gccint.info 2.5 MB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069230702307123072230732307423075230762307723078230792308023081230822308323084230852308623087230882308923090230912309223093230942309523096230972309823099231002310123102231032310423105231062310723108231092311023111231122311323114231152311623117231182311923120231212312223123231242312523126231272312823129231302313123132231332313423135231362313723138231392314023141231422314323144231452314623147231482314923150231512315223153231542315523156231572315823159231602316123162231632316423165231662316723168231692317023171231722317323174231752317623177231782317923180231812318223183231842318523186231872318823189231902319123192231932319423195231962319723198231992320023201232022320323204232052320623207232082320923210232112321223213232142321523216232172321823219232202322123222232232322423225232262322723228232292323023231232322323323234232352323623237232382323923240232412324223243232442324523246232472324823249232502325123252232532325423255232562325723258232592326023261232622326323264232652326623267232682326923270232712327223273232742327523276232772327823279232802328123282232832328423285232862328723288232892329023291232922329323294232952329623297232982329923300233012330223303233042330523306233072330823309233102331123312233132331423315233162331723318233192332023321233222332323324233252332623327233282332923330233312333223333233342333523336233372333823339233402334123342233432334423345233462334723348233492335023351233522335323354233552335623357233582335923360233612336223363233642336523366233672336823369233702337123372233732337423375233762337723378233792338023381233822338323384233852338623387233882338923390233912339223393233942339523396233972339823399234002340123402234032340423405234062340723408234092341023411234122341323414234152341623417234182341923420234212342223423234242342523426234272342823429234302343123432234332343423435234362343723438234392344023441234422344323444234452344623447234482344923450234512345223453234542345523456234572345823459234602346123462234632346423465234662346723468234692347023471234722347323474234752347623477234782347923480234812348223483234842348523486234872348823489234902349123492234932349423495234962349723498234992350023501235022350323504235052350623507235082350923510235112351223513235142351523516235172351823519235202352123522235232352423525235262352723528235292353023531235322353323534235352353623537235382353923540235412354223543235442354523546235472354823549235502355123552235532355423555235562355723558235592356023561235622356323564235652356623567235682356923570235712357223573235742357523576235772357823579235802358123582235832358423585235862358723588235892359023591235922359323594235952359623597235982359923600236012360223603236042360523606236072360823609236102361123612236132361423615236162361723618236192362023621236222362323624236252362623627236282362923630236312363223633236342363523636236372363823639236402364123642236432364423645236462364723648236492365023651236522365323654236552365623657236582365923660236612366223663236642366523666236672366823669236702367123672236732367423675236762367723678236792368023681236822368323684236852368623687236882368923690236912369223693236942369523696236972369823699237002370123702237032370423705237062370723708237092371023711237122371323714237152371623717237182371923720237212372223723237242372523726237272372823729237302373123732237332373423735237362373723738237392374023741237422374323744237452374623747237482374923750237512375223753237542375523756237572375823759237602376123762237632376423765237662376723768237692377023771237722377323774237752377623777237782377923780237812378223783237842378523786237872378823789237902379123792237932379423795237962379723798237992380023801238022380323804238052380623807238082380923810238112381223813238142381523816238172381823819238202382123822238232382423825238262382723828238292383023831238322383323834238352383623837238382383923840238412384223843238442384523846238472384823849238502385123852238532385423855238562385723858238592386023861238622386323864238652386623867238682386923870238712387223873238742387523876238772387823879238802388123882238832388423885238862388723888238892389023891238922389323894238952389623897238982389923900239012390223903239042390523906239072390823909239102391123912239132391423915239162391723918239192392023921239222392323924239252392623927239282392923930239312393223933239342393523936239372393823939239402394123942239432394423945239462394723948239492395023951239522395323954239552395623957239582395923960239612396223963239642396523966239672396823969239702397123972239732397423975239762397723978239792398023981239822398323984239852398623987239882398923990239912399223993239942399523996239972399823999240002400124002240032400424005240062400724008240092401024011240122401324014240152401624017240182401924020240212402224023240242402524026240272402824029240302403124032240332403424035240362403724038240392404024041240422404324044240452404624047240482404924050240512405224053240542405524056240572405824059240602406124062240632406424065240662406724068240692407024071240722407324074240752407624077240782407924080240812408224083240842408524086240872408824089240902409124092240932409424095240962409724098240992410024101241022410324104241052410624107241082410924110241112411224113241142411524116241172411824119241202412124122241232412424125241262412724128241292413024131241322413324134241352413624137241382413924140241412414224143241442414524146241472414824149241502415124152241532415424155241562415724158241592416024161241622416324164241652416624167241682416924170241712417224173241742417524176241772417824179241802418124182241832418424185241862418724188241892419024191241922419324194241952419624197241982419924200242012420224203242042420524206242072420824209242102421124212242132421424215242162421724218242192422024221242222422324224242252422624227242282422924230242312423224233242342423524236242372423824239242402424124242242432424424245242462424724248242492425024251242522425324254242552425624257242582425924260242612426224263242642426524266242672426824269242702427124272242732427424275242762427724278242792428024281242822428324284242852428624287242882428924290242912429224293242942429524296242972429824299243002430124302243032430424305243062430724308243092431024311243122431324314243152431624317243182431924320243212432224323243242432524326243272432824329243302433124332243332433424335243362433724338243392434024341243422434324344243452434624347243482434924350243512435224353243542435524356243572435824359243602436124362243632436424365243662436724368243692437024371243722437324374243752437624377243782437924380243812438224383243842438524386243872438824389243902439124392243932439424395243962439724398243992440024401244022440324404244052440624407244082440924410244112441224413244142441524416244172441824419244202442124422244232442424425244262442724428244292443024431244322443324434244352443624437244382443924440244412444224443244442444524446244472444824449244502445124452244532445424455244562445724458244592446024461244622446324464244652446624467244682446924470244712447224473244742447524476244772447824479244802448124482244832448424485244862448724488244892449024491244922449324494244952449624497244982449924500245012450224503245042450524506245072450824509245102451124512245132451424515245162451724518245192452024521245222452324524245252452624527245282452924530245312453224533245342453524536245372453824539245402454124542245432454424545245462454724548245492455024551245522455324554245552455624557245582455924560245612456224563245642456524566245672456824569245702457124572245732457424575245762457724578245792458024581245822458324584245852458624587245882458924590245912459224593245942459524596245972459824599246002460124602246032460424605246062460724608246092461024611246122461324614246152461624617246182461924620246212462224623246242462524626246272462824629246302463124632246332463424635246362463724638246392464024641246422464324644246452464624647246482464924650246512465224653246542465524656246572465824659246602466124662246632466424665246662466724668246692467024671246722467324674246752467624677246782467924680246812468224683246842468524686246872468824689246902469124692246932469424695246962469724698246992470024701247022470324704247052470624707247082470924710247112471224713247142471524716247172471824719247202472124722247232472424725247262472724728247292473024731247322473324734247352473624737247382473924740247412474224743247442474524746247472474824749247502475124752247532475424755247562475724758247592476024761247622476324764247652476624767247682476924770247712477224773247742477524776247772477824779247802478124782247832478424785247862478724788247892479024791247922479324794247952479624797247982479924800248012480224803248042480524806248072480824809248102481124812248132481424815248162481724818248192482024821248222482324824248252482624827248282482924830248312483224833248342483524836248372483824839248402484124842248432484424845248462484724848248492485024851248522485324854248552485624857248582485924860248612486224863248642486524866248672486824869248702487124872248732487424875248762487724878248792488024881248822488324884248852488624887248882488924890248912489224893248942489524896248972489824899249002490124902249032490424905249062490724908249092491024911249122491324914249152491624917249182491924920249212492224923249242492524926249272492824929249302493124932249332493424935249362493724938249392494024941249422494324944249452494624947249482494924950249512495224953249542495524956249572495824959249602496124962249632496424965249662496724968249692497024971249722497324974249752497624977249782497924980249812498224983249842498524986249872498824989249902499124992249932499424995249962499724998249992500025001250022500325004250052500625007250082500925010250112501225013250142501525016250172501825019250202502125022250232502425025250262502725028250292503025031250322503325034250352503625037250382503925040250412504225043250442504525046250472504825049250502505125052250532505425055250562505725058250592506025061250622506325064250652506625067250682506925070250712507225073250742507525076250772507825079250802508125082250832508425085250862508725088250892509025091250922509325094250952509625097250982509925100251012510225103251042510525106251072510825109251102511125112251132511425115251162511725118251192512025121251222512325124251252512625127251282512925130251312513225133251342513525136251372513825139251402514125142251432514425145251462514725148251492515025151251522515325154251552515625157251582515925160251612516225163251642516525166251672516825169251702517125172251732517425175251762517725178251792518025181251822518325184251852518625187251882518925190251912519225193251942519525196251972519825199252002520125202252032520425205252062520725208252092521025211252122521325214252152521625217252182521925220252212522225223252242522525226252272522825229252302523125232252332523425235252362523725238252392524025241252422524325244252452524625247252482524925250252512525225253252542525525256252572525825259252602526125262252632526425265252662526725268252692527025271252722527325274252752527625277252782527925280252812528225283252842528525286252872528825289252902529125292252932529425295252962529725298252992530025301253022530325304253052530625307253082530925310253112531225313253142531525316253172531825319253202532125322253232532425325253262532725328253292533025331253322533325334253352533625337253382533925340253412534225343253442534525346253472534825349253502535125352253532535425355253562535725358253592536025361253622536325364253652536625367253682536925370253712537225373253742537525376253772537825379253802538125382253832538425385253862538725388253892539025391253922539325394253952539625397253982539925400254012540225403254042540525406254072540825409254102541125412254132541425415254162541725418254192542025421254222542325424254252542625427254282542925430254312543225433254342543525436254372543825439254402544125442254432544425445254462544725448254492545025451254522545325454254552545625457254582545925460254612546225463254642546525466254672546825469254702547125472254732547425475254762547725478254792548025481254822548325484254852548625487254882548925490254912549225493254942549525496254972549825499255002550125502255032550425505255062550725508255092551025511255122551325514255152551625517255182551925520255212552225523255242552525526255272552825529255302553125532255332553425535255362553725538255392554025541255422554325544255452554625547255482554925550255512555225553255542555525556255572555825559255602556125562255632556425565255662556725568255692557025571255722557325574255752557625577255782557925580255812558225583255842558525586255872558825589255902559125592255932559425595255962559725598255992560025601256022560325604256052560625607256082560925610256112561225613256142561525616256172561825619256202562125622256232562425625256262562725628256292563025631256322563325634256352563625637256382563925640256412564225643256442564525646256472564825649256502565125652256532565425655256562565725658256592566025661256622566325664256652566625667256682566925670256712567225673256742567525676256772567825679256802568125682256832568425685256862568725688256892569025691256922569325694256952569625697256982569925700257012570225703257042570525706257072570825709257102571125712257132571425715257162571725718257192572025721257222572325724257252572625727257282572925730257312573225733257342573525736257372573825739257402574125742257432574425745257462574725748257492575025751257522575325754257552575625757257582575925760257612576225763257642576525766257672576825769257702577125772257732577425775257762577725778257792578025781257822578325784257852578625787257882578925790257912579225793257942579525796257972579825799258002580125802258032580425805258062580725808258092581025811258122581325814258152581625817258182581925820258212582225823258242582525826258272582825829258302583125832258332583425835258362583725838258392584025841258422584325844258452584625847258482584925850258512585225853258542585525856258572585825859258602586125862258632586425865258662586725868258692587025871258722587325874258752587625877258782587925880258812588225883258842588525886258872588825889258902589125892258932589425895258962589725898258992590025901259022590325904259052590625907259082590925910259112591225913259142591525916259172591825919259202592125922259232592425925259262592725928259292593025931259322593325934259352593625937259382593925940259412594225943259442594525946259472594825949259502595125952259532595425955259562595725958259592596025961259622596325964259652596625967259682596925970259712597225973259742597525976259772597825979259802598125982259832598425985259862598725988259892599025991259922599325994259952599625997259982599926000260012600226003260042600526006260072600826009260102601126012260132601426015260162601726018260192602026021260222602326024260252602626027260282602926030260312603226033260342603526036260372603826039260402604126042260432604426045260462604726048260492605026051260522605326054260552605626057260582605926060260612606226063260642606526066260672606826069260702607126072260732607426075260762607726078260792608026081260822608326084260852608626087260882608926090260912609226093260942609526096260972609826099261002610126102261032610426105261062610726108261092611026111261122611326114261152611626117261182611926120261212612226123261242612526126261272612826129261302613126132261332613426135261362613726138261392614026141261422614326144261452614626147261482614926150261512615226153261542615526156261572615826159261602616126162261632616426165261662616726168261692617026171261722617326174261752617626177261782617926180261812618226183261842618526186261872618826189261902619126192261932619426195261962619726198261992620026201262022620326204262052620626207262082620926210262112621226213262142621526216262172621826219262202622126222262232622426225262262622726228262292623026231262322623326234262352623626237262382623926240262412624226243262442624526246262472624826249262502625126252262532625426255262562625726258262592626026261262622626326264262652626626267262682626926270262712627226273262742627526276262772627826279262802628126282262832628426285262862628726288262892629026291262922629326294262952629626297262982629926300263012630226303263042630526306263072630826309263102631126312263132631426315263162631726318263192632026321263222632326324263252632626327263282632926330263312633226333263342633526336263372633826339263402634126342263432634426345263462634726348263492635026351263522635326354263552635626357263582635926360263612636226363263642636526366263672636826369263702637126372263732637426375263762637726378263792638026381263822638326384263852638626387263882638926390263912639226393263942639526396263972639826399264002640126402264032640426405264062640726408264092641026411264122641326414264152641626417264182641926420264212642226423264242642526426264272642826429264302643126432264332643426435264362643726438264392644026441264422644326444264452644626447264482644926450264512645226453264542645526456264572645826459264602646126462264632646426465264662646726468264692647026471264722647326474264752647626477264782647926480264812648226483264842648526486264872648826489264902649126492264932649426495264962649726498264992650026501265022650326504265052650626507265082650926510265112651226513265142651526516265172651826519265202652126522265232652426525265262652726528265292653026531265322653326534265352653626537265382653926540265412654226543265442654526546265472654826549265502655126552265532655426555265562655726558265592656026561265622656326564265652656626567265682656926570265712657226573265742657526576265772657826579265802658126582265832658426585265862658726588265892659026591265922659326594265952659626597265982659926600266012660226603266042660526606266072660826609266102661126612266132661426615266162661726618266192662026621266222662326624266252662626627266282662926630266312663226633266342663526636266372663826639266402664126642266432664426645266462664726648266492665026651266522665326654266552665626657266582665926660266612666226663266642666526666266672666826669266702667126672266732667426675266762667726678266792668026681266822668326684266852668626687266882668926690266912669226693266942669526696266972669826699267002670126702267032670426705267062670726708267092671026711267122671326714267152671626717267182671926720267212672226723267242672526726267272672826729267302673126732267332673426735267362673726738267392674026741267422674326744267452674626747267482674926750267512675226753267542675526756267572675826759267602676126762267632676426765267662676726768267692677026771267722677326774267752677626777267782677926780267812678226783267842678526786267872678826789267902679126792267932679426795267962679726798267992680026801268022680326804268052680626807268082680926810268112681226813268142681526816268172681826819268202682126822268232682426825268262682726828268292683026831268322683326834268352683626837268382683926840268412684226843268442684526846268472684826849268502685126852268532685426855268562685726858268592686026861268622686326864268652686626867268682686926870268712687226873268742687526876268772687826879268802688126882268832688426885268862688726888268892689026891268922689326894268952689626897268982689926900269012690226903269042690526906269072690826909269102691126912269132691426915269162691726918269192692026921269222692326924269252692626927269282692926930269312693226933269342693526936269372693826939269402694126942269432694426945269462694726948269492695026951269522695326954269552695626957269582695926960269612696226963269642696526966269672696826969269702697126972269732697426975269762697726978269792698026981269822698326984269852698626987269882698926990269912699226993269942699526996269972699826999270002700127002270032700427005270062700727008270092701027011270122701327014270152701627017270182701927020270212702227023270242702527026270272702827029270302703127032270332703427035270362703727038270392704027041270422704327044270452704627047270482704927050270512705227053270542705527056270572705827059270602706127062270632706427065270662706727068270692707027071270722707327074270752707627077270782707927080270812708227083270842708527086270872708827089270902709127092270932709427095270962709727098270992710027101271022710327104271052710627107271082710927110271112711227113271142711527116271172711827119271202712127122271232712427125271262712727128271292713027131271322713327134271352713627137271382713927140271412714227143271442714527146271472714827149271502715127152271532715427155271562715727158271592716027161271622716327164271652716627167271682716927170271712717227173271742717527176271772717827179271802718127182271832718427185271862718727188271892719027191271922719327194271952719627197271982719927200272012720227203272042720527206272072720827209272102721127212272132721427215272162721727218272192722027221272222722327224272252722627227272282722927230272312723227233272342723527236272372723827239272402724127242272432724427245272462724727248272492725027251272522725327254272552725627257272582725927260272612726227263272642726527266272672726827269272702727127272272732727427275272762727727278272792728027281272822728327284272852728627287272882728927290272912729227293272942729527296272972729827299273002730127302273032730427305273062730727308273092731027311273122731327314273152731627317273182731927320273212732227323273242732527326273272732827329273302733127332273332733427335273362733727338273392734027341273422734327344273452734627347273482734927350273512735227353273542735527356273572735827359273602736127362273632736427365273662736727368273692737027371273722737327374273752737627377273782737927380273812738227383273842738527386273872738827389273902739127392273932739427395273962739727398273992740027401274022740327404274052740627407274082740927410274112741227413274142741527416274172741827419274202742127422274232742427425274262742727428274292743027431274322743327434274352743627437274382743927440274412744227443274442744527446274472744827449274502745127452274532745427455274562745727458274592746027461274622746327464274652746627467274682746927470274712747227473274742747527476274772747827479274802748127482274832748427485274862748727488274892749027491274922749327494274952749627497274982749927500275012750227503275042750527506275072750827509275102751127512275132751427515275162751727518275192752027521275222752327524275252752627527275282752927530275312753227533275342753527536275372753827539275402754127542275432754427545275462754727548275492755027551275522755327554275552755627557275582755927560275612756227563275642756527566275672756827569275702757127572275732757427575275762757727578275792758027581275822758327584275852758627587275882758927590275912759227593275942759527596275972759827599276002760127602276032760427605276062760727608276092761027611276122761327614276152761627617276182761927620276212762227623276242762527626276272762827629276302763127632276332763427635276362763727638276392764027641276422764327644276452764627647276482764927650276512765227653276542765527656276572765827659276602766127662276632766427665276662766727668276692767027671276722767327674276752767627677276782767927680276812768227683276842768527686276872768827689276902769127692276932769427695276962769727698276992770027701277022770327704277052770627707277082770927710277112771227713277142771527716277172771827719277202772127722277232772427725277262772727728277292773027731277322773327734277352773627737277382773927740277412774227743277442774527746277472774827749277502775127752277532775427755277562775727758277592776027761277622776327764277652776627767277682776927770277712777227773277742777527776277772777827779277802778127782277832778427785277862778727788277892779027791277922779327794277952779627797277982779927800278012780227803278042780527806278072780827809278102781127812278132781427815278162781727818278192782027821278222782327824278252782627827278282782927830278312783227833278342783527836278372783827839278402784127842278432784427845278462784727848278492785027851278522785327854278552785627857278582785927860278612786227863278642786527866278672786827869278702787127872278732787427875278762787727878278792788027881278822788327884278852788627887278882788927890278912789227893278942789527896278972789827899279002790127902279032790427905279062790727908279092791027911279122791327914279152791627917279182791927920279212792227923279242792527926279272792827929279302793127932279332793427935279362793727938279392794027941279422794327944279452794627947279482794927950279512795227953279542795527956279572795827959279602796127962279632796427965279662796727968279692797027971279722797327974279752797627977279782797927980279812798227983279842798527986279872798827989279902799127992279932799427995279962799727998279992800028001280022800328004280052800628007280082800928010280112801228013280142801528016280172801828019280202802128022280232802428025280262802728028280292803028031280322803328034280352803628037280382803928040280412804228043280442804528046280472804828049280502805128052280532805428055280562805728058280592806028061280622806328064280652806628067280682806928070280712807228073280742807528076280772807828079280802808128082280832808428085280862808728088280892809028091280922809328094280952809628097280982809928100281012810228103281042810528106281072810828109281102811128112281132811428115281162811728118281192812028121281222812328124281252812628127281282812928130281312813228133281342813528136281372813828139281402814128142281432814428145281462814728148281492815028151281522815328154281552815628157281582815928160281612816228163281642816528166281672816828169281702817128172281732817428175281762817728178281792818028181281822818328184281852818628187281882818928190281912819228193281942819528196281972819828199282002820128202282032820428205282062820728208282092821028211282122821328214282152821628217282182821928220282212822228223282242822528226282272822828229282302823128232282332823428235282362823728238282392824028241282422824328244282452824628247282482824928250282512825228253282542825528256282572825828259282602826128262282632826428265282662826728268282692827028271282722827328274282752827628277282782827928280282812828228283282842828528286282872828828289282902829128292282932829428295282962829728298282992830028301283022830328304283052830628307283082830928310283112831228313283142831528316283172831828319283202832128322283232832428325283262832728328283292833028331283322833328334283352833628337283382833928340283412834228343283442834528346283472834828349283502835128352283532835428355283562835728358283592836028361283622836328364283652836628367283682836928370283712837228373283742837528376283772837828379283802838128382283832838428385283862838728388283892839028391283922839328394283952839628397283982839928400284012840228403284042840528406284072840828409284102841128412284132841428415284162841728418284192842028421284222842328424284252842628427284282842928430284312843228433284342843528436284372843828439284402844128442284432844428445284462844728448284492845028451284522845328454284552845628457284582845928460284612846228463284642846528466284672846828469284702847128472284732847428475284762847728478284792848028481284822848328484284852848628487284882848928490284912849228493284942849528496284972849828499285002850128502285032850428505285062850728508285092851028511285122851328514285152851628517285182851928520285212852228523285242852528526285272852828529285302853128532285332853428535285362853728538285392854028541285422854328544285452854628547285482854928550285512855228553285542855528556285572855828559285602856128562285632856428565285662856728568285692857028571285722857328574285752857628577285782857928580285812858228583285842858528586285872858828589285902859128592285932859428595285962859728598285992860028601286022860328604286052860628607286082860928610286112861228613286142861528616286172861828619286202862128622286232862428625286262862728628286292863028631286322863328634286352863628637286382863928640286412864228643286442864528646286472864828649286502865128652286532865428655286562865728658286592866028661286622866328664286652866628667286682866928670286712867228673286742867528676286772867828679286802868128682286832868428685286862868728688286892869028691286922869328694286952869628697286982869928700287012870228703287042870528706287072870828709287102871128712287132871428715287162871728718287192872028721287222872328724287252872628727287282872928730287312873228733287342873528736287372873828739287402874128742287432874428745287462874728748287492875028751287522875328754287552875628757287582875928760287612876228763287642876528766287672876828769287702877128772287732877428775287762877728778287792878028781287822878328784287852878628787287882878928790287912879228793287942879528796287972879828799288002880128802288032880428805288062880728808288092881028811288122881328814288152881628817288182881928820288212882228823288242882528826288272882828829288302883128832288332883428835288362883728838288392884028841288422884328844288452884628847288482884928850288512885228853288542885528856288572885828859288602886128862288632886428865288662886728868288692887028871288722887328874288752887628877288782887928880288812888228883288842888528886288872888828889288902889128892288932889428895288962889728898288992890028901289022890328904289052890628907289082890928910289112891228913289142891528916289172891828919289202892128922289232892428925289262892728928289292893028931289322893328934289352893628937289382893928940289412894228943289442894528946289472894828949289502895128952289532895428955289562895728958289592896028961289622896328964289652896628967289682896928970289712897228973289742897528976289772897828979289802898128982289832898428985289862898728988289892899028991289922899328994289952899628997289982899929000290012900229003290042900529006290072900829009290102901129012290132901429015290162901729018290192902029021290222902329024290252902629027290282902929030290312903229033290342903529036290372903829039290402904129042290432904429045290462904729048290492905029051290522905329054290552905629057290582905929060290612906229063290642906529066290672906829069290702907129072290732907429075290762907729078290792908029081290822908329084290852908629087290882908929090290912909229093290942909529096290972909829099291002910129102291032910429105291062910729108291092911029111291122911329114291152911629117291182911929120291212912229123291242912529126291272912829129291302913129132291332913429135291362913729138291392914029141291422914329144291452914629147291482914929150291512915229153291542915529156291572915829159291602916129162291632916429165291662916729168291692917029171291722917329174291752917629177291782917929180291812918229183291842918529186291872918829189291902919129192291932919429195291962919729198291992920029201292022920329204292052920629207292082920929210292112921229213292142921529216292172921829219292202922129222292232922429225292262922729228292292923029231292322923329234292352923629237292382923929240292412924229243292442924529246292472924829249292502925129252292532925429255292562925729258292592926029261292622926329264292652926629267292682926929270292712927229273292742927529276292772927829279292802928129282292832928429285292862928729288292892929029291292922929329294292952929629297292982929929300293012930229303293042930529306293072930829309293102931129312293132931429315293162931729318293192932029321293222932329324293252932629327293282932929330293312933229333293342933529336293372933829339293402934129342293432934429345293462934729348293492935029351293522935329354293552935629357293582935929360293612936229363293642936529366293672936829369293702937129372293732937429375293762937729378293792938029381293822938329384293852938629387293882938929390293912939229393293942939529396293972939829399294002940129402294032940429405294062940729408294092941029411294122941329414294152941629417294182941929420294212942229423294242942529426294272942829429294302943129432294332943429435294362943729438294392944029441294422944329444294452944629447294482944929450294512945229453294542945529456294572945829459294602946129462294632946429465294662946729468294692947029471294722947329474294752947629477294782947929480294812948229483294842948529486294872948829489294902949129492294932949429495294962949729498294992950029501295022950329504295052950629507295082950929510295112951229513295142951529516295172951829519295202952129522295232952429525295262952729528295292953029531295322953329534295352953629537295382953929540295412954229543295442954529546295472954829549295502955129552295532955429555295562955729558295592956029561295622956329564295652956629567295682956929570295712957229573295742957529576295772957829579295802958129582295832958429585295862958729588295892959029591295922959329594295952959629597295982959929600296012960229603296042960529606296072960829609296102961129612296132961429615296162961729618296192962029621296222962329624296252962629627296282962929630296312963229633296342963529636296372963829639296402964129642296432964429645296462964729648296492965029651296522965329654296552965629657296582965929660296612966229663296642966529666296672966829669296702967129672296732967429675296762967729678296792968029681296822968329684296852968629687296882968929690296912969229693296942969529696296972969829699297002970129702297032970429705297062970729708297092971029711297122971329714297152971629717297182971929720297212972229723297242972529726297272972829729297302973129732297332973429735297362973729738297392974029741297422974329744297452974629747297482974929750297512975229753297542975529756297572975829759297602976129762297632976429765297662976729768297692977029771297722977329774297752977629777297782977929780297812978229783297842978529786297872978829789297902979129792297932979429795297962979729798297992980029801298022980329804298052980629807298082980929810298112981229813298142981529816298172981829819298202982129822298232982429825298262982729828298292983029831298322983329834298352983629837298382983929840298412984229843298442984529846298472984829849298502985129852298532985429855298562985729858298592986029861298622986329864298652986629867298682986929870298712987229873298742987529876298772987829879298802988129882298832988429885298862988729888298892989029891298922989329894298952989629897298982989929900299012990229903299042990529906299072990829909299102991129912299132991429915299162991729918299192992029921299222992329924299252992629927299282992929930299312993229933299342993529936299372993829939299402994129942299432994429945299462994729948299492995029951299522995329954299552995629957299582995929960299612996229963299642996529966299672996829969299702997129972299732997429975299762997729978299792998029981299822998329984299852998629987299882998929990299912999229993299942999529996299972999829999300003000130002300033000430005300063000730008300093001030011300123001330014300153001630017300183001930020300213002230023300243002530026300273002830029300303003130032300333003430035300363003730038300393004030041300423004330044300453004630047300483004930050300513005230053300543005530056300573005830059300603006130062300633006430065300663006730068300693007030071300723007330074300753007630077300783007930080300813008230083300843008530086300873008830089300903009130092300933009430095300963009730098300993010030101301023010330104301053010630107301083010930110301113011230113301143011530116301173011830119301203012130122301233012430125301263012730128301293013030131301323013330134301353013630137301383013930140301413014230143301443014530146301473014830149301503015130152301533015430155301563015730158301593016030161301623016330164301653016630167301683016930170301713017230173301743017530176301773017830179301803018130182301833018430185301863018730188301893019030191301923019330194301953019630197301983019930200302013020230203302043020530206302073020830209302103021130212302133021430215302163021730218302193022030221302223022330224302253022630227302283022930230302313023230233302343023530236302373023830239302403024130242302433024430245302463024730248302493025030251302523025330254302553025630257302583025930260302613026230263302643026530266302673026830269302703027130272302733027430275302763027730278302793028030281302823028330284302853028630287302883028930290302913029230293302943029530296302973029830299303003030130302303033030430305303063030730308303093031030311303123031330314303153031630317303183031930320303213032230323303243032530326303273032830329303303033130332303333033430335303363033730338303393034030341303423034330344303453034630347303483034930350303513035230353303543035530356303573035830359303603036130362303633036430365303663036730368303693037030371303723037330374303753037630377303783037930380303813038230383303843038530386303873038830389303903039130392303933039430395303963039730398303993040030401304023040330404304053040630407304083040930410304113041230413304143041530416304173041830419304203042130422304233042430425304263042730428304293043030431304323043330434304353043630437304383043930440304413044230443304443044530446304473044830449304503045130452304533045430455304563045730458304593046030461304623046330464304653046630467304683046930470304713047230473304743047530476304773047830479304803048130482304833048430485304863048730488304893049030491304923049330494304953049630497304983049930500305013050230503305043050530506305073050830509305103051130512305133051430515305163051730518305193052030521305223052330524305253052630527305283052930530305313053230533305343053530536305373053830539305403054130542305433054430545305463054730548305493055030551305523055330554305553055630557305583055930560305613056230563305643056530566305673056830569305703057130572305733057430575305763057730578305793058030581305823058330584305853058630587305883058930590305913059230593305943059530596305973059830599306003060130602306033060430605306063060730608306093061030611306123061330614306153061630617306183061930620306213062230623306243062530626306273062830629306303063130632306333063430635306363063730638306393064030641306423064330644306453064630647306483064930650306513065230653306543065530656306573065830659306603066130662306633066430665306663066730668306693067030671306723067330674306753067630677306783067930680306813068230683306843068530686306873068830689306903069130692306933069430695306963069730698306993070030701307023070330704307053070630707307083070930710307113071230713307143071530716307173071830719307203072130722307233072430725307263072730728307293073030731307323073330734307353073630737307383073930740307413074230743307443074530746307473074830749307503075130752307533075430755307563075730758307593076030761307623076330764307653076630767307683076930770307713077230773307743077530776307773077830779307803078130782307833078430785307863078730788307893079030791307923079330794307953079630797307983079930800308013080230803308043080530806308073080830809308103081130812308133081430815308163081730818308193082030821308223082330824308253082630827308283082930830308313083230833308343083530836308373083830839308403084130842308433084430845308463084730848308493085030851308523085330854308553085630857308583085930860308613086230863308643086530866308673086830869308703087130872308733087430875308763087730878308793088030881308823088330884308853088630887308883088930890308913089230893308943089530896308973089830899309003090130902309033090430905309063090730908309093091030911309123091330914309153091630917309183091930920309213092230923309243092530926309273092830929309303093130932309333093430935309363093730938309393094030941309423094330944309453094630947309483094930950309513095230953309543095530956309573095830959309603096130962309633096430965309663096730968309693097030971309723097330974309753097630977309783097930980309813098230983309843098530986309873098830989309903099130992309933099430995309963099730998309993100031001310023100331004310053100631007310083100931010310113101231013310143101531016310173101831019310203102131022310233102431025310263102731028310293103031031310323103331034310353103631037310383103931040310413104231043310443104531046310473104831049310503105131052310533105431055310563105731058310593106031061310623106331064310653106631067310683106931070310713107231073310743107531076310773107831079310803108131082310833108431085310863108731088310893109031091310923109331094310953109631097310983109931100311013110231103311043110531106311073110831109311103111131112311133111431115311163111731118311193112031121311223112331124311253112631127311283112931130311313113231133311343113531136311373113831139311403114131142311433114431145311463114731148311493115031151311523115331154311553115631157311583115931160311613116231163311643116531166311673116831169311703117131172311733117431175311763117731178311793118031181311823118331184311853118631187311883118931190311913119231193311943119531196311973119831199312003120131202312033120431205312063120731208312093121031211312123121331214312153121631217312183121931220312213122231223312243122531226312273122831229312303123131232312333123431235312363123731238312393124031241312423124331244312453124631247312483124931250312513125231253312543125531256312573125831259312603126131262312633126431265312663126731268312693127031271312723127331274312753127631277312783127931280312813128231283312843128531286312873128831289312903129131292312933129431295312963129731298312993130031301313023130331304313053130631307313083130931310313113131231313313143131531316313173131831319313203132131322313233132431325313263132731328313293133031331313323133331334313353133631337313383133931340313413134231343313443134531346313473134831349313503135131352313533135431355313563135731358313593136031361313623136331364313653136631367313683136931370313713137231373313743137531376313773137831379313803138131382313833138431385313863138731388313893139031391313923139331394313953139631397313983139931400314013140231403314043140531406314073140831409314103141131412314133141431415314163141731418314193142031421314223142331424314253142631427314283142931430314313143231433314343143531436314373143831439314403144131442314433144431445314463144731448314493145031451314523145331454314553145631457314583145931460314613146231463314643146531466314673146831469314703147131472314733147431475314763147731478314793148031481314823148331484314853148631487314883148931490314913149231493314943149531496314973149831499315003150131502315033150431505315063150731508315093151031511315123151331514315153151631517315183151931520315213152231523315243152531526315273152831529315303153131532315333153431535315363153731538315393154031541315423154331544315453154631547315483154931550315513155231553315543155531556315573155831559315603156131562315633156431565315663156731568315693157031571315723157331574315753157631577315783157931580315813158231583315843158531586315873158831589315903159131592315933159431595315963159731598315993160031601316023160331604316053160631607316083160931610316113161231613316143161531616316173161831619316203162131622316233162431625316263162731628316293163031631316323163331634316353163631637316383163931640316413164231643316443164531646316473164831649316503165131652316533165431655316563165731658316593166031661316623166331664316653166631667316683166931670316713167231673316743167531676316773167831679316803168131682316833168431685316863168731688316893169031691316923169331694316953169631697316983169931700317013170231703317043170531706317073170831709317103171131712317133171431715317163171731718317193172031721317223172331724317253172631727317283172931730317313173231733317343173531736317373173831739317403174131742317433174431745317463174731748317493175031751317523175331754317553175631757317583175931760317613176231763317643176531766317673176831769317703177131772317733177431775317763177731778317793178031781317823178331784317853178631787317883178931790317913179231793317943179531796317973179831799318003180131802318033180431805318063180731808318093181031811318123181331814318153181631817318183181931820318213182231823318243182531826318273182831829318303183131832318333183431835318363183731838318393184031841318423184331844318453184631847318483184931850318513185231853318543185531856318573185831859318603186131862318633186431865318663186731868318693187031871318723187331874318753187631877318783187931880318813188231883318843188531886318873188831889318903189131892318933189431895318963189731898318993190031901319023190331904319053190631907319083190931910319113191231913319143191531916319173191831919319203192131922319233192431925319263192731928319293193031931319323193331934319353193631937319383193931940319413194231943319443194531946319473194831949319503195131952319533195431955319563195731958319593196031961319623196331964319653196631967319683196931970319713197231973319743197531976319773197831979319803198131982319833198431985319863198731988319893199031991319923199331994319953199631997319983199932000320013200232003320043200532006320073200832009320103201132012320133201432015320163201732018320193202032021320223202332024320253202632027320283202932030320313203232033320343203532036320373203832039320403204132042320433204432045320463204732048320493205032051320523205332054320553205632057320583205932060320613206232063320643206532066320673206832069320703207132072320733207432075320763207732078320793208032081320823208332084320853208632087320883208932090320913209232093320943209532096320973209832099321003210132102321033210432105321063210732108321093211032111321123211332114321153211632117321183211932120321213212232123321243212532126321273212832129321303213132132321333213432135321363213732138321393214032141321423214332144321453214632147321483214932150321513215232153321543215532156321573215832159321603216132162321633216432165321663216732168321693217032171321723217332174321753217632177321783217932180321813218232183321843218532186321873218832189321903219132192321933219432195321963219732198321993220032201322023220332204322053220632207322083220932210322113221232213322143221532216322173221832219322203222132222322233222432225322263222732228322293223032231322323223332234322353223632237322383223932240322413224232243322443224532246322473224832249322503225132252322533225432255322563225732258322593226032261322623226332264322653226632267322683226932270322713227232273322743227532276322773227832279322803228132282322833228432285322863228732288322893229032291322923229332294322953229632297322983229932300323013230232303323043230532306323073230832309323103231132312323133231432315323163231732318323193232032321323223232332324323253232632327323283232932330323313233232333323343233532336323373233832339323403234132342323433234432345323463234732348323493235032351323523235332354323553235632357323583235932360323613236232363323643236532366323673236832369323703237132372323733237432375323763237732378323793238032381323823238332384323853238632387323883238932390323913239232393323943239532396323973239832399324003240132402324033240432405324063240732408324093241032411324123241332414324153241632417324183241932420324213242232423324243242532426324273242832429324303243132432324333243432435324363243732438324393244032441324423244332444324453244632447324483244932450324513245232453324543245532456324573245832459324603246132462324633246432465324663246732468324693247032471324723247332474324753247632477324783247932480324813248232483324843248532486324873248832489324903249132492324933249432495324963249732498324993250032501325023250332504325053250632507325083250932510325113251232513325143251532516325173251832519325203252132522325233252432525325263252732528325293253032531325323253332534325353253632537325383253932540325413254232543325443254532546325473254832549325503255132552325533255432555325563255732558325593256032561325623256332564325653256632567325683256932570325713257232573325743257532576325773257832579325803258132582325833258432585325863258732588325893259032591325923259332594325953259632597325983259932600326013260232603326043260532606326073260832609326103261132612326133261432615326163261732618326193262032621326223262332624326253262632627326283262932630326313263232633326343263532636326373263832639326403264132642326433264432645326463264732648326493265032651326523265332654326553265632657326583265932660326613266232663326643266532666326673266832669326703267132672326733267432675326763267732678326793268032681326823268332684326853268632687326883268932690326913269232693326943269532696326973269832699327003270132702327033270432705327063270732708327093271032711327123271332714327153271632717327183271932720327213272232723327243272532726327273272832729327303273132732327333273432735327363273732738327393274032741327423274332744327453274632747327483274932750327513275232753327543275532756327573275832759327603276132762327633276432765327663276732768327693277032771327723277332774327753277632777327783277932780327813278232783327843278532786327873278832789327903279132792327933279432795327963279732798327993280032801328023280332804328053280632807328083280932810328113281232813328143281532816328173281832819328203282132822328233282432825328263282732828328293283032831328323283332834328353283632837328383283932840328413284232843328443284532846328473284832849328503285132852328533285432855328563285732858328593286032861328623286332864328653286632867328683286932870328713287232873328743287532876328773287832879328803288132882328833288432885328863288732888328893289032891328923289332894328953289632897328983289932900329013290232903329043290532906329073290832909329103291132912329133291432915329163291732918329193292032921329223292332924329253292632927329283292932930329313293232933329343293532936329373293832939329403294132942329433294432945329463294732948329493295032951329523295332954329553295632957329583295932960329613296232963329643296532966329673296832969329703297132972329733297432975329763297732978329793298032981329823298332984329853298632987329883298932990329913299232993329943299532996329973299832999330003300133002330033300433005330063300733008330093301033011330123301333014330153301633017330183301933020330213302233023330243302533026330273302833029330303303133032330333303433035330363303733038330393304033041330423304333044330453304633047330483304933050330513305233053330543305533056330573305833059330603306133062330633306433065330663306733068330693307033071330723307333074330753307633077330783307933080330813308233083330843308533086330873308833089330903309133092330933309433095330963309733098330993310033101331023310333104331053310633107331083310933110331113311233113331143311533116331173311833119331203312133122331233312433125331263312733128331293313033131331323313333134331353313633137331383313933140331413314233143331443314533146331473314833149331503315133152331533315433155331563315733158331593316033161331623316333164331653316633167331683316933170331713317233173331743317533176331773317833179331803318133182331833318433185331863318733188331893319033191331923319333194331953319633197331983319933200332013320233203332043320533206332073320833209332103321133212332133321433215332163321733218332193322033221332223322333224332253322633227332283322933230332313323233233332343323533236332373323833239332403324133242332433324433245332463324733248332493325033251332523325333254332553325633257332583325933260332613326233263332643326533266332673326833269332703327133272332733327433275332763327733278332793328033281332823328333284332853328633287332883328933290332913329233293332943329533296332973329833299333003330133302333033330433305333063330733308333093331033311333123331333314333153331633317333183331933320333213332233323333243332533326333273332833329333303333133332333333333433335333363333733338333393334033341333423334333344333453334633347333483334933350333513335233353333543335533356333573335833359333603336133362333633336433365333663336733368333693337033371333723337333374333753337633377333783337933380333813338233383333843338533386333873338833389333903339133392333933339433395333963339733398333993340033401334023340333404334053340633407334083340933410334113341233413334143341533416334173341833419334203342133422334233342433425334263342733428334293343033431334323343333434334353343633437334383343933440334413344233443334443344533446334473344833449334503345133452334533345433455334563345733458334593346033461334623346333464334653346633467334683346933470334713347233473334743347533476334773347833479334803348133482334833348433485334863348733488334893349033491334923349333494334953349633497334983349933500335013350233503335043350533506335073350833509335103351133512335133351433515335163351733518335193352033521335223352333524335253352633527335283352933530335313353233533335343353533536335373353833539335403354133542335433354433545335463354733548335493355033551335523355333554335553355633557335583355933560335613356233563335643356533566335673356833569335703357133572335733357433575335763357733578335793358033581335823358333584335853358633587335883358933590335913359233593335943359533596335973359833599336003360133602336033360433605336063360733608336093361033611336123361333614336153361633617336183361933620336213362233623336243362533626336273362833629336303363133632336333363433635336363363733638336393364033641336423364333644336453364633647336483364933650336513365233653336543365533656336573365833659336603366133662336633366433665336663366733668336693367033671336723367333674336753367633677336783367933680336813368233683336843368533686336873368833689336903369133692336933369433695336963369733698336993370033701337023370333704337053370633707337083370933710337113371233713337143371533716337173371833719337203372133722337233372433725337263372733728337293373033731337323373333734337353373633737337383373933740337413374233743337443374533746337473374833749337503375133752337533375433755337563375733758337593376033761337623376333764337653376633767337683376933770337713377233773337743377533776337773377833779337803378133782337833378433785337863378733788337893379033791337923379333794337953379633797337983379933800338013380233803338043380533806338073380833809338103381133812338133381433815338163381733818338193382033821338223382333824338253382633827338283382933830338313383233833338343383533836338373383833839338403384133842338433384433845338463384733848338493385033851338523385333854338553385633857338583385933860338613386233863338643386533866338673386833869338703387133872338733387433875338763387733878338793388033881338823388333884338853388633887338883388933890338913389233893338943389533896338973389833899339003390133902339033390433905339063390733908339093391033911339123391333914339153391633917339183391933920339213392233923339243392533926339273392833929339303393133932339333393433935339363393733938339393394033941339423394333944339453394633947339483394933950339513395233953339543395533956339573395833959339603396133962339633396433965339663396733968339693397033971339723397333974339753397633977339783397933980339813398233983339843398533986339873398833989339903399133992339933399433995339963399733998339993400034001340023400334004340053400634007340083400934010340113401234013340143401534016340173401834019340203402134022340233402434025340263402734028340293403034031340323403334034340353403634037340383403934040340413404234043340443404534046340473404834049340503405134052340533405434055340563405734058340593406034061340623406334064340653406634067340683406934070340713407234073340743407534076340773407834079340803408134082340833408434085340863408734088340893409034091340923409334094340953409634097340983409934100341013410234103341043410534106341073410834109341103411134112341133411434115341163411734118341193412034121341223412334124341253412634127341283412934130341313413234133341343413534136341373413834139341403414134142341433414434145341463414734148341493415034151341523415334154341553415634157341583415934160341613416234163341643416534166341673416834169341703417134172341733417434175341763417734178341793418034181341823418334184341853418634187341883418934190341913419234193341943419534196341973419834199342003420134202342033420434205342063420734208342093421034211342123421334214342153421634217342183421934220342213422234223342243422534226342273422834229342303423134232342333423434235342363423734238342393424034241342423424334244342453424634247342483424934250342513425234253342543425534256342573425834259342603426134262342633426434265342663426734268342693427034271342723427334274342753427634277342783427934280342813428234283342843428534286342873428834289342903429134292342933429434295342963429734298342993430034301343023430334304343053430634307343083430934310343113431234313343143431534316343173431834319343203432134322343233432434325343263432734328343293433034331343323433334334343353433634337343383433934340343413434234343343443434534346343473434834349343503435134352343533435434355343563435734358343593436034361343623436334364343653436634367343683436934370343713437234373343743437534376343773437834379343803438134382343833438434385343863438734388343893439034391343923439334394343953439634397343983439934400344013440234403344043440534406344073440834409344103441134412344133441434415344163441734418344193442034421344223442334424344253442634427344283442934430344313443234433344343443534436344373443834439344403444134442344433444434445344463444734448344493445034451344523445334454344553445634457344583445934460344613446234463344643446534466344673446834469344703447134472344733447434475344763447734478344793448034481344823448334484344853448634487344883448934490344913449234493344943449534496344973449834499345003450134502345033450434505345063450734508345093451034511345123451334514345153451634517345183451934520345213452234523345243452534526345273452834529345303453134532345333453434535345363453734538345393454034541345423454334544345453454634547345483454934550345513455234553345543455534556345573455834559345603456134562345633456434565345663456734568345693457034571345723457334574345753457634577345783457934580345813458234583345843458534586345873458834589345903459134592345933459434595345963459734598345993460034601346023460334604346053460634607346083460934610346113461234613346143461534616346173461834619346203462134622346233462434625346263462734628346293463034631346323463334634346353463634637346383463934640346413464234643346443464534646346473464834649346503465134652346533465434655346563465734658346593466034661346623466334664346653466634667346683466934670346713467234673346743467534676346773467834679346803468134682346833468434685346863468734688346893469034691346923469334694346953469634697346983469934700347013470234703347043470534706347073470834709347103471134712347133471434715347163471734718347193472034721347223472334724347253472634727347283472934730347313473234733347343473534736347373473834739347403474134742347433474434745347463474734748347493475034751347523475334754347553475634757347583475934760347613476234763347643476534766347673476834769347703477134772347733477434775347763477734778347793478034781347823478334784347853478634787347883478934790347913479234793347943479534796347973479834799348003480134802348033480434805348063480734808348093481034811348123481334814348153481634817348183481934820348213482234823348243482534826348273482834829348303483134832348333483434835348363483734838348393484034841348423484334844348453484634847348483484934850348513485234853348543485534856348573485834859348603486134862348633486434865348663486734868348693487034871348723487334874348753487634877348783487934880348813488234883348843488534886348873488834889348903489134892348933489434895348963489734898348993490034901349023490334904349053490634907349083490934910349113491234913349143491534916349173491834919349203492134922349233492434925349263492734928349293493034931349323493334934349353493634937349383493934940349413494234943349443494534946349473494834949349503495134952349533495434955349563495734958349593496034961349623496334964349653496634967349683496934970349713497234973349743497534976349773497834979349803498134982349833498434985349863498734988349893499034991349923499334994349953499634997349983499935000350013500235003350043500535006350073500835009350103501135012350133501435015350163501735018350193502035021350223502335024350253502635027350283502935030350313503235033350343503535036350373503835039350403504135042350433504435045350463504735048350493505035051350523505335054350553505635057350583505935060350613506235063350643506535066350673506835069350703507135072350733507435075350763507735078350793508035081350823508335084350853508635087350883508935090350913509235093350943509535096350973509835099351003510135102351033510435105351063510735108351093511035111351123511335114351153511635117351183511935120351213512235123351243512535126351273512835129351303513135132351333513435135351363513735138351393514035141351423514335144351453514635147351483514935150351513515235153351543515535156351573515835159351603516135162351633516435165351663516735168351693517035171351723517335174351753517635177351783517935180351813518235183351843518535186351873518835189351903519135192351933519435195351963519735198351993520035201352023520335204352053520635207352083520935210352113521235213352143521535216352173521835219352203522135222352233522435225352263522735228352293523035231352323523335234352353523635237352383523935240352413524235243352443524535246352473524835249352503525135252352533525435255352563525735258352593526035261352623526335264352653526635267352683526935270352713527235273352743527535276352773527835279352803528135282352833528435285352863528735288352893529035291352923529335294352953529635297352983529935300353013530235303353043530535306353073530835309353103531135312353133531435315353163531735318353193532035321353223532335324353253532635327353283532935330353313533235333353343533535336353373533835339353403534135342353433534435345353463534735348353493535035351353523535335354353553535635357353583535935360353613536235363353643536535366353673536835369353703537135372353733537435375353763537735378353793538035381353823538335384353853538635387353883538935390353913539235393353943539535396353973539835399354003540135402354033540435405354063540735408354093541035411354123541335414354153541635417354183541935420354213542235423354243542535426354273542835429354303543135432354333543435435354363543735438354393544035441354423544335444354453544635447354483544935450354513545235453354543545535456354573545835459354603546135462354633546435465354663546735468354693547035471354723547335474354753547635477354783547935480354813548235483354843548535486354873548835489354903549135492354933549435495354963549735498354993550035501355023550335504355053550635507355083550935510355113551235513355143551535516355173551835519355203552135522355233552435525355263552735528355293553035531355323553335534355353553635537355383553935540355413554235543355443554535546355473554835549355503555135552355533555435555355563555735558355593556035561355623556335564355653556635567355683556935570355713557235573355743557535576355773557835579355803558135582355833558435585355863558735588355893559035591355923559335594355953559635597355983559935600356013560235603356043560535606356073560835609356103561135612356133561435615356163561735618356193562035621356223562335624356253562635627356283562935630356313563235633356343563535636356373563835639356403564135642356433564435645356463564735648356493565035651356523565335654356553565635657356583565935660356613566235663356643566535666356673566835669356703567135672356733567435675356763567735678356793568035681356823568335684356853568635687356883568935690356913569235693356943569535696356973569835699357003570135702357033570435705357063570735708357093571035711357123571335714357153571635717357183571935720357213572235723357243572535726357273572835729357303573135732357333573435735357363573735738357393574035741357423574335744357453574635747357483574935750357513575235753357543575535756357573575835759357603576135762357633576435765357663576735768357693577035771357723577335774357753577635777357783577935780357813578235783357843578535786357873578835789357903579135792357933579435795357963579735798357993580035801358023580335804358053580635807358083580935810358113581235813358143581535816358173581835819358203582135822358233582435825358263582735828358293583035831358323583335834358353583635837358383583935840358413584235843358443584535846358473584835849358503585135852358533585435855358563585735858358593586035861358623586335864358653586635867358683586935870358713587235873358743587535876358773587835879358803588135882358833588435885358863588735888358893589035891358923589335894358953589635897358983589935900359013590235903359043590535906359073590835909359103591135912359133591435915359163591735918359193592035921359223592335924359253592635927359283592935930359313593235933359343593535936359373593835939359403594135942359433594435945359463594735948359493595035951359523595335954359553595635957359583595935960359613596235963359643596535966359673596835969359703597135972359733597435975359763597735978359793598035981359823598335984359853598635987359883598935990359913599235993359943599535996359973599835999360003600136002360033600436005360063600736008360093601036011360123601336014360153601636017360183601936020360213602236023360243602536026360273602836029360303603136032360333603436035360363603736038360393604036041360423604336044360453604636047360483604936050360513605236053360543605536056360573605836059360603606136062360633606436065360663606736068360693607036071360723607336074360753607636077360783607936080360813608236083360843608536086360873608836089360903609136092360933609436095360963609736098360993610036101361023610336104361053610636107361083610936110361113611236113361143611536116361173611836119361203612136122361233612436125361263612736128361293613036131361323613336134361353613636137361383613936140361413614236143361443614536146361473614836149361503615136152361533615436155361563615736158361593616036161361623616336164361653616636167361683616936170361713617236173361743617536176361773617836179361803618136182361833618436185361863618736188361893619036191361923619336194361953619636197361983619936200362013620236203362043620536206362073620836209362103621136212362133621436215362163621736218362193622036221362223622336224362253622636227362283622936230362313623236233362343623536236362373623836239362403624136242362433624436245362463624736248362493625036251362523625336254362553625636257362583625936260362613626236263362643626536266362673626836269362703627136272362733627436275362763627736278362793628036281362823628336284362853628636287362883628936290362913629236293362943629536296362973629836299363003630136302363033630436305363063630736308363093631036311363123631336314363153631636317363183631936320363213632236323363243632536326363273632836329363303633136332363333633436335363363633736338363393634036341363423634336344363453634636347363483634936350363513635236353363543635536356363573635836359363603636136362363633636436365363663636736368363693637036371363723637336374363753637636377363783637936380363813638236383363843638536386363873638836389363903639136392363933639436395363963639736398363993640036401364023640336404364053640636407364083640936410364113641236413364143641536416364173641836419364203642136422364233642436425364263642736428364293643036431364323643336434364353643636437364383643936440364413644236443364443644536446364473644836449364503645136452364533645436455364563645736458364593646036461364623646336464364653646636467364683646936470364713647236473364743647536476364773647836479364803648136482364833648436485364863648736488364893649036491364923649336494364953649636497364983649936500365013650236503365043650536506365073650836509365103651136512365133651436515365163651736518365193652036521365223652336524365253652636527365283652936530365313653236533365343653536536365373653836539365403654136542365433654436545365463654736548365493655036551365523655336554365553655636557365583655936560365613656236563365643656536566365673656836569365703657136572365733657436575365763657736578365793658036581365823658336584365853658636587365883658936590365913659236593365943659536596365973659836599366003660136602366033660436605366063660736608366093661036611366123661336614366153661636617366183661936620366213662236623366243662536626366273662836629366303663136632366333663436635366363663736638366393664036641366423664336644366453664636647366483664936650366513665236653366543665536656366573665836659366603666136662366633666436665366663666736668366693667036671366723667336674366753667636677366783667936680366813668236683366843668536686366873668836689366903669136692366933669436695366963669736698366993670036701367023670336704367053670636707367083670936710367113671236713367143671536716367173671836719367203672136722367233672436725367263672736728367293673036731367323673336734367353673636737367383673936740367413674236743367443674536746367473674836749367503675136752367533675436755367563675736758367593676036761367623676336764367653676636767367683676936770367713677236773367743677536776367773677836779367803678136782367833678436785367863678736788367893679036791367923679336794367953679636797367983679936800368013680236803368043680536806368073680836809368103681136812368133681436815368163681736818368193682036821368223682336824368253682636827368283682936830368313683236833368343683536836368373683836839368403684136842368433684436845368463684736848368493685036851368523685336854368553685636857368583685936860368613686236863368643686536866368673686836869368703687136872368733687436875368763687736878368793688036881368823688336884368853688636887368883688936890368913689236893368943689536896368973689836899369003690136902369033690436905369063690736908369093691036911369123691336914369153691636917369183691936920369213692236923369243692536926369273692836929369303693136932369333693436935369363693736938369393694036941369423694336944369453694636947369483694936950369513695236953369543695536956369573695836959369603696136962369633696436965369663696736968369693697036971369723697336974369753697636977369783697936980369813698236983369843698536986369873698836989369903699136992369933699436995369963699736998369993700037001370023700337004370053700637007370083700937010370113701237013370143701537016370173701837019370203702137022370233702437025370263702737028370293703037031370323703337034370353703637037370383703937040370413704237043370443704537046370473704837049370503705137052370533705437055370563705737058370593706037061370623706337064370653706637067370683706937070370713707237073370743707537076370773707837079370803708137082370833708437085370863708737088370893709037091370923709337094370953709637097370983709937100371013710237103371043710537106371073710837109371103711137112371133711437115371163711737118371193712037121371223712337124371253712637127371283712937130371313713237133371343713537136371373713837139371403714137142371433714437145371463714737148371493715037151371523715337154371553715637157371583715937160371613716237163371643716537166371673716837169371703717137172371733717437175371763717737178371793718037181371823718337184371853718637187371883718937190371913719237193371943719537196371973719837199372003720137202372033720437205372063720737208372093721037211372123721337214372153721637217372183721937220372213722237223372243722537226372273722837229372303723137232372333723437235372363723737238372393724037241372423724337244372453724637247372483724937250372513725237253372543725537256372573725837259372603726137262372633726437265372663726737268372693727037271372723727337274372753727637277372783727937280372813728237283372843728537286372873728837289372903729137292372933729437295372963729737298372993730037301373023730337304373053730637307373083730937310373113731237313373143731537316373173731837319373203732137322373233732437325373263732737328373293733037331373323733337334373353733637337373383733937340373413734237343373443734537346373473734837349373503735137352373533735437355373563735737358373593736037361373623736337364373653736637367373683736937370373713737237373373743737537376373773737837379373803738137382373833738437385373863738737388373893739037391373923739337394373953739637397373983739937400374013740237403374043740537406374073740837409374103741137412374133741437415374163741737418374193742037421374223742337424374253742637427374283742937430374313743237433374343743537436374373743837439374403744137442374433744437445374463744737448374493745037451374523745337454374553745637457374583745937460374613746237463374643746537466374673746837469374703747137472374733747437475374763747737478374793748037481374823748337484374853748637487374883748937490374913749237493374943749537496374973749837499375003750137502375033750437505375063750737508375093751037511375123751337514375153751637517375183751937520375213752237523375243752537526375273752837529375303753137532375333753437535375363753737538375393754037541375423754337544375453754637547375483754937550375513755237553375543755537556375573755837559375603756137562375633756437565375663756737568375693757037571375723757337574375753757637577375783757937580375813758237583375843758537586375873758837589375903759137592375933759437595375963759737598375993760037601376023760337604376053760637607376083760937610376113761237613376143761537616376173761837619376203762137622376233762437625376263762737628376293763037631376323763337634376353763637637376383763937640376413764237643376443764537646376473764837649376503765137652376533765437655376563765737658376593766037661376623766337664376653766637667376683766937670376713767237673376743767537676376773767837679376803768137682376833768437685376863768737688376893769037691376923769337694376953769637697376983769937700377013770237703377043770537706377073770837709377103771137712377133771437715377163771737718377193772037721377223772337724377253772637727377283772937730377313773237733377343773537736377373773837739377403774137742377433774437745377463774737748377493775037751377523775337754377553775637757377583775937760377613776237763377643776537766377673776837769377703777137772377733777437775377763777737778377793778037781377823778337784377853778637787377883778937790377913779237793377943779537796377973779837799378003780137802378033780437805378063780737808378093781037811378123781337814378153781637817378183781937820378213782237823378243782537826378273782837829378303783137832378333783437835378363783737838378393784037841378423784337844378453784637847378483784937850378513785237853378543785537856378573785837859378603786137862378633786437865378663786737868378693787037871378723787337874378753787637877378783787937880378813788237883378843788537886378873788837889378903789137892378933789437895378963789737898378993790037901379023790337904379053790637907379083790937910379113791237913379143791537916379173791837919379203792137922379233792437925379263792737928379293793037931379323793337934379353793637937379383793937940379413794237943379443794537946379473794837949379503795137952379533795437955379563795737958379593796037961379623796337964379653796637967379683796937970379713797237973379743797537976379773797837979379803798137982379833798437985379863798737988379893799037991379923799337994379953799637997379983799938000380013800238003380043800538006380073800838009380103801138012380133801438015380163801738018380193802038021380223802338024380253802638027380283802938030380313803238033380343803538036380373803838039380403804138042380433804438045380463804738048380493805038051380523805338054380553805638057380583805938060380613806238063380643806538066380673806838069380703807138072380733807438075380763807738078380793808038081380823808338084380853808638087380883808938090380913809238093380943809538096380973809838099381003810138102381033810438105381063810738108381093811038111381123811338114381153811638117381183811938120381213812238123381243812538126381273812838129381303813138132381333813438135381363813738138381393814038141381423814338144381453814638147381483814938150381513815238153381543815538156381573815838159381603816138162381633816438165381663816738168381693817038171381723817338174381753817638177381783817938180381813818238183381843818538186381873818838189381903819138192381933819438195381963819738198381993820038201382023820338204382053820638207382083820938210382113821238213382143821538216382173821838219382203822138222382233822438225382263822738228382293823038231382323823338234382353823638237382383823938240382413824238243382443824538246382473824838249382503825138252382533825438255382563825738258382593826038261382623826338264382653826638267382683826938270382713827238273382743827538276382773827838279382803828138282382833828438285382863828738288382893829038291382923829338294382953829638297382983829938300383013830238303383043830538306383073830838309383103831138312383133831438315383163831738318383193832038321383223832338324383253832638327383283832938330383313833238333383343833538336383373833838339383403834138342383433834438345383463834738348383493835038351383523835338354383553835638357383583835938360383613836238363383643836538366383673836838369383703837138372383733837438375383763837738378383793838038381383823838338384383853838638387383883838938390383913839238393383943839538396383973839838399384003840138402384033840438405384063840738408384093841038411384123841338414384153841638417384183841938420384213842238423384243842538426384273842838429384303843138432384333843438435384363843738438384393844038441384423844338444384453844638447384483844938450384513845238453384543845538456384573845838459384603846138462384633846438465384663846738468384693847038471384723847338474384753847638477384783847938480384813848238483384843848538486384873848838489384903849138492384933849438495384963849738498384993850038501385023850338504385053850638507385083850938510385113851238513385143851538516385173851838519385203852138522385233852438525385263852738528385293853038531385323853338534385353853638537385383853938540385413854238543385443854538546385473854838549385503855138552385533855438555385563855738558385593856038561385623856338564385653856638567385683856938570385713857238573385743857538576385773857838579385803858138582385833858438585385863858738588385893859038591385923859338594385953859638597385983859938600386013860238603386043860538606386073860838609386103861138612386133861438615386163861738618386193862038621386223862338624386253862638627386283862938630386313863238633386343863538636386373863838639386403864138642386433864438645386463864738648386493865038651386523865338654386553865638657386583865938660386613866238663386643866538666386673866838669386703867138672386733867438675386763867738678386793868038681386823868338684386853868638687386883868938690386913869238693386943869538696386973869838699387003870138702387033870438705387063870738708387093871038711387123871338714387153871638717387183871938720387213872238723387243872538726387273872838729387303873138732387333873438735387363873738738387393874038741387423874338744387453874638747387483874938750387513875238753387543875538756387573875838759387603876138762387633876438765387663876738768387693877038771387723877338774387753877638777387783877938780387813878238783387843878538786387873878838789387903879138792387933879438795387963879738798387993880038801388023880338804388053880638807388083880938810388113881238813388143881538816388173881838819388203882138822388233882438825388263882738828388293883038831388323883338834388353883638837388383883938840388413884238843388443884538846388473884838849388503885138852388533885438855388563885738858388593886038861388623886338864388653886638867388683886938870388713887238873388743887538876388773887838879388803888138882388833888438885388863888738888388893889038891388923889338894388953889638897388983889938900389013890238903389043890538906389073890838909389103891138912389133891438915389163891738918389193892038921389223892338924389253892638927389283892938930389313893238933389343893538936389373893838939389403894138942389433894438945389463894738948389493895038951389523895338954389553895638957389583895938960389613896238963389643896538966389673896838969389703897138972389733897438975389763897738978389793898038981389823898338984389853898638987389883898938990389913899238993389943899538996389973899838999390003900139002390033900439005390063900739008390093901039011390123901339014390153901639017390183901939020390213902239023390243902539026390273902839029390303903139032390333903439035390363903739038390393904039041390423904339044390453904639047390483904939050390513905239053390543905539056390573905839059390603906139062390633906439065390663906739068390693907039071390723907339074390753907639077390783907939080390813908239083390843908539086390873908839089390903909139092390933909439095390963909739098390993910039101391023910339104391053910639107391083910939110391113911239113391143911539116391173911839119391203912139122391233