeros: Optimize Options. (line 2116)
- * fno-stack-limit: Instrumentation Options.
- (line 686)
- * fno-threadsafe-statics: C++ Dialect Options.
- (line 365)
- * fno-toplevel-reorder: Optimize Options. (line 1616)
- * fno-trapping-math: Optimize Options. (line 2126)
- * fno-unsigned-bitfields: C Dialect Options. (line 422)
- * fno-use-cxa-get-exception-ptr: C++ Dialect Options.
- (line 378)
- * fno-var-tracking-assignments: Debugging Options. (line 157)
- * fno-var-tracking-assignments-toggle: Developer Options. (line 774)
- * fno-weak: C++ Dialect Options.
- (line 440)
- * fno-working-directory: Preprocessor Options.
- (line 314)
- * fno-writable-relocated-rdata: x86 Windows Options.
- (line 53)
- * fno-zero-initialized-in-bss: Optimize Options. (line 431)
- * fnon-call-exceptions: Code Gen Options. (line 133)
- * fnothrow-opt: C++ Dialect Options.
- (line 273)
- * fobjc-abi-version: Objective-C and Objective-C++ Dialect Options.
- (line 56)
- * fobjc-call-cxx-cdtors: Objective-C and Objective-C++ Dialect Options.
- (line 67)
- * fobjc-direct-dispatch: Objective-C and Objective-C++ Dialect Options.
- (line 92)
- * fobjc-exceptions: Objective-C and Objective-C++ Dialect Options.
- (line 96)
- * fobjc-gc: Objective-C and Objective-C++ Dialect Options.
- (line 104)
- * fobjc-nilcheck: Objective-C and Objective-C++ Dialect Options.
- (line 110)
- * fobjc-std: Objective-C and Objective-C++ Dialect Options.
- (line 119)
- * fomit-frame-pointer: Optimize Options. (line 233)
- * fopenacc: C Dialect Options. (line 313)
- * fopenacc-dim: C Dialect Options. (line 322)
- * fopenmp: C Dialect Options. (line 328)
- * fopenmp-simd: C Dialect Options. (line 337)
- * fopt-info: Developer Options. (line 453)
- * foptimize-sibling-calls: Optimize Options. (line 248)
- * foptimize-strlen: Optimize Options. (line 253)
- * force_cpusubtype_ALL: Darwin Options. (line 135)
- * force_flat_namespace: Darwin Options. (line 196)
- * fpack-struct: Code Gen Options. (line 471)
- * fpartial-inlining: Optimize Options. (line 1370)
- * fpatchable-function-entry: Instrumentation Options.
- (line 842)
- * fpcc-struct-return: Code Gen Options. (line 175)
- * fpcc-struct-return <1>: Incompatibilities. (line 170)
- * fpch-deps: Preprocessor Options.
- (line 289)
- * fpch-preprocess: Preprocessor Options.
- (line 297)
- * fpeel-loops: Optimize Options. (line 2307)
- * fpermissive: C++ Dialect Options.
- (line 293)
- * fpermitted-flt-eval-methods: C Dialect Options. (line 195)
- * fpermitted-flt-eval-methods=c11: C Dialect Options. (line 195)
- * fpermitted-flt-eval-methods=ts-18661-3: C Dialect Options. (line 195)
- * fpic: Code Gen Options. (line 359)
- * fPIC: Code Gen Options. (line 380)
- * fpie: Code Gen Options. (line 393)
- * fPIE: Code Gen Options. (line 393)
- * fplan9-extensions: C Dialect Options. (line 374)
- * fplan9-extensions <1>: Unnamed Fields. (line 43)
- * fplugin: Overall Options. (line 368)
- * fplugin-arg: Overall Options. (line 375)
- * fpost-ipa-mem-report: Developer Options. (line 817)
- * fpre-ipa-mem-report: Developer Options. (line 816)
- * fpredictive-commoning: Optimize Options. (line 1377)
- * fprefetch-loop-arrays: Optimize Options. (line 1384)
- * fpreprocessed: Preprocessor Options.
- (line 189)
- * fprofile-abs-path: Instrumentation Options.
- (line 107)
- * fprofile-arcs: Instrumentation Options.
- (line 31)
- * fprofile-arcs <1>: Other Builtins. (line 425)
- * fprofile-correction: Optimize Options. (line 1928)
- * fprofile-dir: Instrumentation Options.
- (line 113)
- * fprofile-generate: Instrumentation Options.
- (line 124)
- * fprofile-reorder-functions: Optimize Options. (line 2249)
- * fprofile-report: Developer Options. (line 821)
- * fprofile-update: Instrumentation Options.
- (line 141)
- * fprofile-use: Optimize Options. (line 1936)
- * fprofile-values: Optimize Options. (line 2240)
- * fpu: RX Options. (line 17)
- * frandom-seed: Developer Options. (line 638)
- * freciprocal-math: Optimize Options. (line 2094)
- * frecord-gcc-switches: Code Gen Options. (line 347)
- * free: Optimize Options. (line 637)
- * freg-struct-return: Code Gen Options. (line 193)
- * frename-registers: Optimize Options. (line 2266)
- * freorder-blocks: Optimize Options. (line 1443)
- * freorder-blocks-algorithm: Optimize Options. (line 1449)
- * freorder-blocks-and-partition: Optimize Options. (line 1460)
- * freorder-functions: Optimize Options. (line 1477)
- * freplace-objc-classes: Objective-C and Objective-C++ Dialect Options.
- (line 130)
- * frepo: C++ Dialect Options.
- (line 310)
- * frepo <1>: Template Instantiation.
- (line 94)
- * freport-bug: Developer Options. (line 258)
- * frerun-cse-after-loop: Optimize Options. (line 477)
- * freschedule-modulo-scheduled-loops: Optimize Options. (line 853)
- * frounding-math: Optimize Options. (line 2141)
- * fsanitize-address-use-after-scope: Instrumentation Options.
- (line 425)
- * fsanitize-coverage=trace-cmp: Instrumentation Options.
- (line 440)
- * fsanitize-coverage=trace-pc: Instrumentation Options.
- (line 436)
- * fsanitize-recover: Instrumentation Options.
- (line 389)
- * fsanitize-sections: Instrumentation Options.
- (line 385)
- * fsanitize-undefined-trap-on-error: Instrumentation Options.
- (line 429)
- * fsanitize=address: Instrumentation Options.
- (line 158)
- * fsanitize=alignment: Instrumentation Options.
- (line 300)
- * fsanitize=bool: Instrumentation Options.
- (line 338)
- * fsanitize=bounds: Instrumentation Options.
- (line 285)
- * fsanitize=bounds-strict: Instrumentation Options.
- (line 292)
- * fsanitize=builtin: Instrumentation Options.
- (line 362)
- * fsanitize=enum: Instrumentation Options.
- (line 343)
- * fsanitize=float-cast-overflow: Instrumentation Options.
- (line 318)
- * fsanitize=float-divide-by-zero: Instrumentation Options.
- (line 312)
- * fsanitize=integer-divide-by-zero: Instrumentation Options.
- (line 248)
- * fsanitize=kernel-address: Instrumentation Options.
- (line 172)
- * fsanitize=leak: Instrumentation Options.
- (line 213)
- * fsanitize=nonnull-attribute: Instrumentation Options.
- (line 326)
- * fsanitize=null: Instrumentation Options.
- (line 262)
- * fsanitize=object-size: Instrumentation Options.
- (line 307)
- * fsanitize=pointer-compare: Instrumentation Options.
- (line 177)
- * fsanitize=pointer-overflow: Instrumentation Options.
- (line 356)
- * fsanitize=pointer-subtract: Instrumentation Options.
- (line 188)
- * fsanitize=return: Instrumentation Options.
- (line 270)
- * fsanitize=returns-nonnull-attribute: Instrumentation Options.
- (line 332)
- * fsanitize=shift: Instrumentation Options.
- (line 228)
- * fsanitize=shift-base: Instrumentation Options.
- (line 241)
- * fsanitize=shift-exponent: Instrumentation Options.
- (line 236)
- * fsanitize=signed-integer-overflow: Instrumentation Options.
- (line 276)
- * fsanitize=thread: Instrumentation Options.
- (line 198)
- * fsanitize=undefined: Instrumentation Options.
- (line 223)
- * fsanitize=unreachable: Instrumentation Options.
- (line 252)
- * fsanitize=vla-bound: Instrumentation Options.
- (line 258)
- * fsanitize=vptr: Instrumentation Options.
- (line 349)
- * fsched-critical-path-heuristic: Optimize Options. (line 819)
- * fsched-dep-count-heuristic: Optimize Options. (line 846)
- * fsched-group-heuristic: Optimize Options. (line 813)
- * fsched-last-insn-heuristic: Optimize Options. (line 839)
- * fsched-pressure: Optimize Options. (line 764)
- * fsched-rank-heuristic: Optimize Options. (line 832)
- * fsched-spec-insn-heuristic: Optimize Options. (line 825)
- * fsched-spec-load: Optimize Options. (line 773)
- * fsched-spec-load-dangerous: Optimize Options. (line 778)
- * fsched-stalled-insns: Optimize Options. (line 784)
- * fsched-stalled-insns-dep: Optimize Options. (line 794)
- * fsched-verbose: Developer Options. (line 550)
- * fsched2-use-superblocks: Optimize Options. (line 803)
- * fschedule-fusion: Optimize Options. (line 2276)
- * fschedule-insns: Optimize Options. (line 735)
- * fschedule-insns2: Optimize Options. (line 745)
- * fsection-anchors: Optimize Options. (line 2376)
- * fsel-sched-pipelining: Optimize Options. (line 866)
- * fsel-sched-pipelining-outer-loops: Optimize Options. (line 871)
- * fselective-scheduling: Optimize Options. (line 858)
- * fselective-scheduling2: Optimize Options. (line 862)
- * fsemantic-interposition: Optimize Options. (line 876)
- * fshort-enums: Code Gen Options. (line 211)
- * fshort-enums <1>: Structures unions enumerations and bit-fields implementation.
- (line 48)
- * fshort-enums <2>: Common Type Attributes.
- (line 235)
- * fshort-enums <3>: Non-bugs. (line 42)
- * fshort-wchar: Code Gen Options. (line 221)
- * fshrink-wrap: Optimize Options. (line 893)
- * fshrink-wrap-separate: Optimize Options. (line 898)
- * fsignaling-nans: Optimize Options. (line 2161)
- * fsigned-bitfields: C Dialect Options. (line 422)
- * fsigned-bitfields <1>: Non-bugs. (line 57)
- * fsigned-char: C Dialect Options. (line 412)
- * fsigned-char <1>: Characters implementation.
- (line 31)
- * fsimd-cost-model: Optimize Options. (line 1330)
- * fsingle-precision-constant: Optimize Options. (line 2193)
- * fsized-deallocation: C++ Dialect Options.
- (line 325)
- * fsplit-ivs-in-unroller: Optimize Options. (line 1351)
- * fsplit-loops: Optimize Options. (line 2319)
- * fsplit-paths: Optimize Options. (line 1346)
- * fsplit-stack: Instrumentation Options.
- (line 703)
- * fsplit-stack <1>: Common Function Attributes.
- (line 592)
- * fsplit-wide-types: Optimize Options. (line 452)
- * fssa-backprop: Optimize Options. (line 1081)
- * fssa-phiopt: Optimize Options. (line 1087)
- * fsso-struct: C Dialect Options. (line 428)
- * fstack-check: Instrumentation Options.
- (line 629)
- * fstack-clash-protection: Instrumentation Options.
- (line 671)
- * fstack-limit-register: Instrumentation Options.
- (line 686)
- * fstack-limit-symbol: Instrumentation Options.
- (line 686)
- * fstack-protector: Instrumentation Options.
- (line 608)
- * fstack-protector-all: Instrumentation Options.
- (line 617)
- * fstack-protector-explicit: Instrumentation Options.
- (line 625)
- * fstack-protector-strong: Instrumentation Options.
- (line 620)
- * fstack-usage: Developer Options. (line 825)
- * fstack_reuse: Code Gen Options. (line 15)
- * fstats: Developer Options. (line 854)
- * fstdarg-opt: Optimize Options. (line 2372)
- * fstore-merging: Optimize Options. (line 1282)
- * fstrict-aliasing: Optimize Options. (line 1490)
- * fstrict-enums: C++ Dialect Options.
- (line 335)
- * fstrict-overflow: Code Gen Options. (line 115)
- * fstrict-volatile-bitfields: Code Gen Options. (line 595)
- * fstrong-eval-order: C++ Dialect Options.
- (line 344)
- * fsync-libcalls: Code Gen Options. (line 627)
- * fsyntax-only: Warning Options. (line 14)
- * ftabstop: Preprocessor Options.
- (line 234)
- * ftemplate-backtrace-limit: C++ Dialect Options.
- (line 352)
- * ftemplate-depth: C++ Dialect Options.
- (line 356)
- * ftest-coverage: Instrumentation Options.
- (line 98)
- * fthread-jumps: Optimize Options. (line 443)
- * ftime-report: Developer Options. (line 782)
- * ftime-report-details: Developer Options. (line 786)
- * ftls-model: Code Gen Options. (line 495)
- * ftracer: Optimize Options. (line 2284)
- * ftrack-macro-expansion: Preprocessor Options.
- (line 240)
- * ftrampolines: Code Gen Options. (line 506)
- * ftrapv: Code Gen Options. (line 91)
- * ftree-bit-ccp: Optimize Options. (line 1070)
- * ftree-builtin-call-dce: Optimize Options. (line 1108)
- * ftree-ccp: Optimize Options. (line 1076)
- * ftree-ch: Optimize Options. (line 1128)
- * ftree-coalesce-vars: Optimize Options. (line 1167)
- * ftree-copy-prop: Optimize Options. (line 981)
- * ftree-dce: Optimize Options. (line 1104)
- * ftree-dominator-opts: Optimize Options. (line 1114)
- * ftree-dse: Optimize Options. (line 1121)
- * ftree-forwprop: Optimize Options. (line 960)
- * ftree-fre: Optimize Options. (line 964)
- * ftree-loop-distribute-patterns: Optimize Options. (line 1201)
- * ftree-loop-distribution: Optimize Options. (line 1184)
- * ftree-loop-if-convert: Optimize Options. (line 1177)
- * ftree-loop-im: Optimize Options. (line 1243)
- * ftree-loop-ivcanon: Optimize Options. (line 1252)
- * ftree-loop-linear: Optimize Options. (line 1141)
- * ftree-loop-optimize: Optimize Options. (line 1135)
- * ftree-loop-vectorize: Optimize Options. (line 1308)
- * ftree-parallelize-loops: Optimize Options. (line 1263)
- * ftree-partial-pre: Optimize Options. (line 956)
- * ftree-phiprop: Optimize Options. (line 971)
- * ftree-pre: Optimize Options. (line 952)
- * ftree-pta: Optimize Options. (line 1272)
- * ftree-reassoc: Optimize Options. (line 941)
- * ftree-sink: Optimize Options. (line 1066)
- * ftree-slp-vectorize: Optimize Options. (line 1312)
- * ftree-slsr: Optimize Options. (line 1297)
- * ftree-sra: Optimize Options. (line 1276)
- * ftree-switch-conversion: Optimize Options. (line 1091)
- * ftree-tail-merge: Optimize Options. (line 1096)
- * ftree-ter: Optimize Options. (line 1289)
- * ftree-vectorize: Optimize Options. (line 1303)
- * ftree-vrp: Optimize Options. (line 1337)
- * funconstrained-commons: Optimize Options. (line 533)
- * funit-at-a-time: Optimize Options. (line 1609)
- * funroll-all-loops: Optimize Options. (line 2301)
- * funroll-loops: Optimize Options. (line 2291)
- * funsafe-math-optimizations: Optimize Options. (line 2059)
- * funsigned-bitfields: C Dialect Options. (line 422)
- * funsigned-bitfields <1>: Structures unions enumerations and bit-fields implementation.
- (line 17)
- * funsigned-bitfields <2>: Non-bugs. (line 57)
- * funsigned-char: C Dialect Options. (line 394)
- * funsigned-char <1>: Characters implementation.
- (line 31)
- * funswitch-loops: Optimize Options. (line 2323)
- * funwind-tables: Code Gen Options. (line 149)
- * fuse-cxa-atexit: C++ Dialect Options.
- (line 371)
- * fuse-ld=bfd: Link Options. (line 25)
- * fuse-ld=gold: Link Options. (line 28)
- * fuse-linker-plugin: Optimize Options. (line 1868)
- * fvar-tracking: Debugging Options. (line 147)
- * fvar-tracking-assignments: Debugging Options. (line 157)
- * fvar-tracking-assignments-toggle: Developer Options. (line 774)
- * fvariable-expansion-in-unroller: Optimize Options. (line 1365)
- * fvect-cost-model: Optimize Options. (line 1316)
- * fverbose-asm: Code Gen Options. (line 268)
- * fvisibility: Code Gen Options. (line 530)
- * fvisibility-inlines-hidden: C++ Dialect Options.
- (line 383)
- * fvisibility-ms-compat: C++ Dialect Options.
- (line 411)
- * fvpt: Optimize Options. (line 2256)
- * fvtable-verify: Instrumentation Options.
- (line 721)
- * fvtv-counts: Instrumentation Options.
- (line 757)
- * fvtv-debug: Instrumentation Options.
- (line 744)
- * fweb: Optimize Options. (line 1628)
- * fwhole-program: Optimize Options. (line 1639)
- * fwide-exec-charset: Preprocessor Options.
- (line 271)
- * fworking-directory: Preprocessor Options.
- (line 314)
- * fwrapv: Code Gen Options. (line 99)
- * fwrapv-pointer: Code Gen Options. (line 109)
- * fzero-link: Objective-C and Objective-C++ Dialect Options.
- (line 140)
- * g: Debugging Options. (line 25)
- * G: ARC Options. (line 413)
- * G <1>: M32R/D Options. (line 57)
- * G <2>: MIPS Options. (line 436)
- * G <3>: Nios II Options. (line 9)
- * G <4>: PowerPC SPE Options.
- (line 524)
- * G <5>: RS/6000 and PowerPC Options.
- (line 774)
- * G <6>: System V Options. (line 10)
- * gas-loc-support: Debugging Options. (line 212)
- * gas-locview-support: Debugging Options. (line 228)
- * gcolumn-info: Debugging Options. (line 240)
- * gdwarf: Debugging Options. (line 45)
- * gen-decls: Objective-C and Objective-C++ Dialect Options.
- (line 166)
- * gfull: Darwin Options. (line 69)
- * ggdb: Debugging Options. (line 38)
- * ggnu-pubnames: Debugging Options. (line 178)
- * ginline-points: Debugging Options. (line 299)
- * ginternal-reset-location-views: Debugging Options. (line 288)
- * gno-as-loc-support: Debugging Options. (line 224)
- * gno-column-info: Debugging Options. (line 240)
- * gno-inline-points: Debugging Options. (line 299)
- * gno-internal-reset-location-views: Debugging Options. (line 288)
- * gno-record-gcc-switches: Debugging Options. (line 193)
- * gno-statement-frontiers: Debugging Options. (line 245)
- * gno-strict-dwarf: Debugging Options. (line 208)
- * gno-variable-location-views: Debugging Options. (line 256)
- * gpubnames: Debugging Options. (line 175)
- * grecord-gcc-switches: Debugging Options. (line 193)
- * gsplit-dwarf: Debugging Options. (line 168)
- * gstabs: Debugging Options. (line 63)
- * gstabs+: Debugging Options. (line 71)
- * gstatement-frontiers: Debugging Options. (line 245)
- * gstrict-dwarf: Debugging Options. (line 202)
- * gtoggle: Developer Options. (line 766)
- * gused: Darwin Options. (line 64)
- * gvariable-location-views: Debugging Options. (line 256)
- * gvariable-location-views=incompat5: Debugging Options. (line 256)
- * gvms: Debugging Options. (line 90)
- * gxcoff: Debugging Options. (line 77)
- * gxcoff+: Debugging Options. (line 82)
- * gz: Debugging Options. (line 308)
- * H: Preprocessor Options.
- (line 396)
- * headerpad_max_install_names: Darwin Options. (line 196)
- * help: Overall Options. (line 210)
- * I: Directory Options. (line 13)
- * I-: Directory Options. (line 65)
- * idirafter: Directory Options. (line 13)
- * iframework: Darwin Options. (line 57)
- * imacros: Preprocessor Options.
- (line 57)
- * image_base: Darwin Options. (line 196)
- * imultilib: Directory Options. (line 98)
- * include: Preprocessor Options.
- (line 46)
- * init: Darwin Options. (line 196)
- * install_name: Darwin Options. (line 196)
- * iplugindir=: Directory Options. (line 113)
- * iprefix: Directory Options. (line 80)
- * iquote: Directory Options. (line 13)
- * isysroot: Directory Options. (line 92)
- * isystem: Directory Options. (line 13)
- * iwithprefix: Directory Options. (line 86)
- * iwithprefixbefore: Directory Options. (line 86)
- * keep_private_externs: Darwin Options. (line 196)
- * l: Link Options. (line 32)
- * L: Directory Options. (line 118)
- * lobjc: Link Options. (line 59)
- * M: Preprocessor Options.
- (line 77)
- * m: PowerPC SPE Options.
- (line 352)
- * m <1>: RS/6000 and PowerPC Options.
- (line 579)
- * m1: SH Options. (line 9)
- * m10: PDP-11 Options. (line 29)
- * m128bit-long-double: x86 Options. (line 517)
- * m16: x86 Options. (line 1330)
- * m16-bit: CRIS Options. (line 64)
- * m16-bit <1>: NDS32 Options. (line 51)
- * m1reg-: Adapteva Epiphany Options.
- (line 131)
- * m2: SH Options. (line 12)
- * m210: MCore Options. (line 43)
- * m2a: SH Options. (line 30)
- * m2a-nofpu: SH Options. (line 18)
- * m2a-single: SH Options. (line 26)
- * m2a-single-only: SH Options. (line 22)
- * m3: SH Options. (line 34)
- * m31: S/390 and zSeries Options.
- (line 86)
- * m32: Nvidia PTX Options. (line 10)
- * m32 <1>: RS/6000 and PowerPC Options.
- (line 283)
- * m32 <2>: SPARC Options. (line 315)
- * m32 <3>: TILE-Gx Options. (line 23)
- * m32 <4>: TILEPro Options. (line 13)
- * m32 <5>: x86 Options. (line 1330)
- * m32-bit: CRIS Options. (line 64)
- * m32bit-doubles: RL78 Options. (line 73)
- * m32bit-doubles <1>: RX Options. (line 10)
- * m32r: M32R/D Options. (line 15)
- * m32r2: M32R/D Options. (line 9)
- * m32rx: M32R/D Options. (line 12)
- * m340: MCore Options. (line 43)
- * m3dnow: x86 Options. (line 742)
- * m3dnowa: x86 Options. (line 743)
- * m3e: SH Options. (line 37)
- * m4: SH Options. (line 51)
- * m4-100: SH Options. (line 54)
- * m4-100-nofpu: SH Options. (line 57)
- * m4-100-single: SH Options. (line 61)
- * m4-100-single-only: SH Options. (line 65)
- * m4-200: SH Options. (line 69)
- * m4-200-nofpu: SH Options. (line 72)
- * m4-200-single: SH Options. (line 76)
- * m4-200-single-only: SH Options. (line 80)
- * m4-300: SH Options. (line 84)
- * m4-300-nofpu: SH Options. (line 87)
- * m4-300-single: SH Options. (line 91)
- * m4-300-single-only: SH Options. (line 95)
- * m4-340: SH Options. (line 99)
- * m4-500: SH Options. (line 102)
- * m4-nofpu: SH Options. (line 40)
- * m4-single: SH Options. (line 47)
- * m4-single-only: SH Options. (line 43)
- * m40: PDP-11 Options. (line 23)
- * m45: PDP-11 Options. (line 26)
- * m4a: SH Options. (line 118)
- * m4a-nofpu: SH Options. (line 106)
- * m4a-single: SH Options. (line 114)
- * m4a-single-only: SH Options. (line 110)
- * m4al: SH Options. (line 121)
- * m4byte-functions: MCore Options. (line 27)
- * m5200: M680x0 Options. (line 144)
- * m5206e: M680x0 Options. (line 153)
- * m528x: M680x0 Options. (line 157)
- * m5307: M680x0 Options. (line 161)
- * m5407: M680x0 Options. (line 165)
- * m64: Nvidia PTX Options. (line 10)
- * m64 <1>: RS/6000 and PowerPC Options.
- (line 283)
- * m64 <2>: S/390 and zSeries Options.
- (line 86)
- * m64 <3>: SPARC Options. (line 315)
- * m64 <4>: TILE-Gx Options. (line 23)
- * m64 <5>: x86 Options. (line 1330)
- * m64bit-doubles: RL78 Options. (line 73)
- * m64bit-doubles <1>: RX Options. (line 10)
- * m68000: M680x0 Options. (line 93)
- * m68010: M680x0 Options. (line 101)
- * m68020: M680x0 Options. (line 107)
- * m68020-40: M680x0 Options. (line 175)
- * m68020-60: M680x0 Options. (line 184)
- * m68030: M680x0 Options. (line 112)
- * m68040: M680x0 Options. (line 117)
- * m68060: M680x0 Options. (line 126)
- * m68881: M680x0 Options. (line 194)
- * m8-bit: CRIS Options. (line 64)
- * m8bit-idiv: x86 Options. (line 1249)
- * m8byte-align: V850 Options. (line 170)
- * m96bit-long-double: x86 Options. (line 517)
- * mA6: ARC Options. (line 23)
- * mA7: ARC Options. (line 30)
- * mabi: AArch64 Options. (line 9)
- * mabi <1>: ARM Options. (line 9)
- * mabi <2>: PowerPC SPE Options.
- (line 379)
- * mabi <3>: RISC-V Options. (line 17)
- * mabi <4>: RS/6000 and PowerPC Options.
- (line 610)
- * mabi <5>: x86 Options. (line 969)
- * mabi=32: MIPS Options. (line 155)
- * mabi=64: MIPS Options. (line 155)
- * mabi=eabi: MIPS Options. (line 155)
- * mabi=elfv1: PowerPC SPE Options.
- (line 408)
- * mabi=elfv1 <1>: RS/6000 and PowerPC Options.
- (line 631)
- * mabi=elfv2: PowerPC SPE Options.
- (line 414)
- * mabi=elfv2 <1>: RS/6000 and PowerPC Options.
- (line 637)
- * mabi=gnu: MMIX Options. (line 20)
- * mabi=ibmlongdouble: PowerPC SPE Options.
- (line 392)
- * mabi=ibmlongdouble <1>: RS/6000 and PowerPC Options.
- (line 615)
- * mabi=ieeelongdouble: PowerPC SPE Options.
- (line 400)
- * mabi=ieeelongdouble <1>: RS/6000 and PowerPC Options.
- (line 623)
- * mabi=mmixware: MMIX Options. (line 20)
- * mabi=n32: MIPS Options. (line 155)
- * mabi=no-spe: PowerPC SPE Options.
- (line 389)
- * mabi=o64: MIPS Options. (line 155)
- * mabi=spe: PowerPC SPE Options.
- (line 384)
- * mabicalls: MIPS Options. (line 191)
- * mabm: x86 Options. (line 745)
- * mabort-on-noreturn: ARM Options. (line 606)
- * mabs=2008: MIPS Options. (line 299)
- * mabs=legacy: MIPS Options. (line 299)
- * mabsdata: AVR Options. (line 159)
- * mabsdiff: MeP Options. (line 7)
- * mabshi: PDP-11 Options. (line 55)
- * mac0: PDP-11 Options. (line 16)
- * macc-4: FRV Options. (line 139)
- * macc-8: FRV Options. (line 143)
- * maccumulate-args: AVR Options. (line 166)
- * maccumulate-outgoing-args: SH Options. (line 314)
- * maccumulate-outgoing-args <1>: x86 Options. (line 1007)
- * maddress-mode=long: x86 Options. (line 1380)
- * maddress-mode=short: x86 Options. (line 1385)
- * maddress-space-conversion: SPU Options. (line 68)
- * mads: PowerPC SPE Options.
- (line 448)
- * mads <1>: RS/6000 and PowerPC Options.
- (line 671)
- * madx: x86 Options. (line 746)
- * maes: x86 Options. (line 724)
- * maix-struct-return: PowerPC SPE Options.
- (line 372)
- * maix-struct-return <1>: RS/6000 and PowerPC Options.
- (line 603)
- * maix32: PowerPC SPE Options.
- (line 148)
- * maix32 <1>: RS/6000 and PowerPC Options.
- (line 321)
- * maix64: RS/6000 and PowerPC Options.
- (line 321)
- * malign-300: H8/300 Options. (line 41)
- * malign-call: ARC Options. (line 432)
- * malign-data: RISC-V Options. (line 127)
- * malign-data <1>: x86 Options. (line 557)
- * malign-double: x86 Options. (line 502)
- * malign-int: M680x0 Options. (line 263)
- * malign-labels: FRV Options. (line 128)
- * malign-loops: M32R/D Options. (line 73)
- * malign-natural: PowerPC SPE Options.
- (line 172)
- * malign-natural <1>: RS/6000 and PowerPC Options.
- (line 359)
- * malign-power: PowerPC SPE Options.
- (line 172)
- * malign-power <1>: RS/6000 and PowerPC Options.
- (line 359)
- * mall-opts: MeP Options. (line 11)
- * malloc-cc: FRV Options. (line 31)
- * mallow-string-insns: RX Options. (line 150)
- * mallregs: RL78 Options. (line 66)
- * maltivec: RS/6000 and PowerPC Options.
- (line 141)
- * maltivec=be: RS/6000 and PowerPC Options.
- (line 157)
- * maltivec=le: RS/6000 and PowerPC Options.
- (line 169)
- * mam33: MN10300 Options. (line 17)
- * mam33-2: MN10300 Options. (line 24)
- * mam34: MN10300 Options. (line 27)
- * mandroid: GNU/Linux Options. (line 26)
- * mannotate-align: ARC Options. (line 379)
- * mapcs: ARM Options. (line 21)
- * mapcs-frame: ARM Options. (line 13)
- * mapp-regs: SPARC Options. (line 10)
- * mapp-regs <1>: V850 Options. (line 181)
- * mARC600: ARC Options. (line 23)
- * mARC601: ARC Options. (line 27)
- * mARC700: ARC Options. (line 30)
- * march: AArch64 Options. (line 110)
- * march <1>: ARM Options. (line 74)
- * march <2>: C6X Options. (line 7)
- * march <3>: CRIS Options. (line 10)
- * march <4>: HPPA Options. (line 9)
- * march <5>: HPPA Options. (line 162)
- * march <6>: M680x0 Options. (line 12)
- * march <7>: MIPS Options. (line 14)
- * march <8>: NDS32 Options. (line 64)
- * march <9>: Nios II Options. (line 94)
- * march <10>: RISC-V Options. (line 54)
- * march <11>: S/390 and zSeries Options.
- (line 148)
- * march <12>: x86 Options. (line 9)
- * marclinux: ARC Options. (line 385)
- * marclinux_prof: ARC Options. (line 392)
- * margonaut: ARC Options. (line 585)
- * marm: ARM Options. (line 678)
- * mas100-syntax: RX Options. (line 76)
- * masm-hex: MSP430 Options. (line 9)
- * masm-syntax-unified: ARM Options. (line 778)
- * masm=DIALECT: x86 Options. (line 451)
- * matomic: ARC Options. (line 155)
- * matomic-model=MODEL: SH Options. (line 193)
- * matomic-updates: SPU Options. (line 83)
- * mauto-litpools: Xtensa Options. (line 60)
- * mauto-modify-reg: ARC Options. (line 435)
- * mauto-pic: IA-64 Options. (line 50)
- * maverage: MeP Options. (line 16)
- * mavoid-indexed-addresses: PowerPC SPE Options.
- (line 216)
- * mavoid-indexed-addresses <1>: RS/6000 and PowerPC Options.
- (line 418)
- * mavx: x86 Options. (line 712)
- * mavx2: x86 Options. (line 713)
- * mavx256-split-unaligned-load: x86 Options. (line 1257)
- * mavx256-split-unaligned-store: x86 Options. (line 1257)
- * mavx5124fmaps: x86 Options. (line 770)
- * mavx5124vnniw: x86 Options. (line 772)
- * mavx512bitalg: x86 Options. (line 766)
- * mavx512bw: x86 Options. (line 719)
- * mavx512cd: x86 Options. (line 717)
- * mavx512dq: x86 Options. (line 720)
- * mavx512er: x86 Options. (line 716)
- * mavx512f: x86 Options. (line 714)
- * mavx512ifma: x86 Options. (line 721)
- * mavx512pf: x86 Options. (line 715)
- * mavx512vbmi: x86 Options. (line 722)
- * mavx512vbmi2: x86 Options. (line 762)
- * mavx512vl: x86 Options. (line 718)
- * mavx512vnni: x86 Options. (line 771)
- * mavx512vpopcntdq: x86 Options. (line 769)
- * max-vect-align: Adapteva Epiphany Options.
- (line 119)
- * mb: SH Options. (line 126)
- * mbackchain: S/390 and zSeries Options.
- (line 35)
- * mbarrel-shift-enabled: LM32 Options. (line 9)
- * mbarrel-shifter: ARC Options. (line 10)
- * mbarrel_shifter: ARC Options. (line 605)
- * mbase-addresses: MMIX Options. (line 53)
- * mbased=: MeP Options. (line 20)
- * mbbit-peephole: ARC Options. (line 438)
- * mbcopy: PDP-11 Options. (line 36)
- * mbcopy-builtin: PDP-11 Options. (line 32)
- * mbe8: ARM Options. (line 66)
- * mbig: PowerPC SPE Options.
- (line 271)
- * mbig <1>: RS/6000 and PowerPC Options.
- (line 498)
- * mbig-endian: AArch64 Options. (line 20)
- * mbig-endian <1>: ARC Options. (line 588)
- * mbig-endian <2>: ARM Options. (line 61)
- * mbig-endian <3>: C6X Options. (line 13)
- * mbig-endian <4>: IA-64 Options. (line 9)
- * mbig-endian <5>: MCore Options. (line 39)
- * mbig-endian <6>: MicroBlaze Options. (line 56)
- * mbig-endian <7>: NDS32 Options. (line 9)
- * mbig-endian <8>: PowerPC SPE Options.
- (line 271)
- * mbig-endian <9>: RS/6000 and PowerPC Options.
- (line 498)
- * mbig-endian <10>: TILE-Gx Options. (line 29)
- * mbig-endian-data: RX Options. (line 42)
- * mbig-switch: V850 Options. (line 176)
- * mbigtable: SH Options. (line 141)
- * mbionic: GNU/Linux Options. (line 22)
- * mbit-align: RS/6000 and PowerPC Options.
- (line 450)
- * mbit-ops: CR16 Options. (line 25)
- * mbitfield: M680x0 Options. (line 231)
- * mbitops: MeP Options. (line 26)
- * mbitops <1>: SH Options. (line 145)
- * mblock-compare-inline-limit: RS/6000 and PowerPC Options.
- (line 752)
- * mblock-compare-inline-loop-limit: RS/6000 and PowerPC Options.
- (line 758)
- * mblock-move-inline-limit: PowerPC SPE Options.
- (line 518)
- * mblock-move-inline-limit <1>: RS/6000 and PowerPC Options.
- (line 746)
- * mbmi: x86 Options. (line 747)
- * mbmi2: x86 Options. (line 748)
- * mbranch-cheap: PDP-11 Options. (line 65)
- * mbranch-cost: Adapteva Epiphany Options.
- (line 18)
- * mbranch-cost <1>: AVR Options. (line 181)
- * mbranch-cost <2>: MIPS Options. (line 751)
- * mbranch-cost <3>: RISC-V Options. (line 9)
- * mbranch-cost=NUM: SH Options. (line 334)
- * mbranch-cost=NUMBER: M32R/D Options. (line 82)
- * mbranch-expensive: PDP-11 Options. (line 61)
- * mbranch-hints: SPU Options. (line 29)
- * mbranch-likely: MIPS Options. (line 758)
- * mbranch-predict: MMIX Options. (line 48)
- * mbss-plt: PowerPC SPE Options.
- (line 73)
- * mbss-plt <1>: RS/6000 and PowerPC Options.
- (line 189)
- * mbuild-constants: DEC Alpha Options. (line 141)
- * mbwx: DEC Alpha Options. (line 163)
- * mbypass-cache: Nios II Options. (line 103)
- * mc68000: M680x0 Options. (line 93)
- * mc68020: M680x0 Options. (line 107)
- * mc=: MeP Options. (line 31)
- * mcache-block-size: NDS32 Options. (line 60)
- * mcache-size: SPU Options. (line 75)
- * mcache-volatile: Nios II Options. (line 109)
- * mcall-eabi: PowerPC SPE Options.
- (line 346)
- * mcall-eabi <1>: RS/6000 and PowerPC Options.
- (line 573)
- * mcall-freebsd: PowerPC SPE Options.
- (line 360)
- * mcall-freebsd <1>: RS/6000 and PowerPC Options.
- (line 587)
- * mcall-linux: PowerPC SPE Options.
- (line 356)
- * mcall-linux <1>: RS/6000 and PowerPC Options.
- (line 583)
- * mcall-ms2sysv-xlogues: x86 Options. (line 983)
- * mcall-netbsd: PowerPC SPE Options.
- (line 364)
- * mcall-netbsd <1>: PowerPC SPE Options.
- (line 368)
- * mcall-netbsd <2>: RS/6000 and PowerPC Options.
- (line 591)
- * mcall-netbsd <3>: RS/6000 and PowerPC Options.
- (line 595)
- * mcall-prologues: AVR Options. (line 186)
- * mcall-sysv: PowerPC SPE Options.
- (line 338)
- * mcall-sysv <1>: RS/6000 and PowerPC Options.
- (line 565)
- * mcall-sysv-eabi: PowerPC SPE Options.
- (line 346)
- * mcall-sysv-eabi <1>: RS/6000 and PowerPC Options.
- (line 573)
- * mcall-sysv-noeabi: PowerPC SPE Options.
- (line 349)
- * mcall-sysv-noeabi <1>: RS/6000 and PowerPC Options.
- (line 576)
- * mcallee-super-interworking: ARM Options. (line 707)
- * mcaller-copies: HPPA Options. (line 23)
- * mcaller-super-interworking: ARM Options. (line 714)
- * mcallgraph-data: MCore Options. (line 31)
- * mcase-vector-pcrel: ARC Options. (line 447)
- * mcbcond: SPARC Options. (line 260)
- * mcbranch-force-delay-slot: SH Options. (line 349)
- * mcc-init: CRIS Options. (line 42)
- * mcfv4e: M680x0 Options. (line 169)
- * mcheck-zero-division: MIPS Options. (line 546)
- * mcix: DEC Alpha Options. (line 163)
- * mcld: x86 Options. (line 822)
- * mclear-hwcap: Solaris 2 Options. (line 9)
- * mclflushopt: x86 Options. (line 726)
- * mclip: MeP Options. (line 35)
- * mclwb: x86 Options. (line 727)
- * mclzero: x86 Options. (line 760)
- * mcmodel: NDS32 Options. (line 67)
- * mcmodel <1>: SPARC Options. (line 320)
- * mcmodel=kernel: x86 Options. (line 1364)
- * mcmodel=large: AArch64 Options. (line 45)
- * mcmodel=large <1>: RS/6000 and PowerPC Options.
- (line 135)
- * mcmodel=large <2>: TILE-Gx Options. (line 14)
- * mcmodel=large <3>: x86 Options. (line 1376)
- * mcmodel=medany: RISC-V Options. (line 105)
- * mcmodel=medium: RS/6000 and PowerPC Options.
- (line 130)
- * mcmodel=medium <1>: x86 Options. (line 1369)
- * mcmodel=medlow: RISC-V Options. (line 98)
- * mcmodel=small: AArch64 Options. (line 39)
- * mcmodel=small <1>: RS/6000 and PowerPC Options.
- (line 126)
- * mcmodel=small <2>: TILE-Gx Options. (line 9)
- * mcmodel=small <3>: x86 Options. (line 1358)
- * mcmodel=tiny: AArch64 Options. (line 34)
- * mcmov: NDS32 Options. (line 21)
- * mcmove: Adapteva Epiphany Options.
- (line 23)
- * mcmpb: RS/6000 and PowerPC Options.
- (line 27)
- * mcmse: ARM Options. (line 807)
- * mcode-density: ARC Options. (line 163)
- * mcode-readable: MIPS Options. (line 506)
- * mcode-region: MSP430 Options. (line 93)
- * mcompact-branches=always: MIPS Options. (line 770)
- * mcompact-branches=never: MIPS Options. (line 770)
- * mcompact-branches=optimal: MIPS Options. (line 770)
- * mcompact-casesi: ARC Options. (line 451)
- * mcompat-align-parm: PowerPC SPE Options.
- (line 653)
- * mcompat-align-parm <1>: RS/6000 and PowerPC Options.
- (line 942)
- * mcompress: FT32 Options. (line 26)
- * mcond-exec: FRV Options. (line 187)
- * mcond-move: FRV Options. (line 159)
- * mconfig=: MeP Options. (line 39)
- * mconsole: x86 Windows Options.
- (line 9)
- * mconst-align: CRIS Options. (line 55)
- * mconst16: Xtensa Options. (line 10)
- * mconstant-gp: IA-64 Options. (line 46)
- * mcop: MeP Options. (line 48)
- * mcop32: MeP Options. (line 53)
- * mcop64: MeP Options. (line 56)
- * mcorea: Blackfin Options. (line 154)
- * mcoreb: Blackfin Options. (line 161)
- * mcpu: AArch64 Options. (line 173)
- * mcpu <1>: ARC Options. (line 18)
- * mcpu <2>: ARM Options. (line 477)
- * mcpu <3>: CRIS Options. (line 10)
- * mcpu <4>: DEC Alpha Options. (line 215)
- * mcpu <5>: FRV Options. (line 258)
- * mcpu <6>: M680x0 Options. (line 28)
- * mcpu <7>: picoChip Options. (line 9)
- * mcpu <8>: PowerPC SPE Options.
- (line 27)
- * mcpu <9>: RL78 Options. (line 32)
- * mcpu <10>: RS/6000 and PowerPC Options.
- (line 68)
- * mcpu <11>: RX Options. (line 30)
- * mcpu <12>: SPARC Options. (line 115)
- * mcpu <13>: TILE-Gx Options. (line 18)
- * mcpu <14>: TILEPro Options. (line 9)
- * mcpu <15>: Visium Options. (line 33)
- * mcpu <16>: x86 Options. (line 397)
- * mcpu32: M680x0 Options. (line 135)
- * mcpu=: Blackfin Options. (line 7)
- * mcpu= <1>: M32C Options. (line 7)
- * mcpu= <2>: MicroBlaze Options. (line 20)
- * mcpu= <3>: MSP430 Options. (line 42)
- * mcr16c: CR16 Options. (line 14)
- * mcr16cplus: CR16 Options. (line 14)
- * mcrc32: x86 Options. (line 890)
- * mcrypto: RS/6000 and PowerPC Options.
- (line 215)
- * mcsync-anomaly: Blackfin Options. (line 57)
- * mctor-dtor: NDS32 Options. (line 81)
- * mcustom-fpu-cfg: Nios II Options. (line 259)
- * mcustom-INSN: Nios II Options. (line 139)
- * mcx16: x86 Options. (line 863)
- * MD: Preprocessor Options.
- (line 169)
- * mdalign: SH Options. (line 132)
- * mdata-align: CRIS Options. (line 55)
- * mdata-model: CR16 Options. (line 28)
- * mdata-region: MSP430 Options. (line 93)
- * mdc: MeP Options. (line 62)
- * mdebug: M32R/D Options. (line 69)
- * mdebug <1>: S/390 and zSeries Options.
- (line 144)
- * mdebug <2>: Visium Options. (line 7)
- * mdebug-main=PREFIX: VMS Options. (line 13)
- * mdec-asm: PDP-11 Options. (line 72)
- * mdisable-callt: V850 Options. (line 92)
- * mdisable-fpregs: HPPA Options. (line 34)
- * mdisable-indexing: HPPA Options. (line 40)
- * mdiv: M680x0 Options. (line 206)
- * mdiv <1>: MCore Options. (line 15)
- * mdiv <2>: MeP Options. (line 65)
- * mdiv <3>: RISC-V Options. (line 49)
- * mdiv-rem: ARC Options. (line 160)
- * mdiv=STRATEGY: SH Options. (line 284)
- * mdivide-breaks: MIPS Options. (line 552)
- * mdivide-enabled: LM32 Options. (line 12)
- * mdivide-traps: MIPS Options. (line 552)
- * mdivsi3_libfunc=NAME: SH Options. (line 320)
- * mdll: x86 Windows Options.
- (line 16)
- * mdlmzb: RS/6000 and PowerPC Options.
- (line 443)
- * mdmx: MIPS Options. (line 375)
- * mdouble: FRV Options. (line 48)
- * mdouble-float: MIPS Options. (line 287)
- * mdouble-float <1>: PowerPC SPE Options.
- (line 190)
- * mdouble-float <2>: RS/6000 and PowerPC Options.
- (line 377)
- * mdpfp: ARC Options. (line 99)
- * mdpfp-compact: ARC Options. (line 100)
- * mdpfp-fast: ARC Options. (line 104)
- * mdpfp_compact: ARC Options. (line 608)
- * mdpfp_fast: ARC Options. (line 611)
- * mdsp: MIPS Options. (line 352)
- * mdsp-packa: ARC Options. (line 332)
- * mdspr2: MIPS Options. (line 358)
- * mdsp_packa: ARC Options. (line 614)
- * mdual-nops: SPU Options. (line 95)
- * mdump-tune-features: x86 Options. (line 804)
- * mdvbf: ARC Options. (line 337)
- * mdwarf2-asm: IA-64 Options. (line 94)
- * mdword: FRV Options. (line 40)
- * mdynamic-no-pic: PowerPC SPE Options.
- (line 276)
- * mdynamic-no-pic <1>: RS/6000 and PowerPC Options.
- (line 503)
- * mea: ARC Options. (line 112)
- * mEA: ARC Options. (line 617)
- * mea32: SPU Options. (line 60)
- * mea64: SPU Options. (line 60)
- * meabi: PowerPC SPE Options.
- (line 467)
- * meabi <1>: RS/6000 and PowerPC Options.
- (line 690)
- * mearly-cbranchsi: ARC Options. (line 473)
- * mearly-stop-bits: IA-64 Options. (line 100)
- * meb: MeP Options. (line 68)
- * meb <1>: Moxie Options. (line 7)
- * meb <2>: Nios II Options. (line 90)
- * meb <3>: Score Options. (line 9)
- * mel: MeP Options. (line 71)
- * mel <1>: Moxie Options. (line 11)
- * mel <2>: Nios II Options. (line 90)
- * mel <3>: Score Options. (line 12)
- * melf: CRIS Options. (line 87)
- * melf <1>: MMIX Options. (line 43)
- * memb: PowerPC SPE Options.
- (line 462)
- * memb <1>: RS/6000 and PowerPC Options.
- (line 685)
- * membedded-data: MIPS Options. (line 493)
- * memregs=: M32C Options. (line 21)
- * mep: V850 Options. (line 16)
- * mepsilon: MMIX Options. (line 15)
- * merror-reloc: SPU Options. (line 10)
- * mesa: S/390 and zSeries Options.
- (line 94)
- * metrax100: CRIS Options. (line 27)
- * metrax4: CRIS Options. (line 27)
- * meva: MIPS Options. (line 402)
- * mexpand-adddi: ARC Options. (line 476)
- * mexplicit-relocs: DEC Alpha Options. (line 176)
- * mexplicit-relocs <1>: MIPS Options. (line 537)
- * mexr: H8/300 Options. (line 28)
- * mextern-sdata: MIPS Options. (line 456)
- * MF: Preprocessor Options.
- (line 111)
- * mf16c: x86 Options. (line 730)
- * mfast-fp: Blackfin Options. (line 130)
- * mfast-indirect-calls: HPPA Options. (line 52)
- * mfast-sw-div: Nios II Options. (line 115)
- * mfaster-structs: SPARC Options. (line 91)
- * mfdiv: RISC-V Options. (line 42)
- * mfdpic: FRV Options. (line 72)
- * mfentry: x86 Options. (line 1216)
- * mfix: DEC Alpha Options. (line 163)
- * mfix-24k: MIPS Options. (line 617)
- * mfix-and-continue: Darwin Options. (line 104)
- * mfix-at697f: SPARC Options. (line 294)
- * mfix-cortex-a53-835769: AArch64 Options. (line 73)
- * mfix-cortex-a53-843419: AArch64 Options. (line 80)
- * mfix-cortex-m3-ldrd: ARM Options. (line 747)
- * mfix-gr712rc: SPARC Options. (line 307)
- * mfix-r10000: MIPS Options. (line 639)
- * mfix-r4000: MIPS Options. (line 623)
- * mfix-r4400: MIPS Options. (line 633)
- * mfix-rm7000: MIPS Options. (line 650)
- * mfix-sb1: MIPS Options. (line 675)
- * mfix-ut699: SPARC Options. (line 299)
- * mfix-ut700: SPARC Options. (line 303)
- * mfix-vr4120: MIPS Options. (line 655)
- * mfix-vr4130: MIPS Options. (line 668)
- * mfixed-cc: FRV Options. (line 35)
- * mfixed-range: HPPA Options. (line 59)
- * mfixed-range <1>: IA-64 Options. (line 105)
- * mfixed-range <2>: SH Options. (line 327)
- * mfixed-range <3>: SPU Options. (line 52)
- * mflat: SPARC Options. (line 22)
- * mflip-mips16: MIPS Options. (line 127)
- * mflip-thumb: ARM Options. (line 690)
- * mfloat-abi: ARM Options. (line 41)
- * mfloat-gprs: PowerPC SPE Options.
- (line 103)
- * mfloat-ieee: DEC Alpha Options. (line 171)
- * mfloat-vax: DEC Alpha Options. (line 171)
- * mfloat128: PowerPC SPE Options.
- (line 97)
- * mfloat128 <1>: RS/6000 and PowerPC Options.
- (line 252)
- * mfloat128-hardware: RS/6000 and PowerPC Options.
- (line 274)
- * mfloat32: PDP-11 Options. (line 52)
- * mfloat64: PDP-11 Options. (line 48)
- * mflush-func: MIPS Options. (line 742)
- * mflush-func=NAME: M32R/D Options. (line 93)
- * mflush-trap=NUMBER: M32R/D Options. (line 86)
- * mfma: x86 Options. (line 731)
- * mfma4: x86 Options. (line 734)
- * mfmaf: SPARC Options. (line 267)
- * mfmovd: SH Options. (line 148)
- * mforce-indirect-call: x86 Options. (line 978)
- * mforce-no-pic: Xtensa Options. (line 41)
- * mfp-exceptions: MIPS Options. (line 790)
- * mfp-mode: Adapteva Epiphany Options.
- (line 71)
- * mfp-reg: DEC Alpha Options. (line 25)
- * mfp-rounding-mode: DEC Alpha Options. (line 85)
- * mfp-trap-mode: DEC Alpha Options. (line 63)
- * mfp16-format: ARM Options. (line 584)
- * mfp32: MIPS Options. (line 257)
- * mfp64: MIPS Options. (line 260)
- * mfpmath: Optimize Options. (line 2020)
- * mfpmath <1>: x86 Options. (line 400)
- * mfpr-32: FRV Options. (line 15)
- * mfpr-64: FRV Options. (line 19)
- * mfprnd: RS/6000 and PowerPC Options.
- (line 27)
- * mfpu: ARC Options. (line 231)
- * mfpu <1>: ARM Options. (line 556)
- * mfpu <2>: PDP-11 Options. (line 9)
- * mfpu <3>: RS/6000 and PowerPC Options.
- (line 385)
- * mfpu <4>: SPARC Options. (line 34)
- * mfpu <5>: Visium Options. (line 19)
- * mfpxx: MIPS Options. (line 263)
- * mfract-convert-truncate: AVR Options. (line 273)
- * mframe-header-opt: MIPS Options. (line 851)
- * mfriz: RS/6000 and PowerPC Options.
- (line 913)
- * mfsca: SH Options. (line 365)
- * mfsgsbase: x86 Options. (line 728)
- * mfsmuld: SPARC Options. (line 274)
- * mfsrra: SH Options. (line 374)
- * mft32b: FT32 Options. (line 23)
- * mfull-regs: NDS32 Options. (line 18)
- * mfull-toc: PowerPC SPE Options.
- (line 122)
- * mfull-toc <1>: RS/6000 and PowerPC Options.
- (line 294)
- * mfused-madd: IA-64 Options. (line 88)
- * mfused-madd <1>: MIPS Options. (line 600)
- * mfused-madd <2>: PowerPC SPE Options.
- (line 225)
- * mfused-madd <3>: RS/6000 and PowerPC Options.
- (line 427)
- * mfused-madd <4>: S/390 and zSeries Options.
- (line 175)
- * mfused-madd <5>: SH Options. (line 356)
- * mfused-madd <6>: Xtensa Options. (line 19)
- * mfxsr: x86 Options. (line 750)
- * MG: Preprocessor Options.
- (line 122)
- * mg: VAX Options. (line 17)
- * mg10: RL78 Options. (line 62)
- * mg13: RL78 Options. (line 62)
- * mg14: RL78 Options. (line 62)
- * mgas: HPPA Options. (line 75)
- * mgas-isr-prologues: AVR Options. (line 190)
- * mgcc-abi: V850 Options. (line 148)
- * mgeneral-regs-only: AArch64 Options. (line 24)
- * mgeneral-regs-only <1>: x86 Options. (line 1281)
- * mgfni: x86 Options. (line 763)
- * mghs: V850 Options. (line 127)
- * mglibc: GNU/Linux Options. (line 9)
- * mgnu: VAX Options. (line 13)
- * mgnu-as: IA-64 Options. (line 18)
- * mgnu-attribute: PowerPC SPE Options.
- (line 421)
- * mgnu-attribute <1>: RS/6000 and PowerPC Options.
- (line 644)
- * mgnu-ld: HPPA Options. (line 111)
- * mgnu-ld <1>: IA-64 Options. (line 23)
- * mgomp: Nvidia PTX Options. (line 48)
- * mgotplt: CRIS Options. (line 81)
- * mgp32: MIPS Options. (line 251)
- * mgp64: MIPS Options. (line 254)
- * mgpopt: MIPS Options. (line 478)
- * mgpopt <1>: Nios II Options. (line 16)
- * mgpr-32: FRV Options. (line 7)
- * mgpr-64: FRV Options. (line 11)
- * mgprel-ro: FRV Options. (line 99)
- * mgprel-sec: Nios II Options. (line 65)
- * mh: H8/300 Options. (line 14)
- * mhal: Nios II Options. (line 304)
- * mhalf-reg-file: Adapteva Epiphany Options.
- (line 9)
- * mhard-dfp: RS/6000 and PowerPC Options.
- (line 27)
- * mhard-dfp <1>: S/390 and zSeries Options.
- (line 20)
- * mhard-float: FRV Options. (line 23)
- * mhard-float <1>: M680x0 Options. (line 194)
- * mhard-float <2>: MicroBlaze Options. (line 10)
- * mhard-float <3>: MIPS Options. (line 266)
- * mhard-float <4>: PowerPC SPE Options.
- (line 184)
- * mhard-float <5>: RS/6000 and PowerPC Options.
- (line 371)
- * mhard-float <6>: S/390 and zSeries Options.
- (line 11)
- * mhard-float <7>: SPARC Options. (line 34)
- * mhard-float <8>: V850 Options. (line 113)
- * mhard-float <9>: Visium Options. (line 19)
- * mhard-float <10>: x86 Options. (line 465)
- * mhard-quad-float: SPARC Options. (line 55)
- * mhardlit: MCore Options. (line 10)
- * mhint-max-distance: SPU Options. (line 107)
- * mhint-max-nops: SPU Options. (line 101)
- * mhle: x86 Options. (line 756)
- * mhotpatch: S/390 and zSeries Options.
- (line 210)
- * mhp-ld: HPPA Options. (line 123)
- * mhtm: RS/6000 and PowerPC Options.
- (line 221)
- * mhtm <1>: S/390 and zSeries Options.
- (line 104)
- * mhw-div: Nios II Options. (line 124)
- * mhw-mul: Nios II Options. (line 124)
- * mhw-mulx: Nios II Options. (line 124)
- * mhwmult=: MSP430 Options. (line 63)
- * miamcu: x86 Options. (line 1330)
- * micplb: Blackfin Options. (line 175)
- * mid-shared-library: Blackfin Options. (line 78)
- * mieee: DEC Alpha Options. (line 39)
- * mieee <1>: SH Options. (line 165)
- * mieee-conformant: DEC Alpha Options. (line 134)
- * mieee-fp: x86 Options. (line 459)
- * mieee-with-inexact: DEC Alpha Options. (line 52)
- * milp32: IA-64 Options. (line 121)
- * mimadd: MIPS Options. (line 593)
- * mimpure-text: Solaris 2 Options. (line 15)
- * mincoming-stack-boundary: x86 Options. (line 678)
- * mindexed-loads: ARC Options. (line 480)
- * minline-all-stringops: x86 Options. (line 1148)
- * minline-float-divide-max-throughput: IA-64 Options. (line 58)
- * minline-float-divide-min-latency: IA-64 Options. (line 54)
- * minline-ic_invalidate: SH Options. (line 174)
- * minline-int-divide-max-throughput: IA-64 Options. (line 69)
- * minline-int-divide-min-latency: IA-64 Options. (line 65)
- * minline-plt: Blackfin Options. (line 135)
- * minline-plt <1>: FRV Options. (line 81)
- * minline-sqrt-max-throughput: IA-64 Options. (line 80)
- * minline-sqrt-min-latency: IA-64 Options. (line 76)
- * minline-stringops-dynamically: x86 Options. (line 1155)
- * minrt: MSP430 Options. (line 85)
- * minsert-sched-nops: PowerPC SPE Options.
- (line 316)
- * minsert-sched-nops <1>: RS/6000 and PowerPC Options.
- (line 543)
- * mint-register: RX Options. (line 100)
- * mint16: PDP-11 Options. (line 40)
- * mint32: CR16 Options. (line 22)
- * mint32 <1>: H8/300 Options. (line 38)
- * mint32 <2>: PDP-11 Options. (line 44)
- * mint8: AVR Options. (line 200)
- * minterlink-compressed: MIPS Options. (line 134)
- * minterlink-mips16: MIPS Options. (line 146)
- * mio-volatile: MeP Options. (line 74)
- * mips1: MIPS Options. (line 79)
- * mips16: MIPS Options. (line 119)
- * mips2: MIPS Options. (line 82)
- * mips3: MIPS Options. (line 85)
- * mips32: MIPS Options. (line 91)
- * mips32r3: MIPS Options. (line 94)
- * mips32r5: MIPS Options. (line 97)
- * mips32r6: MIPS Options. (line 100)
- * mips3d: MIPS Options. (line 381)
- * mips4: MIPS Options. (line 88)
- * mips64: MIPS Options. (line 103)
- * mips64r2: MIPS Options. (line 106)
- * mips64r3: MIPS Options. (line 109)
- * mips64r5: MIPS Options. (line 112)
- * mips64r6: MIPS Options. (line 115)
- * mirq-ctrl-saved: ARC Options. (line 296)
- * misel: PowerPC SPE Options.
- (line 79)
- * misel <1>: RS/6000 and PowerPC Options.
- (line 195)
- * misize: ARC Options. (line 376)
- * misize <1>: SH Options. (line 186)
- * misr-vector-size: NDS32 Options. (line 57)
- * missue-rate=NUMBER: M32R/D Options. (line 79)
- * mivc2: MeP Options. (line 59)
- * mjli-alawys: ARC Options. (line 14)
- * mjsr: RX Options. (line 169)
- * mjump-in-delay: HPPA Options. (line 30)
- * mkernel: Darwin Options. (line 82)
- * mknuthdiv: MMIX Options. (line 32)
- * ml: MeP Options. (line 78)
- * ml <1>: SH Options. (line 129)
- * mlarge: MSP430 Options. (line 52)
- * mlarge-data: DEC Alpha Options. (line 187)
- * mlarge-data-threshold: x86 Options. (line 564)
- * mlarge-mem: SPU Options. (line 38)
- * mlarge-text: DEC Alpha Options. (line 205)
- * mleadz: MeP Options. (line 81)
- * mleaf-id-shared-library: Blackfin Options. (line 89)
- * mlibfuncs: MMIX Options. (line 10)
- * mlibrary-pic: FRV Options. (line 135)
- * mlinked-fp: FRV Options. (line 116)
- * mlinker-opt: HPPA Options. (line 85)
- * mlinux: CRIS Options. (line 91)
- * mlittle: PowerPC SPE Options.
- (line 265)
- * mlittle <1>: RS/6000 and PowerPC Options.
- (line 492)
- * mlittle-endian: AArch64 Options. (line 30)
- * mlittle-endian <1>: ARC Options. (line 597)
- * mlittle-endian <2>: ARM Options. (line 57)
- * mlittle-endian <3>: C6X Options. (line 16)
- * mlittle-endian <4>: IA-64 Options. (line 13)
- * mlittle-endian <5>: MCore Options. (line 39)
- * mlittle-endian <6>: MicroBlaze Options. (line 59)
- * mlittle-endian <7>: NDS32 Options. (line 12)
- * mlittle-endian <8>: PowerPC SPE Options.
- (line 265)
- * mlittle-endian <9>: RS/6000 and PowerPC Options.
- (line 492)
- * mlittle-endian <10>: TILE-Gx Options. (line 29)
- * mlittle-endian-data: RX Options. (line 42)
- * mliw: MN10300 Options. (line 54)
- * mll64: ARC Options. (line 167)
- * mllsc: MIPS Options. (line 338)
- * mload-store-pairs: MIPS Options. (line 566)
- * mlocal-sdata: MIPS Options. (line 444)
- * mlock: ARC Options. (line 342)
- * mlong-calls: Adapteva Epiphany Options.
- (line 55)
- * mlong-calls <1>: ARC Options. (line 401)
- * mlong-calls <2>: ARM Options. (line 611)
- * mlong-calls <3>: Blackfin Options. (line 118)
- * mlong-calls <4>: FRV Options. (line 122)
- * mlong-calls <5>: MIPS Options. (line 579)
- * mlong-calls <6>: V850 Options. (line 10)
- * mlong-double-128: S/390 and zSeries Options.
- (line 29)
- * mlong-double-128 <1>: x86 Options. (line 543)
- * mlong-double-64: S/390 and zSeries Options.
- (line 29)
- * mlong-double-64 <1>: x86 Options. (line 543)
- * mlong-double-80: x86 Options. (line 543)
- * mlong-jump-table-offsets: M680x0 Options. (line 342)
- * mlong-jumps: V850 Options. (line 108)
- * mlong-load-store: HPPA Options. (line 66)
- * mlong32: MIPS Options. (line 419)
- * mlong64: MIPS Options. (line 414)
- * mlongcall: PowerPC SPE Options.
- (line 538)
- * mlongcall <1>: RS/6000 and PowerPC Options.
- (line 788)
- * mlongcalls: Xtensa Options. (line 87)
- * mloop: V850 Options. (line 121)
- * mlow-64k: Blackfin Options. (line 67)
- * mlow-precision-recip-sqrt: AArch64 Options. (line 86)
- * mlp64: IA-64 Options. (line 121)
- * mlpc-width: ARC Options. (line 313)
- * mlra: ARC Options. (line 485)
- * mlra <1>: FT32 Options. (line 16)
- * mlra <2>: SPARC Options. (line 111)
- * mlra-priority-compact: ARC Options. (line 493)
- * mlra-priority-noncompact: ARC Options. (line 496)
- * mlra-priority-none: ARC Options. (line 490)
- * mlwp: x86 Options. (line 741)
- * mlxc1-sxc1: MIPS Options. (line 861)
- * mlzcnt: x86 Options. (line 749)
- * MM: Preprocessor Options.
- (line 102)
- * mm: MeP Options. (line 84)
- * mmac: CR16 Options. (line 9)
- * mmac <1>: Score Options. (line 21)
- * mmac-24: ARC Options. (line 351)
- * mmac-d16: ARC Options. (line 347)
- * mmac_24: ARC Options. (line 620)
- * mmac_d16: ARC Options. (line 623)
- * mmad: MIPS Options. (line 588)
- * mmadd4: MIPS Options. (line 866)
- * mmain-is-OS_task: AVR Options. (line 206)
- * mmainkernel: Nvidia PTX Options. (line 13)
- * mmalloc64: VMS Options. (line 17)
- * mmax: DEC Alpha Options. (line 163)
- * mmax-constant-size: RX Options. (line 82)
- * mmax-stack-frame: CRIS Options. (line 23)
- * mmcount-ra-address: MIPS Options. (line 838)
- * mmcu: AVR Options. (line 9)
- * mmcu <1>: MIPS Options. (line 398)
- * mmcu=: MSP430 Options. (line 14)
- * MMD: Preprocessor Options.
- (line 185)
- * mmedia: FRV Options. (line 56)
- * mmedium-calls: ARC Options. (line 405)
- * mmemcpy: MicroBlaze Options. (line 13)
- * mmemcpy <1>: MIPS Options. (line 573)
- * mmemcpy-strategy=STRATEGY: x86 Options. (line 1177)
- * mmemory-latency: DEC Alpha Options. (line 268)
- * mmemory-model: SPARC Options. (line 348)
- * mmemset-strategy=STRATEGY: x86 Options. (line 1189)
- * mmfcrf: PowerPC SPE Options.
- (line 11)
- * mmfcrf <1>: RS/6000 and PowerPC Options.
- (line 27)
- * mmfpgpr: RS/6000 and PowerPC Options.
- (line 27)
- * mmicromips: MIPS Options. (line 386)
- * mminimal-toc: PowerPC SPE Options.
- (line 122)
- * mminimal-toc <1>: RS/6000 and PowerPC Options.
- (line 294)
- * mminmax: MeP Options. (line 87)
- * mmitigate-rop: x86 Options. (line 1275)
- * mmixed-code: ARC Options. (line 508)
- * mmmx: x86 Options. (line 703)
- * mmodel=large: M32R/D Options. (line 33)
- * mmodel=medium: M32R/D Options. (line 27)
- * mmodel=small: M32R/D Options. (line 18)
- * mmovbe: x86 Options. (line 882)
- * mmovdir64b: x86 Options. (line 768)
- * mmovdiri: x86 Options. (line 767)
- * mmpx: x86 Options. (line 758)
- * mmpy-option: ARC Options. (line 173)
- * mms-bitfields: x86 Options. (line 1023)
- * mmt: MIPS Options. (line 394)
- * mmul: RL78 Options. (line 15)
- * mmul-bug-workaround: CRIS Options. (line 32)
- * mmul.x: Moxie Options. (line 14)
- * mmul32x16: ARC Options. (line 121)
- * mmul64: ARC Options. (line 124)
- * mmuladd: FRV Options. (line 64)
- * mmulhw: RS/6000 and PowerPC Options.
- (line 436)
- * mmult: MeP Options. (line 90)
- * mmult-bug: MN10300 Options. (line 9)
- * mmultcost: ARC Options. (line 570)
- * mmulti-cond-exec: FRV Options. (line 215)
- * mmulticore: Blackfin Options. (line 139)
- * mmultiple: PowerPC SPE Options.
- (line 195)
- * mmultiple <1>: RS/6000 and PowerPC Options.
- (line 397)
- * mmusl: GNU/Linux Options. (line 18)
- * mmvcle: S/390 and zSeries Options.
- (line 138)
- * mmvme: PowerPC SPE Options.
- (line 443)
- * mmvme <1>: RS/6000 and PowerPC Options.
- (line 666)
- * mmwaitx: x86 Options. (line 759)
- * mn: H8/300 Options. (line 20)
- * mn-flash: AVR Options. (line 211)
- * mnan=2008: MIPS Options. (line 319)
- * mnan=legacy: MIPS Options. (line 319)
- * mneon-for-64bits: ARM Options. (line 767)
- * mnested-cond-exec: FRV Options. (line 230)
- * mnhwloop: Score Options. (line 15)
- * mno-16-bit: NDS32 Options. (line 54)
- * mno-4byte-functions: MCore Options. (line 27)
- * mno-8byte-align: V850 Options. (line 170)
- * mno-abicalls: MIPS Options. (line 191)
- * mno-abshi: PDP-11 Options. (line 58)
- * mno-ac0: PDP-11 Options. (line 20)
- * mno-address-space-conversion: SPU Options. (line 68)
- * mno-align-double: x86 Options. (line 502)
- * mno-align-int: M680x0 Options. (line 263)
- * mno-align-loops: M32R/D Options. (line 76)
- * mno-align-stringops: x86 Options. (line 1143)
- * mno-allow-string-insns: RX Options. (line 150)
- * mno-altivec: RS/6000 and PowerPC Options.
- (line 141)
- * mno-am33: MN10300 Options. (line 20)
- * mno-app-regs: SPARC Options. (line 10)
- * mno-app-regs <1>: V850 Options. (line 185)
- * mno-as100-syntax: RX Options. (line 76)
- * mno-atomic-updates: SPU Options. (line 83)
- * mno-auto-litpools: Xtensa Options. (line 60)
- * mno-avoid-indexed-addresses: PowerPC SPE Options.
- (line 216)
- * mno-avoid-indexed-addresses <1>: RS/6000 and PowerPC Options.
- (line 418)
- * mno-backchain: S/390 and zSeries Options.
- (line 35)
- * mno-base-addresses: MMIX Options. (line 53)
- * mno-bit-align: RS/6000 and PowerPC Options.
- (line 450)
- * mno-bitfield: M680x0 Options. (line 227)
- * mno-branch-likely: MIPS Options. (line 758)
- * mno-branch-predict: MMIX Options. (line 48)
- * mno-brcc: ARC Options. (line 441)
- * mno-bwx: DEC Alpha Options. (line 163)
- * mno-bypass-cache: Nios II Options. (line 103)
- * mno-cache-volatile: Nios II Options. (line 109)
- * mno-call-ms2sysv-xlogues: x86 Options. (line 983)
- * mno-callgraph-data: MCore Options. (line 31)
- * mno-cbcond: SPARC Options. (line 260)
- * mno-check-zero-division: MIPS Options. (line 546)
- * mno-cix: DEC Alpha Options. (line 163)
- * mno-clearbss: MicroBlaze Options. (line 16)
- * mno-cmov: NDS32 Options. (line 24)
- * mno-cmpb: RS/6000 and PowerPC Options.
- (line 27)
- * mno-cond-exec: ARC Options. (line 455)
- * mno-cond-exec <1>: FRV Options. (line 194)
- * mno-cond-move: FRV Options. (line 166)
- * mno-const-align: CRIS Options. (line 55)
- * mno-const16: Xtensa Options. (line 10)
- * mno-crt0: MN10300 Options. (line 43)
- * mno-crt0 <1>: Moxie Options. (line 18)
- * mno-crypto: RS/6000 and PowerPC Options.
- (line 215)
- * mno-csync-anomaly: Blackfin Options. (line 63)
- * mno-custom-INSN: Nios II Options. (line 139)
- * mno-data-align: CRIS Options. (line 55)
- * mno-debug: S/390 and zSeries Options.
- (line 144)
- * mno-default: x86 Options. (line 818)
- * mno-disable-callt: V850 Options. (line 92)
- * mno-div: M680x0 Options. (line 206)
- * mno-div <1>: MCore Options. (line 15)
- * mno-dlmzb: RS/6000 and PowerPC Options.
- (line 443)
- * mno-double: FRV Options. (line 52)
- * mno-dpfp-lrsr: ARC Options. (line 108)
- * mno-dsp: MIPS Options. (line 352)
- * mno-dspr2: MIPS Options. (line 358)
- * mno-dwarf2-asm: IA-64 Options. (line 94)
- * mno-dword: FRV Options. (line 44)
- * mno-eabi: PowerPC SPE Options.
- (line 467)
- * mno-eabi <1>: RS/6000 and PowerPC Options.