912439125391263912739128391293913039131391323913339134391353913639137391383913939140391413914239143391443914539146391473914839149391503915139152391533915439155391563915739158391593916039161391623916339164391653916639167391683916939170391713917239173391743917539176391773917839179391803918139182391833918439185391863918739188391893919039191391923919339194391953919639197391983919939200392013920239203392043920539206392073920839209392103921139212392133921439215392163921739218392193922039221392223922339224392253922639227392283922939230392313923239233392343923539236392373923839239392403924139242392433924439245392463924739248392493925039251392523925339254392553925639257392583925939260392613926239263392643926539266392673926839269392703927139272392733927439275392763927739278392793928039281392823928339284392853928639287392883928939290392913929239293392943929539296392973929839299393003930139302393033930439305393063930739308393093931039311393123931339314393153931639317393183931939320393213932239323393243932539326393273932839329393303933139332393333933439335393363933739338393393934039341393423934339344393453934639347393483934939350393513935239353393543935539356393573935839359393603936139362393633936439365393663936739368393693937039371393723937339374393753937639377393783937939380393813938239383393843938539386393873938839389393903939139392393933939439395393963939739398393993940039401394023940339404394053940639407394083940939410394113941239413394143941539416394173941839419394203942139422394233942439425394263942739428394293943039431394323943339434394353943639437394383943939440394413944239443394443944539446394473944839449394503945139452394533945439455394563945739458394593946039461394623946339464394653946639467394683946939470394713947239473394743947539476394773947839479394803948139482394833948439485394863948739488394893949039491394923949339494394953949639497394983949939500395013950239503395043950539506395073950839509395103951139512395133951439515395163951739518395193952039521395223952339524395253952639527395283952939530395313953239533395343953539536395373953839539395403954139542395433954439545395463954739548395493955039551395523955339554395553955639557395583955939560395613956239563395643956539566395673956839569395703957139572395733957439575395763957739578395793958039581395823958339584395853958639587395883958939590395913959239593395943959539596395973959839599396003960139602396033960439605396063960739608396093961039611396123961339614396153961639617396183961939620396213962239623396243962539626396273962839629396303963139632396333963439635396363963739638396393964039641396423964339644396453964639647396483964939650396513965239653396543965539656396573965839659396603966139662396633966439665396663966739668396693967039671396723967339674396753967639677396783967939680396813968239683396843968539686396873968839689396903969139692396933969439695396963969739698396993970039701397023970339704397053970639707397083970939710397113971239713397143971539716397173971839719397203972139722397233972439725397263972739728397293973039731397323973339734397353973639737397383973939740397413974239743397443974539746397473974839749397503975139752397533975439755397563975739758397593976039761397623976339764397653976639767397683976939770397713977239773397743977539776397773977839779397803978139782397833978439785397863978739788397893979039791397923979339794397953979639797397983979939800398013980239803398043980539806398073980839809398103981139812398133981439815398163981739818398193982039821398223982339824398253982639827398283982939830398313983239833398343983539836398373983839839398403984139842398433984439845398463984739848398493985039851398523985339854398553985639857398583985939860398613986239863398643986539866398673986839869398703987139872398733987439875398763987739878398793988039881398823988339884398853988639887398883988939890398913989239893398943989539896398973989839899399003990139902399033990439905399063990739908399093991039911399123991339914399153991639917399183991939920399213992239923399243992539926399273992839929399303993139932399333993439935399363993739938399393994039941399423994339944399453994639947399483994939950399513995239953399543995539956399573995839959399603996139962399633996439965399663996739968399693997039971399723997339974399753997639977399783997939980399813998239983399843998539986399873998839989399903999139992399933999439995399963999739998399994000040001400024000340004400054000640007400084000940010400114001240013400144001540016400174001840019400204002140022400234002440025400264002740028400294003040031400324003340034400354003640037400384003940040400414004240043400444004540046400474004840049400504005140052400534005440055400564005740058400594006040061400624006340064400654006640067400684006940070400714007240073400744007540076400774007840079400804008140082400834008440085400864008740088400894009040091400924009340094400954009640097400984009940100401014010240103401044010540106401074010840109401104011140112401134011440115401164011740118401194012040121401224012340124401254012640127401284012940130401314013240133401344013540136401374013840139401404014140142401434014440145401464014740148401494015040151401524015340154401554015640157401584015940160401614016240163401644016540166401674016840169401704017140172401734017440175401764017740178401794018040181401824018340184401854018640187401884018940190401914019240193401944019540196401974019840199402004020140202402034020440205402064020740208402094021040211402124021340214402154021640217402184021940220402214022240223402244022540226402274022840229402304023140232402334023440235402364023740238402394024040241402424024340244402454024640247402484024940250402514025240253402544025540256402574025840259402604026140262402634026440265402664026740268402694027040271402724027340274402754027640277402784027940280402814028240283402844028540286402874028840289402904029140292402934029440295402964029740298402994030040301403024030340304403054030640307403084030940310403114031240313403144031540316403174031840319403204032140322403234032440325403264032740328403294033040331403324033340334403354033640337403384033940340403414034240343403444034540346403474034840349403504035140352403534035440355403564035740358403594036040361403624036340364403654036640367403684036940370403714037240373403744037540376403774037840379403804038140382403834038440385403864038740388403894039040391403924039340394403954039640397403984039940400404014040240403404044040540406404074040840409404104041140412404134041440415404164041740418404194042040421404224042340424404254042640427404284042940430404314043240433404344043540436404374043840439404404044140442404434044440445404464044740448404494045040451404524045340454404554045640457404584045940460404614046240463404644046540466404674046840469404704047140472404734047440475404764047740478404794048040481404824048340484404854048640487404884048940490404914049240493404944049540496404974049840499405004050140502405034050440505405064050740508405094051040511405124051340514405154051640517405184051940520405214052240523405244052540526405274052840529405304053140532405334053440535405364053740538405394054040541405424054340544405454054640547405484054940550405514055240553405544055540556405574055840559405604056140562405634056440565405664056740568405694057040571405724057340574405754057640577405784057940580405814058240583405844058540586405874058840589405904059140592405934059440595405964059740598405994060040601406024060340604406054060640607406084060940610406114061240613406144061540616406174061840619406204062140622406234062440625406264062740628406294063040631406324063340634406354063640637406384063940640406414064240643406444064540646406474064840649406504065140652406534065440655406564065740658406594066040661406624066340664406654066640667406684066940670406714067240673406744067540676406774067840679406804068140682406834068440685406864068740688406894069040691406924069340694406954069640697406984069940700407014070240703407044070540706407074070840709407104071140712407134071440715407164071740718407194072040721407224072340724407254072640727407284072940730407314073240733407344073540736407374073840739407404074140742407434074440745407464074740748407494075040751407524075340754407554075640757407584075940760407614076240763407644076540766407674076840769407704077140772407734077440775407764077740778407794078040781407824078340784407854078640787407884078940790407914079240793407944079540796407974079840799408004080140802408034080440805408064080740808408094081040811408124081340814408154081640817408184081940820408214082240823408244082540826408274082840829408304083140832408334083440835408364083740838408394084040841408424084340844408454084640847408484084940850408514085240853408544085540856408574085840859408604086140862408634086440865408664086740868408694087040871408724087340874408754087640877408784087940880408814088240883408844088540886408874088840889408904089140892408934089440895408964089740898408994090040901409024090340904409054090640907409084090940910409114091240913409144091540916409174091840919409204092140922409234092440925409264092740928409294093040931409324093340934409354093640937409384093940940409414094240943409444094540946409474094840949409504095140952409534095440955409564095740958409594096040961409624096340964409654096640967409684096940970409714097240973409744097540976409774097840979409804098140982409834098440985409864098740988409894099040991409924099340994409954099640997409984099941000410014100241003410044100541006410074100841009410104101141012410134101441015410164101741018410194102041021410224102341024410254102641027410284102941030410314103241033410344103541036410374103841039410404104141042410434104441045410464104741048410494105041051410524105341054410554105641057410584105941060410614106241063410644106541066410674106841069410704107141072410734107441075410764107741078410794108041081410824108341084410854108641087410884108941090410914109241093410944109541096410974109841099411004110141102411034110441105411064110741108411094111041111411124111341114411154111641117411184111941120411214112241123411244112541126411274112841129411304113141132411334113441135411364113741138411394114041141411424114341144411454114641147411484114941150411514115241153411544115541156411574115841159411604116141162411634116441165411664116741168411694117041171411724117341174411754117641177411784117941180411814118241183411844118541186411874118841189411904119141192411934119441195411964119741198411994120041201412024120341204412054120641207412084120941210412114121241213412144121541216412174121841219412204122141222412234122441225412264122741228412294123041231412324123341234412354123641237412384123941240412414124241243412444124541246412474124841249412504125141252412534125441255412564125741258412594126041261412624126341264412654126641267412684126941270412714127241273412744127541276412774127841279412804128141282412834128441285412864128741288412894129041291412924129341294412954129641297412984129941300413014130241303413044130541306413074130841309413104131141312413134131441315413164131741318413194132041321413224132341324413254132641327413284132941330413314133241333413344133541336413374133841339413404134141342413434134441345413464134741348413494135041351413524135341354413554135641357413584135941360413614136241363413644136541366413674136841369413704137141372413734137441375413764137741378413794138041381413824138341384413854138641387413884138941390413914139241393413944139541396413974139841399414004140141402414034140441405414064140741408414094141041411414124141341414414154141641417414184141941420414214142241423414244142541426414274142841429414304143141432414334143441435414364143741438414394144041441414424144341444414454144641447414484144941450414514145241453414544145541456414574145841459414604146141462414634146441465414664146741468414694147041471414724147341474414754147641477414784147941480414814148241483414844148541486414874148841489414904149141492414934149441495414964149741498414994150041501415024150341504415054150641507415084150941510415114151241513415144151541516415174151841519415204152141522415234152441525415264152741528415294153041531415324153341534415354153641537415384153941540415414154241543415444154541546415474154841549415504155141552415534155441555415564155741558415594156041561415624156341564415654156641567415684156941570415714157241573415744157541576415774157841579415804158141582415834158441585415864158741588415894159041591415924159341594415954159641597415984159941600416014160241603416044160541606416074160841609416104161141612416134161441615416164161741618416194162041621416224162341624416254162641627416284162941630416314163241633416344163541636416374163841639416404164141642416434164441645416464164741648416494165041651416524165341654416554165641657416584165941660416614166241663416644166541666416674166841669416704167141672416734167441675416764167741678416794168041681416824168341684416854168641687416884168941690416914169241693416944169541696416974169841699417004170141702417034170441705417064170741708417094171041711417124171341714417154171641717417184171941720417214172241723417244172541726417274172841729417304173141732417334173441735417364173741738417394174041741417424174341744417454174641747417484174941750417514175241753417544175541756417574175841759417604176141762417634176441765417664176741768417694177041771417724177341774417754177641777417784177941780417814178241783417844178541786417874178841789417904179141792417934179441795417964179741798417994180041801418024180341804418054180641807418084180941810418114181241813418144181541816418174181841819418204182141822418234182441825418264182741828418294183041831418324183341834418354183641837418384183941840418414184241843418444184541846418474184841849418504185141852418534185441855418564185741858418594186041861418624186341864418654186641867418684186941870418714187241873418744187541876418774187841879418804188141882418834188441885418864188741888418894189041891418924189341894418954189641897418984189941900419014190241903419044190541906419074190841909419104191141912419134191441915419164191741918419194192041921419224192341924419254192641927419284192941930419314193241933419344193541936419374193841939419404194141942419434194441945419464194741948419494195041951419524195341954419554195641957419584195941960419614196241963419644196541966419674196841969419704197141972419734197441975419764197741978419794198041981419824198341984419854198641987419884198941990419914199241993419944199541996419974199841999420004200142002420034200442005420064200742008420094201042011420124201342014420154201642017420184201942020420214202242023420244202542026420274202842029420304203142032420334203442035420364203742038420394204042041420424204342044420454204642047420484204942050420514205242053420544205542056420574205842059420604206142062420634206442065420664206742068420694207042071420724207342074420754207642077420784207942080420814208242083420844208542086420874208842089420904209142092420934209442095420964209742098420994210042101421024210342104421054210642107421084210942110421114211242113421144211542116421174211842119421204212142122421234212442125421264212742128421294213042131421324213342134421354213642137421384213942140421414214242143421444214542146421474214842149421504215142152421534215442155421564215742158421594216042161421624216342164421654216642167421684216942170421714217242173421744217542176421774217842179421804218142182421834218442185421864218742188421894219042191421924219342194421954219642197421984219942200422014220242203422044220542206422074220842209422104221142212422134221442215422164221742218422194222042221422224222342224422254222642227422284222942230422314223242233422344223542236422374223842239422404224142242422434224442245422464224742248422494225042251422524225342254422554225642257422584225942260422614226242263422644226542266422674226842269422704227142272422734227442275422764227742278422794228042281422824228342284422854228642287422884228942290422914229242293422944229542296422974229842299423004230142302423034230442305423064230742308423094231042311423124231342314423154231642317423184231942320423214232242323423244232542326423274232842329423304233142332423334233442335423364233742338423394234042341423424234342344423454234642347423484234942350423514235242353423544235542356423574235842359423604236142362423634236442365423664236742368423694237042371423724237342374423754237642377423784237942380423814238242383423844238542386423874238842389423904239142392423934239442395423964239742398423994240042401424024240342404424054240642407424084240942410424114241242413424144241542416424174241842419424204242142422424234242442425424264242742428424294243042431424324243342434424354243642437424384243942440424414244242443424444244542446424474244842449424504245142452424534245442455424564245742458424594246042461424624246342464424654246642467424684246942470424714247242473424744247542476424774247842479424804248142482424834248442485424864248742488424894249042491424924249342494424954249642497424984249942500425014250242503425044250542506425074250842509425104251142512425134251442515425164251742518425194252042521425224252342524425254252642527425284252942530425314253242533425344253542536425374253842539425404254142542425434254442545425464254742548425494255042551425524255342554425554255642557425584255942560425614256242563425644256542566425674256842569425704257142572425734257442575425764257742578425794258042581425824258342584425854258642587425884258942590425914259242593425944259542596425974259842599426004260142602426034260442605426064260742608426094261042611426124261342614426154261642617426184261942620426214262242623426244262542626426274262842629426304263142632426334263442635426364263742638426394264042641426424264342644426454264642647426484264942650426514265242653426544265542656426574265842659426604266142662426634266442665426664266742668426694267042671426724267342674426754267642677426784267942680426814268242683426844268542686426874268842689426904269142692426934269442695426964269742698426994270042701427024270342704427054270642707427084270942710427114271242713427144271542716427174271842719427204272142722427234272442725427264272742728427294273042731427324273342734427354273642737427384273942740427414274242743427444274542746427474274842749427504275142752427534275442755427564275742758427594276042761427624276342764427654276642767427684276942770427714277242773427744277542776427774277842779427804278142782427834278442785427864278742788427894279042791427924279342794427954279642797427984279942800428014280242803428044280542806428074280842809428104281142812428134281442815428164281742818428194282042821428224282342824428254282642827428284282942830428314283242833428344283542836428374283842839428404284142842428434284442845428464284742848428494285042851428524285342854428554285642857428584285942860428614286242863428644286542866428674286842869428704287142872428734287442875428764287742878428794288042881428824288342884428854288642887428884288942890428914289242893428944289542896428974289842899429004290142902429034290442905429064290742908429094291042911429124291342914429154291642917429184291942920429214292242923429244292542926429274292842929429304293142932429334293442935429364293742938429394294042941429424294342944429454294642947429484294942950429514295242953429544295542956429574295842959429604296142962429634296442965429664296742968429694297042971429724297342974429754297642977429784297942980429814298242983429844298542986429874298842989429904299142992429934299442995429964299742998429994300043001430024300343004430054300643007430084300943010430114301243013430144301543016430174301843019430204302143022430234302443025430264302743028430294303043031430324303343034430354303643037430384303943040430414304243043430444304543046430474304843049430504305143052430534305443055430564305743058430594306043061430624306343064430654306643067430684306943070430714307243073430744307543076430774307843079430804308143082430834308443085430864308743088430894309043091430924309343094430954309643097430984309943100431014310243103431044310543106431074310843109431104311143112431134311443115431164311743118431194312043121431224312343124431254312643127431284312943130431314313243133431344313543136431374313843139431404314143142431434314443145431464314743148431494315043151431524315343154431554315643157431584315943160431614316243163431644316543166431674316843169431704317143172431734317443175431764317743178431794318043181431824318343184431854318643187431884318943190431914319243193431944319543196431974319843199432004320143202432034320443205432064320743208432094321043211432124321343214432154321643217432184321943220432214322243223432244322543226432274322843229432304323143232432334323443235432364323743238432394324043241432424324343244432454324643247432484324943250432514325243253432544325543256432574325843259432604326143262432634326443265432664326743268432694327043271432724327343274432754327643277432784327943280432814328243283432844328543286432874328843289432904329143292432934329443295432964329743298432994330043301433024330343304433054330643307433084330943310433114331243313433144331543316433174331843319433204332143322433234332443325433264332743328433294333043331433324333343334433354333643337433384333943340433414334243343433444334543346433474334843349433504335143352433534335443355433564335743358433594336043361433624336343364433654336643367433684336943370433714337243373433744337543376433774337843379433804338143382433834338443385433864338743388433894339043391433924339343394433954339643397433984339943400434014340243403434044340543406434074340843409434104341143412434134341443415434164341743418434194342043421434224342343424434254342643427434284342943430434314343243433434344343543436434374343843439434404344143442434434344443445434464344743448434494345043451434524345343454434554345643457434584345943460434614346243463434644346543466434674346843469434704347143472434734347443475434764347743478434794348043481434824348343484434854348643487434884348943490434914349243493434944349543496434974349843499435004350143502435034350443505435064350743508435094351043511435124351343514435154351643517435184351943520435214352243523435244352543526435274352843529435304353143532435334353443535435364353743538435394354043541435424354343544435454354643547435484354943550435514355243553435544355543556435574355843559435604356143562435634356443565435664356743568435694357043571435724357343574435754357643577435784357943580435814358243583435844358543586435874358843589435904359143592435934359443595435964359743598435994360043601436024360343604436054360643607436084360943610436114361243613436144361543616436174361843619436204362143622436234362443625436264362743628436294363043631436324363343634436354363643637436384363943640436414364243643436444364543646436474364843649436504365143652436534365443655436564365743658436594366043661436624366343664436654366643667436684366943670436714367243673436744367543676436774367843679436804368143682436834368443685436864368743688436894369043691436924369343694436954369643697436984369943700437014370243703437044370543706437074370843709437104371143712437134371443715437164371743718437194372043721437224372343724437254372643727437284372943730437314373243733437344373543736437374373843739437404374143742437434374443745437464374743748437494375043751437524375343754437554375643757437584375943760437614376243763437644376543766437674376843769437704377143772437734377443775437764377743778437794378043781437824378343784437854378643787437884378943790437914379243793437944379543796437974379843799438004380143802438034380443805438064380743808438094381043811438124381343814438154381643817438184381943820438214382243823438244382543826438274382843829438304383143832438334383443835438364383743838438394384043841438424384343844438454384643847438484384943850438514385243853438544385543856438574385843859438604386143862438634386443865438664386743868438694387043871438724387343874438754387643877438784387943880438814388243883438844388543886438874388843889438904389143892438934389443895438964389743898438994390043901439024390343904439054390643907439084390943910439114391243913439144391543916439174391843919439204392143922439234392443925439264392743928439294393043931439324393343934439354393643937439384393943940439414394243943439444394543946439474394843949439504395143952439534395443955439564395743958439594396043961439624396343964439654396643967439684396943970439714397243973439744397543976439774397843979439804398143982439834398443985439864398743988439894399043991439924399343994439954399643997439984399944000440014400244003440044400544006440074400844009440104401144012440134401444015440164401744018440194402044021440224402344024440254402644027440284402944030440314403244033440344403544036440374403844039440404404144042440434404444045440464404744048440494405044051440524405344054440554405644057440584405944060440614406244063440644406544066440674406844069440704407144072440734407444075440764407744078440794408044081440824408344084440854408644087440884408944090440914409244093440944409544096440974409844099441004410144102441034410444105441064410744108441094411044111441124411344114441154411644117441184411944120441214412244123441244412544126441274412844129441304413144132441334413444135441364413744138441394414044141441424414344144441454414644147441484414944150441514415244153441544415544156441574415844159441604416144162441634416444165441664416744168441694417044171441724417344174441754417644177441784417944180441814418244183441844418544186441874418844189441904419144192441934419444195441964419744198441994420044201442024420344204442054420644207442084420944210442114421244213442144421544216442174421844219442204422144222442234422444225442264422744228442294423044231442324423344234442354423644237442384423944240442414424244243442444424544246442474424844249442504425144252442534425444255442564425744258442594426044261442624426344264442654426644267442684426944270442714427244273442744427544276442774427844279442804428144282442834428444285442864428744288442894429044291442924429344294442954429644297442984429944300443014430244303443044430544306443074430844309443104431144312443134431444315443164431744318443194432044321443224432344324443254432644327443284432944330443314433244333443344433544336443374433844339443404434144342443434434444345443464434744348443494435044351443524435344354443554435644357443584435944360443614436244363443644436544366443674436844369443704437144372443734437444375443764437744378443794438044381443824438344384443854438644387443884438944390443914439244393443944439544396443974439844399444004440144402444034440444405444064440744408444094441044411444124441344414444154441644417444184441944420444214442244423444244442544426444274442844429444304443144432444334443444435444364443744438444394444044441444424444344444444454444644447444484444944450444514445244453444544445544456444574445844459444604446144462444634446444465444664446744468444694447044471444724447344474444754447644477444784447944480444814448244483444844448544486444874448844489444904449144492444934449444495444964449744498444994450044501445024450344504445054450644507445084450944510445114451244513445144451544516445174451844519445204452144522445234452444525445264452744528445294453044531445324453344534445354453644537445384453944540445414454244543445444454544546445474454844549445504455144552445534455444555445564455744558445594456044561445624456344564445654456644567445684456944570445714457244573445744457544576445774457844579445804458144582445834458444585445864458744588445894459044591445924459344594445954459644597445984459944600446014460244603446044460544606446074460844609446104461144612446134461444615446164461744618446194462044621446224462344624446254462644627446284462944630446314463244633446344463544636446374463844639446404464144642446434464444645446464464744648446494465044651446524465344654446554465644657446584465944660446614466244663446644466544666446674466844669446704467144672446734467444675446764467744678446794468044681446824468344684446854468644687446884468944690446914469244693446944469544696446974469844699447004470144702447034470444705447064470744708447094471044711447124471344714447154471644717447184471944720447214472244723447244472544726447274472844729447304473144732447334473444735447364473744738447394474044741447424474344744447454474644747447484474944750447514475244753447544475544756447574475844759447604476144762447634476444765447664476744768447694477044771447724477344774447754477644777447784477944780447814478244783447844478544786447874478844789447904479144792447934479444795447964479744798447994480044801448024480344804448054480644807448084480944810448114481244813448144481544816448174481844819448204482144822448234482444825448264482744828448294483044831448324483344834448354483644837448384483944840448414484244843448444484544846448474484844849448504485144852448534485444855448564485744858448594486044861448624486344864448654486644867448684486944870448714487244873448744487544876448774487844879448804488144882448834488444885448864488744888448894489044891448924489344894448954489644897448984489944900449014490244903449044490544906449074490844909449104491144912449134491444915449164491744918449194492044921449224492344924449254492644927449284492944930449314493244933449344493544936449374493844939449404494144942449434494444945449464494744948449494495044951449524495344954449554495644957449584495944960449614496244963449644496544966449674496844969449704497144972449734497444975449764497744978449794498044981449824498344984449854498644987449884498944990449914499244993449944499544996449974499844999450004500145002450034500445005450064500745008450094501045011450124501345014450154501645017450184501945020450214502245023450244502545026450274502845029450304503145032450334503445035450364503745038450394504045041450424504345044450454504645047450484504945050450514505245053450544505545056450574505845059450604506145062450634506445065450664506745068450694507045071450724507345074450754507645077450784507945080450814508245083450844508545086450874508845089450904509145092450934509445095450964509745098450994510045101451024510345104451054510645107451084510945110451114511245113451144511545116451174511845119451204512145122451234512445125451264512745128451294513045131451324513345134451354513645137451384513945140451414514245143451444514545146451474514845149451504515145152451534515445155451564515745158451594516045161451624516345164451654516645167451684516945170451714517245173451744517545176451774517845179451804518145182451834518445185451864518745188451894519045191451924519345194451954519645197451984519945200452014520245203452044520545206452074520845209452104521145212452134521445215452164521745218452194522045221452224522345224452254522645227452284522945230452314523245233452344523545236452374523845239452404524145242452434524445245452464524745248452494525045251452524525345254452554525645257452584525945260452614526245263452644526545266452674526845269452704527145272452734527445275452764527745278452794528045281452824528345284452854528645287452884528945290452914529245293452944529545296452974529845299453004530145302453034530445305453064530745308453094531045311453124531345314453154531645317453184531945320453214532245323453244532545326453274532845329453304533145332453334533445335453364533745338453394534045341453424534345344453454534645347453484534945350453514535245353453544535545356453574535845359453604536145362453634536445365453664536745368453694537045371453724537345374453754537645377453784537945380453814538245383453844538545386453874538845389453904539145392453934539445395453964539745398453994540045401454024540345404454054540645407454084540945410454114541245413454144541545416454174541845419454204542145422454234542445425454264542745428454294543045431454324543345434454354543645437454384543945440454414544245443454444544545446454474544845449454504545145452454534545445455454564545745458454594546045461454624546345464454654546645467454684546945470454714547245473454744547545476454774547845479454804548145482454834548445485454864548745488454894549045491454924549345494454954549645497454984549945500455014550245503455044550545506455074550845509455104551145512455134551445515455164551745518455194552045521455224552345524455254552645527455284552945530455314553245533455344553545536455374553845539455404554145542455434554445545455464554745548455494555045551455524555345554455554555645557455584555945560455614556245563455644556545566455674556845569455704557145572455734557445575455764557745578455794558045581455824558345584455854558645587455884558945590455914559245593455944559545596455974559845599456004560145602456034560445605456064560745608456094561045611456124561345614456154561645617456184561945620456214562245623456244562545626456274562845629456304563145632456334563445635456364563745638456394564045641456424564345644456454564645647456484564945650456514565245653456544565545656456574565845659456604566145662456634566445665456664566745668456694567045671456724567345674456754567645677456784567945680456814568245683456844568545686456874568845689456904569145692456934569445695456964569745698456994570045701457024570345704457054570645707457084570945710457114571245713457144571545716457174571845719457204572145722457234572445725457264572745728457294573045731457324573345734457354573645737457384573945740457414574245743457444574545746457474574845749457504575145752457534575445755457564575745758457594576045761457624576345764457654576645767457684576945770457714577245773457744577545776457774577845779457804578145782457834578445785457864578745788457894579045791457924579345794457954579645797457984579945800458014580245803458044580545806458074580845809458104581145812458134581445815458164581745818458194582045821458224582345824458254582645827458284582945830458314583245833458344583545836458374583845839458404584145842458434584445845458464584745848458494585045851458524585345854458554585645857458584585945860458614586245863458644586545866458674586845869458704587145872458734587445875458764587745878458794588045881458824588345884458854588645887458884588945890458914589245893458944589545896458974589845899459004590145902459034590445905459064590745908459094591045911459124591345914459154591645917459184591945920459214592245923459244592545926459274592845929459304593145932459334593445935459364593745938459394594045941459424594345944459454594645947459484594945950459514595245953459544595545956459574595845959459604596145962459634596445965459664596745968459694597045971459724597345974459754597645977459784597945980459814598245983459844598545986459874598845989459904599145992459934599445995459964599745998459994600046001460024600346004460054600646007460084600946010460114601246013460144601546016460174601846019460204602146022460234602446025460264602746028460294603046031460324603346034460354603646037460384603946040460414604246043460444604546046460474604846049460504605146052460534605446055460564605746058460594606046061460624606346064460654606646067460684606946070460714607246073460744607546076460774607846079460804608146082460834608446085460864608746088460894609046091460924609346094460954609646097460984609946100461014610246103461044610546106461074610846109461104611146112461134611446115461164611746118461194612046121461224612346124461254612646127461284612946130461314613246133461344613546136461374613846139461404614146142461434614446145461464614746148461494615046151461524615346154461554615646157461584615946160461614616246163461644616546166461674616846169461704617146172461734617446175461764617746178461794618046181461824618346184461854618646187461884618946190461914619246193461944619546196461974619846199462004620146202462034620446205462064620746208462094621046211462124621346214462154621646217462184621946220462214622246223462244622546226462274622846229462304623146232462334623446235462364623746238462394624046241462424624346244462454624646247462484624946250462514625246253462544625546256462574625846259462604626146262462634626446265462664626746268462694627046271462724627346274462754627646277462784627946280462814628246283462844628546286462874628846289462904629146292462934629446295462964629746298462994630046301463024630346304463054630646307463084630946310463114631246313463144631546316463174631846319463204632146322463234632446325463264632746328463294633046331463324633346334463354633646337463384633946340463414634246343463444634546346463474634846349463504635146352463534635446355463564635746358463594636046361463624636346364463654636646367463684636946370463714637246373463744637546376463774637846379463804638146382463834638446385463864638746388463894639046391463924639346394463954639646397463984639946400464014640246403464044640546406464074640846409464104641146412464134641446415464164641746418464194642046421464224642346424464254642646427464284642946430464314643246433464344643546436464374643846439464404644146442464434644446445464464644746448464494645046451464524645346454464554645646457464584645946460464614646246463464644646546466464674646846469464704647146472464734647446475464764647746478464794648046481464824648346484464854648646487464884648946490464914649246493464944649546496464974649846499465004650146502465034650446505465064650746508465094651046511465124651346514465154651646517465184651946520465214652246523465244652546526465274652846529465304653146532465334653446535465364653746538465394654046541465424654346544465454654646547465484654946550465514655246553465544655546556465574655846559465604656146562465634656446565465664656746568465694657046571465724657346574465754657646577465784657946580465814658246583465844658546586465874658846589465904659146592465934659446595465964659746598465994660046601466024660346604466054660646607466084660946610466114661246613466144661546616466174661846619466204662146622466234662446625466264662746628466294663046631466324663346634466354663646637466384663946640466414664246643466444664546646466474664846649466504665146652466534665446655466564665746658466594666046661466624666346664466654666646667466684666946670466714667246673466744667546676466774667846679466804668146682466834668446685466864668746688466894669046691466924669346694466954669646697466984669946700467014670246703467044670546706467074670846709467104671146712467134671446715467164671746718467194672046721467224672346724467254672646727467284672946730467314673246733467344673546736467374673846739467404674146742467434674446745467464674746748467494675046751467524675346754467554675646757467584675946760467614676246763467644676546766467674676846769467704677146772467734677446775467764677746778467794678046781467824678346784467854678646787467884678946790467914679246793467944679546796467974679846799468004680146802468034680446805468064680746808468094681046811468124681346814468154681646817468184681946820468214682246823468244682546826468274682846829468304683146832468334683446835468364683746838468394684046841468424684346844468454684646847468484684946850468514685246853468544685546856468574685846859468604686146862468634686446865468664686746868468694687046871468724687346874468754687646877468784687946880468814688246883468844688546886468874688846889468904689146892468934689446895468964689746898468994690046901469024690346904469054690646907469084690946910469114691246913469144691546916469174691846919469204692146922469234692446925469264692746928469294693046931469324693346934469354693646937469384693946940469414694246943469444694546946469474694846949469504695146952469534695446955469564695746958469594696046961469624696346964469654696646967469684696946970469714697246973469744697546976469774697846979469804698146982469834698446985469864698746988469894699046991469924699346994469954699646997469984699947000470014700247003470044700547006470074700847009470104701147012470134701447015470164701747018470194702047021470224702347024470254702647027470284702947030470314703247033470344703547036470374703847039470404704147042470434704447045470464704747048470494705047051470524705347054470554705647057470584705947060470614706247063470644706547066470674706847069470704707147072470734707447075470764707747078470794708047081470824708347084470854708647087470884708947090470914709247093470944709547096470974709847099471004710147102471034710447105471064710747108471094711047111471124711347114471154711647117471184711947120471214712247123471244712547126471274712847129471304713147132471334713447135471364713747138471394714047141471424714347144471454714647147471484714947150471514715247153471544715547156471574715847159471604716147162471634716447165471664716747168471694717047171471724717347174471754717647177471784717947180471814718247183471844718547186471874718847189471904719147192471934719447195471964719747198471994720047201472024720347204472054720647207472084720947210472114721247213472144721547216472174721847219472204722147222472234722447225472264722747228472294723047231472324723347234472354723647237472384723947240472414724247243472444724547246472474724847249472504725147252472534725447255472564725747258472594726047261472624726347264472654726647267472684726947270472714727247273472744727547276472774727847279472804728147282472834728447285472864728747288472894729047291472924729347294472954729647297472984729947300473014730247303473044730547306473074730847309473104731147312473134731447315473164731747318473194732047321473224732347324473254732647327473284732947330473314733247333473344733547336473374733847339473404734147342473434734447345473464734747348473494735047351473524735347354473554735647357473584735947360473614736247363473644736547366473674736847369473704737147372473734737447375473764737747378473794738047381473824738347384473854738647387473884738947390473914739247393473944739547396473974739847399474004740147402474034740447405474064740747408474094741047411474124741347414474154741647417474184741947420474214742247423474244742547426474274742847429474304743147432474334743447435474364743747438474394744047441474424744347444474454744647447474484744947450474514745247453474544745547456474574745847459474604746147462474634746447465474664746747468474694747047471474724747347474474754747647477474784747947480474814748247483474844748547486474874748847489474904749147492474934749447495474964749747498474994750047501475024750347504475054750647507475084750947510475114751247513475144751547516475174751847519475204752147522475234752447525475264752747528475294753047531475324753347534475354753647537475384753947540475414754247543475444754547546475474754847549475504755147552475534755447555475564755747558475594756047561475624756347564475654756647567475684756947570475714757247573475744757547576475774757847579475804758147582475834758447585475864758747588475894759047591475924759347594475954759647597475984759947600476014760247603476044760547606476074760847609476104761147612476134761447615476164761747618476194762047621476224762347624476254762647627476284762947630476314763247633476344763547636476374763847639476404764147642476434764447645476464764747648476494765047651476524765347654476554765647657476584765947660476614766247663476644766547666476674766847669476704767147672476734767447675476764767747678476794768047681476824768347684476854768647687476884768947690476914769247693476944769547696476974769847699477004770147702477034770447705477064770747708477094771047711477124771347714477154771647717477184771947720477214772247723477244772547726477274772847729477304773147732477334773447735477364773747738477394774047741477424774347744477454774647747477484774947750477514775247753477544775547756477574775847759477604776147762477634776447765477664776747768477694777047771477724777347774477754777647777477784777947780477814778247783477844778547786477874778847789477904779147792477934779447795477964779747798477994780047801478024780347804478054780647807478084780947810478114781247813478144781547816478174781847819478204782147822478234782447825478264782747828478294783047831478324783347834478354783647837478384783947840478414784247843478444784547846478474784847849478504785147852478534785447855478564785747858478594786047861478624786347864478654786647867478684786947870478714787247873478744787547876478774787847879478804788147882478834788447885478864788747888478894789047891478924789347894478954789647897478984789947900479014790247903479044790547906479074790847909479104791147912479134791447915479164791747918479194792047921479224792347924479254792647927479284792947930479314793247933479344793547936479374793847939479404794147942479434794447945479464794747948479494795047951479524795347954479554795647957479584795947960479614796247963479644796547966479674796847969479704797147972479734797447975479764797747978479794798047981479824798347984479854798647987479884798947990479914799247993479944799547996479974799847999480004800148002480034800448005480064800748008480094801048011480124801348014480154801648017480184801948020480214802248023480244802548026480274802848029480304803148032480334803448035480364803748038480394804048041480424804348044480454804648047480484804948050480514805248053480544805548056480574805848059480604806148062480634806448065480664806748068480694807048071480724807348074480754807648077480784807948080480814808248083480844808548086480874808848089480904809148092480934809448095480964809748098480994810048101481024810348104481054810648107481084810948110481114811248113481144811548116481174811848119481204812148122481234812448125481264812748128481294813048131481324813348134481354813648137481384813948140481414814248143481444814548146481474814848149481504815148152481534815448155481564815748158481594816048161481624816348164481654816648167481684816948170481714817248173481744817548176481774817848179481804818148182481834818448185481864818748188481894819048191481924819348194481954819648197481984819948200482014820248203482044820548206482074820848209482104821148212482134821448215482164821748218482194822048221482224822348224482254822648227482284822948230482314823248233482344823548236482374823848239482404824148242482434824448245482464824748248482494825048251482524825348254482554825648257482584825948260482614826248263482644826548266482674826848269482704827148272482734827448275482764827748278482794828048281482824828348284482854828648287482884828948290482914829248293482944829548296482974829848299483004830148302483034830448305483064830748308483094831048311483124831348314483154831648317483184831948320483214832248323483244832548326483274832848329483304833148332483334833448335483364833748338483394834048341483424834348344483454834648347483484834948350483514835248353483544835548356483574835848359483604836148362483634836448365483664836748368483694837048371483724837348374483754837648377483784837948380483814838248383483844838548386483874838848389483904839148392483934839448395483964839748398483994840048401484024840348404484054840648407484084840948410484114841248413484144841548416484174841848419484204842148422484234842448425484264842748428484294843048431484324843348434484354843648437484384843948440484414844248443484444844548446484474844848449484504845148452484534845448455484564845748458484594846048461484624846348464484654846648467484684846948470484714847248473484744847548476484774847848479484804848148482484834848448485484864848748488484894849048491484924849348494484954849648497484984849948500485014850248503485044850548506485074850848509485104851148512485134851448515485164851748518485194852048521485224852348524485254852648527485284852948530485314853248533485344853548536485374853848539485404854148542485434854448545485464854748548485494855048551485524855348554485554855648557485584855948560485614856248563485644856548566485674856848569485704857148572485734857448575485764857748578485794858048581485824858348584485854858648587485884858948590485914859248593485944859548596485974859848599486004860148602486034860448605486064860748608486094861048611486124861348614486154861648617486184861948620486214862248623486244862548626486274862848629486304863148632486334863448635486364863748638486394864048641486424864348644486454864648647486484864948650486514865248653486544865548656486574865848659486604866148662486634866448665486664866748668486694867048671486724867348674486754867648677486784867948680486814868248683486844868548686486874868848689486904869148692486934869448695486964869748698486994870048701487024870348704487054870648707487084870948710487114871248713487144871548716487174871848719487204872148722487234872448725487264872748728487294873048731487324873348734487354873648737487384873948740487414874248743487444874548746487474874848749487504875148752487534875448755487564875748758487594876048761487624876348764487654876648767487684876948770487714877248773487744877548776487774877848779487804878148782487834878448785487864878748788487894879048791487924879348794487954879648797487984879948800488014880248803488044880548806488074880848809488104881148812488134881448815488164881748818488194882048821488224882348824488254882648827488284882948830488314883248833488344883548836488374883848839488404884148842488434884448845488464884748848488494885048851488524885348854488554885648857488584885948860488614886248863488644886548866488674886848869488704887148872488734887448875488764887748878488794888048881488824888348884488854888648887488884888948890488914889248893488944889548896488974889848899489004890148902489034890448905489064890748908489094891048911489124891348914489154891648917489184891948920489214892248923489244892548926489274892848929489304893148932489334893448935489364893748938489394894048941489424894348944489454894648947489484894948950489514895248953489544895548956489574895848959489604896148962489634896448965489664896748968489694897048971489724897348974489754897648977489784897948980489814898248983489844898548986489874898848989489904899148992489934899448995489964899748998489994900049001490024900349004490054900649007490084900949010490114901249013490144901549016490174901849019490204902149022490234902449025490264902749028490294903049031490324903349034490354903649037490384903949040490414904249043490444904549046490474904849049490504905149052490534905449055490564905749058490594906049061490624906349064490654906649067490684906949070490714907249073490744907549076490774907849079490804908149082490834908449085490864908749088490894909049091490924909349094490954909649097490984909949100491014910249103491044910549106491074910849109491104911149112491134911449115491164911749118491194912049121491224912349124491254912649127491284912949130491314913249133491344913549136491374913849139491404914149142491434914449145491464914749148491494915049151491524915349154491554915649157491584915949160491614916249163491644916549166491674916849169491704917149172491734917449175491764917749178491794918049181491824918349184491854918649187491884918949190491914919249193491944919549196491974919849199492004920149202492034920449205492064920749208492094921049211492124921349214492154921649217492184921949220492214922249223492244922549226492274922849229492304923149232492334923449235492364923749238492394924049241492424924349244492454924649247492484924949250492514925249253492544925549256492574925849259492604926149262492634926449265492664926749268492694927049271492724927349274492754927649277492784927949280492814928249283492844928549286492874928849289492904929149292492934929449295492964929749298492994930049301493024930349304493054930649307493084930949310493114931249313493144931549316493174931849319493204932149322493234932449325493264932749328493294933049331493324933349334493354933649337493384933949340493414934249343493444934549346493474934849349493504935149352493534935449355493564935749358493594936049361493624936349364493654936649367493684936949370493714937249373493744937549376493774937849379493804938149382493834938449385493864938749388493894939049391493924939349394493954939649397493984939949400494014940249403494044940549406494074940849409494104941149412494134941449415494164941749418494194942049421494224942349424494254942649427494284942949430494314943249433494344943549436494374943849439494404944149442494434944449445494464944749448494494945049451494524945349454494554945649457494584945949460494614946249463494644946549466494674946849469494704947149472494734947449475494764947749478494794948049481494824948349484494854948649487494884948949490494914949249493494944949549496494974949849499495004950149502495034950449505495064950749508495094951049511495124951349514495154951649517495184951949520495214952249523495244952549526495274952849529495304953149532495334953449535495364953749538495394954049541495424954349544495454954649547495484954949550495514955249553495544955549556495574955849559495604956149562495634956449565495664956749568495694957049571495724957349574495754957649577495784957949580495814958249583495844958549586495874958849589495904959149592495934959449595495964959749598495994960049601496024960349604496054960649607496084960949610496114961249613496144961549616496174961849619496204962149622496234962449625496264962749628496294963049631496324963349634496354963649637496384963949640496414964249643496444964549646496474964849649496504965149652496534965449655496564965749658496594966049661496624966349664496654966649667496684966949670496714967249673496744967549676496774967849679496804968149682496834968449685496864968749688496894969049691496924969349694496954969649697496984969949700497014970249703497044970549706497074970849709497104971149712497134971449715497164971749718497194972049721497224972349724497254972649727497284972949730497314973249733497344973549736497374973849739497404974149742497434974449745497464974749748497494975049751497524975349754497554975649757497584975949760497614976249763497644976549766497674976849769497704977149772497734977449775497764977749778497794978049781497824978349784497854978649787497884978949790497914979249793497944979549796497974979849799498004980149802498034980449805498064980749808498094981049811498124981349814498154981649817498184981949820498214982249823498244982549826498274982849829498304983149832498334983449835498364983749838498394984049841498424984349844498454984649847498484984949850498514985249853498544985549856498574985849859498604986149862498634986449865498664986749868498694987049871498724987349874498754987649877498784987949880498814988249883498844988549886498874988849889498904989149892498934989449895498964989749898498994990049901499024990349904499054990649907499084990949910499114991249913499144991549916499174991849919499204992149922499234992449925499264992749928499294993049931499324993349934499354993649937499384993949940499414994249943499444994549946499474994849949499504995149952499534995449955499564995749958499594996049961499624996349964499654996649967499684996949970499714997249973499744997549976499774997849979499804998149982499834998449985499864998749988499894999049991499924999349994499954999649997499984999950000500015000250003500045000550006500075000850009500105001150012500135001450015500165001750018500195002050021500225002350024500255002650027500285002950030500315003250033500345003550036500375003850039500405004150042500435004450045500465004750048500495005050051500525005350054500555005650057500585005950060500615006250063500645006550066500675006850069500705007150072500735007450075500765007750078500795008050081500825008350084500855008650087500885008950090500915009250093500945009550096500975009850099501005010150102501035010450105501065010750108501095011050111501125011350114501155011650117501185011950120501215012250123501245012550126501275012850129501305013150132501335013450135501365013750138501395014050141501425014350144501455014650147501485014950150501515015250153501545015550156501575015850159501605016150162501635016450165501665016750168501695017050171501725017350174501755017650177501785017950180501815018250183501845018550186501875018850189501905019150192501935019450195501965019750198501995020050201502025020350204502055020650207502085020950210502115021250213502145021550216502175021850219502205022150222502235022450225502265022750228502295023050231502325023350234502355023650237502385023950240502415024250243502445024550246502475024850249502505025150252502535025450255502565025750258502595026050261502625026350264502655026650267502685026950270502715027250273502745027550276502775027850279502805028150282502835028450285502865028750288502895029050291502925029350294502955029650297502985029950300503015030250303503045030550306503075030850309503105031150312503135031450315503165031750318503195032050321503225032350324503255032650327503285032950330503315033250333503345033550336503375033850339503405034150342503435034450345503465034750348503495035050351503525035350354503555035650357503585035950360503615036250363503645036550366503675036850369503705037150372503735037450375503765037750378503795038050381503825038350384503855038650387503885038950390503915039250393503945039550396503975039850399504005040150402504035040450405504065040750408504095041050411504125041350414504155041650417504185041950420504215042250423504245042550426504275042850429504305043150432504335043450435504365043750438504395044050441504425044350444504455044650447504485044950450504515045250453504545045550456504575045850459504605046150462504635046450465504665046750468504695047050471504725047350474504755047650477504785047950480504815048250483504845048550486504875048850489504905049150492504935049450495504965049750498504995050050501505025050350504505055050650507505085050950510505115051250513505145051550516505175051850519505205052150522505235052450525505265052750528505295053050531505325053350534505355053650537505385053950540505415054250543505445054550546505475054850549505505055150552505535055450555505565055750558505595056050561505625056350564505655056650567505685056950570505715057250573505745057550576505775057850579505805058150582505835058450585505865058750588505895059050591505925059350594505955059650597505985059950600506015060250603506045060550606506075060850609506105061150612506135061450615506165061750618506195062050621506225062350624506255062650627506285062950630506315063250633506345063550636506375063850639506405064150642506435064450645506465064750648506495065050651506525065350654506555065650657506585065950660506615066250663506645066550666506675066850669506705067150672506735067450675506765067750678506795068050681506825068350684506855068650687506885068950690506915069250693506945069550696506975069850699507005070150702507035070450705507065070750708507095071050711507125071350714507155071650717507185071950720507215072250723507245072550726507275072850729507305073150732507335073450735507365073750738507395074050741507425074350744507455074650747507485074950750507515075250753507545075550756507575075850759507605076150762507635076450765507665076750768507695077050771507725077350774507755077650777507785077950780507815078250783507845078550786507875078850789507905079150792507935079450795507965079750798507995080050801508025080350804508055080650807508085080950810508115081250813508145081550816508175081850819508205082150822508235082450825508265082750828508295083050831508325083350834508355083650837508385083950840508415084250843508445084550846508475084850849508505085150852508535085450855508565085750858508595086050861508625086350864508655086650867508685086950870508715087250873508745087550876508775087850879508805088150882508835088450885508865088750888508895089050891508925089350894508955089650897508985089950900509015090250903509045090550906509075090850909509105091150912509135091450915509165091750918509195092050921509225092350924509255092650927509285092950930509315093250933509345093550936509375093850939509405094150942509435094450945509465094750948509495095050951509525095350954509555095650957509585095950960509615096250963509645096550966509675096850969509705097150972509735097450975509765097750978509795098050981509825098350984509855098650987509885098950990509915099250993509945099550996509975099850999510005100151002510035100451005510065100751008510095101051011510125101351014510155101651017510185101951020510215102251023510245102551026510275102851029510305103151032510335103451035510365103751038510395104051041510425104351044510455104651047510485104951050510515105251053510545105551056510575105851059510605106151062510635106451065510665106751068510695107051071510725107351074510755107651077510785107951080510815108251083510845108551086510875108851089510905109151092510935109451095510965109751098510995110051101511025110351104511055110651107511085110951110511115111251113511145111551116511175111851119511205112151122511235112451125511265112751128511295113051131511325113351134511355113651137511385113951140511415114251143511445114551146511475114851149511505115151152511535115451155511565115751158511595116051161511625116351164511655116651167511685116951170511715117251173511745117551176511775117851179511805118151182511835118451185511865118751188511895119051191511925119351194511955119651197511985119951200512015120251203512045120551206512075120851209512105121151212512135121451215512165121751218512195122051221512225122351224512255122651227512285122951230512315123251233512345123551236512375123851239512405124151242512435124451245512465124751248512495125051251512525125351254512555125651257512585125951260512615126251263512645126551266512675126851269512705127151272512735127451275512765127751278512795128051281512825128351284512855128651287512885128951290512915129251293512945129551296512975129851299513005130151302513035130451305513065130751308513095131051311513125131351314513155131651317513185131951320513215132251323513245132551326513275132851329513305133151332513335133451335513365133751338513395134051341513425134351344513455134651347513485134951350513515135251353513545135551356513575135851359513605136151362513635136451365513665136751368513695137051371513725137351374513755137651377513785137951380513815138251383513845138551386513875138851389513905139151392513935139451395513965139751398513995140051401514025140351404514055140651407514085140951410514115141251413514145141551416514175141851419514205142151422514235142451425514265142751428514295143051431514325143351434514355143651437514385143951440514415144251443514445144551446514475144851449514505145151452514535145451455514565145751458514595146051461514625146351464514655146651467514685146951470514715147251473514745147551476514775147851479514805148151482514835148451485514865148751488514895149051491514925149351494514955149651497514985149951500515015150251503515045150551506515075150851509515105151151512515135151451515515165151751518515195152051521515225152351524515255152651527515285152951530515315153251533515345153551536515375153851539515405154151542515435154451545515465154751548515495155051551515525155351554515555155651557515585155951560515615156251563515645156551566515675156851569515705157151572515735157451575515765157751578515795158051581515825158351584515855158651587515885158951590515915159251593515945159551596515975159851599516005160151602516035160451605516065160751608516095161051611516125161351614516155161651617516185161951620516215162251623516245162551626516275162851629516305163151632516335163451635516365163751638516395164051641516425164351644516455164651647516485164951650516515165251653516545165551656516575165851659516605166151662516635166451665516665166751668516695167051671516725167351674516755167651677516785167951680516815168251683516845168551686516875168851689516905169151692516935169451695516965169751698516995170051701517025170351704517055170651707517085170951710517115171251713517145171551716517175171851719517205172151722517235172451725517265172751728517295173051731517325173351734517355173651737517385173951740517415174251743517445174551746517475174851749517505175151752517535175451755517565175751758517595176051761517625176351764517655176651767517685176951770517715177251773517745177551776517775177851779517805178151782517835178451785517865178751788517895179051791517925179351794517955179651797517985179951800518015180251803518045180551806518075180851809518105181151812518135181451815518165181751818518195182051821518225182351824518255182651827518285182951830518315183251833518345183551836518375183851839518405184151842518435184451845518465184751848518495185051851518525185351854518555185651857518585185951860518615186251863518645186551866518675186851869518705187151872518735187451875518765187751878518795188051881518825188351884518855188651887518885188951890518915189251893518945189551896518975189851899519005190151902519035190451905519065190751908519095191051911519125191351914519155191651917519185191951920519215192251923519245192551926519275192851929519305193151932519335193451935519365193751938519395194051941519425194351944519455194651947519485194951950519515195251953519545195551956519575195851959519605196151962519635196451965519665196751968519695197051971519725197351974519755197651977519785197951980519815198251983519845198551986519875198851989519905199151992519935199451995519965199751998519995200052001520025200352004520055200652007520085200952010520115201252013520145201552016520175201852019520205202152022520235202452025520265202752028520295203052031520325203352034520355203652037520385203952040520415204252043520445204552046520475204852049520505205152052520535205452055520565205752058520595206052061520625206352064520655206652067520685206952070520715207252073520745207552076520775207852079520805208152082520835208452085520865208752088520895209052091520925209352094520955209652097520985209952100521015210252103521045210552106521075210852109521105211152112521135211452115521165211752118521195212052121521225212352124521255212652127521285212952130521315213252133521345213552136521375213852139521405214152142521435214452145521465214752148521495215052151521525215352154521555215652157521585215952160521615216252163521645216552166521675216852169521705217152172521735217452175521765217752178521795218052181521825218352184521855218652187521885218952190521915219252193521945219552196521975219852199522005220152202522035220452205522065220752208522095221052211522125221352214522155221652217522185221952220522215222252223522245222552226522275222852229522305223152232522335223452235522365223752238522395224052241522425224352244522455224652247522485224952250522515225252253522545225552256522575225852259522605226152262522635226452265522665226752268522695227052271522725227352274522755227652277522785227952280522815228252283522845228552286522875228852289522905229152292522935229452295522965229752298522995230052301523025230352304523055230652307523085230952310523115231252313523145231552316523175231852319523205232152322523235232452325523265232752328523295233052331523325233352334523355233652337523385233952340523415234252343523445234552346523475234852349523505235152352523535235452355523565235752358523595236052361523625236352364523655236652367523685236952370523715237252373523745237552376523775237852379523805238152382523835238452385523865238752388523895239052391523925239352394523955239652397523985239952400524015240252403524045240552406524075240852409524105241152412524135241452415524165241752418524195242052421524225242352424524255242652427524285242952430524315243252433524345243552436524375243852439524405244152442524435244452445524465244752448524495245052451524525245352454524555245652457524585245952460524615246252463524645246552466524675246852469524705247152472524735247452475524765247752478524795248052481524825248352484524855248652487524885248952490524915249252493524945249552496524975249852499525005250152502525035250452505525065250752508525095251052511525125251352514525155251652517525185251952520525215252252523525245252552526525275252852529525305253152532525335253452535525365253752538525395254052541525425254352544525455254652547525485254952550525515255252553525545255552556525575255852559525605256152562525635256452565525665256752568525695257052571525725257352574525755257652577525785257952580525815258252583525845258552586525875258852589525905259152592525935259452595525965259752598525995260052601526025260352604526055260652607526085260952610526115261252613526145261552616526175261852619526205262152622526235262452625526265262752628526295263052631526325263352634526355263652637526385263952640526415264252643526445264552646526475264852649526505265152652526535265452655526565265752658526595266052661526625266352664526655266652667526685266952670526715267252673526745267552676526775267852679526805268152682526835268452685526865268752688526895269052691526925269352694526955269652697526985269952700527015270252703527045270552706527075270852709527105271152712527135271452715527165271752718527195272052721527225272352724527255272652727527285272952730527315273252733527345273552736527375273852739527405274152742527435274452745527465274752748527495275052751527525275352754527555275652757527585275952760527615276252763527645276552766527675276852769527705277152772527735277452775527765277752778527795278052781527825278352784527855278652787527885278952790527915279252793527945279552796527975279852799528005280152802528035280452805528065280752808528095281052811528125281352814528155281652817528185281952820528215282252823528245282552826528275282852829528305283152832528335283452835528365283752838528395284052841528425284352844528455284652847528485284952850528515285252853528545285552856528575285852859528605286152862528635286452865528665286752868528695287052871528725287352874528755287652877528785287952880528815288252883528845288552886528875288852889528905289152892528935289452895528965289752898528995290052901529025290352904529055290652907529085290952910529115291252913529145291552916529175291852919529205292152922529235292452925529265292752928529295293052931529325293352934529355293652937529385293952940529415294252943529445294552946529475294852949529505295152952529535295452955529565295752958529595296052961529625296352964529655296652967529685296952970529715297252973529745297552976529775297852979529805298152982529835298452985529865298752988529895299052991529925299352994529955299652997529985299953000530015300253003530045300553006530075300853009530105301153012530135301453015530165301753018530195302053021530225302353024530255302653027530285302953030530315303253033530345303553036530375303853039530405304153042530435304453045530465304753048530495305053051530525305353054530555305653057530585305953060530615306253063530645306553066530675306853069530705307153072530735307453075530765307753078530795308053081530825308353084530855308653087530885308953090530915309253093530945309553096530975309853099531005310153102531035310453105531065310753108531095311053111531125311353114531155311653117531185311953120531215312253123531245312553126531275312853129531305313153132531335313453135531365313753138531395314053141531425314353144531455314653147531485314953150531515315253153531545315553156531575315853159531605316153162531635316453165531665316753168531695317053171531725317353174531755317653177531785317953180531815318253183531845318553186531875318853189531905319153192531935319453195531965319753198531995320053201532025320353204532055320653207532085320953210532115321253213532145321553216532175321853219532205322153222532235322453225532265322753228532295323053231532325323353234532355323653237532385323953240532415324253243532445324553246532475324853249532505325153252532535325453255532565325753258532595326053261532625326353264532655326653267532685326953270532715327253273532745327553276532775327853279532805328153282532835328453285532865328753288532895329053291532925329353294532955329653297532985329953300533015330253303533045330553306533075330853309533105331153312533135331453315533165331753318533195332053321533225332353324533255332653327533285332953330533315333253333533345333553336533375333853339533405334153342533435334453345533465334753348533495335053351533525335353354533555335653357533585335953360533615336253363533645336553366533675336853369533705337153372533735337453375533765337753378533795338053381533825338353384533855338653387533885338953390533915339253393533945339553396533975339853399534005340153402534035340453405534065340753408534095341053411534125341353414534155341653417534185341953420534215342253423534245342553426534275342853429534305343153432534335343453435534365343753438534395344053441534425344353444534455344653447534485344953450534515345253453534545345553456534575345853459534605346153462534635346453465534665346753468534695347053471534725347353474534755347653477534785347953480534815348253483534845348553486534875348853489534905349153492534935349453495534965349753498534995350053501535025350353504535055350653507535085350953510535115351253513535145351553516535175351853519535205352153522535235352453525535265352753528535295353053531535325353353534535355353653537535385353953540535415354253543535445354553546535475354853549535505355153552535535355453555535565355753558535595356053561535625356353564535655356653567535685356953570535715357253573535745357553576535775357853579535805358153582535835358453585535865358753588535895359053591535925359353594535955359653597535985359953600536015360253603536045360553606536075360853609536105361153612536135361453615536165361753618536195362053621536225362353624536255362653627536285362953630536315363253633536345363553636536375363853639536405364153642536435364453645536465364753648536495365053651536525365353654536555365653657536585365953660536615366253663536645366553666536675366853669536705367153672536735367453675536765367753678536795368053681536825368353684536855368653687536885368953690536915369253693536945369553696536975369853699537005370153702537035370453705537065370753708537095371053711537125371353714537155371653717537185371953720537215372253723537245372553726537275372853729537305373153732537335373453735537365373753738537395374053741537425374353744537455374653747537485374953750537515375253753537545375553756537575375853759537605376153762537635376453765537665376753768537695377053771537725377353774537755377653777537785377953780537815378253783537845378553786537875378853789537905379153792537935379453795537965379753798537995380053801538025380353804538055380653807538085380953810538115381253813538145381553816538175381853819538205382153822538235382453825538265382753828538295383053831538325383353834538355383653837538385383953840538415384253843538445384553846538475384853849538505385153852538535385453855538565385753858538595386053861538625386353864538655386653867538685386953870538715387253873538745387553876538775387853879538805388153882538835388453885538865388753888538895389053891538925389353894538955389653897538985389953900539015390253903539045390553906539075390853909539105391153912539135391453915539165391753918539195392053921539225392353924539255392653927539285392953930539315393253933539345393553936539375393853939539405394153942539435394453945539465394753948539495395053951539525395353954539555395653957539585395953960539615396253963539645396553966539675396853969539705397153972539735397453975539765397753978539795398053981539825398353984539855398653987539885398953990539915399253993539945399553996539975399853999540005400154002540035400454005540065400754008540095401054011540125401354014540155401654017540185401954020540215402254023540245402554026540275402854029540305403154032540335403454035540365403754038540395404054041540425404354044540455404654047540485404954050540515405254053540545405554056540575405854059540605406154062540635406454065540665406754068540695407054071540725407354074540755407654077540785407954080540815408254083540845408554086540875408854089540905409154092540935409454095540965409754098540995410054101541025410354104541055410654107541085410954110541115411254113541145411554116541175411854119541205412154122541235412454125541265412754128541295413054131541325413354134541355413654137541385413954140541415414254143541445414554146541475414854149541505415154152541535415454155541565415754158541595416054161541625416354164541655416654167541685416954170541715417254173541745417554176541775417854179541805418154182541835418454185541865418754188541895419054191541925419354194541955419654197541985419954200542015420254203542045420554206542075420854209542105421154212542135421454215542165421754218542195422054221542225422354224542255422654227542285422954230542315423254233542345423554236542375423854239542405424154242542435424454245542465424754248542495425054251542525425354254542555425654257542585425954260542615426254263542645426554266542675426854269542705427154272542735427454275542765427754278542795428054281542825428354284542855428654287542885428954290542915429254293542945429554296542975429854299543005430154302543035430454305543065430754308543095431054311543125431354314543155431654317543185431954320543215432254323543245432554326543275432854329543305433154332543335433454335543365433754338543395434054341543425434354344543455434654347543485434954350543515435254353543545435554356543575435854359543605436154362543635436454365543665436754368
  1. This is gccint.info, produced by makeinfo version 6.7 from gccint.texi.
  2. Copyright (C) 1988-2018 Free Software Foundation, Inc.
  3. Permission is granted to copy, distribute and/or modify this document
  4. under the terms of the GNU Free Documentation License, Version 1.3 or
  5. any later version published by the Free Software Foundation; with the
  6. Invariant Sections being "Funding Free Software", the Front-Cover Texts
  7. being (a) (see below), and with the Back-Cover Texts being (b) (see
  8. below). A copy of the license is included in the section entitled "GNU
  9. Free Documentation License".
  10. (a) The FSF's Front-Cover Text is:
  11. A GNU Manual
  12. (b) The FSF's Back-Cover Text is:
  13. You have freedom to copy and modify this GNU Manual, like GNU software.
  14. Copies published by the Free Software Foundation raise funds for GNU
  15. development.
  16. INFO-DIR-SECTION Software development
  17. START-INFO-DIR-ENTRY
  18. * gccint: (gccint). Internals of the GNU Compiler Collection.
  19. END-INFO-DIR-ENTRY
  20. This file documents the internals of the GNU compilers.
  21. Copyright (C) 1988-2018 Free Software Foundation, Inc.
  22. Permission is granted to copy, distribute and/or modify this document
  23. under the terms of the GNU Free Documentation License, Version 1.3 or
  24. any later version published by the Free Software Foundation; with the
  25. Invariant Sections being "Funding Free Software", the Front-Cover Texts
  26. being (a) (see below), and with the Back-Cover Texts being (b) (see
  27. below). A copy of the license is included in the section entitled "GNU
  28. Free Documentation License".
  29. (a) The FSF's Front-Cover Text is:
  30. A GNU Manual
  31. (b) The FSF's Back-Cover Text is:
  32. You have freedom to copy and modify this GNU Manual, like GNU software.
  33. Copies published by the Free Software Foundation raise funds for GNU
  34. development.
  35. 
  36. File: gccint.info, Node: Top, Next: Contributing, Up: (dir)
  37. Introduction
  38. ************
  39. This manual documents the internals of the GNU compilers, including how
  40. to port them to new targets and some information about how to write
  41. front ends for new languages. It corresponds to the compilers (xPack
  42. GNU RISC-V Embedded GCC\x2C 64-bit) version 8.3.0. The use of the GNU
  43. compilers is documented in a separate manual. *Note Introduction:
  44. (gcc)Top.
  45. This manual is mainly a reference manual rather than a tutorial. It
  46. discusses how to contribute to GCC (*note Contributing::), the
  47. characteristics of the machines supported by GCC as hosts and targets
  48. (*note Portability::), how GCC relates to the ABIs on such systems
  49. (*note Interface::), and the characteristics of the languages for which
  50. GCC front ends are written (*note Languages::). It then describes the
  51. GCC source tree structure and build system, some of the interfaces to
  52. GCC front ends, and how support for a target system is implemented in
  53. GCC.
  54. Additional tutorial information is linked to from
  55. <http://gcc.gnu.org/readings.html>.
  56. * Menu:
  57. * Contributing:: How to contribute to testing and developing GCC.
  58. * Portability:: Goals of GCC's portability features.
  59. * Interface:: Function-call interface of GCC output.
  60. * Libgcc:: Low-level runtime library used by GCC.
  61. * Languages:: Languages for which GCC front ends are written.
  62. * Source Tree:: GCC source tree structure and build system.
  63. * Testsuites:: GCC testsuites.
  64. * Options:: Option specification files.
  65. * Passes:: Order of passes, what they do, and what each file is for.
  66. * poly_int:: Representation of runtime sizes and offsets.
  67. * GENERIC:: Language-independent representation generated by Front Ends
  68. * GIMPLE:: Tuple representation used by Tree SSA optimizers
  69. * Tree SSA:: Analysis and optimization of GIMPLE
  70. * RTL:: Machine-dependent low-level intermediate representation.
  71. * Control Flow:: Maintaining and manipulating the control flow graph.