- (line 690)
- * mno-early-stop-bits: IA-64 Options. (line 100)
- * mno-eflags: FRV Options. (line 155)
- * mno-embedded-data: MIPS Options. (line 493)
- * mno-ep: V850 Options. (line 16)
- * mno-epsilon: MMIX Options. (line 15)
- * mno-eva: MIPS Options. (line 402)
- * mno-explicit-relocs: DEC Alpha Options. (line 176)
- * mno-explicit-relocs <1>: MIPS Options. (line 537)
- * mno-exr: H8/300 Options. (line 33)
- * mno-extern-sdata: MIPS Options. (line 456)
- * mno-fancy-math-387: x86 Options. (line 492)
- * mno-fast-sw-div: Nios II Options. (line 115)
- * mno-faster-structs: SPARC Options. (line 91)
- * mno-fix: DEC Alpha Options. (line 163)
- * mno-fix-24k: MIPS Options. (line 617)
- * mno-fix-cortex-a53-835769: AArch64 Options. (line 73)
- * mno-fix-cortex-a53-843419: AArch64 Options. (line 80)
- * mno-fix-r10000: MIPS Options. (line 639)
- * mno-fix-r4000: MIPS Options. (line 623)
- * mno-fix-r4400: MIPS Options. (line 633)
- * mno-flat: SPARC Options. (line 22)
- * mno-float: MIPS Options. (line 273)
- * mno-float128: PowerPC SPE Options.
- (line 97)
- * mno-float128 <1>: RS/6000 and PowerPC Options.
- (line 252)
- * mno-float128-hardware: RS/6000 and PowerPC Options.
- (line 274)
- * mno-float32: PDP-11 Options. (line 48)
- * mno-float64: PDP-11 Options. (line 52)
- * mno-flush-func: M32R/D Options. (line 98)
- * mno-flush-trap: M32R/D Options. (line 90)
- * mno-fmaf: SPARC Options. (line 267)
- * mno-fp-in-toc: PowerPC SPE Options.
- (line 122)
- * mno-fp-in-toc <1>: RS/6000 and PowerPC Options.
- (line 294)
- * mno-fp-regs: DEC Alpha Options. (line 25)
- * mno-fp-ret-in-387: x86 Options. (line 482)
- * mno-fprnd: RS/6000 and PowerPC Options.
- (line 27)
- * mno-fpu: SPARC Options. (line 39)
- * mno-fpu <1>: Visium Options. (line 24)
- * mno-fsca: SH Options. (line 365)
- * mno-fsmuld: SPARC Options. (line 274)
- * mno-fsrra: SH Options. (line 374)
- * mno-fused-madd: IA-64 Options. (line 88)
- * mno-fused-madd <1>: MIPS Options. (line 600)
- * mno-fused-madd <2>: PowerPC SPE Options.
- (line 225)
- * mno-fused-madd <3>: RS/6000 and PowerPC Options.
- (line 427)
- * mno-fused-madd <4>: S/390 and zSeries Options.
- (line 175)
- * mno-fused-madd <5>: SH Options. (line 356)
- * mno-fused-madd <6>: Xtensa Options. (line 19)
- * mno-gnu-as: IA-64 Options. (line 18)
- * mno-gnu-attribute: PowerPC SPE Options.
- (line 421)
- * mno-gnu-attribute <1>: RS/6000 and PowerPC Options.
- (line 644)
- * mno-gnu-ld: IA-64 Options. (line 23)
- * mno-gotplt: CRIS Options. (line 81)
- * mno-gpopt: MIPS Options. (line 478)
- * mno-gpopt <1>: Nios II Options. (line 16)
- * mno-hard-dfp: RS/6000 and PowerPC Options.
- (line 27)
- * mno-hard-dfp <1>: S/390 and zSeries Options.
- (line 20)
- * mno-hardlit: MCore Options. (line 10)
- * mno-htm: RS/6000 and PowerPC Options.
- (line 221)
- * mno-htm <1>: S/390 and zSeries Options.
- (line 104)
- * mno-hw-div: Nios II Options. (line 124)
- * mno-hw-mul: Nios II Options. (line 124)
- * mno-hw-mulx: Nios II Options. (line 124)
- * mno-id-shared-library: Blackfin Options. (line 85)
- * mno-ieee: SH Options. (line 165)
- * mno-ieee-fp: x86 Options. (line 459)
- * mno-imadd: MIPS Options. (line 593)
- * mno-inline-float-divide: IA-64 Options. (line 62)
- * mno-inline-int-divide: IA-64 Options. (line 73)
- * mno-inline-sqrt: IA-64 Options. (line 84)
- * mno-int16: PDP-11 Options. (line 44)
- * mno-int32: PDP-11 Options. (line 40)
- * mno-interlink-compressed: MIPS Options. (line 134)
- * mno-interlink-mips16: MIPS Options. (line 146)
- * mno-interrupts: AVR Options. (line 214)
- * mno-isel: PowerPC SPE Options.
- (line 79)
- * mno-isel <1>: RS/6000 and PowerPC Options.
- (line 195)
- * mno-jsr: RX Options. (line 169)
- * mno-knuthdiv: MMIX Options. (line 32)
- * mno-leaf-id-shared-library: Blackfin Options. (line 95)
- * mno-libfuncs: MMIX Options. (line 10)
- * mno-llsc: MIPS Options. (line 338)
- * mno-load-store-pairs: MIPS Options. (line 566)
- * mno-local-sdata: MIPS Options. (line 444)
- * mno-long-calls: ARM Options. (line 611)
- * mno-long-calls <1>: Blackfin Options. (line 118)
- * mno-long-calls <2>: HPPA Options. (line 136)
- * mno-long-calls <3>: MIPS Options. (line 579)
- * mno-long-calls <4>: V850 Options. (line 10)
- * mno-long-jumps: V850 Options. (line 108)
- * mno-longcall: PowerPC SPE Options.
- (line 538)
- * mno-longcall <1>: RS/6000 and PowerPC Options.
- (line 788)
- * mno-longcalls: Xtensa Options. (line 87)
- * mno-low-64k: Blackfin Options. (line 71)
- * mno-low-precision-recip-sqrt: AArch64 Options. (line 86)
- * mno-lra: SPARC Options. (line 111)
- * mno-lsim: FR30 Options. (line 14)
- * mno-lsim <1>: MCore Options. (line 46)
- * mno-mad: MIPS Options. (line 588)
- * mno-max: DEC Alpha Options. (line 163)
- * mno-mcount-ra-address: MIPS Options. (line 838)
- * mno-mcu: MIPS Options. (line 398)
- * mno-mdmx: MIPS Options. (line 375)
- * mno-media: FRV Options. (line 60)
- * mno-memcpy: MIPS Options. (line 573)
- * mno-mfcrf: PowerPC SPE Options.
- (line 11)
- * mno-mfcrf <1>: RS/6000 and PowerPC Options.
- (line 27)
- * mno-mfpgpr: RS/6000 and PowerPC Options.
- (line 27)
- * mno-millicode: ARC Options. (line 499)
- * mno-mips16: MIPS Options. (line 119)
- * mno-mips3d: MIPS Options. (line 381)
- * mno-mmicromips: MIPS Options. (line 386)
- * mno-mpy: ARC Options. (line 117)
- * mno-ms-bitfields: x86 Options. (line 1023)
- * mno-mt: MIPS Options. (line 394)
- * mno-mul-bug-workaround: CRIS Options. (line 32)
- * mno-muladd: FRV Options. (line 68)
- * mno-mulhw: RS/6000 and PowerPC Options.
- (line 436)
- * mno-mult-bug: MN10300 Options. (line 13)
- * mno-multi-cond-exec: FRV Options. (line 223)
- * mno-multiple: PowerPC SPE Options.
- (line 195)
- * mno-multiple <1>: RS/6000 and PowerPC Options.
- (line 397)
- * mno-mvcle: S/390 and zSeries Options.
- (line 138)
- * mno-nested-cond-exec: FRV Options. (line 237)
- * mno-odd-spreg: MIPS Options. (line 292)
- * mno-omit-leaf-frame-pointer: AArch64 Options. (line 56)
- * mno-optimize-membar: FRV Options. (line 249)
- * mno-opts: MeP Options. (line 93)
- * mno-pack: FRV Options. (line 151)
- * mno-packed-stack: S/390 and zSeries Options.
- (line 54)
- * mno-paired: RS/6000 and PowerPC Options.
- (line 204)
- * mno-paired-single: MIPS Options. (line 369)
- * mno-pc-relative-literal-loads: AArch64 Options. (line 203)
- * mno-perf-ext: NDS32 Options. (line 30)
- * mno-perf-ext <1>: NDS32 Options. (line 36)
- * mno-perf-ext <2>: NDS32 Options. (line 42)
- * mno-pic: IA-64 Options. (line 26)
- * mno-pid: RX Options. (line 117)
- * mno-plt: MIPS Options. (line 218)
- * mno-popc: SPARC Options. (line 281)
- * mno-popcntb: PowerPC SPE Options.
- (line 11)
- * mno-popcntb <1>: RS/6000 and PowerPC Options.
- (line 27)
- * mno-popcntd: RS/6000 and PowerPC Options.
- (line 27)
- * mno-postinc: Adapteva Epiphany Options.
- (line 109)
- * mno-postmodify: Adapteva Epiphany Options.
- (line 109)
- * mno-power8-fusion: RS/6000 and PowerPC Options.
- (line 227)
- * mno-power8-vector: RS/6000 and PowerPC Options.
- (line 233)
- * mno-powerpc-gfxopt: RS/6000 and PowerPC Options.
- (line 27)
- * mno-powerpc-gpopt: RS/6000 and PowerPC Options.
- (line 27)
- * mno-powerpc64: RS/6000 and PowerPC Options.
- (line 27)
- * mno-prolog-function: V850 Options. (line 23)
- * mno-prologue-epilogue: CRIS Options. (line 71)
- * mno-prototype: PowerPC SPE Options.
- (line 427)
- * mno-prototype <1>: RS/6000 and PowerPC Options.
- (line 650)
- * mno-push-args: x86 Options. (line 1000)
- * mno-quad-memory: RS/6000 and PowerPC Options.
- (line 240)
- * mno-quad-memory-atomic: RS/6000 and PowerPC Options.
- (line 246)
- * mno-readonly-in-sdata: RS/6000 and PowerPC Options.
- (line 742)
- * mno-red-zone: x86 Options. (line 1350)
- * mno-register-names: IA-64 Options. (line 37)
- * mno-regnames: PowerPC SPE Options.
- (line 532)
- * mno-regnames <1>: RS/6000 and PowerPC Options.
- (line 782)
- * mno-relax: V850 Options. (line 103)
- * mno-relax-immediate: MCore Options. (line 19)
- * mno-relocatable: PowerPC SPE Options.
- (line 239)
- * mno-relocatable <1>: RS/6000 and PowerPC Options.
- (line 466)
- * mno-relocatable-lib: PowerPC SPE Options.
- (line 250)
- * mno-relocatable-lib <1>: RS/6000 and PowerPC Options.
- (line 477)
- * mno-renesas: SH Options. (line 155)
- * mno-round-nearest: Adapteva Epiphany Options.
- (line 51)
- * mno-rtd: M680x0 Options. (line 258)
- * mno-save-mduc-in-interrupts: RL78 Options. (line 79)
- * mno-scc: FRV Options. (line 180)
- * mno-sched-ar-data-spec: IA-64 Options. (line 135)
- * mno-sched-ar-in-data-spec: IA-64 Options. (line 157)
- * mno-sched-br-data-spec: IA-64 Options. (line 128)
- * mno-sched-br-in-data-spec: IA-64 Options. (line 150)
- * mno-sched-control-spec: IA-64 Options. (line 142)
- * mno-sched-count-spec-in-critical-path: IA-64 Options. (line 185)
- * mno-sched-in-control-spec: IA-64 Options. (line 164)
- * mno-sched-prefer-non-control-spec-insns: IA-64 Options. (line 178)
- * mno-sched-prefer-non-data-spec-insns: IA-64 Options. (line 171)
- * mno-sched-prolog: ARM Options. (line 32)
- * mno-sdata: ARC Options. (line 419)
- * mno-sdata <1>: IA-64 Options. (line 42)
- * mno-sdata <2>: PowerPC SPE Options.
- (line 513)
- * mno-sdata <3>: RS/6000 and PowerPC Options.
- (line 736)
- * mno-sep-data: Blackfin Options. (line 113)
- * mno-serialize-volatile: Xtensa Options. (line 35)
- * mno-short: M680x0 Options. (line 222)
- * mno-side-effects: CRIS Options. (line 46)
- * mno-sim: RX Options. (line 71)
- * mno-single-exit: MMIX Options. (line 65)
- * mno-slow-bytes: MCore Options. (line 35)
- * mno-small-exec: S/390 and zSeries Options.
- (line 79)
- * mno-smartmips: MIPS Options. (line 365)
- * mno-soft-cmpsf: Adapteva Epiphany Options.
- (line 29)
- * mno-soft-float: DEC Alpha Options. (line 10)
- * mno-space-regs: HPPA Options. (line 45)
- * mno-spe: PowerPC SPE Options.
- (line 88)
- * mno-specld-anomaly: Blackfin Options. (line 53)
- * mno-split-addresses: MIPS Options. (line 531)
- * mno-stack-align: CRIS Options. (line 55)
- * mno-stack-bias: SPARC Options. (line 372)
- * mno-std-struct-return: SPARC Options. (line 102)
- * mno-strict-align: M680x0 Options. (line 283)
- * mno-strict-align <1>: PowerPC SPE Options.
- (line 234)
- * mno-strict-align <2>: RS/6000 and PowerPC Options.
- (line 461)
- * mno-subxc: SPARC Options. (line 288)
- * mno-sum-in-toc: PowerPC SPE Options.
- (line 122)
- * mno-sum-in-toc <1>: RS/6000 and PowerPC Options.
- (line 294)
- * mno-sym32: MIPS Options. (line 429)
- * mno-target-align: Xtensa Options. (line 74)
- * mno-text-section-literals: Xtensa Options. (line 47)
- * mno-tls-markers: PowerPC SPE Options.
- (line 557)
- * mno-tls-markers <1>: RS/6000 and PowerPC Options.
- (line 820)
- * mno-toc: PowerPC SPE Options.
- (line 259)
- * mno-toc <1>: RS/6000 and PowerPC Options.
- (line 486)
- * mno-toplevel-symbols: MMIX Options. (line 39)
- * mno-tpf-trace: S/390 and zSeries Options.
- (line 169)
- * mno-unaligned-access: ARM Options. (line 754)
- * mno-unaligned-doubles: SPARC Options. (line 73)
- * mno-uninit-const-in-rodata: MIPS Options. (line 501)
- * mno-update: PowerPC SPE Options.
- (line 206)
- * mno-update <1>: RS/6000 and PowerPC Options.
- (line 408)
- * mno-user-mode: SPARC Options. (line 85)
- * mno-usermode: SH Options. (line 274)
- * mno-v3push: NDS32 Options. (line 48)
- * mno-v8plus: SPARC Options. (line 214)
- * mno-vect-double: Adapteva Epiphany Options.
- (line 115)
- * mno-virt: MIPS Options. (line 406)
- * mno-vis: SPARC Options. (line 221)
- * mno-vis2: SPARC Options. (line 227)
- * mno-vis3: SPARC Options. (line 235)
- * mno-vis4: SPARC Options. (line 243)
- * mno-vis4b: SPARC Options. (line 251)
- * mno-vliw-branch: FRV Options. (line 208)
- * mno-volatile-asm-stop: IA-64 Options. (line 32)
- * mno-volatile-cache: ARC Options. (line 428)
- * mno-vrsave: RS/6000 and PowerPC Options.
- (line 181)
- * mno-vsx: RS/6000 and PowerPC Options.
- (line 209)
- * mno-vx: S/390 and zSeries Options.
- (line 112)
- * mno-warn-mcu: MSP430 Options. (line 35)
- * mno-warn-multiple-fast-interrupts: RX Options. (line 143)
- * mno-wide-bitfields: MCore Options. (line 23)
- * mno-xgot: M680x0 Options. (line 315)
- * mno-xgot <1>: MIPS Options. (line 228)
- * mno-xl-compat: PowerPC SPE Options.
- (line 152)
- * mno-xl-compat <1>: RS/6000 and PowerPC Options.
- (line 329)
- * mno-xpa: MIPS Options. (line 410)
- * mno-zdcbranch: SH Options. (line 341)
- * mno-zero-extend: MMIX Options. (line 26)
- * mno-zvector: S/390 and zSeries Options.
- (line 123)
- * mnobitfield: M680x0 Options. (line 227)
- * mnodiv: FT32 Options. (line 20)
- * mnoliw: MN10300 Options. (line 59)
- * mnomacsave: SH Options. (line 160)
- * mnop-fun-dllimport: x86 Windows Options.
- (line 22)
- * mnop-mcount: x86 Options. (line 1229)
- * mnopm: FT32 Options. (line 29)
- * mnops: Adapteva Epiphany Options.
- (line 26)
- * mnorm: ARC Options. (line 128)
- * mnosetlb: MN10300 Options. (line 69)
- * mnosplit-lohi: Adapteva Epiphany Options.
- (line 109)
- * modd-spreg: MIPS Options. (line 292)
- * momit-leaf-frame-pointer: AArch64 Options. (line 56)
- * momit-leaf-frame-pointer <1>: Blackfin Options. (line 43)
- * momit-leaf-frame-pointer <2>: x86 Options. (line 1193)
- * mone-byte-bool: Darwin Options. (line 90)
- * moptimize: Nvidia PTX Options. (line 17)
- * moptimize-membar: FRV Options. (line 244)
- * moverride: AArch64 Options. (line 190)
- * MP: Preprocessor Options.
- (line 132)
- * mpa-risc-1-0: HPPA Options. (line 19)
- * mpa-risc-1-1: HPPA Options. (line 19)
- * mpa-risc-2-0: HPPA Options. (line 19)
- * mpack: FRV Options. (line 147)
- * mpacked-stack: S/390 and zSeries Options.
- (line 54)
- * mpadstruct: SH Options. (line 189)
- * mpaired: RS/6000 and PowerPC Options.
- (line 204)
- * mpaired-single: MIPS Options. (line 369)
- * mpc-relative-literal-loads: AArch64 Options. (line 203)
- * mpc32: x86 Options. (line 627)
- * mpc64: x86 Options. (line 627)
- * mpc80: x86 Options. (line 627)
- * mpclmul: x86 Options. (line 725)
- * mpconfig: x86 Options. (line 732)
- * mpcrel: M680x0 Options. (line 275)
- * mpdebug: CRIS Options. (line 36)
- * mpe: RS/6000 and PowerPC Options.
- (line 348)
- * mpe-aligned-commons: x86 Windows Options.
- (line 59)
- * mperf-ext: NDS32 Options. (line 27)
- * mperf-ext <1>: NDS32 Options. (line 33)
- * mperf-ext <2>: NDS32 Options. (line 39)
- * mpic-data-is-text-relative: ARM Options. (line 648)
- * mpic-register: ARM Options. (line 641)
- * mpid: RX Options. (line 117)
- * mpku: x86 Options. (line 761)
- * mplt: MIPS Options. (line 218)
- * mpointer-size=SIZE: VMS Options. (line 20)
- * mpointers-to-nested-functions: PowerPC SPE Options.
- (line 632)
- * mpointers-to-nested-functions <1>: RS/6000 and PowerPC Options.
- (line 921)
- * mpoke-function-name: ARM Options. (line 656)
- * mpopc: SPARC Options. (line 281)
- * mpopcnt: x86 Options. (line 744)
- * mpopcntb: PowerPC SPE Options.
- (line 11)
- * mpopcntb <1>: RS/6000 and PowerPC Options.
- (line 27)
- * mpopcntd: RS/6000 and PowerPC Options.
- (line 27)
- * mportable-runtime: HPPA Options. (line 71)
- * mpower8-fusion: RS/6000 and PowerPC Options.
- (line 227)
- * mpower8-vector: RS/6000 and PowerPC Options.
- (line 233)
- * mpowerpc-gfxopt: RS/6000 and PowerPC Options.
- (line 27)
- * mpowerpc-gpopt: RS/6000 and PowerPC Options.
- (line 27)
- * mpowerpc64: RS/6000 and PowerPC Options.
- (line 27)
- * mprefer-avx128: x86 Options. (line 842)
- * mprefer-short-insn-regs: Adapteva Epiphany Options.
- (line 13)
- * mprefer-vector-width: x86 Options. (line 846)
- * mprefergot: SH Options. (line 268)
- * mpreferred-stack-boundary: RISC-V Options. (line 73)
- * mpreferred-stack-boundary <1>: x86 Options. (line 657)
- * mprefetchwt1: x86 Options. (line 737)
- * mpretend-cmove: SH Options. (line 383)
- * mprfchw: x86 Options. (line 735)
- * mprint-tune-info: ARM Options. (line 790)
- * mprioritize-restricted-insns: PowerPC SPE Options.
- (line 288)
- * mprioritize-restricted-insns <1>: RS/6000 and PowerPC Options.
- (line 515)
- * mprolog-function: V850 Options. (line 23)
- * mprologue-epilogue: CRIS Options. (line 71)
- * mprototype: PowerPC SPE Options.
- (line 427)
- * mprototype <1>: RS/6000 and PowerPC Options.
- (line 650)
- * mpure-code: ARM Options. (line 800)
- * mpush-args: x86 Options. (line 1000)
- * MQ: Preprocessor Options.
- (line 159)
- * mq-class: ARC Options. (line 513)
- * mquad-memory: RS/6000 and PowerPC Options.
- (line 240)
- * mquad-memory-atomic: RS/6000 and PowerPC Options.
- (line 246)
- * mr0rel-sec: Nios II Options. (line 76)
- * mr10k-cache-barrier: MIPS Options. (line 680)
- * mRcq: ARC Options. (line 517)
- * mRcw: ARC Options. (line 521)
- * mrdpid: x86 Options. (line 736)
- * mrdrnd: x86 Options. (line 729)
- * mrdseed: x86 Options. (line 738)
- * mreadonly-in-sdata: RS/6000 and PowerPC Options.
- (line 742)
- * mrecip: PowerPC SPE Options.
- (line 565)
- * mrecip <1>: RS/6000 and PowerPC Options.
- (line 828)
- * mrecip <2>: x86 Options. (line 896)
- * mrecip-precision: PowerPC SPE Options.
- (line 622)
- * mrecip-precision <1>: RS/6000 and PowerPC Options.
- (line 885)
- * mrecip=opt: PowerPC SPE Options.
- (line 578)
- * mrecip=opt <1>: RS/6000 and PowerPC Options.
- (line 841)
- * mrecip=opt <2>: x86 Options. (line 918)
- * mrecord-mcount: x86 Options. (line 1223)
- * mreduced-regs: NDS32 Options. (line 15)
- * mregister-names: IA-64 Options. (line 37)
- * mregnames: PowerPC SPE Options.
- (line 532)
- * mregnames <1>: RS/6000 and PowerPC Options.
- (line 782)
- * mregparm: x86 Options. (line 594)
- * mrelax: AVR Options. (line 218)
- * mrelax <1>: H8/300 Options. (line 9)
- * mrelax <2>: MN10300 Options. (line 46)
- * mrelax <3>: MSP430 Options. (line 58)
- * mrelax <4>: NDS32 Options. (line 84)
- * mrelax <5>: RX Options. (line 95)
- * mrelax <6>: SH Options. (line 137)
- * mrelax <7>: V850 Options. (line 103)
- * mrelax-immediate: MCore Options. (line 19)
- * mrelax-pic-calls: MIPS Options. (line 825)
- * mrelocatable: PowerPC SPE Options.
- (line 239)
- * mrelocatable <1>: RS/6000 and PowerPC Options.
- (line 466)
- * mrelocatable-lib: PowerPC SPE Options.
- (line 250)
- * mrelocatable-lib <1>: RS/6000 and PowerPC Options.
- (line 477)
- * mrenesas: SH Options. (line 152)
- * mrepeat: MeP Options. (line 96)
- * mrestrict-it: ARM Options. (line 784)
- * mreturn-pointer-on-d0: MN10300 Options. (line 36)
- * mrf16: ARC Options. (line 324)
- * mrgf-banked-regs: ARC Options. (line 304)
- * mrh850-abi: V850 Options. (line 127)
- * mrl78: RL78 Options. (line 62)
- * mrmw: AVR Options. (line 232)
- * mrtd: M680x0 Options. (line 236)
- * mrtd <1>: x86 Options. (line 570)
- * mrtd <2>: x86 Function Attributes.
- (line 9)
- * mrtm: x86 Options. (line 755)
- * mrtp: VxWorks Options. (line 11)
- * mrtsc: ARC Options. (line 355)
- * ms: H8/300 Options. (line 17)
- * ms <1>: MeP Options. (line 100)
- * ms2600: H8/300 Options. (line 24)
- * msafe-dma: SPU Options. (line 18)
- * msafe-hints: SPU Options. (line 112)
- * msahf: x86 Options. (line 872)
- * msatur: MeP Options. (line 105)
- * msave-acc-in-interrupts: RX Options. (line 109)
- * msave-mduc-in-interrupts: RL78 Options. (line 79)
- * msave-restore: RISC-V Options. (line 87)
- * msave-toc-indirect: PowerPC SPE Options.
- (line 644)
- * msave-toc-indirect <1>: RS/6000 and PowerPC Options.
- (line 933)
- * mscc: FRV Options. (line 173)
- * msched-ar-data-spec: IA-64 Options. (line 135)
- * msched-ar-in-data-spec: IA-64 Options. (line 157)
- * msched-br-data-spec: IA-64 Options. (line 128)
- * msched-br-in-data-spec: IA-64 Options. (line 150)
- * msched-control-spec: IA-64 Options. (line 142)
- * msched-costly-dep: PowerPC SPE Options.
- (line 295)
- * msched-costly-dep <1>: RS/6000 and PowerPC Options.
- (line 522)
- * msched-count-spec-in-critical-path: IA-64 Options. (line 185)
- * msched-fp-mem-deps-zero-cost: IA-64 Options. (line 202)
- * msched-in-control-spec: IA-64 Options. (line 164)
- * msched-max-memory-insns: IA-64 Options. (line 211)
- * msched-max-memory-insns-hard-limit: IA-64 Options. (line 217)
- * msched-prefer-non-control-spec-insns: IA-64 Options. (line 178)
- * msched-prefer-non-data-spec-insns: IA-64 Options. (line 171)
- * msched-spec-ldc: IA-64 Options. (line 191)
- * msched-spec-ldc <1>: IA-64 Options. (line 194)
- * msched-stop-bits-after-every-cycle: IA-64 Options. (line 198)
- * mschedule: HPPA Options. (line 78)
- * mscore5: Score Options. (line 25)
- * mscore5u: Score Options. (line 28)
- * mscore7: Score Options. (line 31)
- * mscore7d: Score Options. (line 35)
- * msda: V850 Options. (line 40)
- * msdata: IA-64 Options. (line 42)
- * msdata <1>: PowerPC SPE Options.
- (line 500)
- * msdata <2>: RS/6000 and PowerPC Options.
- (line 723)
- * msdata=all: C6X Options. (line 30)
- * msdata=data: PowerPC SPE Options.
- (line 505)
- * msdata=data <1>: RS/6000 and PowerPC Options.
- (line 728)
- * msdata=default: C6X Options. (line 22)
- * msdata=default <1>: PowerPC SPE Options.
- (line 500)
- * msdata=default <2>: RS/6000 and PowerPC Options.
- (line 723)
- * msdata=eabi: PowerPC SPE Options.
- (line 481)
- * msdata=eabi <1>: RS/6000 and PowerPC Options.
- (line 704)
- * msdata=none: C6X Options. (line 35)
- * msdata=none <1>: M32R/D Options. (line 40)
- * msdata=none <2>: PowerPC SPE Options.
- (line 513)
- * msdata=none <3>: RS/6000 and PowerPC Options.
- (line 736)
- * msdata=sdata: M32R/D Options. (line 49)
- * msdata=sysv: PowerPC SPE Options.
- (line 491)
- * msdata=sysv <1>: RS/6000 and PowerPC Options.
- (line 714)
- * msdata=use: M32R/D Options. (line 53)
- * msdram: Blackfin Options. (line 169)
- * msdram <1>: MeP Options. (line 110)
- * msecure-plt: PowerPC SPE Options.
- (line 68)
- * msecure-plt <1>: RS/6000 and PowerPC Options.
- (line 184)
- * msel-sched-dont-check-control-spec: IA-64 Options. (line 207)
- * msep-data: Blackfin Options. (line 107)
- * mserialize-volatile: Xtensa Options. (line 35)
- * msetlb: MN10300 Options. (line 64)
- * msgx: x86 Options. (line 739)
- * msha: x86 Options. (line 723)
- * mshared-library-id: Blackfin Options. (line 100)
- * mshort: M680x0 Options. (line 216)
- * mshort-calls: AVR Options. (line 236)
- * mshstk: x86 Options. (line 886)
- * msign-extend-enabled: LM32 Options. (line 18)
- * msign-return-address: AArch64 Options. (line 209)
- * msilicon-errata: MSP430 Options. (line 102)
- * msilicon-errata-warn: MSP430 Options. (line 106)
- * msim: Blackfin Options. (line 36)
- * msim <1>: C6X Options. (line 19)
- * msim <2>: CR16 Options. (line 18)
- * msim <3>: FT32 Options. (line 9)
- * msim <4>: M32C Options. (line 13)
- * msim <5>: MeP Options. (line 114)
- * msim <6>: MSP430 Options. (line 47)
- * msim <7>: PowerPC SPE Options.
- (line 437)
- * msim <8>: RL78 Options. (line 7)
- * msim <9>: RS/6000 and PowerPC Options.
- (line 660)
- * msim <10>: RX Options. (line 71)
- * msim <11>: Visium Options. (line 13)
- * msim <12>: Xstormy16 Options. (line 9)
- * msimd: ARC Options. (line 141)
- * msimnovec: MeP Options. (line 117)
- * msimple-fpu: RS/6000 and PowerPC Options.
- (line 381)
- * msingle-exit: MMIX Options. (line 65)
- * msingle-float: MIPS Options. (line 283)
- * msingle-float <1>: PowerPC SPE Options.
- (line 190)
- * msingle-float <2>: RS/6000 and PowerPC Options.
- (line 377)
- * msingle-pic-base: ARM Options. (line 635)
- * msingle-pic-base <1>: PowerPC SPE Options.
- (line 282)
- * msingle-pic-base <2>: RS/6000 and PowerPC Options.
- (line 509)
- * msio: HPPA Options. (line 105)
- * msize-level: ARC Options. (line 525)
- * mskip-rax-setup: x86 Options. (line 1236)
- * mslow-bytes: MCore Options. (line 35)
- * mslow-flash-data: ARM Options. (line 772)
- * msmall: MSP430 Options. (line 55)
- * msmall-data: DEC Alpha Options. (line 187)
- * msmall-data-limit: RISC-V Options. (line 82)
- * msmall-data-limit <1>: RX Options. (line 47)
- * msmall-divides: MicroBlaze Options. (line 38)
- * msmall-exec: S/390 and zSeries Options.
- (line 79)
- * msmall-mem: SPU Options. (line 38)
- * msmall-model: FR30 Options. (line 9)
- * msmall-text: DEC Alpha Options. (line 205)
- * msmall16: Adapteva Epiphany Options.
- (line 66)
- * msmallc: Nios II Options. (line 310)
- * msmartmips: MIPS Options. (line 365)
- * msoft-float: ARC Options. (line 145)
- * msoft-float <1>: DEC Alpha Options. (line 10)
- * msoft-float <2>: FRV Options. (line 27)
- * msoft-float <3>: HPPA Options. (line 91)
- * msoft-float <4>: M680x0 Options. (line 200)
- * msoft-float <5>: MicroBlaze Options. (line 7)
- * msoft-float <6>: MIPS Options. (line 269)
- * msoft-float <7>: PDP-11 Options. (line 13)
- * msoft-float <8>: PowerPC SPE Options.
- (line 184)
- * msoft-float <9>: RS/6000 and PowerPC Options.
- (line 371)
- * msoft-float <10>: S/390 and zSeries Options.
- (line 11)
- * msoft-float <11>: SPARC Options. (line 39)
- * msoft-float <12>: V850 Options. (line 113)
- * msoft-float <13>: Visium Options. (line 24)
- * msoft-float <14>: x86 Options. (line 469)
- * msoft-quad-float: SPARC Options. (line 59)
- * msoft-stack: Nvidia PTX Options. (line 21)
- * msp8: AVR Options. (line 243)
- * mspace: V850 Options. (line 30)
- * mspe: PowerPC SPE Options.
- (line 88)
- * mspecld-anomaly: Blackfin Options. (line 48)
- * mspfp: ARC Options. (line 132)
- * mspfp-compact: ARC Options. (line 133)
- * mspfp-fast: ARC Options. (line 137)
- * mspfp_compact: ARC Options. (line 626)
- * mspfp_fast: ARC Options. (line 629)
- * msplit-addresses: MIPS Options. (line 531)
- * msplit-vecmove-early: Adapteva Epiphany Options.
- (line 126)
- * msse: x86 Options. (line 704)
- * msse2: x86 Options. (line 705)
- * msse2avx: x86 Options. (line 1211)
- * msse3: x86 Options. (line 706)
- * msse4: x86 Options. (line 708)
- * msse4.1: x86 Options. (line 710)
- * msse4.2: x86 Options. (line 711)
- * msse4a: x86 Options. (line 709)
- * msseregparm: x86 Options. (line 605)
- * mssse3: x86 Options. (line 707)
- * mstack-align: CRIS Options. (line 55)
- * mstack-bias: SPARC Options. (line 372)
- * mstack-check-l1: Blackfin Options. (line 74)
- * mstack-guard: S/390 and zSeries Options.
- (line 194)
- * mstack-increment: MCore Options. (line 50)
- * mstack-offset: Adapteva Epiphany Options.
- (line 37)
- * mstack-protector-guard: PowerPC SPE Options.
- (line 670)
- * mstack-protector-guard <1>: RS/6000 and PowerPC Options.
- (line 959)
- * mstack-protector-guard <2>: x86 Options. (line 1262)
- * mstack-protector-guard-offset: PowerPC SPE Options.
- (line 670)
- * mstack-protector-guard-offset <1>: RS/6000 and PowerPC Options.
- (line 959)
- * mstack-protector-guard-offset <2>: x86 Options. (line 1262)
- * mstack-protector-guard-reg: PowerPC SPE Options.
- (line 670)
- * mstack-protector-guard-reg <1>: RS/6000 and PowerPC Options.
- (line 959)
- * mstack-protector-guard-reg <2>: x86 Options. (line 1262)
- * mstack-protector-guard-symbol: PowerPC SPE Options.
- (line 670)
- * mstack-protector-guard-symbol <1>: RS/6000 and PowerPC Options.
- (line 959)
- * mstack-size: S/390 and zSeries Options.
- (line 194)
- * mstackrealign: x86 Options. (line 648)
- * mstd-struct-return: SPARC Options. (line 102)
- * mstdmain: SPU Options. (line 44)
- * mstrict-align: AArch64 Options. (line 50)
- * mstrict-align <1>: M680x0 Options. (line 283)
- * mstrict-align <2>: PowerPC SPE Options.
- (line 234)
- * mstrict-align <3>: RISC-V Options. (line 93)
- * mstrict-align <4>: RS/6000 and PowerPC Options.
- (line 461)
- * mstrict-X: AVR Options. (line 256)
- * mstring-compare-inline-limit: RS/6000 and PowerPC Options.
- (line 766)
- * mstringop-strategy=ALG: x86 Options. (line 1159)
- * mstructure-size-boundary: ARM Options. (line 590)
- * msubxc: SPARC Options. (line 288)
- * msv-mode: Visium Options. (line 52)
- * msve-vector-bits: AArch64 Options. (line 216)
- * msvr4-struct-return: PowerPC SPE Options.
- (line 375)
- * msvr4-struct-return <1>: RS/6000 and PowerPC Options.
- (line 606)
- * mswap: ARC Options. (line 152)
- * mswape: ARC Options. (line 360)
- * msym32: MIPS Options. (line 429)
- * msynci: MIPS Options. (line 811)
- * msys-crt0: Nios II Options. (line 314)
- * msys-lib: Nios II Options. (line 318)
- * MT: Preprocessor Options.
- (line 144)
- * mtarget-align: Xtensa Options. (line 74)
- * mtas: SH Options. (line 259)
- * mtbm: x86 Options. (line 757)
- * mtda: V850 Options. (line 34)
- * mtelephony: ARC Options. (line 365)
- * mtext-section-literals: Xtensa Options. (line 47)
- * mtf: MeP Options. (line 121)
- * mthread: x86 Windows Options.