  72. * Loop Analysis and Representation:: Analysis and representation of loops
  73. * Machine Desc:: How to write machine description instruction patterns.
  74. * Target Macros:: How to write the machine description C macros and functions.
  75. * Host Config:: Writing the 'xm-MACHINE.h' file.
  76. * Fragments:: Writing the 't-TARGET' and 'x-HOST' files.
  77. * Collect2:: How 'collect2' works; how it finds 'ld'.
  78. * Header Dirs:: Understanding the standard header file directories.
  79. * Type Information:: GCC's memory management; generating type information.
  80. * Plugins:: Extending the compiler with plugins.
  81. * LTO:: Using Link-Time Optimization.
  82. * Match and Simplify:: How to write expression simplification patterns for GIMPLE and GENERIC
  83. * Funding:: How to help assure funding for free software.
  84. * GNU Project:: The GNU Project and GNU/Linux.
  85. * Copying:: GNU General Public License says
  86. how you can copy and share GCC.
  87. * GNU Free Documentation License:: How you can copy and share this manual.
  88. * Contributors:: People who have contributed to GCC.
  89. * Option Index:: Index to command line options.
  90. * Concept Index:: Index of concepts and symbol names.
  91. 
  92. File: gccint.info, Node: Contributing, Next: Portability, Up: Top
  93. 1 Contributing to GCC Development
  94. *********************************
  95. If you would like to help pretest GCC releases to assure they work well,
  96. current development sources are available by SVN (see
  97. <http://gcc.gnu.org/svn.html>). Source and binary snapshots are also
  98. available for FTP; see <http://gcc.gnu.org/snapshots.html>.
  99. If you would like to work on improvements to GCC, please read the
  100. advice at these URLs:
  101. <http://gcc.gnu.org/contribute.html>
  102. <http://gcc.gnu.org/contributewhy.html>
  103. for information on how to make useful contributions and avoid
  104. duplication of effort. Suggested projects are listed at
  105. <http://gcc.gnu.org/projects/>.
  106. 
  107. File: gccint.info, Node: Portability, Next: Interface, Prev: Contributing, Up: Top
  108. 2 GCC and Portability
  109. *********************
  110. GCC itself aims to be portable to any machine where 'int' is at least a
  111. 32-bit type. It aims to target machines with a flat (non-segmented)
  112. byte addressed data address space (the code address space can be
  113. separate). Target ABIs may have 8, 16, 32 or 64-bit 'int' type. 'char'
  114. can be wider than 8 bits.
  115. GCC gets most of the information about the target machine from a
  116. machine description which gives an algebraic formula for each of the
  117. machine's instructions. This is a very clean way to describe the
  118. target. But when the compiler needs information that is difficult to
  119. express in this fashion, ad-hoc parameters have been defined for machine
  120. descriptions. The purpose of portability is to reduce the total work
  121. needed on the compiler; it was not of interest for its own sake.
  122. GCC does not contain machine dependent code, but it does contain code
  123. that depends on machine parameters such as endianness (whether the most
  124. significant byte has the highest or lowest address of the bytes in a
  125. word) and the availability of autoincrement addressing. In the
  126. RTL-generation pass, it is often necessary to have multiple strategies
  127. for generating code for a particular kind of syntax tree, strategies
  128. that are usable for different combinations of parameters. Often, not
  129. all possible cases have been addressed, but only the common ones or only
  130. the ones that have been encountered. As a result, a new target may
  131. require additional strategies. You will know if this happens because
  132. the compiler will call 'abort'. Fortunately, the new strategies can be
  133. added in a machine-independent fashion, and will affect only the target
  134. machines that need them.
  135. 
  136. File: gccint.info, Node: Interface, Next: Libgcc, Prev: Portability, Up: Top
  137. 3 Interfacing to GCC Output
  138. ***************************
  139. GCC is normally configured to use the same function calling convention
  140. normally in use on the target system. This is done with the
  141. machine-description macros described (*note Target Macros::).
  142. However, returning of structure and union values is done differently on
  143. some target machines. As a result, functions compiled with PCC
  144. returning such types cannot be called from code compiled with GCC, and
  145. vice versa. This does not cause trouble often because few Unix library
  146. routines return structures or unions.
  147. GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long
  148. in the same registers used for 'int' or 'double' return values. (GCC
  149. typically allocates variables of such types in registers also.)
  150. Structures and unions of other sizes are returned by storing them into
  151. an address passed by the caller (usually in a register). The target
  152. hook 'TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address.
  153. By contrast, PCC on most target machines returns structures and unions
  154. of any size by copying the data into an area of static storage, and then
  155. returning the address of that storage as if it were a pointer value.
  156. The caller must copy the data from that memory area to the place where
  157. the value is wanted. This is slower than the method used by GCC, and
  158. fails to be reentrant.
  159. On some target machines, such as RISC machines and the 80386, the
  160. standard system convention is to pass to the subroutine the address of
  161. where to return the value. On these machines, GCC has been configured
  162. to be compatible with the standard compiler, when this method is used.
  163. It may not be compatible for structures of 1, 2, 4 or 8 bytes.
  164. GCC uses the system's standard convention for passing arguments. On
  165. some machines, the first few arguments are passed in registers; in
  166. others, all are passed on the stack. It would be possible to use
  167. registers for argument passing on any machine, and this would probably
  168. result in a significant speedup. But the result would be complete
  169. incompatibility with code that follows the standard convention. So this
  170. change is practical only if you are switching to GCC as the sole C
  171. compiler for the system. We may implement register argument passing on
  172. certain machines once we have a complete GNU system so that we can
  173. compile the libraries with GCC.
  174. On some machines (particularly the SPARC), certain types of arguments
  175. are passed "by invisible reference". This means that the value is
  176. stored in memory, and the address of the memory location is passed to
  177. the subroutine.
  178. If you use 'longjmp', beware of automatic variables. ISO C says that
  179. automatic variables that are not declared 'volatile' have undefined
  180. values after a 'longjmp'. And this is all GCC promises to do, because
  181. it is very difficult to restore register variables correctly, and one of
  182. GCC's features is that it can put variables in registers without your
  183. asking it to.
  184. 
  185. File: gccint.info, Node: Libgcc, Next: Languages, Prev: Interface, Up: Top
  186. 4 The GCC low-level runtime library
  187. ***********************************
  188. GCC provides a low-level runtime library, 'libgcc.a' or 'libgcc_s.so.1'
  189. on some platforms. GCC generates calls to routines in this library
  190. automatically, whenever it needs to perform some operation that is too
  191. complicated to emit inline code for.
  192. Most of the routines in 'libgcc' handle arithmetic operations that the
  193. target processor cannot perform directly. This includes integer
  194. multiply and divide on some machines, and all floating-point and
  195. fixed-point operations on other machines. 'libgcc' also includes
  196. routines for exception handling, and a handful of miscellaneous
  197. operations.
  198. Some of these routines can be defined in mostly machine-independent C.
  199. Others must be hand-written in assembly language for each processor that
  200. needs them.
  201. GCC will also generate calls to C library routines, such as 'memcpy'
  202. and 'memset', in some cases. The set of routines that GCC may possibly
  203. use is documented in *note (gcc)Other Builtins::.
  204. These routines take arguments and return values of a specific machine
  205. mode, not a specific C type. *Note Machine Modes::, for an explanation
  206. of this concept. For illustrative purposes, in this chapter the
  207. floating point type 'float' is assumed to correspond to 'SFmode';
  208. 'double' to 'DFmode'; and 'long double' to both 'TFmode' and 'XFmode'.
  209. Similarly, the integer types 'int' and 'unsigned int' correspond to
  210. 'SImode'; 'long' and 'unsigned long' to 'DImode'; and 'long long' and
  211. 'unsigned long long' to 'TImode'.
  212. * Menu:
  213. * Integer library routines::
  214. * Soft float library routines::
  215. * Decimal float library routines::
  216. * Fixed-point fractional library routines::
  217. * Exception handling routines::
  218. * Miscellaneous routines::
  219. 
  220. File: gccint.info, Node: Integer library routines, Next: Soft float library routines, Up: Libgcc
  221. 4.1 Routines for integer arithmetic
  222. ===================================
  223. The integer arithmetic routines are used on platforms that don't provide
  224. hardware support for arithmetic operations on some modes.
  225. 4.1.1 Arithmetic functions
  226. --------------------------
  227. -- Runtime Function: int __ashlsi3 (int A, int B)
  228. -- Runtime Function: long __ashldi3 (long A, int B)
  229. -- Runtime Function: long long __ashlti3 (long long A, int B)
  230. These functions return the result of shifting A left by B bits.
  231. -- Runtime Function: int __ashrsi3 (int A, int B)
  232. -- Runtime Function: long __ashrdi3 (long A, int B)
  233. -- Runtime Function: long long __ashrti3 (long long A, int B)
  234. These functions return the result of arithmetically shifting A
  235. right by B bits.
  236. -- Runtime Function: int __divsi3 (int A, int B)
  237. -- Runtime Function: long __divdi3 (long A, long B)
  238. -- Runtime Function: long long __divti3 (long long A, long long B)
  239. These functions return the quotient of the signed division of A and
  240. B.
  241. -- Runtime Function: int __lshrsi3 (int A, int B)
  242. -- Runtime Function: long __lshrdi3 (long A, int B)
  243. -- Runtime Function: long long __lshrti3 (long long A, int B)
  244. These functions return the result of logically shifting A right by
  245. B bits.
  246. -- Runtime Function: int __modsi3 (int A, int B)
  247. -- Runtime Function: long __moddi3 (long A, long B)
  248. -- Runtime Function: long long __modti3 (long long A, long long B)
  249. These functions return the remainder of the signed division of A
  250. and B.
  251. -- Runtime Function: int __mulsi3 (int A, int B)
  252. -- Runtime Function: long __muldi3 (long A, long B)
  253. -- Runtime Function: long long __multi3 (long long A, long long B)
  254. These functions return the product of A and B.
  255. -- Runtime Function: long __negdi2 (long A)
  256. -- Runtime Function: long long __negti2 (long long A)
  257. These functions return the negation of A.
  258. -- Runtime Function: unsigned int __udivsi3 (unsigned int A, unsigned
  259. int B)
  260. -- Runtime Function: unsigned long __udivdi3 (unsigned long A, unsigned
  261. long B)
  262. -- Runtime Function: unsigned long long __udivti3 (unsigned long long
  263. A, unsigned long long B)
  264. These functions return the quotient of the unsigned division of A
  265. and B.
  266. -- Runtime Function: unsigned long __udivmoddi4 (unsigned long A,
  267. unsigned long B, unsigned long *C)
  268. -- Runtime Function: unsigned long long __udivmodti4 (unsigned long
  269. long A, unsigned long long B, unsigned long long *C)
  270. These functions calculate both the quotient and remainder of the
  271. unsigned division of A and B. The return value is the quotient,
  272. and the remainder is placed in variable pointed to by C.
  273. -- Runtime Function: unsigned int __umodsi3 (unsigned int A, unsigned
  274. int B)
  275. -- Runtime Function: unsigned long __umoddi3 (unsigned long A, unsigned
  276. long B)
  277. -- Runtime Function: unsigned long long __umodti3 (unsigned long long
  278. A, unsigned long long B)
  279. These functions return the remainder of the unsigned division of A
  280. and B.
  281. 4.1.2 Comparison functions
  282. --------------------------
  283. The following functions implement integral comparisons. These functions
  284. implement a low-level compare, upon which the higher level comparison
  285. operators (such as less than and greater than or equal to) can be
  286. constructed. The returned values lie in the range zero to two, to allow
  287. the high-level operators to be implemented by testing the returned
  288. result using either signed or unsigned comparison.
  289. -- Runtime Function: int __cmpdi2 (long A, long B)
  290. -- Runtime Function: int __cmpti2 (long long A, long long B)
  291. These functions perform a signed comparison of A and B. If A is
  292. less than B, they return 0; if A is greater than B, they return 2;
  293. and if A and B are equal they return 1.
  294. -- Runtime Function: int __ucmpdi2 (unsigned long A, unsigned long B)
  295. -- Runtime Function: int __ucmpti2 (unsigned long long A, unsigned long
  296. long B)
  297. These functions perform an unsigned comparison of A and B. If A is
  298. less than B, they return 0; if A is greater than B, they return 2;
  299. and if A and B are equal they return 1.
  300. 4.1.3 Trapping arithmetic functions
  301. -----------------------------------
  302. The following functions implement trapping arithmetic. These functions
  303. call the libc function 'abort' upon signed arithmetic overflow.
  304. -- Runtime Function: int __absvsi2 (int A)
  305. -- Runtime Function: long __absvdi2 (long A)
  306. These functions return the absolute value of A.
  307. -- Runtime Function: int __addvsi3 (int A, int B)
  308. -- Runtime Function: long __addvdi3 (long A, long B)
  309. These functions return the sum of A and B; that is 'A + B'.
  310. -- Runtime Function: int __mulvsi3 (int A, int B)
  311. -- Runtime Function: long __mulvdi3 (long A, long B)
  312. The functions return the product of A and B; that is 'A * B'.
  313. -- Runtime Function: int __negvsi2 (int A)
  314. -- Runtime Function: long __negvdi2 (long A)
  315. These functions return the negation of A; that is '-A'.
  316. -- Runtime Function: int __subvsi3 (int A, int B)
  317. -- Runtime Function: long __subvdi3 (long A, long B)
  318. These functions return the difference between B and A; that is 'A -
  319. B'.
  320. 4.1.4 Bit operations
  321. --------------------
  322. -- Runtime Function: int __clzsi2 (unsigned int A)
  323. -- Runtime Function: int __clzdi2 (unsigned long A)
  324. -- Runtime Function: int __clzti2 (unsigned long long A)
  325. These functions return the number of leading 0-bits in A, starting
  326. at the most significant bit position. If A is zero, the result is
  327. undefined.
  328. -- Runtime Function: int __ctzsi2 (unsigned int A)
  329. -- Runtime Function: int __ctzdi2 (unsigned long A)
  330. -- Runtime Function: int __ctzti2 (unsigned long long A)
  331. These functions return the number of trailing 0-bits in A, starting
  332. at the least significant bit position. If A is zero, the result is
  333. undefined.
  334. -- Runtime Function: int __ffsdi2 (unsigned long A)
  335. -- Runtime Function: int __ffsti2 (unsigned long long A)
  336. These functions return the index of the least significant 1-bit in
  337. A, or the value zero if A is zero. The least significant bit is
  338. index one.
  339. -- Runtime Function: int __paritysi2 (unsigned int A)
  340. -- Runtime Function: int __paritydi2 (unsigned long A)
  341. -- Runtime Function: int __parityti2 (unsigned long long A)
  342. These functions return the value zero if the number of bits set in
  343. A is even, and the value one otherwise.
  344. -- Runtime Function: int __popcountsi2 (unsigned int A)
  345. -- Runtime Function: int __popcountdi2 (unsigned long A)
  346. -- Runtime Function: int __popcountti2 (unsigned long long A)
  347. These functions return the number of bits set in A.
  348. -- Runtime Function: int32_t __bswapsi2 (int32_t A)
  349. -- Runtime Function: int64_t __bswapdi2 (int64_t A)
  350. These functions return the A byteswapped.
  351. 
  352. File: gccint.info, Node: Soft float library routines, Next: Decimal float library routines, Prev: Integer library routines, Up: Libgcc
  353. 4.2 Routines for floating point emulation
  354. =========================================
  355. The software floating point library is used on machines which do not
  356. have hardware support for floating point. It is also used whenever
  357. '-msoft-float' is used to disable generation of floating point
  358. instructions. (Not all targets support this switch.)
  359. For compatibility with other compilers, the floating point emulation
  360. routines can be renamed with the 'DECLARE_LIBRARY_RENAMES' macro (*note
  361. Library Calls::). In this section, the default names are used.
  362. Presently the library does not support 'XFmode', which is used for
  363. 'long double' on some architectures.
  364. 4.2.1 Arithmetic functions
  365. --------------------------
  366. -- Runtime Function: float __addsf3 (float A, float B)
  367. -- Runtime Function: double __adddf3 (double A, double B)
  368. -- Runtime Function: long double __addtf3 (long double A, long double
  369. B)
  370. -- Runtime Function: long double __addxf3 (long double A, long double
  371. B)
  372. These functions return the sum of A and B.
  373. -- Runtime Function: float __subsf3 (float A, float B)
  374. -- Runtime Function: double __subdf3 (double A, double B)
  375. -- Runtime Function: long double __subtf3 (long double A, long double
  376. B)
  377. -- Runtime Function: long double __subxf3 (long double A, long double
  378. B)
  379. These functions return the difference between B and A; that is,
  380. A - B.
  381. -- Runtime Function: float __mulsf3 (float A, float B)
  382. -- Runtime Function: double __muldf3 (double A, double B)
  383. -- Runtime Function: long double __multf3 (long double A, long double
  384. B)
  385. -- Runtime Function: long double __mulxf3 (long double A, long double
  386. B)
  387. These functions return the product of A and B.
  388. -- Runtime Function: float __divsf3 (float A, float B)
  389. -- Runtime Function: double __divdf3 (double A, double B)
  390. -- Runtime Function: long double __divtf3 (long double A, long double
  391. B)
  392. -- Runtime Function: long double __divxf3 (long double A, long double
  393. B)
  394. These functions return the quotient of A and B; that is, A / B.
  395. -- Runtime Function: float __negsf2 (float A)
  396. -- Runtime Function: double __negdf2 (double A)
  397. -- Runtime Function: long double __negtf2 (long double A)
  398. -- Runtime Function: long double __negxf2 (long double A)
  399. These functions return the negation of A. They simply flip the
  400. sign bit, so they can produce negative zero and negative NaN.
  401. 4.2.2 Conversion functions
  402. --------------------------
  403. -- Runtime Function: double __extendsfdf2 (float A)
  404. -- Runtime Function: long double __extendsftf2 (float A)
  405. -- Runtime Function: long double __extendsfxf2 (float A)
  406. -- Runtime Function: long double __extenddftf2 (double A)
  407. -- Runtime Function: long double __extenddfxf2 (double A)
  408. These functions extend A to the wider mode of their return type.
  409. -- Runtime Function: double __truncxfdf2 (long double A)
  410. -- Runtime Function: double __trunctfdf2 (long double A)
  411. -- Runtime Function: float __truncxfsf2 (long double A)
  412. -- Runtime Function: float __trunctfsf2 (long double A)
  413. -- Runtime Function: float __truncdfsf2 (double A)
  414. These functions truncate A to the narrower mode of their return
  415. type, rounding toward zero.
  416. -- Runtime Function: int __fixsfsi (float A)
  417. -- Runtime Function: int __fixdfsi (double A)
  418. -- Runtime Function: int __fixtfsi (long double A)
  419. -- Runtime Function: int __fixxfsi (long double A)
  420. These functions convert A to a signed integer, rounding toward
  421. zero.
  422. -- Runtime Function: long __fixsfdi (float A)
  423. -- Runtime Function: long __fixdfdi (double A)
  424. -- Runtime Function: long __fixtfdi (long double A)
  425. -- Runtime Function: long __fixxfdi (long double A)
  426. These functions convert A to a signed long, rounding toward zero.
  427. -- Runtime Function: long long __fixsfti (float A)
  428. -- Runtime Function: long long __fixdfti (double A)
  429. -- Runtime Function: long long __fixtfti (long double A)
  430. -- Runtime Function: long long __fixxfti (long double A)
  431. These functions convert A to a signed long long, rounding toward
  432. zero.
  433. -- Runtime Function: unsigned int __fixunssfsi (float A)
  434. -- Runtime Function: unsigned int __fixunsdfsi (double A)
  435. -- Runtime Function: unsigned int __fixunstfsi (long double A)
  436. -- Runtime Function: unsigned int __fixunsxfsi (long double A)
  437. These functions convert A to an unsigned integer, rounding toward
  438. zero. Negative values all become zero.
  439. -- Runtime Function: unsigned long __fixunssfdi (float A)
  440. -- Runtime Function: unsigned long __fixunsdfdi (double A)
  441. -- Runtime Function: unsigned long __fixunstfdi (long double A)
  442. -- Runtime Function: unsigned long __fixunsxfdi (long double A)
  443. These functions convert A to an unsigned long, rounding toward
  444. zero. Negative values all become zero.
  445. -- Runtime Function: unsigned long long __fixunssfti (float A)
  446. -- Runtime Function: unsigned long long __fixunsdfti (double A)
  447. -- Runtime Function: unsigned long long __fixunstfti (long double A)
  448. -- Runtime Function: unsigned long long __fixunsxfti (long double A)
  449. These functions convert A to an unsigned long long, rounding toward
  450. zero. Negative values all become zero.
  451. -- Runtime Function: float __floatsisf (int I)
  452. -- Runtime Function: double __floatsidf (int I)
  453. -- Runtime Function: long double __floatsitf (int I)
  454. -- Runtime Function: long double __floatsixf (int I)
  455. These functions convert I, a signed integer, to floating point.
  456. -- Runtime Function: float __floatdisf (long I)
  457. -- Runtime Function: double __floatdidf (long I)
  458. -- Runtime Function: long double __floatditf (long I)
  459. -- Runtime Function: long double __floatdixf (long I)
  460. These functions convert I, a signed long, to floating point.
  461. -- Runtime Function: float __floattisf (long long I)
  462. -- Runtime Function: double __floattidf (long long I)
  463. -- Runtime Function: long double __floattitf (long long I)
  464. -- Runtime Function: long double __floattixf (long long I)
  465. These functions convert I, a signed long long, to floating point.
  466. -- Runtime Function: float __floatunsisf (unsigned int I)
  467. -- Runtime Function: double __floatunsidf (unsigned int I)
  468. -- Runtime Function: long double __floatunsitf (unsigned int I)
  469. -- Runtime Function: long double __floatunsixf (unsigned int I)
  470. These functions convert I, an unsigned integer, to floating point.
  471. -- Runtime Function: float __floatundisf (unsigned long I)
  472. -- Runtime Function: double __floatundidf (unsigned long I)
  473. -- Runtime Function: long double __floatunditf (unsigned long I)
  474. -- Runtime Function: long double __floatundixf (unsigned long I)
  475. These functions convert I, an unsigned long, to floating point.
  476. -- Runtime Function: float __floatuntisf (unsigned long long I)
  477. -- Runtime Function: double __floatuntidf (unsigned long long I)
  478. -- Runtime Function: long double __floatuntitf (unsigned long long I)
  479. -- Runtime Function: long double __floatuntixf (unsigned long long I)
  480. These functions convert I, an unsigned long long, to floating
  481. point.
  482. 4.2.3 Comparison functions
  483. --------------------------
  484. There are two sets of basic comparison functions.
  485. -- Runtime Function: int __cmpsf2 (float A, float B)
  486. -- Runtime Function: int __cmpdf2 (double A, double B)
  487. -- Runtime Function: int __cmptf2 (long double A, long double B)
  488. These functions calculate a <=> b. That is, if A is less than B,
  489. they return -1; if A is greater than B, they return 1; and if A and
  490. B are equal they return 0. If either argument is NaN they return
  491. 1, but you should not rely on this; if NaN is a possibility, use
  492. one of the higher-level comparison functions.
  493. -- Runtime Function: int __unordsf2 (float A, float B)
  494. -- Runtime Function: int __unorddf2 (double A, double B)
  495. -- Runtime Function: int __unordtf2 (long double A, long double B)
  496. These functions return a nonzero value if either argument is NaN,
  497. otherwise 0.
  498. There is also a complete group of higher level functions which
  499. correspond directly to comparison operators. They implement the ISO C
  500. semantics for floating-point comparisons, taking NaN into account. Pay
  501. careful attention to the return values defined for each set. Under the
  502. hood, all of these routines are implemented as
  503. if (__unordXf2 (a, b))
  504. return E;
  505. return __cmpXf2 (a, b);
  506. where E is a constant chosen to give the proper behavior for NaN. Thus,
  507. the meaning of the return value is different for each set. Do not rely
  508. on this implementation; only the semantics documented below are
  509. guaranteed.
  510. -- Runtime Function: int __eqsf2 (float A, float B)
  511. -- Runtime Function: int __eqdf2 (double A, double B)
  512. -- Runtime Function: int __eqtf2 (long double A, long double B)
  513. These functions return zero if neither argument is NaN, and A and B
  514. are equal.
  515. -- Runtime Function: int __nesf2 (float A, float B)
  516. -- Runtime Function: int __nedf2 (double A, double B)
  517. -- Runtime Function: int __netf2 (long double A, long double B)
  518. These functions return a nonzero value if either argument is NaN,
  519. or if A and B are unequal.
  520. -- Runtime Function: int __gesf2 (float A, float B)
  521. -- Runtime Function: int __gedf2 (double A, double B)
  522. -- Runtime Function: int __getf2 (long double A, long double B)
  523. These functions return a value greater than or equal to zero if
  524. neither argument is NaN, and A is greater than or equal to B.
  525. -- Runtime Function: int __ltsf2 (float A, float B)
  526. -- Runtime Function: int __ltdf2 (double A, double B)
  527. -- Runtime Function: int __lttf2 (long double A, long double B)
  528. These functions return a value less than zero if neither argument
  529. is NaN, and A is strictly less than B.
  530. -- Runtime Function: int __lesf2 (float A, float B)
  531. -- Runtime Function: int __ledf2 (double A, double B)
  532. -- Runtime Function: int __letf2 (long double A, long double B)
  533. These functions return a value less than or equal to zero if
  534. neither argument is NaN, and A is less than or equal to B.
  535. -- Runtime Function: int __gtsf2 (float A, float B)
  536. -- Runtime Function: int __gtdf2 (double A, double B)
  537. -- Runtime Function: int __gttf2 (long double A, long double B)
  538. These functions return a value greater than zero if neither
  539. argument is NaN, and A is strictly greater than B.
  540. 4.2.4 Other floating-point functions
  541. ------------------------------------
  542. -- Runtime Function: float __powisf2 (float A, int B)
  543. -- Runtime Function: double __powidf2 (double A, int B)
  544. -- Runtime Function: long double __powitf2 (long double A, int B)
  545. -- Runtime Function: long double __powixf2 (long double A, int B)
  546. These functions convert raise A to the power B.
  547. -- Runtime Function: complex float __mulsc3 (float A, float B, float C,
  548. float D)
  549. -- Runtime Function: complex double __muldc3 (double A, double B,
  550. double C, double D)
  551. -- Runtime Function: complex long double __multc3 (long double A, long
  552. double B, long double C, long double D)
  553. -- Runtime Function: complex long double __mulxc3 (long double A, long
  554. double B, long double C, long double D)
  555. These functions return the product of A + iB and C + iD, following
  556. the rules of C99 Annex G.
  557. -- Runtime Function: complex float __divsc3 (float A, float B, float C,
  558. float D)
  559. -- Runtime Function: complex double __divdc3 (double A, double B,
  560. double C, double D)
  561. -- Runtime Function: complex long double __divtc3 (long double A, long
  562. double B, long double C, long double D)
  563. -- Runtime Function: complex long double __divxc3 (long double A, long
  564. double B, long double C, long double D)
  565. These functions return the quotient of A + iB and C + iD (i.e., (A
  566. + iB) / (C + iD)), following the rules of C99 Annex G.
  567. 
  568. File: gccint.info, Node: Decimal float library routines, Next: Fixed-point fractional library routines, Prev: Soft float library routines, Up: Libgcc
  569. 4.3 Routines for decimal floating point emulation
  570. =================================================
  571. The software decimal floating point library implements IEEE 754-2008
  572. decimal floating point arithmetic and is only activated on selected
  573. targets.
  574. The software decimal floating point library supports either DPD
  575. (Densely Packed Decimal) or BID (Binary Integer Decimal) encoding as
  576. selected at configure time.
  577. 4.3.1 Arithmetic functions
  578. --------------------------
  579. -- Runtime Function: _Decimal32 __dpd_addsd3 (_Decimal32 A, _Decimal32
  580. B)
  581. -- Runtime Function: _Decimal32 __bid_addsd3 (_Decimal32 A, _Decimal32
  582. B)
  583. -- Runtime Function: _Decimal64 __dpd_adddd3 (_Decimal64 A, _Decimal64
  584. B)
  585. -- Runtime Function: _Decimal64 __bid_adddd3 (_Decimal64 A, _Decimal64
  586. B)
  587. -- Runtime Function: _Decimal128 __dpd_addtd3 (_Decimal128 A,
  588. _Decimal128 B)
  589. -- Runtime Function: _Decimal128 __bid_addtd3 (_Decimal128 A,
  590. _Decimal128 B)
  591. These functions return the sum of A and B.
  592. -- Runtime Function: _Decimal32 __dpd_subsd3 (_Decimal32 A, _Decimal32
  593. B)
  594. -- Runtime Function: _Decimal32 __bid_subsd3 (_Decimal32 A, _Decimal32
  595. B)
  596. -- Runtime Function: _Decimal64 __dpd_subdd3 (_Decimal64 A, _Decimal64
  597. B)
  598. -- Runtime Function: _Decimal64 __bid_subdd3 (_Decimal64 A, _Decimal64
  599. B)
  600. -- Runtime Function: _Decimal128 __dpd_subtd3 (_Decimal128 A,
  601. _Decimal128 B)
  602. -- Runtime Function: _Decimal128 __bid_subtd3 (_Decimal128 A,
  603. _Decimal128 B)
  604. These functions return the difference between B and A; that is,
  605. A - B.
  606. -- Runtime Function: _Decimal32 __dpd_mulsd3 (_Decimal32 A, _Decimal32
  607. B)
  608. -- Runtime Function: _Decimal32 __bid_mulsd3 (_Decimal32 A, _Decimal32
  609. B)
  610. -- Runtime Function: _Decimal64 __dpd_muldd3 (_Decimal64 A, _Decimal64
  611. B)
  612. -- Runtime Function: _Decimal64 __bid_muldd3 (_Decimal64 A, _Decimal64
  613. B)
  614. -- Runtime Function: _Decimal128 __dpd_multd3 (_Decimal128 A,
  615. _Decimal128 B)
  616. -- Runtime Function: _Decimal128 __bid_multd3 (_Decimal128 A,
  617. _Decimal128 B)
  618. These functions return the product of A and B.
  619. -- Runtime Function: _Decimal32 __dpd_divsd3 (_Decimal32 A, _Decimal32
  620. B)
  621. -- Runtime Function: _Decimal32 __bid_divsd3 (_Decimal32 A, _Decimal32
  622. B)
  623. -- Runtime Function: _Decimal64 __dpd_divdd3 (_Decimal64 A, _Decimal64
  624. B)
  625. -- Runtime Function: _Decimal64 __bid_divdd3 (_Decimal64 A, _Decimal64
  626. B)
  627. -- Runtime Function: _Decimal128 __dpd_divtd3 (_Decimal128 A,
  628. _Decimal128 B)
  629. -- Runtime Function: _Decimal128 __bid_divtd3 (_Decimal128 A,
  630. _Decimal128 B)
  631. These functions return the quotient of A and B; that is, A / B.
  632. -- Runtime Function: _Decimal32 __dpd_negsd2 (_Decimal32 A)
  633. -- Runtime Function: _Decimal32 __bid_negsd2 (_Decimal32 A)
  634. -- Runtime Function: _Decimal64 __dpd_negdd2 (_Decimal64 A)
  635. -- Runtime Function: _Decimal64 __bid_negdd2 (_Decimal64 A)
  636. -- Runtime Function: _Decimal128 __dpd_negtd2 (_Decimal128 A)
  637. -- Runtime Function: _Decimal128 __bid_negtd2 (_Decimal128 A)
  638. These functions return the negation of A. They simply flip the
  639. sign bit, so they can produce negative zero and negative NaN.
  640. 4.3.2 Conversion functions
  641. --------------------------
  642. -- Runtime Function: _Decimal64 __dpd_extendsddd2 (_Decimal32 A)
  643. -- Runtime Function: _Decimal64 __bid_extendsddd2 (_Decimal32 A)
  644. -- Runtime Function: _Decimal128 __dpd_extendsdtd2 (_Decimal32 A)
  645. -- Runtime Function: _Decimal128 __bid_extendsdtd2 (_Decimal32 A)
  646. -- Runtime Function: _Decimal128 __dpd_extendddtd2 (_Decimal64 A)
  647. -- Runtime Function: _Decimal128 __bid_extendddtd2 (_Decimal64 A)
  648. -- Runtime Function: _Decimal32 __dpd_truncddsd2 (_Decimal64 A)
  649. -- Runtime Function: _Decimal32 __bid_truncddsd2 (_Decimal64 A)
  650. -- Runtime Function: _Decimal32 __dpd_trunctdsd2 (_Decimal128 A)
  651. -- Runtime Function: _Decimal32 __bid_trunctdsd2 (_Decimal128 A)
  652. -- Runtime Function: _Decimal64 __dpd_trunctddd2 (_Decimal128 A)
  653. -- Runtime Function: _Decimal64 __bid_trunctddd2 (_Decimal128 A)
  654. These functions convert the value A from one decimal floating type
  655. to another.
  656. -- Runtime Function: _Decimal64 __dpd_extendsfdd (float A)
  657. -- Runtime Function: _Decimal64 __bid_extendsfdd (float A)
  658. -- Runtime Function: _Decimal128 __dpd_extendsftd (float A)
  659. -- Runtime Function: _Decimal128 __bid_extendsftd (float A)
  660. -- Runtime Function: _Decimal128 __dpd_extenddftd (double A)
  661. -- Runtime Function: _Decimal128 __bid_extenddftd (double A)
  662. -- Runtime Function: _Decimal128 __dpd_extendxftd (long double A)
  663. -- Runtime Function: _Decimal128 __bid_extendxftd (long double A)
  664. -- Runtime Function: _Decimal32 __dpd_truncdfsd (double A)
  665. -- Runtime Function: _Decimal32 __bid_truncdfsd (double A)
  666. -- Runtime Function: _Decimal32 __dpd_truncxfsd (long double A)
  667. -- Runtime Function: _Decimal32 __bid_truncxfsd (long double A)
  668. -- Runtime Function: _Decimal32 __dpd_trunctfsd (long double A)
  669. -- Runtime Function: _Decimal32 __bid_trunctfsd (long double A)
  670. -- Runtime Function: _Decimal64 __dpd_truncxfdd (long double A)
  671. -- Runtime Function: _Decimal64 __bid_truncxfdd (long double A)
  672. -- Runtime Function: _Decimal64 __dpd_trunctfdd (long double A)
  673. -- Runtime Function: _Decimal64 __bid_trunctfdd (long double A)
  674. These functions convert the value of A from a binary floating type
  675. to a decimal floating type of a different size.
  676. -- Runtime Function: float __dpd_truncddsf (_Decimal64 A)
  677. -- Runtime Function: float __bid_truncddsf (_Decimal64 A)
  678. -- Runtime Function: float __dpd_trunctdsf (_Decimal128 A)
  679. -- Runtime Function: float __bid_trunctdsf (_Decimal128 A)
  680. -- Runtime Function: double __dpd_extendsddf (_Decimal32 A)
  681. -- Runtime Function: double __bid_extendsddf (_Decimal32 A)
  682. -- Runtime Function: double __dpd_trunctddf (_Decimal128 A)
  683. -- Runtime Function: double __bid_trunctddf (_Decimal128 A)
  684. -- Runtime Function: long double __dpd_extendsdxf (_Decimal32 A)
  685. -- Runtime Function: long double __bid_extendsdxf (_Decimal32 A)
  686. -- Runtime Function: long double __dpd_extendddxf (_Decimal64 A)
  687. -- Runtime Function: long double __bid_extendddxf (_Decimal64 A)
  688. -- Runtime Function: long double __dpd_trunctdxf (_Decimal128 A)
  689. -- Runtime Function: long double __bid_trunctdxf (_Decimal128 A)
  690. -- Runtime Function: long double __dpd_extendsdtf (_Decimal32 A)
  691. -- Runtime Function: long double __bid_extendsdtf (_Decimal32 A)
  692. -- Runtime Function: long double __dpd_extendddtf (_Decimal64 A)
  693. -- Runtime Function: long double __bid_extendddtf (_Decimal64 A)
  694. These functions convert the value of A from a decimal floating type
  695. to a binary floating type of a different size.
  696. -- Runtime Function: _Decimal32 __dpd_extendsfsd (float A)
  697. -- Runtime Function: _Decimal32 __bid_extendsfsd (float A)
  698. -- Runtime Function: _Decimal64 __dpd_extenddfdd (double A)
  699. -- Runtime Function: _Decimal64 __bid_extenddfdd (double A)
  700. -- Runtime Function: _Decimal128 __dpd_extendtftd (long double A)
  701. -- Runtime Function: _Decimal128 __bid_extendtftd (long double A)
  702. -- Runtime Function: float __dpd_truncsdsf (_Decimal32 A)
  703. -- Runtime Function: float __bid_truncsdsf (_Decimal32 A)
  704. -- Runtime Function: double __dpd_truncdddf (_Decimal64 A)
  705. -- Runtime Function: double __bid_truncdddf (_Decimal64 A)
  706. -- Runtime Function: long double __dpd_trunctdtf (_Decimal128 A)
  707. -- Runtime Function: long double __bid_trunctdtf (_Decimal128 A)
  708. These functions convert the value of A between decimal and binary
  709. floating types of the same size.
  710. -- Runtime Function: int __dpd_fixsdsi (_Decimal32 A)
  711. -- Runtime Function: int __bid_fixsdsi (_Decimal32 A)
  712. -- Runtime Function: int __dpd_fixddsi (_Decimal64 A)
  713. -- Runtime Function: int __bid_fixddsi (_Decimal64 A)
  714. -- Runtime Function: int __dpd_fixtdsi (_Decimal128 A)
  715. -- Runtime Function: int __bid_fixtdsi (_Decimal128 A)
  716. These functions convert A to a signed integer.
  717. -- Runtime Function: long __dpd_fixsddi (_Decimal32 A)
  718. -- Runtime Function: long __bid_fixsddi (_Decimal32 A)
  719. -- Runtime Function: long __dpd_fixdddi (_Decimal64 A)
  720. -- Runtime Function: long __bid_fixdddi (_Decimal64 A)
  721. -- Runtime Function: long __dpd_fixtddi (_Decimal128 A)
  722. -- Runtime Function: long __bid_fixtddi (_Decimal128 A)
  723. These functions convert A to a signed long.
  724. -- Runtime Function: unsigned int __dpd_fixunssdsi (_Decimal32 A)
  725. -- Runtime Function: unsigned int __bid_fixunssdsi (_Decimal32 A)
  726. -- Runtime Function: unsigned int __dpd_fixunsddsi (_Decimal64 A)
  727. -- Runtime Function: unsigned int __bid_fixunsddsi (_Decimal64 A)
  728. -- Runtime Function: unsigned int __dpd_fixunstdsi (_Decimal128 A)
  729. -- Runtime Function: unsigned int __bid_fixunstdsi (_Decimal128 A)
  730. These functions convert A to an unsigned integer. Negative values
  731. all become zero.
  732. -- Runtime Function: unsigned long __dpd_fixunssddi (_Decimal32 A)
  733. -- Runtime Function: unsigned long __bid_fixunssddi (_Decimal32 A)
  734. -- Runtime Function: unsigned long __dpd_fixunsdddi (_Decimal64 A)
  735. -- Runtime Function: unsigned long __bid_fixunsdddi (_Decimal64 A)
  736. -- Runtime Function: unsigned long __dpd_fixunstddi (_Decimal128 A)
  737. -- Runtime Function: unsigned long __bid_fixunstddi (_Decimal128 A)
  738. These functions convert A to an unsigned long. Negative values all
  739. become zero.
  740. -- Runtime Function: _Decimal32 __dpd_floatsisd (int I)
  741. -- Runtime Function: _Decimal32 __bid_floatsisd (int I)
  742. -- Runtime Function: _Decimal64 __dpd_floatsidd (int I)
  743. -- Runtime Function: _Decimal64 __bid_floatsidd (int I)
  744. -- Runtime Function: _Decimal128 __dpd_floatsitd (int I)
  745. -- Runtime Function: _Decimal128 __bid_floatsitd (int I)
  746. These functions convert I, a signed integer, to decimal floating
  747. point.
  748. -- Runtime Function: _Decimal32 __dpd_floatdisd (long I)
  749. -- Runtime Function: _Decimal32 __bid_floatdisd (long I)
  750. -- Runtime Function: _Decimal64 __dpd_floatdidd (long I)
  751. -- Runtime Function: _Decimal64 __bid_floatdidd (long I)
  752. -- Runtime Function: _Decimal128 __dpd_floatditd (long I)
  753. -- Runtime Function: _Decimal128 __bid_floatditd (long I)
  754. These functions convert I, a signed long, to decimal floating
  755. point.
  756. -- Runtime Function: _Decimal32 __dpd_floatunssisd (unsigned int I)
  757. -- Runtime Function: _Decimal32 __bid_floatunssisd (unsigned int I)
  758. -- Runtime Function: _Decimal64 __dpd_floatunssidd (unsigned int I)
  759. -- Runtime Function: _Decimal64 __bid_floatunssidd (unsigned int I)
  760. -- Runtime Function: _Decimal128 __dpd_floatunssitd (unsigned int I)
  761. -- Runtime Function: _Decimal128 __bid_floatunssitd (unsigned int I)
  762. These functions convert I, an unsigned integer, to decimal floating
  763. point.
  764. -- Runtime Function: _Decimal32 __dpd_floatunsdisd (unsigned long I)
  765. -- Runtime Function: _Decimal32 __bid_floatunsdisd (unsigned long I)
  766. -- Runtime Function: _Decimal64 __dpd_floatunsdidd (unsigned long I)
  767. -- Runtime Function: _Decimal64 __bid_floatunsdidd (unsigned long I)
  768. -- Runtime Function: _Decimal128 __dpd_floatunsditd (unsigned long I)
  769. -- Runtime Function: _Decimal128 __bid_floatunsditd (unsigned long I)
  770. These functions convert I, an unsigned long, to decimal floating
  771. point.
  772. 4.3.3 Comparison functions
  773. --------------------------
  774. -- Runtime Function: int __dpd_unordsd2 (_Decimal32 A, _Decimal32 B)
  775. -- Runtime Function: int __bid_unordsd2 (_Decimal32 A, _Decimal32 B)
  776. -- Runtime Function: int __dpd_unorddd2 (_Decimal64 A, _Decimal64 B)
  777. -- Runtime Function: int __bid_unorddd2 (_Decimal64 A, _Decimal64 B)
  778. -- Runtime Function: int __dpd_unordtd2 (_Decimal128 A, _Decimal128 B)
  779. -- Runtime Function: int __bid_unordtd2 (_Decimal128 A, _Decimal128 B)
  780. These functions return a nonzero value if either argument is NaN,
  781. otherwise 0.
  782. There is also a complete group of higher level functions which
  783. correspond directly to comparison operators. They implement the ISO C
  784. semantics for floating-point comparisons, taking NaN into account. Pay
  785. careful attention to the return values defined for each set. Under the
  786. hood, all of these routines are implemented as
  787. if (__bid_unordXd2 (a, b))
  788. return E;
  789. return __bid_cmpXd2 (a, b);
  790. where E is a constant chosen to give the proper behavior for NaN. Thus,
  791. the meaning of the return value is different for each set. Do not rely
  792. on this implementation; only the semantics documented below are
  793. guaranteed.
  794. -- Runtime Function: int __dpd_eqsd2 (_Decimal32 A, _Decimal32 B)
  795. -- Runtime Function: int __bid_eqsd2 (_Decimal32 A, _Decimal32 B)
  796. -- Runtime Function: int __dpd_eqdd2 (_Decimal64 A, _Decimal64 B)
  797. -- Runtime Function: int __bid_eqdd2 (_Decimal64 A, _Decimal64 B)
  798. -- Runtime Function: int __dpd_eqtd2 (_Decimal128 A, _Decimal128 B)
  799. -- Runtime Function: int __bid_eqtd2 (_Decimal128 A, _Decimal128 B)
  800. These functions return zero if neither argument is NaN, and A and B
  801. are equal.
  802. -- Runtime Function: int __dpd_nesd2 (_Decimal32 A, _Decimal32 B)
  803. -- Runtime Function: int __bid_nesd2 (_Decimal32 A, _Decimal32 B)
  804. -- Runtime Function: int __dpd_nedd2 (_Decimal64 A, _Decimal64 B)
  805. -- Runtime Function: int __bid_nedd2 (_Decimal64 A, _Decimal64 B)
  806. -- Runtime Function: int __dpd_netd2 (_Decimal128 A, _Decimal128 B)
  807. -- Runtime Function: int __bid_netd2 (_Decimal128 A, _Decimal128 B)
  808. These functions return a nonzero value if either argument is NaN,
  809. or if A and B are unequal.
  810. -- Runtime Function: int __dpd_gesd2 (_Decimal32 A, _Decimal32 B)
  811. -- Runtime Function: int __bid_gesd2 (_Decimal32 A, _Decimal32 B)
  812. -- Runtime Function: int __dpd_gedd2 (_Decimal64 A, _Decimal64 B)
  813. -- Runtime Function: int __bid_gedd2 (_Decimal64 A, _Decimal64 B)
  814. -- Runtime Function: int __dpd_getd2 (_Decimal128 A, _Decimal128 B)
  815. -- Runtime Function: int __bid_getd2 (_Decimal128 A, _Decimal128 B)
  816. These functions return a value greater than or equal to zero if
  817. neither argument is NaN, and A is greater than or equal to B.
  818. -- Runtime Function: int __dpd_ltsd2 (_Decimal32 A, _Decimal32 B)
  819. -- Runtime Function: int __bid_ltsd2 (_Decimal32 A, _Decimal32 B)
  820. -- Runtime Function: int __dpd_ltdd2 (_Decimal64 A, _Decimal64 B)
  821. -- Runtime Function: int __bid_ltdd2 (_Decimal64 A, _Decimal64 B)
  822. -- Runtime Function: int __dpd_lttd2 (_Decimal128 A, _Decimal128 B)
  823. -- Runtime Function: int __bid_lttd2 (_Decimal128 A, _Decimal128 B)
  824. These functions return a value less than zero if neither argument
  825. is NaN, and A is strictly less than B.
  826. -- Runtime Function: int __dpd_lesd2 (_Decimal32 A, _Decimal32 B)
  827. -- Runtime Function: int __bid_lesd2 (_Decimal32 A, _Decimal32 B)
  828. -- Runtime Function: int __dpd_ledd2 (_Decimal64 A, _Decimal64 B)
  829. -- Runtime Function: int __bid_ledd2 (_Decimal64 A, _Decimal64 B)
  830. -- Runtime Function: int __dpd_letd2 (_Decimal128 A, _Decimal128 B)
  831. -- Runtime Function: int __bid_letd2 (_Decimal128 A, _Decimal128 B)
  832. These functions return a value less than or equal to zero if
  833. neither argument is NaN, and A is less than or equal to B.
  834. -- Runtime Function: int __dpd_gtsd2 (_Decimal32 A, _Decimal32 B)
  835. -- Runtime Function: int __bid_gtsd2 (_Decimal32 A, _Decimal32 B)
  836. -- Runtime Function: int __dpd_gtdd2 (_Decimal64 A, _Decimal64 B)
  837. -- Runtime Function: int __bid_gtdd2 (_Decimal64 A, _Decimal64 B)
  838. -- Runtime Function: int __dpd_gttd2 (_Decimal128 A, _Decimal128 B)
  839. -- Runtime Function: int __bid_gttd2 (_Decimal128 A, _Decimal128 B)
  840. These functions return a value greater than zero if neither
  841. argument is NaN, and A is strictly greater than B.
  842. 
  843. File: gccint.info, Node: Fixed-point fractional library routines, Next: Exception handling routines, Prev: Decimal float library routines, Up: Libgcc
  844. 4.4 Routines for fixed-point fractional emulation
  845. =================================================
  846. The software fixed-point library implements fixed-point fractional
  847. arithmetic, and is only activated on selected targets.
  848. For ease of comprehension 'fract' is an alias for the '_Fract' type,
  849. 'accum' an alias for '_Accum', and 'sat' an alias for '_Sat'.
  850. For illustrative purposes, in this section the fixed-point fractional
  851. type 'short fract' is assumed to correspond to machine mode 'QQmode';
  852. 'unsigned short fract' to 'UQQmode'; 'fract' to 'HQmode';
  853. 'unsigned fract' to 'UHQmode'; 'long fract' to 'SQmode';
  854. 'unsigned long fract' to 'USQmode'; 'long long fract' to 'DQmode'; and
  855. 'unsigned long long fract' to 'UDQmode'. Similarly the fixed-point
  856. accumulator type 'short accum' corresponds to 'HAmode';
  857. 'unsigned short accum' to 'UHAmode'; 'accum' to 'SAmode';
  858. 'unsigned accum' to 'USAmode'; 'long accum' to 'DAmode';
  859. 'unsigned long accum' to 'UDAmode'; 'long long accum' to 'TAmode'; and
  860. 'unsigned long long accum' to 'UTAmode'.
  861. 4.4.1 Arithmetic functions
  862. --------------------------
  863. -- Runtime Function: short fract __addqq3 (short fract A, short fract
  864. B)
  865. -- Runtime Function: fract __addhq3 (fract A, fract B)
  866. -- Runtime Function: long fract __addsq3 (long fract A, long fract B)
  867. -- Runtime Function: long long fract __adddq3 (long long fract A, long
  868. long fract B)
  869. -- Runtime Function: unsigned short fract __adduqq3 (unsigned short
  870. fract A, unsigned short fract B)
  871. -- Runtime Function: unsigned fract __adduhq3 (unsigned fract A,
  872. unsigned fract B)
  873. -- Runtime Function: unsigned long fract __addusq3 (unsigned long fract
  874. A, unsigned long fract B)
  875. -- Runtime Function: unsigned long long fract __addudq3 (unsigned long
  876. long fract A, unsigned long long fract B)
  877. -- Runtime Function: short accum __addha3 (short accum A, short accum
  878. B)
  879. -- Runtime Function: accum __addsa3 (accum A, accum B)
  880. -- Runtime Function: long accum __addda3 (long accum A, long accum B)
  881. -- Runtime Function: long long accum __addta3 (long long accum A, long
  882. long accum B)
  883. -- Runtime Function: unsigned short accum __adduha3 (unsigned short
  884. accum A, unsigned short accum B)
  885. -- Runtime Function: unsigned accum __addusa3 (unsigned accum A,
  886. unsigned accum B)
  887. -- Runtime Function: unsigned long accum __adduda3 (unsigned long accum
  888. A, unsigned long accum B)
  889. -- Runtime Function: unsigned long long accum __adduta3 (unsigned long
  890. long accum A, unsigned long long accum B)
  891. These functions return the sum of A and B.
  892. -- Runtime Function: short fract __ssaddqq3 (short fract A, short fract
  893. B)
  894. -- Runtime Function: fract __ssaddhq3 (fract A, fract B)
  895. -- Runtime Function: long fract __ssaddsq3 (long fract A, long fract B)
  896. -- Runtime Function: long long fract __ssadddq3 (long long fract A,
  897. long long fract B)
  898. -- Runtime Function: short accum __ssaddha3 (short accum A, short accum
  899. B)
  900. -- Runtime Function: accum __ssaddsa3 (accum A, accum B)
  901. -- Runtime Function: long accum __ssaddda3 (long accum A, long accum B)
  902. -- Runtime Function: long long accum __ssaddta3 (long long accum A,
  903. long long accum B)
  904. These functions return the sum of A and B with signed saturation.
  905. -- Runtime Function: unsigned short fract __usadduqq3 (unsigned short
  906. fract A, unsigned short fract B)
  907. -- Runtime Function: unsigned fract __usadduhq3 (unsigned fract A,
  908. unsigned fract B)
  909. -- Runtime Function: unsigned long fract __usaddusq3 (unsigned long
  910. fract A, unsigned long fract B)
  911. -- Runtime Function: unsigned long long fract __usaddudq3 (unsigned
  912. long long fract A, unsigned long long fract B)
  913. -- Runtime Function: unsigned short accum __usadduha3 (unsigned short
  914. accum A, unsigned short accum B)
  915. -- Runtime Function: unsigned accum __usaddusa3 (unsigned accum A,
  916. unsigned accum B)
  917. -- Runtime Function: unsigned long accum __usadduda3 (unsigned long
  918. accum A, unsigned long accum B)
  919. -- Runtime Function: unsigned long long accum __usadduta3 (unsigned
  920. long long accum A, unsigned long long accum B)
  921. These functions return the sum of A and B with unsigned saturation.
  922. -- Runtime Function: short fract __subqq3 (short fract A, short fract
  923. B)
  924. -- Runtime Function: fract __subhq3 (fract A, fract B)
  925. -- Runtime Function: long fract __subsq3 (long fract A, long fract B)
  926. -- Runtime Function: long long fract __subdq3 (long long fract A, long
  927. long fract B)
  928. -- Runtime Function: unsigned short fract __subuqq3 (unsigned short
  929. fract A, unsigned short fract B)
  930. -- Runtime Function: unsigned fract __subuhq3 (unsigned fract A,
  931. unsigned fract B)
  932. -- Runtime Function: unsigned long fract __subusq3 (unsigned long fract
  933. A, unsigned long fract B)
  934. -- Runtime Function: unsigned long long fract __subudq3 (unsigned long
  935. long fract A, unsigned long long fract B)
  936. -- Runtime Function: short accum __subha3 (short accum A, short accum
  937. B)
  938. -- Runtime Function: accum __subsa3 (accum A, accum B)
  939. -- Runtime Function: long accum __subda3 (long accum A, long accum B)
  940. -- Runtime Function: long long accum __subta3 (long long accum A, long
  941. long accum B)
  942. -- Runtime Function: unsigned short accum __subuha3 (unsigned short
  943. accum A, unsigned short accum B)
  944. -- Runtime Function: unsigned accum __subusa3 (unsigned accum A,
  945. unsigned accum B)
  946. -- Runtime Function: unsigned long accum __subuda3 (unsigned long accum
  947. A, unsigned long accum B)
  948. -- Runtime Function: unsigned long long accum __subuta3 (unsigned long
  949. long accum A, unsigned long long accum B)
  950. These functions return the difference of A and B; that is, 'A - B'.
  951. -- Runtime Function: short fract __sssubqq3 (short fract A, short fract
  952. B)
  953. -- Runtime Function: fract __sssubhq3 (fract A, fract B)
  954. -- Runtime Function: long fract __sssubsq3 (long fract A, long fract B)
  955. -- Runtime Function: long long fract __sssubdq3 (long long fract A,
  956. long long fract B)
  957. -- Runtime Function: short accum __sssubha3 (short accum A, short accum
  958. B)
  959. -- Runtime Function: accum __sssubsa3 (accum A, accum B)
  960. -- Runtime Function: long accum __sssubda3 (long accum A, long accum B)
  961. -- Runtime Function: long long accum __sssubta3 (long long accum A,
  962. long long accum B)
  963. These functions return the difference of A and B with signed
  964. saturation; that is, 'A - B'.
  965. -- Runtime Function: unsigned short fract __ussubuqq3 (unsigned short
  966. fract A, unsigned short fract B)
  967. -- Runtime Function: unsigned fract __ussubuhq3 (unsigned fract A,
  968. unsigned fract B)
  969. -- Runtime Function: unsigned long fract __ussubusq3 (unsigned long
  970. fract A, unsigned long fract B)
  971. -- Runtime Function: unsigned long long fract __ussubudq3 (unsigned
  972. long long fract A, unsigned long long fract B)
  973. -- Runtime Function: unsigned short accum __ussubuha3 (unsigned short
  974. accum A, unsigned short accum B)
  975. -- Runtime Function: unsigned accum __ussubusa3 (unsigned accum A,
  976. unsigned accum B)
  977. -- Runtime Function: unsigned long accum __ussubuda3 (unsigned long
  978. accum A, unsigned long accum B)
  979. -- Runtime Function: unsigned long long accum __ussubuta3 (unsigned
  980. long long accum A, unsigned long long accum B)
  981. These functions return the difference of A and B with unsigned
  982. saturation; that is, 'A - B'.
  983. -- Runtime Function: short fract __mulqq3 (short fract A, short fract
  984. B)
  985. -- Runtime Function: fract __mulhq3 (fract A, fract B)
  986. -- Runtime Function: long fract __mulsq3 (long fract A, long fract B)
  987. -- Runtime Function: long long fract __muldq3 (long long fract A, long
  988. long fract B)
  989. -- Runtime Function: unsigned short fract __muluqq3 (unsigned short
  990. fract A, unsigned short fract B)
  991. -- Runtime Function: unsigned fract __muluhq3 (unsigned fract A,
  992. unsigned fract B)
  993. -- Runtime Function: unsigned long fract __mulusq3 (unsigned long fract
  994. A, unsigned long fract B)
  995. -- Runtime Function: unsigned long long fract __muludq3 (unsigned long
  996. long fract A, unsigned long long fract B)
  997. -- Runtime Function: short accum __mulha3 (short accum A, short accum
  998. B)
  999. -- Runtime Function: accum __mulsa3 (accum A, accum B)
  1000. -- Runtime Function: long accum __mulda3 (long accum A, long accum B)
  1001. -- Runtime Function: long long accum __multa3 (long long accum A, long
  1002. long accum B)
  1003. -- Runtime Function: unsigned short accum __muluha3 (unsigned short
  1004. accum A, unsigned short accum B)
  1005. -- Runtime Function: unsigned accum __mulusa3 (unsigned accum A,
  1006. unsigned accum B)
  1007. -- Runtime Function: unsigned long accum __muluda3 (unsigned long accum
  1008. A, unsigned long accum B)
  1009. -- Runtime Function: unsigned long long accum __muluta3 (unsigned long
  1010. long accum A, unsigned long long accum B)
  1011. These functions return the product of A and B.
  1012. -- Runtime Function: short fract __ssmulqq3 (short fract A, short fract
  1013. B)
  1014. -- Runtime Function: fract __ssmulhq3 (fract A, fract B)
  1015. -- Runtime Function: long fract __ssmulsq3 (long fract A, long fract B)
  1016. -- Runtime Function: long long fract __ssmuldq3 (long long fract A,
  1017. long long fract B)
  1018. -- Runtime Function: short accum __ssmulha3 (short accum A, short accum
  1019. B)
  1020. -- Runtime Function: accum __ssmulsa3 (accum A, accum B)
  1021. -- Runtime Function: long accum __ssmulda3 (long accum A, long accum B)
  1022. -- Runtime Function: long long accum __ssmulta3 (long long accum A,
  1023. long long accum B)
  1024. These functions return the product of A and B with signed
  1025. saturation.
  1026. -- Runtime Function: unsigned short fract __usmuluqq3 (unsigned short
  1027. fract A, unsigned short fract B)
  1028. -- Runtime Function: unsigned fract __usmuluhq3 (unsigned fract A,
  1029. unsigned fract B)
  1030. -- Runtime Function: unsigned long fract __usmulusq3 (unsigned long
  1031. fract A, unsigned long fract B)
  1032. -- Runtime Function: unsigned long long fract __usmuludq3 (unsigned
  1033. long long fract A, unsigned long long fract B)
  1034. -- Runtime Function: unsigned short accum __usmuluha3 (unsigned short
  1035. accum A, unsigned short accum B)
  1036. -- Runtime Function: unsigned accum __usmulusa3 (unsigned accum A,
  1037. unsigned accum B)
  1038. -- Runtime Function: unsigned long accum __usmuluda3 (unsigned long
  1039. accum A, unsigned long accum B)
  1040. -- Runtime Function: unsigned long long accum __usmuluta3 (unsigned
  1041. long long accum A, unsigned long long accum B)
  1042. These functions return the product of A and B with unsigned
  1043. saturation.
  1044. -- Runtime Function: short fract __divqq3 (short fract A, short fract
  1045. B)
  1046. -- Runtime Function: fract __divhq3 (fract A, fract B)
  1047. -- Runtime Function: long fract __divsq3 (long fract A, long fract B)
  1048. -- Runtime Function: long long fract __divdq3 (long long fract A, long
  1049. long fract B)
  1050. -- Runtime Function: short accum __divha3 (short accum A, short accum
  1051. B)
  1052. -- Runtime Function: accum __divsa3 (accum A, accum B)
  1053. -- Runtime Function: long accum __divda3 (long accum A, long accum B)
  1054. -- Runtime Function: long long accum __divta3 (long long accum A, long
  1055. long accum B)
  1056. These functions return the quotient of the signed division of A and
  1057. B.
  1058. -- Runtime Function: unsigned short fract __udivuqq3 (unsigned short
  1059. fract A, unsigned short fract B)
  1060. -- Runtime Function: unsigned fract __udivuhq3 (unsigned fract A,
  1061. unsigned fract B)
  1062. -- Runtime Function: unsigned long fract __udivusq3 (unsigned long
  1063. fract A, unsigned long fract B)
  1064. -- Runtime Function: unsigned long long fract __udivudq3 (unsigned long
  1065. long fract A, unsigned long long fract B)
  1066. -- Runtime Function: unsigned short accum __udivuha3 (unsigned short
  1067. accum A, unsigned short accum B)
  1068. -- Runtime Function: unsigned accum __udivusa3 (unsigned accum A,
  1069. unsigned accum B)
  1070. -- Runtime Function: unsigned long accum __udivuda3 (unsigned long
  1071. accum A, unsigned long accum B)
  1072. -- Runtime Function: unsigned long long accum __udivuta3 (unsigned long
  1073. long accum A, unsigned long long accum B)
  1074. These functions return the quotient of the unsigned division of A
  1075. and B.
  1076. -- Runtime Function: short fract __ssdivqq3 (short fract A, short fract
  1077. B)
  1078. -- Runtime Function: fract __ssdivhq3 (fract A, fract B)
  1079. -- Runtime Function: long fract __ssdivsq3 (long fract A, long fract B)
  1080. -- Runtime Function: long long fract __ssdivdq3 (long long fract A,
  1081. long long fract B)
  1082. -- Runtime Function: short accum __ssdivha3 (short accum A, short accum
  1083. B)
  1084. -- Runtime Function: accum __ssdivsa3 (accum A, accum B)
  1085. -- Runtime Function: long accum __ssdivda3 (long accum A, long accum B)
  1086. -- Runtime Function: long long accum __ssdivta3 (long long accum A,
  1087. long long accum B)
  1088. These functions return the quotient of the signed division of A and
  1089. B with signed saturation.
  1090. -- Runtime Function: unsigned short fract __usdivuqq3 (unsigned short
  1091. fract A, unsigned short fract B)
  1092. -- Runtime Function: unsigned fract __usdivuhq3 (unsigned fract A,
  1093. unsigned fract B)
  1094. -- Runtime Function: unsigned long fract __usdivusq3 (unsigned long
  1095. fract A, unsigned long fract B)
  1096. -- Runtime Function: unsigned long long fract __usdivudq3 (unsigned
  1097. long long fract A, unsigned long long fract B)
  1098. -- Runtime Function: unsigned short accum __usdivuha3 (unsigned short
  1099. accum A, unsigned short accum B)
  1100. -- Runtime Function: unsigned accum __usdivusa3 (unsigned accum A,
  1101. unsigned accum B)
  1102. -- Runtime Function: unsigned long accum __usdivuda3 (unsigned long
  1103. accum A, unsigned long accum B)
  1104. -- Runtime Function: unsigned long long accum __usdivuta3 (unsigned
  1105. long long accum A, unsigned long long accum B)
  1106. These functions return the quotient of the unsigned division of A
  1107. and B with unsigned saturation.
  1108. -- Runtime Function: short fract __negqq2 (short fract A)
  1109. -- Runtime Function: fract __neghq2 (fract A)
  1110. -- Runtime Function: long fract __negsq2 (long fract A)
  1111. -- Runtime Function: long long fract __negdq2 (long long fract A)
  1112. -- Runtime Function: unsigned short fract __neguqq2 (unsigned short
  1113. fract A)
  1114. -- Runtime Function: unsigned fract __neguhq2 (unsigned fract A)
  1115. -- Runtime Function: unsigned long fract __negusq2 (unsigned long fract
  1116. A)
  1117. -- Runtime Function: unsigned long long fract __negudq2 (unsigned long
  1118. long fract A)
  1119. -- Runtime Function: short accum __negha2 (short accum A)
  1120. -- Runtime Function: accum __negsa2 (accum A)
  1121. -- Runtime Function: long accum __negda2 (long accum A)
  1122. -- Runtime Function: long long accum __negta2 (long long accum A)
  1123. -- Runtime Function: unsigned short accum __neguha2 (unsigned short
  1124. accum A)
  1125. -- Runtime Function: unsigned accum __negusa2 (unsigned accum A)
  1126. -- Runtime Function: unsigned long accum __neguda2 (unsigned long accum
  1127. A)
  1128. -- Runtime Function: unsigned long long accum __neguta2 (unsigned long
  1129. long accum A)
  1130. These functions return the negation of A.
  1131. -- Runtime Function: short fract __ssnegqq2 (short fract A)
  1132. -- Runtime Function: fract __ssneghq2 (fract A)
  1133. -- Runtime Function: long fract __ssnegsq2 (long fract A)
  1134. -- Runtime Function: long long fract __ssnegdq2 (long long fract A)
  1135. -- Runtime Function: short accum __ssnegha2 (short accum A)
  1136. -- Runtime Function: accum __ssnegsa2 (accum A)
  1137. -- Runtime Function: long accum __ssnegda2 (long accum A)
  1138. -- Runtime Function: long long accum __ssnegta2 (long long accum A)
  1139. These functions return the negation of A with signed saturation.
  1140. -- Runtime Function: unsigned short fract __usneguqq2 (unsigned short
  1141. fract A)
  1142. -- Runtime Function: unsigned fract __usneguhq2 (unsigned fract A)
  1143. -- Runtime Function: unsigned long fract __usnegusq2 (unsigned long
  1144. fract A)
  1145. -- Runtime Function: unsigned long long fract __usnegudq2 (unsigned
  1146. long long fract A)
  1147. -- Runtime Function: unsigned short accum __usneguha2 (unsigned short
  1148. accum A)
  1149. -- Runtime Function: unsigned accum __usnegusa2 (unsigned accum A)
  1150. -- Runtime Function: unsigned long accum __usneguda2 (unsigned long
  1151. accum A)
  1152. -- Runtime Function: unsigned long long accum __usneguta2 (unsigned
  1153. long long accum A)
  1154. These functions return the negation of A with unsigned saturation.
  1155. -- Runtime Function: short fract __ashlqq3 (short fract A, int B)
  1156. -- Runtime Function: fract __ashlhq3 (fract A, int B)
  1157. -- Runtime Function: long fract __ashlsq3 (long fract A, int B)
  1158. -- Runtime Function: long long fract __ashldq3 (long long fract A, int
  1159. B)
  1160. -- Runtime Function: unsigned short fract __ashluqq3 (unsigned short
  1161. fract A, int B)
  1162. -- Runtime Function: unsigned fract __ashluhq3 (unsigned fract A, int
  1163. B)
  1164. -- Runtime Function: unsigned long fract __ashlusq3 (unsigned long
  1165. fract A, int B)
  1166. -- Runtime Function: unsigned long long fract __ashludq3 (unsigned long
  1167. long fract A, int B)
  1168. -- Runtime Function: short accum __ashlha3 (short accum A, int B)
  1169. -- Runtime Function: accum __ashlsa3 (accum A, int B)
  1170. -- Runtime Function: long accum __ashlda3 (long accum A, int B)
  1171. -- Runtime Function: long long accum __ashlta3 (long long accum A, int
  1172. B)
  1173. -- Runtime Function: unsigned short accum __ashluha3 (unsigned short
  1174. accum A, int B)
  1175. -- Runtime Function: unsigned accum __ashlusa3 (unsigned accum A, int
  1176. B)
  1177. -- Runtime Function: unsigned long accum __ashluda3 (unsigned long
  1178. accum A, int B)
  1179. -- Runtime Function: unsigned long long accum __ashluta3 (unsigned long
  1180. long accum A, int B)
  1181. These functions return the result of shifting A left by B bits.
  1182. -- Runtime Function: short fract __ashrqq3 (short fract A, int B)
  1183. -- Runtime Function: fract __ashrhq3 (fract A, int B)
  1184. -- Runtime Function: long fract __ashrsq3 (long fract A, int B)
  1185. -- Runtime Function: long long fract __ashrdq3 (long long fract A, int
  1186. B)
  1187. -- Runtime Function: short accum __ashrha3 (short accum A, int B)
  1188. -- Runtime Function: accum __ashrsa3 (accum A, int B)
  1189. -- Runtime Function: long accum __ashrda3 (long accum A, int B)
  1190. -- Runtime Function: long long accum __ashrta3 (long long accum A, int
  1191. B)
  1192. These functions return the result of arithmetically shifting A
  1193. right by B bits.
  1194. -- Runtime Function: unsigned short fract __lshruqq3 (unsigned short
  1195. fract A, int B)
  1196. -- Runtime Function: unsigned fract __lshruhq3 (unsigned fract A, int
  1197. B)
  1198. -- Runtime Function: unsigned long fract __lshrusq3 (unsigned long
  1199. fract A, int B)
  1200. -- Runtime Function: unsigned long long fract __lshrudq3 (unsigned long
  1201. long fract A, int B)
  1202. -- Runtime Function: unsigned short accum __lshruha3 (unsigned short
  1203. accum A, int B)
  1204. -- Runtime Function: unsigned accum __lshrusa3 (unsigned accum A, int
  1205. B)
  1206. -- Runtime Function: unsigned long accum __lshruda3 (unsigned long
  1207. accum A, int B)
  1208. -- Runtime Function: unsigned long long accum __lshruta3 (unsigned long
  1209. long accum A, int B)
  1210. These functions return the result of logically shifting A right by
  1211. B bits.
  1212. -- Runtime Function: fract __ssashlhq3 (fract A, int B)
  1213. -- Runtime Function: long fract __ssashlsq3 (long fract A, int B)
  1214. -- Runtime Function: long long fract __ssashldq3 (long long fract A,
  1215. int B)
  1216. -- Runtime Function: short accum __ssashlha3 (short accum A, int B)
  1217. -- Runtime Function: accum __ssashlsa3 (accum A, int B)
  1218. -- Runtime Function: long accum __ssashlda3 (long accum A, int B)
  1219. -- Runtime Function: long long accum __ssashlta3 (long long accum A,
  1220. int B)
  1221. These functions return the result of shifting A left by B bits with
  1222. signed saturation.
  1223. -- Runtime Function: unsigned short fract __usashluqq3 (unsigned short
  1224. fract A, int B)
  1225. -- Runtime Function: unsigned fract __usashluhq3 (unsigned fract A, int
  1226. B)
  1227. -- Runtime Function: unsigned long fract __usashlusq3 (unsigned long
  1228. fract A, int B)
  1229. -- Runtime Function: unsigned long long fract __usashludq3 (unsigned
  1230. long long fract A, int B)
  1231. -- Runtime Function: unsigned short accum __usashluha3 (unsigned short
  1232. accum A, int B)
  1233. -- Runtime Function: unsigned accum __usashlusa3 (unsigned accum A, int
  1234. B)
  1235. -- Runtime Function: unsigned long accum __usashluda3 (unsigned long
  1236. accum A, int B)
  1237. -- Runtime Function: unsigned long long accum __usashluta3 (unsigned
  1238. long long accum A, int B)
  1239. These functions return the result of shifting A left by B bits with
  1240. unsigned saturation.
  1241. 4.4.2 Comparison functions
  1242. --------------------------
  1243. The following functions implement fixed-point comparisons. These
  1244. functions implement a low-level compare, upon which the higher level
  1245. comparison operators (such as less than and greater than or equal to)
  1246. can be constructed. The returned values lie in the range zero to two,
  1247. to allow the high-level operators to be implemented by testing the
  1248. returned result using either signed or unsigned comparison.
  1249. -- Runtime Function: int __cmpqq2 (short fract A, short fract B)
  1250. -- Runtime Function: int __cmphq2 (fract A, fract B)
  1251. -- Runtime Function: int __cmpsq2 (long fract A, long fract B)
  1252. -- Runtime Function: int __cmpdq2 (long long fract A, long long fract
  1253. B)
  1254. -- Runtime Function: int __cmpuqq2 (unsigned short fract A, unsigned
  1255. short fract B)
  1256. -- Runtime Function: int __cmpuhq2 (unsigned fract A, unsigned fract B)
  1257. -- Runtime Function: int __cmpusq2 (unsigned long fract A, unsigned
  1258. long fract B)
  1259. -- Runtime Function: int __cmpudq2 (unsigned long long fract A,
  1260. unsigned long long fract B)
  1261. -- Runtime Function: int __cmpha2 (short accum A, short accum B)
  1262. -- Runtime Function: int __cmpsa2 (accum A, accum B)
  1263. -- Runtime Function: int __cmpda2 (long accum A, long accum B)
  1264. -- Runtime Function: int __cmpta2 (long long accum A, long long accum
  1265. B)
  1266. -- Runtime Function: int __cmpuha2 (unsigned short accum A, unsigned
  1267. short accum B)
  1268. -- Runtime Function: int __cmpusa2 (unsigned accum A, unsigned accum B)
  1269. -- Runtime Function: int __cmpuda2 (unsigned long accum A, unsigned
  1270. long accum B)
  1271. -- Runtime Function: int __cmputa2 (unsigned long long accum A,
  1272. unsigned long long accum B)
  1273. These functions perform a signed or unsigned comparison of A and B
  1274. (depending on the selected machine mode). If A is less than B,
  1275. they return 0; if A is greater than B, they return 2; and if A and
  1276. B are equal they return 1.
  1277. 4.4.3 Conversion functions
  1278. --------------------------
  1279. -- Runtime Function: fract __fractqqhq2 (short fract A)
  1280. -- Runtime Function: long fract __fractqqsq2 (short fract A)
  1281. -- Runtime Function: long long fract __fractqqdq2 (short fract A)
  1282. -- Runtime Function: short accum __fractqqha (short fract A)
  1283. -- Runtime Function: accum __fractqqsa (short fract A)
  1284. -- Runtime Function: long accum __fractqqda (short fract A)
  1285. -- Runtime Function: long long accum __fractqqta (short fract A)
  1286. -- Runtime Function: unsigned short fract __fractqquqq (short fract A)
  1287. -- Runtime Function: unsigned fract __fractqquhq (short fract A)
  1288. -- Runtime Function: unsigned long fract __fractqqusq (short fract A)
  1289. -- Runtime Function: unsigned long long fract __fractqqudq (short fract
  1290. A)
  1291. -- Runtime Function: unsigned short accum __fractqquha (short fract A)
  1292. -- Runtime Function: unsigned accum __fractqqusa (short fract A)
  1293. -- Runtime Function: unsigned long accum __fractqquda (short fract A)
  1294. -- Runtime Function: unsigned long long accum __fractqquta (short fract
  1295. A)
  1296. -- Runtime Function: signed char __fractqqqi (short fract A)
  1297. -- Runtime Function: short __fractqqhi (short fract A)
  1298. -- Runtime Function: int __fractqqsi (short fract A)
  1299. -- Runtime Function: long __fractqqdi (short fract A)
  1300. -- Runtime Function: long long __fractqqti (short fract A)
  1301. -- Runtime Function: float __fractqqsf (short fract A)
  1302. -- Runtime Function: double __fractqqdf (short fract A)
  1303. -- Runtime Function: short fract __fracthqqq2 (fract A)
  1304. -- Runtime Function: long fract __fracthqsq2 (fract A)
  1305. -- Runtime Function: long long fract __fracthqdq2 (fract A)
  1306. -- Runtime Function: short accum __fracthqha (fract A)
  1307. -- Runtime Function: accum __fracthqsa (fract A)
  1308. -- Runtime Function: long accum __fracthqda (fract A)
  1309. -- Runtime Function: long long accum __fracthqta (fract A)
  1310. -- Runtime Function: unsigned short fract __fracthquqq (fract A)
  1311. -- Runtime Function: unsigned fract __fracthquhq (fract A)
  1312. -- Runtime Function: unsigned long fract __fracthqusq (fract A)
  1313. -- Runtime Function: unsigned long long fract __fracthqudq (fract A)
  1314. -- Runtime Function: unsigned short accum __fracthquha (fract A)
  1315. -- Runtime Function: unsigned accum __fracthqusa (fract A)
  1316. -- Runtime Function: unsigned long accum __fracthquda (fract A)
  1317. -- Runtime Function: unsigned long long accum __fracthquta (fract A)
  1318. -- Runtime Function: signed char __fracthqqi (fract A)
  1319. -- Runtime Function: short __fracthqhi (fract A)
  1320. -- Runtime Function: int __fracthqsi (fract A)
  1321. -- Runtime Function: long __fracthqdi (fract A)
  1322. -- Runtime Function: long long __fracthqti (fract A)
  1323. -- Runtime Function: float __fracthqsf (fract A)
  1324. -- Runtime Function: double __fracthqdf (fract A)
  1325. -- Runtime Function: short fract __fractsqqq2 (long fract A)
  1326. -- Runtime Function: fract __fractsqhq2 (long fract A)
  1327. -- Runtime Function: long long fract __fractsqdq2 (long fract A)
  1328. -- Runtime Function: short accum __fractsqha (long fract A)
  1329. -- Runtime Function: accum __fractsqsa (long fract A)
  1330. -- Runtime Function: long accum __fractsqda (long fract A)
  1331. -- Runtime Function: long long accum __fractsqta (long fract A)
  1332. -- Runtime Function: unsigned short fract __fractsquqq (long fract A)
  1333. -- Runtime Function: unsigned fract __fractsquhq (long fract A)
  1334. -- Runtime Function: unsigned long fract __fractsqusq (long fract A)
  1335. -- Runtime Function: unsigned long long fract __fractsqudq (long fract
  1336. A)
  1337. -- Runtime Function: unsigned short accum __fractsquha (long fract A)
  1338. -- Runtime Function: unsigned accum __fractsqusa (long fract A)
  1339. -- Runtime Function: unsigned long accum __fractsquda (long fract A)
  1340. -- Runtime Function: unsigned long long accum __fractsquta (long fract
  1341. A)
  1342. -- Runtime Function: signed char __fractsqqi (long fract A)
  1343. -- Runtime Function: short __fractsqhi (long fract A)
  1344. -- Runtime Function: int __fractsqsi (long fract A)
  1345. -- Runtime Function: long __fractsqdi (long fract A)
  1346. -- Runtime Function: long long __fractsqti (long fract A)
  1347. -- Runtime Function: float __fractsqsf (long fract A)
  1348. -- Runtime Function: double __fractsqdf (long fract A)
  1349. -- Runtime Function: short fract __fractdqqq2 (long long fract A)
  1350. -- Runtime Function: fract __fractdqhq2 (long long fract A)
  1351. -- Runtime Function: long fract __fractdqsq2 (long long fract A)
  1352. -- Runtime Function: short accum __fractdqha (long long fract A)
  1353. -- Runtime Function: accum __fractdqsa (long long fract A)
  1354. -- Runtime Function: long accum __fractdqda (long long fract A)
  1355. -- Runtime Function: long long accum __fractdqta (long long fract A)
  1356. -- Runtime Function: unsigned short fract __fractdquqq (long long fract
  1357. A)
  1358. -- Runtime Function: unsigned fract __fractdquhq (long long fract A)
  1359. -- Runtime Function: unsigned long fract __fractdqusq (long long fract
  1360. A)
  1361. -- Runtime Function: unsigned long long fract __fractdqudq (long long
  1362. fract A)
  1363. -- Runtime Function: unsigned short accum __fractdquha (long long fract
  1364. A)
  1365. -- Runtime Function: unsigned accum __fractdqusa (long long fract A)
  1366. -- Runtime Function: unsigned long accum __fractdquda (long long fract
  1367. A)
  1368. -- Runtime Function: unsigned long long accum __fractdquta (long long
  1369. fract A)
  1370. -- Runtime Function: signed char __fractdqqi (long long fract A)
  1371. -- Runtime Function: short __fractdqhi (long long fract A)
  1372. -- Runtime Function: int __fractdqsi (long long fract A)
  1373. -- Runtime Function: long __fractdqdi (long long fract A)
  1374. -- Runtime Function: long long __fractdqti (long long fract A)
  1375. -- Runtime Function: float __fractdqsf (long long fract A)
  1376. -- Runtime Function: double __fractdqdf (long long fract A)
  1377. -- Runtime Function: short fract __fracthaqq (short accum A)
  1378. -- Runtime Function: fract __fracthahq (short accum A)
  1379. -- Runtime Function: long fract __fracthasq (short accum A)
  1380. -- Runtime Function: long long fract __fracthadq (short accum A)
  1381. -- Runtime Function: accum __fracthasa2 (short accum A)
  1382. -- Runtime Function: long accum __fracthada2 (short accum A)
  1383. -- Runtime Function: long long accum __fracthata2 (short accum A)
  1384. -- Runtime Function: unsigned short fract __fracthauqq (short accum A)
  1385. -- Runtime Function: unsigned fract __fracthauhq (short accum A)
  1386. -- Runtime Function: unsigned long fract __fracthausq (short accum A)
  1387. -- Runtime Function: unsigned long long fract __fracthaudq (short accum
  1388. A)
  1389. -- Runtime Function: unsigned short accum __fracthauha (short accum A)
  1390. -- Runtime Function: unsigned accum __fracthausa (short accum A)
  1391. -- Runtime Function: unsigned long accum __fracthauda (short accum A)
  1392. -- Runtime Function: unsigned long long accum __fracthauta (short accum
  1393. A)
  1394. -- Runtime Function: signed char __fracthaqi (short accum A)
  1395. -- Runtime Function: short __fracthahi (short accum A)
  1396. -- Runtime Function: int __fracthasi (short accum A)
  1397. -- Runtime Function: long __fracthadi (short accum A)
  1398. -- Runtime Function: long long __fracthati (short accum A)
  1399. -- Runtime Function: float __fracthasf (short accum A)
  1400. -- Runtime Function: double __fracthadf (short accum A)
  1401. -- Runtime Function: short fract __fractsaqq (accum A)
  1402. -- Runtime Function: fract __fractsahq (accum A)
  1403. -- Runtime Function: long fract __fractsasq (accum A)
  1404. -- Runtime Function: long long fract __fractsadq (accum A)
  1405. -- Runtime Function: short accum __fractsaha2 (accum A)
  1406. -- Runtime Function: long accum __fractsada2 (accum A)
  1407. -- Runtime Function: long long accum __fractsata2 (accum A)
  1408. -- Runtime Function: unsigned short fract __fractsauqq (accum A)
  1409. -- Runtime Function: unsigned fract __fractsauhq (accum A)
  1410. -- Runtime Function: unsigned long fract __fractsausq (accum A)
  1411. -- Runtime Function: unsigned long long fract __fractsaudq (accum A)
  1412. -- Runtime Function: unsigned short accum __fractsauha (accum A)
  1413. -- Runtime Function: unsigned accum __fractsausa (accum A)
  1414. -- Runtime Function: unsigned long accum __fractsauda (accum A)
  1415. -- Runtime Function: unsigned long long accum __fractsauta (accum A)
  1416. -- Runtime Function: signed char __fractsaqi (accum A)
  1417. -- Runtime Function: short __fractsahi (accum A)
  1418. -- Runtime Function: int __fractsasi (accum A)
  1419. -- Runtime Function: long __fractsadi (accum A)
  1420. -- Runtime Function: long long __fractsati (accum A)
  1421. -- Runtime Function: float __fractsasf (accum A)
  1422. -- Runtime Function: double __fractsadf (accum A)
  1423. -- Runtime Function: short fract __fractdaqq (long accum A)
  1424. -- Runtime Function: fract __fractdahq (long accum A)
  1425. -- Runtime Function: long fract __fractdasq (long accum A)
  1426. -- Runtime Function: long long fract __fractdadq (long accum A)
  1427. -- Runtime Function: short accum __fractdaha2 (long accum A)
  1428. -- Runtime Function: accum __fractdasa2 (long accum A)
  1429. -- Runtime Function: long long accum __fractdata2 (long accum A)
  1430. -- Runtime Function: unsigned short fract __fractdauqq (long accum A)
  1431. -- Runtime Function: unsigned fract __fractdauhq (long accum A)
  1432. -- Runtime Function: unsigned long fract __fractdausq (long accum A)
  1433. -- Runtime Function: unsigned long long fract __fractdaudq (long accum
  1434. A)
  1435. -- Runtime Function: unsigned short accum __fractdauha (long accum A)
  1436. -- Runtime Function: unsigned accum __fractdausa (long accum A)
  1437. -- Runtime Function: unsigned long accum __fractdauda (long accum A)
  1438. -- Runtime Function: unsigned long long accum __fractdauta (long accum
  1439. A)
  1440. -- Runtime Function: signed char __fractdaqi (long accum A)
  1441. -- Runtime Function: short __fractdahi (long accum A)
  1442. -- Runtime Function: int __fractdasi (long accum A)
  1443. -- Runtime Function: long __fractdadi (long accum A)
  1444. -- Runtime Function: long long __fractdati (long accum A)
  1445. -- Runtime Function: float __fractdasf (long accum A)
  1446. -- Runtime Function: double __fractdadf (long accum A)
  1447. -- Runtime Function: short fract __fracttaqq (long long accum A)
  1448. -- Runtime Function: fract __fracttahq (long long accum A)
  1449. -- Runtime Function: long fract __fracttasq (long long accum A)
  1450. -- Runtime Function: long long fract __fracttadq (long long accum A)
  1451. -- Runtime Function: short accum __fracttaha2 (long long accum A)
  1452. -- Runtime Function: accum __fracttasa2 (long long accum A)
  1453. -- Runtime Function: long accum __fracttada2 (long long accum A)
  1454. -- Runtime Function: unsigned short fract __fracttauqq (long long accum
  1455. A)
  1456. -- Runtime Function: unsigned fract __fracttauhq (long long accum A)
  1457. -- Runtime Function: unsigned long fract __fracttausq (long long accum
  1458. A)
  1459. -- Runtime Function: unsigned long long fract __fracttaudq (long long
  1460. accum A)
  1461. -- Runtime Function: unsigned short accum __fracttauha (long long accum
  1462. A)
  1463. -- Runtime Function: unsigned accum __fracttausa (long long accum A)
  1464. -- Runtime Function: unsigned long accum __fracttauda (long long accum
  1465. A)
  1466. -- Runtime Function: unsigned long long accum __fracttauta (long long
  1467. accum A)
  1468. -- Runtime Function: signed char __fracttaqi (long long accum A)
  1469. -- Runtime Function: short __fracttahi (long long accum A)
  1470. -- Runtime Function: int __fracttasi (long long accum A)
  1471. -- Runtime Function: long __fracttadi (long long accum A)
  1472. -- Runtime Function: long long __fracttati (long long accum A)
  1473. -- Runtime Function: float __fracttasf (long long accum A)
  1474. -- Runtime Function: double __fracttadf (long long accum A)
  1475. -- Runtime Function: short fract __fractuqqqq (unsigned short fract A)
  1476. -- Runtime Function: fract __fractuqqhq (unsigned short fract A)
  1477. -- Runtime Function: long fract __fractuqqsq (unsigned short fract A)
  1478. -- Runtime Function: long long fract __fractuqqdq (unsigned short fract
  1479. A)
  1480. -- Runtime Function: short accum __fractuqqha (unsigned short fract A)
  1481. -- Runtime Function: accum __fractuqqsa (unsigned short fract A)
  1482. -- Runtime Function: long accum __fractuqqda (unsigned short fract A)
  1483. -- Runtime Function: long long accum __fractuqqta (unsigned short fract
  1484. A)
  1485. -- Runtime Function: unsigned fract __fractuqquhq2 (unsigned short
  1486. fract A)
  1487. -- Runtime Function: unsigned long fract __fractuqqusq2 (unsigned short
  1488. fract A)
  1489. -- Runtime Function: unsigned long long fract __fractuqqudq2 (unsigned
  1490. short fract A)
  1491. -- Runtime Function: unsigned short accum __fractuqquha (unsigned short
  1492. fract A)
  1493. -- Runtime Function: unsigned accum __fractuqqusa (unsigned short fract
  1494. A)
  1495. -- Runtime Function: unsigned long accum __fractuqquda (unsigned short
  1496. fract A)
  1497. -- Runtime Function: unsigned long long accum __fractuqquta (unsigned
  1498. short fract A)
  1499. -- Runtime Function: signed char __fractuqqqi (unsigned short fract A)
  1500. -- Runtime Function: short __fractuqqhi (unsigned short fract A)
  1501. -- Runtime Function: int __fractuqqsi (unsigned short fract A)
  1502. -- Runtime Function: long __fractuqqdi (unsigned short fract A)
  1503. -- Runtime Function: long long __fractuqqti (unsigned short fract A)
  1504. -- Runtime Function: float __fractuqqsf (unsigned short fract A)
  1505. -- Runtime Function: double __fractuqqdf (unsigned short fract A)
  1506. -- Runtime Function: short fract __fractuhqqq (unsigned fract A)
  1507. -- Runtime Function: fract __fractuhqhq (unsigned fract A)
  1508. -- Runtime Function: long fract __fractuhqsq (unsigned fract A)
  1509. -- Runtime Function: long long fract __fractuhqdq (unsigned fract A)
  1510. -- Runtime Function: short accum __fractuhqha (unsigned fract A)
  1511. -- Runtime Function: accum __fractuhqsa (unsigned fract A)
  1512. -- Runtime Function: long accum __fractuhqda (unsigned fract A)
  1513. -- Runtime Function: long long accum __fractuhqta (unsigned fract A)
  1514. -- Runtime Function: unsigned short fract __fractuhquqq2 (unsigned
  1515. fract A)
  1516. -- Runtime Function: unsigned long fract __fractuhqusq2 (unsigned fract
  1517. A)
  1518. -- Runtime Function: unsigned long long fract __fractuhqudq2 (unsigned
  1519. fract A)
  1520. -- Runtime Function: unsigned short accum __fractuhquha (unsigned fract
  1521. A)
  1522. -- Runtime Function: unsigned accum __fractuhqusa (unsigned fract A)
  1523. -- Runtime Function: unsigned long accum __fractuhquda (unsigned fract
  1524. A)
  1525. -- Runtime Function: unsigned long long accum __fractuhquta (unsigned
  1526. fract A)
  1527. -- Runtime Function: signed char __fractuhqqi (unsigned fract A)
  1528. -- Runtime Function: short __fractuhqhi (unsigned fract A)
  1529. -- Runtime Function: int __fractuhqsi (unsigned fract A)
  1530. -- Runtime Function: long __fractuhqdi (unsigned fract A)
  1531. -- Runtime Function: long long __fractuhqti (unsigned fract A)
  1532. -- Runtime Function: float __fractuhqsf (unsigned fract A)
  1533. -- Runtime Function: double __fractuhqdf (unsigned fract A)
  1534. -- Runtime Function: short fract __fractusqqq (unsigned long fract A)
  1535. -- Runtime Function: fract __fractusqhq (unsigned long fract A)
  1536. -- Runtime Function: long fract __fractusqsq (unsigned long fract A)
  1537. -- Runtime Function: long long fract __fractusqdq (unsigned long fract
  1538. A)
  1539. -- Runtime Function: short accum __fractusqha (unsigned long fract A)
  1540. -- Runtime Function: accum __fractusqsa (unsigned long fract A)
  1541. -- Runtime Function: long accum __fractusqda (unsigned long fract A)
  1542. -- Runtime Function: long long accum __fractusqta (unsigned long fract
  1543. A)
  1544. -- Runtime Function: unsigned short fract __fractusquqq2 (unsigned long
  1545. fract A)
  1546. -- Runtime Function: unsigned fract __fractusquhq2 (unsigned long fract
  1547. A)
  1548. -- Runtime Function: unsigned long long fract __fractusqudq2 (unsigned
  1549. long fract A)
  1550. -- Runtime Function: unsigned short accum __fractusquha (unsigned long
  1551. fract A)
  1552. -- Runtime Function: unsigned accum __fractusqusa (unsigned long fract
  1553. A)
  1554. -- Runtime Function: unsigned long accum __fractusquda (unsigned long
  1555. fract A)
  1556. -- Runtime Function: unsigned long long accum __fractusquta (unsigned
  1557. long fract A)
  1558. -- Runtime Function: signed char __fractusqqi (unsigned long fract A)
  1559. -- Runtime Function: short __fractusqhi (unsigned long fract A)
  1560. -- Runtime Function: int __fractusqsi (unsigned long fract A)
  1561. -- Runtime Function: long __fractusqdi (unsigned long fract A)
  1562. -- Runtime Function: long long __fractusqti (unsigned long fract A)
  1563. -- Runtime Function: float __fractusqsf (unsigned long fract A)
  1564. -- Runtime Function: double __fractusqdf (unsigned long fract A)
  1565. -- Runtime Function: short fract __fractudqqq (unsigned long long fract
  1566. A)
  1567. -- Runtime Function: fract __fractudqhq (unsigned long long fract A)
  1568. -- Runtime Function: long fract __fractudqsq (unsigned long long fract
  1569. A)
  1570. -- Runtime Function: long long fract __fractudqdq (unsigned long long
  1571. fract A)
  1572. -- Runtime Function: short accum __fractudqha (unsigned long long fract
  1573. A)
  1574. -- Runtime Function: accum __fractudqsa (unsigned long long fract A)
  1575. -- Runtime Function: long accum __fractudqda (unsigned long long fract
  1576. A)
  1577. -- Runtime Function: long long accum __fractudqta (unsigned long long
  1578. fract A)
  1579. -- Runtime Function: unsigned short fract __fractudquqq2 (unsigned long
  1580. long fract A)
  1581. -- Runtime Function: unsigned fract __fractudquhq2 (unsigned long long
  1582. fract A)
  1583. -- Runtime Function: unsigned long fract __fractudqusq2 (unsigned long
  1584. long fract A)
  1585. -- Runtime Function: unsigned short accum __fractudquha (unsigned long
  1586. long fract A)
  1587. -- Runtime Function: unsigned accum __fractudqusa (unsigned long long
  1588. fract A)
  1589. -- Runtime Function: unsigned long accum __fractudquda (unsigned long
  1590. long fract A)
  1591. -- Runtime Function: unsigned long long accum __fractudquta (unsigned
  1592. long long fract A)
  1593. -- Runtime Function: signed char __fractudqqi (unsigned long long fract
  1594. A)
  1595. -- Runtime Function: short __fractudqhi (unsigned long long fract A)
  1596. -- Runtime Function: int __fractudqsi (unsigned long long fract A)
  1597. -- Runtime Function: long __fractudqdi (unsigned long long fract A)
  1598. -- Runtime Function: long long __fractudqti (unsigned long long fract
  1599. A)
  1600. -- Runtime Function: float __fractudqsf (unsigned long long fract A)
  1601. -- Runtime Function: double __fractudqdf (unsigned long long fract A)
  1602. -- Runtime Function: short fract __fractuhaqq (unsigned short accum A)
  1603. -- Runtime Function: fract __fractuhahq (unsigned short accum A)
  1604. -- Runtime Function: long fract __fractuhasq (unsigned short accum A)
  1605. -- Runtime Function: long long fract __fractuhadq (unsigned short accum
  1606. A)
  1607. -- Runtime Function: short accum __fractuhaha (unsigned short accum A)
  1608. -- Runtime Function: accum __fractuhasa (unsigned short accum A)
  1609. -- Runtime Function: long accum __fractuhada (unsigned short accum A)
  1610. -- Runtime Function: long long accum __fractuhata (unsigned short accum
  1611. A)
  1612. -- Runtime Function: unsigned short fract __fractuhauqq (unsigned short
  1613. accum A)
  1614. -- Runtime Function: unsigned fract __fractuhauhq (unsigned short accum
  1615. A)
  1616. -- Runtime Function: unsigned long fract __fractuhausq (unsigned short
  1617. accum A)
  1618. -- Runtime Function: unsigned long long fract __fractuhaudq (unsigned
  1619. short accum A)
  1620. -- Runtime Function: unsigned accum __fractuhausa2 (unsigned short
  1621. accum A)
  1622. -- Runtime Function: unsigned long accum __fractuhauda2 (unsigned short
  1623. accum A)
  1624. -- Runtime Function: unsigned long long accum __fractuhauta2 (unsigned
  1625. short accum A)
  1626. -- Runtime Function: signed char __fractuhaqi (unsigned short accum A)
  1627. -- Runtime Function: short __fractuhahi (unsigned short accum A)
  1628. -- Runtime Function: int __fractuhasi (unsigned short accum A)
  1629. -- Runtime Function: long __fractuhadi (unsigned short accum A)
  1630. -- Runtime Function: long long __fractuhati (unsigned short accum A)
  1631. -- Runtime Function: float __fractuhasf (unsigned short accum A)
  1632. -- Runtime Function: double __fractuhadf (unsigned short accum A)
  1633. -- Runtime Function: short fract __fractusaqq (unsigned accum A)
  1634. -- Runtime Function: fract __fractusahq (unsigned accum A)
  1635. -- Runtime Function: long fract __fractusasq (unsigned accum A)
  1636. -- Runtime Function: long long fract __fractusadq (unsigned accum A)
  1637. -- Runtime Function: short accum __fractusaha (unsigned accum A)
  1638. -- Runtime Function: accum __fractusasa (unsigned accum A)
  1639. -- Runtime Function: long accum __fractusada (unsigned accum A)
  1640. -- Runtime Function: long long accum __fractusata (unsigned accum A)
  1641. -- Runtime Function: unsigned short fract __fractusauqq (unsigned accum
  1642. A)
  1643. -- Runtime Function: unsigned fract __fractusauhq (unsigned accum A)
  1644. -- Runtime Function: unsigned long fract __fractusausq (unsigned accum
  1645. A)
  1646. -- Runtime Function: unsigned long long fract __fractusaudq (unsigned
  1647. accum A)
  1648. -- Runtime Function: unsigned short accum __fractusauha2 (unsigned
  1649. accum A)
  1650. -- Runtime Function: unsigned long accum __fractusauda2 (unsigned accum
  1651. A)
  1652. -- Runtime Function: unsigned long long accum __fractusauta2 (unsigned
  1653. accum A)
  1654. -- Runtime Function: signed char __fractusaqi (unsigned accum A)
  1655. -- Runtime Function: short __fractusahi (unsigned accum A)
  1656. -- Runtime Function: int __fractusasi (unsigned accum A)
  1657. -- Runtime Function: long __fractusadi (unsigned accum A)
  1658. -- Runtime Function: long long __fractusati (unsigned accum A)
  1659. -- Runtime Function: float __fractusasf (unsigned accum A)
  1660. -- Runtime Function: double __fractusadf (unsigned accum A)
  1661. -- Runtime Function: short fract __fractudaqq (unsigned long accum A)
  1662. -- Runtime Function: fract __fractudahq (unsigned long accum A)
  1663. -- Runtime Function: long fract __fractudasq (unsigned long accum A)
  1664. -- Runtime Function: long long fract __fractudadq (unsigned long accum
  1665. A)
  1666. -- Runtime Function: short accum __fractudaha (unsigned long accum A)
  1667. -- Runtime Function: accum __fractudasa (unsigned long accum A)
  1668. -- Runtime Function: long accum __fractudada (unsigned long accum A)
  1669. -- Runtime Function: long long accum __fractudata (unsigned long accum
  1670. A)
  1671. -- Runtime Function: unsigned short fract __fractudauqq (unsigned long
  1672. accum A)
  1673. -- Runtime Function: unsigned fract __fractudauhq (unsigned long accum
  1674. A)
  1675. -- Runtime Function: unsigned long fract __fractudausq (unsigned long
  1676. accum A)
  1677. -- Runtime Function: unsigned long long fract __fractudaudq (unsigned
  1678. long accum A)
  1679. -- Runtime Function: unsigned short accum __fractudauha2 (unsigned long
  1680. accum A)
  1681. -- Runtime Function: unsigned accum __fractudausa2 (unsigned long accum
  1682. A)
  1683. -- Runtime Function: unsigned long long accum __fractudauta2 (unsigned
  1684. long accum A)
  1685. -- Runtime Function: signed char __fractudaqi (unsigned long accum A)
  1686. -- Runtime Function: short __fractudahi (unsigned long accum A)
  1687. -- Runtime Function: int __fractudasi (unsigned long accum A)
  1688. -- Runtime Function: long __fractudadi (unsigned long accum A)
  1689. -- Runtime Function: long long __fractudati (unsigned long accum A)
  1690. -- Runtime Function: float __fractudasf (unsigned long accum A)
  1691. -- Runtime Function: double __fractudadf (unsigned long accum A)
  1692. -- Runtime Function: short fract __fractutaqq (unsigned long long accum
  1693. A)
  1694. -- Runtime Function: fract __fractutahq (unsigned long long accum A)
  1695. -- Runtime Function: long fract __fractutasq (unsigned long long accum
  1696. A)
  1697. -- Runtime Function: long long fract __fractutadq (unsigned long long
  1698. accum A)
  1699. -- Runtime Function: short accum __fractutaha (unsigned long long accum
  1700. A)
  1701. -- Runtime Function: accum __fractutasa (unsigned long long accum A)
  1702. -- Runtime Function: long accum __fractutada (unsigned long long accum
  1703. A)
  1704. -- Runtime Function: long long accum __fractutata (unsigned long long
  1705. accum A)
  1706. -- Runtime Function: unsigned short fract __fractutauqq (unsigned long
  1707. long accum A)
  1708. -- Runtime Function: unsigned fract __fractutauhq (unsigned long long
  1709. accum A)
  1710. -- Runtime Function: unsigned long fract __fractutausq (unsigned long
  1711. long accum A)
  1712. -- Runtime Function: unsigned long long fract __fractutaudq (unsigned
  1713. long long accum A)
  1714. -- Runtime Function: unsigned short accum __fractutauha2 (unsigned long
  1715. long accum A)
  1716. -- Runtime Function: unsigned accum __fractutausa2 (unsigned long long
  1717. accum A)
  1718. -- Runtime Function: unsigned long accum __fractutauda2 (unsigned long
  1719. long accum A)
  1720. -- Runtime Function: signed char __fractutaqi (unsigned long long accum
  1721. A)
  1722. -- Runtime Function: short __fractutahi (unsigned long long accum A)
  1723. -- Runtime Function: int __fractutasi (unsigned long long accum A)
  1724. -- Runtime Function: long __fractutadi (unsigned long long accum A)
  1725. -- Runtime Function: long long __fractutati (unsigned long long accum
  1726. A)
  1727. -- Runtime Function: float __fractutasf (unsigned long long accum A)
  1728. -- Runtime Function: double __fractutadf (unsigned long long accum A)
  1729. -- Runtime Function: short fract __fractqiqq (signed char A)
  1730. -- Runtime Function: fract __fractqihq (signed char A)
  1731. -- Runtime Function: long fract __fractqisq (signed char A)
  1732. -- Runtime Function: long long fract __fractqidq (signed char A)
  1733. -- Runtime Function: short accum __fractqiha (signed char A)
  1734. -- Runtime Function: accum __fractqisa (signed char A)
  1735. -- Runtime Function: long accum __fractqida (signed char A)
  1736. -- Runtime Function: long long accum __fractqita (signed char A)
  1737. -- Runtime Function: unsigned short fract __fractqiuqq (signed char A)
  1738. -- Runtime Function: unsigned fract __fractqiuhq (signed char A)
  1739. -- Runtime Function: unsigned long fract __fractqiusq (signed char A)
  1740. -- Runtime Function: unsigned long long fract __fractqiudq (signed char
  1741. A)
  1742. -- Runtime Function: unsigned short accum __fractqiuha (signed char A)
  1743. -- Runtime Function: unsigned accum __fractqiusa (signed char A)
  1744. -- Runtime Function: unsigned long accum __fractqiuda (signed char A)
  1745. -- Runtime Function: unsigned long long accum __fractqiuta (signed char
  1746. A)
  1747. -- Runtime Function: short fract __fracthiqq (short A)
  1748. -- Runtime Function: fract __fracthihq (short A)
  1749. -- Runtime Function: long fract __fracthisq (short A)
  1750. -- Runtime Function: long long fract __fracthidq (short A)
  1751. -- Runtime Function: short accum __fracthiha (short A)
  1752. -- Runtime Function: accum __fracthisa (short A)
  1753. -- Runtime Function: long accum __fracthida (short A)
  1754. -- Runtime Function: long long accum __fracthita (short A)
  1755. -- Runtime Function: unsigned short fract __fracthiuqq (short A)
  1756. -- Runtime Function: unsigned fract __fracthiuhq (short A)
  1757. -- Runtime Function: unsigned long fract __fracthiusq (short A)
  1758. -- Runtime Function: unsigned long long fract __fracthiudq (short A)
  1759. -- Runtime Function: unsigned short accum __fracthiuha (short A)
  1760. -- Runtime Function: unsigned accum __fracthiusa (short A)
  1761. -- Runtime Function: unsigned long accum __fracthiuda (short A)
  1762. -- Runtime Function: unsigned long long accum __fracthiuta (short A)
  1763. -- Runtime Function: short fract __fractsiqq (int A)
  1764. -- Runtime Function: fract __fractsihq (int A)
  1765. -- Runtime Function: long fract __fractsisq (int A)
  1766. -- Runtime Function: long long fract __fractsidq (int A)
  1767. -- Runtime Function: short accum __fractsiha (int A)
  1768. -- Runtime Function: accum __fractsisa (int A)
  1769. -- Runtime Function: long accum __fractsida (int A)
  1770. -- Runtime Function: long long accum __fractsita (int A)
  1771. -- Runtime Function: unsigned short fract __fractsiuqq (int A)
  1772. -- Runtime Function: unsigned fract __fractsiuhq (int A)
  1773. -- Runtime Function: unsigned long fract __fractsiusq (int A)
  1774. -- Runtime Function: unsigned long long fract __fractsiudq (int A)
  1775. -- Runtime Function: unsigned short accum __fractsiuha (int A)
  1776. -- Runtime Function: unsigned accum __fractsiusa (int A)
  1777. -- Runtime Function: unsigned long accum __fractsiuda (int A)
  1778. -- Runtime Function: unsigned long long accum __fractsiuta (int A)
  1779. -- Runtime Function: short fract __fractdiqq (long A)
  1780. -- Runtime Function: fract __fractdihq (long A)
  1781. -- Runtime Function: long fract __fractdisq (long A)
  1782. -- Runtime Function: long long fract __fractdidq (long A)
  1783. -- Runtime Function: short accum __fractdiha (long A)
  1784. -- Runtime Function: accum __fractdisa (long A)
  1785. -- Runtime Function: long accum __fractdida (long A)
  1786. -- Runtime Function: long long accum __fractdita (long A)
  1787. -- Runtime Function: unsigned short fract __fractdiuqq (long A)
  1788. -- Runtime Function: unsigned fract __fractdiuhq (long A)
  1789. -- Runtime Function: unsigned long fract __fractdiusq (long A)
  1790. -- Runtime Function: unsigned long long fract __fractdiudq (long A)
  1791. -- Runtime Function: unsigned short accum __fractdiuha (long A)
  1792. -- Runtime Function: unsigned accum __fractdiusa (long A)
  1793. -- Runtime Function: unsigned long accum __fractdiuda (long A)
  1794. -- Runtime Function: unsigned long long accum __fractdiuta (long A)
  1795. -- Runtime Function: short fract __fracttiqq (long long A)
  1796. -- Runtime Function: fract __fracttihq (long long A)
  1797. -- Runtime Function: long fract __fracttisq (long long A)
  1798. -- Runtime Function: long long fract __fracttidq (long long A)
  1799. -- Runtime Function: short accum __fracttiha (long long A)
  1800. -- Runtime Function: accum __fracttisa (long long A)
  1801. -- Runtime Function: long accum __fracttida (long long A)
  1802. -- Runtime Function: long long accum __fracttita (long long A)
  1803. -- Runtime Function: unsigned short fract __fracttiuqq (long long A)
  1804. -- Runtime Function: unsigned fract __fracttiuhq (long long A)
  1805. -- Runtime Function: unsigned long fract __fracttiusq (long long A)
  1806. -- Runtime Function: unsigned long long fract __fracttiudq (long long
  1807. A)
  1808. -- Runtime Function: unsigned short accum __fracttiuha (long long A)
  1809. -- Runtime Function: unsigned accum __fracttiusa (long long A)
  1810. -- Runtime Function: unsigned long accum __fracttiuda (long long A)
  1811. -- Runtime Function: unsigned long long accum __fracttiuta (long long
  1812. A)
  1813. -- Runtime Function: short fract __fractsfqq (float A)
  1814. -- Runtime Function: fract __fractsfhq (float A)
  1815. -- Runtime Function: long fract __fractsfsq (float A)
  1816. -- Runtime Function: long long fract __fractsfdq (float A)
  1817. -- Runtime Function: short accum __fractsfha (float A)
  1818. -- Runtime Function: accum __fractsfsa (float A)
  1819. -- Runtime Function: long accum __fractsfda (float A)
  1820. -- Runtime Function: long long accum __fractsfta (float A)
  1821. -- Runtime Function: unsigned short fract __fractsfuqq (float A)
  1822. -- Runtime Function: unsigned fract __fractsfuhq (float A)
  1823. -- Runtime Function: unsigned long fract __fractsfusq (float A)
  1824. -- Runtime Function: unsigned long long fract __fractsfudq (float A)
  1825. -- Runtime Function: unsigned short accum __fractsfuha (float A)
  1826. -- Runtime Function: unsigned accum __fractsfusa (float A)
  1827. -- Runtime Function: unsigned long accum __fractsfuda (float A)
  1828. -- Runtime Function: unsigned long long accum __fractsfuta (float A)
  1829. -- Runtime Function: short fract __fractdfqq (double A)
  1830. -- Runtime Function: fract __fractdfhq (double A)
  1831. -- Runtime Function: long fract __fractdfsq (double A)
  1832. -- Runtime Function: long long fract __fractdfdq (double A)
  1833. -- Runtime Function: short accum __fractdfha (double A)
  1834. -- Runtime Function: accum __fractdfsa (double A)
  1835. -- Runtime Function: long accum __fractdfda (double A)
  1836. -- Runtime Function: long long accum __fractdfta (double A)
  1837. -- Runtime Function: unsigned short fract __fractdfuqq (double A)
  1838. -- Runtime Function: unsigned fract __fractdfuhq (double A)
  1839. -- Runtime Function: unsigned long fract __fractdfusq (double A)
  1840. -- Runtime Function: unsigned long long fract __fractdfudq (double A)
  1841. -- Runtime Function: unsigned short accum __fractdfuha (double A)
  1842. -- Runtime Function: unsigned accum __fractdfusa (double A)
  1843. -- Runtime Function: unsigned long accum __fractdfuda (double A)
  1844. -- Runtime Function: unsigned long long accum __fractdfuta (double A)
  1845. These functions convert from fractional and signed non-fractionals
  1846. to fractionals and signed non-fractionals, without saturation.
  1847. -- Runtime Function: fract __satfractqqhq2 (short fract A)
  1848. -- Runtime Function: long fract __satfractqqsq2 (short fract A)
  1849. -- Runtime Function: long long fract __satfractqqdq2 (short fract A)
  1850. -- Runtime Function: short accum __satfractqqha (short fract A)
  1851. -- Runtime Function: accum __satfractqqsa (short fract A)
  1852. -- Runtime Function: long accum __satfractqqda (short fract A)
  1853. -- Runtime Function: long long accum __satfractqqta (short fract A)
  1854. -- Runtime Function: unsigned short fract __satfractqquqq (short fract
  1855. A)
  1856. -- Runtime Function: unsigned fract __satfractqquhq (short fract A)
  1857. -- Runtime Function: unsigned long fract __satfractqqusq (short fract
  1858. A)
  1859. -- Runtime Function: unsigned long long fract __satfractqqudq (short
  1860. fract A)
  1861. -- Runtime Function: unsigned short accum __satfractqquha (short fract
  1862. A)
  1863. -- Runtime Function: unsigned accum __satfractqqusa (short fract A)
  1864. -- Runtime Function: unsigned long accum __satfractqquda (short fract
  1865. A)
  1866. -- Runtime Function: unsigned long long accum __satfractqquta (short
  1867. fract A)
  1868. -- Runtime Function: short fract __satfracthqqq2 (fract A)
  1869. -- Runtime Function: long fract __satfracthqsq2 (fract A)
  1870. -- Runtime Function: long long fract __satfracthqdq2 (fract A)
  1871. -- Runtime Function: short accum __satfracthqha (fract A)
  1872. -- Runtime Function: accum __satfracthqsa (fract A)
  1873. -- Runtime Function: long accum __satfracthqda (fract A)
  1874. -- Runtime Function: long long accum __satfracthqta (fract A)
  1875. -- Runtime Function: unsigned short fract __satfracthquqq (fract A)
  1876. -- Runtime Function: unsigned fract __satfracthquhq (fract A)
  1877. -- Runtime Function: unsigned long fract __satfracthqusq (fract A)
  1878. -- Runtime Function: unsigned long long fract __satfracthqudq (fract A)
  1879. -- Runtime Function: unsigned short accum __satfracthquha (fract A)
  1880. -- Runtime Function: unsigned accum __satfracthqusa (fract A)
  1881. -- Runtime Function: unsigned long accum __satfracthquda (fract A)
  1882. -- Runtime Function: unsigned long long accum __satfracthquta (fract A)
  1883. -- Runtime Function: short fract __satfractsqqq2 (long fract A)
  1884. -- Runtime Function: fract __satfractsqhq2 (long fract A)
  1885. -- Runtime Function: long long fract __satfractsqdq2 (long fract A)
  1886. -- Runtime Function: short accum __satfractsqha (long fract A)
  1887. -- Runtime Function: accum __satfractsqsa (long fract A)
  1888. -- Runtime Function: long accum __satfractsqda (long fract A)
  1889. -- Runtime Function: long long accum __satfractsqta (long fract A)
  1890. -- Runtime Function: unsigned short fract __satfractsquqq (long fract
  1891. A)
  1892. -- Runtime Function: unsigned fract __satfractsquhq (long fract A)
  1893. -- Runtime Function: unsigned long fract __satfractsqusq (long fract A)
  1894. -- Runtime Function: unsigned long long fract __satfractsqudq (long
  1895. fract A)
  1896. -- Runtime Function: unsigned short accum __satfractsquha (long fract
  1897. A)
  1898. -- Runtime Function: unsigned accum __satfractsqusa (long fract A)
  1899. -- Runtime Function: unsigned long accum __satfractsquda (long fract A)
  1900. -- Runtime Function: unsigned long long accum __satfractsquta (long
  1901. fract A)
  1902. -- Runtime Function: short fract __satfractdqqq2 (long long fract A)
  1903. -- Runtime Function: fract __satfractdqhq2 (long long fract A)
  1904. -- Runtime Function: long fract __satfractdqsq2 (long long fract A)
  1905. -- Runtime Function: short accum __satfractdqha (long long fract A)
  1906. -- Runtime Function: accum __satfractdqsa (long long fract A)
  1907. -- Runtime Function: long accum __satfractdqda (long long fract A)
  1908. -- Runtime Function: long long accum __satfractdqta (long long fract A)
  1909. -- Runtime Function: unsigned short fract __satfractdquqq (long long
  1910. fract A)
  1911. -- Runtime Function: unsigned fract __satfractdquhq (long long fract A)
  1912. -- Runtime Function: unsigned long fract __satfractdqusq (long long
  1913. fract A)
  1914. -- Runtime Function: unsigned long long fract __satfractdqudq (long
  1915. long fract A)
  1916. -- Runtime Function: unsigned short accum __satfractdquha (long long
  1917. fract A)
  1918. -- Runtime Function: unsigned accum __satfractdqusa (long long fract A)
  1919. -- Runtime Function: unsigned long accum __satfractdquda (long long
  1920. fract A)
  1921. -- Runtime Function: unsigned long long accum __satfractdquta (long
  1922. long fract A)
  1923. -- Runtime Function: short fract __satfracthaqq (short accum A)
  1924. -- Runtime Function: fract __satfracthahq (short accum A)
  1925. -- Runtime Function: long fract __satfracthasq (short accum A)
  1926. -- Runtime Function: long long fract __satfracthadq (short accum A)
  1927. -- Runtime Function: accum __satfracthasa2 (short accum A)
  1928. -- Runtime Function: long accum __satfracthada2 (short accum A)
  1929. -- Runtime Function: long long accum __satfracthata2 (short accum A)
  1930. -- Runtime Function: unsigned short fract __satfracthauqq (short accum
  1931. A)
  1932. -- Runtime Function: unsigned fract __satfracthauhq (short accum A)
  1933. -- Runtime Function: unsigned long fract __satfracthausq (short accum
  1934. A)
  1935. -- Runtime Function: unsigned long long fract __satfracthaudq (short
  1936. accum A)
  1937. -- Runtime Function: unsigned short accum __satfracthauha (short accum
  1938. A)
  1939. -- Runtime Function: unsigned accum __satfracthausa (short accum A)
  1940. -- Runtime Function: unsigned long accum __satfracthauda (short accum
  1941. A)
  1942. -- Runtime Function: unsigned long long accum __satfracthauta (short
  1943. accum A)
  1944. -- Runtime Function: short fract __satfractsaqq (accum A)
  1945. -- Runtime Function: fract __satfractsahq (accum A)
  1946. -- Runtime Function: long fract __satfractsasq (accum A)
  1947. -- Runtime Function: long long fract __satfractsadq (accum A)
  1948. -- Runtime Function: short accum __satfractsaha2 (accum A)
  1949. -- Runtime Function: long accum __satfractsada2 (accum A)
  1950. -- Runtime Function: long long accum __satfractsata2 (accum A)
  1951. -- Runtime Function: unsigned short fract __satfractsauqq (accum A)
  1952. -- Runtime Function: unsigned fract __satfractsauhq (accum A)
  1953. -- Runtime Function: unsigned long fract __satfractsausq (accum A)
  1954. -- Runtime Function: unsigned long long fract __satfractsaudq (accum A)
  1955. -- Runtime Function: unsigned short accum __satfractsauha (accum A)
  1956. -- Runtime Function: unsigned accum __satfractsausa (accum A)
  1957. -- Runtime Function: unsigned long accum __satfractsauda (accum A)
  1958. -- Runtime Function: unsigned long long accum __satfractsauta (accum A)
  1959. -- Runtime Function: short fract __satfractdaqq (long accum A)
  1960. -- Runtime Function: fract __satfractdahq (long accum A)
  1961. -- Runtime Function: long fract __satfractdasq (long accum A)
  1962. -- Runtime Function: long long fract __satfractdadq (long accum A)
  1963. -- Runtime Function: short accum __satfractdaha2 (long accum A)
  1964. -- Runtime Function: accum __satfractdasa2 (long accum A)
  1965. -- Runtime Function: long long accum __satfractdata2 (long accum A)
  1966. -- Runtime Function: unsigned short fract __satfractdauqq (long accum
  1967. A)
  1968. -- Runtime Function: unsigned fract __satfractdauhq (long accum A)
  1969. -- Runtime Function: unsigned long fract __satfractdausq (long accum A)
  1970. -- Runtime Function: unsigned long long fract __satfractdaudq (long
  1971. accum A)
  1972. -- Runtime Function: unsigned short accum __satfractdauha (long accum
  1973. A)
  1974. -- Runtime Function: unsigned accum __satfractdausa (long accum A)
  1975. -- Runtime Function: unsigned long accum __satfractdauda (long accum A)
  1976. -- Runtime Function: unsigned long long accum __satfractdauta (long
  1977. accum A)
  1978. -- Runtime Function: short fract __satfracttaqq (long long accum A)
  1979. -- Runtime Function: fract __satfracttahq (long long accum A)
  1980. -- Runtime Function: long fract __satfracttasq (long long accum A)
  1981. -- Runtime Function: long long fract __satfracttadq (long long accum A)
  1982. -- Runtime Function: short accum __satfracttaha2 (long long accum A)
  1983. -- Runtime Function: accum __satfracttasa2 (long long accum A)
  1984. -- Runtime Function: long accum __satfracttada2 (long long accum A)
  1985. -- Runtime Function: unsigned short fract __satfracttauqq (long long
  1986. accum A)
  1987. -- Runtime Function: unsigned fract __satfracttauhq (long long accum A)
  1988. -- Runtime Function: unsigned long fract __satfracttausq (long long
  1989. accum A)
  1990. -- Runtime Function: unsigned long long fract __satfracttaudq (long
  1991. long accum A)
  1992. -- Runtime Function: unsigned short accum __satfracttauha (long long
  1993. accum A)
  1994. -- Runtime Function: unsigned accum __satfracttausa (long long accum A)
  1995. -- Runtime Function: unsigned long accum __satfracttauda (long long
  1996. accum A)
  1997. -- Runtime Function: unsigned long long accum __satfracttauta (long
  1998. long accum A)
  1999. -- Runtime Function: short fract __satfractuqqqq (unsigned short fract
  2000. A)
  2001. -- Runtime Function: fract __satfractuqqhq (unsigned short fract A)
  2002. -- Runtime Function: long fract __satfractuqqsq (unsigned short fract
  2003. A)
  2004. -- Runtime Function: long long fract __satfractuqqdq (unsigned short
  2005. fract A)
  2006. -- Runtime Function: short accum __satfractuqqha (unsigned short fract
  2007. A)
  2008. -- Runtime Function: accum __satfractuqqsa (unsigned short fract A)
  2009. -- Runtime Function: long accum __satfractuqqda (unsigned short fract
  2010. A)
  2011. -- Runtime Function: long long accum __satfractuqqta (unsigned short
  2012. fract A)
  2013. -- Runtime Function: unsigned fract __satfractuqquhq2 (unsigned short
  2014. fract A)
  2015. -- Runtime Function: unsigned long fract __satfractuqqusq2 (unsigned
  2016. short fract A)
  2017. -- Runtime Function: unsigned long long fract __satfractuqqudq2
  2018. (unsigned short fract A)
  2019. -- Runtime Function: unsigned short accum __satfractuqquha (unsigned
  2020. short fract A)
  2021. -- Runtime Function: unsigned accum __satfractuqqusa (unsigned short
  2022. fract A)
  2023. -- Runtime Function: unsigned long accum __satfractuqquda (unsigned
  2024. short fract A)
  2025. -- Runtime Function: unsigned long long accum __satfractuqquta
  2026. (unsigned short fract A)
  2027. -- Runtime Function: short fract __satfractuhqqq (unsigned fract A)
  2028. -- Runtime Function: fract __satfractuhqhq (unsigned fract A)
  2029. -- Runtime Function: long fract __satfractuhqsq (unsigned fract A)
  2030. -- Runtime Function: long long fract __satfractuhqdq (unsigned fract A)
  2031. -- Runtime Function: short accum __satfractuhqha (unsigned fract A)
  2032. -- Runtime Function: accum __satfractuhqsa (unsigned fract A)
  2033. -- Runtime Function: long accum __satfractuhqda (unsigned fract A)
  2034. -- Runtime Function: long long accum __satfractuhqta (unsigned fract A)
  2035. -- Runtime Function: unsigned short fract __satfractuhquqq2 (unsigned
  2036. fract A)
  2037. -- Runtime Function: unsigned long fract __satfractuhqusq2 (unsigned
  2038. fract A)
  2039. -- Runtime Function: unsigned long long fract __satfractuhqudq2
  2040. (unsigned fract A)
  2041. -- Runtime Function: unsigned short accum __satfractuhquha (unsigned
  2042. fract A)
  2043. -- Runtime Function: unsigned accum __satfractuhqusa (unsigned fract A)
  2044. -- Runtime Function: unsigned long accum __satfractuhquda (unsigned
  2045. fract A)
  2046. -- Runtime Function: unsigned long long accum __satfractuhquta
  2047. (unsigned fract A)
  2048. -- Runtime Function: short fract __satfractusqqq (unsigned long fract
  2049. A)
  2050. -- Runtime Function: fract __satfractusqhq (unsigned long fract A)
  2051. -- Runtime Function: long fract __satfractusqsq (unsigned long fract A)
  2052. -- Runtime Function: long long fract __satfractusqdq (unsigned long
  2053. fract A)
  2054. -- Runtime Function: short accum __satfractusqha (unsigned long fract
  2055. A)
  2056. -- Runtime Function: accum __satfractusqsa (unsigned long fract A)
  2057. -- Runtime Function: long accum __satfractusqda (unsigned long fract A)
  2058. -- Runtime Function: long long accum __satfractusqta (unsigned long
  2059. fract A)
  2060. -- Runtime Function: unsigned short fract __satfractusquqq2 (unsigned
  2061. long fract A)
  2062. -- Runtime Function: unsigned fract __satfractusquhq2 (unsigned long
  2063. fract A)
  2064. -- Runtime Function: unsigned long long fract __satfractusqudq2
  2065. (unsigned long fract A)
  2066. -- Runtime Function: unsigned short accum __satfractusquha (unsigned
  2067. long fract A)
  2068. -- Runtime Function: unsigned accum __satfractusqusa (unsigned long
  2069. fract A)
  2070. -- Runtime Function: unsigned long accum __satfractusquda (unsigned
  2071. long fract A)
  2072. -- Runtime Function: unsigned long long accum __satfractusquta
  2073. (unsigned long fract A)
  2074. -- Runtime Function: short fract __satfractudqqq (unsigned long long
  2075. fract A)
  2076. -- Runtime Function: fract __satfractudqhq (unsigned long long fract A)
  2077. -- Runtime Function: long fract __satfractudqsq (unsigned long long
  2078. fract A)
  2079. -- Runtime Function: long long fract __satfractudqdq (unsigned long
  2080. long fract A)
  2081. -- Runtime Function: short accum __satfractudqha (unsigned long long
  2082. fract A)
  2083. -- Runtime Function: accum __satfractudqsa (unsigned long long fract A)
  2084. -- Runtime Function: long accum __satfractudqda (unsigned long long
  2085. fract A)
  2086. -- Runtime Function: long long accum __satfractudqta (unsigned long
  2087. long fract A)
  2088. -- Runtime Function: unsigned short fract __satfractudquqq2 (unsigned
  2089. long long fract A)
  2090. -- Runtime Function: unsigned fract __satfractudquhq2 (unsigned long
  2091. long fract A)
  2092. -- Runtime Function: unsigned long fract __satfractudqusq2 (unsigned
  2093. long long fract A)
  2094. -- Runtime Function: unsigned short accum __satfractudquha (unsigned
  2095. long long fract A)
  2096. -- Runtime Function: unsigned accum __satfractudqusa (unsigned long
  2097. long fract A)
  2098. -- Runtime Function: unsigned long accum __satfractudquda (unsigned
  2099. long long fract A)
  2100. -- Runtime Function: unsigned long long accum __satfractudquta
  2101. (unsigned long long fract A)
  2102. -- Runtime Function: short fract __satfractuhaqq (unsigned short accum
  2103. A)
  2104. -- Runtime Function: fract __satfractuhahq (unsigned short accum A)
  2105. -- Runtime Function: long fract __satfractuhasq (unsigned short accum
  2106. A)
  2107. -- Runtime Function: long long fract __satfractuhadq (unsigned short
  2108. accum A)
  2109. -- Runtime Function: short accum __satfractuhaha (unsigned short accum
  2110. A)
  2111. -- Runtime Function: accum __satfractuhasa (unsigned short accum A)
  2112. -- Runtime Function: long accum __satfractuhada (unsigned short accum
  2113. A)
  2114. -- Runtime Function: long long accum __satfractuhata (unsigned short
  2115. accum A)
  2116. -- Runtime Function: unsigned short fract __satfractuhauqq (unsigned
  2117. short accum A)
  2118. -- Runtime Function: unsigned fract __satfractuhauhq (unsigned short
  2119. accum A)
  2120. -- Runtime Function: unsigned long fract __satfractuhausq (unsigned
  2121. short accum A)
  2122. -- Runtime Function: unsigned long long fract __satfractuhaudq
  2123. (unsigned short accum A)
  2124. -- Runtime Function: unsigned accum __satfractuhausa2 (unsigned short
  2125. accum A)
  2126. -- Runtime Function: unsigned long accum __satfractuhauda2 (unsigned
  2127. short accum A)
  2128. -- Runtime Function: unsigned long long accum __satfractuhauta2
  2129. (unsigned short accum A)
  2130. -- Runtime Function: short fract __satfractusaqq (unsigned accum A)
  2131. -- Runtime Function: fract __satfractusahq (unsigned accum A)
  2132. -- Runtime Function: long fract __satfractusasq (unsigned accum A)
  2133. -- Runtime Function: long long fract __satfractusadq (unsigned accum A)
  2134. -- Runtime Function: short accum __satfractusaha (unsigned accum A)
  2135. -- Runtime Function: accum __satfractusasa (unsigned accum A)
  2136. -- Runtime Function: long accum __satfractusada (unsigned accum A)
  2137. -- Runtime Function: long long accum __satfractusata (unsigned accum A)
  2138. -- Runtime Function: unsigned short fract __satfractusauqq (unsigned
  2139. accum A)
  2140. -- Runtime Function: unsigned fract __satfractusauhq (unsigned accum A)
  2141. -- Runtime Function: unsigned long fract __satfractusausq (unsigned
  2142. accum A)
  2143. -- Runtime Function: unsigned long long fract __satfractusaudq
  2144. (unsigned accum A)
  2145. -- Runtime Function: unsigned short accum __satfractusauha2 (unsigned
  2146. accum A)
  2147. -- Runtime Function: unsigned long accum __satfractusauda2 (unsigned
  2148. accum A)
  2149. -- Runtime Function: unsigned long long accum __satfractusauta2
  2150. (unsigned accum A)
  2151. -- Runtime Function: short fract __satfractudaqq (unsigned long accum
  2152. A)
  2153. -- Runtime Function: fract __satfractudahq (unsigned long accum A)
  2154. -- Runtime Function: long fract __satfractudasq (unsigned long accum A)
  2155. -- Runtime Function: long long fract __satfractudadq (unsigned long
  2156. accum A)
  2157. -- Runtime Function: short accum __satfractudaha (unsigned long accum
  2158. A)
  2159. -- Runtime Function: accum __satfractudasa (unsigned long accum A)
  2160. -- Runtime Function: long accum __satfractudada (unsigned long accum A)
  2161. -- Runtime Function: long long accum __satfractudata (unsigned long
  2162. accum A)
  2163. -- Runtime Function: unsigned short fract __satfractudauqq (unsigned
  2164. long accum A)
  2165. -- Runtime Function: unsigned fract __satfractudauhq (unsigned long
  2166. accum A)
  2167. -- Runtime Function: unsigned long fract __satfractudausq (unsigned
  2168. long accum A)
  2169. -- Runtime Function: unsigned long long fract __satfractudaudq
  2170. (unsigned long accum A)
  2171. -- Runtime Function: unsigned short accum __satfractudauha2 (unsigned
  2172. long accum A)
  2173. -- Runtime Function: unsigned accum __satfractudausa2 (unsigned long
  2174. accum A)
  2175. -- Runtime Function: unsigned long long accum __satfractudauta2
  2176. (unsigned long accum A)
  2177. -- Runtime Function: short fract __satfractutaqq (unsigned long long
  2178. accum A)
  2179. -- Runtime Function: fract __satfractutahq (unsigned long long accum A)
  2180. -- Runtime Function: long fract __satfractutasq (unsigned long long
  2181. accum A)
  2182. -- Runtime Function: long long fract __satfractutadq (unsigned long
  2183. long accum A)
  2184. -- Runtime Function: short accum __satfractutaha (unsigned long long
  2185. accum A)
  2186. -- Runtime Function: accum __satfractutasa (unsigned long long accum A)
  2187. -- Runtime Function: long accum __satfractutada (unsigned long long
  2188. accum A)
  2189. -- Runtime Function: long long accum __satfractutata (unsigned long
  2190. long accum A)
  2191. -- Runtime Function: unsigned short fract __satfractutauqq (unsigned
  2192. long long accum A)
  2193. -- Runtime Function: unsigned fract __satfractutauhq (unsigned long
  2194. long accum A)
  2195. -- Runtime Function: unsigned long fract __satfractutausq (unsigned
  2196. long long accum A)
  2197. -- Runtime Function: unsigned long long fract __satfractutaudq
  2198. (unsigned long long accum A)
  2199. -- Runtime Function: unsigned short accum __satfractutauha2 (unsigned
  2200. long long accum A)
  2201. -- Runtime Function: unsigned accum __satfractutausa2 (unsigned long
  2202. long accum A)
  2203. -- Runtime Function: unsigned long accum __satfractutauda2 (unsigned
  2204. long long accum A)
  2205. -- Runtime Function: short fract __satfractqiqq (signed char A)
  2206. -- Runtime Function: fract __satfractqihq (signed char A)
  2207. -- Runtime Function: long fract __satfractqisq (signed char A)
  2208. -- Runtime Function: long long fract __satfractqidq (signed char A)
  2209. -- Runtime Function: short accum __satfractqiha (signed char A)
  2210. -- Runtime Function: accum __satfractqisa (signed char A)
  2211. -- Runtime Function: long accum __satfractqida (signed char A)
  2212. -- Runtime Function: long long accum __satfractqita (signed char A)
  2213. -- Runtime Function: unsigned short fract __satfractqiuqq (signed char
  2214. A)
  2215. -- Runtime Function: unsigned fract __satfractqiuhq (signed char A)
  2216. -- Runtime Function: unsigned long fract __satfractqiusq (signed char
  2217. A)
  2218. -- Runtime Function: unsigned long long fract __satfractqiudq (signed
  2219. char A)
  2220. -- Runtime Function: unsigned short accum __satfractqiuha (signed char
  2221. A)
  2222. -- Runtime Function: unsigned accum __satfractqiusa (signed char A)
  2223. -- Runtime Function: unsigned long accum __satfractqiuda (signed char
  2224. A)
  2225. -- Runtime Function: unsigned long long accum __satfractqiuta (signed
  2226. char A)
  2227. -- Runtime Function: short fract __satfracthiqq (short A)
  2228. -- Runtime Function: fract __satfracthihq (short A)
  2229. -- Runtime Function: long fract __satfracthisq (short A)
  2230. -- Runtime Function: long long fract __satfracthidq (short A)
  2231. -- Runtime Function: short accum __satfracthiha (short A)
  2232. -- Runtime Function: accum __satfracthisa (short A)
  2233. -- Runtime Function: long accum __satfracthida (short A)
  2234. -- Runtime Function: long long accum __satfracthita (short A)
  2235. -- Runtime Function: unsigned short fract __satfracthiuqq (short A)
  2236. -- Runtime Function: unsigned fract __satfracthiuhq (short A)
  2237. -- Runtime Function: unsigned long fract __satfracthiusq (short A)
  2238. -- Runtime Function: unsigned long long fract __satfracthiudq (short A)
  2239. -- Runtime Function: unsigned short accum __satfracthiuha (short A)
  2240. -- Runtime Function: unsigned accum __satfracthiusa (short A)
  2241. -- Runtime Function: unsigned long accum __satfracthiuda (short A)
  2242. -- Runtime Function: unsigned long long accum __satfracthiuta (short A)
  2243. -- Runtime Function: short fract __satfractsiqq (int A)
  2244. -- Runtime Function: fract __satfractsihq (int A)
  2245. -- Runtime Function: long fract __satfractsisq (int A)
  2246. -- Runtime Function: long long fract __satfractsidq (int A)
  2247. -- Runtime Function: short accum __satfractsiha (int A)
  2248. -- Runtime Function: accum __satfractsisa (int A)
  2249. -- Runtime Function: long accum __satfractsida (int A)
  2250. -- Runtime Function: long long accum __satfractsita (int A)
  2251. -- Runtime Function: unsigned short fract __satfractsiuqq (int A)
  2252. -- Runtime Function: unsigned fract __satfractsiuhq (int A)
  2253. -- Runtime Function: unsigned long fract __satfractsiusq (int A)
  2254. -- Runtime Function: unsigned long long fract __satfractsiudq (int A)
  2255. -- Runtime Function: unsigned short accum __satfractsiuha (int A)
  2256. -- Runtime Function: unsigned accum __satfractsiusa (int A)
  2257. -- Runtime Function: unsigned long accum __satfractsiuda (int A)
  2258. -- Runtime Function: unsigned long long accum __satfractsiuta (int A)
  2259. -- Runtime Function: short fract __satfractdiqq (long A)
  2260. -- Runtime Function: fract __satfractdihq (long A)
  2261. -- Runtime Function: long fract __satfractdisq (long A)
  2262. -- Runtime Function: long long fract __satfractdidq (long A)
  2263. -- Runtime Function: short accum __satfractdiha (long A)
  2264. -- Runtime Function: accum __satfractdisa (long A)
  2265. -- Runtime Function: long accum __satfractdida (long A)
  2266. -- Runtime Function: long long accum __satfractdita (long A)
  2267. -- Runtime Function: unsigned short fract __satfractdiuqq (long A)
  2268. -- Runtime Function: unsigned fract __satfractdiuhq (long A)
  2269. -- Runtime Function: unsigned long fract __satfractdiusq (long A)
  2270. -- Runtime Function: unsigned long long fract __satfractdiudq (long A)
  2271. -- Runtime Function: unsigned short accum __satfractdiuha (long A)
  2272. -- Runtime Function: unsigned accum __satfractdiusa (long A)
  2273. -- Runtime Function: unsigned long accum __satfractdiuda (long A)
  2274. -- Runtime Function: unsigned long long accum __satfractdiuta (long A)
  2275. -- Runtime Function: short fract __satfracttiqq (long long A)
  2276. -- Runtime Function: fract __satfracttihq (long long A)
  2277. -- Runtime Function: long fract __satfracttisq (long long A)
  2278. -- Runtime Function: long long fract __satfracttidq (long long A)
  2279. -- Runtime Function: short accum __satfracttiha (long long A)
  2280. -- Runtime Function: accum __satfracttisa (long long A)
  2281. -- Runtime Function: long accum __satfracttida (long long A)
  2282. -- Runtime Function: long long accum __satfracttita (long long A)
  2283. -- Runtime Function: unsigned short fract __satfracttiuqq (long long A)
  2284. -- Runtime Function: unsigned fract __satfracttiuhq (long long A)
  2285. -- Runtime Function: unsigned long fract __satfracttiusq (long long A)
  2286. -- Runtime Function: unsigned long long fract __satfracttiudq (long
  2287. long A)
  2288. -- Runtime Function: unsigned short accum __satfracttiuha (long long A)
  2289. -- Runtime Function: unsigned accum __satfracttiusa (long long A)
  2290. -- Runtime Function: unsigned long accum __satfracttiuda (long long A)
  2291. -- Runtime Function: unsigned long long accum __satfracttiuta (long
  2292. long A)
  2293. -- Runtime Function: short fract __satfractsfqq (float A)
  2294. -- Runtime Function: fract __satfractsfhq (float A)
  2295. -- Runtime Function: long fract __satfractsfsq (float A)
  2296. -- Runtime Function: long long fract __satfractsfdq (float A)
  2297. -- Runtime Function: short accum __satfractsfha (float A)
  2298. -- Runtime Function: accum __satfractsfsa (float A)
  2299. -- Runtime Function: long accum __satfractsfda (float A)
  2300. -- Runtime Function: long long accum __satfractsfta (float A)
  2301. -- Runtime Function: unsigned short fract __satfractsfuqq (float A)
  2302. -- Runtime Function: unsigned fract __satfractsfuhq (float A)
  2303. -- Runtime Function: unsigned long fract __satfractsfusq (float A)
  2304. -- Runtime Function: unsigned long long fract __satfractsfudq (float A)
  2305. -- Runtime Function: unsigned short accum __satfractsfuha (float A)
  2306. -- Runtime Function: unsigned accum __satfractsfusa (float A)
  2307. -- Runtime Function: unsigned long accum __satfractsfuda (float A)
  2308. -- Runtime Function: unsigned long long accum __satfractsfuta (float A)
  2309. -- Runtime Function: short fract __satfractdfqq (double A)
  2310. -- Runtime Function: fract __satfractdfhq (double A)
  2311. -- Runtime Function: long fract __satfractdfsq (double A)
  2312. -- Runtime Function: long long fract __satfractdfdq (double A)
  2313. -- Runtime Function: short accum __satfractdfha (double A)
  2314. -- Runtime Function: accum __satfractdfsa (double A)
  2315. -- Runtime Function: long accum __satfractdfda (double A)
  2316. -- Runtime Function: long long accum __satfractdfta (double A)
  2317. -- Runtime Function: unsigned short fract __satfractdfuqq (double A)
  2318. -- Runtime Function: unsigned fract __satfractdfuhq (double A)
  2319. -- Runtime Function: unsigned long fract __satfractdfusq (double A)
  2320. -- Runtime Function: unsigned long long fract __satfractdfudq (double
  2321. A)
  2322. -- Runtime Function: unsigned short accum __satfractdfuha (double A)
  2323. -- Runtime Function: unsigned accum __satfractdfusa (double A)
  2324. -- Runtime Function: unsigned long accum __satfractdfuda (double A)
  2325. -- Runtime Function: unsigned long long accum __satfractdfuta (double
  2326. A)
  2327. The functions convert from fractional and signed non-fractionals to
  2328. fractionals, with saturation.