- (line 26)
- * mthreads: x86 Options. (line 1015)
- * mthumb: ARM Options. (line 678)
- * mthumb-interwork: ARM Options. (line 24)
- * mtiny-stack: AVR Options. (line 270)
- * mtiny=: MeP Options. (line 125)
- * mTLS: FRV Options. (line 90)
- * mtls: FRV Options. (line 94)
- * mtls-dialect: ARM Options. (line 730)
- * mtls-dialect <1>: x86 Options. (line 993)
- * mtls-dialect=desc: AArch64 Options. (line 60)
- * mtls-dialect=traditional: AArch64 Options. (line 64)
- * mtls-direct-seg-refs: x86 Options. (line 1201)
- * mtls-markers: PowerPC SPE Options.
- (line 557)
- * mtls-markers <1>: RS/6000 and PowerPC Options.
- (line 820)
- * mtls-size: AArch64 Options. (line 68)
- * mtls-size <1>: IA-64 Options. (line 112)
- * mtoc: PowerPC SPE Options.
- (line 259)
- * mtoc <1>: RS/6000 and PowerPC Options.
- (line 486)
- * mtomcat-stats: FRV Options. (line 254)
- * mtoplevel-symbols: MMIX Options. (line 39)
- * mtp: ARM Options. (line 722)
- * mtp-regno: ARC Options. (line 170)
- * mtpcs-frame: ARM Options. (line 695)
- * mtpcs-leaf-frame: ARM Options. (line 701)
- * mtpf-trace: S/390 and zSeries Options.
- (line 169)
- * mtraceback: RS/6000 and PowerPC Options.
- (line 599)
- * mtrap-precision: DEC Alpha Options. (line 109)
- * mtune: AArch64 Options. (line 147)
- * mtune <1>: ARC Options. (line 546)
- * mtune <2>: ARC Options. (line 632)
- * mtune <3>: ARM Options. (line 427)
- * mtune <4>: CRIS Options. (line 17)
- * mtune <5>: DEC Alpha Options. (line 259)
- * mtune <6>: IA-64 Options. (line 116)
- * mtune <7>: M680x0 Options. (line 68)
- * mtune <8>: MIPS Options. (line 65)
- * mtune <9>: MN10300 Options. (line 30)
- * mtune <10>: PowerPC SPE Options.
- (line 60)
- * mtune <11>: RISC-V Options. (line 59)
- * mtune <12>: RS/6000 and PowerPC Options.
- (line 118)
- * mtune <13>: S/390 and zSeries Options.
- (line 162)
- * mtune <14>: SPARC Options. (line 199)
- * mtune <15>: Visium Options. (line 47)
- * mtune <16>: x86 Options. (line 343)
- * mtune-ctrl=FEATURE-LIST: x86 Options. (line 809)
- * muclibc: GNU/Linux Options. (line 14)
- * muls: Score Options. (line 18)
- * multcost: ARC Options. (line 637)
- * multcost=NUMBER: SH Options. (line 281)
- * multilib-library-pic: FRV Options. (line 110)
- * multiply-enabled: LM32 Options. (line 15)
- * multiply_defined: Darwin Options. (line 196)
- * multiply_defined_unused: Darwin Options. (line 196)
- * multi_module: Darwin Options. (line 196)
- * munalign-prob-threshold: ARC Options. (line 574)
- * munaligned-access: ARM Options. (line 754)
- * munaligned-doubles: SPARC Options. (line 73)
- * municode: x86 Windows Options.
- (line 30)
- * muniform-simt: Nvidia PTX Options. (line 33)
- * muninit-const-in-rodata: MIPS Options. (line 501)
- * munix: VAX Options. (line 9)
- * munix-asm: PDP-11 Options. (line 68)
- * munsafe-dma: SPU Options. (line 18)
- * mupdate: PowerPC SPE Options.
- (line 206)
- * mupdate <1>: RS/6000 and PowerPC Options.
- (line 408)
- * muser-enabled: LM32 Options. (line 21)
- * muser-mode: SPARC Options. (line 85)
- * muser-mode <1>: Visium Options. (line 57)
- * musermode: SH Options. (line 274)
- * mv3push: NDS32 Options. (line 45)
- * mv850: V850 Options. (line 49)
- * mv850e: V850 Options. (line 79)
- * mv850e1: V850 Options. (line 70)
- * mv850e2: V850 Options. (line 66)
- * mv850e2v3: V850 Options. (line 61)
- * mv850e2v4: V850 Options. (line 57)
- * mv850e3v5: V850 Options. (line 52)
- * mv850es: V850 Options. (line 75)
- * mv8plus: SPARC Options. (line 214)
- * mvaes: x86 Options. (line 764)
- * mveclibabi: RS/6000 and PowerPC Options.
- (line 894)
- * mveclibabi <1>: x86 Options. (line 947)
- * mvect8-ret-in-mem: x86 Options. (line 615)
- * mverbose-cost-dump: AArch64 Options. (line 198)
- * mverbose-cost-dump <1>: ARM Options. (line 796)
- * mvirt: MIPS Options. (line 406)
- * mvis: SPARC Options. (line 221)
- * mvis2: SPARC Options. (line 227)
- * mvis3: SPARC Options. (line 235)
- * mvis4: SPARC Options. (line 243)
- * mvis4b: SPARC Options. (line 251)
- * mvliw-branch: FRV Options. (line 201)
- * mvms-return-codes: VMS Options. (line 9)
- * mvolatile-asm-stop: IA-64 Options. (line 32)
- * mvolatile-cache: ARC Options. (line 424)
- * mvpclmulqdq: x86 Options. (line 765)
- * mvr4130-align: MIPS Options. (line 800)
- * mvrsave: RS/6000 and PowerPC Options.
- (line 181)
- * mvsx: RS/6000 and PowerPC Options.
- (line 209)
- * mvx: S/390 and zSeries Options.
- (line 112)
- * mvxworks: PowerPC SPE Options.
- (line 458)
- * mvxworks <1>: RS/6000 and PowerPC Options.
- (line 681)
- * mvzeroupper: x86 Options. (line 836)
- * mwarn-dynamicstack: S/390 and zSeries Options.
- (line 188)
- * mwarn-framesize: S/390 and zSeries Options.
- (line 180)
- * mwarn-mcu: MSP430 Options. (line 35)
- * mwarn-multiple-fast-interrupts: RX Options. (line 143)
- * mwarn-reloc: SPU Options. (line 10)
- * mwbnoinvd: x86 Options. (line 733)
- * mwide-bitfields: MCore Options. (line 23)
- * mwin32: x86 Windows Options.
- (line 35)
- * mwindows: x86 Windows Options.
- (line 41)
- * mword-relocations: ARM Options. (line 741)
- * mx32: x86 Options. (line 1330)
- * mxgot: M680x0 Options. (line 315)
- * mxgot <1>: MIPS Options. (line 228)
- * mxilinx-fpu: RS/6000 and PowerPC Options.
- (line 392)
- * mxl-barrel-shift: MicroBlaze Options. (line 32)
- * mxl-compat: PowerPC SPE Options.
- (line 152)
- * mxl-compat <1>: RS/6000 and PowerPC Options.
- (line 329)
- * mxl-float-convert: MicroBlaze Options. (line 50)
- * mxl-float-sqrt: MicroBlaze Options. (line 53)
- * mxl-gp-opt: MicroBlaze Options. (line 44)
- * mxl-multiply-high: MicroBlaze Options. (line 47)
- * mxl-pattern-compare: MicroBlaze Options. (line 35)
- * mxl-reorder: MicroBlaze Options. (line 62)
- * mxl-soft-div: MicroBlaze Options. (line 29)
- * mxl-soft-mul: MicroBlaze Options. (line 26)
- * mxl-stack-check: MicroBlaze Options. (line 41)
- * mxop: x86 Options. (line 740)
- * mxpa: MIPS Options. (line 410)
- * mxsave: x86 Options. (line 751)
- * mxsavec: x86 Options. (line 753)
- * mxsaveopt: x86 Options. (line 752)
- * mxsaves: x86 Options. (line 754)
- * mxy: ARC Options. (line 370)
- * myellowknife: PowerPC SPE Options.
- (line 453)
- * myellowknife <1>: RS/6000 and PowerPC Options.
- (line 676)
- * mzarch: S/390 and zSeries Options.
- (line 94)
- * mzda: V850 Options. (line 45)
- * mzdcbranch: SH Options. (line 341)
- * mzero-extend: MMIX Options. (line 26)
- * mzvector: S/390 and zSeries Options.
- (line 123)
- * no-80387: x86 Options. (line 469)
- * no-canonical-prefixes: Directory Options. (line 164)
- * no-integrated-cpp: Preprocessor Options.
- (line 476)
- * no-pie: Link Options. (line 111)
- * no-sysroot-suffix: Directory Options. (line 183)
- * noall_load: Darwin Options. (line 196)
- * nocpp: MIPS Options. (line 612)
- * nodefaultlibs: Link Options. (line 68)
- * nodevicelib: AVR Options. (line 277)
- * nofixprebinding: Darwin Options. (line 196)
- * nofpu: RX Options. (line 17)
- * nolibdld: HPPA Options. (line 188)
- * nomultidefs: Darwin Options. (line 196)
- * non-static: VxWorks Options. (line 16)
- * noprebind: Darwin Options. (line 196)
- * noseglinkedit: Darwin Options. (line 196)
- * nostartfiles: Link Options. (line 63)
- * nostdinc: Directory Options. (line 102)
- * nostdinc++: C++ Dialect Options.
- (line 447)
- * nostdinc++ <1>: Directory Options. (line 108)
- * nostdlib: Link Options. (line 80)
- * no_dead_strip_inits_and_terms: Darwin Options. (line 196)
- * o: Overall Options. (line 187)
- * O: Optimize Options. (line 39)
- * O0: Optimize Options. (line 160)
- * O1: Optimize Options. (line 39)
- * O2: Optimize Options. (line 92)
- * O3: Optimize Options. (line 141)
- * Ofast: Optimize Options. (line 177)
- * Og: Optimize Options. (line 184)
- * Os: Optimize Options. (line 164)
- * p: Instrumentation Options.
- (line 19)
- * P: Preprocessor Options.
- (line 361)
- * pagezero_size: Darwin Options. (line 196)
- * param: Optimize Options. (line 2400)
- * pass-exit-codes: Overall Options. (line 326)
- * pedantic: Standards. (line 13)
- * pedantic <1>: Warning Options. (line 80)
- * pedantic <2>: C Extensions. (line 6)
- * pedantic <3>: Alternate Keywords. (line 30)
- * pedantic <4>: Warnings and Errors.
- (line 25)
- * pedantic-errors: Standards. (line 13)
- * pedantic-errors <1>: Warning Options. (line 121)
- * pedantic-errors <2>: Non-bugs. (line 216)
- * pedantic-errors <3>: Warnings and Errors.
- (line 25)
- * pg: Instrumentation Options.
- (line 25)
- * pie: Link Options. (line 105)
- * pipe: Overall Options. (line 334)
- * plt: RISC-V Options. (line 13)
- * prebind: Darwin Options. (line 196)
- * prebind_all_twolevel_modules: Darwin Options. (line 196)
- * print-file-name: Developer Options. (line 872)
- * print-libgcc-file-name: Developer Options. (line 906)
- * print-multi-directory: Developer Options. (line 878)
- * print-multi-lib: Developer Options. (line 883)
- * print-multi-os-directory: Developer Options. (line 890)
- * print-multiarch: Developer Options. (line 899)
- * print-objc-runtime-info: Objective-C and Objective-C++ Dialect Options.
- (line 216)
- * print-prog-name: Developer Options. (line 903)
- * print-search-dirs: Developer Options. (line 914)
- * print-sysroot: Developer Options. (line 927)
- * print-sysroot-headers-suffix: Developer Options. (line 934)
- * private_bundle: Darwin Options. (line 196)
- * pthread: Preprocessor Options.
- (line 70)
- * pthread <1>: Link Options. (line 122)
- * pthreads: Solaris 2 Options. (line 30)
- * Q: Developer Options. (line 778)
- * Qn: System V Options. (line 18)
- * Qy: System V Options. (line 14)
- * rdynamic: Link Options. (line 129)
- * read_only_relocs: Darwin Options. (line 196)
- * remap: Preprocessor Options.
- (line 392)
- * S: Overall Options. (line 170)
- * S <1>: Link Options. (line 20)
- * s: Link Options. (line 136)
- * save-temps: Developer Options. (line 653)
- * save-temps=obj: Developer Options. (line 679)
- * sectalign: Darwin Options. (line 196)
- * sectcreate: Darwin Options. (line 196)
- * sectobjectsymbols: Darwin Options. (line 196)
- * sectobjectsymbols <1>: Darwin Options. (line 196)
- * sectorder: Darwin Options. (line 196)
- * seg1addr: Darwin Options. (line 196)
- * segaddr: Darwin Options. (line 196)
- * seglinkedit: Darwin Options. (line 196)
- * segprot: Darwin Options. (line 196)
- * segs_read_only_addr: Darwin Options. (line 196)
- * segs_read_only_addr <1>: Darwin Options. (line 196)
- * segs_read_write_addr: Darwin Options. (line 196)
- * segs_read_write_addr <1>: Darwin Options. (line 196)
- * seg_addr_table: Darwin Options. (line 196)
- * seg_addr_table_filename: Darwin Options. (line 196)
- * shared: Link Options. (line 145)
- * shared-libgcc: Link Options. (line 153)
- * short-calls: Adapteva Epiphany Options.
- (line 61)
- * sim: CRIS Options. (line 95)
- * sim2: CRIS Options. (line 101)
- * single_module: Darwin Options. (line 196)
- * specs: Overall Options. (line 340)
- * static: Link Options. (line 140)
- * static <1>: Darwin Options. (line 196)
- * static <2>: HPPA Options. (line 192)
- * static-libasan: Link Options. (line 187)
- * static-libgcc: Link Options. (line 153)
- * static-liblsan: Link Options. (line 203)
- * static-libmpx: Link Options. (line 220)
- * static-libmpxwrappers: Link Options. (line 229)
- * static-libstdc++: Link Options. (line 239)
- * static-libtsan: Link Options. (line 195)
- * static-libubsan: Link Options. (line 211)
- * static-pie: Link Options. (line 114)
- * std: Standards. (line 13)
- * std <1>: C Dialect Options. (line 46)
- * std <2>: Other Builtins. (line 31)
- * std <3>: Non-bugs. (line 107)
- * sub_library: Darwin Options. (line 196)
- * sub_umbrella: Darwin Options. (line 196)
- * symbolic: Link Options. (line 250)
- * sysroot: Directory Options. (line 168)
- * T: Link Options. (line 256)
- * target-help: Overall Options. (line 219)
- * threads: HPPA Options. (line 205)
- * time: Developer Options. (line 694)
- * tno-android-cc: GNU/Linux Options. (line 36)
- * tno-android-ld: GNU/Linux Options. (line 40)
- * traditional: Preprocessor Options.
- (line 368)
- * traditional <1>: Incompatibilities. (line 6)
- * traditional-cpp: Preprocessor Options.
- (line 368)
- * trigraphs: Preprocessor Options.
- (line 378)
- * twolevel_namespace: Darwin Options. (line 196)
- * U: Preprocessor Options.
- (line 42)
- * u: Link Options. (line 288)
- * umbrella: Darwin Options. (line 196)
- * undef: Preprocessor Options.
- (line 66)
- * undefined: Darwin Options. (line 196)
- * unexported_symbols_list: Darwin Options. (line 196)
- * v: Overall Options. (line 198)
- * version: Overall Options. (line 323)
- * w: Warning Options. (line 25)
- * W: Warning Options. (line 201)
- * W <1>: Warning Options. (line 2404)
- * W <2>: Warning Options. (line 2506)
- * W <3>: Incompatibilities. (line 64)
- * Wa: Assembler Options. (line 9)
- * Wabi: C++ Dialect Options.
- (line 455)
- * Wabi-tag: C++ Dialect Options.
- (line 559)
- * Waddr-space-convert: AVR Options. (line 280)
- * Waddress: Warning Options. (line 2299)
- * Waggregate-return: Warning Options. (line 2335)
- * Waggressive-loop-optimizations: Warning Options. (line 2340)
- * Waligned-new: Warning Options. (line 1863)
- * Wall: Warning Options. (line 130)
- * Wall <1>: Standard Libraries. (line 6)
- * Walloc-zero: Warning Options. (line 1453)
- * Walloca: Warning Options. (line 1476)
- * Warray-bounds: Warning Options. (line 1539)
- * Wassign-intercept: Objective-C and Objective-C++ Dialect Options.
- (line 170)
- * Wattributes: Warning Options. (line 2345)
- * Wbad-function-cast: Warning Options. (line 1995)
- * Wbool-compare: Warning Options. (line 1560)
- * Wbool-operation: Warning Options. (line 1569)
- * Wbuiltin-declaration-mismatch: Warning Options. (line 2351)
- * Wbuiltin-macro-redefined: Warning Options. (line 2355)
- * Wc++-compat: Warning Options. (line 2015)
- * Wc++11-compat: Warning Options. (line 2020)
- * Wc++14-compat: Warning Options. (line 2026)
- * Wc++17-compat: Warning Options. (line 2030)
- * Wc90-c99-compat: Warning Options. (line 2000)
- * Wc99-c11-compat: Warning Options. (line 2007)
- * Wcast-align: Warning Options. (line 2050)
- * Wcast-align=strict: Warning Options. (line 2056)
- * Wcast-function-type: Warning Options. (line 2061)
- * Wcast-qual: Warning Options. (line 2034)
- * Wcatch-value: Warning Options. (line 2088)
- * Wchar-subscripts: Warning Options. (line 243)
- * Wchkp: Warning Options. (line 248)
- * Wclass-memaccess: C++ Dialect Options.
- (line 646)
- * Wclobbered: Warning Options. (line 2096)
- * Wcomment: Warning Options. (line 1937)
- * Wcomments: Warning Options. (line 1937)
- * Wconditionally-supported: Warning Options. (line 2100)
- * Wconversion: Warning Options. (line 2103)
- * Wconversion-null: Warning Options. (line 2121)
- * Wctor-dtor-privacy: C++ Dialect Options.
- (line 564)
- * Wdangling-else: Warning Options. (line 2142)
- * Wdate-time: Warning Options. (line 2176)
- * Wdeclaration-after-statement: Warning Options. (line 1766)
- * Wdelete-incomplete: Warning Options. (line 2181)
- * Wdelete-non-virtual-dtor: C++ Dialect Options.
- (line 571)
- * Wdeprecated: Warning Options. (line 2483)
- * Wdeprecated-declarations: Warning Options. (line 2487)
- * Wdisabled-optimization: Warning Options. (line 2711)
- * Wdiscarded-array-qualifiers: Warning Options. (line 1608)
- * Wdiscarded-qualifiers: Warning Options. (line 1602)
- * Wdiv-by-zero: Warning Options. (line 1626)
- * Wdouble-promotion: Warning Options. (line 271)
- * Wduplicate-decl-specifier: Warning Options. (line 289)
- * Wduplicated-branches: Warning Options. (line 1579)
- * Wduplicated-cond: Warning Options. (line 1590)
- * weak_reference_mismatches: Darwin Options. (line 196)
- * Weffc++: C++ Dialect Options.
- (line 706)
- * Wempty-body: Warning Options. (line 2188)
- * Wendif-labels: Warning Options. (line 1981)
- * Wenum-compare: Warning Options. (line 2192)
- * Werror: Warning Options. (line 28)
- * Werror=: Warning Options. (line 31)
- * Wexpansion-to-defined: Warning Options. (line 1956)
- * Wextra: Warning Options. (line 201)
- * Wextra <1>: Warning Options. (line 2404)
- * Wextra <2>: Warning Options. (line 2506)
- * Wextra-semi: Warning Options. (line 2198)
- * Wfatal-errors: Warning Options. (line 48)
- * Wfloat-conversion: Warning Options. (line 2224)
- * Wfloat-equal: Warning Options. (line 1666)
- * Wformat: Warning Options. (line 294)
- * Wformat <1>: Warning Options. (line 319)
- * Wformat <2>: Warning Options. (line 1401)
- * Wformat <3>: Common Function Attributes.
- (line 243)
- * Wformat-contains-nul: Warning Options. (line 328)
- * Wformat-extra-args: Warning Options. (line 332)
- * Wformat-nonliteral: Warning Options. (line 437)
- * Wformat-nonliteral <1>: Common Function Attributes.
- (line 308)
- * Wformat-overflow: Warning Options. (line 347)
- * Wformat-overflow <1>: Warning Options. (line 358)
- * Wformat-security: Warning Options. (line 442)
- * Wformat-signedness: Warning Options. (line 454)
- * Wformat-truncation: Warning Options. (line 460)
- * Wformat-truncation <1>: Warning Options. (line 472)
- * Wformat-y2k: Warning Options. (line 483)
- * Wformat-zero-length: Warning Options. (line 427)
- * Wformat=: Warning Options. (line 294)
- * Wformat=1: Warning Options. (line 319)
- * Wformat=2: Warning Options. (line 432)
- * Wframe-address: Warning Options. (line 1596)
- * Wframe-larger-than: Warning Options. (line 1824)
- * Wfree-nonheap-object: Warning Options. (line 1833)
- * whatsloaded: Darwin Options. (line 196)
- * whyload: Darwin Options. (line 196)
- * Wif-not-aligned: Warning Options. (line 655)
- * Wignored-attributes: Warning Options. (line 671)
- * Wignored-qualifiers: Warning Options. (line 660)
- * Wimplicit: Warning Options. (line 533)
- * Wimplicit-fallthrough: Warning Options. (line 537)
- * Wimplicit-fallthrough=: Warning Options. (line 542)
- * Wimplicit-function-declaration: Warning Options. (line 527)
- * Wimplicit-int: Warning Options. (line 523)
- * Wincompatible-pointer-types: Warning Options. (line 1614)
- * Winherited-variadic-ctor: Warning Options. (line 2599)
- * Winit-self: Warning Options. (line 508)
- * Winline: Warning Options. (line 2604)
- * Winline <1>: Inline. (line 60)
- * Wint-conversion: Warning Options. (line 1620)
- * Wint-in-bool-context: Warning Options. (line 2629)
- * Wint-to-pointer-cast: Warning Options. (line 2637)
- * Winvalid-memory-model: Warning Options. (line 1088)
- * Winvalid-offsetof: Warning Options. (line 2617)
- * Winvalid-pch: Warning Options. (line 2646)
- * Wjump-misses-init: Warning Options. (line 2201)
- * Wl: Link Options. (line 280)
- * Wlarger-than-LEN: Warning Options. (line 1821)
- * Wlarger-than=LEN: Warning Options. (line 1821)
- * Wliteral-suffix: C++ Dialect Options.
- (line 578)
- * Wlogical-not-parentheses: Warning Options. (line 2320)
- * Wlogical-op: Warning Options. (line 2312)
- * Wlong-long: Warning Options. (line 2650)
- * Wlto-type-mismatch: C++ Dialect Options.
- (line 604)
- * Wmain: Warning Options. (line 678)
- * Wmaybe-uninitialized: Warning Options. (line 1105)
- * Wmemset-elt-size: Warning Options. (line 2280)
- * Wmemset-transposed-args: Warning Options. (line 2288)
- * Wmisleading-indentation: Warning Options. (line 685)
- * Wmissing-attributes: Warning Options. (line 719)
- * Wmissing-braces: Warning Options. (line 745)
- * Wmissing-declarations: Warning Options. (line 2394)
- * Wmissing-field-initializers: Warning Options. (line 2404)
- * Wmissing-format-attribute: Warning Options. (line 1401)
- * Wmissing-include-dirs: Warning Options. (line 756)
- * Wmissing-parameter-type: Warning Options. (line 2376)
- * Wmissing-prototypes: Warning Options. (line 2384)
- * Wmisspelled-isr: AVR Options. (line 285)
- * Wmultichar: Warning Options. (line 2434)
- * Wmultiple-inheritance: C++ Dialect Options.
- (line 792)
- * Wmultistatement-macros: Warning Options. (line 759)
- * Wnamespaces: C++ Dialect Options.
- (line 806)
- * Wnarrowing: C++ Dialect Options.
- (line 610)
- * Wnested-externs: Warning Options. (line 2596)
- * Wno-abi: C++ Dialect Options.
- (line 455)
- * Wno-address: Warning Options. (line 2299)
- * Wno-aggregate-return: Warning Options. (line 2335)
- * Wno-aggressive-loop-optimizations: Warning Options. (line 2340)
- * Wno-aligned-new: Warning Options. (line 1863)
- * Wno-all: Warning Options. (line 130)
- * Wno-alloc-zero: Warning Options. (line 1453)
- * Wno-alloca: Warning Options. (line 1476)
- * Wno-array-bounds: Warning Options. (line 1539)
- * Wno-assign-intercept: Objective-C and Objective-C++ Dialect Options.
- (line 170)
- * Wno-attributes: Warning Options. (line 2345)
- * Wno-bad-function-cast: Warning Options. (line 1995)
- * Wno-bool-compare: Warning Options. (line 1560)
- * Wno-bool-operation: Warning Options. (line 1569)
- * Wno-builtin-declaration-mismatch: Warning Options. (line 2351)
- * Wno-builtin-macro-redefined: Warning Options. (line 2355)
- * Wno-c90-c99-compat: Warning Options. (line 2000)
- * Wno-c99-c11-compat: Warning Options. (line 2007)
- * Wno-cast-align: Warning Options. (line 2050)
- * Wno-cast-function-type: Warning Options. (line 2061)
- * Wno-cast-qual: Warning Options. (line 2034)
- * Wno-catch-value: Warning Options. (line 2088)
- * Wno-char-subscripts: Warning Options. (line 243)
- * Wno-clobbered: Warning Options. (line 2096)
- * Wno-conditionally-supported: Warning Options. (line 2100)
- * Wno-conversion: Warning Options. (line 2103)
- * Wno-conversion-null: Warning Options. (line 2121)
- * Wno-coverage-mismatch: Warning Options. (line 252)
- * Wno-ctor-dtor-privacy: C++ Dialect Options.
- (line 564)
- * Wno-dangling-else: Warning Options. (line 2142)
- * Wno-date-time: Warning Options. (line 2176)
- * Wno-declaration-after-statement: Warning Options. (line 1766)
- * Wno-delete-incomplete: Warning Options. (line 2181)
- * Wno-delete-non-virtual-dtor: C++ Dialect Options.
- (line 571)
- * Wno-deprecated: Warning Options. (line 2483)
- * Wno-deprecated-declarations: Warning Options. (line 2487)
- * Wno-disabled-optimization: Warning Options. (line 2711)
- * Wno-discarded-array-qualifiers: Warning Options. (line 1608)
- * Wno-discarded-qualifiers: Warning Options. (line 1602)
- * Wno-div-by-zero: Warning Options. (line 1626)
- * Wno-double-promotion: Warning Options. (line 271)
- * Wno-duplicate-decl-specifier: Warning Options. (line 289)
- * Wno-duplicated-branches: Warning Options. (line 1579)
- * Wno-duplicated-cond: Warning Options. (line 1590)
- * Wno-effc++: C++ Dialect Options.
- (line 706)
- * Wno-empty-body: Warning Options. (line 2188)
- * Wno-endif-labels: Warning Options. (line 1981)
- * Wno-enum-compare: Warning Options. (line 2192)
- * Wno-error: Warning Options. (line 28)
- * Wno-error=: Warning Options. (line 31)
- * Wno-extra: Warning Options. (line 201)
- * Wno-extra <1>: Warning Options. (line 2404)
- * Wno-extra <2>: Warning Options. (line 2506)
- * Wno-extra-semi: Warning Options. (line 2198)
- * Wno-fatal-errors: Warning Options. (line 48)
- * Wno-float-conversion: Warning Options. (line 2224)
- * Wno-float-equal: Warning Options. (line 1666)
- * Wno-format: Warning Options. (line 294)
- * Wno-format <1>: Warning Options. (line 1401)
- * Wno-format-contains-nul: Warning Options. (line 328)
- * Wno-format-extra-args: Warning Options. (line 332)
- * Wno-format-nonliteral: Warning Options. (line 437)
- * Wno-format-overflow: Warning Options. (line 347)
- * Wno-format-overflow <1>: Warning Options. (line 358)
- * Wno-format-overflow <2>: Warning Options. (line 472)
- * Wno-format-security: Warning Options. (line 442)
- * Wno-format-signedness: Warning Options. (line 454)
- * Wno-format-truncation: Warning Options. (line 460)
- * Wno-format-y2k: Warning Options. (line 483)
- * Wno-format-zero-length: Warning Options. (line 427)
- * Wno-frame-address: Warning Options. (line 1596)
- * Wno-free-nonheap-object: Warning Options. (line 1833)
- * Wno-if-not-aligned: Warning Options. (line 655)
- * Wno-ignored-attributes: Warning Options. (line 671)
- * Wno-ignored-qualifiers: Warning Options. (line 660)
- * Wno-implicit: Warning Options. (line 533)
- * Wno-implicit-fallthrough: Warning Options. (line 537)
- * Wno-implicit-function-declaration: Warning Options. (line 527)
- * Wno-implicit-int: Warning Options. (line 523)
- * Wno-incompatible-pointer-types: Warning Options. (line 1614)
- * Wno-inherited-variadic-ctor: Warning Options. (line 2599)
- * Wno-init-self: Warning Options. (line 508)
- * Wno-inline: Warning Options. (line 2604)
- * Wno-int-conversion: Warning Options. (line 1620)
- * Wno-int-in-bool-context: Warning Options. (line 2629)
- * Wno-int-to-pointer-cast: Warning Options. (line 2637)
- * Wno-invalid-memory-model: Warning Options. (line 1088)
- * Wno-invalid-offsetof: Warning Options. (line 2617)
- * Wno-invalid-pch: Warning Options. (line 2646)
- * Wno-jump-misses-init: Warning Options. (line 2201)
- * Wno-literal-suffix: C++ Dialect Options.
- (line 578)
- * Wno-logical-not-parentheses: Warning Options. (line 2320)
- * Wno-logical-op: Warning Options. (line 2312)
- * Wno-long-long: Warning Options. (line 2650)
- * Wno-lto-type-mismatch: C++ Dialect Options.
- (line 604)
- * Wno-main: Warning Options. (line 678)
- * Wno-maybe-uninitialized: Warning Options. (line 1105)
- * Wno-memset-elt-size: Warning Options. (line 2280)
- * Wno-memset-transposed-args: Warning Options. (line 2288)
- * Wno-misleading-indentation: Warning Options. (line 685)
- * Wno-missing-attributes: Warning Options. (line 719)
- * Wno-missing-braces: Warning Options. (line 745)
- * Wno-missing-declarations: Warning Options. (line 2394)
- * Wno-missing-field-initializers: Warning Options. (line 2404)
- * Wno-missing-format-attribute: Warning Options. (line 1401)
- * Wno-missing-include-dirs: Warning Options. (line 756)
- * Wno-missing-parameter-type: Warning Options. (line 2376)
- * Wno-missing-prototypes: Warning Options. (line 2384)
- * Wno-multichar: Warning Options. (line 2434)
- * Wno-multistatement-macros: Warning Options. (line 759)
- * Wno-narrowing: C++ Dialect Options.
- (line 610)
- * Wno-nested-externs: Warning Options. (line 2596)
- * Wno-noexcept: C++ Dialect Options.
- (line 626)
- * Wno-noexcept-type: C++ Dialect Options.
- (line 632)
- * Wno-non-template-friend: C++ Dialect Options.
- (line 741)
- * Wno-non-virtual-dtor: C++ Dialect Options.
- (line 666)
- * Wno-nonnull: Warning Options. (line 487)
- * Wno-nonnull-compare: Warning Options. (line 494)
- * Wno-normalized: Warning Options. (line 2440)
- * Wno-null-dereference: Warning Options. (line 501)
- * Wno-odr: Warning Options. (line 2496)
- * Wno-old-style-cast: C++ Dialect Options.
- (line 750)
- * Wno-old-style-declaration: Warning Options. (line 2366)
- * Wno-old-style-definition: Warning Options. (line 2372)
- * Wno-overflow: Warning Options. (line 2493)
- * Wno-overlength-strings: Warning Options. (line 2731)
- * Wno-overloaded-virtual: C++ Dialect Options.
- (line 756)
- * Wno-override-init: Warning Options. (line 2506)
- * Wno-override-init-side-effects: Warning Options. (line 2514)
- * Wno-packed: Warning Options. (line 2519)
- * Wno-packed-bitfield-compat: Warning Options. (line 2536)
- * Wno-packed-not-aligned: Warning Options. (line 2553)
- * Wno-padded: Warning Options. (line 2566)
- * Wno-parentheses: Warning Options. (line 779)
- * Wno-pedantic-ms-format: Warning Options. (line 1857)
- * Wno-placement-new: Warning Options. (line 1874)
- * Wno-pmf-conversions: C++ Dialect Options.
- (line 775)
- * Wno-pmf-conversions <1>: Bound member functions.
- (line 35)
- * Wno-pointer-arith: Warning Options. (line 1909)
- * Wno-pointer-compare: Warning Options. (line 1916)
- * Wno-pointer-sign: Warning Options. (line 2720)
- * Wno-pointer-to-int-cast: Warning Options. (line 2642)
- * Wno-pragmas: Warning Options. (line 1157)
- * Wno-protocol: Objective-C and Objective-C++ Dialect Options.
- (line 174)
- * Wno-redundant-decls: Warning Options. (line 2573)
- * Wno-register: C++ Dialect Options.
- (line 674)
- * Wno-reorder: C++ Dialect Options.
- (line 681)
- * Wno-restrict: Warning Options. (line 2577)
- * Wno-return-local-addr: Warning Options. (line 859)
- * Wno-return-type: Warning Options. (line 863)
- * Wno-selector: Objective-C and Objective-C++ Dialect Options.
- (line 184)
- * Wno-sequence-point: Warning Options. (line 806)
- * Wno-shadow: Warning Options. (line 1772)
- * Wno-shadow-ivar: Warning Options. (line 1780)
- * Wno-shift-count-negative: Warning Options. (line 882)
- * Wno-shift-count-overflow: Warning Options. (line 886)
- * Wno-shift-negative-value: Warning Options. (line 890)
- * Wno-shift-overflow: Warning Options. (line 895)
- * Wno-sign-compare: Warning Options. (line 2212)
- * Wno-sign-conversion: Warning Options. (line 2218)
- * Wno-sign-promo: C++ Dialect Options.
- (line 779)
- * Wno-sized-deallocation: Warning Options. (line 2234)
- * Wno-sizeof-array-argument: Warning Options. (line 2275)
- * Wno-sizeof-pointer-div: Warning Options. (line 2245)
- * Wno-sizeof-pointer-memaccess: Warning Options. (line 2253)
- * Wno-stack-protector: Warning Options. (line 2726)
- * Wno-strict-aliasing: Warning Options. (line 1162)
- * Wno-strict-null-sentinel: C++ Dialect Options.
- (line 734)
- * Wno-strict-overflow: Warning Options. (line 1201)
- * Wno-strict-prototypes: Warning Options. (line 2360)
- * Wno-strict-selector-match: Objective-C and Objective-C++ Dialect Options.
- (line 196)
- * Wno-stringop-overflow: Warning Options. (line 1250)
- * Wno-stringop-overflow <1>: Warning Options. (line 1289)
- * Wno-stringop-truncation: Warning Options. (line 1327)
- * Wno-subobject-linkage: Warning Options. (line 2129)
- * Wno-suggest-attribute=: Warning Options. (line 1380)
- * Wno-suggest-attribute=cold: Warning Options. (line 1422)
- * Wno-suggest-attribute=const: Warning Options. (line 1387)
- * Wno-suggest-attribute=format: Warning Options. (line 1401)
- * Wno-suggest-attribute=malloc: Warning Options. (line 1387)
- * Wno-suggest-attribute=noreturn: Warning Options. (line 1387)
- * Wno-suggest-attribute=pure: Warning Options. (line 1387)
- * Wno-suggest-final-methods: Warning Options. (line 1439)
- * Wno-suggest-final-types: Warning Options. (line 1430)
- * Wno-switch: Warning Options. (line 910)
- * Wno-switch-bool: Warning Options. (line 930)
- * Wno-switch-default: Warning Options. (line 918)
- * Wno-switch-enum: Warning Options. (line 921)
- * Wno-switch-unreachable: Warning Options. (line 941)
- * Wno-sync-nand: Warning Options. (line 965)
- * Wno-system-headers: Warning Options. (line 1631)
- * Wno-tautological-compare: Warning Options. (line 1642)
- * Wno-terminate: C++ Dialect Options.