  2329. -- Runtime Function: unsigned char __fractunsqqqi (short fract A)
  2330. -- Runtime Function: unsigned short __fractunsqqhi (short fract A)
  2331. -- Runtime Function: unsigned int __fractunsqqsi (short fract A)
  2332. -- Runtime Function: unsigned long __fractunsqqdi (short fract A)
  2333. -- Runtime Function: unsigned long long __fractunsqqti (short fract A)
  2334. -- Runtime Function: unsigned char __fractunshqqi (fract A)
  2335. -- Runtime Function: unsigned short __fractunshqhi (fract A)
  2336. -- Runtime Function: unsigned int __fractunshqsi (fract A)
  2337. -- Runtime Function: unsigned long __fractunshqdi (fract A)
  2338. -- Runtime Function: unsigned long long __fractunshqti (fract A)
  2339. -- Runtime Function: unsigned char __fractunssqqi (long fract A)
  2340. -- Runtime Function: unsigned short __fractunssqhi (long fract A)
  2341. -- Runtime Function: unsigned int __fractunssqsi (long fract A)
  2342. -- Runtime Function: unsigned long __fractunssqdi (long fract A)
  2343. -- Runtime Function: unsigned long long __fractunssqti (long fract A)
  2344. -- Runtime Function: unsigned char __fractunsdqqi (long long fract A)
  2345. -- Runtime Function: unsigned short __fractunsdqhi (long long fract A)
  2346. -- Runtime Function: unsigned int __fractunsdqsi (long long fract A)
  2347. -- Runtime Function: unsigned long __fractunsdqdi (long long fract A)
  2348. -- Runtime Function: unsigned long long __fractunsdqti (long long fract
  2349. A)
  2350. -- Runtime Function: unsigned char __fractunshaqi (short accum A)
  2351. -- Runtime Function: unsigned short __fractunshahi (short accum A)
  2352. -- Runtime Function: unsigned int __fractunshasi (short accum A)
  2353. -- Runtime Function: unsigned long __fractunshadi (short accum A)
  2354. -- Runtime Function: unsigned long long __fractunshati (short accum A)
  2355. -- Runtime Function: unsigned char __fractunssaqi (accum A)
  2356. -- Runtime Function: unsigned short __fractunssahi (accum A)
  2357. -- Runtime Function: unsigned int __fractunssasi (accum A)
  2358. -- Runtime Function: unsigned long __fractunssadi (accum A)
  2359. -- Runtime Function: unsigned long long __fractunssati (accum A)
  2360. -- Runtime Function: unsigned char __fractunsdaqi (long accum A)
  2361. -- Runtime Function: unsigned short __fractunsdahi (long accum A)
  2362. -- Runtime Function: unsigned int __fractunsdasi (long accum A)
  2363. -- Runtime Function: unsigned long __fractunsdadi (long accum A)
  2364. -- Runtime Function: unsigned long long __fractunsdati (long accum A)
  2365. -- Runtime Function: unsigned char __fractunstaqi (long long accum A)
  2366. -- Runtime Function: unsigned short __fractunstahi (long long accum A)
  2367. -- Runtime Function: unsigned int __fractunstasi (long long accum A)
  2368. -- Runtime Function: unsigned long __fractunstadi (long long accum A)
  2369. -- Runtime Function: unsigned long long __fractunstati (long long accum
  2370. A)
  2371. -- Runtime Function: unsigned char __fractunsuqqqi (unsigned short
  2372. fract A)
  2373. -- Runtime Function: unsigned short __fractunsuqqhi (unsigned short
  2374. fract A)
  2375. -- Runtime Function: unsigned int __fractunsuqqsi (unsigned short fract
  2376. A)
  2377. -- Runtime Function: unsigned long __fractunsuqqdi (unsigned short
  2378. fract A)
  2379. -- Runtime Function: unsigned long long __fractunsuqqti (unsigned short
  2380. fract A)
  2381. -- Runtime Function: unsigned char __fractunsuhqqi (unsigned fract A)
  2382. -- Runtime Function: unsigned short __fractunsuhqhi (unsigned fract A)
  2383. -- Runtime Function: unsigned int __fractunsuhqsi (unsigned fract A)
  2384. -- Runtime Function: unsigned long __fractunsuhqdi (unsigned fract A)
  2385. -- Runtime Function: unsigned long long __fractunsuhqti (unsigned fract
  2386. A)
  2387. -- Runtime Function: unsigned char __fractunsusqqi (unsigned long fract
  2388. A)
  2389. -- Runtime Function: unsigned short __fractunsusqhi (unsigned long
  2390. fract A)
  2391. -- Runtime Function: unsigned int __fractunsusqsi (unsigned long fract
  2392. A)
  2393. -- Runtime Function: unsigned long __fractunsusqdi (unsigned long fract
  2394. A)
  2395. -- Runtime Function: unsigned long long __fractunsusqti (unsigned long
  2396. fract A)
  2397. -- Runtime Function: unsigned char __fractunsudqqi (unsigned long long
  2398. fract A)
  2399. -- Runtime Function: unsigned short __fractunsudqhi (unsigned long long
  2400. fract A)
  2401. -- Runtime Function: unsigned int __fractunsudqsi (unsigned long long
  2402. fract A)
  2403. -- Runtime Function: unsigned long __fractunsudqdi (unsigned long long
  2404. fract A)
  2405. -- Runtime Function: unsigned long long __fractunsudqti (unsigned long
  2406. long fract A)
  2407. -- Runtime Function: unsigned char __fractunsuhaqi (unsigned short
  2408. accum A)
  2409. -- Runtime Function: unsigned short __fractunsuhahi (unsigned short
  2410. accum A)
  2411. -- Runtime Function: unsigned int __fractunsuhasi (unsigned short accum
  2412. A)
  2413. -- Runtime Function: unsigned long __fractunsuhadi (unsigned short
  2414. accum A)
  2415. -- Runtime Function: unsigned long long __fractunsuhati (unsigned short
  2416. accum A)
  2417. -- Runtime Function: unsigned char __fractunsusaqi (unsigned accum A)
  2418. -- Runtime Function: unsigned short __fractunsusahi (unsigned accum A)
  2419. -- Runtime Function: unsigned int __fractunsusasi (unsigned accum A)
  2420. -- Runtime Function: unsigned long __fractunsusadi (unsigned accum A)
  2421. -- Runtime Function: unsigned long long __fractunsusati (unsigned accum
  2422. A)
  2423. -- Runtime Function: unsigned char __fractunsudaqi (unsigned long accum
  2424. A)
  2425. -- Runtime Function: unsigned short __fractunsudahi (unsigned long
  2426. accum A)
  2427. -- Runtime Function: unsigned int __fractunsudasi (unsigned long accum
  2428. A)
  2429. -- Runtime Function: unsigned long __fractunsudadi (unsigned long accum
  2430. A)
  2431. -- Runtime Function: unsigned long long __fractunsudati (unsigned long
  2432. accum A)
  2433. -- Runtime Function: unsigned char __fractunsutaqi (unsigned long long
  2434. accum A)
  2435. -- Runtime Function: unsigned short __fractunsutahi (unsigned long long
  2436. accum A)
  2437. -- Runtime Function: unsigned int __fractunsutasi (unsigned long long
  2438. accum A)
  2439. -- Runtime Function: unsigned long __fractunsutadi (unsigned long long
  2440. accum A)
  2441. -- Runtime Function: unsigned long long __fractunsutati (unsigned long
  2442. long accum A)
  2443. -- Runtime Function: short fract __fractunsqiqq (unsigned char A)
  2444. -- Runtime Function: fract __fractunsqihq (unsigned char A)
  2445. -- Runtime Function: long fract __fractunsqisq (unsigned char A)
  2446. -- Runtime Function: long long fract __fractunsqidq (unsigned char A)
  2447. -- Runtime Function: short accum __fractunsqiha (unsigned char A)
  2448. -- Runtime Function: accum __fractunsqisa (unsigned char A)
  2449. -- Runtime Function: long accum __fractunsqida (unsigned char A)
  2450. -- Runtime Function: long long accum __fractunsqita (unsigned char A)
  2451. -- Runtime Function: unsigned short fract __fractunsqiuqq (unsigned
  2452. char A)
  2453. -- Runtime Function: unsigned fract __fractunsqiuhq (unsigned char A)
  2454. -- Runtime Function: unsigned long fract __fractunsqiusq (unsigned char
  2455. A)
  2456. -- Runtime Function: unsigned long long fract __fractunsqiudq (unsigned
  2457. char A)
  2458. -- Runtime Function: unsigned short accum __fractunsqiuha (unsigned
  2459. char A)
  2460. -- Runtime Function: unsigned accum __fractunsqiusa (unsigned char A)
  2461. -- Runtime Function: unsigned long accum __fractunsqiuda (unsigned char
  2462. A)
  2463. -- Runtime Function: unsigned long long accum __fractunsqiuta (unsigned
  2464. char A)
  2465. -- Runtime Function: short fract __fractunshiqq (unsigned short A)
  2466. -- Runtime Function: fract __fractunshihq (unsigned short A)
  2467. -- Runtime Function: long fract __fractunshisq (unsigned short A)
  2468. -- Runtime Function: long long fract __fractunshidq (unsigned short A)
  2469. -- Runtime Function: short accum __fractunshiha (unsigned short A)
  2470. -- Runtime Function: accum __fractunshisa (unsigned short A)
  2471. -- Runtime Function: long accum __fractunshida (unsigned short A)
  2472. -- Runtime Function: long long accum __fractunshita (unsigned short A)
  2473. -- Runtime Function: unsigned short fract __fractunshiuqq (unsigned
  2474. short A)
  2475. -- Runtime Function: unsigned fract __fractunshiuhq (unsigned short A)
  2476. -- Runtime Function: unsigned long fract __fractunshiusq (unsigned
  2477. short A)
  2478. -- Runtime Function: unsigned long long fract __fractunshiudq (unsigned
  2479. short A)
  2480. -- Runtime Function: unsigned short accum __fractunshiuha (unsigned
  2481. short A)
  2482. -- Runtime Function: unsigned accum __fractunshiusa (unsigned short A)
  2483. -- Runtime Function: unsigned long accum __fractunshiuda (unsigned
  2484. short A)
  2485. -- Runtime Function: unsigned long long accum __fractunshiuta (unsigned
  2486. short A)
  2487. -- Runtime Function: short fract __fractunssiqq (unsigned int A)
  2488. -- Runtime Function: fract __fractunssihq (unsigned int A)
  2489. -- Runtime Function: long fract __fractunssisq (unsigned int A)
  2490. -- Runtime Function: long long fract __fractunssidq (unsigned int A)
  2491. -- Runtime Function: short accum __fractunssiha (unsigned int A)
  2492. -- Runtime Function: accum __fractunssisa (unsigned int A)
  2493. -- Runtime Function: long accum __fractunssida (unsigned int A)
  2494. -- Runtime Function: long long accum __fractunssita (unsigned int A)
  2495. -- Runtime Function: unsigned short fract __fractunssiuqq (unsigned int
  2496. A)
  2497. -- Runtime Function: unsigned fract __fractunssiuhq (unsigned int A)
  2498. -- Runtime Function: unsigned long fract __fractunssiusq (unsigned int
  2499. A)
  2500. -- Runtime Function: unsigned long long fract __fractunssiudq (unsigned
  2501. int A)
  2502. -- Runtime Function: unsigned short accum __fractunssiuha (unsigned int
  2503. A)
  2504. -- Runtime Function: unsigned accum __fractunssiusa (unsigned int A)
  2505. -- Runtime Function: unsigned long accum __fractunssiuda (unsigned int
  2506. A)
  2507. -- Runtime Function: unsigned long long accum __fractunssiuta (unsigned
  2508. int A)
  2509. -- Runtime Function: short fract __fractunsdiqq (unsigned long A)
  2510. -- Runtime Function: fract __fractunsdihq (unsigned long A)
  2511. -- Runtime Function: long fract __fractunsdisq (unsigned long A)
  2512. -- Runtime Function: long long fract __fractunsdidq (unsigned long A)
  2513. -- Runtime Function: short accum __fractunsdiha (unsigned long A)
  2514. -- Runtime Function: accum __fractunsdisa (unsigned long A)
  2515. -- Runtime Function: long accum __fractunsdida (unsigned long A)
  2516. -- Runtime Function: long long accum __fractunsdita (unsigned long A)
  2517. -- Runtime Function: unsigned short fract __fractunsdiuqq (unsigned
  2518. long A)
  2519. -- Runtime Function: unsigned fract __fractunsdiuhq (unsigned long A)
  2520. -- Runtime Function: unsigned long fract __fractunsdiusq (unsigned long
  2521. A)
  2522. -- Runtime Function: unsigned long long fract __fractunsdiudq (unsigned
  2523. long A)
  2524. -- Runtime Function: unsigned short accum __fractunsdiuha (unsigned
  2525. long A)
  2526. -- Runtime Function: unsigned accum __fractunsdiusa (unsigned long A)
  2527. -- Runtime Function: unsigned long accum __fractunsdiuda (unsigned long
  2528. A)
  2529. -- Runtime Function: unsigned long long accum __fractunsdiuta (unsigned
  2530. long A)
  2531. -- Runtime Function: short fract __fractunstiqq (unsigned long long A)
  2532. -- Runtime Function: fract __fractunstihq (unsigned long long A)
  2533. -- Runtime Function: long fract __fractunstisq (unsigned long long A)
  2534. -- Runtime Function: long long fract __fractunstidq (unsigned long long
  2535. A)
  2536. -- Runtime Function: short accum __fractunstiha (unsigned long long A)
  2537. -- Runtime Function: accum __fractunstisa (unsigned long long A)
  2538. -- Runtime Function: long accum __fractunstida (unsigned long long A)
  2539. -- Runtime Function: long long accum __fractunstita (unsigned long long
  2540. A)
  2541. -- Runtime Function: unsigned short fract __fractunstiuqq (unsigned
  2542. long long A)
  2543. -- Runtime Function: unsigned fract __fractunstiuhq (unsigned long long
  2544. A)
  2545. -- Runtime Function: unsigned long fract __fractunstiusq (unsigned long
  2546. long A)
  2547. -- Runtime Function: unsigned long long fract __fractunstiudq (unsigned
  2548. long long A)
  2549. -- Runtime Function: unsigned short accum __fractunstiuha (unsigned
  2550. long long A)
  2551. -- Runtime Function: unsigned accum __fractunstiusa (unsigned long long
  2552. A)
  2553. -- Runtime Function: unsigned long accum __fractunstiuda (unsigned long
  2554. long A)
  2555. -- Runtime Function: unsigned long long accum __fractunstiuta (unsigned
  2556. long long A)
  2557. These functions convert from fractionals to unsigned
  2558. non-fractionals; and from unsigned non-fractionals to fractionals,
  2559. without saturation.
  2560. -- Runtime Function: short fract __satfractunsqiqq (unsigned char A)
  2561. -- Runtime Function: fract __satfractunsqihq (unsigned char A)
  2562. -- Runtime Function: long fract __satfractunsqisq (unsigned char A)
  2563. -- Runtime Function: long long fract __satfractunsqidq (unsigned char
  2564. A)
  2565. -- Runtime Function: short accum __satfractunsqiha (unsigned char A)
  2566. -- Runtime Function: accum __satfractunsqisa (unsigned char A)
  2567. -- Runtime Function: long accum __satfractunsqida (unsigned char A)
  2568. -- Runtime Function: long long accum __satfractunsqita (unsigned char
  2569. A)
  2570. -- Runtime Function: unsigned short fract __satfractunsqiuqq (unsigned
  2571. char A)
  2572. -- Runtime Function: unsigned fract __satfractunsqiuhq (unsigned char
  2573. A)
  2574. -- Runtime Function: unsigned long fract __satfractunsqiusq (unsigned
  2575. char A)
  2576. -- Runtime Function: unsigned long long fract __satfractunsqiudq
  2577. (unsigned char A)
  2578. -- Runtime Function: unsigned short accum __satfractunsqiuha (unsigned
  2579. char A)
  2580. -- Runtime Function: unsigned accum __satfractunsqiusa (unsigned char
  2581. A)
  2582. -- Runtime Function: unsigned long accum __satfractunsqiuda (unsigned
  2583. char A)
  2584. -- Runtime Function: unsigned long long accum __satfractunsqiuta
  2585. (unsigned char A)
  2586. -- Runtime Function: short fract __satfractunshiqq (unsigned short A)
  2587. -- Runtime Function: fract __satfractunshihq (unsigned short A)
  2588. -- Runtime Function: long fract __satfractunshisq (unsigned short A)
  2589. -- Runtime Function: long long fract __satfractunshidq (unsigned short
  2590. A)
  2591. -- Runtime Function: short accum __satfractunshiha (unsigned short A)
  2592. -- Runtime Function: accum __satfractunshisa (unsigned short A)
  2593. -- Runtime Function: long accum __satfractunshida (unsigned short A)
  2594. -- Runtime Function: long long accum __satfractunshita (unsigned short
  2595. A)
  2596. -- Runtime Function: unsigned short fract __satfractunshiuqq (unsigned
  2597. short A)
  2598. -- Runtime Function: unsigned fract __satfractunshiuhq (unsigned short
  2599. A)
  2600. -- Runtime Function: unsigned long fract __satfractunshiusq (unsigned
  2601. short A)
  2602. -- Runtime Function: unsigned long long fract __satfractunshiudq
  2603. (unsigned short A)
  2604. -- Runtime Function: unsigned short accum __satfractunshiuha (unsigned
  2605. short A)
  2606. -- Runtime Function: unsigned accum __satfractunshiusa (unsigned short
  2607. A)
  2608. -- Runtime Function: unsigned long accum __satfractunshiuda (unsigned
  2609. short A)
  2610. -- Runtime Function: unsigned long long accum __satfractunshiuta
  2611. (unsigned short A)
  2612. -- Runtime Function: short fract __satfractunssiqq (unsigned int A)
  2613. -- Runtime Function: fract __satfractunssihq (unsigned int A)
  2614. -- Runtime Function: long fract __satfractunssisq (unsigned int A)
  2615. -- Runtime Function: long long fract __satfractunssidq (unsigned int A)
  2616. -- Runtime Function: short accum __satfractunssiha (unsigned int A)
  2617. -- Runtime Function: accum __satfractunssisa (unsigned int A)
  2618. -- Runtime Function: long accum __satfractunssida (unsigned int A)
  2619. -- Runtime Function: long long accum __satfractunssita (unsigned int A)
  2620. -- Runtime Function: unsigned short fract __satfractunssiuqq (unsigned
  2621. int A)
  2622. -- Runtime Function: unsigned fract __satfractunssiuhq (unsigned int A)
  2623. -- Runtime Function: unsigned long fract __satfractunssiusq (unsigned
  2624. int A)
  2625. -- Runtime Function: unsigned long long fract __satfractunssiudq
  2626. (unsigned int A)
  2627. -- Runtime Function: unsigned short accum __satfractunssiuha (unsigned
  2628. int A)
  2629. -- Runtime Function: unsigned accum __satfractunssiusa (unsigned int A)
  2630. -- Runtime Function: unsigned long accum __satfractunssiuda (unsigned
  2631. int A)
  2632. -- Runtime Function: unsigned long long accum __satfractunssiuta
  2633. (unsigned int A)
  2634. -- Runtime Function: short fract __satfractunsdiqq (unsigned long A)
  2635. -- Runtime Function: fract __satfractunsdihq (unsigned long A)
  2636. -- Runtime Function: long fract __satfractunsdisq (unsigned long A)
  2637. -- Runtime Function: long long fract __satfractunsdidq (unsigned long
  2638. A)
  2639. -- Runtime Function: short accum __satfractunsdiha (unsigned long A)
  2640. -- Runtime Function: accum __satfractunsdisa (unsigned long A)
  2641. -- Runtime Function: long accum __satfractunsdida (unsigned long A)
  2642. -- Runtime Function: long long accum __satfractunsdita (unsigned long
  2643. A)
  2644. -- Runtime Function: unsigned short fract __satfractunsdiuqq (unsigned
  2645. long A)
  2646. -- Runtime Function: unsigned fract __satfractunsdiuhq (unsigned long
  2647. A)
  2648. -- Runtime Function: unsigned long fract __satfractunsdiusq (unsigned
  2649. long A)
  2650. -- Runtime Function: unsigned long long fract __satfractunsdiudq
  2651. (unsigned long A)
  2652. -- Runtime Function: unsigned short accum __satfractunsdiuha (unsigned
  2653. long A)
  2654. -- Runtime Function: unsigned accum __satfractunsdiusa (unsigned long
  2655. A)
  2656. -- Runtime Function: unsigned long accum __satfractunsdiuda (unsigned
  2657. long A)
  2658. -- Runtime Function: unsigned long long accum __satfractunsdiuta
  2659. (unsigned long A)
  2660. -- Runtime Function: short fract __satfractunstiqq (unsigned long long
  2661. A)
  2662. -- Runtime Function: fract __satfractunstihq (unsigned long long A)
  2663. -- Runtime Function: long fract __satfractunstisq (unsigned long long
  2664. A)
  2665. -- Runtime Function: long long fract __satfractunstidq (unsigned long
  2666. long A)
  2667. -- Runtime Function: short accum __satfractunstiha (unsigned long long
  2668. A)
  2669. -- Runtime Function: accum __satfractunstisa (unsigned long long A)
  2670. -- Runtime Function: long accum __satfractunstida (unsigned long long
  2671. A)
  2672. -- Runtime Function: long long accum __satfractunstita (unsigned long
  2673. long A)
  2674. -- Runtime Function: unsigned short fract __satfractunstiuqq (unsigned
  2675. long long A)
  2676. -- Runtime Function: unsigned fract __satfractunstiuhq (unsigned long
  2677. long A)
  2678. -- Runtime Function: unsigned long fract __satfractunstiusq (unsigned
  2679. long long A)
  2680. -- Runtime Function: unsigned long long fract __satfractunstiudq
  2681. (unsigned long long A)
  2682. -- Runtime Function: unsigned short accum __satfractunstiuha (unsigned
  2683. long long A)
  2684. -- Runtime Function: unsigned accum __satfractunstiusa (unsigned long
  2685. long A)
  2686. -- Runtime Function: unsigned long accum __satfractunstiuda (unsigned
  2687. long long A)
  2688. -- Runtime Function: unsigned long long accum __satfractunstiuta
  2689. (unsigned long long A)
  2690. These functions convert from unsigned non-fractionals to
  2691. fractionals, with saturation.
  2692. 
  2693. File: gccint.info, Node: Exception handling routines, Next: Miscellaneous routines, Prev: Fixed-point fractional library routines, Up: Libgcc
  2694. 4.5 Language-independent routines for exception handling
  2695. ========================================================
  2696. document me!
  2697. _Unwind_DeleteException
  2698. _Unwind_Find_FDE
  2699. _Unwind_ForcedUnwind
  2700. _Unwind_GetGR
  2701. _Unwind_GetIP
  2702. _Unwind_GetLanguageSpecificData
  2703. _Unwind_GetRegionStart
  2704. _Unwind_GetTextRelBase
  2705. _Unwind_GetDataRelBase
  2706. _Unwind_RaiseException
  2707. _Unwind_Resume
  2708. _Unwind_SetGR
  2709. _Unwind_SetIP
  2710. _Unwind_FindEnclosingFunction
  2711. _Unwind_SjLj_Register
  2712. _Unwind_SjLj_Unregister
  2713. _Unwind_SjLj_RaiseException
  2714. _Unwind_SjLj_ForcedUnwind
  2715. _Unwind_SjLj_Resume
  2716. __deregister_frame
  2717. __deregister_frame_info
  2718. __deregister_frame_info_bases
  2719. __register_frame
  2720. __register_frame_info
  2721. __register_frame_info_bases
  2722. __register_frame_info_table
  2723. __register_frame_info_table_bases
  2724. __register_frame_table
  2725. 
  2726. File: gccint.info, Node: Miscellaneous routines, Prev: Exception handling routines, Up: Libgcc
  2727. 4.6 Miscellaneous runtime library routines
  2728. ==========================================
  2729. 4.6.1 Cache control functions
  2730. -----------------------------
  2731. -- Runtime Function: void __clear_cache (char *BEG, char *END)
  2732. This function clears the instruction cache between BEG and END.
  2733. 4.6.2 Split stack functions and variables
  2734. -----------------------------------------
  2735. -- Runtime Function: void * __splitstack_find (void *SEGMENT_ARG, void
  2736. *SP, size_t LEN, void **NEXT_SEGMENT, void **NEXT_SP, void
  2737. **INITIAL_SP)
  2738. When using '-fsplit-stack', this call may be used to iterate over
  2739. the stack segments. It may be called like this:
  2740. void *next_segment = NULL;
  2741. void *next_sp = NULL;
  2742. void *initial_sp = NULL;
  2743. void *stack;
  2744. size_t stack_size;
  2745. while ((stack = __splitstack_find (next_segment, next_sp,
  2746. &stack_size, &next_segment,
  2747. &next_sp, &initial_sp))
  2748. != NULL)
  2749. {
  2750. /* Stack segment starts at stack and is
  2751. stack_size bytes long. */
  2752. }
  2753. There is no way to iterate over the stack segments of a different
  2754. thread. However, what is permitted is for one thread to call this
  2755. with the SEGMENT_ARG and SP arguments NULL, to pass NEXT_SEGMENT,
  2756. NEXT_SP, and INITIAL_SP to a different thread, and then to suspend
  2757. one way or another. A different thread may run the subsequent
  2758. '__splitstack_find' iterations. Of course, this will only work if
  2759. the first thread is suspended while the second thread is calling
  2760. '__splitstack_find'. If not, the second thread could be looking at
  2761. the stack while it is changing, and anything could happen.
  2762. -- Variable: __morestack_segments
  2763. -- Variable: __morestack_current_segment
  2764. -- Variable: __morestack_initial_sp
  2765. Internal variables used by the '-fsplit-stack' implementation.
  2766. 
  2767. File: gccint.info, Node: Languages, Next: Source Tree, Prev: Libgcc, Up: Top
  2768. 5 Language Front Ends in GCC
  2769. ****************************
  2770. The interface to front ends for languages in GCC, and in particular the
  2771. 'tree' structure (*note GENERIC::), was initially designed for C, and
  2772. many aspects of it are still somewhat biased towards C and C-like
  2773. languages. It is, however, reasonably well suited to other procedural
  2774. languages, and front ends for many such languages have been written for
  2775. GCC.
  2776. Writing a compiler as a front end for GCC, rather than compiling
  2777. directly to assembler or generating C code which is then compiled by
  2778. GCC, has several advantages:
  2779. * GCC front ends benefit from the support for many different target
  2780. machines already present in GCC.
  2781. * GCC front ends benefit from all the optimizations in GCC. Some of
  2782. these, such as alias analysis, may work better when GCC is
  2783. compiling directly from source code then when it is compiling from
  2784. generated C code.
  2785. * Better debugging information is generated when compiling directly
  2786. from source code than when going via intermediate generated C code.
  2787. Because of the advantages of writing a compiler as a GCC front end, GCC
  2788. front ends have also been created for languages very different from
  2789. those for which GCC was designed, such as the declarative
  2790. logic/functional language Mercury. For these reasons, it may also be
  2791. useful to implement compilers created for specialized purposes (for
  2792. example, as part of a research project) as GCC front ends.
  2793. 
  2794. File: gccint.info, Node: Source Tree, Next: Testsuites, Prev: Languages, Up: Top
  2795. 6 Source Tree Structure and Build System
  2796. ****************************************
  2797. This chapter describes the structure of the GCC source tree, and how GCC
  2798. is built. The user documentation for building and installing GCC is in
  2799. a separate manual (<http://gcc.gnu.org/install/>), with which it is
  2800. presumed that you are familiar.
  2801. * Menu:
  2802. * Configure Terms:: Configuration terminology and history.
  2803. * Top Level:: The top level source directory.
  2804. * gcc Directory:: The 'gcc' subdirectory.
  2805. 
  2806. File: gccint.info, Node: Configure Terms, Next: Top Level, Up: Source Tree
  2807. 6.1 Configure Terms and History
  2808. ===============================
  2809. The configure and build process has a long and colorful history, and can
  2810. be confusing to anyone who doesn't know why things are the way they are.
  2811. While there are other documents which describe the configuration process
  2812. in detail, here are a few things that everyone working on GCC should
  2813. know.
  2814. There are three system names that the build knows about: the machine
  2815. you are building on ("build"), the machine that you are building for
  2816. ("host"), and the machine that GCC will produce code for ("target").
  2817. When you configure GCC, you specify these with '--build=', '--host=',
  2818. and '--target='.
  2819. Specifying the host without specifying the build should be avoided, as
  2820. 'configure' may (and once did) assume that the host you specify is also
  2821. the build, which may not be true.
  2822. If build, host, and target are all the same, this is called a "native".
  2823. If build and host are the same but target is different, this is called a
  2824. "cross". If build, host, and target are all different this is called a
  2825. "canadian" (for obscure reasons dealing with Canada's political party
  2826. and the background of the person working on the build at that time). If
  2827. host and target are the same, but build is different, you are using a
  2828. cross-compiler to build a native for a different system. Some people
  2829. call this a "host-x-host", "crossed native", or "cross-built native".
  2830. If build and target are the same, but host is different, you are using a
  2831. cross compiler to build a cross compiler that produces code for the
  2832. machine you're building on. This is rare, so there is no common way of
  2833. describing it. There is a proposal to call this a "crossback".
  2834. If build and host are the same, the GCC you are building will also be
  2835. used to build the target libraries (like 'libstdc++'). If build and
  2836. host are different, you must have already built and installed a cross
  2837. compiler that will be used to build the target libraries (if you
  2838. configured with '--target=foo-bar', this compiler will be called
  2839. 'foo-bar-gcc').
  2840. In the case of target libraries, the machine you're building for is the
  2841. machine you specified with '--target'. So, build is the machine you're
  2842. building on (no change there), host is the machine you're building for
  2843. (the target libraries are built for the target, so host is the target
  2844. you specified), and target doesn't apply (because you're not building a
  2845. compiler, you're building libraries). The configure/make process will
  2846. adjust these variables as needed. It also sets '$with_cross_host' to
  2847. the original '--host' value in case you need it.
  2848. The 'libiberty' support library is built up to three times: once for
  2849. the host, once for the target (even if they are the same), and once for
  2850. the build if build and host are different. This allows it to be used by
  2851. all programs which are generated in the course of the build process.
  2852. 
  2853. File: gccint.info, Node: Top Level, Next: gcc Directory, Prev: Configure Terms, Up: Source Tree
  2854. 6.2 Top Level Source Directory
  2855. ==============================
  2856. The top level source directory in a GCC distribution contains several
  2857. files and directories that are shared with other software distributions
  2858. such as that of GNU Binutils. It also contains several subdirectories
  2859. that contain parts of GCC and its runtime libraries:
  2860. 'boehm-gc'
  2861. The Boehm conservative garbage collector, optionally used as part
  2862. of the ObjC runtime library when configured with
  2863. '--enable-objc-gc'.
  2864. 'config'
  2865. Autoconf macros and Makefile fragments used throughout the tree.
  2866. 'contrib'
  2867. Contributed scripts that may be found useful in conjunction with
  2868. GCC. One of these, 'contrib/texi2pod.pl', is used to generate man
  2869. pages from Texinfo manuals as part of the GCC build process.
  2870. 'fixincludes'
  2871. The support for fixing system headers to work with GCC. See
  2872. 'fixincludes/README' for more information. The headers fixed by
  2873. this mechanism are installed in 'LIBSUBDIR/include-fixed'. Along
  2874. with those headers, 'README-fixinc' is also installed, as
  2875. 'LIBSUBDIR/include-fixed/README'.
  2876. 'gcc'
  2877. The main sources of GCC itself (except for runtime libraries),
  2878. including optimizers, support for different target architectures,
  2879. language front ends, and testsuites. *Note The 'gcc' Subdirectory:
  2880. gcc Directory, for details.
  2881. 'gnattools'
  2882. Support tools for GNAT.
  2883. 'include'
  2884. Headers for the 'libiberty' library.
  2885. 'intl'
  2886. GNU 'libintl', from GNU 'gettext', for systems which do not include
  2887. it in 'libc'.
  2888. 'libada'
  2889. The Ada runtime library.
  2890. 'libatomic'
  2891. The runtime support library for atomic operations (e.g. for
  2892. '__sync' and '__atomic').
  2893. 'libcpp'
  2894. The C preprocessor library.
  2895. 'libdecnumber'
  2896. The Decimal Float support library.
  2897. 'libffi'
  2898. The 'libffi' library, used as part of the Go runtime library.
  2899. 'libgcc'
  2900. The GCC runtime library.
  2901. 'libgfortran'
  2902. The Fortran runtime library.
  2903. 'libgo'
  2904. The Go runtime library. The bulk of this library is mirrored from
  2905. the master Go repository (https://github.com/golang/go).
  2906. 'libgomp'
  2907. The GNU Offloading and Multi Processing Runtime Library.
  2908. 'libiberty'
  2909. The 'libiberty' library, used for portability and for some
  2910. generally useful data structures and algorithms. *Note
  2911. Introduction: (libiberty)Top, for more information about this
  2912. library.
  2913. 'libitm'
  2914. The runtime support library for transactional memory.
  2915. 'libobjc'
  2916. The Objective-C and Objective-C++ runtime library.
  2917. 'libquadmath'
  2918. The runtime support library for quad-precision math operations.
  2919. 'libssp'
  2920. The Stack protector runtime library.
  2921. 'libstdc++-v3'
  2922. The C++ runtime library.
  2923. 'lto-plugin'
  2924. Plugin used by the linker if link-time optimizations are enabled.
  2925. 'maintainer-scripts'
  2926. Scripts used by the 'gccadmin' account on 'gcc.gnu.org'.
  2927. 'zlib'
  2928. The 'zlib' compression library, used for compressing and
  2929. uncompressing GCC's intermediate language in LTO object files.
  2930. The build system in the top level directory, including how recursion
  2931. into subdirectories works and how building runtime libraries for
  2932. multilibs is handled, is documented in a separate manual, included with
  2933. GNU Binutils. *Note GNU configure and build system: (configure)Top, for
  2934. details.
  2935. 
  2936. File: gccint.info, Node: gcc Directory, Prev: Top Level, Up: Source Tree
  2937. 6.3 The 'gcc' Subdirectory
  2938. ==========================
  2939. The 'gcc' directory contains many files that are part of the C sources
  2940. of GCC, other files used as part of the configuration and build process,
  2941. and subdirectories including documentation and a testsuite. The files
  2942. that are sources of GCC are documented in a separate chapter. *Note
  2943. Passes and Files of the Compiler: Passes.
  2944. * Menu:
  2945. * Subdirectories:: Subdirectories of 'gcc'.
  2946. * Configuration:: The configuration process, and the files it uses.
  2947. * Build:: The build system in the 'gcc' directory.
  2948. * Makefile:: Targets in 'gcc/Makefile'.
  2949. * Library Files:: Library source files and headers under 'gcc/'.
  2950. * Headers:: Headers installed by GCC.
  2951. * Documentation:: Building documentation in GCC.
  2952. * Front End:: Anatomy of a language front end.
  2953. * Back End:: Anatomy of a target back end.
  2954. 
  2955. File: gccint.info, Node: Subdirectories, Next: Configuration, Up: gcc Directory
  2956. 6.3.1 Subdirectories of 'gcc'
  2957. -----------------------------
  2958. The 'gcc' directory contains the following subdirectories:
  2959. 'LANGUAGE'
  2960. Subdirectories for various languages. Directories containing a
  2961. file 'config-lang.in' are language subdirectories. The contents of
  2962. the subdirectories 'c' (for C), 'cp' (for C++), 'objc' (for
  2963. Objective-C), 'objcp' (for Objective-C++), and 'lto' (for LTO) are
  2964. documented in this manual (*note Passes and Files of the Compiler:
  2965. Passes.); those for other languages are not. *Note Anatomy of a
  2966. Language Front End: Front End, for details of the files in these
  2967. directories.
  2968. 'common'
  2969. Source files shared between the compiler drivers (such as 'gcc')
  2970. and the compilers proper (such as 'cc1'). If an architecture
  2971. defines target hooks shared between those places, it also has a
  2972. subdirectory in 'common/config'. *Note Target Structure::.
  2973. 'config'
  2974. Configuration files for supported architectures and operating
  2975. systems. *Note Anatomy of a Target Back End: Back End, for details
  2976. of the files in this directory.
  2977. 'doc'
  2978. Texinfo documentation for GCC, together with automatically
  2979. generated man pages and support for converting the installation
  2980. manual to HTML. *Note Documentation::.
  2981. 'ginclude'
  2982. System headers installed by GCC, mainly those required by the C
  2983. standard of freestanding implementations. *Note Headers Installed
  2984. by GCC: Headers, for details of when these and other headers are
  2985. installed.
  2986. 'po'
  2987. Message catalogs with translations of messages produced by GCC into
  2988. various languages, 'LANGUAGE.po'. This directory also contains
  2989. 'gcc.pot', the template for these message catalogues, 'exgettext',
  2990. a wrapper around 'gettext' to extract the messages from the GCC
  2991. sources and create 'gcc.pot', which is run by 'make gcc.pot', and
  2992. 'EXCLUDES', a list of files from which messages should not be
  2993. extracted.
  2994. 'testsuite'
  2995. The GCC testsuites (except for those for runtime libraries). *Note
  2996. Testsuites::.
  2997. 
  2998. File: gccint.info, Node: Configuration, Next: Build, Prev: Subdirectories, Up: gcc Directory
  2999. 6.3.2 Configuration in the 'gcc' Directory
  3000. ------------------------------------------
  3001. The 'gcc' directory is configured with an Autoconf-generated script
  3002. 'configure'. The 'configure' script is generated from 'configure.ac'
  3003. and 'aclocal.m4'. From the files 'configure.ac' and 'acconfig.h',
  3004. Autoheader generates the file 'config.in'. The file 'cstamp-h.in' is
  3005. used as a timestamp.
  3006. * Menu:
  3007. * Config Fragments:: Scripts used by 'configure'.
  3008. * System Config:: The 'config.build', 'config.host', and
  3009. 'config.gcc' files.
  3010. * Configuration Files:: Files created by running 'configure'.
  3011. 
  3012. File: gccint.info, Node: Config Fragments, Next: System Config, Up: Configuration
  3013. 6.3.2.1 Scripts Used by 'configure'
  3014. ...................................
  3015. 'configure' uses some other scripts to help in its work:
  3016. * The standard GNU 'config.sub' and 'config.guess' files, kept in the
  3017. top level directory, are used.
  3018. * The file 'config.gcc' is used to handle configuration specific to
  3019. the particular target machine. The file 'config.build' is used to
  3020. handle configuration specific to the particular build machine. The
  3021. file 'config.host' is used to handle configuration specific to the
  3022. particular host machine. (In general, these should only be used
  3023. for features that cannot reasonably be tested in Autoconf feature
  3024. tests.) *Note The 'config.build'; 'config.host'; and 'config.gcc'
  3025. Files: System Config, for details of the contents of these files.
  3026. * Each language subdirectory has a file 'LANGUAGE/config-lang.in'
  3027. that is used for front-end-specific configuration. *Note The Front
  3028. End 'config-lang.in' File: Front End Config, for details of this
  3029. file.
  3030. * A helper script 'configure.frag' is used as part of creating the
  3031. output of 'configure'.
  3032. 
  3033. File: gccint.info, Node: System Config, Next: Configuration Files, Prev: Config Fragments, Up: Configuration
  3034. 6.3.2.2 The 'config.build'; 'config.host'; and 'config.gcc' Files
  3035. .................................................................
  3036. The 'config.build' file contains specific rules for particular systems
  3037. which GCC is built on. This should be used as rarely as possible, as
  3038. the behavior of the build system can always be detected by autoconf.
  3039. The 'config.host' file contains specific rules for particular systems
  3040. which GCC will run on. This is rarely needed.
  3041. The 'config.gcc' file contains specific rules for particular systems
  3042. which GCC will generate code for. This is usually needed.
  3043. Each file has a list of the shell variables it sets, with descriptions,
  3044. at the top of the file.
  3045. FIXME: document the contents of these files, and what variables should
  3046. be set to control build, host and target configuration.
  3047. 
  3048. File: gccint.info, Node: Configuration Files, Prev: System Config, Up: Configuration
  3049. 6.3.2.3 Files Created by 'configure'
  3050. ....................................
  3051. Here we spell out what files will be set up by 'configure' in the 'gcc'
  3052. directory. Some other files are created as temporary files in the
  3053. configuration process, and are not used in the subsequent build; these
  3054. are not documented.
  3055. * 'Makefile' is constructed from 'Makefile.in', together with the
  3056. host and target fragments (*note Makefile Fragments: Fragments.)
  3057. 't-TARGET' and 'x-HOST' from 'config', if any, and language
  3058. Makefile fragments 'LANGUAGE/Make-lang.in'.
  3059. * 'auto-host.h' contains information about the host machine
  3060. determined by 'configure'. If the host machine is different from
  3061. the build machine, then 'auto-build.h' is also created, containing
  3062. such information about the build machine.
  3063. * 'config.status' is a script that may be run to recreate the current
  3064. configuration.
  3065. * 'configargs.h' is a header containing details of the arguments
  3066. passed to 'configure' to configure GCC, and of the thread model
  3067. used.
  3068. * 'cstamp-h' is used as a timestamp.
  3069. * If a language 'config-lang.in' file (*note The Front End
  3070. 'config-lang.in' File: Front End Config.) sets 'outputs', then the
  3071. files listed in 'outputs' there are also generated.
  3072. The following configuration headers are created from the Makefile,
  3073. using 'mkconfig.sh', rather than directly by 'configure'. 'config.h',
  3074. 'bconfig.h' and 'tconfig.h' all contain the 'xm-MACHINE.h' header, if
  3075. any, appropriate to the host, build and target machines respectively,
  3076. the configuration headers for the target, and some definitions; for the
  3077. host and build machines, these include the autoconfigured headers
  3078. generated by 'configure'. The other configuration headers are
  3079. determined by 'config.gcc'. They also contain the typedefs for 'rtx',
  3080. 'rtvec' and 'tree'.
  3081. * 'config.h', for use in programs that run on the host machine.
  3082. * 'bconfig.h', for use in programs that run on the build machine.
  3083. * 'tconfig.h', for use in programs and libraries for the target
  3084. machine.
  3085. * 'tm_p.h', which includes the header 'MACHINE-protos.h' that
  3086. contains prototypes for functions in the target 'MACHINE.c' file.
  3087. The 'MACHINE-protos.h' header is included after the 'rtl.h' and/or
  3088. 'tree.h' would have been included. The 'tm_p.h' also includes the
  3089. header 'tm-preds.h' which is generated by 'genpreds' program during
  3090. the build to define the declarations and inline functions for the
  3091. predicate functions.
  3092. 
  3093. File: gccint.info, Node: Build, Next: Makefile, Prev: Configuration, Up: gcc Directory
  3094. 6.3.3 Build System in the 'gcc' Directory
  3095. -----------------------------------------
  3096. FIXME: describe the build system, including what is built in what
  3097. stages. Also list the various source files that are used in the build
  3098. process but aren't source files of GCC itself and so aren't documented
  3099. below (*note Passes::).
  3100. 
  3101. File: gccint.info, Node: Makefile, Next: Library Files, Prev: Build, Up: gcc Directory
  3102. 6.3.4 Makefile Targets
  3103. ----------------------
  3104. These targets are available from the 'gcc' directory:
  3105. 'all'
  3106. This is the default target. Depending on what your
  3107. build/host/target configuration is, it coordinates all the things
  3108. that need to be built.
  3109. 'doc'
  3110. Produce info-formatted documentation and man pages. Essentially it
  3111. calls 'make man' and 'make info'.
  3112. 'dvi'
  3113. Produce DVI-formatted documentation.
  3114. 'pdf'
  3115. Produce PDF-formatted documentation.
  3116. 'html'
  3117. Produce HTML-formatted documentation.
  3118. 'man'
  3119. Generate man pages.
  3120. 'info'
  3121. Generate info-formatted pages.
  3122. 'mostlyclean'
  3123. Delete the files made while building the compiler.
  3124. 'clean'
  3125. That, and all the other files built by 'make all'.
  3126. 'distclean'
  3127. That, and all the files created by 'configure'.
  3128. 'maintainer-clean'
  3129. Distclean plus any file that can be generated from other files.
  3130. Note that additional tools may be required beyond what is normally
  3131. needed to build GCC.
  3132. 'srcextra'
  3133. Generates files in the source directory that are not
  3134. version-controlled but should go into a release tarball.
  3135. 'srcinfo'
  3136. 'srcman'
  3137. Copies the info-formatted and manpage documentation into the source
  3138. directory usually for the purpose of generating a release tarball.
  3139. 'install'
  3140. Installs GCC.
  3141. 'uninstall'
  3142. Deletes installed files, though this is not supported.
  3143. 'check'
  3144. Run the testsuite. This creates a 'testsuite' subdirectory that
  3145. has various '.sum' and '.log' files containing the results of the
  3146. testing. You can run subsets with, for example, 'make check-gcc'.
  3147. You can specify specific tests by setting 'RUNTESTFLAGS' to be the
  3148. name of the '.exp' file, optionally followed by (for some tests) an
  3149. equals and a file wildcard, like:
  3150. make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"
  3151. Note that running the testsuite may require additional tools be
  3152. installed, such as Tcl or DejaGnu.
  3153. The toplevel tree from which you start GCC compilation is not the GCC
  3154. directory, but rather a complex Makefile that coordinates the various
  3155. steps of the build, including bootstrapping the compiler and using the
  3156. new compiler to build target libraries.
  3157. When GCC is configured for a native configuration, the default action
  3158. for 'make' is to do a full three-stage bootstrap. This means that GCC
  3159. is built three times--once with the native compiler, once with the
  3160. native-built compiler it just built, and once with the compiler it built
  3161. the second time. In theory, the last two should produce the same
  3162. results, which 'make compare' can check. Each stage is configured
  3163. separately and compiled into a separate directory, to minimize problems
  3164. due to ABI incompatibilities between the native compiler and GCC.
  3165. If you do a change, rebuilding will also start from the first stage and
  3166. "bubble" up the change through the three stages. Each stage is taken
  3167. from its build directory (if it had been built previously), rebuilt, and
  3168. copied to its subdirectory. This will allow you to, for example,
  3169. continue a bootstrap after fixing a bug which causes the stage2 build to
  3170. crash. It does not provide as good coverage of the compiler as
  3171. bootstrapping from scratch, but it ensures that the new code is
  3172. syntactically correct (e.g., that you did not use GCC extensions by
  3173. mistake), and avoids spurious bootstrap comparison failures(1).
  3174. Other targets available from the top level include:
  3175. 'bootstrap-lean'
  3176. Like 'bootstrap', except that the various stages are removed once
  3177. they're no longer needed. This saves disk space.
  3178. 'bootstrap2'
  3179. 'bootstrap2-lean'
  3180. Performs only the first two stages of bootstrap. Unlike a
  3181. three-stage bootstrap, this does not perform a comparison to test
  3182. that the compiler is running properly. Note that the disk space
  3183. required by a "lean" bootstrap is approximately independent of the
  3184. number of stages.
  3185. 'stageN-bubble (N = 1...4, profile, feedback)'
  3186. Rebuild all the stages up to N, with the appropriate flags,
  3187. "bubbling" the changes as described above.
  3188. 'all-stageN (N = 1...4, profile, feedback)'
  3189. Assuming that stage N has already been built, rebuild it with the
  3190. appropriate flags. This is rarely needed.
  3191. 'cleanstrap'
  3192. Remove everything ('make clean') and rebuilds ('make bootstrap').
  3193. 'compare'
  3194. Compares the results of stages 2 and 3. This ensures that the
  3195. compiler is running properly, since it should produce the same
  3196. object files regardless of how it itself was compiled.
  3197. 'profiledbootstrap'
  3198. Builds a compiler with profiling feedback information. In this
  3199. case, the second and third stages are named 'profile' and
  3200. 'feedback', respectively. For more information, see the
  3201. installation instructions.
  3202. 'restrap'
  3203. Restart a bootstrap, so that everything that was not built with the
  3204. system compiler is rebuilt.
  3205. 'stageN-start (N = 1...4, profile, feedback)'
  3206. For each package that is bootstrapped, rename directories so that,
  3207. for example, 'gcc' points to the stageN GCC, compiled with the
  3208. stageN-1 GCC(2).
  3209. You will invoke this target if you need to test or debug the stageN
  3210. GCC. If you only need to execute GCC (but you need not run 'make'
  3211. either to rebuild it or to run test suites), you should be able to
  3212. work directly in the 'stageN-gcc' directory. This makes it easier
  3213. to debug multiple stages in parallel.
  3214. 'stage'
  3215. For each package that is bootstrapped, relocate its build directory
  3216. to indicate its stage. For example, if the 'gcc' directory points
  3217. to the stage2 GCC, after invoking this target it will be renamed to
  3218. 'stage2-gcc'.
  3219. If you wish to use non-default GCC flags when compiling the stage2 and
  3220. stage3 compilers, set 'BOOT_CFLAGS' on the command line when doing
  3221. 'make'.
  3222. Usually, the first stage only builds the languages that the compiler is
  3223. written in: typically, C and maybe Ada. If you are debugging a
  3224. miscompilation of a different stage2 front-end (for example, of the
  3225. Fortran front-end), you may want to have front-ends for other languages
  3226. in the first stage as well. To do so, set 'STAGE1_LANGUAGES' on the
  3227. command line when doing 'make'.
  3228. For example, in the aforementioned scenario of debugging a Fortran
  3229. front-end miscompilation caused by the stage1 compiler, you may need a
  3230. command like
  3231. make stage2-bubble STAGE1_LANGUAGES=c,fortran
  3232. Alternatively, you can use per-language targets to build and test
  3233. languages that are not enabled by default in stage1. For example, 'make
  3234. f951' will build a Fortran compiler even in the stage1 build directory.
  3235. ---------- Footnotes ----------
  3236. (1) Except if the compiler was buggy and miscompiled some of the
  3237. files that were not modified. In this case, it's best to use 'make
  3238. restrap'.
  3239. (2) Customarily, the system compiler is also termed the 'stage0' GCC.
  3240. 
  3241. File: gccint.info, Node: Library Files, Next: Headers, Prev: Makefile, Up: gcc Directory
  3242. 6.3.5 Library Source Files and Headers under the 'gcc' Directory
  3243. ----------------------------------------------------------------
  3244. FIXME: list here, with explanation, all the C source files and headers
  3245. under the 'gcc' directory that aren't built into the GCC executable but
  3246. rather are part of runtime libraries and object files, such as
  3247. 'crtstuff.c' and 'unwind-dw2.c'. *Note Headers Installed by GCC:
  3248. Headers, for more information about the 'ginclude' directory.
  3249. 
  3250. File: gccint.info, Node: Headers, Next: Documentation, Prev: Library Files, Up: gcc Directory
  3251. 6.3.6 Headers Installed by GCC
  3252. ------------------------------
  3253. In general, GCC expects the system C library to provide most of the
  3254. headers to be used with it. However, GCC will fix those headers if
  3255. necessary to make them work with GCC, and will install some headers
  3256. required of freestanding implementations. These headers are installed
  3257. in 'LIBSUBDIR/include'. Headers for non-C runtime libraries are also
  3258. installed by GCC; these are not documented here. (FIXME: document them
  3259. somewhere.)
  3260. Several of the headers GCC installs are in the 'ginclude' directory.
  3261. These headers, 'iso646.h', 'stdarg.h', 'stdbool.h', and 'stddef.h', are
  3262. installed in 'LIBSUBDIR/include', unless the target Makefile fragment
  3263. (*note Target Fragment::) overrides this by setting 'USER_H'.
  3264. In addition to these headers and those generated by fixing system
  3265. headers to work with GCC, some other headers may also be installed in
  3266. 'LIBSUBDIR/include'. 'config.gcc' may set 'extra_headers'; this
  3267. specifies additional headers under 'config' to be installed on some
  3268. systems.
  3269. GCC installs its own version of '<float.h>', from 'ginclude/float.h'.
  3270. This is done to cope with command-line options that change the
  3271. representation of floating point numbers.
  3272. GCC also installs its own version of '<limits.h>'; this is generated
  3273. from 'glimits.h', together with 'limitx.h' and 'limity.h' if the system
  3274. also has its own version of '<limits.h>'. (GCC provides its own header
  3275. because it is required of ISO C freestanding implementations, but needs
  3276. to include the system header from its own header as well because other
  3277. standards such as POSIX specify additional values to be defined in
  3278. '<limits.h>'.) The system's '<limits.h>' header is used via
  3279. 'LIBSUBDIR/include/syslimits.h', which is copied from 'gsyslimits.h' if
  3280. it does not need fixing to work with GCC; if it needs fixing,
  3281. 'syslimits.h' is the fixed copy.
  3282. GCC can also install '<tgmath.h>'. It will do this when 'config.gcc'
  3283. sets 'use_gcc_tgmath' to 'yes'.
  3284. 
  3285. File: gccint.info, Node: Documentation, Next: Front End, Prev: Headers, Up: gcc Directory
  3286. 6.3.7 Building Documentation
  3287. ----------------------------
  3288. The main GCC documentation is in the form of manuals in Texinfo format.
  3289. These are installed in Info format; DVI versions may be generated by
  3290. 'make dvi', PDF versions by 'make pdf', and HTML versions by 'make
  3291. html'. In addition, some man pages are generated from the Texinfo
  3292. manuals, there are some other text files with miscellaneous
  3293. documentation, and runtime libraries have their own documentation
  3294. outside the 'gcc' directory. FIXME: document the documentation for
  3295. runtime libraries somewhere.
  3296. * Menu:
  3297. * Texinfo Manuals:: GCC manuals in Texinfo format.