- (line 813)
- * Wno-traditional: Warning Options. (line 1681)
- * Wno-traditional-conversion: Warning Options. (line 1758)
- * Wno-trampolines: Warning Options. (line 1656)
- * Wno-type-limits: Warning Options. (line 1929)
- * Wno-undeclared-selector: Objective-C and Objective-C++ Dialect Options.
- (line 204)
- * Wno-undef: Warning Options. (line 1952)
- * Wno-uninitialized: Warning Options. (line 1066)
- * Wno-unknown-pragmas: Warning Options. (line 1150)
- * Wno-unused: Warning Options. (line 1059)
- * Wno-unused-but-set-parameter: Warning Options. (line 970)
- * Wno-unused-but-set-variable: Warning Options. (line 979)
- * Wno-unused-const-variable: Warning Options. (line 1026)
- * Wno-unused-function: Warning Options. (line 989)
- * Wno-unused-label: Warning Options. (line 994)
- * Wno-unused-parameter: Warning Options. (line 1005)
- * Wno-unused-result: Warning Options. (line 1012)
- * Wno-unused-value: Warning Options. (line 1049)
- * Wno-unused-variable: Warning Options. (line 1017)
- * Wno-useless-cast: Warning Options. (line 2185)
- * Wno-varargs: Warning Options. (line 2661)
- * Wno-variadic-macros: Warning Options. (line 2655)
- * Wno-vector-operation-performance: Warning Options. (line 2666)
- * Wno-virtual-move-assign: Warning Options. (line 2676)
- * Wno-vla: Warning Options. (line 2685)
- * Wno-volatile-register-var: Warning Options. (line 2705)
- * Wno-write-strings: Warning Options. (line 2074)
- * Wno-zero-as-null-pointer-constant: Warning Options. (line 2125)
- * Wnoexcept: C++ Dialect Options.
- (line 626)
- * Wnoexcept-type: C++ Dialect Options.
- (line 632)
- * Wnon-template-friend: C++ Dialect Options.
- (line 741)
- * Wnon-virtual-dtor: C++ Dialect Options.
- (line 666)
- * Wnonnull: Warning Options. (line 487)
- * Wnonnull-compare: Warning Options. (line 494)
- * Wnormalized: Warning Options. (line 2440)
- * Wnormalized=: Warning Options. (line 2440)
- * Wnull-dereference: Warning Options. (line 501)
- * Wodr: Warning Options. (line 2496)
- * Wold-style-cast: C++ Dialect Options.
- (line 750)
- * Wold-style-declaration: Warning Options. (line 2366)
- * Wold-style-definition: Warning Options. (line 2372)
- * Wopenm-simd: Warning Options. (line 2501)
- * Woverflow: Warning Options. (line 2493)
- * Woverlength-strings: Warning Options. (line 2731)
- * Woverloaded-virtual: C++ Dialect Options.
- (line 756)
- * Woverride-init: Warning Options. (line 2506)
- * Woverride-init-side-effects: Warning Options. (line 2514)
- * Wp: Preprocessor Options.
- (line 456)
- * Wpacked: Warning Options. (line 2519)
- * Wpacked-bitfield-compat: Warning Options. (line 2536)
- * Wpacked-not-aligned: Warning Options. (line 2553)
- * Wpadded: Warning Options. (line 2566)
- * Wparentheses: Warning Options. (line 779)
- * Wpedantic: Warning Options. (line 80)
- * Wpedantic-ms-format: Warning Options. (line 1857)
- * Wplacement-new: Warning Options. (line 1874)
- * Wpmf-conversions: C++ Dialect Options.
- (line 775)
- * Wpointer-arith: Warning Options. (line 1909)
- * Wpointer-arith <1>: Pointer Arith. (line 13)
- * Wpointer-compare: Warning Options. (line 1916)
- * Wpointer-sign: Warning Options. (line 2720)
- * Wpointer-to-int-cast: Warning Options. (line 2642)
- * Wpragmas: Warning Options. (line 1157)
- * Wprotocol: Objective-C and Objective-C++ Dialect Options.
- (line 174)
- * wrapper: Overall Options. (line 349)
- * Wredundant-decls: Warning Options. (line 2573)
- * Wregister: C++ Dialect Options.
- (line 674)
- * Wreorder: C++ Dialect Options.
- (line 681)
- * Wrestrict: Warning Options. (line 2577)
- * Wreturn-local-addr: Warning Options. (line 859)
- * Wreturn-type: Warning Options. (line 863)
- * Wselector: Objective-C and Objective-C++ Dialect Options.
- (line 184)
- * Wsequence-point: Warning Options. (line 806)
- * Wshadow: Warning Options. (line 1772)
- * Wshadow-ivar: Warning Options. (line 1780)
- * Wshadow=compatible-local: Warning Options. (line 1791)
- * Wshadow=local: Warning Options. (line 1784)
- * Wshadow=local <1>: Warning Options. (line 1787)
- * Wshift-count-negative: Warning Options. (line 882)
- * Wshift-count-overflow: Warning Options. (line 886)
- * Wshift-negative-value: Warning Options. (line 890)
- * Wshift-overflow: Warning Options. (line 895)
- * Wsign-compare: Warning Options. (line 2212)
- * Wsign-conversion: Warning Options. (line 2218)
- * Wsign-promo: C++ Dialect Options.
- (line 779)
- * Wsized-deallocation: Warning Options. (line 2234)
- * Wsizeof-array-argument: Warning Options. (line 2275)
- * Wsizeof-pointer-div: Warning Options. (line 2245)
- * Wsizeof-pointer-memaccess: Warning Options. (line 2253)
- * Wstack-protector: Warning Options. (line 2726)
- * Wstack-usage: Warning Options. (line 1837)
- * Wstrict-aliasing: Warning Options. (line 1162)
- * Wstrict-aliasing=n: Warning Options. (line 1169)
- * Wstrict-null-sentinel: C++ Dialect Options.
- (line 734)
- * Wstrict-overflow: Warning Options. (line 1201)
- * Wstrict-prototypes: Warning Options. (line 2360)
- * Wstrict-selector-match: Objective-C and Objective-C++ Dialect Options.
- (line 196)
- * Wstringop-overflow: Warning Options. (line 1250)
- * Wstringop-overflow <1>: Warning Options. (line 1289)
- * Wstringop-truncation: Warning Options. (line 1327)
- * Wsubobject-linkage: Warning Options. (line 2129)
- * Wsuggest-attribute=: Warning Options. (line 1380)
- * Wsuggest-attribute=cold: Warning Options. (line 1422)
- * Wsuggest-attribute=const: Warning Options. (line 1387)
- * Wsuggest-attribute=format: Warning Options. (line 1401)
- * Wsuggest-attribute=malloc: Warning Options. (line 1387)
- * Wsuggest-attribute=noreturn: Warning Options. (line 1387)
- * Wsuggest-attribute=pure: Warning Options. (line 1387)
- * Wsuggest-final-methods: Warning Options. (line 1439)
- * Wsuggest-final-types: Warning Options. (line 1430)
- * Wswitch: Warning Options. (line 910)
- * Wswitch-bool: Warning Options. (line 930)
- * Wswitch-default: Warning Options. (line 918)
- * Wswitch-enum: Warning Options. (line 921)
- * Wswitch-unreachable: Warning Options. (line 941)
- * Wsync-nand: Warning Options. (line 965)
- * Wsystem-headers: Warning Options. (line 1631)
- * Wtautological-compare: Warning Options. (line 1642)
- * Wtemplates: C++ Dialect Options.
- (line 785)
- * Wterminate: C++ Dialect Options.
- (line 813)
- * Wtraditional: Warning Options. (line 1681)
- * Wtraditional-conversion: Warning Options. (line 1758)
- * Wtrampolines: Warning Options. (line 1656)
- * Wtrigraphs: Warning Options. (line 1942)
- * Wtype-limits: Warning Options. (line 1929)
- * Wundeclared-selector: Objective-C and Objective-C++ Dialect Options.
- (line 204)
- * Wundef: Warning Options. (line 1952)
- * Wuninitialized: Warning Options. (line 1066)
- * Wunknown-pragmas: Warning Options. (line 1150)
- * Wunsuffixed-float-constants: Warning Options. (line 2746)
- * Wunused: Warning Options. (line 1059)
- * Wunused-but-set-parameter: Warning Options. (line 970)
- * Wunused-but-set-variable: Warning Options. (line 979)
- * Wunused-const-variable: Warning Options. (line 1026)
- * Wunused-function: Warning Options. (line 989)
- * Wunused-label: Warning Options. (line 994)
- * Wunused-local-typedefs: Warning Options. (line 1001)
- * Wunused-macros: Warning Options. (line 1962)
- * Wunused-parameter: Warning Options. (line 1005)
- * Wunused-result: Warning Options. (line 1012)
- * Wunused-value: Warning Options. (line 1049)
- * Wunused-variable: Warning Options. (line 1017)
- * Wuseless-cast: Warning Options. (line 2185)
- * Wvarargs: Warning Options. (line 2661)
- * Wvariadic-macros: Warning Options. (line 2655)
- * Wvector-operation-performance: Warning Options. (line 2666)
- * Wvirtual-inheritance: C++ Dialect Options.
- (line 799)
- * Wvirtual-move-assign: Warning Options. (line 2676)
- * Wvla: Warning Options. (line 2685)
- * Wvolatile-register-var: Warning Options. (line 2705)
- * Wwrite-strings: Warning Options. (line 2074)
- * Wzero-as-null-pointer-constant: Warning Options. (line 2125)
- * x: Overall Options. (line 129)
- * Xassembler: Assembler Options. (line 13)
- * Xbind-lazy: VxWorks Options. (line 26)
- * Xbind-now: VxWorks Options. (line 30)
- * Xlinker: Link Options. (line 262)
- * Xpreprocessor: Preprocessor Options.
- (line 467)
- * Ym: System V Options. (line 26)
- * YP: System V Options. (line 22)
- * z: Link Options. (line 293)
- File: gcc.info, Node: Keyword Index, Prev: Option Index, Up: Top
- Keyword Index
- *************
- �[index�]
- * Menu:
- * #pragma: Pragmas. (line 6)
- * #pragma implementation: C++ Interface. (line 36)
- * #pragma implementation, implied: C++ Interface. (line 43)
- * #pragma interface: C++ Interface. (line 17)
- * $: Dollar Signs. (line 6)
- * % in constraint: Modifiers. (line 52)
- * %include: Spec Files. (line 26)
- * %include_noerr: Spec Files. (line 30)
- * %rename: Spec Files. (line 34)
- * & in constraint: Modifiers. (line 25)
- * ': Incompatibilities. (line 116)
- * *__builtin_alloca: Other Builtins. (line 129)
- * *__builtin_alloca_with_align: Other Builtins. (line 166)
- * *__builtin_alloca_with_align_and_max: Other Builtins. (line 211)
- * + in constraint: Modifiers. (line 12)
- * -lgcc, use with -nodefaultlibs: Link Options. (line 91)
- * -lgcc, use with -nostdlib: Link Options. (line 91)
- * -march feature modifiers: AArch64 Options. (line 238)
- * -mcpu feature modifiers: AArch64 Options. (line 238)
- * -nodefaultlibs and unresolved references: Link Options. (line 91)
- * -nostdlib and unresolved references: Link Options. (line 91)
- * .sdata/.sdata2 references (PowerPC): PowerPC SPE Options.
- (line 524)
- * .sdata/.sdata2 references (PowerPC) <1>: RS/6000 and PowerPC Options.
- (line 774)
- * //: C++ Comments. (line 6)
- * 0 in constraint: Simple Constraints. (line 125)
- * < in constraint: Simple Constraints. (line 47)
- * = in constraint: Modifiers. (line 8)
- * > in constraint: Simple Constraints. (line 59)
- * ?: extensions: Conditionals. (line 6)
- * ?: side effect: Conditionals. (line 20)
- * _ in variables in macros: Typeof. (line 46)
- * _Accum data type: Fixed-Point. (line 6)
- * _Complex keyword: Complex. (line 6)
- * _Decimal128 data type: Decimal Float. (line 6)
- * _Decimal32 data type: Decimal Float. (line 6)
- * _Decimal64 data type: Decimal Float. (line 6)
- * _Exit: Other Builtins. (line 6)
- * _exit: Other Builtins. (line 6)
- * _FloatN data types: Floating Types. (line 6)
- * _FloatNx data types: Floating Types. (line 6)
- * _Fract data type: Fixed-Point. (line 6)
- * _get_ssp: x86 control-flow protection intrinsics.
- (line 6)
- * _HTM_FIRST_USER_ABORT_CODE: S/390 System z Built-in Functions.
- (line 44)
- * _inc_ssp: x86 control-flow protection intrinsics.
- (line 12)
- * _Sat data type: Fixed-Point. (line 6)
- * _xabort: x86 transactional memory intrinsics.
- (line 57)
- * _xbegin: x86 transactional memory intrinsics.
- (line 19)
- * _xend: x86 transactional memory intrinsics.
- (line 48)
- * _xtest: x86 transactional memory intrinsics.
- (line 53)
- * __atomic_add_fetch: __atomic Builtins. (line 179)
- * __atomic_always_lock_free: __atomic Builtins. (line 265)
- * __atomic_and_fetch: __atomic Builtins. (line 183)
- * __atomic_clear: __atomic Builtins. (line 239)
- * __atomic_compare_exchange: __atomic Builtins. (line 171)
- * __atomic_compare_exchange_n: __atomic Builtins. (line 147)
- * __atomic_exchange: __atomic Builtins. (line 141)
- * __atomic_exchange_n: __atomic Builtins. (line 131)
- * __atomic_fetch_add: __atomic Builtins. (line 203)
- * __atomic_fetch_and: __atomic Builtins. (line 207)
- * __atomic_fetch_nand: __atomic Builtins. (line 213)
- * __atomic_fetch_or: __atomic Builtins. (line 211)
- * __atomic_fetch_sub: __atomic Builtins. (line 205)
- * __atomic_fetch_xor: __atomic Builtins. (line 209)
- * __atomic_is_lock_free: __atomic Builtins. (line 279)
- * __atomic_load: __atomic Builtins. (line 113)
- * __atomic_load_n: __atomic Builtins. (line 106)
- * __atomic_nand_fetch: __atomic Builtins. (line 189)
- * __atomic_or_fetch: __atomic Builtins. (line 187)
- * __atomic_signal_fence: __atomic Builtins. (line 258)
- * __atomic_store: __atomic Builtins. (line 126)
- * __atomic_store_n: __atomic Builtins. (line 118)
- * __atomic_sub_fetch: __atomic Builtins. (line 181)
- * __atomic_test_and_set: __atomic Builtins. (line 227)
- * __atomic_thread_fence: __atomic Builtins. (line 251)
- * __atomic_xor_fetch: __atomic Builtins. (line 185)
- * __builtin_addf128_round_to_odd: PowerPC Built-in Functions.
- (line 253)
- * __builtin_add_overflow: Integer Overflow Builtins.
- (line 9)
- * __builtin_add_overflow_p: Integer Overflow Builtins.
- (line 86)
- * __builtin_alloca: Other Builtins. (line 6)
- * __builtin_alloca_with_align: Other Builtins. (line 6)
- * __builtin_alloca_with_align_and_max: Other Builtins. (line 6)
- * __builtin_apply: Constructing Calls. (line 29)
- * __builtin_apply_args: Constructing Calls. (line 19)
- * __builtin_arc_aligned: ARC Built-in Functions.
- (line 18)
- * __builtin_arc_brk: ARC Built-in Functions.
- (line 28)
- * __builtin_arc_core_read: ARC Built-in Functions.
- (line 32)
- * __builtin_arc_core_write: ARC Built-in Functions.
- (line 39)
- * __builtin_arc_divaw: ARC Built-in Functions.
- (line 46)
- * __builtin_arc_flag: ARC Built-in Functions.
- (line 53)
- * __builtin_arc_lr: ARC Built-in Functions.
- (line 57)
- * __builtin_arc_mul64: ARC Built-in Functions.
- (line 64)
- * __builtin_arc_mulu64: ARC Built-in Functions.
- (line 68)
- * __builtin_arc_nop: ARC Built-in Functions.
- (line 73)
- * __builtin_arc_norm: ARC Built-in Functions.
- (line 77)
- * __builtin_arc_normw: ARC Built-in Functions.
- (line 84)
- * __builtin_arc_rtie: ARC Built-in Functions.
- (line 91)
- * __builtin_arc_sleep: ARC Built-in Functions.
- (line 95)
- * __builtin_arc_sr: ARC Built-in Functions.
- (line 99)
- * __builtin_arc_swap: ARC Built-in Functions.
- (line 106)
- * __builtin_arc_swi: ARC Built-in Functions.
- (line 112)
- * __builtin_arc_sync: ARC Built-in Functions.
- (line 116)
- * __builtin_arc_trap_s: ARC Built-in Functions.
- (line 120)
- * __builtin_arc_unimp_s: ARC Built-in Functions.
- (line 124)
- * __builtin_assume_aligned: Other Builtins. (line 504)
- * __builtin_bswap16: Other Builtins. (line 820)
- * __builtin_bswap32: Other Builtins. (line 824)
- * __builtin_bswap64: Other Builtins. (line 828)
- * __builtin_call_with_static_chain: Other Builtins. (line 6)
- * __builtin_call_with_static_chain <1>: Other Builtins. (line 265)
- * __builtin_choose_expr: Other Builtins. (line 276)
- * __builtin_clrsb: Other Builtins. (line 750)
- * __builtin_clrsbl: Other Builtins. (line 772)
- * __builtin_clrsbll: Other Builtins. (line 795)
- * __builtin_clz: Other Builtins. (line 742)
- * __builtin_clzl: Other Builtins. (line 764)
- * __builtin_clzll: Other Builtins. (line 787)
- * __builtin_complex: Other Builtins. (line 370)
- * __builtin_constant_p: Other Builtins. (line 379)
- * __builtin_cpu_init: PowerPC Built-in Functions.
- (line 9)
- * __builtin_cpu_init <1>: x86 Built-in Functions.
- (line 68)
- * __builtin_cpu_is: PowerPC Built-in Functions.
- (line 13)
- * __builtin_cpu_is <1>: x86 Built-in Functions.
- (line 96)
- * __builtin_cpu_supports: PowerPC Built-in Functions.
- (line 71)
- * __builtin_cpu_supports <1>: x86 Built-in Functions.
- (line 174)
- * __builtin_ctz: Other Builtins. (line 746)
- * __builtin_ctzl: Other Builtins. (line 768)
- * __builtin_ctzll: Other Builtins. (line 791)
- * __builtin_divf128_round_to_odd: PowerPC Built-in Functions.
- (line 265)
- * __builtin_expect: Other Builtins. (line 424)
- * __builtin_extend_pointer: Other Builtins. (line 6)
- * __builtin_extend_pointer <1>: Other Builtins. (line 832)
- * __builtin_extract_return_addr: Return Address. (line 38)
- * __builtin_ffs: Other Builtins. (line 738)
- * __builtin_ffsl: Other Builtins. (line 761)
- * __builtin_ffsll: Other Builtins. (line 783)
- * __builtin_FILE: Other Builtins. (line 537)
- * __builtin_fmaf128: PowerPC Built-in Functions.
- (line 249)
- * __builtin_fmaf128_round_to_odd: PowerPC Built-in Functions.
- (line 273)
- * __builtin_fpclassify: Other Builtins. (line 6)
- * __builtin_fpclassify <1>: Other Builtins. (line 634)
- * __builtin_frame_address: Return Address. (line 50)
- * __builtin_frob_return_address: Return Address. (line 47)
- * __builtin_FUNCTION: Other Builtins. (line 529)
- * __builtin_huge_val: Other Builtins. (line 614)
- * __builtin_huge_valf: Other Builtins. (line 619)
- * __builtin_huge_valfN: Other Builtins. (line 626)
- * __builtin_huge_valfNx: Other Builtins. (line 630)
- * __builtin_huge_vall: Other Builtins. (line 622)
- * __builtin_huge_valq: x86 Built-in Functions.
- (line 50)
- * __builtin_inf: Other Builtins. (line 645)
- * __builtin_infd128: Other Builtins. (line 655)
- * __builtin_infd32: Other Builtins. (line 649)
- * __builtin_infd64: Other Builtins. (line 652)
- * __builtin_inff: Other Builtins. (line 659)
- * __builtin_inffN: Other Builtins. (line 668)
- * __builtin_inffNx: Other Builtins. (line 671)
- * __builtin_infl: Other Builtins. (line 664)
- * __builtin_infq: x86 Built-in Functions.
- (line 47)
- * __builtin_isfinite: Other Builtins. (line 6)
- * __builtin_isgreater: Other Builtins. (line 6)
- * __builtin_isgreaterequal: Other Builtins. (line 6)
- * __builtin_isinf_sign: Other Builtins. (line 6)
- * __builtin_isinf_sign <1>: Other Builtins. (line 674)
- * __builtin_isless: Other Builtins. (line 6)
- * __builtin_islessequal: Other Builtins. (line 6)
- * __builtin_islessgreater: Other Builtins. (line 6)
- * __builtin_isnormal: Other Builtins. (line 6)
- * __builtin_isunordered: Other Builtins. (line 6)
- * __builtin_LINE: Other Builtins. (line 522)
- * __builtin_mulf128_round_to_odd: PowerPC Built-in Functions.
- (line 261)
- * __builtin_mul_overflow: Integer Overflow Builtins.
- (line 63)
- * __builtin_mul_overflow_p: Integer Overflow Builtins.
- (line 90)
- * __builtin_nan: Other Builtins. (line 682)
- * __builtin_nand128: Other Builtins. (line 704)
- * __builtin_nand32: Other Builtins. (line 698)
- * __builtin_nand64: Other Builtins. (line 701)
- * __builtin_nanf: Other Builtins. (line 708)
- * __builtin_nanfN: Other Builtins. (line 715)
- * __builtin_nanfNx: Other Builtins. (line 718)
- * __builtin_nanl: Other Builtins. (line 711)
- * __builtin_nanq: x86 Built-in Functions.
- (line 54)
- * __builtin_nans: Other Builtins. (line 721)
- * __builtin_nansf: Other Builtins. (line 725)
- * __builtin_nansfN: Other Builtins. (line 732)
- * __builtin_nansfNx: Other Builtins. (line 735)
- * __builtin_nansl: Other Builtins. (line 728)
- * __builtin_nansq: x86 Built-in Functions.
- (line 57)
- * __builtin_nds32_isb: NDS32 Built-in Functions.
- (line 12)
- * __builtin_nds32_isync: NDS32 Built-in Functions.
- (line 8)
- * __builtin_nds32_mfsr: NDS32 Built-in Functions.
- (line 15)
- * __builtin_nds32_mfusr: NDS32 Built-in Functions.
- (line 18)
- * __builtin_nds32_mtsr: NDS32 Built-in Functions.
- (line 21)
- * __builtin_nds32_mtusr: NDS32 Built-in Functions.
- (line 24)
- * __builtin_nds32_setgie_dis: NDS32 Built-in Functions.
- (line 30)
- * __builtin_nds32_setgie_en: NDS32 Built-in Functions.
- (line 27)
- * __builtin_non_tx_store: S/390 System z Built-in Functions.
- (line 98)
- * __builtin_object_size: Object Size Checking.
- (line 6)
- * __builtin_object_size <1>: Object Size Checking.
- (line 16)
- * __builtin_offsetof: Offsetof. (line 6)
- * __builtin_parity: Other Builtins. (line 758)
- * __builtin_parityl: Other Builtins. (line 779)
- * __builtin_parityll: Other Builtins. (line 803)
- * __builtin_popcount: Other Builtins. (line 755)
- * __builtin_popcountl: Other Builtins. (line 775)
- * __builtin_popcountll: Other Builtins. (line 799)
- * __builtin_powi: Other Builtins. (line 6)
- * __builtin_powi <1>: Other Builtins. (line 807)
- * __builtin_powif: Other Builtins. (line 6)
- * __builtin_powif <1>: Other Builtins. (line 812)
- * __builtin_powil: Other Builtins. (line 6)
- * __builtin_powil <1>: Other Builtins. (line 816)
- * __builtin_prefetch: Other Builtins. (line 575)
- * __builtin_return: Constructing Calls. (line 47)
- * __builtin_return_address: Return Address. (line 9)
- * __builtin_rx_brk: RX Built-in Functions.
- (line 10)
- * __builtin_rx_clrpsw: RX Built-in Functions.
- (line 13)
- * __builtin_rx_int: RX Built-in Functions.
- (line 17)
- * __builtin_rx_machi: RX Built-in Functions.
- (line 21)
- * __builtin_rx_maclo: RX Built-in Functions.
- (line 26)
- * __builtin_rx_mulhi: RX Built-in Functions.
- (line 31)
- * __builtin_rx_mullo: RX Built-in Functions.
- (line 36)
- * __builtin_rx_mvfachi: RX Built-in Functions.
- (line 41)
- * __builtin_rx_mvfacmi: RX Built-in Functions.
- (line 45)
- * __builtin_rx_mvfc: RX Built-in Functions.
- (line 49)
- * __builtin_rx_mvtachi: RX Built-in Functions.
- (line 53)
- * __builtin_rx_mvtaclo: RX Built-in Functions.
- (line 57)
- * __builtin_rx_mvtc: RX Built-in Functions.
- (line 61)
- * __builtin_rx_mvtipl: RX Built-in Functions.
- (line 65)
- * __builtin_rx_racw: RX Built-in Functions.
- (line 69)
- * __builtin_rx_revw: RX Built-in Functions.
- (line 73)
- * __builtin_rx_rmpa: RX Built-in Functions.
- (line 78)
- * __builtin_rx_round: RX Built-in Functions.
- (line 82)
- * __builtin_rx_sat: RX Built-in Functions.
- (line 87)
- * __builtin_rx_setpsw: RX Built-in Functions.
- (line 91)
- * __builtin_rx_wait: RX Built-in Functions.
- (line 95)
- * __builtin_saddll_overflow: Integer Overflow Builtins.
- (line 15)
- * __builtin_saddl_overflow: Integer Overflow Builtins.
- (line 13)
- * __builtin_sadd_overflow: Integer Overflow Builtins.
- (line 11)
- * __builtin_set_thread_pointer: SH Built-in Functions.
- (line 9)
- * __builtin_shuffle: Vector Extensions. (line 126)
- * __builtin_sh_get_fpscr: SH Built-in Functions.
- (line 35)
- * __builtin_sh_set_fpscr: SH Built-in Functions.
- (line 38)
- * __builtin_smulll_overflow: Integer Overflow Builtins.
- (line 69)
- * __builtin_smull_overflow: Integer Overflow Builtins.
- (line 67)
- * __builtin_smul_overflow: Integer Overflow Builtins.
- (line 65)
- * __builtin_sqrtf128: PowerPC Built-in Functions.
- (line 245)
- * __builtin_sqrtf128_round_to_odd: PowerPC Built-in Functions.
- (line 269)
- * __builtin_ssubll_overflow: Integer Overflow Builtins.
- (line 49)
- * __builtin_ssubl_overflow: Integer Overflow Builtins.
- (line 47)
- * __builtin_ssub_overflow: Integer Overflow Builtins.
- (line 45)
- * __builtin_subf128_round_to_odd: PowerPC Built-in Functions.
- (line 257)
- * __builtin_sub_overflow: Integer Overflow Builtins.
- (line 43)
- * __builtin_sub_overflow_p: Integer Overflow Builtins.
- (line 88)
- * __builtin_tabort: S/390 System z Built-in Functions.
- (line 82)
- * __builtin_tbegin: S/390 System z Built-in Functions.
- (line 6)
- * __builtin_tbeginc: S/390 System z Built-in Functions.
- (line 73)
- * __builtin_tbegin_nofloat: S/390 System z Built-in Functions.
- (line 54)
- * __builtin_tbegin_retry: S/390 System z Built-in Functions.
- (line 60)
- * __builtin_tbegin_retry_nofloat: S/390 System z Built-in Functions.
- (line 67)
- * __builtin_tend: S/390 System z Built-in Functions.
- (line 77)
- * __builtin_tgmath: Other Builtins. (line 316)
- * __builtin_thread_pointer: SH Built-in Functions.
- (line 18)
- * __builtin_trap: Other Builtins. (line 448)
- * __builtin_truncf128_round_to_odd: PowerPC Built-in Functions.
- (line 277)
- * __builtin_tx_assist: S/390 System z Built-in Functions.
- (line 87)
- * __builtin_tx_nesting_depth: S/390 System z Built-in Functions.
- (line 93)
- * __builtin_types_compatible_p: Other Builtins. (line 220)
- * __builtin_uaddll_overflow: Integer Overflow Builtins.
- (line 21)
- * __builtin_uaddl_overflow: Integer Overflow Builtins.
- (line 19)
- * __builtin_uadd_overflow: Integer Overflow Builtins.
- (line 17)
- * __builtin_umulll_overflow: Integer Overflow Builtins.
- (line 75)
- * __builtin_umull_overflow: Integer Overflow Builtins.
- (line 73)
- * __builtin_umul_overflow: Integer Overflow Builtins.
- (line 71)
- * __builtin_unreachable: Other Builtins. (line 455)
- * __builtin_usubll_overflow: Integer Overflow Builtins.
- (line 55)
- * __builtin_usubl_overflow: Integer Overflow Builtins.
- (line 53)
- * __builtin_usub_overflow: Integer Overflow Builtins.
- (line 51)
- * __builtin_va_arg_pack: Constructing Calls. (line 52)
- * __builtin_va_arg_pack_len: Constructing Calls. (line 75)
- * __builtin___bnd_chk_ptr_bounds: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_chk_ptr_bounds <1>: Pointer Bounds Checker builtins.
- (line 110)
- * __builtin___bnd_chk_ptr_lbounds: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_chk_ptr_lbounds <1>: Pointer Bounds Checker builtins.
- (line 85)
- * __builtin___bnd_chk_ptr_ubounds: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_chk_ptr_ubounds <1>: Pointer Bounds Checker builtins.
- (line 103)
- * __builtin___bnd_copy_ptr_bounds: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_copy_ptr_bounds <1>: Pointer Bounds Checker builtins.
- (line 46)
- * __builtin___bnd_get_ptr_lbound: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_get_ptr_lbound <1>: Pointer Bounds Checker builtins.
- (line 128)
- * __builtin___bnd_get_ptr_ubound: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_get_ptr_ubound <1>: Pointer Bounds Checker builtins.
- (line 140)
- * __builtin___bnd_init_ptr_bounds: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_init_ptr_bounds <1>: Pointer Bounds Checker builtins.
- (line 59)
- * __builtin___bnd_narrow_ptr_bounds: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_narrow_ptr_bounds <1>: Pointer Bounds Checker builtins.
- (line 27)
- * __builtin___bnd_null_ptr_bounds: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_null_ptr_bounds <1>: Pointer Bounds Checker builtins.
- (line 67)
- * __builtin___bnd_set_ptr_bounds: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_set_ptr_bounds <1>: Pointer Bounds Checker builtins.
- (line 12)
- * __builtin___bnd_store_ptr_bounds: Pointer Bounds Checker builtins.
- (line 6)
- * __builtin___bnd_store_ptr_bounds <1>: Pointer Bounds Checker builtins.
- (line 75)
- * __builtin___clear_cache: Other Builtins. (line 562)
- * __builtin___fprintf_chk: Object Size Checking.
- (line 6)
- * __builtin___memcpy_chk: Object Size Checking.
- (line 6)
- * __builtin___memmove_chk: Object Size Checking.
- (line 6)
- * __builtin___mempcpy_chk: Object Size Checking.
- (line 6)
- * __builtin___memset_chk: Object Size Checking.
- (line 6)
- * __builtin___printf_chk: Object Size Checking.
- (line 6)
- * __builtin___snprintf_chk: Object Size Checking.
- (line 6)
- * __builtin___sprintf_chk: Object Size Checking.
- (line 6)
- * __builtin___stpcpy_chk: Object Size Checking.
- (line 6)
- * __builtin___strcat_chk: Object Size Checking.
- (line 6)
- * __builtin___strcpy_chk: Object Size Checking.
- (line 6)
- * __builtin___strncat_chk: Object Size Checking.
- (line 6)
- * __builtin___strncpy_chk: Object Size Checking.
- (line 6)
- * __builtin___vfprintf_chk: Object Size Checking.
- (line 6)
- * __builtin___vprintf_chk: Object Size Checking.
- (line 6)
- * __builtin___vsnprintf_chk: Object Size Checking.
- (line 6)
- * __builtin___vsprintf_chk: Object Size Checking.
- (line 6)
- * __complex__ keyword: Complex. (line 6)
- * __declspec(dllexport): Microsoft Windows Function Attributes.
- (line 10)
- * __declspec(dllimport): Microsoft Windows Function Attributes.
- (line 42)
- * __ea SPU Named Address Spaces: Named Address Spaces.
- (line 170)
- * __extension__: Alternate Keywords. (line 30)
- * __far M32C Named Address Spaces: Named Address Spaces.
- (line 153)
- * __far RL78 Named Address Spaces: Named Address Spaces.
- (line 162)
- * __flash AVR Named Address Spaces: Named Address Spaces.
- (line 44)
- * __flash1 AVR Named Address Spaces: Named Address Spaces.
- (line 53)
- * __flash2 AVR Named Address Spaces: Named Address Spaces.
- (line 53)
- * __flash3 AVR Named Address Spaces: Named Address Spaces.
- (line 53)
- * __flash4 AVR Named Address Spaces: Named Address Spaces.
- (line 53)
- * __flash5 AVR Named Address Spaces: Named Address Spaces.
- (line 53)
- * __float128 data type: Floating Types. (line 6)
- * __float80 data type: Floating Types. (line 6)
- * __fp16 data type: Half-Precision. (line 6)
- * __FUNCTION__ identifier: Function Names. (line 6)
- * __func__ identifier: Function Names. (line 6)
- * __ibm128 data type: Floating Types. (line 6)
- * __imag__ keyword: Complex. (line 31)
- * __int128 data types: __int128. (line 6)
- * __memx AVR Named Address Spaces: Named Address Spaces.
- (line 59)
- * __PRETTY_FUNCTION__ identifier: Function Names. (line 6)
- * __real__ keyword: Complex. (line 31)
- * __seg_fs x86 named address space: Named Address Spaces.
- (line 188)
- * __seg_gs x86 named address space: Named Address Spaces.
- (line 188)
- * __STDC_HOSTED__: Standards. (line 13)
- * __sync_add_and_fetch: __sync Builtins. (line 72)
- * __sync_and_and_fetch: __sync Builtins. (line 72)
- * __sync_bool_compare_and_swap: __sync Builtins. (line 88)
- * __sync_fetch_and_add: __sync Builtins. (line 50)
- * __sync_fetch_and_and: __sync Builtins. (line 50)
- * __sync_fetch_and_nand: __sync Builtins. (line 50)
- * __sync_fetch_and_or: __sync Builtins. (line 50)
- * __sync_fetch_and_sub: __sync Builtins. (line 50)
- * __sync_fetch_and_xor: __sync Builtins. (line 50)
- * __sync_lock_release: __sync Builtins. (line 118)
- * __sync_lock_test_and_set: __sync Builtins. (line 100)
- * __sync_nand_and_fetch: __sync Builtins. (line 72)
- * __sync_or_and_fetch: __sync Builtins. (line 72)
- * __sync_sub_and_fetch: __sync Builtins. (line 72)
- * __sync_synchronize: __sync Builtins. (line 97)
- * __sync_val_compare_and_swap: __sync Builtins. (line 88)
- * __sync_xor_and_fetch: __sync Builtins. (line 72)
- * __thread: Thread-Local. (line 6)
- * AArch64 Options: AArch64 Options. (line 6)
- * ABI: Compatibility. (line 6)
- * abi_tag function attribute: C++ Attributes. (line 9)
- * abi_tag type attribute: C++ Attributes. (line 9)
- * abi_tag variable attribute: C++ Attributes. (line 9)
- * abort: Other Builtins. (line 6)
- * abs: Other Builtins. (line 6)
- * absdata variable attribute, AVR: AVR Variable Attributes.
- (line 104)
- * accessing volatiles: Volatiles. (line 6)
- * accessing volatiles <1>: C++ Volatiles. (line 6)
- * acos: Other Builtins. (line 6)
- * acosf: Other Builtins. (line 6)
- * acosh: Other Builtins. (line 6)
- * acoshf: Other Builtins. (line 6)
- * acoshl: Other Builtins. (line 6)
- * acosl: Other Builtins. (line 6)
- * Ada: G++ and GCC. (line 6)
- * Ada <1>: G++ and GCC. (line 30)
- * additional floating types: Floating Types. (line 6)
- * address constraints: Simple Constraints. (line 152)
- * address of a label: Labels as Values. (line 6)
- * address variable attribute, AVR: AVR Variable Attributes.
- (line 97)
- * address_operand: Simple Constraints. (line 156)
- * alias function attribute: Common Function Attributes.
- (line 9)
- * aligned function attribute: Common Function Attributes.
- (line 23)
- * aligned type attribute: Common Type Attributes.
- (line 8)
- * aligned variable attribute: Common Variable Attributes.
- (line 8)
- * alignment: Alignment. (line 6)
- * alloca: Other Builtins. (line 6)
- * alloca vs variable-length arrays: Variable Length. (line 35)
- * alloc_align function attribute: Common Function Attributes.
- (line 43)
- * alloc_size function attribute: Common Function Attributes.
- (line 60)
- * Allow nesting in an interrupt handler on the Blackfin processor: Blackfin Function Attributes.
- (line 45)
- * Altera Nios II options: Nios II Options. (line 6)
- * alternate keywords: Alternate Keywords. (line 6)
- * altivec type attribute, PowerPC: PowerPC Type Attributes.
- (line 12)
- * altivec variable attribute, PowerPC: PowerPC Variable Attributes.
- (line 12)
- * always_inline function attribute: Common Function Attributes.
- (line 81)
- * AMD1: Standards. (line 13)
- * ANSI C: Standards. (line 13)
- * ANSI C standard: Standards. (line 13)
- * ANSI C89: Standards. (line 13)
- * ANSI support: C Dialect Options. (line 10)
- * ANSI X3.159-1989: Standards. (line 13)
- * apostrophes: Incompatibilities. (line 116)
- * application binary interface: Compatibility. (line 6)
- * ARC options: ARC Options. (line 6)
- * arch= function attribute, AArch64: AArch64 Function Attributes.
- (line 49)
- * arch= function attribute, ARM: ARM Function Attributes.
- (line 91)
- * ARM options: ARM Options. (line 6)
- * ARM [Annotated C++ Reference Manual]: Backwards Compatibility.
- (line 6)
- * arrays of length zero: Zero Length. (line 6)
- * arrays of variable length: Variable Length. (line 6)
- * arrays, non-lvalue: Subscripting. (line 6)
- * artificial function attribute: Common Function Attributes.
- (line 91)
- * asin: Other Builtins. (line 6)
- * asinf: Other Builtins. (line 6)
- * asinh: Other Builtins. (line 6)
- * asinhf: Other Builtins. (line 6)
- * asinhl: Other Builtins. (line 6)
- * asinl: Other Builtins. (line 6)
- * asm assembler template: Extended Asm. (line 225)
- * asm clobbers: Extended Asm. (line 653)
- * asm constraints: Constraints. (line 6)
- * asm expressions: Extended Asm. (line 558)
- * asm flag output operands: Extended Asm. (line 487)
- * asm goto labels: Extended Asm. (line 832)
- * asm inline: Size of an asm. (line 25)
- * asm input operands: Extended Asm. (line 558)
- * asm keyword: Using Assembly Language with C.
- (line 6)
- * asm output operands: Extended Asm. (line 328)
- * asm scratch registers: Extended Asm. (line 653)
- * asm volatile: Extended Asm. (line 116)
- * assembler names for identifiers: Asm Labels. (line 6)
- * assembly code, invalid: Bug Criteria. (line 12)
- * assembly language in C: Using Assembly Language with C.
- (line 6)
- * assembly language in C, basic: Basic Asm. (line 6)
- * assembly language in C, extended: Extended Asm. (line 6)
- * assume_aligned function attribute: Common Function Attributes.
- (line 98)
- * atan: Other Builtins. (line 6)
- * atan2: Other Builtins. (line 6)
- * atan2f: Other Builtins. (line 6)
- * atan2l: Other Builtins. (line 6)
- * atanf: Other Builtins. (line 6)
- * atanh: Other Builtins. (line 6)
- * atanhf: Other Builtins. (line 6)
- * atanhl: Other Builtins. (line 6)
- * atanl: Other Builtins. (line 6)
- * attribute of types: Type Attributes. (line 6)
- * attribute of variables: Variable Attributes.
- (line 6)
- * attribute syntax: Attribute Syntax. (line 6)
- * autoincrement/decrement addressing: Simple Constraints. (line 30)
- * automatic inline for C++ member fns: Inline. (line 68)
- * aux variable attribute, ARC: ARC Variable Attributes.
- (line 7)
- * AVR Options: AVR Options. (line 6)
- * Backwards Compatibility: Backwards Compatibility.
- (line 6)
- * bank_switch function attribute, M32C: M32C Function Attributes.
- (line 9)
- * base class members: Name lookup. (line 6)
- * based type attribute, MeP: MeP Type Attributes.
- (line 6)
- * based variable attribute, MeP: MeP Variable Attributes.
- (line 16)
- * basic asm: Basic Asm. (line 6)
- * bcmp: Other Builtins. (line 6)
- * below100 variable attribute, Xstormy16: Xstormy16 Variable Attributes.
- (line 10)
- * binary compatibility: Compatibility. (line 6)
- * Binary constants using the 0b prefix: Binary constants. (line 6)
- * Blackfin Options: Blackfin Options. (line 6)
- * bnd_instrument function attribute: Common Function Attributes.
- (line 113)
- * bnd_legacy function attribute: Common Function Attributes.
- (line 118)
- * bnd_variable_size type attribute: Common Type Attributes.
- (line 127)
- * bound pointer to member function: Bound member functions.
- (line 6)
- * break handler functions: MicroBlaze Function Attributes.
- (line 17)
- * break_handler function attribute, MicroBlaze: MicroBlaze Function Attributes.
- (line 17)
- * brk_interrupt function attribute, RL78: RL78 Function Attributes.
- (line 10)
- * bug criteria: Bug Criteria. (line 6)
- * bugs: Bugs. (line 6)
- * bugs, known: Trouble. (line 6)
- * built-in functions: C Dialect Options. (line 254)
- * built-in functions <1>: Other Builtins. (line 6)
- * bzero: Other Builtins. (line 6)
- * C compilation options: Invoking GCC. (line 18)
- * C intermediate output, nonexistent: G++ and GCC. (line 35)
- * C language extensions: C Extensions. (line 6)
- * C language, traditional: Preprocessor Options.
- (line 366)
- * C standard: Standards. (line 13)
- * C standards: Standards. (line 13)
- * c++: Invoking G++. (line 14)
- * C++: G++ and GCC. (line 30)
- * C++ comments: C++ Comments. (line 6)
- * C++ interface and implementation headers: C++ Interface. (line 6)
- * C++ language extensions: C++ Extensions. (line 6)
- * C++ member fns, automatically inline: Inline. (line 68)
- * C++ misunderstandings: C++ Misunderstandings.
- (line 6)
- * C++ options, command-line: C++ Dialect Options.
- (line 6)
- * C++ pragmas, effect on inlining: C++ Interface. (line 57)
- * C++ source file suffixes: Invoking G++. (line 6)
- * C++ static data, declaring and defining: Static Definitions.
- (line 6)
- * C11: Standards. (line 13)
- * C17: Standards. (line 13)
- * C1X: Standards. (line 13)
- * C6X Options: C6X Options. (line 6)
- * C89: Standards. (line 13)
- * C90: Standards. (line 13)
- * C94: Standards. (line 13)
- * C95: Standards. (line 13)
- * C99: Standards. (line 13)
- * C9X: Standards. (line 13)
- * cabs: Other Builtins. (line 6)
- * cabsf: Other Builtins. (line 6)
- * cabsl: Other Builtins. (line 6)
- * cacos: Other Builtins. (line 6)
- * cacosf: Other Builtins. (line 6)
- * cacosh: Other Builtins. (line 6)
- * cacoshf: Other Builtins. (line 6)
- * cacoshl: Other Builtins. (line 6)
- * cacosl: Other Builtins. (line 6)
- * callee_pop_aggregate_return function attribute, x86: x86 Function Attributes.
- (line 47)
- * calling functions through the function vector on SH2A: SH Function Attributes.
- (line 9)
- * calloc: Other Builtins. (line 6)
- * carg: Other Builtins. (line 6)
- * cargf: Other Builtins. (line 6)
- * cargl: Other Builtins. (line 6)
- * case labels in initializers: Designated Inits. (line 6)
- * case ranges: Case Ranges. (line 6)
- * casin: Other Builtins. (line 6)
- * casinf: Other Builtins. (line 6)
- * casinh: Other Builtins. (line 6)
- * casinhf: Other Builtins. (line 6)
- * casinhl: Other Builtins. (line 6)
- * casinl: Other Builtins. (line 6)
- * cast to a union: Cast to Union. (line 6)
- * catan: Other Builtins. (line 6)
- * catanf: Other Builtins. (line 6)
- * catanh: Other Builtins. (line 6)
- * catanhf: Other Builtins. (line 6)
- * catanhl: Other Builtins. (line 6)
- * catanl: Other Builtins. (line 6)
- * cb variable attribute, MeP: MeP Variable Attributes.
- (line 46)
- * cbrt: Other Builtins. (line 6)
- * cbrtf: Other Builtins. (line 6)
- * cbrtl: Other Builtins. (line 6)
- * ccos: Other Builtins. (line 6)
- * ccosf: Other Builtins. (line 6)
- * ccosh: Other Builtins. (line 6)
- * ccoshf: Other Builtins. (line 6)
- * ccoshl: Other Builtins. (line 6)
- * ccosl: Other Builtins. (line 6)
- * cdecl function attribute, x86-32: x86 Function Attributes.
- (line 9)
- * ceil: Other Builtins. (line 6)
- * ceilf: Other Builtins. (line 6)
- * ceill: Other Builtins. (line 6)
- * cexp: Other Builtins. (line 6)
- * cexpf: Other Builtins. (line 6)
- * cexpl: Other Builtins. (line 6)
- * character set, execution: Preprocessor Options.
- (line 266)
- * character set, input: Preprocessor Options.
- (line 279)
- * character set, input normalization: Warning Options. (line 2440)
- * character set, wide execution: Preprocessor Options.
- (line 271)
- * cimag: Other Builtins. (line 6)
- * cimagf: Other Builtins. (line 6)
- * cimagl: Other Builtins. (line 6)
- * cleanup variable attribute: Common Variable Attributes.
- (line 103)
- * clog: Other Builtins. (line 6)
- * clog10: Other Builtins. (line 6)
- * clog10f: Other Builtins. (line 6)
- * clog10l: Other Builtins. (line 6)
- * clogf: Other Builtins. (line 6)
- * clogl: Other Builtins. (line 6)
- * cmodel= function attribute, AArch64: AArch64 Function Attributes.
- (line 27)
- * COBOL: G++ and GCC. (line 23)
- * code generation conventions: Code Gen Options. (line 6)
- * code, mixed with declarations: Mixed Declarations. (line 6)
- * cold function attribute: Common Function Attributes.
- (line 123)
- * cold label attribute: Label Attributes. (line 45)
- * command options: Invoking GCC. (line 6)
- * comments, C++ style: C++ Comments. (line 6)
- * common variable attribute: Common Variable Attributes.
- (line 118)
- * comparison of signed and unsigned values, warning: Warning Options.
- (line 2212)
- * compilation statistics: Developer Options. (line 6)
- * compiler bugs, reporting: Bug Reporting. (line 6)
- * compiler compared to C++ preprocessor: G++ and GCC. (line 35)
- * compiler options, C++: C++ Dialect Options.
- (line 6)
- * compiler options, Objective-C and Objective-C++: Objective-C and Objective-C++ Dialect Options.
- (line 6)
- * compiler version, specifying: Invoking GCC. (line 24)
- * COMPILER_PATH: Environment Variables.
- (line 91)
- * complex conjugation: Complex. (line 38)
- * complex numbers: Complex. (line 6)
- * compound literals: Compound Literals. (line 6)
- * computed gotos: Labels as Values. (line 6)
- * conditional expressions, extensions: Conditionals. (line 6)
- * conflicting types: Disappointments. (line 21)
- * conj: Other Builtins. (line 6)
- * conjf: Other Builtins. (line 6)
- * conjl: Other Builtins. (line 6)
- * const applied to function: Function Attributes.
- (line 6)
- * const function attribute: Common Function Attributes.
- (line 139)
- * const qualifier: Pointers to Arrays. (line 6)
- * constants in constraints: Simple Constraints. (line 68)
- * constraint modifier characters: Modifiers. (line 6)
- * constraint, matching: Simple Constraints. (line 137)
- * constraints, asm: Constraints. (line 6)
- * constraints, machine specific: Machine Constraints.
- (line 6)
- * constructing calls: Constructing Calls. (line 6)
- * constructor expressions: Compound Literals. (line 6)
- * constructor function attribute: Common Function Attributes.
- (line 161)
- * contributors: Contributors. (line 6)
- * copysign: Other Builtins. (line 6)
- * copysignf: Other Builtins. (line 6)
- * copysignl: Other Builtins. (line 6)
- * core dump: Bug Criteria. (line 9)
- * cos: Other Builtins. (line 6)
- * cosf: Other Builtins. (line 6)
- * cosh: Other Builtins. (line 6)
- * coshf: Other Builtins. (line 6)
- * coshl: Other Builtins. (line 6)
- * cosl: Other Builtins. (line 6)
- * CPATH: Environment Variables.
- (line 127)
- * CPLUS_INCLUDE_PATH: Environment Variables.
- (line 129)
- * cpow: Other Builtins. (line 6)
- * cpowf: Other Builtins. (line 6)
- * cpowl: Other Builtins. (line 6)
- * cproj: Other Builtins. (line 6)
- * cprojf: Other Builtins. (line 6)
- * cprojl: Other Builtins. (line 6)
- * cpu= function attribute, AArch64: AArch64 Function Attributes.
- (line 59)
- * CR16 Options: CR16 Options. (line 6)
- * creal: Other Builtins. (line 6)
- * crealf: Other Builtins. (line 6)
- * creall: Other Builtins. (line 6)
- * CRIS Options: CRIS Options. (line 6)
- * critical function attribute, MSP430: MSP430 Function Attributes.
- (line 9)
- * cross compiling: Invoking GCC. (line 24)
- * csin: Other Builtins. (line 6)
- * csinf: Other Builtins. (line 6)
- * csinh: Other Builtins. (line 6)
- * csinhf: Other Builtins. (line 6)
- * csinhl: Other Builtins. (line 6)
- * csinl: Other Builtins. (line 6)
- * csqrt: Other Builtins. (line 6)
- * csqrtf: Other Builtins. (line 6)
- * csqrtl: Other Builtins. (line 6)
- * ctan: Other Builtins. (line 6)
- * ctanf: Other Builtins. (line 6)
- * ctanh: Other Builtins. (line 6)
- * ctanhf: Other Builtins. (line 6)
- * ctanhl: Other Builtins. (line 6)
- * ctanl: Other Builtins. (line 6)
- * C_INCLUDE_PATH: Environment Variables.
- (line 128)
- * Darwin options: Darwin Options. (line 6)
- * dcgettext: Other Builtins. (line 6)
- * dd integer suffix: Decimal Float. (line 6)
- * DD integer suffix: Decimal Float. (line 6)
- * deallocating variable length arrays: Variable Length. (line 22)
- * debug dump options: Developer Options. (line 6)
- * debugging GCC: Developer Options. (line 6)
- * debugging information options: Debugging Options. (line 6)
- * decimal floating types: Decimal Float. (line 6)
- * declaration scope: Incompatibilities. (line 80)
- * declarations inside expressions: Statement Exprs. (line 6)
- * declarations, mixed with code: Mixed Declarations. (line 6)
- * declaring attributes of functions: Function Attributes.
- (line 6)
- * declaring static data in C++: Static Definitions. (line 6)
- * defining static data in C++: Static Definitions. (line 6)
- * dependencies for make as output: Environment Variables.
- (line 156)
- * dependencies for make as output <1>: Environment Variables.
- (line 172)
- * dependencies, make: Preprocessor Options.
- (line 77)
- * DEPENDENCIES_OUTPUT: Environment Variables.
- (line 155)
- * dependent name lookup: Name lookup. (line 6)
- * deprecated enumerator attribute: Enumerator Attributes.
- (line 28)
- * deprecated function attribute: Common Function Attributes.
- (line 185)
- * deprecated type attribute: Common Type Attributes.
- (line 154)
- * deprecated variable attribute: Common Variable Attributes.
- (line 127)
- * designated initializers: Designated Inits. (line 6)
- * designated_init type attribute: Common Type Attributes.
- (line 182)
- * designator lists: Designated Inits. (line 96)
- * designators: Designated Inits. (line 64)
- * destructor function attribute: Common Function Attributes.
- (line 161)
- * developer options: Developer Options. (line 6)
- * df integer suffix: Decimal Float. (line 6)
- * DF integer suffix: Decimal Float. (line 6)
- * dgettext: Other Builtins. (line 6)
- * diagnostic messages: Diagnostic Message Formatting Options.
- (line 6)
- * dialect options: C Dialect Options. (line 6)
- * diff-delete GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 108)
- * diff-filename GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 101)
- * diff-hunk GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 104)
- * diff-insert GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 111)
- * digits in constraint: Simple Constraints. (line 125)
- * directory options: Directory Options. (line 6)
- * disinterrupt function attribute, Epiphany: Epiphany Function Attributes.
- (line 9)
- * disinterrupt function attribute, MeP: MeP Function Attributes.
- (line 9)
- * dl integer suffix: Decimal Float. (line 6)
- * DL integer suffix: Decimal Float. (line 6)
- * dllexport function attribute: Microsoft Windows Function Attributes.
- (line 10)
- * dllexport variable attribute: Microsoft Windows Variable Attributes.
- (line 12)
- * dllimport function attribute: Microsoft Windows Function Attributes.
- (line 42)
- * dllimport variable attribute: Microsoft Windows Variable Attributes.
- (line 12)
- * dollar signs in identifier names: Dollar Signs. (line 6)
- * double-word arithmetic: Long Long. (line 6)
- * downward funargs: Nested Functions. (line 6)
- * drem: Other Builtins. (line 6)
- * dremf: Other Builtins. (line 6)
- * dreml: Other Builtins. (line 6)
- * dump options: Developer Options. (line 6)
- * E in constraint: Simple Constraints. (line 87)
- * earlyclobber operand: Modifiers. (line 25)
- * eight-bit data on the H8/300, H8/300H, and H8S: H8/300 Variable Attributes.
- (line 9)
- * eightbit_data variable attribute, H8/300: H8/300 Variable Attributes.
- (line 9)
- * EIND: AVR Options. (line 291)
- * either function attribute, MSP430: MSP430 Function Attributes.
- (line 53)
- * either variable attribute, MSP430: MSP430 Variable Attributes.
- (line 24)
- * empty structures: Empty Structures. (line 6)
- * Enumerator Attributes: Enumerator Attributes.
- (line 6)
- * environment variables: Environment Variables.
- (line 6)
- * erf: Other Builtins. (line 6)
- * erfc: Other Builtins. (line 6)
- * erfcf: Other Builtins. (line 6)
- * erfcl: Other Builtins. (line 6)
- * erff: Other Builtins. (line 6)
- * erfl: Other Builtins. (line 6)
- * error function attribute: Common Function Attributes.
- (line 206)
- * error GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 72)
- * error messages: Warnings and Errors.
- (line 6)
- * escaped newlines: Escaped Newlines. (line 6)
- * exception function attribute: NDS32 Function Attributes.
- (line 9)
- * exception handler functions, Blackfin: Blackfin Function Attributes.
- (line 9)
- * exception handler functions, NDS32: NDS32 Function Attributes.
- (line 9)
- * exception_handler function attribute: Blackfin Function Attributes.
- (line 9)
- * exit: Other Builtins. (line 6)
- * exp: Other Builtins. (line 6)
- * exp10: Other Builtins. (line 6)
- * exp10f: Other Builtins. (line 6)
- * exp10l: Other Builtins. (line 6)
- * exp2: Other Builtins. (line 6)
- * exp2f: Other Builtins. (line 6)
- * exp2l: Other Builtins. (line 6)
- * expf: Other Builtins. (line 6)
- * expl: Other Builtins. (line 6)
- * explicit register variables: Explicit Register Variables.
- (line 6)
- * expm1: Other Builtins. (line 6)
- * expm1f: Other Builtins. (line 6)
- * expm1l: Other Builtins. (line 6)
- * expressions containing statements: Statement Exprs. (line 6)
- * expressions, constructor: Compound Literals. (line 6)
- * extended asm: Extended Asm. (line 6)
- * extensible constraints: Simple Constraints. (line 161)
- * extensions, ?:: Conditionals. (line 6)
- * extensions, C language: C Extensions. (line 6)
- * extensions, C++ language: C++ Extensions. (line 6)
- * external declaration scope: Incompatibilities. (line 80)
- * externally_visible function attribute: Common Function Attributes.
- (line 223)
- * extra NOP instructions at the function entry point: Common Function Attributes.
- (line 734)
- * F in constraint: Simple Constraints. (line 92)
- * fabs: Other Builtins. (line 6)
- * fabsf: Other Builtins. (line 6)
- * fabsl: Other Builtins. (line 6)
- * fallthrough statement attribute: Statement Attributes.
- (line 26)
- * far function attribute, MeP: MeP Function Attributes.
- (line 25)
- * far function attribute, MIPS: MIPS Function Attributes.
- (line 63)
- * far type attribute, MeP: MeP Type Attributes.
- (line 6)
- * far variable attribute, MeP: MeP Variable Attributes.
- (line 30)
- * fastcall function attribute, x86-32: x86 Function Attributes.
- (line 15)
- * fast_interrupt function attribute, M32C: M32C Function Attributes.
- (line 14)
- * fast_interrupt function attribute, MicroBlaze: MicroBlaze Function Attributes.
- (line 27)
- * fast_interrupt function attribute, RX: RX Function Attributes.
- (line 9)
- * fatal signal: Bug Criteria. (line 9)
- * fdim: Other Builtins. (line 6)
- * fdimf: Other Builtins. (line 6)
- * fdiml: Other Builtins. (line 6)
- * FDL, GNU Free Documentation License: GNU Free Documentation License.
- (line 6)
- * ffs: Other Builtins. (line 6)
- * file name suffix: Overall Options. (line 14)
- * file names: Link Options. (line 10)
- * fix-cortex-a53-835769 function attribute, AArch64: AArch64 Function Attributes.
- (line 19)
- * fixed-point types: Fixed-Point. (line 6)
- * fixit-delete GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 98)
- * fixit-insert GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 94)
- * flatten function attribute: Common Function Attributes.
- (line 236)
- * flexible array members: Zero Length. (line 6)
- * float as function value type: Incompatibilities. (line 141)
- * floating point precision: Disappointments. (line 68)
- * floating-point precision: Optimize Options. (line 1993)
- * floor: Other Builtins. (line 6)
- * floorf: Other Builtins. (line 6)
- * floorl: Other Builtins. (line 6)
- * fma: Other Builtins. (line 6)
- * fmaf: Other Builtins. (line 6)
- * fmal: Other Builtins. (line 6)
- * fmax: Other Builtins. (line 6)
- * fmaxf: Other Builtins. (line 6)
- * fmaxl: Other Builtins. (line 6)
- * fmin: Other Builtins. (line 6)
- * fminf: Other Builtins. (line 6)
- * fminl: Other Builtins. (line 6)
- * fmod: Other Builtins. (line 6)
- * fmodf: Other Builtins. (line 6)
- * fmodl: Other Builtins. (line 6)
- * force_align_arg_pointer function attribute, x86: x86 Function Attributes.
- (line 100)
- * format function attribute: Common Function Attributes.
- (line 243)
- * format_arg function attribute: Common Function Attributes.
- (line 308)
- * Fortran: G++ and GCC. (line 6)
- * forwarder_section function attribute, Epiphany: Epiphany Function Attributes.
- (line 13)
- * forwarding calls: Constructing Calls. (line 6)
- * fprintf: Other Builtins. (line 6)
- * fprintf_unlocked: Other Builtins. (line 6)
- * fputs: Other Builtins. (line 6)
- * fputs_unlocked: Other Builtins. (line 6)
- * FR30 Options: FR30 Options. (line 6)
- * freestanding environment: Standards. (line 13)
- * freestanding implementation: Standards. (line 13)
- * frexp: Other Builtins. (line 6)
- * frexpf: Other Builtins. (line 6)
- * frexpl: Other Builtins. (line 6)
- * FRV Options: FRV Options. (line 6)
- * fscanf: Other Builtins. (line 6)
- * fscanf, and constant strings: Incompatibilities. (line 17)
- * FT32 Options: FT32 Options. (line 6)
- * function addressability on the M32R/D: M32R/D Function Attributes.
- (line 15)
- * function attributes: Function Attributes.
- (line 6)
- * function pointers, arithmetic: Pointer Arith. (line 6)
- * function prototype declarations: Function Prototypes.
- (line 6)
- * function versions: Function Multiversioning.
- (line 6)
- * function, size of pointer to: Pointer Arith. (line 6)
- * functions in arbitrary sections: Common Function Attributes.
- (line 798)
- * functions that are dynamically resolved: Common Function Attributes.
- (line 400)
- * functions that are passed arguments in registers on x86-32: x86 Function Attributes.
- (line 76)
- * functions that behave like malloc: Common Function Attributes.
- (line 527)
- * functions that have no side effects: Common Function Attributes.
- (line 139)
- * functions that have no side effects <1>: Common Function Attributes.
- (line 752)
- * functions that never return: Common Function Attributes.
- (line 681)
- * functions that pop the argument stack on x86-32: x86 Function Attributes.
- (line 9)
- * functions that pop the argument stack on x86-32 <1>: x86 Function Attributes.
- (line 15)
- * functions that pop the argument stack on x86-32 <2>: x86 Function Attributes.
- (line 23)
- * functions that pop the argument stack on x86-32 <3>: x86 Function Attributes.
- (line 108)
- * functions that return more than once: Common Function Attributes.
- (line 789)
- * functions with non-null pointer arguments: Common Function Attributes.
- (line 633)
- * functions with printf, scanf, strftime or strfmon style arguments: Common Function Attributes.
- (line 243)
- * function_return function attribute, x86: x86 Function Attributes.
- (line 550)
- * function_vector function attribute, H8/300: H8/300 Function Attributes.
- (line 9)
- * function_vector function attribute, M16C/M32C: M32C Function Attributes.
- (line 20)
- * function_vector function attribute, SH: SH Function Attributes.
- (line 9)
- * G in constraint: Simple Constraints. (line 96)
- * g in constraint: Simple Constraints. (line 118)
- * g++: Invoking G++. (line 14)
- * G++: G++ and GCC. (line 30)
- * gamma: Other Builtins. (line 6)
- * gammaf: Other Builtins. (line 6)
- * gammaf_r: Other Builtins. (line 6)
- * gammal: Other Builtins. (line 6)
- * gammal_r: Other Builtins. (line 6)
- * gamma_r: Other Builtins. (line 6)
- * GCC: G++ and GCC. (line 6)
- * GCC command options: Invoking GCC. (line 6)
- * GCC_COLORS environment variable: Diagnostic Message Formatting Options.
- (line 35)
- * GCC_COMPARE_DEBUG: Environment Variables.
- (line 52)
- * GCC_EXEC_PREFIX: Environment Variables.
- (line 57)
- * gcc_struct type attribute, PowerPC: PowerPC Type Attributes.
- (line 9)
- * gcc_struct type attribute, x86: x86 Type Attributes.
- (line 11)
- * gcc_struct variable attribute, PowerPC: PowerPC Variable Attributes.
- (line 9)
- * gcc_struct variable attribute, x86: x86 Variable Attributes.
- (line 11)
- * gcov: Instrumentation Options.
- (line 50)
- * general-regs-only function attribute, AArch64: AArch64 Function Attributes.
- (line 12)
- * gettext: Other Builtins. (line 6)
- * global offset table: Code Gen Options. (line 359)
- * global register after longjmp: Global Register Variables.
- (line 74)
- * global register variables: Global Register Variables.
- (line 6)
- * GNAT: G++ and GCC. (line 30)
- * GNU C Compiler: G++ and GCC. (line 6)
- * GNU Compiler Collection: G++ and GCC. (line 6)
- * gnu_inline function attribute: Common Function Attributes.
- (line 354)
- * Go: G++ and GCC. (line 6)
- * goto with computed label: Labels as Values. (line 6)
- * gprof: Instrumentation Options.
- (line 24)
- * grouping options: Invoking GCC. (line 31)
- * H in constraint: Simple Constraints. (line 96)
- * half-precision floating point: Half-Precision. (line 6)
- * hardware models and configurations, specifying: Submodel Options.
- (line 6)
- * hex floats: Hex Floats. (line 6)
- * highlight, color: Diagnostic Message Formatting Options.
- (line 35)
- * hk fixed-suffix: Fixed-Point. (line 6)
- * HK fixed-suffix: Fixed-Point. (line 6)
- * hosted environment: Standards. (line 13)
- * hosted environment <1>: C Dialect Options. (line 294)
- * hosted environment <2>: C Dialect Options. (line 302)
- * hosted implementation: Standards. (line 13)
- * hot function attribute: Common Function Attributes.
- (line 390)
- * hot label attribute: Label Attributes. (line 38)
- * hotpatch function attribute, S/390: S/390 Function Attributes.
- (line 9)
- * HPPA Options: HPPA Options. (line 6)
- * hr fixed-suffix: Fixed-Point. (line 6)
- * HR fixed-suffix: Fixed-Point. (line 6)
- * hypot: Other Builtins. (line 6)
- * hypotf: Other Builtins. (line 6)
- * hypotl: Other Builtins. (line 6)
- * i in constraint: Simple Constraints. (line 68)
- * I in constraint: Simple Constraints. (line 79)
- * IA-64 Options: IA-64 Options. (line 6)
- * IBM RS/6000 and PowerPC Options: RS/6000 and PowerPC Options.
- (line 6)
- * identifier names, dollar signs in: Dollar Signs. (line 6)
- * identifiers, names in assembler code: Asm Labels. (line 6)
- * ifunc function attribute: Common Function Attributes.
- (line 400)
- * ilogb: Other Builtins. (line 6)
- * ilogbf: Other Builtins. (line 6)
- * ilogbl: Other Builtins. (line 6)
- * imaxabs: Other Builtins. (line 6)
- * implementation-defined behavior, C language: C Implementation.
- (line 6)
- * implementation-defined behavior, C++ language: C++ Implementation.
- (line 6)
- * implied #pragma implementation: C++ Interface. (line 43)
- * incompatibilities of GCC: Incompatibilities. (line 6)
- * increment operators: Bug Criteria. (line 17)
- * index: Other Builtins. (line 6)
- * indirect calls, ARC: ARC Function Attributes.
- (line 24)
- * indirect calls, ARM: ARM Function Attributes.
- (line 31)
- * indirect calls, Blackfin: Blackfin Function Attributes.
- (line 38)
- * indirect calls, Epiphany: Epiphany Function Attributes.
- (line 57)
- * indirect calls, MIPS: MIPS Function Attributes.
- (line 63)
- * indirect calls, PowerPC: PowerPC Function Attributes.
- (line 10)
- * indirect functions: Common Function Attributes.
- (line 400)
- * indirect_branch function attribute, x86: x86 Function Attributes.
- (line 540)
- * initializations in expressions: Compound Literals. (line 6)
- * initializers with labeled elements: Designated Inits. (line 6)
- * initializers, non-constant: Initializers. (line 6)
- * init_priority variable attribute: C++ Attributes. (line 50)
- * inline assembly language: Using Assembly Language with C.
- (line 6)
- * inline automatic for C++ member fns: Inline. (line 68)
- * inline functions: Inline. (line 6)
- * inline functions, omission of: Inline. (line 51)
- * inlining and C++ pragmas: C++ Interface. (line 57)
- * installation trouble: Trouble. (line 6)
- * instrumentation options: Instrumentation Options.
- (line 6)
- * integrating function code: Inline. (line 6)
- * interface and implementation headers, C++: C++ Interface. (line 6)
- * intermediate C version, nonexistent: G++ and GCC. (line 35)
- * interrupt function attribute, ARC: ARC Function Attributes.
- (line 9)
- * interrupt function attribute, ARM: ARM Function Attributes.
- (line 9)
- * interrupt function attribute, AVR: AVR Function Attributes.
- (line 9)
- * interrupt function attribute, CR16: CR16 Function Attributes.
- (line 9)
- * interrupt function attribute, Epiphany: Epiphany Function Attributes.
- (line 20)
- * interrupt function attribute, M32C: M32C Function Attributes.
- (line 53)
- * interrupt function attribute, M32R/D: M32R/D Function Attributes.
- (line 9)
- * interrupt function attribute, m68k: m68k Function Attributes.
- (line 10)
- * interrupt function attribute, MeP: MeP Function Attributes.
- (line 14)
- * interrupt function attribute, MIPS: MIPS Function Attributes.
- (line 9)
- * interrupt function attribute, MSP430: MSP430 Function Attributes.
- (line 15)
- * interrupt function attribute, NDS32: NDS32 Function Attributes.
- (line 14)
- * interrupt function attribute, RISC-V: RISC-V Function Attributes.
- (line 19)
- * interrupt function attribute, RL78: RL78 Function Attributes.
- (line 10)
- * interrupt function attribute, RX: RX Function Attributes.
- (line 15)
- * interrupt function attribute, V850: V850 Function Attributes.
- (line 10)
- * interrupt function attribute, Visium: Visium Function Attributes.
- (line 9)
- * interrupt function attribute, x86: x86 Function Attributes.
- (line 124)
- * interrupt function attribute, Xstormy16: Xstormy16 Function Attributes.
- (line 9)
- * interrupt_handler function attribute, Blackfin: Blackfin Function Attributes.
- (line 15)
- * interrupt_handler function attribute, H8/300: H8/300 Function Attributes.
- (line 17)
- * interrupt_handler function attribute, m68k: m68k Function Attributes.
- (line 10)
- * interrupt_handler function attribute, MicroBlaze: MicroBlaze Function Attributes.
- (line 27)
- * interrupt_handler function attribute, SH: SH Function Attributes.
- (line 28)
- * interrupt_handler function attribute, V850: V850 Function Attributes.
- (line 10)
- * interrupt_thread function attribute, fido: m68k Function Attributes.
- (line 16)
- * introduction: Top. (line 6)
- * invalid assembly code: Bug Criteria. (line 12)
- * invalid input: Bug Criteria. (line 42)
- * invoking g++: Invoking G++. (line 22)
- * io variable attribute, AVR: AVR Variable Attributes.
- (line 73)
- * io variable attribute, MeP: MeP Variable Attributes.
- (line 36)
- * io_low variable attribute, AVR: AVR Variable Attributes.
- (line 91)
- * isalnum: Other Builtins. (line 6)
- * isalpha: Other Builtins. (line 6)
- * isascii: Other Builtins. (line 6)
- * isblank: Other Builtins. (line 6)
- * iscntrl: Other Builtins. (line 6)
- * isdigit: Other Builtins. (line 6)
- * isgraph: Other Builtins. (line 6)
- * islower: Other Builtins. (line 6)
- * ISO 9899: Standards. (line 13)
- * ISO C: Standards. (line 13)
- * ISO C standard: Standards. (line 13)
- * ISO C11: Standards. (line 13)
- * ISO C17: Standards. (line 13)
- * ISO C1X: Standards. (line 13)
- * ISO C90: Standards. (line 13)
- * ISO C94: Standards. (line 13)
- * ISO C95: Standards. (line 13)
- * ISO C99: Standards. (line 13)
- * ISO C9X: Standards. (line 13)
- * ISO support: C Dialect Options. (line 10)
- * ISO/IEC 9899: Standards. (line 13)
- * isprint: Other Builtins. (line 6)
- * ispunct: Other Builtins. (line 6)
- * isr function attribute, ARM: ARM Function Attributes.