  3298. * Man Page Generation:: Generating man pages from Texinfo manuals.
  3299. * Miscellaneous Docs:: Miscellaneous text files with documentation.
  3300. 
  3301. File: gccint.info, Node: Texinfo Manuals, Next: Man Page Generation, Up: Documentation
  3302. 6.3.7.1 Texinfo Manuals
  3303. .......................
  3304. The manuals for GCC as a whole, and the C and C++ front ends, are in
  3305. files 'doc/*.texi'. Other front ends have their own manuals in files
  3306. 'LANGUAGE/*.texi'. Common files 'doc/include/*.texi' are provided which
  3307. may be included in multiple manuals; the following files are in
  3308. 'doc/include':
  3309. 'fdl.texi'
  3310. The GNU Free Documentation License.
  3311. 'funding.texi'
  3312. The section "Funding Free Software".
  3313. 'gcc-common.texi'
  3314. Common definitions for manuals.
  3315. 'gpl_v3.texi'
  3316. The GNU General Public License.
  3317. 'texinfo.tex'
  3318. A copy of 'texinfo.tex' known to work with the GCC manuals.
  3319. DVI-formatted manuals are generated by 'make dvi', which uses
  3320. 'texi2dvi' (via the Makefile macro '$(TEXI2DVI)'). PDF-formatted
  3321. manuals are generated by 'make pdf', which uses 'texi2pdf' (via the
  3322. Makefile macro '$(TEXI2PDF)'). HTML formatted manuals are generated by
  3323. 'make html'. Info manuals are generated by 'make info' (which is run as
  3324. part of a bootstrap); this generates the manuals in the source
  3325. directory, using 'makeinfo' via the Makefile macro '$(MAKEINFO)', and
  3326. they are included in release distributions.
  3327. Manuals are also provided on the GCC web site, in both HTML and
  3328. PostScript forms. This is done via the script
  3329. 'maintainer-scripts/update_web_docs_svn'. Each manual to be provided
  3330. online must be listed in the definition of 'MANUALS' in that file; a
  3331. file 'NAME.texi' must only appear once in the source tree, and the
  3332. output manual must have the same name as the source file. (However,
  3333. other Texinfo files, included in manuals but not themselves the root
  3334. files of manuals, may have names that appear more than once in the
  3335. source tree.) The manual file 'NAME.texi' should only include other
  3336. files in its own directory or in 'doc/include'. HTML manuals will be
  3337. generated by 'makeinfo --html', PostScript manuals by 'texi2dvi' and
  3338. 'dvips', and PDF manuals by 'texi2pdf'. All Texinfo files that are
  3339. parts of manuals must be version-controlled, even if they are generated
  3340. files, for the generation of online manuals to work.
  3341. The installation manual, 'doc/install.texi', is also provided on the
  3342. GCC web site. The HTML version is generated by the script
  3343. 'doc/install.texi2html'.
  3344. 
  3345. File: gccint.info, Node: Man Page Generation, Next: Miscellaneous Docs, Prev: Texinfo Manuals, Up: Documentation
  3346. 6.3.7.2 Man Page Generation
  3347. ...........................
  3348. Because of user demand, in addition to full Texinfo manuals, man pages
  3349. are provided which contain extracts from those manuals. These man pages
  3350. are generated from the Texinfo manuals using 'contrib/texi2pod.pl' and
  3351. 'pod2man'. (The man page for 'g++', 'cp/g++.1', just contains a '.so'
  3352. reference to 'gcc.1', but all the other man pages are generated from
  3353. Texinfo manuals.)
  3354. Because many systems may not have the necessary tools installed to
  3355. generate the man pages, they are only generated if the 'configure'
  3356. script detects that recent enough tools are installed, and the Makefiles
  3357. allow generating man pages to fail without aborting the build. Man
  3358. pages are also included in release distributions. They are generated in
  3359. the source directory.
  3360. Magic comments in Texinfo files starting '@c man' control what parts of
  3361. a Texinfo file go into a man page. Only a subset of Texinfo is
  3362. supported by 'texi2pod.pl', and it may be necessary to add support for
  3363. more Texinfo features to this script when generating new man pages. To
  3364. improve the man page output, some special Texinfo macros are provided in
  3365. 'doc/include/gcc-common.texi' which 'texi2pod.pl' understands:
  3366. '@gcctabopt'
  3367. Use in the form '@table @gcctabopt' for tables of options, where
  3368. for printed output the effect of '@code' is better than that of
  3369. '@option' but for man page output a different effect is wanted.
  3370. '@gccoptlist'
  3371. Use for summary lists of options in manuals.
  3372. '@gol'
  3373. Use at the end of each line inside '@gccoptlist'. This is
  3374. necessary to avoid problems with differences in how the
  3375. '@gccoptlist' macro is handled by different Texinfo formatters.
  3376. FIXME: describe the 'texi2pod.pl' input language and magic comments in
  3377. more detail.
  3378. 
  3379. File: gccint.info, Node: Miscellaneous Docs, Prev: Man Page Generation, Up: Documentation
  3380. 6.3.7.3 Miscellaneous Documentation
  3381. ...................................
  3382. In addition to the formal documentation that is installed by GCC, there
  3383. are several other text files in the 'gcc' subdirectory with
  3384. miscellaneous documentation:
  3385. 'ABOUT-GCC-NLS'
  3386. Notes on GCC's Native Language Support. FIXME: this should be part
  3387. of this manual rather than a separate file.
  3388. 'ABOUT-NLS'
  3389. Notes on the Free Translation Project.
  3390. 'COPYING'
  3391. 'COPYING3'
  3392. The GNU General Public License, Versions 2 and 3.
  3393. 'COPYING.LIB'
  3394. 'COPYING3.LIB'
  3395. The GNU Lesser General Public License, Versions 2.1 and 3.
  3396. '*ChangeLog*'
  3397. '*/ChangeLog*'
  3398. Change log files for various parts of GCC.
  3399. 'LANGUAGES'
  3400. Details of a few changes to the GCC front-end interface. FIXME:
  3401. the information in this file should be part of general
  3402. documentation of the front-end interface in this manual.
  3403. 'ONEWS'
  3404. Information about new features in old versions of GCC. (For recent
  3405. versions, the information is on the GCC web site.)
  3406. 'README.Portability'
  3407. Information about portability issues when writing code in GCC.
  3408. FIXME: why isn't this part of this manual or of the GCC Coding
  3409. Conventions?
  3410. FIXME: document such files in subdirectories, at least 'config', 'c',
  3411. 'cp', 'objc', 'testsuite'.
  3412. 
  3413. File: gccint.info, Node: Front End, Next: Back End, Prev: Documentation, Up: gcc Directory
  3414. 6.3.8 Anatomy of a Language Front End
  3415. -------------------------------------
  3416. A front end for a language in GCC has the following parts:
  3417. * A directory 'LANGUAGE' under 'gcc' containing source files for that
  3418. front end. *Note The Front End 'LANGUAGE' Directory: Front End
  3419. Directory, for details.
  3420. * A mention of the language in the list of supported languages in
  3421. 'gcc/doc/install.texi'.
  3422. * A mention of the name under which the language's runtime library is
  3423. recognized by '--enable-shared=PACKAGE' in the documentation of
  3424. that option in 'gcc/doc/install.texi'.
  3425. * A mention of any special prerequisites for building the front end
  3426. in the documentation of prerequisites in 'gcc/doc/install.texi'.
  3427. * Details of contributors to that front end in
  3428. 'gcc/doc/contrib.texi'. If the details are in that front end's own
  3429. manual then there should be a link to that manual's list in
  3430. 'contrib.texi'.
  3431. * Information about support for that language in
  3432. 'gcc/doc/frontends.texi'.
  3433. * Information about standards for that language, and the front end's
  3434. support for them, in 'gcc/doc/standards.texi'. This may be a link
  3435. to such information in the front end's own manual.
  3436. * Details of source file suffixes for that language and '-x LANG'
  3437. options supported, in 'gcc/doc/invoke.texi'.
  3438. * Entries in 'default_compilers' in 'gcc.c' for source file suffixes
  3439. for that language.
  3440. * Preferably testsuites, which may be under 'gcc/testsuite' or
  3441. runtime library directories. FIXME: document somewhere how to
  3442. write testsuite harnesses.
  3443. * Probably a runtime library for the language, outside the 'gcc'
  3444. directory. FIXME: document this further.
  3445. * Details of the directories of any runtime libraries in
  3446. 'gcc/doc/sourcebuild.texi'.
  3447. * Check targets in 'Makefile.def' for the top-level 'Makefile' to
  3448. check just the compiler or the compiler and runtime library for the
  3449. language.
  3450. If the front end is added to the official GCC source repository, the
  3451. following are also necessary:
  3452. * At least one Bugzilla component for bugs in that front end and
  3453. runtime libraries. This category needs to be added to the Bugzilla
  3454. database.
  3455. * Normally, one or more maintainers of that front end listed in
  3456. 'MAINTAINERS'.
  3457. * Mentions on the GCC web site in 'index.html' and 'frontends.html',
  3458. with any relevant links on 'readings.html'. (Front ends that are
  3459. not an official part of GCC may also be listed on 'frontends.html',
  3460. with relevant links.)
  3461. * A news item on 'index.html', and possibly an announcement on the
  3462. <gcc-announce@gcc.gnu.org> mailing list.
  3463. * The front end's manuals should be mentioned in
  3464. 'maintainer-scripts/update_web_docs_svn' (*note Texinfo Manuals::)
  3465. and the online manuals should be linked to from
  3466. 'onlinedocs/index.html'.
  3467. * Any old releases or CVS repositories of the front end, before its
  3468. inclusion in GCC, should be made available on the GCC FTP site
  3469. <ftp://gcc.gnu.org/pub/gcc/old-releases/>.
  3470. * The release and snapshot script 'maintainer-scripts/gcc_release'
  3471. should be updated to generate appropriate tarballs for this front
  3472. end.
  3473. * If this front end includes its own version files that include the
  3474. current date, 'maintainer-scripts/update_version' should be updated
  3475. accordingly.
  3476. * Menu:
  3477. * Front End Directory:: The front end 'LANGUAGE' directory.
  3478. * Front End Config:: The front end 'config-lang.in' file.
  3479. * Front End Makefile:: The front end 'Make-lang.in' file.
  3480. 
  3481. File: gccint.info, Node: Front End Directory, Next: Front End Config, Up: Front End
  3482. 6.3.8.1 The Front End 'LANGUAGE' Directory
  3483. ..........................................
  3484. A front end 'LANGUAGE' directory contains the source files of that front
  3485. end (but not of any runtime libraries, which should be outside the 'gcc'
  3486. directory). This includes documentation, and possibly some subsidiary
  3487. programs built alongside the front end. Certain files are special and
  3488. other parts of the compiler depend on their names:
  3489. 'config-lang.in'
  3490. This file is required in all language subdirectories. *Note The
  3491. Front End 'config-lang.in' File: Front End Config, for details of
  3492. its contents
  3493. 'Make-lang.in'
  3494. This file is required in all language subdirectories. *Note The
  3495. Front End 'Make-lang.in' File: Front End Makefile, for details of
  3496. its contents.
  3497. 'lang.opt'
  3498. This file registers the set of switches that the front end accepts
  3499. on the command line, and their '--help' text. *Note Options::.
  3500. 'lang-specs.h'
  3501. This file provides entries for 'default_compilers' in 'gcc.c' which
  3502. override the default of giving an error that a compiler for that
  3503. language is not installed.
  3504. 'LANGUAGE-tree.def'
  3505. This file, which need not exist, defines any language-specific tree
  3506. codes.
  3507. 
  3508. File: gccint.info, Node: Front End Config, Next: Front End Makefile, Prev: Front End Directory, Up: Front End
  3509. 6.3.8.2 The Front End 'config-lang.in' File
  3510. ...........................................
  3511. Each language subdirectory contains a 'config-lang.in' file. This file
  3512. is a shell script that may define some variables describing the
  3513. language:
  3514. 'language'
  3515. This definition must be present, and gives the name of the language
  3516. for some purposes such as arguments to '--enable-languages'.
  3517. 'lang_requires'
  3518. If defined, this variable lists (space-separated) language front
  3519. ends other than C that this front end requires to be enabled (with
  3520. the names given being their 'language' settings). For example, the
  3521. Obj-C++ front end depends on the C++ and ObjC front ends, so sets
  3522. 'lang_requires="objc c++"'.
  3523. 'subdir_requires'
  3524. If defined, this variable lists (space-separated) front end
  3525. directories other than C that this front end requires to be
  3526. present. For example, the Objective-C++ front end uses source
  3527. files from the C++ and Objective-C front ends, so sets
  3528. 'subdir_requires="cp objc"'.
  3529. 'target_libs'
  3530. If defined, this variable lists (space-separated) targets in the
  3531. top level 'Makefile' to build the runtime libraries for this
  3532. language, such as 'target-libobjc'.
  3533. 'lang_dirs'
  3534. If defined, this variable lists (space-separated) top level
  3535. directories (parallel to 'gcc'), apart from the runtime libraries,
  3536. that should not be configured if this front end is not built.
  3537. 'build_by_default'
  3538. If defined to 'no', this language front end is not built unless
  3539. enabled in a '--enable-languages' argument. Otherwise, front ends
  3540. are built by default, subject to any special logic in
  3541. 'configure.ac' (as is present to disable the Ada front end if the
  3542. Ada compiler is not already installed).
  3543. 'boot_language'
  3544. If defined to 'yes', this front end is built in stage1 of the
  3545. bootstrap. This is only relevant to front ends written in their
  3546. own languages.
  3547. 'compilers'
  3548. If defined, a space-separated list of compiler executables that
  3549. will be run by the driver. The names here will each end with
  3550. '\$(exeext)'.
  3551. 'outputs'
  3552. If defined, a space-separated list of files that should be
  3553. generated by 'configure' substituting values in them. This
  3554. mechanism can be used to create a file 'LANGUAGE/Makefile' from
  3555. 'LANGUAGE/Makefile.in', but this is deprecated, building everything
  3556. from the single 'gcc/Makefile' is preferred.
  3557. 'gtfiles'
  3558. If defined, a space-separated list of files that should be scanned
  3559. by 'gengtype.c' to generate the garbage collection tables and
  3560. routines for this language. This excludes the files that are
  3561. common to all front ends. *Note Type Information::.
  3562. 
  3563. File: gccint.info, Node: Front End Makefile, Prev: Front End Config, Up: Front End
  3564. 6.3.8.3 The Front End 'Make-lang.in' File
  3565. .........................................
  3566. Each language subdirectory contains a 'Make-lang.in' file. It contains
  3567. targets 'LANG.HOOK' (where 'LANG' is the setting of 'language' in
  3568. 'config-lang.in') for the following values of 'HOOK', and any other
  3569. Makefile rules required to build those targets (which may if necessary
  3570. use other Makefiles specified in 'outputs' in 'config-lang.in', although
  3571. this is deprecated). It also adds any testsuite targets that can use
  3572. the standard rule in 'gcc/Makefile.in' to the variable 'lang_checks'.
  3573. 'all.cross'
  3574. 'start.encap'
  3575. 'rest.encap'
  3576. FIXME: exactly what goes in each of these targets?
  3577. 'tags'
  3578. Build an 'etags' 'TAGS' file in the language subdirectory in the
  3579. source tree.
  3580. 'info'
  3581. Build info documentation for the front end, in the build directory.
  3582. This target is only called by 'make bootstrap' if a suitable
  3583. version of 'makeinfo' is available, so does not need to check for
  3584. this, and should fail if an error occurs.
  3585. 'dvi'
  3586. Build DVI documentation for the front end, in the build directory.
  3587. This should be done using '$(TEXI2DVI)', with appropriate '-I'
  3588. arguments pointing to directories of included files.
  3589. 'pdf'
  3590. Build PDF documentation for the front end, in the build directory.
  3591. This should be done using '$(TEXI2PDF)', with appropriate '-I'
  3592. arguments pointing to directories of included files.
  3593. 'html'
  3594. Build HTML documentation for the front end, in the build directory.
  3595. 'man'
  3596. Build generated man pages for the front end from Texinfo manuals
  3597. (*note Man Page Generation::), in the build directory. This target
  3598. is only called if the necessary tools are available, but should
  3599. ignore errors so as not to stop the build if errors occur; man
  3600. pages are optional and the tools involved may be installed in a
  3601. broken way.
  3602. 'install-common'
  3603. Install everything that is part of the front end, apart from the
  3604. compiler executables listed in 'compilers' in 'config-lang.in'.
  3605. 'install-info'
  3606. Install info documentation for the front end, if it is present in
  3607. the source directory. This target should have dependencies on info
  3608. files that should be installed.
  3609. 'install-man'
  3610. Install man pages for the front end. This target should ignore
  3611. errors.
  3612. 'install-plugin'
  3613. Install headers needed for plugins.
  3614. 'srcextra'
  3615. Copies its dependencies into the source directory. This generally
  3616. should be used for generated files such as Bison output files which
  3617. are not version-controlled, but should be included in any release
  3618. tarballs. This target will be executed during a bootstrap if
  3619. '--enable-generated-files-in-srcdir' was specified as a 'configure'
  3620. option.
  3621. 'srcinfo'
  3622. 'srcman'
  3623. Copies its dependencies into the source directory. These targets
  3624. will be executed during a bootstrap if
  3625. '--enable-generated-files-in-srcdir' was specified as a 'configure'
  3626. option.
  3627. 'uninstall'
  3628. Uninstall files installed by installing the compiler. This is
  3629. currently documented not to be supported, so the hook need not do
  3630. anything.
  3631. 'mostlyclean'
  3632. 'clean'
  3633. 'distclean'
  3634. 'maintainer-clean'
  3635. The language parts of the standard GNU '*clean' targets. *Note
  3636. Standard Targets for Users: (standards)Standard Targets, for
  3637. details of the standard targets. For GCC, 'maintainer-clean'
  3638. should delete all generated files in the source directory that are
  3639. not version-controlled, but should not delete anything that is.
  3640. 'Make-lang.in' must also define a variable 'LANG_OBJS' to a list of
  3641. host object files that are used by that language.
  3642. 
  3643. File: gccint.info, Node: Back End, Prev: Front End, Up: gcc Directory
  3644. 6.3.9 Anatomy of a Target Back End
  3645. ----------------------------------
  3646. A back end for a target architecture in GCC has the following parts:
  3647. * A directory 'MACHINE' under 'gcc/config', containing a machine
  3648. description 'MACHINE.md' file (*note Machine Descriptions: Machine
  3649. Desc.), header files 'MACHINE.h' and 'MACHINE-protos.h' and a
  3650. source file 'MACHINE.c' (*note Target Description Macros and
  3651. Functions: Target Macros.), possibly a target Makefile fragment
  3652. 't-MACHINE' (*note The Target Makefile Fragment: Target Fragment.),
  3653. and maybe some other files. The names of these files may be
  3654. changed from the defaults given by explicit specifications in
  3655. 'config.gcc'.
  3656. * If necessary, a file 'MACHINE-modes.def' in the 'MACHINE'
  3657. directory, containing additional machine modes to represent
  3658. condition codes. *Note Condition Code::, for further details.
  3659. * An optional 'MACHINE.opt' file in the 'MACHINE' directory,
  3660. containing a list of target-specific options. You can also add
  3661. other option files using the 'extra_options' variable in
  3662. 'config.gcc'. *Note Options::.
  3663. * Entries in 'config.gcc' (*note The 'config.gcc' File: System
  3664. Config.) for the systems with this target architecture.
  3665. * Documentation in 'gcc/doc/invoke.texi' for any command-line options
  3666. supported by this target (*note Run-time Target Specification:
  3667. Run-time Target.). This means both entries in the summary table of
  3668. options and details of the individual options.
  3669. * Documentation in 'gcc/doc/extend.texi' for any target-specific
  3670. attributes supported (*note Defining target-specific uses of
  3671. '__attribute__': Target Attributes.), including where the same
  3672. attribute is already supported on some targets, which are
  3673. enumerated in the manual.
  3674. * Documentation in 'gcc/doc/extend.texi' for any target-specific
  3675. pragmas supported.
  3676. * Documentation in 'gcc/doc/extend.texi' of any target-specific
  3677. built-in functions supported.
  3678. * Documentation in 'gcc/doc/extend.texi' of any target-specific
  3679. format checking styles supported.
  3680. * Documentation in 'gcc/doc/md.texi' of any target-specific
  3681. constraint letters (*note Constraints for Particular Machines:
  3682. Machine Constraints.).
  3683. * A note in 'gcc/doc/contrib.texi' under the person or people who
  3684. contributed the target support.
  3685. * Entries in 'gcc/doc/install.texi' for all target triplets supported
  3686. with this target architecture, giving details of any special notes
  3687. about installation for this target, or saying that there are no
  3688. special notes if there are none.
  3689. * Possibly other support outside the 'gcc' directory for runtime
  3690. libraries. FIXME: reference docs for this. The 'libstdc++'
  3691. porting manual needs to be installed as info for this to work, or
  3692. to be a chapter of this manual.
  3693. The 'MACHINE.h' header is included very early in GCC's standard
  3694. sequence of header files, while 'MACHINE-protos.h' is included late in
  3695. the sequence. Thus 'MACHINE-protos.h' can include declarations
  3696. referencing types that are not defined when 'MACHINE.h' is included,
  3697. specifically including those from 'rtl.h' and 'tree.h'. Since both RTL
  3698. and tree types may not be available in every context where
  3699. 'MACHINE-protos.h' is included, in this file you should guard
  3700. declarations using these types inside appropriate '#ifdef RTX_CODE' or
  3701. '#ifdef TREE_CODE' conditional code segments.
  3702. If the backend uses shared data structures that require 'GTY' markers
  3703. for garbage collection (*note Type Information::), you must declare
  3704. those in 'MACHINE.h' rather than 'MACHINE-protos.h'. Any definitions
  3705. required for building libgcc must also go in 'MACHINE.h'.
  3706. GCC uses the macro 'IN_TARGET_CODE' to distinguish between
  3707. machine-specific '.c' and '.cc' files and machine-independent '.c' and
  3708. '.cc' files. Machine-specific files should use the directive:
  3709. #define IN_TARGET_CODE 1
  3710. before including 'config.h'.
  3711. If the back end is added to the official GCC source repository, the
  3712. following are also necessary:
  3713. * An entry for the target architecture in 'readings.html' on the GCC
  3714. web site, with any relevant links.
  3715. * Details of the properties of the back end and target architecture
  3716. in 'backends.html' on the GCC web site.
  3717. * A news item about the contribution of support for that target
  3718. architecture, in 'index.html' on the GCC web site.
  3719. * Normally, one or more maintainers of that target listed in
  3720. 'MAINTAINERS'. Some existing architectures may be unmaintained,
  3721. but it would be unusual to add support for a target that does not
  3722. have a maintainer when support is added.
  3723. * Target triplets covering all 'config.gcc' stanzas for the target,
  3724. in the list in 'contrib/config-list.mk'.
  3725. 
  3726. File: gccint.info, Node: Testsuites, Next: Options, Prev: Source Tree, Up: Top
  3727. 7 Testsuites
  3728. ************
  3729. GCC contains several testsuites to help maintain compiler quality. Most
  3730. of the runtime libraries and language front ends in GCC have testsuites.
  3731. Currently only the C language testsuites are documented here; FIXME:
  3732. document the others.
  3733. * Menu:
  3734. * Test Idioms:: Idioms used in testsuite code.
  3735. * Test Directives:: Directives used within DejaGnu tests.
  3736. * Ada Tests:: The Ada language testsuites.
  3737. * C Tests:: The C language testsuites.
  3738. * LTO Testing:: Support for testing link-time optimizations.
  3739. * gcov Testing:: Support for testing gcov.
  3740. * profopt Testing:: Support for testing profile-directed optimizations.
  3741. * compat Testing:: Support for testing binary compatibility.
  3742. * Torture Tests:: Support for torture testing using multiple options.
  3743. * GIMPLE Tests:: Support for testing GIMPLE passes.
  3744. * RTL Tests:: Support for testing RTL passes.
  3745. 
  3746. File: gccint.info, Node: Test Idioms, Next: Test Directives, Up: Testsuites
  3747. 7.1 Idioms Used in Testsuite Code
  3748. =================================
  3749. In general, C testcases have a trailing '-N.c', starting with '-1.c', in
  3750. case other testcases with similar names are added later. If the test is
  3751. a test of some well-defined feature, it should have a name referring to
  3752. that feature such as 'FEATURE-1.c'. If it does not test a well-defined
  3753. feature but just happens to exercise a bug somewhere in the compiler,
  3754. and a bug report has been filed for this bug in the GCC bug database,
  3755. 'prBUG-NUMBER-1.c' is the appropriate form of name. Otherwise (for
  3756. miscellaneous bugs not filed in the GCC bug database), and previously
  3757. more generally, test cases are named after the date on which they were
  3758. added. This allows people to tell at a glance whether a test failure is
  3759. because of a recently found bug that has not yet been fixed, or whether
  3760. it may be a regression, but does not give any other information about
  3761. the bug or where discussion of it may be found. Some other language
  3762. testsuites follow similar conventions.
  3763. In the 'gcc.dg' testsuite, it is often necessary to test that an error
  3764. is indeed a hard error and not just a warning--for example, where it is
  3765. a constraint violation in the C standard, which must become an error
  3766. with '-pedantic-errors'. The following idiom, where the first line
  3767. shown is line LINE of the file and the line that generates the error, is
  3768. used for this:
  3769. /* { dg-bogus "warning" "warning in place of error" } */
  3770. /* { dg-error "REGEXP" "MESSAGE" { target *-*-* } LINE } */
  3771. It may be necessary to check that an expression is an integer constant
  3772. expression and has a certain value. To check that 'E' has value 'V', an
  3773. idiom similar to the following is used:
  3774. char x[((E) == (V) ? 1 : -1)];
  3775. In 'gcc.dg' tests, '__typeof__' is sometimes used to make assertions
  3776. about the types of expressions. See, for example,
  3777. 'gcc.dg/c99-condexpr-1.c'. The more subtle uses depend on the exact
  3778. rules for the types of conditional expressions in the C standard; see,
  3779. for example, 'gcc.dg/c99-intconst-1.c'.
  3780. It is useful to be able to test that optimizations are being made
  3781. properly. This cannot be done in all cases, but it can be done where
  3782. the optimization will lead to code being optimized away (for example,
  3783. where flow analysis or alias analysis should show that certain code
  3784. cannot be called) or to functions not being called because they have
  3785. been expanded as built-in functions. Such tests go in
  3786. 'gcc.c-torture/execute'. Where code should be optimized away, a call to
  3787. a nonexistent function such as 'link_failure ()' may be inserted; a
  3788. definition
  3789. #ifndef __OPTIMIZE__
  3790. void
  3791. link_failure (void)
  3792. {
  3793. abort ();
  3794. }
  3795. #endif
  3796. will also be needed so that linking still succeeds when the test is run
  3797. without optimization. When all calls to a built-in function should have
  3798. been optimized and no calls to the non-built-in version of the function
  3799. should remain, that function may be defined as 'static' to call 'abort
  3800. ()' (although redeclaring a function as static may not work on all
  3801. targets).
  3802. All testcases must be portable. Target-specific testcases must have
  3803. appropriate code to avoid causing failures on unsupported systems;
  3804. unfortunately, the mechanisms for this differ by directory.
  3805. FIXME: discuss non-C testsuites here.
  3806. 
  3807. File: gccint.info, Node: Test Directives, Next: Ada Tests, Prev: Test Idioms, Up: Testsuites
  3808. 7.2 Directives used within DejaGnu tests
  3809. ========================================
  3810. * Menu:
  3811. * Directives:: Syntax and descriptions of test directives.
  3812. * Selectors:: Selecting targets to which a test applies.
  3813. * Effective-Target Keywords:: Keywords describing target attributes.
  3814. * Add Options:: Features for 'dg-add-options'
  3815. * Require Support:: Variants of 'dg-require-SUPPORT'
  3816. * Final Actions:: Commands for use in 'dg-final'
  3817. 
  3818. File: gccint.info, Node: Directives, Next: Selectors, Up: Test Directives
  3819. 7.2.1 Syntax and Descriptions of test directives
  3820. ------------------------------------------------
  3821. Test directives appear within comments in a test source file and begin
  3822. with 'dg-'. Some of these are defined within DejaGnu and others are
  3823. local to the GCC testsuite.
  3824. The order in which test directives appear in a test can be important:
  3825. directives local to GCC sometimes override information used by the
  3826. DejaGnu directives, which know nothing about the GCC directives, so the
  3827. DejaGnu directives must precede GCC directives.
  3828. Several test directives include selectors (*note Selectors::) which are
  3829. usually preceded by the keyword 'target' or 'xfail'.
  3830. 7.2.1.1 Specify how to build the test
  3831. .....................................
  3832. '{ dg-do DO-WHAT-KEYWORD [{ target/xfail SELECTOR }] }'
  3833. DO-WHAT-KEYWORD specifies how the test is compiled and whether it
  3834. is executed. It is one of:
  3835. 'preprocess'
  3836. Compile with '-E' to run only the preprocessor.
  3837. 'compile'
  3838. Compile with '-S' to produce an assembly code file.
  3839. 'assemble'
  3840. Compile with '-c' to produce a relocatable object file.
  3841. 'link'
  3842. Compile, assemble, and link to produce an executable file.
  3843. 'run'
  3844. Produce and run an executable file, which is expected to
  3845. return an exit code of 0.
  3846. The default is 'compile'. That can be overridden for a set of
  3847. tests by redefining 'dg-do-what-default' within the '.exp' file for
  3848. those tests.
  3849. If the directive includes the optional '{ target SELECTOR }' then
  3850. the test is skipped unless the target system matches the SELECTOR.
  3851. If DO-WHAT-KEYWORD is 'run' and the directive includes the optional
  3852. '{ xfail SELECTOR }' and the selector is met then the test is
  3853. expected to fail. The 'xfail' clause is ignored for other values
  3854. of DO-WHAT-KEYWORD; those tests can use directive 'dg-xfail-if'.
  3855. 7.2.1.2 Specify additional compiler options
  3856. ...........................................
  3857. '{ dg-options OPTIONS [{ target SELECTOR }] }'
  3858. This DejaGnu directive provides a list of compiler options, to be
  3859. used if the target system matches SELECTOR, that replace the
  3860. default options used for this set of tests.
  3861. '{ dg-add-options FEATURE ... }'
  3862. Add any compiler options that are needed to access certain
  3863. features. This directive does nothing on targets that enable the
  3864. features by default, or that don't provide them at all. It must
  3865. come after all 'dg-options' directives. For supported values of
  3866. FEATURE see *note Add Options::.
  3867. '{ dg-additional-options OPTIONS [{ target SELECTOR }] }'
  3868. This directive provides a list of compiler options, to be used if
  3869. the target system matches SELECTOR, that are added to the default
  3870. options used for this set of tests.
  3871. 7.2.1.3 Modify the test timeout value
  3872. .....................................
  3873. The normal timeout limit, in seconds, is found by searching the
  3874. following in order:
  3875. * the value defined by an earlier 'dg-timeout' directive in the test
  3876. * variable TOOL_TIMEOUT defined by the set of tests
  3877. * GCC,TIMEOUT set in the target board
  3878. * 300
  3879. '{ dg-timeout N [{target SELECTOR }] }'
  3880. Set the time limit for the compilation and for the execution of the
  3881. test to the specified number of seconds.
  3882. '{ dg-timeout-factor X [{ target SELECTOR }] }'
  3883. Multiply the normal time limit for compilation and execution of the
  3884. test by the specified floating-point factor.
  3885. 7.2.1.4 Skip a test for some targets
  3886. ....................................
  3887. '{ dg-skip-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }'
  3888. Arguments INCLUDE-OPTS and EXCLUDE-OPTS are lists in which each
  3889. element is a string of zero or more GCC options. Skip the test if
  3890. all of the following conditions are met:
  3891. * the test system is included in SELECTOR
  3892. * for at least one of the option strings in INCLUDE-OPTS, every
  3893. option from that string is in the set of options with which
  3894. the test would be compiled; use '"*"' for an INCLUDE-OPTS list
  3895. that matches any options; that is the default if INCLUDE-OPTS
  3896. is not specified
  3897. * for each of the option strings in EXCLUDE-OPTS, at least one
  3898. option from that string is not in the set of options with
  3899. which the test would be compiled; use '""' for an empty
  3900. EXCLUDE-OPTS list; that is the default if EXCLUDE-OPTS is not
  3901. specified
  3902. For example, to skip a test if option '-Os' is present:
  3903. /* { dg-skip-if "" { *-*-* } { "-Os" } { "" } } */
  3904. To skip a test if both options '-O2' and '-g' are present:
  3905. /* { dg-skip-if "" { *-*-* } { "-O2 -g" } { "" } } */
  3906. To skip a test if either '-O2' or '-O3' is present:
  3907. /* { dg-skip-if "" { *-*-* } { "-O2" "-O3" } { "" } } */
  3908. To skip a test unless option '-Os' is present:
  3909. /* { dg-skip-if "" { *-*-* } { "*" } { "-Os" } } */
  3910. To skip a test if either '-O2' or '-O3' is used with '-g' but not
  3911. if '-fpic' is also present:
  3912. /* { dg-skip-if "" { *-*-* } { "-O2 -g" "-O3 -g" } { "-fpic" } } */
  3913. '{ dg-require-effective-target KEYWORD [{ SELECTOR }] }'
  3914. Skip the test if the test target, including current multilib flags,
  3915. is not covered by the effective-target keyword. If the directive
  3916. includes the optional '{ SELECTOR }' then the effective-target test
  3917. is only performed if the target system matches the SELECTOR. This
  3918. directive must appear after any 'dg-do' directive in the test and
  3919. before any 'dg-additional-sources' directive. *Note
  3920. Effective-Target Keywords::.
  3921. '{ dg-require-SUPPORT args }'
  3922. Skip the test if the target does not provide the required support.
  3923. These directives must appear after any 'dg-do' directive in the
  3924. test and before any 'dg-additional-sources' directive. They
  3925. require at least one argument, which can be an empty string if the
  3926. specific procedure does not examine the argument. *Note Require
  3927. Support::, for a complete list of these directives.
  3928. 7.2.1.5 Expect a test to fail for some targets
  3929. ..............................................
  3930. '{ dg-xfail-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }'
  3931. Expect the test to fail if the conditions (which are the same as
  3932. for 'dg-skip-if') are met. This does not affect the execute step.
  3933. '{ dg-xfail-run-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }'
  3934. Expect the execute step of a test to fail if the conditions (which
  3935. are the same as for 'dg-skip-if') are met.
  3936. 7.2.1.6 Expect the test executable to fail
  3937. ..........................................
  3938. '{ dg-shouldfail COMMENT [{ SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]]] }'
  3939. Expect the test executable to return a nonzero exit status if the
  3940. conditions (which are the same as for 'dg-skip-if') are met.
  3941. 7.2.1.7 Verify compiler messages
  3942. ................................
  3943. '{ dg-error REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] ]] }'
  3944. This DejaGnu directive appears on a source line that is expected to
  3945. get an error message, or else specifies the source line associated
  3946. with the message. If there is no message for that line or if the
  3947. text of that message is not matched by REGEXP then the check fails
  3948. and COMMENT is included in the 'FAIL' message. The check does not
  3949. look for the string 'error' unless it is part of REGEXP.
  3950. '{ dg-warning REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] ]] }'
  3951. This DejaGnu directive appears on a source line that is expected to
  3952. get a warning message, or else specifies the source line associated
  3953. with the message. If there is no message for that line or if the
  3954. text of that message is not matched by REGEXP then the check fails
  3955. and COMMENT is included in the 'FAIL' message. The check does not
  3956. look for the string 'warning' unless it is part of REGEXP.
  3957. '{ dg-message REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] ]] }'
  3958. The line is expected to get a message other than an error or
  3959. warning. If there is no message for that line or if the text of
  3960. that message is not matched by REGEXP then the check fails and
  3961. COMMENT is included in the 'FAIL' message.
  3962. '{ dg-bogus REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] ]] }'
  3963. This DejaGnu directive appears on a source line that should not get
  3964. a message matching REGEXP, or else specifies the source line
  3965. associated with the bogus message. It is usually used with 'xfail'
  3966. to indicate that the message is a known problem for a particular
  3967. set of targets.
  3968. '{ dg-line LINENUMVAR }'
  3969. This DejaGnu directive sets the variable LINENUMVAR to the line
  3970. number of the source line. The variable LINENUMVAR can then be
  3971. used in subsequent 'dg-error', 'dg-warning', 'dg-message' and
  3972. 'dg-bogus' directives. For example:
  3973. int a; /* { dg-line first_def_a } */
  3974. float a; /* { dg-error "conflicting types of" } */
  3975. /* { dg-message "previous declaration of" "" { target *-*-* } first_def_a } */
  3976. '{ dg-excess-errors COMMENT [{ target/xfail SELECTOR }] }'
  3977. This DejaGnu directive indicates that the test is expected to fail
  3978. due to compiler messages that are not handled by 'dg-error',
  3979. 'dg-warning' or 'dg-bogus'. For this directive 'xfail' has the
  3980. same effect as 'target'.
  3981. '{ dg-prune-output REGEXP }'
  3982. Prune messages matching REGEXP from the test output.
  3983. 7.2.1.8 Verify output of the test executable
  3984. ............................................
  3985. '{ dg-output REGEXP [{ target/xfail SELECTOR }] }'
  3986. This DejaGnu directive compares REGEXP to the combined output that
  3987. the test executable writes to 'stdout' and 'stderr'.
  3988. 7.2.1.9 Specify additional files for a test
  3989. ...........................................
  3990. '{ dg-additional-files "FILELIST" }'
  3991. Specify additional files, other than source files, that must be
  3992. copied to the system where the compiler runs.
  3993. '{ dg-additional-sources "FILELIST" }'
  3994. Specify additional source files to appear in the compile line
  3995. following the main test file.
  3996. 7.2.1.10 Add checks at the end of a test
  3997. ........................................
  3998. '{ dg-final { LOCAL-DIRECTIVE } }'
  3999. This DejaGnu directive is placed within a comment anywhere in the
  4000. source file and is processed after the test has been compiled and
  4001. run. Multiple 'dg-final' commands are processed in the order in
  4002. which they appear in the source file. *Note Final Actions::, for a
  4003. list of directives that can be used within 'dg-final'.
  4004. 
  4005. File: gccint.info, Node: Selectors, Next: Effective-Target Keywords, Prev: Directives, Up: Test Directives
  4006. 7.2.2 Selecting targets to which a test applies
  4007. -----------------------------------------------
  4008. Several test directives include SELECTORs to limit the targets for which
  4009. a test is run or to declare that a test is expected to fail on
  4010. particular targets.
  4011. A selector is:
  4012. * one or more target triplets, possibly including wildcard
  4013. characters; use '*-*-*' to match any target
  4014. * a single effective-target keyword (*note Effective-Target
  4015. Keywords::)
  4016. * a logical expression
  4017. Depending on the context, the selector specifies whether a test is
  4018. skipped and reported as unsupported or is expected to fail. A context
  4019. that allows either 'target' or 'xfail' also allows '{ target SELECTOR1
  4020. xfail SELECTOR2 }' to skip the test for targets that don't match
  4021. SELECTOR1 and the test to fail for targets that match SELECTOR2.
  4022. A selector expression appears within curly braces and uses a single
  4023. logical operator: one of '!', '&&', or '||'. An operand is another
  4024. selector expression, an effective-target keyword, a single target
  4025. triplet, or a list of target triplets within quotes or curly braces.
  4026. For example:
  4027. { target { ! "hppa*-*-* ia64*-*-*" } }
  4028. { target { powerpc*-*-* && lp64 } }
  4029. { xfail { lp64 || vect_no_align } }
  4030. 
  4031. File: gccint.info, Node: Effective-Target Keywords, Next: Add Options, Prev: Selectors, Up: Test Directives
  4032. 7.2.3 Keywords describing target attributes
  4033. -------------------------------------------
  4034. Effective-target keywords identify sets of targets that support
  4035. particular functionality. They are used to limit tests to be run only
  4036. for particular targets, or to specify that particular sets of targets
  4037. are expected to fail some tests.
  4038. Effective-target keywords are defined in 'lib/target-supports.exp' in
  4039. the GCC testsuite, with the exception of those that are documented as
  4040. being local to a particular test directory.
  4041. The 'effective target' takes into account all of the compiler options
  4042. with which the test will be compiled, including the multilib options.
  4043. By convention, keywords ending in '_nocache' can also include options
  4044. specified for the particular test in an earlier 'dg-options' or
  4045. 'dg-add-options' directive.
  4046. 7.2.3.1 Endianness
  4047. ..................
  4048. 'be'
  4049. Target uses big-endian memory order for multi-byte and multi-word
  4050. data.
  4051. 'le'
  4052. Target uses little-endian memory order for multi-byte and
  4053. multi-word data.
  4054. 7.2.3.2 Data type sizes
  4055. .......................
  4056. 'ilp32'
  4057. Target has 32-bit 'int', 'long', and pointers.
  4058. 'lp64'
  4059. Target has 32-bit 'int', 64-bit 'long' and pointers.
  4060. 'llp64'
  4061. Target has 32-bit 'int' and 'long', 64-bit 'long long' and
  4062. pointers.
  4063. 'double64'
  4064. Target has 64-bit 'double'.
  4065. 'double64plus'
  4066. Target has 'double' that is 64 bits or longer.
  4067. 'longdouble128'
  4068. Target has 128-bit 'long double'.
  4069. 'int32plus'
  4070. Target has 'int' that is at 32 bits or longer.
  4071. 'int16'
  4072. Target has 'int' that is 16 bits or shorter.
  4073. 'long_neq_int'
  4074. Target has 'int' and 'long' with different sizes.
  4075. 'large_double'
  4076. Target supports 'double' that is longer than 'float'.
  4077. 'large_long_double'
  4078. Target supports 'long double' that is longer than 'double'.
  4079. 'ptr32plus'
  4080. Target has pointers that are 32 bits or longer.
  4081. 'size32plus'
  4082. Target supports array and structure sizes that are 32 bits or
  4083. longer.
  4084. '4byte_wchar_t'
  4085. Target has 'wchar_t' that is at least 4 bytes.
  4086. 'floatN'
  4087. Target has the '_FloatN' type.
  4088. 'floatNx'
  4089. Target has the '_FloatNx' type.
  4090. 'floatN_runtime'
  4091. Target has the '_FloatN' type, including runtime support for any
  4092. options added with 'dg-add-options'.
  4093. 'floatNx_runtime'
  4094. Target has the '_FloatNx' type, including runtime support for any
  4095. options added with 'dg-add-options'.
  4096. 'floatn_nx_runtime'
  4097. Target has runtime support for any options added with
  4098. 'dg-add-options' for any '_FloatN' or '_FloatNx' type.
  4099. 7.2.3.3 Fortran-specific attributes
  4100. ...................................
  4101. 'fortran_integer_16'
  4102. Target supports Fortran 'integer' that is 16 bytes or longer.
  4103. 'fortran_real_10'
  4104. Target supports Fortran 'real' that is 10 bytes or longer.
  4105. 'fortran_real_16'
  4106. Target supports Fortran 'real' that is 16 bytes or longer.
  4107. 'fortran_large_int'
  4108. Target supports Fortran 'integer' kinds larger than 'integer(8)'.
  4109. 'fortran_large_real'
  4110. Target supports Fortran 'real' kinds larger than 'real(8)'.
  4111. 7.2.3.4 Vector-specific attributes
  4112. ..................................
  4113. 'vect_align_stack_vars'
  4114. The target's ABI allows stack variables to be aligned to the
  4115. preferred vector alignment.
  4116. 'vect_condition'
  4117. Target supports vector conditional operations.
  4118. 'vect_cond_mixed'
  4119. Target supports vector conditional operations where comparison
  4120. operands have different type from the value operands.
  4121. 'vect_double'
  4122. Target supports hardware vectors of 'double'.
  4123. 'vect_element_align_preferred'
  4124. The target's preferred vector alignment is the same as the element
  4125. alignment.
  4126. 'vect_float'
  4127. Target supports hardware vectors of 'float' when
  4128. '-funsafe-math-optimizations' is in effect.
  4129. 'vect_float_strict'
  4130. Target supports hardware vectors of 'float' when
  4131. '-funsafe-math-optimizations' is not in effect. This implies
  4132. 'vect_float'.
  4133. 'vect_int'
  4134. Target supports hardware vectors of 'int'.
  4135. 'vect_long'
  4136. Target supports hardware vectors of 'long'.
  4137. 'vect_long_long'
  4138. Target supports hardware vectors of 'long long'.
  4139. 'vect_fully_masked'
  4140. Target supports fully-masked (also known as fully-predicated)
  4141. loops, so that vector loops can handle partial as well as full
  4142. vectors.
  4143. 'vect_masked_store'
  4144. Target supports vector masked stores.
  4145. 'vect_scatter_store'
  4146. Target supports vector scatter stores.
  4147. 'vect_aligned_arrays'
  4148. Target aligns arrays to vector alignment boundary.
  4149. 'vect_hw_misalign'
  4150. Target supports a vector misalign access.
  4151. 'vect_no_align'
  4152. Target does not support a vector alignment mechanism.
  4153. 'vect_peeling_profitable'
  4154. Target might require to peel loops for alignment purposes.
  4155. 'vect_no_int_min_max'
  4156. Target does not support a vector min and max instruction on 'int'.
  4157. 'vect_no_int_add'
  4158. Target does not support a vector add instruction on 'int'.
  4159. 'vect_no_bitwise'
  4160. Target does not support vector bitwise instructions.
  4161. 'vect_char_mult'
  4162. Target supports 'vector char' multiplication.
  4163. 'vect_short_mult'
  4164. Target supports 'vector short' multiplication.
  4165. 'vect_int_mult'
  4166. Target supports 'vector int' multiplication.
  4167. 'vect_long_mult'
  4168. Target supports 64 bit 'vector long' multiplication.
  4169. 'vect_extract_even_odd'
  4170. Target supports vector even/odd element extraction.
  4171. 'vect_extract_even_odd_wide'
  4172. Target supports vector even/odd element extraction of vectors with
  4173. elements 'SImode' or larger.
  4174. 'vect_interleave'
  4175. Target supports vector interleaving.
  4176. 'vect_strided'
  4177. Target supports vector interleaving and extract even/odd.
  4178. 'vect_strided_wide'
  4179. Target supports vector interleaving and extract even/odd for wide
  4180. element types.
  4181. 'vect_perm'
  4182. Target supports vector permutation.
  4183. 'vect_perm_byte'
  4184. Target supports permutation of vectors with 8-bit elements.
  4185. 'vect_perm_short'
  4186. Target supports permutation of vectors with 16-bit elements.
  4187. 'vect_perm3_byte'
  4188. Target supports permutation of vectors with 8-bit elements, and for
  4189. the default vector length it is possible to permute:
  4190. { a0, a1, a2, b0, b1, b2, ... }
  4191. to:
  4192. { a0, a0, a0, b0, b0, b0, ... }
  4193. { a1, a1, a1, b1, b1, b1, ... }
  4194. { a2, a2, a2, b2, b2, b2, ... }
  4195. using only two-vector permutes, regardless of how long the sequence
  4196. is.
  4197. 'vect_perm3_int'
  4198. Like 'vect_perm3_byte', but for 32-bit elements.
  4199. 'vect_perm3_short'
  4200. Like 'vect_perm3_byte', but for 16-bit elements.
  4201. 'vect_shift'
  4202. Target supports a hardware vector shift operation.
  4203. 'vect_unaligned_possible'
  4204. Target prefers vectors to have an alignment greater than element
  4205. alignment, but also allows unaligned vector accesses in some
  4206. circumstances.
  4207. 'vect_variable_length'
  4208. Target has variable-length vectors.
  4209. 'vect_widen_sum_hi_to_si'
  4210. Target supports a vector widening summation of 'short' operands
  4211. into 'int' results, or can promote (unpack) from 'short' to 'int'.
  4212. 'vect_widen_sum_qi_to_hi'
  4213. Target supports a vector widening summation of 'char' operands into
  4214. 'short' results, or can promote (unpack) from 'char' to 'short'.
  4215. 'vect_widen_sum_qi_to_si'
  4216. Target supports a vector widening summation of 'char' operands into
  4217. 'int' results.
  4218. 'vect_widen_mult_qi_to_hi'
  4219. Target supports a vector widening multiplication of 'char' operands
  4220. into 'short' results, or can promote (unpack) from 'char' to
  4221. 'short' and perform non-widening multiplication of 'short'.
  4222. 'vect_widen_mult_hi_to_si'
  4223. Target supports a vector widening multiplication of 'short'
  4224. operands into 'int' results, or can promote (unpack) from 'short'
  4225. to 'int' and perform non-widening multiplication of 'int'.
  4226. 'vect_widen_mult_si_to_di_pattern'
  4227. Target supports a vector widening multiplication of 'int' operands
  4228. into 'long' results.
  4229. 'vect_sdot_qi'
  4230. Target supports a vector dot-product of 'signed char'.
  4231. 'vect_udot_qi'
  4232. Target supports a vector dot-product of 'unsigned char'.
  4233. 'vect_sdot_hi'
  4234. Target supports a vector dot-product of 'signed short'.
  4235. 'vect_udot_hi'
  4236. Target supports a vector dot-product of 'unsigned short'.
  4237. 'vect_pack_trunc'
  4238. Target supports a vector demotion (packing) of 'short' to 'char'
  4239. and from 'int' to 'short' using modulo arithmetic.
  4240. 'vect_unpack'
  4241. Target supports a vector promotion (unpacking) of 'char' to 'short'
  4242. and from 'char' to 'int'.
  4243. 'vect_intfloat_cvt'
  4244. Target supports conversion from 'signed int' to 'float'.
  4245. 'vect_uintfloat_cvt'
  4246. Target supports conversion from 'unsigned int' to 'float'.
  4247. 'vect_floatint_cvt'
  4248. Target supports conversion from 'float' to 'signed int'.
  4249. 'vect_floatuint_cvt'
  4250. Target supports conversion from 'float' to 'unsigned int'.
  4251. 'vect_intdouble_cvt'
  4252. Target supports conversion from 'signed int' to 'double'.
  4253. 'vect_doubleint_cvt'
  4254. Target supports conversion from 'double' to 'signed int'.
  4255. 'vect_max_reduc'
  4256. Target supports max reduction for vectors.
  4257. 'vect_sizes_16B_8B'
  4258. Target supports 16- and 8-bytes vectors.
  4259. 'vect_sizes_32B_16B'
  4260. Target supports 32- and 16-bytes vectors.
  4261. 'vect_logical_reduc'
  4262. Target supports AND, IOR and XOR reduction on vectors.
  4263. 'vect_fold_extract_last'
  4264. Target supports the 'fold_extract_last' optab.
  4265. 7.2.3.5 Thread Local Storage attributes
  4266. .......................................
  4267. 'tls'
  4268. Target supports thread-local storage.
  4269. 'tls_native'
  4270. Target supports native (rather than emulated) thread-local storage.
  4271. 'tls_runtime'
  4272. Test system supports executing TLS executables.
  4273. 7.2.3.6 Decimal floating point attributes
  4274. .........................................
  4275. 'dfp'
  4276. Targets supports compiling decimal floating point extension to C.
  4277. 'dfp_nocache'
  4278. Including the options used to compile this particular test, the
  4279. target supports compiling decimal floating point extension to C.
  4280. 'dfprt'
  4281. Test system can execute decimal floating point tests.
  4282. 'dfprt_nocache'
  4283. Including the options used to compile this particular test, the
  4284. test system can execute decimal floating point tests.
  4285. 'hard_dfp'
  4286. Target generates decimal floating point instructions with current
  4287. options.
  4288. 7.2.3.7 ARM-specific attributes
  4289. ...............................
  4290. 'arm32'
  4291. ARM target generates 32-bit code.
  4292. 'arm_eabi'
  4293. ARM target adheres to the ABI for the ARM Architecture.
  4294. 'arm_fp_ok'
  4295. ARM target defines '__ARM_FP' using '-mfloat-abi=softfp' or
  4296. equivalent options. Some multilibs may be incompatible with these
  4297. options.
  4298. 'arm_hf_eabi'
  4299. ARM target adheres to the VFP and Advanced SIMD Register Arguments
  4300. variant of the ABI for the ARM Architecture (as selected with
  4301. '-mfloat-abi=hard').
  4302. 'arm_softfloat'
  4303. ARM target uses the soft-float ABI with no floating-point
  4304. instructions used whatsoever (as selected with '-mfloat-abi=soft').
  4305. 'arm_hard_vfp_ok'
  4306. ARM target supports '-mfpu=vfp -mfloat-abi=hard'. Some multilibs
  4307. may be incompatible with these options.
  4308. 'arm_iwmmxt_ok'
  4309. ARM target supports '-mcpu=iwmmxt'. Some multilibs may be
  4310. incompatible with this option.
  4311. 'arm_neon'
  4312. ARM target supports generating NEON instructions.
  4313. 'arm_tune_string_ops_prefer_neon'
  4314. Test CPU tune supports inlining string operations with NEON
  4315. instructions.
  4316. 'arm_neon_hw'
  4317. Test system supports executing NEON instructions.
  4318. 'arm_neonv2_hw'
  4319. Test system supports executing NEON v2 instructions.
  4320. 'arm_neon_ok'
  4321. ARM Target supports '-mfpu=neon -mfloat-abi=softfp' or compatible
  4322. options. Some multilibs may be incompatible with these options.
  4323. 'arm_neon_ok_no_float_abi'
  4324. ARM Target supports NEON with '-mfpu=neon', but without any
  4325. -mfloat-abi= option. Some multilibs may be incompatible with this
  4326. option.
  4327. 'arm_neonv2_ok'
  4328. ARM Target supports '-mfpu=neon-vfpv4 -mfloat-abi=softfp' or
  4329. compatible options. Some multilibs may be incompatible with these
  4330. options.
  4331. 'arm_fp16_ok'
  4332. Target supports options to generate VFP half-precision
  4333. floating-point instructions. Some multilibs may be incompatible
  4334. with these options. This test is valid for ARM only.
  4335. 'arm_fp16_hw'
  4336. Target supports executing VFP half-precision floating-point
  4337. instructions. This test is valid for ARM only.
  4338. 'arm_neon_fp16_ok'
  4339. ARM Target supports '-mfpu=neon-fp16 -mfloat-abi=softfp' or
  4340. compatible options, including '-mfp16-format=ieee' if necessary to
  4341. obtain the '__fp16' type. Some multilibs may be incompatible with
  4342. these options.
  4343. 'arm_neon_fp16_hw'
  4344. Test system supports executing Neon half-precision float
  4345. instructions. (Implies previous.)
  4346. 'arm_fp16_alternative_ok'
  4347. ARM target supports the ARM FP16 alternative format. Some
  4348. multilibs may be incompatible with the options needed.
  4349. 'arm_fp16_none_ok'
  4350. ARM target supports specifying none as the ARM FP16 format.
  4351. 'arm_thumb1_ok'
  4352. ARM target generates Thumb-1 code for '-mthumb'.
  4353. 'arm_thumb2_ok'
  4354. ARM target generates Thumb-2 code for '-mthumb'.
  4355. 'arm_vfp_ok'
  4356. ARM target supports '-mfpu=vfp -mfloat-abi=softfp'. Some multilibs
  4357. may be incompatible with these options.
  4358. 'arm_vfp3_ok'
  4359. ARM target supports '-mfpu=vfp3 -mfloat-abi=softfp'. Some
  4360. multilibs may be incompatible with these options.
  4361. 'arm_v8_vfp_ok'
  4362. ARM target supports '-mfpu=fp-armv8 -mfloat-abi=softfp'. Some
  4363. multilibs may be incompatible with these options.
  4364. 'arm_v8_neon_ok'
  4365. ARM target supports '-mfpu=neon-fp-armv8 -mfloat-abi=softfp'. Some
  4366. multilibs may be incompatible with these options.
  4367. 'arm_v8_1a_neon_ok'
  4368. ARM target supports options to generate ARMv8.1-A Adv.SIMD
  4369. instructions. Some multilibs may be incompatible with these
  4370. options.
  4371. 'arm_v8_1a_neon_hw'
  4372. ARM target supports executing ARMv8.1-A Adv.SIMD instructions.
  4373. Some multilibs may be incompatible with the options needed.
  4374. Implies arm_v8_1a_neon_ok.
  4375. 'arm_acq_rel'
  4376. ARM target supports acquire-release instructions.
  4377. 'arm_v8_2a_fp16_scalar_ok'
  4378. ARM target supports options to generate instructions for ARMv8.2-A
  4379. and scalar instructions from the FP16 extension. Some multilibs
  4380. may be incompatible with these options.
  4381. 'arm_v8_2a_fp16_scalar_hw'
  4382. ARM target supports executing instructions for ARMv8.2-A and scalar
  4383. instructions from the FP16 extension. Some multilibs may be
  4384. incompatible with these options. Implies arm_v8_2a_fp16_neon_ok.
  4385. 'arm_v8_2a_fp16_neon_ok'
  4386. ARM target supports options to generate instructions from ARMv8.2-A
  4387. with the FP16 extension. Some multilibs may be incompatible with
  4388. these options. Implies arm_v8_2a_fp16_scalar_ok.
  4389. 'arm_v8_2a_fp16_neon_hw'
  4390. ARM target supports executing instructions from ARMv8.2-A with the
  4391. FP16 extension. Some multilibs may be incompatible with these
  4392. options. Implies arm_v8_2a_fp16_neon_ok and
  4393. arm_v8_2a_fp16_scalar_hw.
  4394. 'arm_v8_2a_dotprod_neon_ok'
  4395. ARM target supports options to generate instructions from ARMv8.2-A
  4396. with the Dot Product extension. Some multilibs may be incompatible
  4397. with these options.
  4398. 'arm_v8_2a_dotprod_neon_hw'
  4399. ARM target supports executing instructions from ARMv8.2-A with the
  4400. Dot Product extension. Some multilibs may be incompatible with
  4401. these options. Implies arm_v8_2a_dotprod_neon_ok.
  4402. 'arm_fp16fml_neon_ok'
  4403. ARM target supports extensions to generate the 'VFMAL' and 'VFMLS'
  4404. half-precision floating-point instructions available from ARMv8.2-A
  4405. and onwards. Some multilibs may be incompatible with these
  4406. options.
  4407. 'arm_prefer_ldrd_strd'
  4408. ARM target prefers 'LDRD' and 'STRD' instructions over 'LDM' and
  4409. 'STM' instructions.
  4410. 'arm_thumb1_movt_ok'
  4411. ARM target generates Thumb-1 code for '-mthumb' with 'MOVW' and
  4412. 'MOVT' instructions available.
  4413. 'arm_thumb1_cbz_ok'
  4414. ARM target generates Thumb-1 code for '-mthumb' with 'CBZ' and
  4415. 'CBNZ' instructions available.
  4416. 'arm_divmod_simode'
  4417. ARM target for which divmod transform is disabled, if it supports
  4418. hardware div instruction.
  4419. 'arm_cmse_ok'
  4420. ARM target supports ARMv8-M Security Extensions, enabled by the
  4421. '-mcmse' option.
  4422. 'arm_coproc1_ok'
  4423. ARM target supports the following coprocessor instructions: 'CDP',
  4424. 'LDC', 'STC', 'MCR' and 'MRC'.
  4425. 'arm_coproc2_ok'
  4426. ARM target supports all the coprocessor instructions also listed as
  4427. supported in *note arm_coproc1_ok:: in addition to the following:
  4428. 'CDP2', 'LDC2', 'LDC2l', 'STC2', 'STC2l', 'MCR2' and 'MRC2'.
  4429. 'arm_coproc3_ok'
  4430. ARM target supports all the coprocessor instructions also listed as
  4431. supported in *note arm_coproc2_ok:: in addition the following:
  4432. 'MCRR' and 'MRRC'.
  4433. 'arm_coproc4_ok'
  4434. ARM target supports all the coprocessor instructions also listed as
  4435. supported in *note arm_coproc3_ok:: in addition the following:
  4436. 'MCRR2' and 'MRRC2'.
  4437. 7.2.3.8 AArch64-specific attributes
  4438. ...................................
  4439. 'aarch64_asm_<ext>_ok'
  4440. AArch64 assembler supports the architecture extension 'ext' via the
  4441. '.arch_extension' pseudo-op.
  4442. 'aarch64_tiny'
  4443. AArch64 target which generates instruction sequences for tiny
  4444. memory model.
  4445. 'aarch64_small'
  4446. AArch64 target which generates instruction sequences for small
  4447. memory model.
  4448. 'aarch64_large'
  4449. AArch64 target which generates instruction sequences for large
  4450. memory model.
  4451. 'aarch64_little_endian'
  4452. AArch64 target which generates instruction sequences for little
  4453. endian.
  4454. 'aarch64_big_endian'
  4455. AArch64 target which generates instruction sequences for big
  4456. endian.
  4457. 'aarch64_small_fpic'
  4458. Binutils installed on test system supports relocation types
  4459. required by -fpic for AArch64 small memory model.
  4460. 7.2.3.9 MIPS-specific attributes
  4461. ................................
  4462. 'mips64'
  4463. MIPS target supports 64-bit instructions.
  4464. 'nomips16'
  4465. MIPS target does not produce MIPS16 code.
  4466. 'mips16_attribute'
  4467. MIPS target can generate MIPS16 code.
  4468. 'mips_loongson'
  4469. MIPS target is a Loongson-2E or -2F target using an ABI that
  4470. supports the Loongson vector modes.
  4471. 'mips_msa'
  4472. MIPS target supports '-mmsa', MIPS SIMD Architecture (MSA).
  4473. 'mips_newabi_large_long_double'
  4474. MIPS target supports 'long double' larger than 'double' when using
  4475. the new ABI.
  4476. 'mpaired_single'
  4477. MIPS target supports '-mpaired-single'.
  4478. 7.2.3.10 PowerPC-specific attributes
  4479. ....................................
  4480. 'dfp_hw'
  4481. PowerPC target supports executing hardware DFP instructions.
  4482. 'p8vector_hw'
  4483. PowerPC target supports executing VSX instructions (ISA 2.07).
  4484. 'powerpc64'
  4485. Test system supports executing 64-bit instructions.
  4486. 'powerpc_altivec'
  4487. PowerPC target supports AltiVec.
  4488. 'powerpc_altivec_ok'
  4489. PowerPC target supports '-maltivec'.
  4490. 'powerpc_eabi_ok'
  4491. PowerPC target supports '-meabi'.
  4492. 'powerpc_elfv2'
  4493. PowerPC target supports '-mabi=elfv2'.
  4494. 'powerpc_fprs'
  4495. PowerPC target supports floating-point registers.
  4496. 'powerpc_hard_double'
  4497. PowerPC target supports hardware double-precision floating-point.
  4498. 'powerpc_htm_ok'
  4499. PowerPC target supports '-mhtm'
  4500. 'powerpc_p8vector_ok'
  4501. PowerPC target supports '-mpower8-vector'
  4502. 'powerpc_popcntb_ok'
  4503. PowerPC target supports the 'popcntb' instruction, indicating that
  4504. this target supports '-mcpu=power5'.
  4505. 'powerpc_ppu_ok'
  4506. PowerPC target supports '-mcpu=cell'.
  4507. 'powerpc_spe'
  4508. PowerPC target supports PowerPC SPE.
  4509. 'powerpc_spe_nocache'
  4510. Including the options used to compile this particular test, the
  4511. PowerPC target supports PowerPC SPE.
  4512. 'powerpc_spu'
  4513. PowerPC target supports PowerPC SPU.
  4514. 'powerpc_vsx_ok'
  4515. PowerPC target supports '-mvsx'.
  4516. 'powerpc_405_nocache'
  4517. Including the options used to compile this particular test, the
  4518. PowerPC target supports PowerPC 405.
  4519. 'ppc_recip_hw'
  4520. PowerPC target supports executing reciprocal estimate instructions.
  4521. 'spu_auto_overlay'
  4522. SPU target has toolchain that supports automatic overlay
  4523. generation.
  4524. 'vmx_hw'
  4525. PowerPC target supports executing AltiVec instructions.
  4526. 'vsx_hw'
  4527. PowerPC target supports executing VSX instructions (ISA 2.06).
  4528. 7.2.3.11 Other hardware attributes
  4529. ..................................