- (line 26)
- * isspace: Other Builtins. (line 6)
- * isupper: Other Builtins. (line 6)
- * iswalnum: Other Builtins. (line 6)
- * iswalpha: Other Builtins. (line 6)
- * iswblank: Other Builtins. (line 6)
- * iswcntrl: Other Builtins. (line 6)
- * iswdigit: Other Builtins. (line 6)
- * iswgraph: Other Builtins. (line 6)
- * iswlower: Other Builtins. (line 6)
- * iswprint: Other Builtins. (line 6)
- * iswpunct: Other Builtins. (line 6)
- * iswspace: Other Builtins. (line 6)
- * iswupper: Other Builtins. (line 6)
- * iswxdigit: Other Builtins. (line 6)
- * isxdigit: Other Builtins. (line 6)
- * j0: Other Builtins. (line 6)
- * j0f: Other Builtins. (line 6)
- * j0l: Other Builtins. (line 6)
- * j1: Other Builtins. (line 6)
- * j1f: Other Builtins. (line 6)
- * j1l: Other Builtins. (line 6)
- * jli_always function attribute, ARC: ARC Function Attributes.
- (line 41)
- * jli_fixed function attribute, ARC: ARC Function Attributes.
- (line 47)
- * jn: Other Builtins. (line 6)
- * jnf: Other Builtins. (line 6)
- * jnl: Other Builtins. (line 6)
- * k fixed-suffix: Fixed-Point. (line 6)
- * K fixed-suffix: Fixed-Point. (line 6)
- * keep_interrupts_masked function attribute, MIPS: MIPS Function Attributes.
- (line 34)
- * kernel attribute, Nvidia PTX: Nvidia PTX Function Attributes.
- (line 9)
- * keywords, alternate: Alternate Keywords. (line 6)
- * known causes of trouble: Trouble. (line 6)
- * kspisusp function attribute, Blackfin: Blackfin Function Attributes.
- (line 21)
- * l1_data variable attribute, Blackfin: Blackfin Variable Attributes.
- (line 11)
- * l1_data_A variable attribute, Blackfin: Blackfin Variable Attributes.
- (line 11)
- * l1_data_B variable attribute, Blackfin: Blackfin Variable Attributes.
- (line 11)
- * l1_text function attribute, Blackfin: Blackfin Function Attributes.
- (line 26)
- * l2 function attribute, Blackfin: Blackfin Function Attributes.
- (line 32)
- * l2 variable attribute, Blackfin: Blackfin Variable Attributes.
- (line 19)
- * Label Attributes: Label Attributes. (line 6)
- * labeled elements in initializers: Designated Inits. (line 6)
- * labels as values: Labels as Values. (line 6)
- * labs: Other Builtins. (line 6)
- * LANG: Environment Variables.
- (line 21)
- * LANG <1>: Environment Variables.
- (line 106)
- * language dialect options: C Dialect Options. (line 6)
- * LC_ALL: Environment Variables.
- (line 21)
- * LC_CTYPE: Environment Variables.
- (line 21)
- * LC_MESSAGES: Environment Variables.
- (line 21)
- * ldexp: Other Builtins. (line 6)
- * ldexpf: Other Builtins. (line 6)
- * ldexpl: Other Builtins. (line 6)
- * leaf function attribute: Common Function Attributes.
- (line 490)
- * length-zero arrays: Zero Length. (line 6)
- * lgamma: Other Builtins. (line 6)
- * lgammaf: Other Builtins. (line 6)
- * lgammaf_r: Other Builtins. (line 6)
- * lgammal: Other Builtins. (line 6)
- * lgammal_r: Other Builtins. (line 6)
- * lgamma_r: Other Builtins. (line 6)
- * Libraries: Link Options. (line 30)
- * LIBRARY_PATH: Environment Variables.
- (line 97)
- * link options: Link Options. (line 6)
- * linker script: Link Options. (line 256)
- * lk fixed-suffix: Fixed-Point. (line 6)
- * LK fixed-suffix: Fixed-Point. (line 6)
- * LL integer suffix: Long Long. (line 6)
- * llabs: Other Builtins. (line 6)
- * llk fixed-suffix: Fixed-Point. (line 6)
- * LLK fixed-suffix: Fixed-Point. (line 6)
- * llr fixed-suffix: Fixed-Point. (line 6)
- * LLR fixed-suffix: Fixed-Point. (line 6)
- * llrint: Other Builtins. (line 6)
- * llrintf: Other Builtins. (line 6)
- * llrintl: Other Builtins. (line 6)
- * llround: Other Builtins. (line 6)
- * llroundf: Other Builtins. (line 6)
- * llroundl: Other Builtins. (line 6)
- * LM32 options: LM32 Options. (line 6)
- * load address instruction: Simple Constraints. (line 152)
- * local labels: Local Labels. (line 6)
- * local variables in macros: Typeof. (line 46)
- * local variables, specifying registers: Local Register Variables.
- (line 6)
- * locale: Environment Variables.
- (line 21)
- * locale definition: Environment Variables.
- (line 106)
- * locus GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 87)
- * log: Other Builtins. (line 6)
- * log10: Other Builtins. (line 6)
- * log10f: Other Builtins. (line 6)
- * log10l: Other Builtins. (line 6)
- * log1p: Other Builtins. (line 6)
- * log1pf: Other Builtins. (line 6)
- * log1pl: Other Builtins. (line 6)
- * log2: Other Builtins. (line 6)
- * log2f: Other Builtins. (line 6)
- * log2l: Other Builtins. (line 6)
- * logb: Other Builtins. (line 6)
- * logbf: Other Builtins. (line 6)
- * logbl: Other Builtins. (line 6)
- * logf: Other Builtins. (line 6)
- * logl: Other Builtins. (line 6)
- * long long data types: Long Long. (line 6)
- * longcall function attribute, Blackfin: Blackfin Function Attributes.
- (line 38)
- * longcall function attribute, PowerPC: PowerPC Function Attributes.
- (line 10)
- * longjmp: Global Register Variables.
- (line 74)
- * longjmp incompatibilities: Incompatibilities. (line 39)
- * longjmp warnings: Warning Options. (line 1135)
- * long_call function attribute, ARC: ARC Function Attributes.
- (line 24)
- * long_call function attribute, ARM: ARM Function Attributes.
- (line 31)
- * long_call function attribute, Epiphany: Epiphany Function Attributes.
- (line 57)
- * long_call function attribute, MIPS: MIPS Function Attributes.
- (line 63)
- * lower function attribute, MSP430: MSP430 Function Attributes.
- (line 53)
- * lower variable attribute, MSP430: MSP430 Variable Attributes.
- (line 24)
- * lr fixed-suffix: Fixed-Point. (line 6)
- * LR fixed-suffix: Fixed-Point. (line 6)
- * lrint: Other Builtins. (line 6)
- * lrintf: Other Builtins. (line 6)
- * lrintl: Other Builtins. (line 6)
- * lround: Other Builtins. (line 6)
- * lroundf: Other Builtins. (line 6)
- * lroundl: Other Builtins. (line 6)
- * m in constraint: Simple Constraints. (line 17)
- * M32C options: M32C Options. (line 6)
- * M32R/D options: M32R/D Options. (line 6)
- * M680x0 options: M680x0 Options. (line 6)
- * machine specific constraints: Machine Constraints.
- (line 6)
- * machine-dependent options: Submodel Options. (line 6)
- * macro with variable arguments: Variadic Macros. (line 6)
- * macros, inline alternative: Inline. (line 6)
- * macros, local labels: Local Labels. (line 6)
- * macros, local variables in: Typeof. (line 46)
- * macros, statements in expressions: Statement Exprs. (line 6)
- * macros, types of arguments: Typeof. (line 6)
- * make: Preprocessor Options.
- (line 77)
- * malloc: Other Builtins. (line 6)
- * malloc function attribute: Common Function Attributes.
- (line 527)
- * matching constraint: Simple Constraints. (line 137)
- * may_alias type attribute: Common Type Attributes.
- (line 193)
- * MCore options: MCore Options. (line 6)
- * medium_call function attribute, ARC: ARC Function Attributes.
- (line 24)
- * member fns, automatically inline: Inline. (line 68)
- * memchr: Other Builtins. (line 6)
- * memcmp: Other Builtins. (line 6)
- * memcpy: Other Builtins. (line 6)
- * memory references in constraints: Simple Constraints. (line 17)
- * mempcpy: Other Builtins. (line 6)
- * memset: Other Builtins. (line 6)
- * MeP options: MeP Options. (line 6)
- * Mercury: G++ and GCC. (line 23)
- * message formatting: Diagnostic Message Formatting Options.
- (line 6)
- * messages, warning: Warning Options. (line 6)
- * messages, warning and error: Warnings and Errors.
- (line 6)
- * MicroBlaze Options: MicroBlaze Options. (line 6)
- * micromips function attribute: MIPS Function Attributes.
- (line 91)
- * middle-operands, omitted: Conditionals. (line 6)
- * MIPS options: MIPS Options. (line 6)
- * mips16 function attribute, MIPS: MIPS Function Attributes.
- (line 75)
- * misunderstandings in C++: C++ Misunderstandings.
- (line 6)
- * mixed declarations and code: Mixed Declarations. (line 6)
- * mixing assembly language and C: Using Assembly Language with C.
- (line 6)
- * mktemp, and constant strings: Incompatibilities. (line 13)
- * MMIX Options: MMIX Options. (line 6)
- * MN10300 options: MN10300 Options. (line 6)
- * mode variable attribute: Common Variable Attributes.
- (line 181)
- * model function attribute, M32R/D: M32R/D Function Attributes.
- (line 15)
- * model variable attribute, IA-64: IA-64 Variable Attributes.
- (line 9)
- * model-name variable attribute, M32R/D: M32R/D Variable Attributes.
- (line 9)
- * modf: Other Builtins. (line 6)
- * modff: Other Builtins. (line 6)
- * modfl: Other Builtins. (line 6)
- * modifiers in constraints: Modifiers. (line 6)
- * Moxie Options: Moxie Options. (line 6)
- * MSP430 Options: MSP430 Options. (line 6)
- * ms_abi function attribute, x86: x86 Function Attributes.
- (line 34)
- * ms_hook_prologue function attribute, x86: x86 Function Attributes.
- (line 59)
- * ms_struct type attribute, PowerPC: PowerPC Type Attributes.
- (line 9)
- * ms_struct type attribute, x86: x86 Type Attributes.
- (line 11)
- * ms_struct variable attribute, PowerPC: PowerPC Variable Attributes.
- (line 9)
- * ms_struct variable attribute, x86: x86 Variable Attributes.
- (line 11)
- * multiple alternative constraints: Multi-Alternative. (line 6)
- * multiprecision arithmetic: Long Long. (line 6)
- * n in constraint: Simple Constraints. (line 73)
- * naked function attribute, ARM: ARM Function Attributes.
- (line 41)
- * naked function attribute, AVR: AVR Function Attributes.
- (line 23)
- * naked function attribute, MCORE: MCORE Function Attributes.
- (line 9)
- * naked function attribute, MSP430: MSP430 Function Attributes.
- (line 30)
- * naked function attribute, NDS32: NDS32 Function Attributes.
- (line 35)
- * naked function attribute, RISC-V: RISC-V Function Attributes.
- (line 9)
- * naked function attribute, RL78: RL78 Function Attributes.
- (line 20)
- * naked function attribute, RX: RX Function Attributes.
- (line 39)
- * naked function attribute, SPU: SPU Function Attributes.
- (line 9)
- * naked function attribute, x86: x86 Function Attributes.
- (line 66)
- * Named Address Spaces: Named Address Spaces.
- (line 6)
- * names used in assembler code: Asm Labels. (line 6)
- * naming convention, implementation headers: C++ Interface. (line 43)
- * NDS32 Options: NDS32 Options. (line 6)
- * near function attribute, MeP: MeP Function Attributes.
- (line 20)
- * near function attribute, MIPS: MIPS Function Attributes.
- (line 63)
- * near type attribute, MeP: MeP Type Attributes.
- (line 6)
- * near variable attribute, MeP: MeP Variable Attributes.
- (line 24)
- * nearbyint: Other Builtins. (line 6)
- * nearbyintf: Other Builtins. (line 6)
- * nearbyintl: Other Builtins. (line 6)
- * nested function attribute, NDS32: NDS32 Function Attributes.
- (line 19)
- * nested functions: Nested Functions. (line 6)
- * nested_ready function attribute, NDS32: NDS32 Function Attributes.
- (line 23)
- * nesting function attribute, Blackfin: Blackfin Function Attributes.
- (line 45)
- * newlines (escaped): Escaped Newlines. (line 6)
- * nextafter: Other Builtins. (line 6)
- * nextafterf: Other Builtins. (line 6)
- * nextafterl: Other Builtins. (line 6)
- * nexttoward: Other Builtins. (line 6)
- * nexttowardf: Other Builtins. (line 6)
- * nexttowardl: Other Builtins. (line 6)
- * NFC: Warning Options. (line 2440)
- * NFKC: Warning Options. (line 2440)
- * Nios II options: Nios II Options. (line 6)
- * nmi function attribute, NDS32: NDS32 Function Attributes.
- (line 50)
- * NMI handler functions on the Blackfin processor: Blackfin Function Attributes.
- (line 50)
- * nmi_handler function attribute, Blackfin: Blackfin Function Attributes.
- (line 50)
- * nocf_check function attribute: x86 Function Attributes.
- (line 559)
- * noclone function attribute: Common Function Attributes.
- (line 603)
- * nocommon variable attribute: Common Variable Attributes.
- (line 118)
- * nocompression function attribute, MIPS: MIPS Function Attributes.
- (line 108)
- * noinit variable attribute, MSP430: MSP430 Variable Attributes.
- (line 7)
- * noinline function attribute: Common Function Attributes.
- (line 609)
- * noipa function attribute: Common Function Attributes.
- (line 620)
- * nomicromips function attribute: MIPS Function Attributes.
- (line 91)
- * nomips16 function attribute, MIPS: MIPS Function Attributes.
- (line 75)
- * non-constant initializers: Initializers. (line 6)
- * non-static inline function: Inline. (line 82)
- * nonnull function attribute: Common Function Attributes.
- (line 633)
- * nonstring variable attribute: Common Variable Attributes.
- (line 148)
- * noplt function attribute: Common Function Attributes.
- (line 657)
- * noreturn function attribute: Common Function Attributes.
- (line 681)
- * nosave_low_regs function attribute, SH: SH Function Attributes.
- (line 34)
- * note GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 78)
- * nothrow function attribute: Common Function Attributes.
- (line 712)
- * notshared type attribute, ARM: ARM Type Attributes.
- (line 6)
- * not_nested function attribute, NDS32: NDS32 Function Attributes.
- (line 21)
- * no_caller_saved_registers function attribute, x86: x86 Function Attributes.
- (line 113)
- * no_gccisr function attribute, AVR: AVR Function Attributes.
- (line 33)
- * no_icf function attribute: Common Function Attributes.
- (line 539)
- * no_instrument_function function attribute: Common Function Attributes.
- (line 543)
- * no_profile_instrument_function function attribute: Common Function Attributes.
- (line 548)
- * no_reorder function attribute: Common Function Attributes.
- (line 553)
- * no_sanitize function attribute: Common Function Attributes.
- (line 561)
- * no_sanitize_address function attribute: Common Function Attributes.
- (line 573)
- * no_sanitize_thread function attribute: Common Function Attributes.
- (line 581)
- * no_sanitize_undefined function attribute: Common Function Attributes.
- (line 586)
- * no_split_stack function attribute: Common Function Attributes.
- (line 592)
- * no_stack_limit function attribute: Common Function Attributes.
- (line 598)
- * Nvidia PTX options: Nvidia PTX Options. (line 6)
- * nvptx options: Nvidia PTX Options. (line 6)
- * o in constraint: Simple Constraints. (line 23)
- * OBJC_INCLUDE_PATH: Environment Variables.
- (line 130)
- * Objective-C: G++ and GCC. (line 6)
- * Objective-C <1>: Standards. (line 184)
- * Objective-C and Objective-C++ options, command-line: Objective-C and Objective-C++ Dialect Options.
- (line 6)
- * Objective-C++: G++ and GCC. (line 6)
- * Objective-C++ <1>: Standards. (line 184)
- * offsettable address: Simple Constraints. (line 23)
- * old-style function definitions: Function Prototypes.
- (line 6)
- * omit-leaf-frame-pointer function attribute, AArch64: AArch64 Function Attributes.
- (line 37)
- * omitted middle-operands: Conditionals. (line 6)
- * open coding: Inline. (line 6)
- * OpenACC accelerator programming: C Dialect Options. (line 313)
- * OpenACC accelerator programming <1>: C Dialect Options. (line 322)
- * OpenMP parallel: C Dialect Options. (line 328)
- * OpenMP SIMD: C Dialect Options. (line 337)
- * operand constraints, asm: Constraints. (line 6)
- * optimize function attribute: Common Function Attributes.
- (line 719)
- * optimize options: Optimize Options. (line 6)
- * options to control diagnostics formatting: Diagnostic Message Formatting Options.
- (line 6)
- * options to control warnings: Warning Options. (line 6)
- * options, C++: C++ Dialect Options.
- (line 6)
- * options, code generation: Code Gen Options. (line 6)
- * options, debugging: Debugging Options. (line 6)
- * options, dialect: C Dialect Options. (line 6)
- * options, directory search: Directory Options. (line 6)
- * options, GCC command: Invoking GCC. (line 6)
- * options, grouping: Invoking GCC. (line 31)
- * options, linking: Link Options. (line 6)
- * options, Objective-C and Objective-C++: Objective-C and Objective-C++ Dialect Options.
- (line 6)
- * options, optimization: Optimize Options. (line 6)
- * options, order: Invoking GCC. (line 35)
- * options, preprocessor: Preprocessor Options.
- (line 6)
- * options, profiling: Instrumentation Options.
- (line 6)
- * options, program instrumentation: Instrumentation Options.
- (line 6)
- * options, run-time error checking: Instrumentation Options.
- (line 6)
- * order of evaluation, side effects: Non-bugs. (line 196)
- * order of options: Invoking GCC. (line 35)
- * OS_main function attribute, AVR: AVR Function Attributes.
- (line 56)
- * OS_task function attribute, AVR: AVR Function Attributes.
- (line 56)
- * other register constraints: Simple Constraints. (line 161)
- * output file option: Overall Options. (line 186)
- * overloaded virtual function, warning: C++ Dialect Options.
- (line 756)
- * p in constraint: Simple Constraints. (line 152)
- * packed type attribute: Common Type Attributes.
- (line 229)
- * packed variable attribute: Common Variable Attributes.
- (line 193)
- * parameter forward declaration: Variable Length. (line 66)
- * partial_save function attribute, NDS32: NDS32 Function Attributes.
- (line 31)
- * Pascal: G++ and GCC. (line 23)
- * patchable_function_entry function attribute: Common Function Attributes.
- (line 734)
- * pcs function attribute, ARM: ARM Function Attributes.
- (line 51)
- * PDP-11 Options: PDP-11 Options. (line 6)
- * persistent variable attribute, MSP430: MSP430 Variable Attributes.
- (line 12)
- * PIC: Code Gen Options. (line 359)
- * picoChip options: picoChip Options. (line 6)
- * pmf: Bound member functions.
- (line 6)
- * pointer arguments: Common Function Attributes.
- (line 150)
- * Pointer Bounds Checker attributes: Common Function Attributes.
- (line 118)
- * Pointer Bounds Checker attributes <1>: Common Type Attributes.
- (line 127)
- * Pointer Bounds Checker builtins: Pointer Bounds Checker builtins.
- (line 6)
- * Pointer Bounds Checker options: Instrumentation Options.
- (line 459)
- * pointer to member function: Bound member functions.
- (line 6)
- * pointers to arrays: Pointers to Arrays. (line 6)
- * portions of temporary objects, pointers to: Temporaries. (line 6)
- * pow: Other Builtins. (line 6)
- * pow10: Other Builtins. (line 6)
- * pow10f: Other Builtins. (line 6)
- * pow10l: Other Builtins. (line 6)
- * PowerPC options: PowerPC Options. (line 6)
- * PowerPC SPE options: PowerPC SPE Options.
- (line 6)
- * powf: Other Builtins. (line 6)
- * powl: Other Builtins. (line 6)
- * pragma GCC ivdep: Loop-Specific Pragmas.
- (line 7)
- * pragma GCC optimize: Function Specific Option Pragmas.
- (line 20)
- * pragma GCC pop_options: Function Specific Option Pragmas.
- (line 31)
- * pragma GCC push_options: Function Specific Option Pragmas.
- (line 31)
- * pragma GCC reset_options: Function Specific Option Pragmas.
- (line 39)
- * pragma GCC target: Function Specific Option Pragmas.
- (line 7)
- * pragma GCC unroll N: Loop-Specific Pragmas.
- (line 37)
- * pragma, address: M32C Pragmas. (line 15)
- * pragma, align: Solaris Pragmas. (line 11)
- * pragma, call: MeP Pragmas. (line 48)
- * pragma, coprocessor available: MeP Pragmas. (line 13)
- * pragma, coprocessor call_saved: MeP Pragmas. (line 20)
- * pragma, coprocessor subclass: MeP Pragmas. (line 28)
- * pragma, custom io_volatile: MeP Pragmas. (line 7)
- * pragma, diagnostic: Diagnostic Pragmas. (line 14)
- * pragma, diagnostic <1>: Diagnostic Pragmas. (line 57)
- * pragma, disinterrupt: MeP Pragmas. (line 38)
- * pragma, fini: Solaris Pragmas. (line 20)
- * pragma, init: Solaris Pragmas. (line 26)
- * pragma, longcall: RS/6000 and PowerPC Pragmas.
- (line 14)
- * pragma, long_calls: ARM Pragmas. (line 11)
- * pragma, long_calls_off: ARM Pragmas. (line 17)
- * pragma, mark: Darwin Pragmas. (line 11)
- * pragma, memregs: M32C Pragmas. (line 7)
- * pragma, no_long_calls: ARM Pragmas. (line 14)
- * pragma, options align: Darwin Pragmas. (line 14)
- * pragma, pop_macro: Push/Pop Macro Pragmas.
- (line 15)
- * pragma, push_macro: Push/Pop Macro Pragmas.
- (line 11)
- * pragma, redefine_extname: Symbol-Renaming Pragmas.
- (line 13)
- * pragma, segment: Darwin Pragmas. (line 21)
- * pragma, unused: Darwin Pragmas. (line 24)
- * pragma, visibility: Visibility Pragmas. (line 8)
- * pragma, weak: Weak Pragmas. (line 10)
- * pragmas: Pragmas. (line 6)
- * pragmas in C++, effect on inlining: C++ Interface. (line 57)
- * pragmas, interface and implementation: C++ Interface. (line 6)
- * pragmas, warning of unknown: Warning Options. (line 1150)
- * precompiled headers: Precompiled Headers.
- (line 6)
- * preprocessing numbers: Incompatibilities. (line 173)
- * preprocessing tokens: Incompatibilities. (line 173)
- * preprocessor options: Preprocessor Options.
- (line 6)
- * printf: Other Builtins. (line 6)
- * printf_unlocked: Other Builtins. (line 6)
- * prof: Instrumentation Options.
- (line 18)
- * profiling options: Instrumentation Options.
- (line 6)
- * progmem variable attribute, AVR: AVR Variable Attributes.
- (line 7)
- * program instrumentation options: Instrumentation Options.
- (line 6)
- * promotion of formal parameters: Function Prototypes.
- (line 6)
- * pure function attribute: Common Function Attributes.
- (line 752)
- * push address instruction: Simple Constraints. (line 152)
- * putchar: Other Builtins. (line 6)
- * puts: Other Builtins. (line 6)
- * q floating point suffix: Floating Types. (line 6)
- * Q floating point suffix: Floating Types. (line 6)
- * qsort, and global register variables: Global Register Variables.
- (line 60)
- * quote GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 91)
- * r fixed-suffix: Fixed-Point. (line 6)
- * R fixed-suffix: Fixed-Point. (line 6)
- * r in constraint: Simple Constraints. (line 64)
- * RAMPD: AVR Options. (line 402)
- * RAMPX: AVR Options. (line 402)
- * RAMPY: AVR Options. (line 402)
- * RAMPZ: AVR Options. (line 402)
- * range1 GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 81)
- * range2 GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 84)
- * ranges in case statements: Case Ranges. (line 6)
- * read-only strings: Incompatibilities. (line 9)
- * reentrant function attribute, MSP430: MSP430 Function Attributes.
- (line 40)
- * register variable after longjmp: Global Register Variables.
- (line 74)
- * registers for local variables: Local Register Variables.
- (line 6)
- * registers in constraints: Simple Constraints. (line 64)
- * registers, global allocation: Global Register Variables.
- (line 6)
- * registers, global variables in: Global Register Variables.
- (line 6)
- * regparm function attribute, x86: x86 Function Attributes.
- (line 76)
- * relocation truncated to fit (ColdFire): M680x0 Options. (line 325)
- * relocation truncated to fit (MIPS): MIPS Options. (line 236)
- * remainder: Other Builtins. (line 6)
- * remainderf: Other Builtins. (line 6)
- * remainderl: Other Builtins. (line 6)
- * remquo: Other Builtins. (line 6)
- * remquof: Other Builtins. (line 6)
- * remquol: Other Builtins. (line 6)
- * renesas function attribute, SH: SH Function Attributes.
- (line 40)
- * reordering, warning: C++ Dialect Options.
- (line 681)
- * reporting bugs: Bugs. (line 6)
- * resbank function attribute, SH: SH Function Attributes.
- (line 44)
- * reset function attribute, NDS32: NDS32 Function Attributes.
- (line 45)
- * reset handler functions: NDS32 Function Attributes.
- (line 45)
- * rest argument (in macro): Variadic Macros. (line 6)
- * restricted pointers: Restricted Pointers.
- (line 6)
- * restricted references: Restricted Pointers.
- (line 6)
- * restricted this pointer: Restricted Pointers.
- (line 6)
- * returns_nonnull function attribute: Common Function Attributes.
- (line 779)
- * returns_twice function attribute: Common Function Attributes.
- (line 789)
- * rindex: Other Builtins. (line 6)
- * rint: Other Builtins. (line 6)
- * rintf: Other Builtins. (line 6)
- * rintl: Other Builtins. (line 6)
- * RISC-V Options: RISC-V Options. (line 6)
- * RL78 Options: RL78 Options. (line 6)
- * round: Other Builtins. (line 6)
- * roundf: Other Builtins. (line 6)
- * roundl: Other Builtins. (line 6)
- * RS/6000 and PowerPC Options: RS/6000 and PowerPC Options.
- (line 6)
- * RTTI: Vague Linkage. (line 42)
- * run-time error checking options: Instrumentation Options.
- (line 6)
- * run-time options: Code Gen Options. (line 6)
- * RX Options: RX Options. (line 6)
- * s in constraint: Simple Constraints. (line 100)
- * S/390 and zSeries Options: S/390 and zSeries Options.
- (line 6)
- * saddr variable attribute, RL78: RL78 Variable Attributes.
- (line 6)
- * save all registers on the Blackfin: Blackfin Function Attributes.
- (line 56)
- * save all registers on the H8/300, H8/300H, and H8S: H8/300 Function Attributes.
- (line 23)
- * saveall function attribute, Blackfin: Blackfin Function Attributes.
- (line 56)
- * saveall function attribute, H8/300: H8/300 Function Attributes.
- (line 23)
- * save_all function attribute, NDS32: NDS32 Function Attributes.
- (line 28)
- * save_volatiles function attribute, MicroBlaze: MicroBlaze Function Attributes.
- (line 9)
- * scalar_storage_order type attribute: Common Type Attributes.
- (line 264)
- * scalb: Other Builtins. (line 6)
- * scalbf: Other Builtins. (line 6)
- * scalbl: Other Builtins. (line 6)
- * scalbln: Other Builtins. (line 6)
- * scalblnf: Other Builtins. (line 6)
- * scalblnf <1>: Other Builtins. (line 6)
- * scalbn: Other Builtins. (line 6)
- * scalbnf: Other Builtins. (line 6)
- * scanf, and constant strings: Incompatibilities. (line 17)
- * scanfnl: Other Builtins. (line 6)
- * scope of a variable length array: Variable Length. (line 22)
- * scope of declaration: Disappointments. (line 21)
- * scope of external declarations: Incompatibilities. (line 80)
- * Score Options: Score Options. (line 6)
- * sda variable attribute, V850: V850 Variable Attributes.
- (line 9)
- * search path: Directory Options. (line 6)
- * section function attribute: Common Function Attributes.
- (line 798)
- * section variable attribute: Common Variable Attributes.
- (line 214)
- * secure_call function attribute, ARC: ARC Function Attributes.
- (line 51)
- * selectany variable attribute: Microsoft Windows Variable Attributes.
- (line 16)
- * sentinel function attribute: Common Function Attributes.
- (line 814)
- * setjmp: Global Register Variables.
- (line 74)
- * setjmp incompatibilities: Incompatibilities. (line 39)
- * shared attribute, Nvidia PTX: Nvidia PTX Variable Attributes.
- (line 9)
- * shared strings: Incompatibilities. (line 9)
- * shared variable attribute: Microsoft Windows Variable Attributes.
- (line 37)
- * shortcall function attribute, Blackfin: Blackfin Function Attributes.
- (line 38)
- * shortcall function attribute, PowerPC: PowerPC Function Attributes.
- (line 10)
- * short_call function attribute, ARC: ARC Function Attributes.
- (line 24)
- * short_call function attribute, ARM: ARM Function Attributes.
- (line 31)
- * short_call function attribute, Epiphany: Epiphany Function Attributes.
- (line 57)
- * short_call function attribute, MIPS: MIPS Function Attributes.
- (line 63)
- * side effect in ?:: Conditionals. (line 20)
- * side effects, macro argument: Statement Exprs. (line 35)
- * side effects, order of evaluation: Non-bugs. (line 196)
- * sign-return-address function attribute, AArch64: AArch64 Function Attributes.
- (line 65)
- * signal function attribute, AVR: AVR Function Attributes.
- (line 80)
- * signbit: Other Builtins. (line 6)
- * signbitd128: Other Builtins. (line 6)
- * signbitd32: Other Builtins. (line 6)
- * signbitd64: Other Builtins. (line 6)
- * signbitf: Other Builtins. (line 6)
- * signbitl: Other Builtins. (line 6)
- * signed and unsigned values, comparison warning: Warning Options.
- (line 2212)
- * significand: Other Builtins. (line 6)
- * significandf: Other Builtins. (line 6)
- * significandl: Other Builtins. (line 6)
- * SIMD: C Dialect Options. (line 337)
- * simd function attribute: Common Function Attributes.
- (line 840)
- * simple constraints: Simple Constraints. (line 6)
- * sin: Other Builtins. (line 6)
- * sincos: Other Builtins. (line 6)
- * sincosf: Other Builtins. (line 6)
- * sincosl: Other Builtins. (line 6)
- * sinf: Other Builtins. (line 6)
- * sinh: Other Builtins. (line 6)
- * sinhf: Other Builtins. (line 6)
- * sinhl: Other Builtins. (line 6)
- * sinl: Other Builtins. (line 6)
- * sizeof: Typeof. (line 6)
- * smaller data references: M32R/D Options. (line 57)
- * smaller data references <1>: Nios II Options. (line 9)
- * smaller data references (PowerPC): PowerPC SPE Options.
- (line 524)
- * smaller data references (PowerPC) <1>: RS/6000 and PowerPC Options.
- (line 774)
- * snprintf: Other Builtins. (line 6)
- * Solaris 2 options: Solaris 2 Options. (line 6)
- * SOURCE_DATE_EPOCH: Environment Variables.
- (line 177)
- * SPARC options: SPARC Options. (line 6)
- * Spec Files: Spec Files. (line 6)
- * specified registers: Explicit Register Variables.
- (line 6)
- * specifying compiler version and target machine: Invoking GCC.
- (line 24)
- * specifying hardware config: Submodel Options. (line 6)
- * specifying machine version: Invoking GCC. (line 24)
- * specifying registers for local variables: Local Register Variables.
- (line 6)
- * speed of compilation: Precompiled Headers.
- (line 6)
- * sprintf: Other Builtins. (line 6)
- * SPU options: SPU Options. (line 6)
- * spu_vector type attribute, SPU: SPU Type Attributes.
- (line 6)
- * spu_vector variable attribute, SPU: SPU Variable Attributes.
- (line 6)
- * sp_switch function attribute, SH: SH Function Attributes.
- (line 58)
- * sqrt: Other Builtins. (line 6)
- * sqrtf: Other Builtins. (line 6)
- * sqrtl: Other Builtins. (line 6)
- * sscanf: Other Builtins. (line 6)
- * sscanf, and constant strings: Incompatibilities. (line 17)
- * sseregparm function attribute, x86: x86 Function Attributes.
- (line 93)
- * stack_protect function attribute: Common Function Attributes.
- (line 859)
- * Statement Attributes: Statement Attributes.
- (line 6)
- * statements inside expressions: Statement Exprs. (line 6)
- * static data in C++, declaring and defining: Static Definitions.
- (line 6)
- * stdcall function attribute, x86-32: x86 Function Attributes.
- (line 108)
- * stpcpy: Other Builtins. (line 6)
- * stpncpy: Other Builtins. (line 6)
- * strcasecmp: Other Builtins. (line 6)
- * strcat: Other Builtins. (line 6)
- * strchr: Other Builtins. (line 6)
- * strcmp: Other Builtins. (line 6)
- * strcpy: Other Builtins. (line 6)
- * strcspn: Other Builtins. (line 6)
- * strdup: Other Builtins. (line 6)
- * strfmon: Other Builtins. (line 6)
- * strftime: Other Builtins. (line 6)
- * strict-align function attribute, AArch64: AArch64 Function Attributes.
- (line 32)
- * string constants: Incompatibilities. (line 9)
- * strlen: Other Builtins. (line 6)
- * strncasecmp: Other Builtins. (line 6)
- * strncat: Other Builtins. (line 6)
- * strncmp: Other Builtins. (line 6)
- * strncpy: Other Builtins. (line 6)
- * strndup: Other Builtins. (line 6)
- * strpbrk: Other Builtins. (line 6)
- * strrchr: Other Builtins. (line 6)
- * strspn: Other Builtins. (line 6)
- * strstr: Other Builtins. (line 6)
- * struct: Unnamed Fields. (line 6)
- * struct __htm_tdb: S/390 System z Built-in Functions.
- (line 49)
- * structures: Incompatibilities. (line 146)
- * structures, constructor expression: Compound Literals. (line 6)
- * submodel options: Submodel Options. (line 6)
- * subscripting: Subscripting. (line 6)
- * subscripting and function values: Subscripting. (line 6)
- * suffixes for C++ source: Invoking G++. (line 6)
- * SUNPRO_DEPENDENCIES: Environment Variables.
- (line 171)
- * suppressing warnings: Warning Options. (line 6)
- * surprises in C++: C++ Misunderstandings.
- (line 6)
- * syntax checking: Warning Options. (line 13)
- * syscall_linkage function attribute, IA-64: IA-64 Function Attributes.
- (line 9)
- * system headers, warnings from: Warning Options. (line 1631)
- * sysv_abi function attribute, x86: x86 Function Attributes.
- (line 34)
- * tan: Other Builtins. (line 6)
- * tanf: Other Builtins. (line 6)
- * tanh: Other Builtins. (line 6)
- * tanhf: Other Builtins. (line 6)
- * tanhl: Other Builtins. (line 6)
- * tanl: Other Builtins. (line 6)
- * target function attribute: Common Function Attributes.
- (line 864)
- * target function attribute <1>: ARM Function Attributes.
- (line 70)
- * target function attribute <2>: Nios II Function Attributes.
- (line 9)
- * target function attribute <3>: PowerPC Function Attributes.
- (line 21)
- * target function attribute <4>: S/390 Function Attributes.
- (line 22)
- * target function attribute <5>: x86 Function Attributes.
- (line 180)
- * target machine, specifying: Invoking GCC. (line 24)
- * target("3dnow") function attribute, x86: x86 Function Attributes.
- (line 186)
- * target("3dnowa") function attribute, x86: x86 Function Attributes.
- (line 190)
- * target("abm") function attribute, x86: x86 Function Attributes.
- (line 195)
- * target("adx") function attribute, x86: x86 Function Attributes.
- (line 200)
- * target("aes") function attribute, x86: x86 Function Attributes.
- (line 204)
- * target("align-stringops") function attribute, x86: x86 Function Attributes.
- (line 517)
- * target("altivec") function attribute, PowerPC: PowerPC Function Attributes.
- (line 28)
- * target("arch=ARCH") function attribute, x86: x86 Function Attributes.
- (line 526)
- * target("arm") function attribute, ARM: ARM Function Attributes.
- (line 80)
- * target("avoid-indexed-addresses") function attribute, PowerPC: PowerPC Function Attributes.
- (line 149)
- * target("avx") function attribute, x86: x86 Function Attributes.
- (line 208)
- * target("avx2") function attribute, x86: x86 Function Attributes.
- (line 212)
- * target("avx5124fmaps") function attribute, x86: x86 Function Attributes.
- (line 216)
- * target("avx5124vnniw") function attribute, x86: x86 Function Attributes.
- (line 221)
- * target("avx512bitalg") function attribute, x86: x86 Function Attributes.
- (line 226)
- * target("avx512bw") function attribute, x86: x86 Function Attributes.
- (line 231)
- * target("avx512cd") function attribute, x86: x86 Function Attributes.
- (line 235)
- * target("avx512dq") function attribute, x86: x86 Function Attributes.
- (line 239)
- * target("avx512er") function attribute, x86: x86 Function Attributes.
- (line 243)
- * target("avx512f") function attribute, x86: x86 Function Attributes.
- (line 247)
- * target("avx512ifma") function attribute, x86: x86 Function Attributes.
- (line 251)
- * target("avx512pf") function attribute, x86: x86 Function Attributes.
- (line 255)
- * target("avx512vbmi") function attribute, x86: x86 Function Attributes.
- (line 259)
- * target("avx512vbmi2") function attribute, x86: x86 Function Attributes.
- (line 263)
- * target("avx512vl") function attribute, x86: x86 Function Attributes.
- (line 267)
- * target("avx512vnni") function attribute, x86: x86 Function Attributes.
- (line 271)
- * target("avx512vpopcntdq") function attribute, x86: x86 Function Attributes.
- (line 275)
- * target("bmi") function attribute, x86: x86 Function Attributes.
- (line 280)
- * target("bmi2") function attribute, x86: x86 Function Attributes.
- (line 284)
- * target("cld") function attribute, x86: x86 Function Attributes.
- (line 493)
- * target("clflushopt") function attribute, x86: x86 Function Attributes.
- (line 288)
- * target("clwb") function attribute, x86: x86 Function Attributes.
- (line 292)
- * target("clzero") function attribute, x86: x86 Function Attributes.
- (line 296)
- * target("cmpb") function attribute, PowerPC: PowerPC Function Attributes.
- (line 34)
- * target("cpu=CPU") function attribute, PowerPC: PowerPC Function Attributes.
- (line 164)
- * target("crc32") function attribute, x86: x86 Function Attributes.
- (line 300)
- * target("custom-fpu-cfg=NAME") function attribute, Nios II: Nios II Function Attributes.
- (line 25)
- * target("custom-INSN=N") function attribute, Nios II: Nios II Function Attributes.
- (line 16)
- * target("cx16") function attribute, x86: x86 Function Attributes.
- (line 304)
- * target("default") function attribute, x86: x86 Function Attributes.
- (line 307)
- * target("dlmzb") function attribute, PowerPC: PowerPC Function Attributes.
- (line 40)
- * target("f16c") function attribute, x86: x86 Function Attributes.
- (line 312)
- * target("fancy-math-387") function attribute, x86: x86 Function Attributes.
- (line 497)
- * target("fma") function attribute, x86: x86 Function Attributes.
- (line 316)
- * target("fma4") function attribute, x86: x86 Function Attributes.
- (line 320)
- * target("fpmath=FPMATH") function attribute, x86: x86 Function Attributes.
- (line 534)
- * target("fprnd") function attribute, PowerPC: PowerPC Function Attributes.
- (line 47)
- * target("fpu=") function attribute, ARM: ARM Function Attributes.
- (line 86)
- * target("friz") function attribute, PowerPC: PowerPC Function Attributes.
- (line 140)
- * target("fsgsbase") function attribute, x86: x86 Function Attributes.
- (line 324)
- * target("fxsr") function attribute, x86: x86 Function Attributes.
- (line 328)
- * target("gfni") function attribute, x86: x86 Function Attributes.
- (line 332)
- * target("hard-dfp") function attribute, PowerPC: PowerPC Function Attributes.
- (line 53)
- * target("hle") function attribute, x86: x86 Function Attributes.
- (line 336)
- * target("ieee-fp") function attribute, x86: x86 Function Attributes.
- (line 502)
- * target("inline-all-stringops") function attribute, x86: x86 Function Attributes.
- (line 507)
- * target("inline-stringops-dynamically") function attribute, x86: x86 Function Attributes.
- (line 511)
- * target("isel") function attribute, PowerPC: PowerPC Function Attributes.
- (line 59)
- * target("longcall") function attribute, PowerPC: PowerPC Function Attributes.
- (line 159)
- * target("lwp") function attribute, x86: x86 Function Attributes.
- (line 340)
- * target("lzcnt") function attribute, x86: x86 Function Attributes.
- (line 344)
- * target("mfcrf") function attribute, PowerPC: PowerPC Function Attributes.
- (line 63)
- * target("mfpgpr") function attribute, PowerPC: PowerPC Function Attributes.
- (line 70)
- * target("mmx") function attribute, x86: x86 Function Attributes.
- (line 348)
- * target("movbe") function attribute, x86: x86 Function Attributes.
- (line 352)
- * target("movdir64b") function attribute, x86: x86 Function Attributes.
- (line 356)
- * target("movdiri") function attribute, x86: x86 Function Attributes.
- (line 360)
- * target("mulhw") function attribute, PowerPC: PowerPC Function Attributes.
- (line 77)
- * target("multiple") function attribute, PowerPC: PowerPC Function Attributes.
- (line 84)
- * target("mwaitx") function attribute, x86: x86 Function Attributes.
- (line 364)
- * target("no-custom-INSN") function attribute, Nios II: Nios II Function Attributes.
- (line 16)
- * target("paired") function attribute, PowerPC: PowerPC Function Attributes.
- (line 154)
- * target("pclmul") function attribute, x86: x86 Function Attributes.
- (line 368)
- * target("pconfig") function attribute, x86: x86 Function Attributes.
- (line 372)
- * target("pku") function attribute, x86: x86 Function Attributes.
- (line 376)
- * target("popcnt") function attribute, x86: x86 Function Attributes.
- (line 380)
- * target("popcntb") function attribute, PowerPC: PowerPC Function Attributes.
- (line 95)
- * target("popcntd") function attribute, PowerPC: PowerPC Function Attributes.
- (line 102)
- * target("powerpc-gfxopt") function attribute, PowerPC: PowerPC Function Attributes.
- (line 108)
- * target("powerpc-gpopt") function attribute, PowerPC: PowerPC Function Attributes.
- (line 114)
- * target("prefetchwt1") function attribute, x86: x86 Function Attributes.
- (line 384)
- * target("prfchw") function attribute, x86: x86 Function Attributes.
- (line 388)
- * target("rdpid") function attribute, x86: x86 Function Attributes.
- (line 392)
- * target("rdrnd") function attribute, x86: x86 Function Attributes.
- (line 396)
- * target("rdseed") function attribute, x86: x86 Function Attributes.
- (line 400)
- * target("recip") function attribute, x86: x86 Function Attributes.
- (line 521)
- * target("recip-precision") function attribute, PowerPC: PowerPC Function Attributes.
- (line 120)
- * target("rtm") function attribute, x86: x86 Function Attributes.
- (line 404)
- * target("sahf") function attribute, x86: x86 Function Attributes.
- (line 408)
- * target("sgx") function attribute, x86: x86 Function Attributes.
- (line 412)
- * target("sha") function attribute, x86: x86 Function Attributes.
- (line 416)
- * target("shstk") function attribute, x86: x86 Function Attributes.
- (line 420)
- * target("sse") function attribute, x86: x86 Function Attributes.
- (line 424)
- * target("sse2") function attribute, x86: x86 Function Attributes.
- (line 428)
- * target("sse3") function attribute, x86: x86 Function Attributes.
- (line 432)
- * target("sse4") function attribute, x86: x86 Function Attributes.
- (line 436)
- * target("sse4.1") function attribute, x86: x86 Function Attributes.
- (line 441)
- * target("sse4.2") function attribute, x86: x86 Function Attributes.
- (line 445)
- * target("sse4a") function attribute, x86: x86 Function Attributes.
- (line 449)
- * target("ssse3") function attribute, x86: x86 Function Attributes.
- (line 453)
- * target("string") function attribute, PowerPC: PowerPC Function Attributes.
- (line 126)
- * target("tbm") function attribute, x86: x86 Function Attributes.
- (line 457)
- * target("thumb") function attribute, ARM: ARM Function Attributes.
- (line 76)
- * target("tune=TUNE") function attribute, PowerPC: PowerPC Function Attributes.
- (line 171)
- * target("tune=TUNE") function attribute, x86: x86 Function Attributes.
- (line 530)
- * target("update") function attribute, PowerPC: PowerPC Function Attributes.
- (line 89)
- * target("vaes") function attribute, x86: x86 Function Attributes.
- (line 461)
- * target("vpclmulqdq") function attribute, x86: x86 Function Attributes.
- (line 465)
- * target("vsx") function attribute, PowerPC: PowerPC Function Attributes.
- (line 132)
- * target("wbnoinvd") function attribute, x86: x86 Function Attributes.
- (line 469)
- * target("xop") function attribute, x86: x86 Function Attributes.
- (line 473)
- * target("xsave") function attribute, x86: x86 Function Attributes.
- (line 477)
- * target("xsavec") function attribute, x86: x86 Function Attributes.
- (line 481)
- * target("xsaveopt") function attribute, x86: x86 Function Attributes.
- (line 485)
- * target("xsaves") function attribute, x86: x86 Function Attributes.
- (line 489)
- * target-dependent options: Submodel Options. (line 6)
- * target_clones function attribute: Common Function Attributes.
- (line 898)
- * TC1: Standards. (line 13)
- * TC2: Standards. (line 13)
- * TC3: Standards. (line 13)
- * tda variable attribute, V850: V850 Variable Attributes.
- (line 13)
- * Technical Corrigenda: Standards. (line 13)
- * Technical Corrigendum 1: Standards. (line 13)
- * Technical Corrigendum 2: Standards. (line 13)
- * Technical Corrigendum 3: Standards. (line 13)
- * template instantiation: Template Instantiation.
- (line 6)
- * temporaries, lifetime of: Temporaries. (line 6)
- * tentative definitions: Code Gen Options. (line 231)
- * tgamma: Other Builtins. (line 6)
- * tgammaf: Other Builtins. (line 6)
- * tgammal: Other Builtins. (line 6)
- * thiscall function attribute, x86-32: x86 Function Attributes.
- (line 23)
- * Thread-Local Storage: Thread-Local. (line 6)
- * thunks: Nested Functions. (line 6)
- * TILE-Gx options: TILE-Gx Options. (line 6)
- * TILEPro options: TILEPro Options. (line 6)
- * tiny data section on the H8/300H and H8S: H8/300 Variable Attributes.
- (line 19)
- * tiny type attribute, MeP: MeP Type Attributes.
- (line 6)
- * tiny variable attribute, MeP: MeP Variable Attributes.
- (line 20)
- * tiny_data variable attribute, H8/300: H8/300 Variable Attributes.
- (line 19)
- * TLS: Thread-Local. (line 6)
- * tls-dialect= function attribute, AArch64: AArch64 Function Attributes.
- (line 44)
- * tls_model variable attribute: Common Variable Attributes.
- (line 259)
- * TMPDIR: Environment Variables.
- (line 45)
- * toascii: Other Builtins. (line 6)
- * tolower: Other Builtins. (line 6)
- * toupper: Other Builtins. (line 6)
- * towlower: Other Builtins. (line 6)
- * towupper: Other Builtins. (line 6)
- * traditional C language: Preprocessor Options.
- (line 366)
- * transparent_union type attribute: Common Type Attributes.
- (line 304)
- * trapa_handler function attribute, SH: SH Function Attributes.
- (line 73)
- * trap_exit function attribute, SH: SH Function Attributes.
- (line 68)
- * trunc: Other Builtins. (line 6)
- * truncf: Other Builtins. (line 6)
- * truncl: Other Builtins. (line 6)
- * tune= function attribute, AArch64: AArch64 Function Attributes.
- (line 54)
- * two-stage name lookup: Name lookup. (line 6)
- * type alignment: Alignment. (line 6)
- * type attributes: Type Attributes. (line 6)
- * type-diff GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 114)
- * typedef names as function parameters: Incompatibilities. (line 97)
- * typeof: Typeof. (line 6)
- * type_info: Vague Linkage. (line 42)
- * uhk fixed-suffix: Fixed-Point. (line 6)
- * UHK fixed-suffix: Fixed-Point. (line 6)
- * uhr fixed-suffix: Fixed-Point. (line 6)
- * UHR fixed-suffix: Fixed-Point. (line 6)
- * uk fixed-suffix: Fixed-Point. (line 6)
- * UK fixed-suffix: Fixed-Point. (line 6)
- * ulk fixed-suffix: Fixed-Point. (line 6)
- * ULK fixed-suffix: Fixed-Point. (line 6)
- * ULL integer suffix: Long Long. (line 6)
- * ullk fixed-suffix: Fixed-Point. (line 6)
- * ULLK fixed-suffix: Fixed-Point. (line 6)
- * ullr fixed-suffix: Fixed-Point. (line 6)
- * ULLR fixed-suffix: Fixed-Point. (line 6)
- * ulr fixed-suffix: Fixed-Point. (line 6)
- * ULR fixed-suffix: Fixed-Point. (line 6)
- * uncached type attribute, ARC: ARC Type Attributes.
- (line 6)
- * undefined behavior: Bug Criteria. (line 17)
- * undefined function value: Bug Criteria. (line 17)
- * underscores in variables in macros: Typeof. (line 46)
- * union: Unnamed Fields. (line 6)
- * union, casting to a: Cast to Union. (line 6)
- * unions: Incompatibilities. (line 146)
- * unknown pragmas, warning: Warning Options. (line 1150)
- * unresolved references and -nodefaultlibs: Link Options. (line 91)
- * unresolved references and -nostdlib: Link Options. (line 91)
- * unused function attribute: Common Function Attributes.
- (line 919)
- * unused label attribute: Label Attributes. (line 31)
- * unused type attribute: Common Type Attributes.
- (line 357)
- * unused variable attribute: Common Variable Attributes.
- (line 268)
- * upper function attribute, MSP430: MSP430 Function Attributes.
- (line 53)
- * upper variable attribute, MSP430: MSP430 Variable Attributes.
- (line 24)
- * ur fixed-suffix: Fixed-Point. (line 6)
- * UR fixed-suffix: Fixed-Point. (line 6)
- * used function attribute: Common Function Attributes.
- (line 924)
- * used variable attribute: Common Variable Attributes.
- (line 273)
- * User stack pointer in interrupts on the Blackfin: Blackfin Function Attributes.
- (line 21)
- * use_debug_exception_return function attribute, MIPS: MIPS Function Attributes.
- (line 39)
- * use_shadow_register_set function attribute, MIPS: MIPS Function Attributes.
- (line 28)
- * V in constraint: Simple Constraints. (line 43)
- * V850 Options: V850 Options. (line 6)
- * vague linkage: Vague Linkage. (line 6)
- * value after longjmp: Global Register Variables.
- (line 74)
- * variable addressability on the M32R/D: M32R/D Variable Attributes.
- (line 9)
- * variable alignment: Alignment. (line 6)
- * variable attributes: Variable Attributes.
- (line 6)
- * variable number of arguments: Variadic Macros. (line 6)
- * variable-length array in a structure: Variable Length. (line 26)
- * variable-length array scope: Variable Length. (line 22)
- * variable-length arrays: Variable Length. (line 6)
- * variables in specified registers: Explicit Register Variables.
- (line 6)
- * variables, local, in macros: Typeof. (line 46)
- * variadic macros: Variadic Macros. (line 6)
- * VAX options: VAX Options. (line 6)
- * vector function attribute, RX: RX Function Attributes.
- (line 49)
- * vector_size variable attribute: Common Variable Attributes.
- (line 282)
- * version_id function attribute, IA-64: IA-64 Function Attributes.
- (line 16)
- * vfprintf: Other Builtins. (line 6)
- * vfscanf: Other Builtins. (line 6)
- * visibility function attribute: Common Function Attributes.
- (line 934)
- * visibility type attribute: Common Type Attributes.
- (line 366)
- * visibility variable attribute: Common Variable Attributes.
- (line 305)
- * Visium options: Visium Options. (line 6)
- * VLAs: Variable Length. (line 6)
- * vliw function attribute, MeP: MeP Function Attributes.
- (line 30)
- * void pointers, arithmetic: Pointer Arith. (line 6)
- * void, size of pointer to: Pointer Arith. (line 6)
- * volatile access: Volatiles. (line 6)
- * volatile access <1>: C++ Volatiles. (line 6)
- * volatile applied to function: Function Attributes.
- (line 6)
- * volatile asm: Extended Asm. (line 116)
- * volatile read: Volatiles. (line 6)
- * volatile read <1>: C++ Volatiles. (line 6)
- * volatile write: Volatiles. (line 6)
- * volatile write <1>: C++ Volatiles. (line 6)
- * vprintf: Other Builtins. (line 6)
- * vscanf: Other Builtins. (line 6)
- * vsnprintf: Other Builtins. (line 6)
- * vsprintf: Other Builtins. (line 6)
- * vsscanf: Other Builtins. (line 6)
- * vtable: Vague Linkage. (line 27)
- * VxWorks Options: VxWorks Options. (line 6)
- * w floating point suffix: Floating Types. (line 6)
- * W floating point suffix: Floating Types. (line 6)
- * wakeup function attribute, MSP430: MSP430 Function Attributes.
- (line 45)
- * warm function attribute, NDS32: NDS32 Function Attributes.
- (line 52)
- * warning for comparison of signed and unsigned values: Warning Options.
- (line 2212)
- * warning for overloaded virtual function: C++ Dialect Options.
- (line 756)
- * warning for reordering of member initializers: C++ Dialect Options.
- (line 681)
- * warning for unknown pragmas: Warning Options. (line 1150)
- * warning function attribute: Common Function Attributes.
- (line 206)
- * warning GCC_COLORS capability: Diagnostic Message Formatting Options.
- (line 75)
- * warning messages: Warning Options. (line 6)
- * warnings from system headers: Warning Options. (line 1631)
- * warnings vs errors: Warnings and Errors.
- (line 6)
- * warn_if_not_aligned type attribute: Common Type Attributes.
- (line 83)
- * warn_if_not_aligned variable attribute: Common Variable Attributes.
- (line 73)
- * warn_unused type attribute: C++ Attributes. (line 71)
- * warn_unused_result function attribute: Common Function Attributes.
- (line 1034)
- * weak function attribute: Common Function Attributes.
- (line 1051)
- * weak variable attribute: Common Variable Attributes.
- (line 310)
- * weakref function attribute: Common Function Attributes.
- (line 1060)
- * whitespace: Incompatibilities. (line 112)
- * Windows Options for x86: x86 Windows Options.
- (line 6)
- * X in constraint: Simple Constraints. (line 122)
- * X3.159-1989: Standards. (line 13)
- * x86 named address spaces: Named Address Spaces.
- (line 183)
- * x86 Options: x86 Options. (line 6)
- * x86 Windows Options: x86 Windows Options.
- (line 6)
- * Xstormy16 Options: Xstormy16 Options. (line 6)
- * Xtensa Options: Xtensa Options. (line 6)
- * y0: Other Builtins. (line 6)
- * y0f: Other Builtins. (line 6)
- * y0l: Other Builtins. (line 6)
- * y1: Other Builtins. (line 6)
- * y1f: Other Builtins. (line 6)
- * y1l: Other Builtins. (line 6)
- * yn: Other Builtins. (line 6)
- * ynf: Other Builtins. (line 6)
- * ynl: Other Builtins. (line 6)
- * zda variable attribute, V850: V850 Variable Attributes.
- (line 17)
- * zero-length arrays: Zero Length. (line 6)
- * zero-size structures: Empty Structures. (line 6)
- * zSeries options: zSeries Options. (line 6)
- Tag Table:
- Node: Top2057
- Node: G++ and GCC3996
- Node: Standards6061
- Node: Invoking GCC19219
- Node: Option Summary23420
- Node: Overall Options76079
- Node: Invoking G++91071
- Node: C Dialect Options92594
- Node: C++ Dialect Options111458
- Node: Objective-C and Objective-C++ Dialect Options148442
- Node: Diagnostic Message Formatting Options159672
- Node: Warning Options168484
- Ref: Wtrigraphs254643
- Node: Debugging Options291230
- Node: Optimize Options310105
- Ref: Type-punning373898
- Node: Instrumentation Options465636
- Node: Preprocessor Options507801
- Ref: dashMF512648
- Ref: fdollars-in-identifiers517227
- Node: Assembler Options529477
- Node: Link Options530168
- Ref: Link Options-Footnote-1544483
- Node: Directory Options544819
- Node: Code Gen Options553222
- Node: Developer Options581887
- Node: Submodel Options620799
- Node: AArch64 Options622557
- Ref: aarch64-feature-modifiers633021
- Node: Adapteva Epiphany Options635412
- Node: ARC Options641359
- Node: ARM Options662276
- Node: AVR Options697232
- Node: Blackfin Options721262
- Node: C6X Options729156
- Node: CRIS Options730699
- Node: CR16 Options734438
- Node: Darwin Options735349
- Node: DEC Alpha Options742789
- Node: FR30 Options754405
- Node: FT32 Options754970
- Node: FRV Options755916
- Node: GNU/Linux Options762680
- Node: H8/300 Options764061
- Node: HPPA Options765513
- Node: IA-64 Options775045
- Node: LM32 Options783173
- Node: M32C Options783696
- Node: M32R/D Options784969
- Node: M680x0 Options788514
- Node: MCore Options802666
- Node: MeP Options804168
- Node: MicroBlaze Options808128
- Node: MIPS Options810914
- Node: MMIX Options846366
- Node: MN10300 Options848843
- Node: Moxie Options851384
- Node: MSP430 Options851871
- Node: NDS32 Options856575
- Node: Nios II Options858745
- Node: Nvidia PTX Options870908
- Node: PDP-11 Options873170
- Node: picoChip Options874867
- Node: PowerPC Options877005
- Node: PowerPC SPE Options877233
- Node: RISC-V Options905739
- Node: RL78 Options911251
- Node: RS/6000 and PowerPC Options915026
- Node: RX Options957007
- Node: S/390 and zSeries Options965609
- Node: Score Options976074
- Node: SH Options976923
- Node: Solaris 2 Options992065
- Node: SPARC Options993303
- Node: SPU Options1008924
- Node: System V Options1013863
- Node: TILE-Gx Options1014689
- Node: TILEPro Options1015707
- Node: V850 Options1016211
- Node: VAX Options1022898
- Node: Visium Options1023436
- Node: VMS Options1025744
- Node: VxWorks Options1026560
- Node: x86 Options1027712
- Node: x86 Windows Options1086452
- Node: Xstormy16 Options1089257
- Node: Xtensa Options1089551
- Node: zSeries Options1094700
- Node: Spec Files1094896
- Node: Environment Variables1117054
- Node: Precompiled Headers1125780
- Node: C Implementation1131786
- Node: Translation implementation1133476
- Node: Environment implementation1134067
- Node: Identifiers implementation1134621
- Node: Characters implementation1135707
- Node: Integers implementation1139357
- Node: Floating point implementation1141406
- Node: Arrays and pointers implementation1144469
- Ref: Arrays and pointers implementation-Footnote-11145929
- Node: Hints implementation1146055
- Node: Structures unions enumerations and bit-fields implementation1147550
- Node: Qualifiers implementation1149774
- Node: Declarators implementation1151554
- Node: Statements implementation1151895
- Node: Preprocessing directives implementation1152221
- Node: Library functions implementation1154542
- Node: Architecture implementation1155191
- Node: Locale-specific behavior implementation1156836
- Node: C++ Implementation1157141
- Node: Conditionally-supported behavior1158424
- Node: Exception handling1159041
- Node: C Extensions1159508
- Node: Statement Exprs1164709
- Node: Local Labels1169186
- Node: Labels as Values1172159
- Ref: Labels as Values-Footnote-11174686
- Node: Nested Functions1174871
- Node: Constructing Calls1178829
- Node: Typeof1183546
- Node: Conditionals1187475
- Node: __int1281188364
- Node: Long Long1188889
- Node: Complex1190365
- Node: Floating Types1193133
- Node: Half-Precision1196600
- Node: Decimal Float1199011
- Node: Hex Floats1200865
- Node: Fixed-Point1201902
- Node: Named Address Spaces1205160
- Ref: AVR Named Address Spaces1205846
- Node: Zero Length1212869
- Node: Empty Structures1215909
- Node: Variable Length1216315
- Node: Variadic Macros1219033
- Node: Escaped Newlines1221411
- Node: Subscripting1222272
- Node: Pointer Arith1222997
- Node: Pointers to Arrays1223571
- Node: Initializers1224316
- Node: Compound Literals1224817
- Node: Designated Inits1228384
- Node: Case Ranges1232120
- Node: Cast to Union1232801
- Node: Mixed Declarations1233927
- Node: Function Attributes1234437
- Node: Common Function Attributes1237825
- Node: AArch64 Function Attributes1289334
- Node: ARC Function Attributes1294740
- Node: ARM Function Attributes1297062
- Node: AVR Function Attributes1301867
- Node: Blackfin Function Attributes1306402
- Node: CR16 Function Attributes1308900
- Node: Epiphany Function Attributes1309427
- Node: H8/300 Function Attributes1312179
- Node: IA-64 Function Attributes1313375
- Node: M32C Function Attributes1314417
- Node: M32R/D Function Attributes1316755
- Node: m68k Function Attributes1318229
- Node: MCORE Function Attributes1319173
- Node: MeP Function Attributes1319984
- Node: MicroBlaze Function Attributes1321285
- Node: Microsoft Windows Function Attributes1322792
- Node: MIPS Function Attributes1327361
- Node: MSP430 Function Attributes1332979
- Node: NDS32 Function Attributes1336827
- Node: Nios II Function Attributes1339251
- Node: Nvidia PTX Function Attributes1340548
- Node: PowerPC Function Attributes1341163
- Node: RISC-V Function Attributes1348218
- Node: RL78 Function Attributes1350714
- Node: RX Function Attributes1351953
- Node: S/390 Function Attributes1354501
- Node: SH Function Attributes1356329
- Node: SPU Function Attributes1359750
- Node: Symbian OS Function Attributes1360558
- Node: V850 Function Attributes1360895
- Node: Visium Function Attributes1361440
- Node: x86 Function Attributes1361968
- Node: Xstormy16 Function Attributes1383191
- Node: Variable Attributes1383698
- Node: Common Variable Attributes1385187
- Node: ARC Variable Attributes1398955
- Node: AVR Variable Attributes1399337
- Node: Blackfin Variable Attributes1404499
- Node: H8/300 Variable Attributes1405357
- Node: IA-64 Variable Attributes1406430
- Node: M32R/D Variable Attributes1407181
- Node: MeP Variable Attributes1407964
- Node: Microsoft Windows Variable Attributes1410057
- Node: MSP430 Variable Attributes1412510
- Node: Nvidia PTX Variable Attributes1413711
- Node: PowerPC Variable Attributes1414328
- Node: RL78 Variable Attributes1414885
- Node: SPU Variable Attributes1415303
- Node: V850 Variable Attributes1415668
- Node: x86 Variable Attributes1416300
- Node: Xstormy16 Variable Attributes1417356
- Node: Type Attributes1417926
- Node: Common Type Attributes1419270
- Node: ARC Type Attributes1436119
- Node: ARM Type Attributes1436591
- Node: MeP Type Attributes1437373
- Node: PowerPC Type Attributes1437775
- Node: SPU Type Attributes1438764
- Node: x86 Type Attributes1439183
- Node: Label Attributes1440171
- Node: Enumerator Attributes1442104
- Node: Statement Attributes1443423
- Node: Attribute Syntax1444906
- Node: Function Prototypes1456164
- Node: C++ Comments1457944
- Node: Dollar Signs1458463
- Node: Character Escapes1458928
- Node: Alignment1459212
- Node: Inline1460584
- Node: Volatiles1465401
- Node: Using Assembly Language with C1468300
- Node: Basic Asm1469537
- Node: Extended Asm1474897
- Ref: Volatile1478984
- Ref: AssemblerTemplate1483069
- Ref: OutputOperands1487307
- Ref: FlagOutputOperands1494258
- Ref: InputOperands1496287
- Ref: Clobbers and Scratch Registers1500555
- Ref: GotoLabels1508711
- Ref: x86Operandmodifiers1510846
- Ref: x86floatingpointasmoperands1513047
- Node: Constraints1516376
- Node: Simple Constraints1517482
- Node: Multi-Alternative1524796
- Node: Modifiers1526471
- Node: Machine Constraints1529269
- Node: Asm Labels1589144
- Node: Explicit Register Variables1590764
- Ref: Explicit Reg Vars1590978
- Node: Global Register Variables1591587
- Ref: Global Reg Vars1591795
- Node: Local Register Variables1595647
- Ref: Local Reg Vars1595867
- Node: Size of an asm1599174
- Node: Alternate Keywords1600652
- Node: Incomplete Enums1602151
- Node: Function Names1602908
- Node: Return Address1604806
- Node: Vector Extensions1608747
- Node: Offsetof1616042
- Node: __sync Builtins1616875
- Node: __atomic Builtins1623316
- Node: Integer Overflow Builtins1636797
- Node: x86 specific memory model extensions for transactional memory1643273
- Node: Object Size Checking1644539
- Node: Pointer Bounds Checker builtins1650578
- Node: Other Builtins1656580
- Node: Target Builtins1697721
- Node: AArch64 Built-in Functions1699379
- Node: Alpha Built-in Functions1699834
- Node: Altera Nios II Built-in Functions1702882
- Node: ARC Built-in Functions1707251
- Node: ARC SIMD Built-in Functions1712463
- Node: ARM iWMMXt Built-in Functions1721359
- Node: ARM C Language Extensions (ACLE)1728355
- Node: ARM Floating Point Status and Control Intrinsics1729694
- Node: ARM ARMv8-M Security Extensions1730179
- Node: AVR Built-in Functions1731524
- Node: Blackfin Built-in Functions1735285
- Node: FR-V Built-in Functions1735904
- Node: Argument Types1736772
- Node: Directly-mapped Integer Functions1738526
- Node: Directly-mapped Media Functions1739610
- Node: Raw read/write Functions1747816
- Node: Other Built-in Functions1748724
- Node: MIPS DSP Built-in Functions1749910
- Node: MIPS Paired-Single Support1762407
- Node: MIPS Loongson Built-in Functions1763906
- Node: Paired-Single Arithmetic1770428
- Node: Paired-Single Built-in Functions1771376
- Node: MIPS-3D Built-in Functions1774043
- Node: MIPS SIMD Architecture (MSA) Support1779421
- Node: MIPS SIMD Architecture Built-in Functions1782261
- Node: Other MIPS Built-in Functions1809091
- Node: MSP430 Built-in Functions1810100
- Node: NDS32 Built-in Functions1811501
- Node: picoChip Built-in Functions1812794
- Node: PowerPC Built-in Functions1814137
- Node: PowerPC AltiVec/VSX Built-in Functions1848618
- Node: PowerPC Hardware Transactional Memory Built-in Functions2017646
- Node: PowerPC Atomic Memory Operation Functions2026157
- Node: RX Built-in Functions2028692
- Node: S/390 System z Built-in Functions2032710
- Node: SH Built-in Functions2037940
- Node: SPARC VIS Built-in Functions2039668
- Node: SPU Built-in Functions2048197
- Node: TI C6X Built-in Functions2049914
- Node: TILE-Gx Built-in Functions2050939
- Node: TILEPro Built-in Functions2052058
- Node: x86 Built-in Functions2053158
- Node: x86 transactional memory intrinsics2114430
- Node: x86 control-flow protection intrinsics2117697
- Node: Target Format Checks2119468
- Node: Solaris Format Checks2119900
- Node: Darwin Format Checks2120326
- Node: Pragmas2121144
- Node: AArch64 Pragmas2121917
- Node: ARM Pragmas2122374
- Node: M32C Pragmas2123001
- Node: MeP Pragmas2124073
- Node: RS/6000 and PowerPC Pragmas2126141
- Node: S/390 Pragmas2126881
- Node: Darwin Pragmas2127447
- Node: Solaris Pragmas2128500
- Node: Symbol-Renaming Pragmas2129664
- Node: Structure-Layout Pragmas2131280
- Node: Weak Pragmas2133560
- Node: Diagnostic Pragmas2134295
- Node: Visibility Pragmas2137404
- Node: Push/Pop Macro Pragmas2138089
- Node: Function Specific Option Pragmas2139062
- Node: Loop-Specific Pragmas2140931
- Node: Unnamed Fields2142531
- Node: Thread-Local2144728
- Node: C99 Thread-Local Edits2146834
- Node: C++98 Thread-Local Edits2148832
- Node: Binary constants2152277
- Node: C++ Extensions2152948
- Node: C++ Volatiles2154578
- Node: Restricted Pointers2156926
- Node: Vague Linkage2158517
- Node: C++ Interface2162140
- Ref: C++ Interface-Footnote-12165937
- Node: Template Instantiation2166075
- Node: Bound member functions2173558
- Node: C++ Attributes2175090
- Node: Function Multiversioning2179162
- Node: Type Traits2180969
- Node: C++ Concepts2187734
- Node: Deprecated Features2189233
- Node: Backwards Compatibility2191324
- Node: Objective-C2193158
- Node: GNU Objective-C runtime API2193765
- Node: Modern GNU Objective-C runtime API2194772
- Node: Traditional GNU Objective-C runtime API2197208
- Node: Executing code before main2197935
- Node: What you can and what you cannot do in +load2200679
- Node: Type encoding2203049
- Node: Legacy type encoding2208190
- Node: @encode2209280
- Node: Method signatures2209825
- Node: Garbage Collection2211817
- Node: Constant string objects2214507
- Node: compatibility_alias2217016
- Node: Exceptions2217741
- Node: Synchronization2220451
- Node: Fast enumeration2221635
- Node: Using fast enumeration2221947
- Node: c99-like fast enumeration syntax2223158
- Node: Fast enumeration details2223861
- Node: Fast enumeration protocol2226201
- Node: Messaging with the GNU Objective-C runtime2229353
- Node: Dynamically registering methods2230725
- Node: Forwarding hook2232416
- Node: Compatibility2235457
- Node: Gcov2242013
- Node: Gcov Intro2242548
- Node: Invoking Gcov2245266
- Node: Gcov and Optimization2266211
- Node: Gcov Data Files2269580
- Node: Cross-profiling2270997
- Node: Gcov-tool2272851
- Node: Gcov-tool Intro2273276
- Node: Invoking Gcov-tool2275246
- Node: Gcov-dump2277824
- Node: Gcov-dump Intro2278146
- Node: Invoking Gcov-dump2278413
- Node: Trouble2279082
- Node: Actual Bugs2280500
- Node: Interoperation2280947
- Node: Incompatibilities2287838
- Node: Fixed Headers2295990
- Node: Standard Libraries2297648
- Node: Disappointments2299020
- Node: C++ Misunderstandings2303379
- Node: Static Definitions2304190
- Node: Name lookup2305243
- Ref: Name lookup-Footnote-12310024
- Node: Temporaries2310213
- Node: Copy Assignment2312189
- Node: Non-bugs2313996
- Node: Warnings and Errors2324502
- Node: Bugs2326264
- Node: Bug Criteria2326731
- Node: Bug Reporting2328941
- Node: Service2329180
- Node: Contributing2329999
- Node: Funding2330739
- Node: GNU Project2333229
- Node: Copying2333875
- Node: GNU Free Documentation License2371384
- Node: Contributors2396502
- Node: Option Index2437437
- Node: Keyword Index2702211
- End Tag Table
- Local Variables:
- coding: utf-8
- End:
|