  4530. 'autoincdec'
  4531. Target supports autoincrement/decrement addressing.
  4532. 'avx'
  4533. Target supports compiling 'avx' instructions.
  4534. 'avx_runtime'
  4535. Target supports the execution of 'avx' instructions.
  4536. 'avx2'
  4537. Target supports compiling 'avx2' instructions.
  4538. 'avx2_runtime'
  4539. Target supports the execution of 'avx2' instructions.
  4540. 'avx512f'
  4541. Target supports compiling 'avx512f' instructions.
  4542. 'avx512f_runtime'
  4543. Target supports the execution of 'avx512f' instructions.
  4544. 'cell_hw'
  4545. Test system can execute AltiVec and Cell PPU instructions.
  4546. 'coldfire_fpu'
  4547. Target uses a ColdFire FPU.
  4548. 'divmod'
  4549. Target supporting hardware divmod insn or divmod libcall.
  4550. 'divmod_simode'
  4551. Target supporting hardware divmod insn or divmod libcall for
  4552. SImode.
  4553. 'hard_float'
  4554. Target supports FPU instructions.
  4555. 'non_strict_align'
  4556. Target does not require strict alignment.
  4557. 'pie_copyreloc'
  4558. The x86-64 target linker supports PIE with copy reloc.
  4559. 'rdrand'
  4560. Target supports x86 'rdrand' instruction.
  4561. 'sqrt_insn'
  4562. Target has a square root instruction that the compiler can
  4563. generate.
  4564. 'sse'
  4565. Target supports compiling 'sse' instructions.
  4566. 'sse_runtime'
  4567. Target supports the execution of 'sse' instructions.
  4568. 'sse2'
  4569. Target supports compiling 'sse2' instructions.
  4570. 'sse2_runtime'
  4571. Target supports the execution of 'sse2' instructions.
  4572. 'sync_char_short'
  4573. Target supports atomic operations on 'char' and 'short'.
  4574. 'sync_int_long'
  4575. Target supports atomic operations on 'int' and 'long'.
  4576. 'ultrasparc_hw'
  4577. Test environment appears to run executables on a simulator that
  4578. accepts only 'EM_SPARC' executables and chokes on 'EM_SPARC32PLUS'
  4579. or 'EM_SPARCV9' executables.
  4580. 'vect_cmdline_needed'
  4581. Target requires a command line argument to enable a SIMD
  4582. instruction set.
  4583. 'xorsign'
  4584. Target supports the xorsign optab expansion.
  4585. 7.2.3.12 Environment attributes
  4586. ...............................
  4587. 'c'
  4588. The language for the compiler under test is C.
  4589. 'c++'
  4590. The language for the compiler under test is C++.
  4591. 'c99_runtime'
  4592. Target provides a full C99 runtime.
  4593. 'correct_iso_cpp_string_wchar_protos'
  4594. Target 'string.h' and 'wchar.h' headers provide C++ required
  4595. overloads for 'strchr' etc. functions.
  4596. 'dummy_wcsftime'
  4597. Target uses a dummy 'wcsftime' function that always returns zero.
  4598. 'fd_truncate'
  4599. Target can truncate a file from a file descriptor, as used by
  4600. 'libgfortran/io/unix.c:fd_truncate'; i.e. 'ftruncate' or 'chsize'.
  4601. 'freestanding'
  4602. Target is 'freestanding' as defined in section 4 of the C99
  4603. standard. Effectively, it is a target which supports no extra
  4604. headers or libraries other than what is considered essential.
  4605. 'gettimeofday'
  4606. Target supports 'gettimeofday'.
  4607. 'init_priority'
  4608. Target supports constructors with initialization priority
  4609. arguments.
  4610. 'inttypes_types'
  4611. Target has the basic signed and unsigned types in 'inttypes.h'.
  4612. This is for tests that GCC's notions of these types agree with
  4613. those in the header, as some systems have only 'inttypes.h'.
  4614. 'lax_strtofp'
  4615. Target might have errors of a few ULP in string to floating-point
  4616. conversion functions and overflow is not always detected correctly
  4617. by those functions.
  4618. 'mempcpy'
  4619. Target provides 'mempcpy' function.
  4620. 'mmap'
  4621. Target supports 'mmap'.
  4622. 'newlib'
  4623. Target supports Newlib.
  4624. 'pow10'
  4625. Target provides 'pow10' function.
  4626. 'pthread'
  4627. Target can compile using 'pthread.h' with no errors or warnings.
  4628. 'pthread_h'
  4629. Target has 'pthread.h'.
  4630. 'run_expensive_tests'
  4631. Expensive testcases (usually those that consume excessive amounts
  4632. of CPU time) should be run on this target. This can be enabled by
  4633. setting the 'GCC_TEST_RUN_EXPENSIVE' environment variable to a
  4634. non-empty string.
  4635. 'simulator'
  4636. Test system runs executables on a simulator (i.e. slowly) rather
  4637. than hardware (i.e. fast).
  4638. 'signal'
  4639. Target has 'signal.h'.
  4640. 'stabs'
  4641. Target supports the stabs debugging format.
  4642. 'stdint_types'
  4643. Target has the basic signed and unsigned C types in 'stdint.h'.
  4644. This will be obsolete when GCC ensures a working 'stdint.h' for all
  4645. targets.
  4646. 'stpcpy'
  4647. Target provides 'stpcpy' function.
  4648. 'trampolines'
  4649. Target supports trampolines.
  4650. 'uclibc'
  4651. Target supports uClibc.
  4652. 'unwrapped'
  4653. Target does not use a status wrapper.
  4654. 'vxworks_kernel'
  4655. Target is a VxWorks kernel.
  4656. 'vxworks_rtp'
  4657. Target is a VxWorks RTP.
  4658. 'wchar'
  4659. Target supports wide characters.
  4660. 7.2.3.13 Other attributes
  4661. .........................
  4662. 'automatic_stack_alignment'
  4663. Target supports automatic stack alignment.
  4664. 'branch_cost'
  4665. Target supports '-branch-cost=N'.
  4666. 'cxa_atexit'
  4667. Target uses '__cxa_atexit'.
  4668. 'default_packed'
  4669. Target has packed layout of structure members by default.
  4670. 'fgraphite'
  4671. Target supports Graphite optimizations.
  4672. 'fixed_point'
  4673. Target supports fixed-point extension to C.
  4674. 'fopenacc'
  4675. Target supports OpenACC via '-fopenacc'.
  4676. 'fopenmp'
  4677. Target supports OpenMP via '-fopenmp'.
  4678. 'fpic'
  4679. Target supports '-fpic' and '-fPIC'.
  4680. 'freorder'
  4681. Target supports '-freorder-blocks-and-partition'.
  4682. 'fstack_protector'
  4683. Target supports '-fstack-protector'.
  4684. 'gas'
  4685. Target uses GNU 'as'.
  4686. 'gc_sections'
  4687. Target supports '--gc-sections'.
  4688. 'gld'
  4689. Target uses GNU 'ld'.
  4690. 'keeps_null_pointer_checks'
  4691. Target keeps null pointer checks, either due to the use of
  4692. '-fno-delete-null-pointer-checks' or hardwired into the target.
  4693. 'lto'
  4694. Compiler has been configured to support link-time optimization
  4695. (LTO).
  4696. 'naked_functions'
  4697. Target supports the 'naked' function attribute.
  4698. 'named_sections'
  4699. Target supports named sections.
  4700. 'natural_alignment_32'
  4701. Target uses natural alignment (aligned to type size) for types of
  4702. 32 bits or less.
  4703. 'target_natural_alignment_64'
  4704. Target uses natural alignment (aligned to type size) for types of
  4705. 64 bits or less.
  4706. 'nonpic'
  4707. Target does not generate PIC by default.
  4708. 'pie_enabled'
  4709. Target generates PIE by default.
  4710. 'pcc_bitfield_type_matters'
  4711. Target defines 'PCC_BITFIELD_TYPE_MATTERS'.
  4712. 'pe_aligned_commons'
  4713. Target supports '-mpe-aligned-commons'.
  4714. 'pie'
  4715. Target supports '-pie', '-fpie' and '-fPIE'.
  4716. 'rdynamic'
  4717. Target supports '-rdynamic'.
  4718. 'section_anchors'
  4719. Target supports section anchors.
  4720. 'short_enums'
  4721. Target defaults to short enums.
  4722. 'stack_size'
  4723. Target has limited stack size. The stack size limit can be
  4724. obtained using the STACK_SIZE macro defined by *note
  4725. 'dg-add-options' feature 'stack_size': stack_size_ao.
  4726. 'static'
  4727. Target supports '-static'.
  4728. 'static_libgfortran'
  4729. Target supports statically linking 'libgfortran'.
  4730. 'string_merging'
  4731. Target supports merging string constants at link time.
  4732. 'ucn'
  4733. Target supports compiling and assembling UCN.
  4734. 'ucn_nocache'
  4735. Including the options used to compile this particular test, the
  4736. target supports compiling and assembling UCN.
  4737. 'unaligned_stack'
  4738. Target does not guarantee that its 'STACK_BOUNDARY' is greater than
  4739. or equal to the required vector alignment.
  4740. 'vector_alignment_reachable'
  4741. Vector alignment is reachable for types of 32 bits or less.
  4742. 'vector_alignment_reachable_for_64bit'
  4743. Vector alignment is reachable for types of 64 bits or less.
  4744. 'wchar_t_char16_t_compatible'
  4745. Target supports 'wchar_t' that is compatible with 'char16_t'.
  4746. 'wchar_t_char32_t_compatible'
  4747. Target supports 'wchar_t' that is compatible with 'char32_t'.
  4748. 'comdat_group'
  4749. Target uses comdat groups.
  4750. 7.2.3.14 Local to tests in 'gcc.target/i386'
  4751. ............................................
  4752. '3dnow'
  4753. Target supports compiling '3dnow' instructions.
  4754. 'aes'
  4755. Target supports compiling 'aes' instructions.
  4756. 'fma4'
  4757. Target supports compiling 'fma4' instructions.
  4758. 'ms_hook_prologue'
  4759. Target supports attribute 'ms_hook_prologue'.
  4760. 'pclmul'
  4761. Target supports compiling 'pclmul' instructions.
  4762. 'sse3'
  4763. Target supports compiling 'sse3' instructions.
  4764. 'sse4'
  4765. Target supports compiling 'sse4' instructions.
  4766. 'sse4a'
  4767. Target supports compiling 'sse4a' instructions.
  4768. 'ssse3'
  4769. Target supports compiling 'ssse3' instructions.
  4770. 'vaes'
  4771. Target supports compiling 'vaes' instructions.
  4772. 'vpclmul'
  4773. Target supports compiling 'vpclmul' instructions.
  4774. 'xop'
  4775. Target supports compiling 'xop' instructions.
  4776. 7.2.3.15 Local to tests in 'gcc.target/spu/ea'
  4777. ..............................................
  4778. 'ealib'
  4779. Target '__ea' library functions are available.
  4780. 7.2.3.16 Local to tests in 'gcc.test-framework'
  4781. ...............................................
  4782. 'no'
  4783. Always returns 0.
  4784. 'yes'
  4785. Always returns 1.
  4786. 
  4787. File: gccint.info, Node: Add Options, Next: Require Support, Prev: Effective-Target Keywords, Up: Test Directives
  4788. 7.2.4 Features for 'dg-add-options'
  4789. -----------------------------------
  4790. The supported values of FEATURE for directive 'dg-add-options' are:
  4791. 'arm_fp'
  4792. '__ARM_FP' definition. Only ARM targets support this feature, and
  4793. only then in certain modes; see the *note arm_fp_ok effective
  4794. target keyword: arm_fp_ok.
  4795. 'arm_neon'
  4796. NEON support. Only ARM targets support this feature, and only then
  4797. in certain modes; see the *note arm_neon_ok effective target
  4798. keyword: arm_neon_ok.
  4799. 'arm_fp16'
  4800. VFP half-precision floating point support. This does not select
  4801. the FP16 format; for that, use *note arm_fp16_ieee: arm_fp16_ieee.
  4802. or *note arm_fp16_alternative: arm_fp16_alternative. instead. This
  4803. feature is only supported by ARM targets and then only in certain
  4804. modes; see the *note arm_fp16_ok effective target keyword:
  4805. arm_fp16_ok.
  4806. 'arm_fp16_ieee'
  4807. ARM IEEE 754-2008 format VFP half-precision floating point support.
  4808. This feature is only supported by ARM targets and then only in
  4809. certain modes; see the *note arm_fp16_ok effective target keyword:
  4810. arm_fp16_ok.
  4811. 'arm_fp16_alternative'
  4812. ARM Alternative format VFP half-precision floating point support.
  4813. This feature is only supported by ARM targets and then only in
  4814. certain modes; see the *note arm_fp16_ok effective target keyword:
  4815. arm_fp16_ok.
  4816. 'arm_neon_fp16'
  4817. NEON and half-precision floating point support. Only ARM targets
  4818. support this feature, and only then in certain modes; see the *note
  4819. arm_neon_fp16_ok effective target keyword: arm_neon_fp16_ok.
  4820. 'arm_vfp3'
  4821. arm vfp3 floating point support; see the *note arm_vfp3_ok
  4822. effective target keyword: arm_vfp3_ok.
  4823. 'arm_v8_1a_neon'
  4824. Add options for ARMv8.1-A with Adv.SIMD support, if this is
  4825. supported by the target; see the *note arm_v8_1a_neon_ok:
  4826. arm_v8_1a_neon_ok. effective target keyword.
  4827. 'arm_v8_2a_fp16_scalar'
  4828. Add options for ARMv8.2-A with scalar FP16 support, if this is
  4829. supported by the target; see the *note arm_v8_2a_fp16_scalar_ok:
  4830. arm_v8_2a_fp16_scalar_ok. effective target keyword.
  4831. 'arm_v8_2a_fp16_neon'
  4832. Add options for ARMv8.2-A with Adv.SIMD FP16 support, if this is
  4833. supported by the target; see the *note arm_v8_2a_fp16_neon_ok:
  4834. arm_v8_2a_fp16_neon_ok. effective target keyword.
  4835. 'arm_v8_2a_dotprod_neon'
  4836. Add options for ARMv8.2-A with Adv.SIMD Dot Product support, if
  4837. this is supported by the target; see the *note
  4838. arm_v8_2a_dotprod_neon_ok:: effective target keyword.
  4839. 'arm_fp16fml_neon'
  4840. Add options to enable generation of the 'VFMAL' and 'VFMSL'
  4841. instructions, if this is supported by the target; see the *note
  4842. arm_fp16fml_neon_ok:: effective target keyword.
  4843. 'bind_pic_locally'
  4844. Add the target-specific flags needed to enable functions to bind
  4845. locally when using pic/PIC passes in the testsuite.
  4846. 'c99_runtime'
  4847. Add the target-specific flags needed to access the C99 runtime.
  4848. 'floatN'
  4849. Add the target-specific flags needed to use the '_FloatN' type.
  4850. 'floatNx'
  4851. Add the target-specific flags needed to use the '_FloatNx' type.
  4852. 'ieee'
  4853. Add the target-specific flags needed to enable full IEEE compliance
  4854. mode.
  4855. 'mips16_attribute'
  4856. 'mips16' function attributes. Only MIPS targets support this
  4857. feature, and only then in certain modes.
  4858. 'stack_size'
  4859. Add the flags needed to define macro STACK_SIZE and set it to the
  4860. stack size limit associated with the *note 'stack_size' effective
  4861. target: stack_size_et.
  4862. 'tls'
  4863. Add the target-specific flags needed to use thread-local storage.
  4864. 
  4865. File: gccint.info, Node: Require Support, Next: Final Actions, Prev: Add Options, Up: Test Directives
  4866. 7.2.5 Variants of 'dg-require-SUPPORT'
  4867. --------------------------------------
  4868. A few of the 'dg-require' directives take arguments.
  4869. 'dg-require-iconv CODESET'
  4870. Skip the test if the target does not support iconv. CODESET is the
  4871. codeset to convert to.
  4872. 'dg-require-profiling PROFOPT'
  4873. Skip the test if the target does not support profiling with option
  4874. PROFOPT.
  4875. 'dg-require-stack-check CHECK'
  4876. Skip the test if the target does not support the '-fstack-check'
  4877. option. If CHECK is '""', support for '-fstack-check' is checked,
  4878. for '-fstack-check=("CHECK")' otherwise.
  4879. 'dg-require-stack-size SIZE'
  4880. Skip the test if the target does not support a stack size of SIZE.
  4881. 'dg-require-visibility VIS'
  4882. Skip the test if the target does not support the 'visibility'
  4883. attribute. If VIS is '""', support for 'visibility("hidden")' is
  4884. checked, for 'visibility("VIS")' otherwise.
  4885. The original 'dg-require' directives were defined before there was
  4886. support for effective-target keywords. The directives that do not take
  4887. arguments could be replaced with effective-target keywords.
  4888. 'dg-require-alias ""'
  4889. Skip the test if the target does not support the 'alias' attribute.
  4890. 'dg-require-ascii-locale ""'
  4891. Skip the test if the host does not support an ASCII locale.
  4892. 'dg-require-compat-dfp ""'
  4893. Skip this test unless both compilers in a 'compat' testsuite
  4894. support decimal floating point.
  4895. 'dg-require-cxa-atexit ""'
  4896. Skip the test if the target does not support '__cxa_atexit'. This
  4897. is equivalent to 'dg-require-effective-target cxa_atexit'.
  4898. 'dg-require-dll ""'
  4899. Skip the test if the target does not support DLL attributes.
  4900. 'dg-require-fork ""'
  4901. Skip the test if the target does not support 'fork'.
  4902. 'dg-require-gc-sections ""'
  4903. Skip the test if the target's linker does not support the
  4904. '--gc-sections' flags. This is equivalent to
  4905. 'dg-require-effective-target gc-sections'.
  4906. 'dg-require-host-local ""'
  4907. Skip the test if the host is remote, rather than the same as the
  4908. build system. Some tests are incompatible with DejaGnu's handling
  4909. of remote hosts, which involves copying the source file to the host
  4910. and compiling it with a relative path and "'-o a.out'".
  4911. 'dg-require-mkfifo ""'
  4912. Skip the test if the target does not support 'mkfifo'.
  4913. 'dg-require-named-sections ""'
  4914. Skip the test is the target does not support named sections. This
  4915. is equivalent to 'dg-require-effective-target named_sections'.
  4916. 'dg-require-weak ""'
  4917. Skip the test if the target does not support weak symbols.
  4918. 'dg-require-weak-override ""'
  4919. Skip the test if the target does not support overriding weak
  4920. symbols.
  4921. 
  4922. File: gccint.info, Node: Final Actions, Prev: Require Support, Up: Test Directives
  4923. 7.2.6 Commands for use in 'dg-final'
  4924. ------------------------------------
  4925. The GCC testsuite defines the following directives to be used within
  4926. 'dg-final'.
  4927. 7.2.6.1 Scan a particular file
  4928. ..............................
  4929. 'scan-file FILENAME REGEXP [{ target/xfail SELECTOR }]'
  4930. Passes if REGEXP matches text in FILENAME.
  4931. 'scan-file-not FILENAME REGEXP [{ target/xfail SELECTOR }]'
  4932. Passes if REGEXP does not match text in FILENAME.
  4933. 'scan-module MODULE REGEXP [{ target/xfail SELECTOR }]'
  4934. Passes if REGEXP matches in Fortran module MODULE.
  4935. 7.2.6.2 Scan the assembly output
  4936. ................................
  4937. 'scan-assembler REGEX [{ target/xfail SELECTOR }]'
  4938. Passes if REGEX matches text in the test's assembler output.
  4939. 'scan-assembler-not REGEX [{ target/xfail SELECTOR }]'
  4940. Passes if REGEX does not match text in the test's assembler output.
  4941. 'scan-assembler-times REGEX NUM [{ target/xfail SELECTOR }]'
  4942. Passes if REGEX is matched exactly NUM times in the test's
  4943. assembler output.
  4944. 'scan-assembler-dem REGEX [{ target/xfail SELECTOR }]'
  4945. Passes if REGEX matches text in the test's demangled assembler
  4946. output.
  4947. 'scan-assembler-dem-not REGEX [{ target/xfail SELECTOR }]'
  4948. Passes if REGEX does not match text in the test's demangled
  4949. assembler output.
  4950. 'scan-hidden SYMBOL [{ target/xfail SELECTOR }]'
  4951. Passes if SYMBOL is defined as a hidden symbol in the test's
  4952. assembly output.
  4953. 'scan-not-hidden SYMBOL [{ target/xfail SELECTOR }]'
  4954. Passes if SYMBOL is not defined as a hidden symbol in the test's
  4955. assembly output.
  4956. 7.2.6.3 Scan optimization dump files
  4957. ....................................
  4958. These commands are available for KIND of 'tree', 'rtl', and 'ipa'.
  4959. 'scan-KIND-dump REGEX SUFFIX [{ target/xfail SELECTOR }]'
  4960. Passes if REGEX matches text in the dump file with suffix SUFFIX.
  4961. 'scan-KIND-dump-not REGEX SUFFIX [{ target/xfail SELECTOR }]'
  4962. Passes if REGEX does not match text in the dump file with suffix
  4963. SUFFIX.
  4964. 'scan-KIND-dump-times REGEX NUM SUFFIX [{ target/xfail SELECTOR }]'
  4965. Passes if REGEX is found exactly NUM times in the dump file with
  4966. suffix SUFFIX.
  4967. 'scan-KIND-dump-dem REGEX SUFFIX [{ target/xfail SELECTOR }]'
  4968. Passes if REGEX matches demangled text in the dump file with suffix
  4969. SUFFIX.
  4970. 'scan-KIND-dump-dem-not REGEX SUFFIX [{ target/xfail SELECTOR }]'
  4971. Passes if REGEX does not match demangled text in the dump file with
  4972. suffix SUFFIX.
  4973. 7.2.6.4 Verify that an output files exists or not
  4974. .................................................
  4975. 'output-exists [{ target/xfail SELECTOR }]'
  4976. Passes if compiler output file exists.
  4977. 'output-exists-not [{ target/xfail SELECTOR }]'
  4978. Passes if compiler output file does not exist.
  4979. 7.2.6.5 Check for LTO tests
  4980. ...........................
  4981. 'scan-symbol REGEXP [{ target/xfail SELECTOR }]'
  4982. Passes if the pattern is present in the final executable.
  4983. 7.2.6.6 Checks for 'gcov' tests
  4984. ...............................
  4985. 'run-gcov SOURCEFILE'
  4986. Check line counts in 'gcov' tests.
  4987. 'run-gcov [branches] [calls] { OPTS SOURCEFILE }'
  4988. Check branch and/or call counts, in addition to line counts, in
  4989. 'gcov' tests.
  4990. 7.2.6.7 Clean up generated test files
  4991. .....................................
  4992. Usually the test-framework removes files that were generated during
  4993. testing. If a testcase, for example, uses any dumping mechanism to
  4994. inspect a passes dump file, the testsuite recognized the dump option
  4995. passed to the tool and schedules a final cleanup to remove these files.
  4996. There are, however, following additional cleanup directives that can be
  4997. used to annotate a testcase "manually".
  4998. 'cleanup-coverage-files'
  4999. Removes coverage data files generated for this test.
  5000. 'cleanup-modules "LIST-OF-EXTRA-MODULES"'
  5001. Removes Fortran module files generated for this test, excluding the
  5002. module names listed in keep-modules. Cleaning up module files is
  5003. usually done automatically by the testsuite by looking at the
  5004. source files and removing the modules after the test has been
  5005. executed.
  5006. module MoD1
  5007. end module MoD1
  5008. module Mod2
  5009. end module Mod2
  5010. module moD3
  5011. end module moD3
  5012. module mod4
  5013. end module mod4
  5014. ! { dg-final { cleanup-modules "mod1 mod2" } } ! redundant
  5015. ! { dg-final { keep-modules "mod3 mod4" } }
  5016. 'keep-modules "LIST-OF-MODULES-NOT-TO-DELETE"'
  5017. Whitespace separated list of module names that should not be
  5018. deleted by cleanup-modules. If the list of modules is empty, all
  5019. modules defined in this file are kept.
  5020. module maybe_unneeded
  5021. end module maybe_unneeded
  5022. module keep1
  5023. end module keep1
  5024. module keep2
  5025. end module keep2
  5026. ! { dg-final { keep-modules "keep1 keep2" } } ! just keep these two
  5027. ! { dg-final { keep-modules "" } } ! keep all
  5028. 'dg-keep-saved-temps "LIST-OF-SUFFIXES-NOT-TO-DELETE"'
  5029. Whitespace separated list of suffixes that should not be deleted
  5030. automatically in a testcase that uses '-save-temps'.
  5031. // { dg-options "-save-temps -fpch-preprocess -I." }
  5032. int main() { return 0; }
  5033. // { dg-keep-saved-temps ".s" } ! just keep assembler file
  5034. // { dg-keep-saved-temps ".s" ".i" } ! ... and .i
  5035. // { dg-keep-saved-temps ".ii" ".o" } ! or just .ii and .o
  5036. 'cleanup-profile-file'
  5037. Removes profiling files generated for this test.
  5038. 'cleanup-repo-files'
  5039. Removes files generated for this test for '-frepo'.
  5040. 
  5041. File: gccint.info, Node: Ada Tests, Next: C Tests, Prev: Test Directives, Up: Testsuites
  5042. 7.3 Ada Language Testsuites
  5043. ===========================
  5044. The Ada testsuite includes executable tests from the ACATS testsuite,
  5045. publicly available at <http://www.ada-auth.org/acats.html>.
  5046. These tests are integrated in the GCC testsuite in the 'ada/acats'
  5047. directory, and enabled automatically when running 'make check', assuming
  5048. the Ada language has been enabled when configuring GCC.
  5049. You can also run the Ada testsuite independently, using 'make
  5050. check-ada', or run a subset of the tests by specifying which chapter to
  5051. run, e.g.:
  5052. $ make check-ada CHAPTERS="c3 c9"
  5053. The tests are organized by directory, each directory corresponding to a
  5054. chapter of the Ada Reference Manual. So for example, 'c9' corresponds
  5055. to chapter 9, which deals with tasking features of the language.
  5056. The tests are run using two 'sh' scripts: 'run_acats' and 'run_all.sh'.
  5057. To run the tests using a simulator or a cross target, see the small
  5058. customization section at the top of 'run_all.sh'.
  5059. These tests are run using the build tree: they can be run without doing
  5060. a 'make install'.
  5061. 
  5062. File: gccint.info, Node: C Tests, Next: LTO Testing, Prev: Ada Tests, Up: Testsuites
  5063. 7.4 C Language Testsuites
  5064. =========================
  5065. GCC contains the following C language testsuites, in the 'gcc/testsuite'
  5066. directory:
  5067. 'gcc.dg'
  5068. This contains tests of particular features of the C compiler, using
  5069. the more modern 'dg' harness. Correctness tests for various
  5070. compiler features should go here if possible.
  5071. Magic comments determine whether the file is preprocessed,
  5072. compiled, linked or run. In these tests, error and warning message
  5073. texts are compared against expected texts or regular expressions
  5074. given in comments. These tests are run with the options '-ansi
  5075. -pedantic' unless other options are given in the test. Except as
  5076. noted below they are not run with multiple optimization options.
  5077. 'gcc.dg/compat'
  5078. This subdirectory contains tests for binary compatibility using
  5079. 'lib/compat.exp', which in turn uses the language-independent
  5080. support (*note Support for testing binary compatibility: compat
  5081. Testing.).
  5082. 'gcc.dg/cpp'
  5083. This subdirectory contains tests of the preprocessor.
  5084. 'gcc.dg/debug'
  5085. This subdirectory contains tests for debug formats. Tests in this
  5086. subdirectory are run for each debug format that the compiler
  5087. supports.
  5088. 'gcc.dg/format'
  5089. This subdirectory contains tests of the '-Wformat' format checking.
  5090. Tests in this directory are run with and without '-DWIDE'.
  5091. 'gcc.dg/noncompile'
  5092. This subdirectory contains tests of code that should not compile
  5093. and does not need any special compilation options. They are run
  5094. with multiple optimization options, since sometimes invalid code
  5095. crashes the compiler with optimization.
  5096. 'gcc.dg/special'
  5097. FIXME: describe this.
  5098. 'gcc.c-torture'
  5099. This contains particular code fragments which have historically
  5100. broken easily. These tests are run with multiple optimization
  5101. options, so tests for features which only break at some
  5102. optimization levels belong here. This also contains tests to check
  5103. that certain optimizations occur. It might be worthwhile to
  5104. separate the correctness tests cleanly from the code quality tests,
  5105. but it hasn't been done yet.
  5106. 'gcc.c-torture/compat'
  5107. FIXME: describe this.
  5108. This directory should probably not be used for new tests.
  5109. 'gcc.c-torture/compile'
  5110. This testsuite contains test cases that should compile, but do not
  5111. need to link or run. These test cases are compiled with several
  5112. different combinations of optimization options. All warnings are
  5113. disabled for these test cases, so this directory is not suitable if
  5114. you wish to test for the presence or absence of compiler warnings.
  5115. While special options can be set, and tests disabled on specific
  5116. platforms, by the use of '.x' files, mostly these test cases should
  5117. not contain platform dependencies. FIXME: discuss how defines such
  5118. as 'STACK_SIZE' are used.
  5119. 'gcc.c-torture/execute'
  5120. This testsuite contains test cases that should compile, link and
  5121. run; otherwise the same comments as for 'gcc.c-torture/compile'
  5122. apply.
  5123. 'gcc.c-torture/execute/ieee'
  5124. This contains tests which are specific to IEEE floating point.
  5125. 'gcc.c-torture/unsorted'
  5126. FIXME: describe this.
  5127. This directory should probably not be used for new tests.
  5128. 'gcc.misc-tests'
  5129. This directory contains C tests that require special handling.
  5130. Some of these tests have individual expect files, and others share
  5131. special-purpose expect files:
  5132. 'bprob*.c'
  5133. Test '-fbranch-probabilities' using
  5134. 'gcc.misc-tests/bprob.exp', which in turn uses the generic,
  5135. language-independent framework (*note Support for testing
  5136. profile-directed optimizations: profopt Testing.).
  5137. 'gcov*.c'
  5138. Test 'gcov' output using 'gcov.exp', which in turn uses the
  5139. language-independent support (*note Support for testing gcov:
  5140. gcov Testing.).
  5141. 'i386-pf-*.c'
  5142. Test i386-specific support for data prefetch using
  5143. 'i386-prefetch.exp'.
  5144. 'gcc.test-framework'
  5145. 'dg-*.c'
  5146. Test the testsuite itself using
  5147. 'gcc.test-framework/test-framework.exp'.
  5148. FIXME: merge in 'testsuite/README.gcc' and discuss the format of test
  5149. cases and magic comments more.
  5150. 
  5151. File: gccint.info, Node: LTO Testing, Next: gcov Testing, Prev: C Tests, Up: Testsuites
  5152. 7.5 Support for testing link-time optimizations
  5153. ===============================================
  5154. Tests for link-time optimizations usually require multiple source files
  5155. that are compiled separately, perhaps with different sets of options.
  5156. There are several special-purpose test directives used for these tests.
  5157. '{ dg-lto-do DO-WHAT-KEYWORD }'
  5158. DO-WHAT-KEYWORD specifies how the test is compiled and whether it
  5159. is executed. It is one of:
  5160. 'assemble'
  5161. Compile with '-c' to produce a relocatable object file.
  5162. 'link'
  5163. Compile, assemble, and link to produce an executable file.
  5164. 'run'
  5165. Produce and run an executable file, which is expected to
  5166. return an exit code of 0.
  5167. The default is 'assemble'. That can be overridden for a set of
  5168. tests by redefining 'dg-do-what-default' within the '.exp' file for
  5169. those tests.
  5170. Unlike 'dg-do', 'dg-lto-do' does not support an optional 'target'
  5171. or 'xfail' list. Use 'dg-skip-if', 'dg-xfail-if', or
  5172. 'dg-xfail-run-if'.
  5173. '{ dg-lto-options { { OPTIONS } [{ OPTIONS }] } [{ target SELECTOR }]}'
  5174. This directive provides a list of one or more sets of compiler
  5175. options to override LTO_OPTIONS. Each test will be compiled and
  5176. run with each of these sets of options.
  5177. '{ dg-extra-ld-options OPTIONS [{ target SELECTOR }]}'
  5178. This directive adds OPTIONS to the linker options used.
  5179. '{ dg-suppress-ld-options OPTIONS [{ target SELECTOR }]}'
  5180. This directive removes OPTIONS from the set of linker options used.
  5181. 
  5182. File: gccint.info, Node: gcov Testing, Next: profopt Testing, Prev: LTO Testing, Up: Testsuites
  5183. 7.6 Support for testing 'gcov'
  5184. ==============================
  5185. Language-independent support for testing 'gcov', and for checking that
  5186. branch profiling produces expected values, is provided by the expect
  5187. file 'lib/gcov.exp'. 'gcov' tests also rely on procedures in
  5188. 'lib/gcc-dg.exp' to compile and run the test program. A typical 'gcov'
  5189. test contains the following DejaGnu commands within comments:
  5190. { dg-options "-fprofile-arcs -ftest-coverage" }
  5191. { dg-do run { target native } }
  5192. { dg-final { run-gcov sourcefile } }
  5193. Checks of 'gcov' output can include line counts, branch percentages,
  5194. and call return percentages. All of these checks are requested via
  5195. commands that appear in comments in the test's source file. Commands to
  5196. check line counts are processed by default. Commands to check branch
  5197. percentages and call return percentages are processed if the 'run-gcov'
  5198. command has arguments 'branches' or 'calls', respectively. For example,
  5199. the following specifies checking both, as well as passing '-b' to
  5200. 'gcov':
  5201. { dg-final { run-gcov branches calls { -b sourcefile } } }
  5202. A line count command appears within a comment on the source line that
  5203. is expected to get the specified count and has the form 'count(CNT)'. A
  5204. test should only check line counts for lines that will get the same
  5205. count for any architecture.
  5206. Commands to check branch percentages ('branch') and call return
  5207. percentages ('returns') are very similar to each other. A beginning
  5208. command appears on or before the first of a range of lines that will
  5209. report the percentage, and the ending command follows that range of
  5210. lines. The beginning command can include a list of percentages, all of
  5211. which are expected to be found within the range. A range is terminated
  5212. by the next command of the same kind. A command 'branch(end)' or
  5213. 'returns(end)' marks the end of a range without starting a new one. For
  5214. example:
  5215. if (i > 10 && j > i && j < 20) /* branch(27 50 75) */
  5216. /* branch(end) */
  5217. foo (i, j);
  5218. For a call return percentage, the value specified is the percentage of
  5219. calls reported to return. For a branch percentage, the value is either
  5220. the expected percentage or 100 minus that value, since the direction of
  5221. a branch can differ depending on the target or the optimization level.
  5222. Not all branches and calls need to be checked. A test should not check
  5223. for branches that might be optimized away or replaced with predicated
  5224. instructions. Don't check for calls inserted by the compiler or ones
  5225. that might be inlined or optimized away.
  5226. A single test can check for combinations of line counts, branch
  5227. percentages, and call return percentages. The command to check a line
  5228. count must appear on the line that will report that count, but commands
  5229. to check branch percentages and call return percentages can bracket the
  5230. lines that report them.
  5231. 
  5232. File: gccint.info, Node: profopt Testing, Next: compat Testing, Prev: gcov Testing, Up: Testsuites
  5233. 7.7 Support for testing profile-directed optimizations
  5234. ======================================================
  5235. The file 'profopt.exp' provides language-independent support for
  5236. checking correct execution of a test built with profile-directed
  5237. optimization. This testing requires that a test program be built and
  5238. executed twice. The first time it is compiled to generate profile data,
  5239. and the second time it is compiled to use the data that was generated
  5240. during the first execution. The second execution is to verify that the
  5241. test produces the expected results.
  5242. To check that the optimization actually generated better code, a test
  5243. can be built and run a third time with normal optimizations to verify
  5244. that the performance is better with the profile-directed optimizations.
  5245. 'profopt.exp' has the beginnings of this kind of support.
  5246. 'profopt.exp' provides generic support for profile-directed
  5247. optimizations. Each set of tests that uses it provides information
  5248. about a specific optimization:
  5249. 'tool'
  5250. tool being tested, e.g., 'gcc'
  5251. 'profile_option'
  5252. options used to generate profile data
  5253. 'feedback_option'
  5254. options used to optimize using that profile data
  5255. 'prof_ext'
  5256. suffix of profile data files
  5257. 'PROFOPT_OPTIONS'
  5258. list of options with which to run each test, similar to the lists
  5259. for torture tests
  5260. '{ dg-final-generate { LOCAL-DIRECTIVE } }'
  5261. This directive is similar to 'dg-final', but the LOCAL-DIRECTIVE is
  5262. run after the generation of profile data.
  5263. '{ dg-final-use { LOCAL-DIRECTIVE } }'
  5264. The LOCAL-DIRECTIVE is run after the profile data have been used.
  5265. 
  5266. File: gccint.info, Node: compat Testing, Next: Torture Tests, Prev: profopt Testing, Up: Testsuites
  5267. 7.8 Support for testing binary compatibility
  5268. ============================================
  5269. The file 'compat.exp' provides language-independent support for binary
  5270. compatibility testing. It supports testing interoperability of two
  5271. compilers that follow the same ABI, or of multiple sets of compiler
  5272. options that should not affect binary compatibility. It is intended to
  5273. be used for testsuites that complement ABI testsuites.
  5274. A test supported by this framework has three parts, each in a separate
  5275. source file: a main program and two pieces that interact with each other
  5276. to split up the functionality being tested.
  5277. 'TESTNAME_main.SUFFIX'
  5278. Contains the main program, which calls a function in file
  5279. 'TESTNAME_x.SUFFIX'.
  5280. 'TESTNAME_x.SUFFIX'
  5281. Contains at least one call to a function in 'TESTNAME_y.SUFFIX'.
  5282. 'TESTNAME_y.SUFFIX'
  5283. Shares data with, or gets arguments from, 'TESTNAME_x.SUFFIX'.
  5284. Within each test, the main program and one functional piece are
  5285. compiled by the GCC under test. The other piece can be compiled by an
  5286. alternate compiler. If no alternate compiler is specified, then all
  5287. three source files are all compiled by the GCC under test. You can
  5288. specify pairs of sets of compiler options. The first element of such a
  5289. pair specifies options used with the GCC under test, and the second
  5290. element of the pair specifies options used with the alternate compiler.
  5291. Each test is compiled with each pair of options.
  5292. 'compat.exp' defines default pairs of compiler options. These can be
  5293. overridden by defining the environment variable 'COMPAT_OPTIONS' as:
  5294. COMPAT_OPTIONS="[list [list {TST1} {ALT1}]
  5295. ...[list {TSTN} {ALTN}]]"
  5296. where TSTI and ALTI are lists of options, with TSTI used by the
  5297. compiler under test and ALTI used by the alternate compiler. For
  5298. example, with '[list [list {-g -O0} {-O3}] [list {-fpic} {-fPIC -O2}]]',
  5299. the test is first built with '-g -O0' by the compiler under test and
  5300. with '-O3' by the alternate compiler. The test is built a second time
  5301. using '-fpic' by the compiler under test and '-fPIC -O2' by the
  5302. alternate compiler.
  5303. An alternate compiler is specified by defining an environment variable
  5304. to be the full pathname of an installed compiler; for C define
  5305. 'ALT_CC_UNDER_TEST', and for C++ define 'ALT_CXX_UNDER_TEST'. These
  5306. will be written to the 'site.exp' file used by DejaGnu. The default is
  5307. to build each test with the compiler under test using the first of each
  5308. pair of compiler options from 'COMPAT_OPTIONS'. When
  5309. 'ALT_CC_UNDER_TEST' or 'ALT_CXX_UNDER_TEST' is 'same', each test is
  5310. built using the compiler under test but with combinations of the options
  5311. from 'COMPAT_OPTIONS'.
  5312. To run only the C++ compatibility suite using the compiler under test
  5313. and another version of GCC using specific compiler options, do the
  5314. following from 'OBJDIR/gcc':
  5315. rm site.exp
  5316. make -k \
  5317. ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \
  5318. COMPAT_OPTIONS="LISTS AS SHOWN ABOVE" \
  5319. check-c++ \
  5320. RUNTESTFLAGS="compat.exp"
  5321. A test that fails when the source files are compiled with different
  5322. compilers, but passes when the files are compiled with the same
  5323. compiler, demonstrates incompatibility of the generated code or runtime
  5324. support. A test that fails for the alternate compiler but passes for
  5325. the compiler under test probably tests for a bug that was fixed in the
  5326. compiler under test but is present in the alternate compiler.
  5327. The binary compatibility tests support a small number of test framework
  5328. commands that appear within comments in a test file.
  5329. 'dg-require-*'
  5330. These commands can be used in 'TESTNAME_main.SUFFIX' to skip the
  5331. test if specific support is not available on the target.
  5332. 'dg-options'
  5333. The specified options are used for compiling this particular source
  5334. file, appended to the options from 'COMPAT_OPTIONS'. When this
  5335. command appears in 'TESTNAME_main.SUFFIX' the options are also used
  5336. to link the test program.
  5337. 'dg-xfail-if'
  5338. This command can be used in a secondary source file to specify that
  5339. compilation is expected to fail for particular options on
  5340. particular targets.
  5341. 
  5342. File: gccint.info, Node: Torture Tests, Next: GIMPLE Tests, Prev: compat Testing, Up: Testsuites
  5343. 7.9 Support for torture testing using multiple options
  5344. ======================================================
  5345. Throughout the compiler testsuite there are several directories whose
  5346. tests are run multiple times, each with a different set of options.
  5347. These are known as torture tests. 'lib/torture-options.exp' defines
  5348. procedures to set up these lists:
  5349. 'torture-init'
  5350. Initialize use of torture lists.
  5351. 'set-torture-options'
  5352. Set lists of torture options to use for tests with and without
  5353. loops. Optionally combine a set of torture options with a set of
  5354. other options, as is done with Objective-C runtime options.
  5355. 'torture-finish'
  5356. Finalize use of torture lists.
  5357. The '.exp' file for a set of tests that use torture options must
  5358. include calls to these three procedures if:
  5359. * It calls 'gcc-dg-runtest' and overrides DG_TORTURE_OPTIONS.
  5360. * It calls ${TOOL}'-torture' or ${TOOL}'-torture-execute', where TOOL
  5361. is 'c', 'fortran', or 'objc'.
  5362. * It calls 'dg-pch'.
  5363. It is not necessary for a '.exp' file that calls 'gcc-dg-runtest' to
  5364. call the torture procedures if the tests should use the list in
  5365. DG_TORTURE_OPTIONS defined in 'gcc-dg.exp'.
  5366. Most uses of torture options can override the default lists by defining
  5367. TORTURE_OPTIONS or add to the default list by defining
  5368. ADDITIONAL_TORTURE_OPTIONS. Define these in a '.dejagnurc' file or add
  5369. them to the 'site.exp' file; for example
  5370. set ADDITIONAL_TORTURE_OPTIONS [list \
  5371. { -O2 -ftree-loop-linear } \
  5372. { -O2 -fpeel-loops } ]
  5373. 
  5374. File: gccint.info, Node: GIMPLE Tests, Next: RTL Tests, Prev: Torture Tests, Up: Testsuites
  5375. 7.10 Support for testing GIMPLE passes
  5376. ======================================
  5377. As of gcc 7, C functions can be tagged with '__GIMPLE' to indicate that
  5378. the function body will be GIMPLE, rather than C. The compiler requires
  5379. the option '-fgimple' to enable this functionality. For example:
  5380. /* { dg-do compile } */
  5381. /* { dg-options "-O -fgimple" } */
  5382. void __GIMPLE (startwith ("dse2")) foo ()
  5383. {
  5384. int a;
  5385. bb_2:
  5386. if (a > 4)
  5387. goto bb_3;
  5388. else
  5389. goto bb_4;
  5390. bb_3:
  5391. a_2 = 10;
  5392. goto bb_5;
  5393. bb_4:
  5394. a_3 = 20;
  5395. bb_5:
  5396. a_1 = __PHI (bb_3: a_2, bb_4: a_3);
  5397. a_4 = a_1 + 4;
  5398. return;
  5399. }
  5400. The 'startwith' argument indicates at which pass to begin.
  5401. Use the dump modifier '-gimple' (e.g. '-fdump-tree-all-gimple') to
  5402. make tree dumps more closely follow the format accepted by the GIMPLE
  5403. parser.
  5404. Example DejaGnu tests of GIMPLE can be seen in the source tree at
  5405. 'gcc/testsuite/gcc.dg/gimplefe-*.c'.
  5406. The '__GIMPLE' parser is integrated with the C tokenizer and
  5407. preprocessor, so it should be possible to use macros to build out test
  5408. coverage.
  5409. 
  5410. File: gccint.info, Node: RTL Tests, Prev: GIMPLE Tests, Up: Testsuites
  5411. 7.11 Support for testing RTL passes
  5412. ===================================
  5413. As of gcc 7, C functions can be tagged with '__RTL' to indicate that the
  5414. function body will be RTL, rather than C. For example:
  5415. double __RTL (startwith ("ira")) test (struct foo *f, const struct bar *b)
  5416. {
  5417. (function "test"
  5418. [...snip; various directives go in here...]
  5419. ) ;; function "test"
  5420. }
  5421. The 'startwith' argument indicates at which pass to begin.
  5422. The parser expects the RTL body to be in the format emitted by this
  5423. dumping function:
  5424. DEBUG_FUNCTION void
  5425. print_rtx_function (FILE *outfile, function *fn, bool compact);
  5426. when "compact" is true. So you can capture RTL in the correct format
  5427. from the debugger using:
  5428. (gdb) print_rtx_function (stderr, cfun, true);
  5429. and copy and paste the output into the body of the C function.
  5430. Example DejaGnu tests of RTL can be seen in the source tree under
  5431. 'gcc/testsuite/gcc.dg/rtl'.
  5432. The '__RTL' parser is not integrated with the C tokenizer or
  5433. preprocessor, and works simply by reading the relevant lines within the
  5434. braces. In particular, the RTL body must be on separate lines from the
  5435. enclosing braces, and the preprocessor is not usable within it.
  5436. 
  5437. File: gccint.info, Node: Options, Next: Passes, Prev: Testsuites, Up: Top
  5438. 8 Option specification files
  5439. ****************************
  5440. Most GCC command-line options are described by special option definition
  5441. files, the names of which conventionally end in '.opt'. This chapter
  5442. describes the format of these files.
  5443. * Menu:
  5444. * Option file format:: The general layout of the files
  5445. * Option properties:: Supported option properties
  5446. 
  5447. File: gccint.info, Node: Option file format, Next: Option properties, Up: Options
  5448. 8.1 Option file format
  5449. ======================
  5450. Option files are a simple list of records in which each field occupies
  5451. its own line and in which the records themselves are separated by blank
  5452. lines. Comments may appear on their own line anywhere within the file
  5453. and are preceded by semicolons. Whitespace is allowed before the
  5454. semicolon.
  5455. The files can contain the following types of record:
  5456. * A language definition record. These records have two fields: the
  5457. string 'Language' and the name of the language. Once a language
  5458. has been declared in this way, it can be used as an option
  5459. property. *Note Option properties::.
  5460. * A target specific save record to save additional information.
  5461. These records have two fields: the string 'TargetSave', and a
  5462. declaration type to go in the 'cl_target_option' structure.
  5463. * A variable record to define a variable used to store option
  5464. information. These records have two fields: the string 'Variable',
  5465. and a declaration of the type and name of the variable, optionally
  5466. with an initializer (but without any trailing ';'). These records
  5467. may be used for variables used for many options where declaring the
  5468. initializer in a single option definition record, or duplicating it
  5469. in many records, would be inappropriate, or for variables set in
  5470. option handlers rather than referenced by 'Var' properties.
  5471. * A variable record to define a variable used to store option
  5472. information. These records have two fields: the string
  5473. 'TargetVariable', and a declaration of the type and name of the
  5474. variable, optionally with an initializer (but without any trailing
  5475. ';'). 'TargetVariable' is a combination of 'Variable' and
  5476. 'TargetSave' records in that the variable is defined in the
  5477. 'gcc_options' structure, but these variables are also stored in the
  5478. 'cl_target_option' structure. The variables are saved in the
  5479. target save code and restored in the target restore code.
  5480. * A variable record to record any additional files that the
  5481. 'options.h' file should include. This is useful to provide
  5482. enumeration or structure definitions needed for target variables.
  5483. These records have two fields: the string 'HeaderInclude' and the
  5484. name of the include file.
  5485. * A variable record to record any additional files that the
  5486. 'options.c' or 'options-save.c' file should include. This is
  5487. useful to provide inline functions needed for target variables
  5488. and/or '#ifdef' sequences to properly set up the initialization.
  5489. These records have two fields: the string 'SourceInclude' and the
  5490. name of the include file.
  5491. * An enumeration record to define a set of strings that may be used
  5492. as arguments to an option or options. These records have three
  5493. fields: the string 'Enum', a space-separated list of properties and
  5494. help text used to describe the set of strings in '--help' output.
  5495. Properties use the same format as option properties; the following
  5496. are valid:
  5497. 'Name(NAME)'
  5498. This property is required; NAME must be a name (suitable for
  5499. use in C identifiers) used to identify the set of strings in
  5500. 'Enum' option properties.
  5501. 'Type(TYPE)'
  5502. This property is required; TYPE is the C type for variables
  5503. set by options using this enumeration together with 'Var'.
  5504. 'UnknownError(MESSAGE)'
  5505. The message MESSAGE will be used as an error message if the
  5506. argument is invalid; for enumerations without 'UnknownError',
  5507. a generic error message is used. MESSAGE should contain a
  5508. single '%qs' format, which will be used to format the invalid
  5509. argument.
  5510. * An enumeration value record to define one of the strings in a set
  5511. given in an 'Enum' record. These records have two fields: the
  5512. string 'EnumValue' and a space-separated list of properties.
  5513. Properties use the same format as option properties; the following
  5514. are valid:
  5515. 'Enum(NAME)'
  5516. This property is required; NAME says which 'Enum' record this
  5517. 'EnumValue' record corresponds to.
  5518. 'String(STRING)'
  5519. This property is required; STRING is the string option
  5520. argument being described by this record.
  5521. 'Value(VALUE)'
  5522. This property is required; it says what value (representable
  5523. as 'int') should be used for the given string.
  5524. 'Canonical'
  5525. This property is optional. If present, it says the present
  5526. string is the canonical one among all those with the given
  5527. value. Other strings yielding that value will be mapped to
  5528. this one so specs do not need to handle them.
  5529. 'DriverOnly'
  5530. This property is optional. If present, the present string
  5531. will only be accepted by the driver. This is used for cases
  5532. such as '-march=native' that are processed by the driver so
  5533. that 'gcc -v' shows how the options chosen depended on the
  5534. system on which the compiler was run.
  5535. * An option definition record. These records have the following
  5536. fields:
  5537. 1. the name of the option, with the leading "-" removed
  5538. 2. a space-separated list of option properties (*note Option
  5539. properties::)
  5540. 3. the help text to use for '--help' (omitted if the second field
  5541. contains the 'Undocumented' property).
  5542. By default, all options beginning with "f", "W" or "m" are
  5543. implicitly assumed to take a "no-" form. This form should not be
  5544. listed separately. If an option beginning with one of these
  5545. letters does not have a "no-" form, you can use the
  5546. 'RejectNegative' property to reject it.
  5547. The help text is automatically line-wrapped before being displayed.
  5548. Normally the name of the option is printed on the left-hand side of
  5549. the output and the help text is printed on the right. However, if
  5550. the help text contains a tab character, the text to the left of the
  5551. tab is used instead of the option's name and the text to the right
  5552. of the tab forms the help text. This allows you to elaborate on
  5553. what type of argument the option takes.
  5554. * A target mask record. These records have one field of the form
  5555. 'Mask(X)'. The options-processing script will automatically
  5556. allocate a bit in 'target_flags' (*note Run-time Target::) for each
  5557. mask name X and set the macro 'MASK_X' to the appropriate bitmask.
  5558. It will also declare a 'TARGET_X' macro that has the value 1 when
  5559. bit 'MASK_X' is set and 0 otherwise.
  5560. They are primarily intended to declare target masks that are not
  5561. associated with user options, either because these masks represent
  5562. internal switches or because the options are not available on all
  5563. configurations and yet the masks always need to be defined.
  5564. 
  5565. File: gccint.info, Node: Option properties, Prev: Option file format, Up: Options
  5566. 8.2 Option properties
  5567. =====================
  5568. The second field of an option record can specify any of the following
  5569. properties. When an option takes an argument, it is enclosed in
  5570. parentheses following the option property name. The parser that handles
  5571. option files is quite simplistic, and will be tricked by any nested
  5572. parentheses within the argument text itself; in this case, the entire
  5573. option argument can be wrapped in curly braces within the parentheses to
  5574. demarcate it, e.g.:
  5575. Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)})
  5576. 'Common'
  5577. The option is available for all languages and targets.
  5578. 'Target'
  5579. The option is available for all languages but is target-specific.
  5580. 'Driver'
  5581. The option is handled by the compiler driver using code not shared
  5582. with the compilers proper ('cc1' etc.).
  5583. 'LANGUAGE'
  5584. The option is available when compiling for the given language.
  5585. It is possible to specify several different languages for the same
  5586. option. Each LANGUAGE must have been declared by an earlier
  5587. 'Language' record. *Note Option file format::.
  5588. 'RejectDriver'
  5589. The option is only handled by the compilers proper ('cc1' etc.) and
  5590. should not be accepted by the driver.
  5591. 'RejectNegative'
  5592. The option does not have a "no-" form. All options beginning with
  5593. "f", "W" or "m" are assumed to have a "no-" form unless this
  5594. property is used.
  5595. 'Negative(OTHERNAME)'
  5596. The option will turn off another option OTHERNAME, which is the
  5597. option name with the leading "-" removed. This chain action will
  5598. propagate through the 'Negative' property of the option to be
  5599. turned off.
  5600. As a consequence, if you have a group of mutually-exclusive
  5601. options, their 'Negative' properties should form a circular chain.
  5602. For example, if options '-A', '-B' and '-C' are mutually exclusive,
  5603. their respective 'Negative' properties should be 'Negative(B)',
  5604. 'Negative(C)' and 'Negative(A)'.
  5605. 'Joined'
  5606. 'Separate'
  5607. The option takes a mandatory argument. 'Joined' indicates that the
  5608. option and argument can be included in the same 'argv' entry (as
  5609. with '-mflush-func=NAME', for example). 'Separate' indicates that
  5610. the option and argument can be separate 'argv' entries (as with
  5611. '-o'). An option is allowed to have both of these properties.
  5612. 'JoinedOrMissing'
  5613. The option takes an optional argument. If the argument is given,
  5614. it will be part of the same 'argv' entry as the option itself.
  5615. This property cannot be used alongside 'Joined' or 'Separate'.
  5616. 'MissingArgError(MESSAGE)'
  5617. For an option marked 'Joined' or 'Separate', the message MESSAGE
  5618. will be used as an error message if the mandatory argument is
  5619. missing; for options without 'MissingArgError', a generic error
  5620. message is used. MESSAGE should contain a single '%qs' format,
  5621. which will be used to format the name of the option passed.
  5622. 'Args(N)'
  5623. For an option marked 'Separate', indicate that it takes N
  5624. arguments. The default is 1.
  5625. 'UInteger'
  5626. The option's argument is a non-negative integer. The option parser
  5627. will check and convert the argument before passing it to the
  5628. relevant option handler. 'UInteger' should also be used on options
  5629. like '-falign-loops' where both '-falign-loops' and
  5630. '-falign-loops'=N are supported to make sure the saved options are
  5631. given a full integer.
  5632. 'ToLower'
  5633. The option's argument should be converted to lowercase as part of
  5634. putting it in canonical form, and before comparing with the strings
  5635. indicated by any 'Enum' property.
  5636. 'NoDriverArg'
  5637. For an option marked 'Separate', the option only takes an argument
  5638. in the compiler proper, not in the driver. This is for
  5639. compatibility with existing options that are used both directly and
  5640. via '-Wp,'; new options should not have this property.
  5641. 'Var(VAR)'
  5642. The state of this option should be stored in variable VAR (actually
  5643. a macro for 'global_options.x_VAR'). The way that the state is
  5644. stored depends on the type of option:
  5645. * If the option uses the 'Mask' or 'InverseMask' properties, VAR
  5646. is the integer variable that contains the mask.
  5647. * If the option is a normal on/off switch, VAR is an integer
  5648. variable that is nonzero when the option is enabled. The
  5649. options parser will set the variable to 1 when the positive
  5650. form of the option is used and 0 when the "no-" form is used.
  5651. * If the option takes an argument and has the 'UInteger'
  5652. property, VAR is an integer variable that stores the value of
  5653. the argument.
  5654. * If the option takes an argument and has the 'Enum' property,
  5655. VAR is a variable (type given in the 'Type' property of the
  5656. 'Enum' record whose 'Name' property has the same argument as
  5657. the 'Enum' property of this option) that stores the value of
  5658. the argument.
  5659. * If the option has the 'Defer' property, VAR is a pointer to a
  5660. 'VEC(cl_deferred_option,heap)' that stores the option for
  5661. later processing. (VAR is declared with type 'void *' and
  5662. needs to be cast to 'VEC(cl_deferred_option,heap)' before
  5663. use.)
  5664. * Otherwise, if the option takes an argument, VAR is a pointer
  5665. to the argument string. The pointer will be null if the
  5666. argument is optional and wasn't given.
  5667. The option-processing script will usually zero-initialize VAR. You
  5668. can modify this behavior using 'Init'.
  5669. 'Var(VAR, SET)'
  5670. The option controls an integer variable VAR and is active when VAR
  5671. equals SET. The option parser will set VAR to SET when the
  5672. positive form of the option is used and '!SET' when the "no-" form
  5673. is used.
  5674. VAR is declared in the same way as for the single-argument form
  5675. described above.
  5676. 'Init(VALUE)'
  5677. The variable specified by the 'Var' property should be statically
  5678. initialized to VALUE. If more than one option using the same
  5679. variable specifies 'Init', all must specify the same initializer.
  5680. 'Mask(NAME)'
  5681. The option is associated with a bit in the 'target_flags' variable
  5682. (*note Run-time Target::) and is active when that bit is set. You
  5683. may also specify 'Var' to select a variable other than
  5684. 'target_flags'.
  5685. The options-processing script will automatically allocate a unique
  5686. bit for the option. If the option is attached to 'target_flags',
  5687. the script will set the macro 'MASK_NAME' to the appropriate
  5688. bitmask. It will also declare a 'TARGET_NAME' macro that has the
  5689. value 1 when the option is active and 0 otherwise. If you use
  5690. 'Var' to attach the option to a different variable, the bitmask
  5691. macro with be called 'OPTION_MASK_NAME'.
  5692. 'InverseMask(OTHERNAME)'
  5693. 'InverseMask(OTHERNAME, THISNAME)'
  5694. The option is the inverse of another option that has the
  5695. 'Mask(OTHERNAME)' property. If THISNAME is given, the
  5696. options-processing script will declare a 'TARGET_THISNAME' macro
  5697. that is 1 when the option is active and 0 otherwise.
  5698. 'Enum(NAME)'
  5699. The option's argument is a string from the set of strings
  5700. associated with the corresponding 'Enum' record. The string is
  5701. checked and converted to the integer specified in the corresponding
  5702. 'EnumValue' record before being passed to option handlers.
  5703. 'Defer'
  5704. The option should be stored in a vector, specified with 'Var', for
  5705. later processing.
  5706. 'Alias(OPT)'
  5707. 'Alias(OPT, ARG)'
  5708. 'Alias(OPT, POSARG, NEGARG)'
  5709. The option is an alias for '-OPT' (or the negative form of that
  5710. option, depending on 'NegativeAlias'). In the first form, any
  5711. argument passed to the alias is considered to be passed to '-OPT',
  5712. and '-OPT' is considered to be negated if the alias is used in
  5713. negated form. In the second form, the alias may not be negated or
  5714. have an argument, and POSARG is considered to be passed as an
  5715. argument to '-OPT'. In the third form, the alias may not have an
  5716. argument, if the alias is used in the positive form then POSARG is
  5717. considered to be passed to '-OPT', and if the alias is used in the
  5718. negative form then NEGARG is considered to be passed to '-OPT'.
  5719. Aliases should not specify 'Var' or 'Mask' or 'UInteger'. Aliases
  5720. should normally specify the same languages as the target of the
  5721. alias; the flags on the target will be used to determine any
  5722. diagnostic for use of an option for the wrong language, while those
  5723. on the alias will be used to identify what command-line text is the
  5724. option and what text is any argument to that option.
  5725. When an 'Alias' definition is used for an option, driver specs do
  5726. not need to handle it and no 'OPT_' enumeration value is defined
  5727. for it; only the canonical form of the option will be seen in those
  5728. places.
  5729. 'NegativeAlias'
  5730. For an option marked with 'Alias(OPT)', the option is considered to
  5731. be an alias for the positive form of '-OPT' if negated and for the
  5732. negative form of '-OPT' if not negated. 'NegativeAlias' may not be
  5733. used with the forms of 'Alias' taking more than one argument.
  5734. 'Ignore'
  5735. This option is ignored apart from printing any warning specified
  5736. using 'Warn'. The option will not be seen by specs and no 'OPT_'
  5737. enumeration value is defined for it.
  5738. 'SeparateAlias'
  5739. For an option marked with 'Joined', 'Separate' and 'Alias', the
  5740. option only acts as an alias when passed a separate argument; with
  5741. a joined argument it acts as a normal option, with an 'OPT_'
  5742. enumeration value. This is for compatibility with the Java '-d'
  5743. option and should not be used for new options.
  5744. 'Warn(MESSAGE)'
  5745. If this option is used, output the warning MESSAGE. MESSAGE is a
  5746. format string, either taking a single operand with a '%qs' format
  5747. which is the option name, or not taking any operands, which is
  5748. passed to the 'warning' function. If an alias is marked 'Warn',
  5749. the target of the alias must not also be marked 'Warn'.
  5750. 'Report'
  5751. The state of the option should be printed by '-fverbose-asm'.
  5752. 'Warning'
  5753. This is a warning option and should be shown as such in '--help'
  5754. output. This flag does not currently affect anything other than
  5755. '--help'.
  5756. 'Optimization'
  5757. This is an optimization option. It should be shown as such in
  5758. '--help' output, and any associated variable named using 'Var'
  5759. should be saved and restored when the optimization level is changed
  5760. with 'optimize' attributes.
  5761. 'PerFunction'
  5762. This is an option that can be overridden on a per-function basis.
  5763. 'Optimization' implies 'PerFunction', but options that do not
  5764. affect executable code generation may use this flag instead, so
  5765. that the option is not taken into account in ways that might affect
  5766. executable code generation.
  5767. 'Undocumented'
  5768. The option is deliberately missing documentation and should not be
  5769. included in the '--help' output.
  5770. 'Condition(COND)'
  5771. The option should only be accepted if preprocessor condition COND
  5772. is true. Note that any C declarations associated with the option
  5773. will be present even if COND is false; COND simply controls whether
  5774. the option is accepted and whether it is printed in the '--help'
  5775. output.
  5776. 'Save'
  5777. Build the 'cl_target_option' structure to hold a copy of the
  5778. option, add the functions 'cl_target_option_save' and
  5779. 'cl_target_option_restore' to save and restore the options.
  5780. 'SetByCombined'
  5781. The option may also be set by a combined option such as
  5782. '-ffast-math'. This causes the 'gcc_options' struct to have a
  5783. field 'frontend_set_NAME', where 'NAME' is the name of the field
  5784. holding the value of this option (without the leading 'x_'). This
  5785. gives the front end a way to indicate that the value has been set
  5786. explicitly and should not be changed by the combined option. For
  5787. example, some front ends use this to prevent '-ffast-math' and
  5788. '-fno-fast-math' from changing the value of '-fmath-errno' for
  5789. languages that do not use 'errno'.
  5790. 'EnabledBy(OPT)'
  5791. 'EnabledBy(OPT || OPT2)'
  5792. 'EnabledBy(OPT && OPT2)'
  5793. If not explicitly set, the option is set to the value of '-OPT';
  5794. multiple options can be given, separated by '||'. The third form
  5795. using '&&' specifies that the option is only set if both OPT and
  5796. OPT2 are set. The options OPT and OPT2 must have the 'Common'
  5797. property; otherwise, use 'LangEnabledBy'.
  5798. 'LangEnabledBy(LANGUAGE, OPT)'
  5799. 'LangEnabledBy(LANGUAGE, OPT, POSARG, NEGARG)'
  5800. When compiling for the given language, the option is set to the
  5801. value of '-OPT', if not explicitly set. OPT can be also a list of
  5802. '||' separated options. In the second form, if OPT is used in the
  5803. positive form then POSARG is considered to be passed to the option,
  5804. and if OPT is used in the negative form then NEGARG is considered
  5805. to be passed to the option. It is possible to specify several
  5806. different languages. Each LANGUAGE must have been declared by an
  5807. earlier 'Language' record. *Note Option file format::.
  5808. 'NoDWARFRecord'
  5809. The option is omitted from the producer string written by
  5810. '-grecord-gcc-switches'.
  5811. 'PchIgnore'
  5812. Even if this is a target option, this option will not be recorded /
  5813. compared to determine if a precompiled header file matches.
  5814. 'CPP(VAR)'
  5815. The state of this option should be kept in sync with the
  5816. preprocessor option VAR. If this property is set, then properties
  5817. 'Var' and 'Init' must be set as well.
  5818. 'CppReason(CPP_W_ENUM)'
  5819. This warning option corresponds to 'cpplib.h' warning reason code
  5820. CPP_W_ENUM. This should only be used for warning options of the
  5821. C-family front-ends.
  5822. 
  5823. File: gccint.info, Node: Passes, Next: poly_int, Prev: Options, Up: Top
  5824. 9 Passes and Files of the Compiler
  5825. **********************************
  5826. This chapter is dedicated to giving an overview of the optimization and
  5827. code generation passes of the compiler. In the process, it describes
  5828. some of the language front end interface, though this description is no
  5829. where near complete.
  5830. * Menu:
  5831. * Parsing pass:: The language front end turns text into bits.
  5832. * Gimplification pass:: The bits are turned into something we can optimize.
  5833. * Pass manager:: Sequencing the optimization passes.
  5834. * Tree SSA passes:: Optimizations on a high-level representation.
  5835. * RTL passes:: Optimizations on a low-level representation.
  5836. * Optimization info:: Dumping optimization information from passes.
  5837. 
  5838. File: gccint.info, Node: Parsing pass, Next: Gimplification pass, Up: Passes
  5839. 9.1 Parsing pass
  5840. ================
  5841. The language front end is invoked only once, via
  5842. 'lang_hooks.parse_file', to parse the entire input. The language front
  5843. end may use any intermediate language representation deemed appropriate.
  5844. The C front end uses GENERIC trees (*note GENERIC::), plus a double
  5845. handful of language specific tree codes defined in 'c-common.def'. The
  5846. Fortran front end uses a completely different private representation.
  5847. At some point the front end must translate the representation used in
  5848. the front end to a representation understood by the language-independent
  5849. portions of the compiler. Current practice takes one of two forms. The
  5850. C front end manually invokes the gimplifier (*note GIMPLE::) on each
  5851. function, and uses the gimplifier callbacks to convert the
  5852. language-specific tree nodes directly to GIMPLE before passing the
  5853. function off to be compiled. The Fortran front end converts from a
  5854. private representation to GENERIC, which is later lowered to GIMPLE when
  5855. the function is compiled. Which route to choose probably depends on how
  5856. well GENERIC (plus extensions) can be made to match up with the source
  5857. language and necessary parsing data structures.
  5858. BUG: Gimplification must occur before nested function lowering, and
  5859. nested function lowering must be done by the front end before passing
  5860. the data off to cgraph.
  5861. TODO: Cgraph should control nested function lowering. It would only be
  5862. invoked when it is certain that the outer-most function is used.
  5863. TODO: Cgraph needs a gimplify_function callback. It should be invoked
  5864. when (1) it is certain that the function is used, (2) warning flags
  5865. specified by the user require some amount of compilation in order to
  5866. honor, (3) the language indicates that semantic analysis is not complete
  5867. until gimplification occurs. Hum... this sounds overly complicated.
  5868. Perhaps we should just have the front end gimplify always; in most cases
  5869. it's only one function call.
  5870. The front end needs to pass all function definitions and top level
  5871. declarations off to the middle-end so that they can be compiled and
  5872. emitted to the object file. For a simple procedural language, it is
  5873. usually most convenient to do this as each top level declaration or
  5874. definition is seen. There is also a distinction to be made between
  5875. generating functional code and generating complete debug information.
  5876. The only thing that is absolutely required for functional code is that
  5877. function and data _definitions_ be passed to the middle-end. For
  5878. complete debug information, function, data and type declarations should
  5879. all be passed as well.
  5880. In any case, the front end needs each complete top-level function or
  5881. data declaration, and each data definition should be passed to
  5882. 'rest_of_decl_compilation'. Each complete type definition should be
  5883. passed to 'rest_of_type_compilation'. Each function definition should
  5884. be passed to 'cgraph_finalize_function'.
  5885. TODO: I know rest_of_compilation currently has all sorts of RTL
  5886. generation semantics. I plan to move all code generation bits (both
  5887. Tree and RTL) to compile_function. Should we hide cgraph from the front
  5888. ends and move back to rest_of_compilation as the official interface?
  5889. Possibly we should rename all three interfaces such that the names match
  5890. in some meaningful way and that is more descriptive than "rest_of".
  5891. The middle-end will, at its option, emit the function and data
  5892. definitions immediately or queue them for later processing.
  5893. 
  5894. File: gccint.info, Node: Gimplification pass, Next: Pass manager, Prev: Parsing pass, Up: Passes
  5895. 9.2 Gimplification pass
  5896. =======================
  5897. "Gimplification" is a whimsical term for the process of converting the
  5898. intermediate representation of a function into the GIMPLE language
  5899. (*note GIMPLE::). The term stuck, and so words like "gimplification",
  5900. "gimplify", "gimplifier" and the like are sprinkled throughout this
  5901. section of code.
  5902. While a front end may certainly choose to generate GIMPLE directly if
  5903. it chooses, this can be a moderately complex process unless the
  5904. intermediate language used by the front end is already fairly simple.
  5905. Usually it is easier to generate GENERIC trees plus extensions and let
  5906. the language-independent gimplifier do most of the work.
  5907. The main entry point to this pass is 'gimplify_function_tree' located
  5908. in 'gimplify.c'. From here we process the entire function gimplifying
  5909. each statement in turn. The main workhorse for this pass is
  5910. 'gimplify_expr'. Approximately everything passes through here at least
  5911. once, and it is from here that we invoke the 'lang_hooks.gimplify_expr'
  5912. callback.
  5913. The callback should examine the expression in question and return
  5914. 'GS_UNHANDLED' if the expression is not a language specific construct
  5915. that requires attention. Otherwise it should alter the expression in
  5916. some way to such that forward progress is made toward producing valid
  5917. GIMPLE. If the callback is certain that the transformation is complete
  5918. and the expression is valid GIMPLE, it should return 'GS_ALL_DONE'.
  5919. Otherwise it should return 'GS_OK', which will cause the expression to
  5920. be processed again. If the callback encounters an error during the
  5921. transformation (because the front end is relying on the gimplification
  5922. process to finish semantic checks), it should return 'GS_ERROR'.
  5923. 
  5924. File: gccint.info, Node: Pass manager, Next: Tree SSA passes, Prev: Gimplification pass, Up: Passes
  5925. 9.3 Pass manager
  5926. ================
  5927. The pass manager is located in 'passes.c', 'tree-optimize.c' and
  5928. 'tree-pass.h'. It processes passes as described in 'passes.def'. Its
  5929. job is to run all of the individual passes in the correct order, and
  5930. take care of standard bookkeeping that applies to every pass.
  5931. The theory of operation is that each pass defines a structure that
  5932. represents everything we need to know about that pass--when it should be
  5933. run, how it should be run, what intermediate language form or
  5934. on-the-side data structures it needs. We register the pass to be run in
  5935. some particular order, and the pass manager arranges for everything to
  5936. happen in the correct order.
  5937. The actuality doesn't completely live up to the theory at present.
  5938. Command-line switches and 'timevar_id_t' enumerations must still be
  5939. defined elsewhere. The pass manager validates constraints but does not
  5940. attempt to (re-)generate data structures or lower intermediate language
  5941. form based on the requirements of the next pass. Nevertheless, what is
  5942. present is useful, and a far sight better than nothing at all.
  5943. Each pass should have a unique name. Each pass may have its own dump
  5944. file (for GCC debugging purposes). Passes with a name starting with a
  5945. star do not dump anything. Sometimes passes are supposed to share a
  5946. dump file / option name. To still give these unique names, you can use
  5947. a prefix that is delimited by a space from the part that is used for the
  5948. dump file / option name. E.g. When the pass name is "ud dce", the name
  5949. used for dump file/options is "dce".
  5950. TODO: describe the global variables set up by the pass manager, and a
  5951. brief description of how a new pass should use it. I need to look at
  5952. what info RTL passes use first...
  5953. 
  5954. File: gccint.info, Node: Tree SSA passes, Next: RTL passes, Prev: Pass manager, Up: Passes
  5955. 9.4 Tree SSA passes
  5956. ===================
  5957. The following briefly describes the Tree optimization passes that are
  5958. run after gimplification and what source files they are located in.
  5959. * Remove useless statements
  5960. This pass is an extremely simple sweep across the gimple code in
  5961. which we identify obviously dead code and remove it. Here we do
  5962. things like simplify 'if' statements with constant conditions,
  5963. remove exception handling constructs surrounding code that
  5964. obviously cannot throw, remove lexical bindings that contain no
  5965. variables, and other assorted simplistic cleanups. The idea is to
  5966. get rid of the obvious stuff quickly rather than wait until later
  5967. when it's more work to get rid of it. This pass is located in
  5968. 'tree-cfg.c' and described by 'pass_remove_useless_stmts'.
  5969. * OpenMP lowering
  5970. If OpenMP generation ('-fopenmp') is enabled, this pass lowers
  5971. OpenMP constructs into GIMPLE.
  5972. Lowering of OpenMP constructs involves creating replacement
  5973. expressions for local variables that have been mapped using data
  5974. sharing clauses, exposing the control flow of most synchronization
  5975. directives and adding region markers to facilitate the creation of
  5976. the control flow graph. The pass is located in 'omp-low.c' and is
  5977. described by 'pass_lower_omp'.
  5978. * OpenMP expansion
  5979. If OpenMP generation ('-fopenmp') is enabled, this pass expands
  5980. parallel regions into their own functions to be invoked by the
  5981. thread library. The pass is located in 'omp-low.c' and is
  5982. described by 'pass_expand_omp'.
  5983. * Lower control flow
  5984. This pass flattens 'if' statements ('COND_EXPR') and moves lexical
  5985. bindings ('BIND_EXPR') out of line. After this pass, all 'if'
  5986. statements will have exactly two 'goto' statements in its 'then'
  5987. and 'else' arms. Lexical binding information for each statement
  5988. will be found in 'TREE_BLOCK' rather than being inferred from its
  5989. position under a 'BIND_EXPR'. This pass is found in 'gimple-low.c'
  5990. and is described by 'pass_lower_cf'.
  5991. * Lower exception handling control flow
  5992. This pass decomposes high-level exception handling constructs
  5993. ('TRY_FINALLY_EXPR' and 'TRY_CATCH_EXPR') into a form that
  5994. explicitly represents the control flow involved. After this pass,
  5995. 'lookup_stmt_eh_region' will return a non-negative number for any
  5996. statement that may have EH control flow semantics; examine
  5997. 'tree_can_throw_internal' or 'tree_can_throw_external' for exact
  5998. semantics. Exact control flow may be extracted from
  5999. 'foreach_reachable_handler'. The EH region nesting tree is defined
  6000. in 'except.h' and built in 'except.c'. The lowering pass itself is
  6001. in 'tree-eh.c' and is described by 'pass_lower_eh'.
  6002. * Build the control flow graph
  6003. This pass decomposes a function into basic blocks and creates all
  6004. of the edges that connect them. It is located in 'tree-cfg.c' and
  6005. is described by 'pass_build_cfg'.
  6006. * Find all referenced variables
  6007. This pass walks the entire function and collects an array of all
  6008. variables referenced in the function, 'referenced_vars'. The index
  6009. at which a variable is found in the array is used as a UID for the
  6010. variable within this function. This data is needed by the SSA
  6011. rewriting routines. The pass is located in 'tree-dfa.c' and is
  6012. described by 'pass_referenced_vars'.
  6013. * Enter static single assignment form
  6014. This pass rewrites the function such that it is in SSA form. After
  6015. this pass, all 'is_gimple_reg' variables will be referenced by
  6016. 'SSA_NAME', and all occurrences of other variables will be
  6017. annotated with 'VDEFS' and 'VUSES'; PHI nodes will have been
  6018. inserted as necessary for each basic block. This pass is located
  6019. in 'tree-ssa.c' and is described by 'pass_build_ssa'.
  6020. * Warn for uninitialized variables
  6021. This pass scans the function for uses of 'SSA_NAME's that are fed
  6022. by default definition. For non-parameter variables, such uses are
  6023. uninitialized. The pass is run twice, before and after
  6024. optimization (if turned on). In the first pass we only warn for
  6025. uses that are positively uninitialized; in the second pass we warn
  6026. for uses that are possibly uninitialized. The pass is located in
  6027. 'tree-ssa.c' and is defined by 'pass_early_warn_uninitialized' and
  6028. 'pass_late_warn_uninitialized'.
  6029. * Dead code elimination
  6030. This pass scans the function for statements without side effects
  6031. whose result is unused. It does not do memory life analysis, so
  6032. any value that is stored in memory is considered used. The pass is
  6033. run multiple times throughout the optimization process. It is
  6034. located in 'tree-ssa-dce.c' and is described by 'pass_dce'.
  6035. * Dominator optimizations
  6036. This pass performs trivial dominator-based copy and constant
  6037. propagation, expression simplification, and jump threading. It is
  6038. run multiple times throughout the optimization process. It is
  6039. located in 'tree-ssa-dom.c' and is described by 'pass_dominator'.
  6040. * Forward propagation of single-use variables
  6041. This pass attempts to remove redundant computation by substituting
  6042. variables that are used once into the expression that uses them and
  6043. seeing if the result can be simplified. It is located in
  6044. 'tree-ssa-forwprop.c' and is described by 'pass_forwprop'.
  6045. * Copy Renaming
  6046. This pass attempts to change the name of compiler temporaries
  6047. involved in copy operations such that SSA->normal can coalesce the
  6048. copy away. When compiler temporaries are copies of user variables,
  6049. it also renames the compiler temporary to the user variable
  6050. resulting in better use of user symbols. It is located in
  6051. 'tree-ssa-copyrename.c' and is described by 'pass_copyrename'.
  6052. * PHI node optimizations
  6053. This pass recognizes forms of PHI inputs that can be represented as
  6054. conditional expressions and rewrites them into straight line code.
  6055. It is located in 'tree-ssa-phiopt.c' and is described by
  6056. 'pass_phiopt'.
  6057. * May-alias optimization
  6058. This pass performs a flow sensitive SSA-based points-to analysis.
  6059. The resulting may-alias, must-alias, and escape analysis
  6060. information is used to promote variables from in-memory addressable
  6061. objects to non-aliased variables that can be renamed into SSA form.
  6062. We also update the 'VDEF'/'VUSE' memory tags for non-renameable
  6063. aggregates so that we get fewer false kills. The pass is located
  6064. in 'tree-ssa-alias.c' and is described by 'pass_may_alias'.
  6065. Interprocedural points-to information is located in
  6066. 'tree-ssa-structalias.c' and described by 'pass_ipa_pta'.
  6067. * Profiling
  6068. This pass instruments the function in order to collect runtime
  6069. block and value profiling data. Such data may be fed back into the
  6070. compiler on a subsequent run so as to allow optimization based on
  6071. expected execution frequencies. The pass is located in
  6072. 'tree-profile.c' and is described by 'pass_ipa_tree_profile'.
  6073. * Static profile estimation
  6074. This pass implements series of heuristics to guess propababilities
  6075. of branches. The resulting predictions are turned into edge
  6076. profile by propagating branches across the control flow graphs.
  6077. The pass is located in 'tree-profile.c' and is described by
  6078. 'pass_profile'.
  6079. * Lower complex arithmetic
  6080. This pass rewrites complex arithmetic operations into their
  6081. component scalar arithmetic operations. The pass is located in
  6082. 'tree-complex.c' and is described by 'pass_lower_complex'.
  6083. * Scalar replacement of aggregates
  6084. This pass rewrites suitable non-aliased local aggregate variables
  6085. into a set of scalar variables. The resulting scalar variables are
  6086. rewritten into SSA form, which allows subsequent optimization
  6087. passes to do a significantly better job with them. The pass is
  6088. located in 'tree-sra.c' and is described by 'pass_sra'.
  6089. * Dead store elimination
  6090. This pass eliminates stores to memory that are subsequently
  6091. overwritten by another store, without any intervening loads. The
  6092. pass is located in 'tree-ssa-dse.c' and is described by 'pass_dse'.
  6093. * Tail recursion elimination
  6094. This pass transforms tail recursion into a loop. It is located in
  6095. 'tree-tailcall.c' and is described by 'pass_tail_recursion'.
  6096. * Forward store motion
  6097. This pass sinks stores and assignments down the flowgraph closer to
  6098. their use point. The pass is located in 'tree-ssa-sink.c' and is
  6099. described by 'pass_sink_code'.
  6100. * Partial redundancy elimination
  6101. This pass eliminates partially redundant computations, as well as
  6102. performing load motion. The pass is located in 'tree-ssa-pre.c'
  6103. and is described by 'pass_pre'.
  6104. Just before partial redundancy elimination, if
  6105. '-funsafe-math-optimizations' is on, GCC tries to convert divisions
  6106. to multiplications by the reciprocal. The pass is located in
  6107. 'tree-ssa-math-opts.c' and is described by 'pass_cse_reciprocal'.
  6108. * Full redundancy elimination
  6109. This is a simpler form of PRE that only eliminates redundancies
  6110. that occur on all paths. It is located in 'tree-ssa-pre.c' and
  6111. described by 'pass_fre'.
  6112. * Loop optimization
  6113. The main driver of the pass is placed in 'tree-ssa-loop.c' and
  6114. described by 'pass_loop'.
  6115. The optimizations performed by this pass are:
  6116. Loop invariant motion. This pass moves only invariants that would
  6117. be hard to handle on RTL level (function calls, operations that
  6118. expand to nontrivial sequences of insns). With '-funswitch-loops'
  6119. it also moves operands of conditions that are invariant out of the
  6120. loop, so that we can use just trivial invariantness analysis in
  6121. loop unswitching. The pass also includes store motion. The pass
  6122. is implemented in 'tree-ssa-loop-im.c'.
  6123. Canonical induction variable creation. This pass creates a simple
  6124. counter for number of iterations of the loop and replaces the exit
  6125. condition of the loop using it, in case when a complicated analysis
  6126. is necessary to determine the number of iterations. Later
  6127. optimizations then may determine the number easily. The pass is
  6128. implemented in 'tree-ssa-loop-ivcanon.c'.
  6129. Induction variable optimizations. This pass performs standard
  6130. induction variable optimizations, including strength reduction,
  6131. induction variable merging and induction variable elimination. The
  6132. pass is implemented in 'tree-ssa-loop-ivopts.c'.
  6133. Loop unswitching. This pass moves the conditional jumps that are
  6134. invariant out of the loops. To achieve this, a duplicate of the
  6135. loop is created for each possible outcome of conditional jump(s).
  6136. The pass is implemented in 'tree-ssa-loop-unswitch.c'.
  6137. Loop splitting. If a loop contains a conditional statement that is
  6138. always true for one part of the iteration space and false for the
  6139. other this pass splits the loop into two, one dealing with one side
  6140. the other only with the other, thereby removing one inner-loop
  6141. conditional. The pass is implemented in 'tree-ssa-loop-split.c'.
  6142. The optimizations also use various utility functions contained in
  6143. 'tree-ssa-loop-manip.c', 'cfgloop.c', 'cfgloopanal.c' and
  6144. 'cfgloopmanip.c'.
  6145. Vectorization. This pass transforms loops to operate on vector
  6146. types instead of scalar types. Data parallelism across loop
  6147. iterations is exploited to group data elements from consecutive
  6148. iterations into a vector and operate on them in parallel.
  6149. Depending on available target support the loop is conceptually
  6150. unrolled by a factor 'VF' (vectorization factor), which is the
  6151. number of elements operated upon in parallel in each iteration, and
  6152. the 'VF' copies of each scalar operation are fused to form a vector
  6153. operation. Additional loop transformations such as peeling and
  6154. versioning may take place to align the number of iterations, and to
  6155. align the memory accesses in the loop. The pass is implemented in
  6156. 'tree-vectorizer.c' (the main driver), 'tree-vect-loop.c' and
  6157. 'tree-vect-loop-manip.c' (loop specific parts and general loop
  6158. utilities), 'tree-vect-slp' (loop-aware SLP functionality),
  6159. 'tree-vect-stmts.c' and 'tree-vect-data-refs.c'. Analysis of data
  6160. references is in 'tree-data-ref.c'.
  6161. SLP Vectorization. This pass performs vectorization of
  6162. straight-line code. The pass is implemented in 'tree-vectorizer.c'
  6163. (the main driver), 'tree-vect-slp.c', 'tree-vect-stmts.c' and
  6164. 'tree-vect-data-refs.c'.
  6165. Autoparallelization. This pass splits the loop iteration space to
  6166. run into several threads. The pass is implemented in
  6167. 'tree-parloops.c'.
  6168. Graphite is a loop transformation framework based on the polyhedral
  6169. model. Graphite stands for Gimple Represented as Polyhedra. The
  6170. internals of this infrastructure are documented in
  6171. <http://gcc.gnu.org/wiki/Graphite>. The passes working on this
  6172. representation are implemented in the various 'graphite-*' files.
  6173. * Tree level if-conversion for vectorizer
  6174. This pass applies if-conversion to simple loops to help vectorizer.
  6175. We identify if convertible loops, if-convert statements and merge
  6176. basic blocks in one big block. The idea is to present loop in such
  6177. form so that vectorizer can have one to one mapping between
  6178. statements and available vector operations. This pass is located
  6179. in 'tree-if-conv.c' and is described by 'pass_if_conversion'.
  6180. * Conditional constant propagation
  6181. This pass relaxes a lattice of values in order to identify those
  6182. that must be constant even in the presence of conditional branches.
  6183. The pass is located in 'tree-ssa-ccp.c' and is described by
  6184. 'pass_ccp'.
  6185. A related pass that works on memory loads and stores, and not just
  6186. register values, is located in 'tree-ssa-ccp.c' and described by
  6187. 'pass_store_ccp'.
  6188. * Conditional copy propagation
  6189. This is similar to constant propagation but the lattice of values
  6190. is the "copy-of" relation. It eliminates redundant copies from the
  6191. code. The pass is located in 'tree-ssa-copy.c' and described by
  6192. 'pass_copy_prop'.
  6193. A related pass that works on memory copies, and not just register
  6194. copies, is located in 'tree-ssa-copy.c' and described by
  6195. 'pass_store_copy_prop'.
  6196. * Value range propagation
  6197. This transformation is similar to constant propagation but instead
  6198. of propagating single constant values, it propagates known value
  6199. ranges. The implementation is based on Patterson's range
  6200. propagation algorithm (Accurate Static Branch Prediction by Value
  6201. Range Propagation, J. R. C. Patterson, PLDI '95). In contrast to
  6202. Patterson's algorithm, this implementation does not propagate
  6203. branch probabilities nor it uses more than a single range per SSA
  6204. name. This means that the current implementation cannot be used
  6205. for branch prediction (though adapting it would not be difficult).
  6206. The pass is located in 'tree-vrp.c' and is described by 'pass_vrp'.
  6207. * Folding built-in functions
  6208. This pass simplifies built-in functions, as applicable, with
  6209. constant arguments or with inferable string lengths. It is located
  6210. in 'tree-ssa-ccp.c' and is described by 'pass_fold_builtins'.
  6211. * Split critical edges
  6212. This pass identifies critical edges and inserts empty basic blocks
  6213. such that the edge is no longer critical. The pass is located in
  6214. 'tree-cfg.c' and is described by 'pass_split_crit_edges'.
  6215. * Control dependence dead code elimination
  6216. This pass is a stronger form of dead code elimination that can
  6217. eliminate unnecessary control flow statements. It is located in
  6218. 'tree-ssa-dce.c' and is described by 'pass_cd_dce'.
  6219. * Tail call elimination
  6220. This pass identifies function calls that may be rewritten into
  6221. jumps. No code transformation is actually applied here, but the
  6222. data and control flow problem is solved. The code transformation
  6223. requires target support, and so is delayed until RTL. In the
  6224. meantime 'CALL_EXPR_TAILCALL' is set indicating the possibility.
  6225. The pass is located in 'tree-tailcall.c' and is described by
  6226. 'pass_tail_calls'. The RTL transformation is handled by
  6227. 'fixup_tail_calls' in 'calls.c'.
  6228. * Warn for function return without value
  6229. For non-void functions, this pass locates return statements that do
  6230. not specify a value and issues a warning. Such a statement may
  6231. have been injected by falling off the end of the function. This
  6232. pass is run last so that we have as much time as possible to prove
  6233. that the statement is not reachable. It is located in 'tree-cfg.c'
  6234. and is described by 'pass_warn_function_return'.
  6235. * Leave static single assignment form
  6236. This pass rewrites the function such that it is in normal form. At
  6237. the same time, we eliminate as many single-use temporaries as
  6238. possible, so the intermediate language is no longer GIMPLE, but
  6239. GENERIC. The pass is located in 'tree-outof-ssa.c' and is
  6240. described by 'pass_del_ssa'.
  6241. * Merge PHI nodes that feed into one another
  6242. This is part of the CFG cleanup passes. It attempts to join PHI
  6243. nodes from a forwarder CFG block into another block with PHI nodes.
  6244. The pass is located in 'tree-cfgcleanup.c' and is described by
  6245. 'pass_merge_phi'.
  6246. * Return value optimization
  6247. If a function always returns the same local variable, and that
  6248. local variable is an aggregate type, then the variable is replaced
  6249. with the return value for the function (i.e., the function's
  6250. DECL_RESULT). This is equivalent to the C++ named return value
  6251. optimization applied to GIMPLE. The pass is located in
  6252. 'tree-nrv.c' and is described by 'pass_nrv'.
  6253. * Return slot optimization
  6254. If a function returns a memory object and is called as 'var =
  6255. foo()', this pass tries to change the call so that the address of
  6256. 'var' is sent to the caller to avoid an extra memory copy. This
  6257. pass is located in 'tree-nrv.c' and is described by
  6258. 'pass_return_slot'.
  6259. * Optimize calls to '__builtin_object_size'
  6260. This is a propagation pass similar to CCP that tries to remove
  6261. calls to '__builtin_object_size' when the size of the object can be
  6262. computed at compile-time. This pass is located in
  6263. 'tree-object-size.c' and is described by 'pass_object_sizes'.
  6264. * Loop invariant motion
  6265. This pass removes expensive loop-invariant computations out of
  6266. loops. The pass is located in 'tree-ssa-loop.c' and described by
  6267. 'pass_lim'.
  6268. * Loop nest optimizations
  6269. This is a family of loop transformations that works on loop nests.
  6270. It includes loop interchange, scaling, skewing and reversal and
  6271. they are all geared to the optimization of data locality in array
  6272. traversals and the removal of dependencies that hamper
  6273. optimizations such as loop parallelization and vectorization. The
  6274. pass is located in 'tree-loop-linear.c' and described by
  6275. 'pass_linear_transform'.
  6276. * Removal of empty loops
  6277. This pass removes loops with no code in them. The pass is located
  6278. in 'tree-ssa-loop-ivcanon.c' and described by 'pass_empty_loop'.
  6279. * Unrolling of small loops
  6280. This pass completely unrolls loops with few iterations. The pass
  6281. is located in 'tree-ssa-loop-ivcanon.c' and described by
  6282. 'pass_complete_unroll'.
  6283. * Predictive commoning
  6284. This pass makes the code reuse the computations from the previous
  6285. iterations of the loops, especially loads and stores to memory. It
  6286. does so by storing the values of these computations to a bank of
  6287. temporary variables that are rotated at the end of loop. To avoid
  6288. the need for this rotation, the loop is then unrolled and the
  6289. copies of the loop body are rewritten to use the appropriate
  6290. version of the temporary variable. This pass is located in
  6291. 'tree-predcom.c' and described by 'pass_predcom'.
  6292. * Array prefetching
  6293. This pass issues prefetch instructions for array references inside
  6294. loops. The pass is located in 'tree-ssa-loop-prefetch.c' and
  6295. described by 'pass_loop_prefetch'.
  6296. * Reassociation
  6297. This pass rewrites arithmetic expressions to enable optimizations
  6298. that operate on them, like redundancy elimination and
  6299. vectorization. The pass is located in 'tree-ssa-reassoc.c' and
  6300. described by 'pass_reassoc'.
  6301. * Optimization of 'stdarg' functions
  6302. This pass tries to avoid the saving of register arguments into the
  6303. stack on entry to 'stdarg' functions. If the function doesn't use
  6304. any 'va_start' macros, no registers need to be saved. If
  6305. 'va_start' macros are used, the 'va_list' variables don't escape
  6306. the function, it is only necessary to save registers that will be
  6307. used in 'va_arg' macros. For instance, if 'va_arg' is only used
  6308. with integral types in the function, floating point registers don't
  6309. need to be saved. This pass is located in 'tree-stdarg.c' and
  6310. described by 'pass_stdarg'.
  6311. 
  6312. File: gccint.info, Node: RTL passes, Next: Optimization info, Prev: Tree SSA passes, Up: Passes
  6313. 9.5 RTL passes
  6314. ==============
  6315. The following briefly describes the RTL generation and optimization
  6316. passes that are run after the Tree optimization passes.
  6317. * RTL generation
  6318. The source files for RTL generation include 'stmt.c', 'calls.c',
  6319. 'expr.c', 'explow.c', 'expmed.c', 'function.c', 'optabs.c' and
  6320. 'emit-rtl.c'. Also, the file 'insn-emit.c', generated from the
  6321. machine description by the program 'genemit', is used in this pass.
  6322. The header file 'expr.h' is used for communication within this
  6323. pass.
  6324. The header files 'insn-flags.h' and 'insn-codes.h', generated from
  6325. the machine description by the programs 'genflags' and 'gencodes',
  6326. tell this pass which standard names are available for use and which
  6327. patterns correspond to them.
  6328. * Generation of exception landing pads
  6329. This pass generates the glue that handles communication between the
  6330. exception handling library routines and the exception handlers
  6331. within the function. Entry points in the function that are invoked
  6332. by the exception handling library are called "landing pads". The
  6333. code for this pass is located in 'except.c'.
  6334. * Control flow graph cleanup
  6335. This pass removes unreachable code, simplifies jumps to next, jumps
  6336. to jump, jumps across jumps, etc. The pass is run multiple times.
  6337. For historical reasons, it is occasionally referred to as the "jump
  6338. optimization pass". The bulk of the code for this pass is in
  6339. 'cfgcleanup.c', and there are support routines in 'cfgrtl.c' and
  6340. 'jump.c'.
  6341. * Forward propagation of single-def values
  6342. This pass attempts to remove redundant computation by substituting
  6343. variables that come from a single definition, and seeing if the
  6344. result can be simplified. It performs copy propagation and
  6345. addressing mode selection. The pass is run twice, with values
  6346. being propagated into loops only on the second run. The code is
  6347. located in 'fwprop.c'.
  6348. * Common subexpression elimination
  6349. This pass removes redundant computation within basic blocks, and
  6350. optimizes addressing modes based on cost. The pass is run twice.
  6351. The code for this pass is located in 'cse.c'.
  6352. * Global common subexpression elimination
  6353. This pass performs two different types of GCSE depending on whether
  6354. you are optimizing for size or not (LCM based GCSE tends to
  6355. increase code size for a gain in speed, while Morel-Renvoise based
  6356. GCSE does not). When optimizing for size, GCSE is done using
  6357. Morel-Renvoise Partial Redundancy Elimination, with the exception
  6358. that it does not try to move invariants out of loops--that is left
  6359. to the loop optimization pass. If MR PRE GCSE is done, code
  6360. hoisting (aka unification) is also done, as well as load motion.
  6361. If you are optimizing for speed, LCM (lazy code motion) based GCSE
  6362. is done. LCM is based on the work of Knoop, Ruthing, and Steffen.
  6363. LCM based GCSE also does loop invariant code motion. We also
  6364. perform load and store motion when optimizing for speed.
  6365. Regardless of which type of GCSE is used, the GCSE pass also
  6366. performs global constant and copy propagation. The source file for
  6367. this pass is 'gcse.c', and the LCM routines are in 'lcm.c'.
  6368. * Loop optimization
  6369. This pass performs several loop related optimizations. The source
  6370. files 'cfgloopanal.c' and 'cfgloopmanip.c' contain generic loop
  6371. analysis and manipulation code. Initialization and finalization of
  6372. loop structures is handled by 'loop-init.c'. A loop invariant
  6373. motion pass is implemented in 'loop-invariant.c'. Basic block
  6374. level optimizations--unrolling, and peeling loops-- are implemented
  6375. in 'loop-unroll.c'. Replacing of the exit condition of loops by
  6376. special machine-dependent instructions is handled by
  6377. 'loop-doloop.c'.
  6378. * Jump bypassing
  6379. This pass is an aggressive form of GCSE that transforms the control
  6380. flow graph of a function by propagating constants into conditional
  6381. branch instructions. The source file for this pass is 'gcse.c'.
  6382. * If conversion
  6383. This pass attempts to replace conditional branches and surrounding
  6384. assignments with arithmetic, boolean value producing comparison
  6385. instructions, and conditional move instructions. In the very last
  6386. invocation after reload/LRA, it will generate predicated
  6387. instructions when supported by the target. The code is located in
  6388. 'ifcvt.c'.
  6389. * Web construction
  6390. This pass splits independent uses of each pseudo-register. This
  6391. can improve effect of the other transformation, such as CSE or
  6392. register allocation. The code for this pass is located in 'web.c'.
  6393. * Instruction combination
  6394. This pass attempts to combine groups of two or three instructions
  6395. that are related by data flow into single instructions. It
  6396. combines the RTL expressions for the instructions by substitution,
  6397. simplifies the result using algebra, and then attempts to match the
  6398. result against the machine description. The code is located in
  6399. 'combine.c'.
  6400. * Mode switching optimization
  6401. This pass looks for instructions that require the processor to be
  6402. in a specific "mode" and minimizes the number of mode changes
  6403. required to satisfy all users. What these modes are, and what they
  6404. apply to are completely target-specific. The code for this pass is
  6405. located in 'mode-switching.c'.
  6406. * Modulo scheduling
  6407. This pass looks at innermost loops and reorders their instructions
  6408. by overlapping different iterations. Modulo scheduling is
  6409. performed immediately before instruction scheduling. The code for
  6410. this pass is located in 'modulo-sched.c'.
  6411. * Instruction scheduling
  6412. This pass looks for instructions whose output will not be available
  6413. by the time that it is used in subsequent instructions. Memory
  6414. loads and floating point instructions often have this behavior on
  6415. RISC machines. It re-orders instructions within a basic block to
  6416. try to separate the definition and use of items that otherwise
  6417. would cause pipeline stalls. This pass is performed twice, before
  6418. and after register allocation. The code for this pass is located
  6419. in 'haifa-sched.c', 'sched-deps.c', 'sched-ebb.c', 'sched-rgn.c'
  6420. and 'sched-vis.c'.
  6421. * Register allocation
  6422. These passes make sure that all occurrences of pseudo registers are
  6423. eliminated, either by allocating them to a hard register, replacing
  6424. them by an equivalent expression (e.g. a constant) or by placing
  6425. them on the stack. This is done in several subpasses:
  6426. * The integrated register allocator (IRA). It is called
  6427. integrated because coalescing, register live range splitting,
  6428. and hard register preferencing are done on-the-fly during
  6429. coloring. It also has better integration with the reload/LRA
  6430. pass. Pseudo-registers spilled by the allocator or the
  6431. reload/LRA have still a chance to get hard-registers if the
  6432. reload/LRA evicts some pseudo-registers from hard-registers.
  6433. The allocator helps to choose better pseudos for spilling
  6434. based on their live ranges and to coalesce stack slots
  6435. allocated for the spilled pseudo-registers. IRA is a regional
  6436. register allocator which is transformed into Chaitin-Briggs
  6437. allocator if there is one region. By default, IRA chooses
  6438. regions using register pressure but the user can force it to
  6439. use one region or regions corresponding to all loops.
  6440. Source files of the allocator are 'ira.c', 'ira-build.c',
  6441. 'ira-costs.c', 'ira-conflicts.c', 'ira-color.c', 'ira-emit.c',
  6442. 'ira-lives', plus header files 'ira.h' and 'ira-int.h' used
  6443. for the communication between the allocator and the rest of
  6444. the compiler and between the IRA files.
  6445. * Reloading. This pass renumbers pseudo registers with the
  6446. hardware registers numbers they were allocated. Pseudo
  6447. registers that did not get hard registers are replaced with
  6448. stack slots. Then it finds instructions that are invalid
  6449. because a value has failed to end up in a register, or has
  6450. ended up in a register of the wrong kind. It fixes up these
  6451. instructions by reloading the problematical values temporarily
  6452. into registers. Additional instructions are generated to do
  6453. the copying.
  6454. The reload pass also optionally eliminates the frame pointer
  6455. and inserts instructions to save and restore call-clobbered
  6456. registers around calls.
  6457. Source files are 'reload.c' and 'reload1.c', plus the header
  6458. 'reload.h' used for communication between them.
  6459. * This pass is a modern replacement of the reload pass. Source
  6460. files are 'lra.c', 'lra-assign.c', 'lra-coalesce.c',
  6461. 'lra-constraints.c', 'lra-eliminations.c', 'lra-lives.c',
  6462. 'lra-remat.c', 'lra-spills.c', the header 'lra-int.h' used for
  6463. communication between them, and the header 'lra.h' used for
  6464. communication between LRA and the rest of compiler.
  6465. Unlike the reload pass, intermediate LRA decisions are
  6466. reflected in RTL as much as possible. This reduces the number
  6467. of target-dependent macros and hooks, leaving instruction
  6468. constraints as the primary source of control.
  6469. LRA is run on targets for which TARGET_LRA_P returns true.
  6470. * Basic block reordering
  6471. This pass implements profile guided code positioning. If profile
  6472. information is not available, various types of static analysis are
  6473. performed to make the predictions normally coming from the profile
  6474. feedback (IE execution frequency, branch probability, etc). It is
  6475. implemented in the file 'bb-reorder.c', and the various prediction
  6476. routines are in 'predict.c'.
  6477. * Variable tracking
  6478. This pass computes where the variables are stored at each position
  6479. in code and generates notes describing the variable locations to
  6480. RTL code. The location lists are then generated according to these
  6481. notes to debug information if the debugging information format
  6482. supports location lists. The code is located in 'var-tracking.c'.
  6483. * Delayed branch scheduling
  6484. This optional pass attempts to find instructions that can go into
  6485. the delay slots of other instructions, usually jumps and calls.
  6486. The code for this pass is located in 'reorg.c'.
  6487. * Branch shortening
  6488. On many RISC machines, branch instructions have a limited range.
  6489. Thus, longer sequences of instructions must be used for long
  6490. branches. In this pass, the compiler figures out what how far each
  6491. instruction will be from each other instruction, and therefore
  6492. whether the usual instructions, or the longer sequences, must be
  6493. used for each branch. The code for this pass is located in
  6494. 'final.c'.
  6495. * Register-to-stack conversion
  6496. Conversion from usage of some hard registers to usage of a register
  6497. stack may be done at this point. Currently, this is supported only
  6498. for the floating-point registers of the Intel 80387 coprocessor.
  6499. The code for this pass is located in 'reg-stack.c'.
  6500. * Final
  6501. This pass outputs the assembler code for the function. The source
  6502. files are 'final.c' plus 'insn-output.c'; the latter is generated
  6503. automatically from the machine description by the tool 'genoutput'.
  6504. The header file 'conditions.h' is used for communication between
  6505. these files.
  6506. * Debugging information output
  6507. This is run after final because it must output the stack slot
  6508. offsets for pseudo registers that did not get hard registers.
  6509. Source files are 'dbxout.c' for DBX symbol table format,
  6510. 'dwarfout.c' for DWARF symbol table format, files 'dwarf2out.c' and
  6511. 'dwarf2asm.c' for DWARF2 symbol table format, and 'vmsdbgout.c' for
  6512. VMS debug symbol table format.
  6513. 
  6514. File: gccint.info, Node: Optimization info, Prev: RTL passes, Up: Passes
  6515. 9.6 Optimization info
  6516. =====================
  6517. This section is describes dump infrastructure which is common to both
  6518. pass dumps as well as optimization dumps. The goal for this
  6519. infrastructure is to provide both gcc developers and users detailed
  6520. information about various compiler transformations and optimizations.
  6521. * Menu:
  6522. * Dump setup:: Setup of optimization dumps.
  6523. * Optimization groups:: Groups made up of optimization passes.
  6524. * Dump files and streams:: Dump output file names and streams.
  6525. * Dump output verbosity:: How much information to dump.
  6526. * Dump types:: Various types of dump functions.
  6527. * Dump examples:: Sample usage.
  6528. 
  6529. File: gccint.info, Node: Dump setup, Next: Optimization groups, Up: Optimization info
  6530. 9.6.1 Dump setup
  6531. ----------------
  6532. A dump_manager class is defined in 'dumpfile.h'. Various passes
  6533. register dumping pass-specific information via 'dump_register' in
  6534. 'passes.c'. During the registration, an optimization pass can select
  6535. its optimization group (*note Optimization groups::). After that
  6536. optimization information corresponding to the entire group (presumably
  6537. from multiple passes) can be output via command-line switches. Note
  6538. that if a pass does not fit into any of the pre-defined groups, it can
  6539. select 'OPTGROUP_NONE'.
  6540. Note that in general, a pass need not know its dump output file name,
  6541. whether certain flags are enabled, etc. However, for legacy reasons,
  6542. passes could also call 'dump_begin' which returns a stream in case the
  6543. particular pass has optimization dumps enabled. A pass could call
  6544. 'dump_end' when the dump has ended. These methods should go away once
  6545. all the passes are converted to use the new dump infrastructure.
  6546. The recommended way to setup the dump output is via 'dump_start' and
  6547. 'dump_end'.
  6548. 
  6549. File: gccint.info, Node: Optimization groups, Next: Dump files and streams, Prev: Dump setup, Up: Optimization info
  6550. 9.6.2 Optimization groups
  6551. -------------------------
  6552. The optimization passes are grouped into several categories. Currently
  6553. defined categories in 'dumpfile.h' are
  6554. 'OPTGROUP_IPA'
  6555. IPA optimization passes. Enabled by '-ipa'
  6556. 'OPTGROUP_LOOP'
  6557. Loop optimization passes. Enabled by '-loop'.
  6558. 'OPTGROUP_INLINE'
  6559. Inlining passes. Enabled by '-inline'.
  6560. 'OPTGROUP_OMP'
  6561. OMP (Offloading and Multi Processing) passes. Enabled by '-omp'.
  6562. 'OPTGROUP_VEC'
  6563. Vectorization passes. Enabled by '-vec'.
  6564. 'OPTGROUP_OTHER'
  6565. All other optimization passes which do not fall into one of the
  6566. above.
  6567. 'OPTGROUP_ALL'
  6568. All optimization passes. Enabled by '-optall'.
  6569. By using groups a user could selectively enable optimization
  6570. information only for a group of passes. By default, the optimization
  6571. information for all the passes is dumped.
  6572. 
  6573. File: gccint.info, Node: Dump files and streams, Next: Dump output verbosity, Prev: Optimization groups, Up: Optimization info
  6574. 9.6.3 Dump files and streams
  6575. ----------------------------
  6576. There are two separate output streams available for outputting
  6577. optimization information from passes. Note that both these streams
  6578. accept 'stderr' and 'stdout' as valid streams and thus it is possible to
  6579. dump output to standard output or error. This is specially handy for
  6580. outputting all available information in a single file by redirecting
  6581. 'stderr'.
  6582. 'pstream'
  6583. This stream is for pass-specific dump output. For example,
  6584. '-fdump-tree-vect=foo.v' dumps tree vectorization pass output into
  6585. the given file name 'foo.v'. If the file name is not provided, the
  6586. default file name is based on the source file and pass number.
  6587. Note that one could also use special file names 'stdout' and
  6588. 'stderr' for dumping to standard output and standard error
  6589. respectively.
  6590. 'alt_stream'
  6591. This steam is used for printing optimization specific output in
  6592. response to the '-fopt-info'. Again a file name can be given. If
  6593. the file name is not given, it defaults to 'stderr'.
  6594. 
  6595. File: gccint.info, Node: Dump output verbosity, Next: Dump types, Prev: Dump files and streams, Up: Optimization info
  6596. 9.6.4 Dump output verbosity
  6597. ---------------------------
  6598. The dump verbosity has the following options
  6599. 'optimized'
  6600. Print information when an optimization is successfully applied. It
  6601. is up to a pass to decide which information is relevant. For
  6602. example, the vectorizer passes print the source location of loops
  6603. which got successfully vectorized.
  6604. 'missed'
  6605. Print information about missed optimizations. Individual passes
  6606. control which information to include in the output. For example,
  6607. gcc -O2 -ftree-vectorize -fopt-info-vec-missed
  6608. will print information about missed optimization opportunities from
  6609. vectorization passes on stderr.
  6610. 'note'
  6611. Print verbose information about optimizations, such as certain
  6612. transformations, more detailed messages about decisions etc.
  6613. 'all'
  6614. Print detailed optimization information. This includes OPTIMIZED,
  6615. MISSED, and NOTE.
  6616. 
  6617. File: gccint.info, Node: Dump types, Next: Dump examples, Prev: Dump output verbosity, Up: Optimization info
  6618. 9.6.5 Dump types
  6619. ----------------
  6620. 'dump_printf'
  6621. This is a generic method for doing formatted output. It takes an
  6622. additional argument 'dump_kind' which signifies the type of dump.
  6623. This method outputs information only when the dumps are enabled for
  6624. this particular 'dump_kind'. Note that the caller doesn't need to
  6625. know if the particular dump is enabled or not, or even the file
  6626. name. The caller only needs to decide which dump output
  6627. information is relevant, and under what conditions. This
  6628. determines the associated flags.
  6629. Consider the following example from 'loop-unroll.c' where an
  6630. informative message about a loop (along with its location) is
  6631. printed when any of the following flags is enabled
  6632. - optimization messages
  6633. - RTL dumps
  6634. - detailed dumps
  6635. int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
  6636. dump_printf_loc (report_flags, locus,
  6637. "loop turned into non-loop; it never loops.\n");
  6638. 'dump_basic_block'
  6639. Output basic block.
  6640. 'dump_generic_expr'
  6641. Output generic expression.
  6642. 'dump_gimple_stmt'
  6643. Output gimple statement.
  6644. Note that the above methods also have variants prefixed with
  6645. '_loc', such as 'dump_printf_loc', which are similar except they
  6646. also output the source location information.
  6647. 
  6648. File: gccint.info, Node: Dump examples, Prev: Dump types, Up: Optimization info
  6649. 9.6.6 Dump examples
  6650. -------------------
  6651. gcc -O3 -fopt-info-missed=missed.all
  6652. outputs missed optimization report from all the passes into
  6653. 'missed.all'.
  6654. As another example,
  6655. gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
  6656. will output information about missed optimizations as well as optimized
  6657. locations from all the inlining passes into 'inline.txt'.
  6658. If the FILENAME is provided, then the dumps from all the applicable
  6659. optimizations are concatenated into the 'filename'. Otherwise the dump
  6660. is output onto 'stderr'. If OPTIONS is omitted, it defaults to
  6661. 'optimized-optall', which means dump all information about successful
  6662. optimizations from all the passes. In the following example, the
  6663. optimization information is output on to 'stderr'.
  6664. gcc -O3 -fopt-info
  6665. Note that '-fopt-info-vec-missed' behaves the same as
  6666. '-fopt-info-missed-vec'. The order of the optimization group names and
  6667. message types listed after '-fopt-info' does not matter.
  6668. As another example, consider
  6669. gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
  6670. Here the two output file names 'vec.miss' and 'loop.opt' are in
  6671. conflict since only one output file is allowed. In this case, only the
  6672. first option takes effect and the subsequent options are ignored. Thus
  6673. only the 'vec.miss' is produced which containts dumps from the
  6674. vectorizer about missed opportunities.
  6675. 
  6676. File: gccint.info, Node: poly_int, Next: GENERIC, Prev: Passes, Up: Top
  6677. 10 Sizes and offsets as runtime invariants
  6678. ******************************************
  6679. GCC allows the size of a hardware register to be a runtime invariant
  6680. rather than a compile-time constant. This in turn means that various
  6681. sizes and offsets must also be runtime invariants rather than
  6682. compile-time constants, such as:
  6683. * the size of a general 'machine_mode' (*note Machine Modes::);
  6684. * the size of a spill slot;
  6685. * the offset of something within a stack frame;
  6686. * the number of elements in a vector;
  6687. * the size and offset of a 'mem' rtx (*note Regs and Memory::); and
  6688. * the byte offset in a 'subreg' rtx (*note Regs and Memory::).
  6689. The motivating example is the Arm SVE ISA, whose vector registers can
  6690. be any multiple of 128 bits between 128 and 2048 inclusive. The
  6691. compiler normally produces code that works for all SVE register sizes,
  6692. with the actual size only being known at runtime.
  6693. GCC's main representation of such runtime invariants is the 'poly_int'
  6694. class. This chapter describes what 'poly_int' does, lists the available
  6695. operations, and gives some general usage guidelines.
  6696. * Menu:
  6697. * Overview of poly_int::
  6698. * Consequences of using poly_int::
  6699. * Comparisons involving poly_int::
  6700. * Arithmetic on poly_ints::
  6701. * Alignment of poly_ints::
  6702. * Computing bounds on poly_ints::
  6703. * Converting poly_ints::
  6704. * Miscellaneous poly_int routines::
  6705. * Guidelines for using poly_int::
  6706. 
  6707. File: gccint.info, Node: Overview of poly_int, Next: Consequences of using poly_int, Up: poly_int
  6708. 10.1 Overview of 'poly_int'
  6709. ===========================
  6710. We define indeterminates X1, ..., XN whose values are only known at
  6711. runtime and use polynomials of the form:
  6712. C0 + C1 * X1 + ... + CN * XN
  6713. to represent a size or offset whose value might depend on some of these
  6714. indeterminates. The coefficients C0, ..., CN are always known at
  6715. compile time, with the C0 term being the "constant" part that does not
  6716. depend on any runtime value.
  6717. GCC uses the 'poly_int' class to represent these coefficients. The
  6718. class has two template parameters: the first specifies the number of
  6719. coefficients (N + 1) and the second specifies the type of the
  6720. coefficients. For example, 'poly_int<2, unsigned short>' represents a
  6721. polynomial with two coefficients (and thus one indeterminate), with each
  6722. coefficient having type 'unsigned short'. When N is 0, the class
  6723. degenerates to a single compile-time constant C0.
  6724. The number of coefficients needed for compilation is a fixed property
  6725. of each target and is specified by the configuration macro
  6726. 'NUM_POLY_INT_COEFFS'. The default value is 1, since most targets do
  6727. not have such runtime invariants. Targets that need a different value
  6728. should '#define' the macro in their 'CPU-modes.def' file. *Note Back
  6729. End::.
  6730. 'poly_int' makes the simplifying requirement that each indeterminate
  6731. must be a nonnegative integer. An indeterminate value of 0 should
  6732. usually represent the minimum possible runtime value, with C0 specifying
  6733. the value in that case.
  6734. For example, when targetting the Arm SVE ISA, the single indeterminate
  6735. represents the number of 128-bit blocks in a vector _beyond the minimum
  6736. length of 128 bits_. Thus the number of 64-bit doublewords in a vector
  6737. is 2 + 2 * X1. If an aggregate has a single SVE vector and 16
  6738. additional bytes, its total size is 32 + 16 * X1 bytes.
  6739. The header file 'poly-int-types.h' provides typedefs for the most
  6740. common forms of 'poly_int', all having 'NUM_POLY_INT_COEFFS'
  6741. coefficients:
  6742. 'poly_uint16'
  6743. a 'poly_int' with 'unsigned short' coefficients.
  6744. 'poly_int64'
  6745. a 'poly_int' with 'HOST_WIDE_INT' coefficients.
  6746. 'poly_uint64'
  6747. a 'poly_int' with 'unsigned HOST_WIDE_INT' coefficients.
  6748. 'poly_offset_int'
  6749. a 'poly_int' with 'offset_int' coefficients.
  6750. 'poly_wide_int'
  6751. a 'poly_int' with 'wide_int' coefficients.
  6752. 'poly_widest_int'
  6753. a 'poly_int' with 'widest_int' coefficients.
  6754. Since the main purpose of 'poly_int' is to represent sizes and offsets,
  6755. the last two typedefs are only rarely used.
  6756. 
  6757. File: gccint.info, Node: Consequences of using poly_int, Next: Comparisons involving poly_int, Prev: Overview of poly_int, Up: poly_int
  6758. 10.2 Consequences of using 'poly_int'
  6759. =====================================
  6760. The two main consequences of using polynomial sizes and offsets are
  6761. that:
  6762. * there is no total ordering between the values at compile time, and
  6763. * some operations might yield results that cannot be expressed as a
  6764. 'poly_int'.
  6765. For example, if X is a runtime invariant, we cannot tell at compile
  6766. time whether:
  6767. 3 + 4X <= 1 + 5X
  6768. since the condition is false when X <= 1 and true when X >= 2.
  6769. Similarly, 'poly_int' cannot represent the result of:
  6770. (3 + 4X) * (1 + 5X)
  6771. since it cannot (and in practice does not need to) store powers greater
  6772. than one. It also cannot represent the result of:
  6773. (3 + 4X) / (1 + 5X)
  6774. The following sections describe how we deal with these restrictions.
  6775. As described earlier, a 'poly_int<1, T>' has no indeterminates and so
  6776. degenerates to a compile-time constant of type T. It would be possible
  6777. in that case to do all normal arithmetic on the T, and to compare the T
  6778. using the normal C++ operators. We deliberately prevent
  6779. target-independent code from doing this, since the compiler needs to
  6780. support other 'poly_int<N, T>' as well, regardless of the current
  6781. target's 'NUM_POLY_INT_COEFFS'.
  6782. However, it would be very artificial to force target-specific code to
  6783. follow these restrictions if the target has no runtime indeterminates.
  6784. There is therefore an implicit conversion from 'poly_int<1, T>' to T
  6785. when compiling target-specific translation units.
  6786. 
  6787. File: gccint.info, Node: Comparisons involving poly_int, Next: Arithmetic on poly_ints, Prev: Consequences of using poly_int, Up: poly_int
  6788. 10.3 Comparisons involving 'poly_int'
  6789. =====================================
  6790. In general we need to compare sizes and offsets in two situations: those
  6791. in which the values need to be ordered, and those in which the values
  6792. can be unordered. More loosely, the distinction is often between values
  6793. that have a definite link (usually because they refer to the same
  6794. underlying register or memory location) and values that have no definite
  6795. link. An example of the former is the relationship between the inner
  6796. and outer sizes of a subreg, where we must know at compile time whether
  6797. the subreg is paradoxical, partial, or complete. An example of the
  6798. latter is alias analysis: we might want to check whether two arbitrary
  6799. memory references overlap.
  6800. Referring back to the examples in the previous section, it makes sense
  6801. to ask whether a memory reference of size '3 + 4X' overlaps one of size
  6802. '1 + 5X', but it does not make sense to have a subreg in which the outer
  6803. mode has '3 + 4X' bytes and the inner mode has '1 + 5X' bytes (or vice
  6804. versa). Such subregs are always invalid and should trigger an internal
  6805. compiler error if formed.
  6806. The underlying operators are the same in both cases, but the
  6807. distinction affects how they are used.
  6808. * Menu:
  6809. * Comparison functions for poly_int::
  6810. * Properties of the poly_int comparisons::
  6811. * Comparing potentially-unordered poly_ints::
  6812. * Comparing ordered poly_ints::
  6813. * Checking for a poly_int marker value::
  6814. * Range checks on poly_ints::
  6815. * Sorting poly_ints::
  6816. 
  6817. File: gccint.info, Node: Comparison functions for poly_int, Next: Properties of the poly_int comparisons, Up: Comparisons involving poly_int
  6818. 10.3.1 Comparison functions for 'poly_int'
  6819. ------------------------------------------
  6820. 'poly_int' provides the following routines for checking whether a
  6821. particular condition "may be" (might be) true:
  6822. maybe_lt maybe_le maybe_eq maybe_ge maybe_gt
  6823. maybe_ne
  6824. The functions have their natural meaning:
  6825. 'maybe_lt(A, B)'
  6826. Return true if A might be less than B.
  6827. 'maybe_le(A, B)'
  6828. Return true if A might be less than or equal to B.
  6829. 'maybe_eq(A, B)'
  6830. Return true if A might be equal to B.
  6831. 'maybe_ne(A, B)'
  6832. Return true if A might not be equal to B.
  6833. 'maybe_ge(A, B)'
  6834. Return true if A might be greater than or equal to B.
  6835. 'maybe_gt(A, B)'
  6836. Return true if A might be greater than B.
  6837. For readability, 'poly_int' also provides "known" inverses of these
  6838. functions:
  6839. known_lt (A, B) == !maybe_ge (A, B)
  6840. known_le (A, B) == !maybe_gt (A, B)
  6841. known_eq (A, B) == !maybe_ne (A, B)
  6842. known_ge (A, B) == !maybe_lt (A, B)
  6843. known_gt (A, B) == !maybe_le (A, B)
  6844. known_ne (A, B) == !maybe_eq (A, B)
  6845. 
  6846. File: gccint.info, Node: Properties of the poly_int comparisons, Next: Comparing potentially-unordered poly_ints, Prev: Comparison functions for poly_int, Up: Comparisons involving poly_int
  6847. 10.3.2 Properties of the 'poly_int' comparisons
  6848. -----------------------------------------------
  6849. All "maybe" relations except 'maybe_ne' are transitive, so for example:
  6850. maybe_lt (A, B) && maybe_lt (B, C) implies maybe_lt (A, C)
  6851. for all A, B and C. 'maybe_lt', 'maybe_gt' and 'maybe_ne' are
  6852. irreflexive, so for example:
  6853. !maybe_lt (A, A)
  6854. is true for all A. 'maybe_le', 'maybe_eq' and 'maybe_ge' are
  6855. reflexive, so for example:
  6856. maybe_le (A, A)
  6857. is true for all A. 'maybe_eq' and 'maybe_ne' are symmetric, so:
  6858. maybe_eq (A, B) == maybe_eq (B, A)
  6859. maybe_ne (A, B) == maybe_ne (B, A)
  6860. for all A and B. In addition:
  6861. maybe_le (A, B) == maybe_lt (A, B) || maybe_eq (A, B)
  6862. maybe_ge (A, B) == maybe_gt (A, B) || maybe_eq (A, B)
  6863. maybe_lt (A, B) == maybe_gt (B, A)
  6864. maybe_le (A, B) == maybe_ge (B, A)
  6865. However:
  6866. maybe_le (A, B) && maybe_le (B, A) does not imply !maybe_ne (A, B) [== known_eq (A, B)]
  6867. maybe_ge (A, B) && maybe_ge (B, A) does not imply !maybe_ne (A, B) [== known_eq (A, B)]
  6868. One example is again 'A == 3 + 4X' and 'B == 1 + 5X', where 'maybe_le
  6869. (A, B)', 'maybe_ge (A, B)' and 'maybe_ne (A, B)' all hold. 'maybe_le'
  6870. and 'maybe_ge' are therefore not antisymetric and do not form a partial
  6871. order.
  6872. From the above, it follows that:
  6873. * All "known" relations except 'known_ne' are transitive.
  6874. * 'known_lt', 'known_ne' and 'known_gt' are irreflexive.
  6875. * 'known_le', 'known_eq' and 'known_ge' are reflexive.
  6876. Also:
  6877. known_lt (A, B) == known_gt (B, A)
  6878. known_le (A, B) == known_ge (B, A)
  6879. known_lt (A, B) implies !known_lt (B, A) [asymmetry]
  6880. known_gt (A, B) implies !known_gt (B, A)
  6881. known_le (A, B) && known_le (B, A) == known_eq (A, B) [== !maybe_ne (A, B)]
  6882. known_ge (A, B) && known_ge (B, A) == known_eq (A, B) [== !maybe_ne (A, B)]
  6883. 'known_le' and 'known_ge' are therefore antisymmetric and are partial
  6884. orders. However:
  6885. known_le (A, B) does not imply known_lt (A, B) || known_eq (A, B)
  6886. known_ge (A, B) does not imply known_gt (A, B) || known_eq (A, B)
  6887. For example, 'known_le (4, 4 + 4X)' holds because the runtime
  6888. indeterminate X is a nonnegative integer, but neither 'known_lt (4, 4 +
  6889. 4X)' nor 'known_eq (4, 4 + 4X)' hold.
  6890. 
  6891. File: gccint.info, Node: Comparing potentially-unordered poly_ints, Next: Comparing ordered poly_ints, Prev: Properties of the poly_int comparisons, Up: Comparisons involving poly_int
  6892. 10.3.3 Comparing potentially-unordered 'poly_int's
  6893. --------------------------------------------------
  6894. In cases where there is no definite link between two 'poly_int's, we can
  6895. usually make a conservatively-correct assumption. For example, the
  6896. conservative assumption for alias analysis is that two references
  6897. _might_ alias.
  6898. One way of checking whether [BEGIN1, END1) might overlap [BEGIN2, END2)
  6899. using the 'poly_int' comparisons is:
  6900. maybe_gt (END1, BEGIN2) && maybe_gt (END2, BEGIN1)
  6901. and another (equivalent) way is:
  6902. !(known_le (END1, BEGIN2) || known_le (END2, BEGIN1))
  6903. However, in this particular example, it is better to use the range
  6904. helper functions instead. *Note Range checks on poly_ints::.
  6905. 
  6906. File: gccint.info, Node: Comparing ordered poly_ints, Next: Checking for a poly_int marker value, Prev: Comparing potentially-unordered poly_ints, Up: Comparisons involving poly_int
  6907. 10.3.4 Comparing ordered 'poly_int's
  6908. ------------------------------------
  6909. In cases where there is a definite link between two 'poly_int's, such as
  6910. the outer and inner sizes of subregs, we usually require the sizes to be
  6911. ordered by the 'known_le' partial order. 'poly_int' provides the
  6912. following utility functions for ordered values:
  6913. 'ordered_p (A, B)'
  6914. Return true if A and B are ordered by the 'known_le' partial order.
  6915. 'ordered_min (A, B)'
  6916. Assert that A and B are ordered by 'known_le' and return the
  6917. minimum of the two. When using this function, please add a comment
  6918. explaining why the values are known to be ordered.
  6919. 'ordered_max (A, B)'
  6920. Assert that A and B are ordered by 'known_le' and return the
  6921. maximum of the two. When using this function, please add a comment
  6922. explaining why the values are known to be ordered.
  6923. For example, if a subreg has an outer mode of size OUTER and an inner
  6924. mode of size INNER:
  6925. * the subreg is complete if known_eq (INNER, OUTER)
  6926. * otherwise, the subreg is paradoxical if known_le (INNER, OUTER)
  6927. * otherwise, the subreg is partial if known_le (OUTER, INNER)
  6928. * otherwise, the subreg is ill-formed
  6929. Thus the subreg is only valid if 'ordered_p (OUTER, INNER)' is true.
  6930. If this condition is already known to be true then:
  6931. * the subreg is complete if known_eq (INNER, OUTER)
  6932. * the subreg is paradoxical if maybe_lt (INNER, OUTER)
  6933. * the subreg is partial if maybe_lt (OUTER, INNER)
  6934. with the three conditions being mutually exclusive.
  6935. Code that checks whether a subreg is valid would therefore generally
  6936. check whether 'ordered_p' holds (in addition to whatever other checks
  6937. are required for subreg validity). Code that is dealing with existing
  6938. subregs can assert that 'ordered_p' holds and use either of the
  6939. classifications above.
  6940. 
  6941. File: gccint.info, Node: Checking for a poly_int marker value, Next: Range checks on poly_ints, Prev: Comparing ordered poly_ints, Up: Comparisons involving poly_int
  6942. 10.3.5 Checking for a 'poly_int' marker value
  6943. ---------------------------------------------
  6944. It is sometimes useful to have a special "marker value" that is not
  6945. meant to be taken literally. For example, some code uses a size of -1
  6946. to represent an unknown size, rather than having to carry around a
  6947. separate boolean to say whether the size is known.
  6948. The best way of checking whether something is a marker value is
  6949. 'known_eq'. Conversely the best way of checking whether something is
  6950. _not_ a marker value is 'maybe_ne'.
  6951. Thus in the size example just mentioned, 'known_eq (size, -1)' would
  6952. check for an unknown size and 'maybe_ne (size, -1)' would check for a
  6953. known size.
  6954. 
  6955. File: gccint.info, Node: Range checks on poly_ints, Next: Sorting poly_ints, Prev: Checking for a poly_int marker value, Up: Comparisons involving poly_int
  6956. 10.3.6 Range checks on 'poly_int's
  6957. ----------------------------------
  6958. As well as the core comparisons (*note Comparison functions for
  6959. poly_int::), 'poly_int' provides utilities for various kinds of range
  6960. check. In each case the range is represented by a start position and a
  6961. size rather than a start position and an end position; this is because
  6962. the former is used much more often than the latter in GCC. Also, the
  6963. sizes can be -1 (or all ones for unsigned sizes) to indicate a range
  6964. with a known start position but an unknown size. All other sizes must
  6965. be nonnegative. A range of size 0 does not contain anything or overlap
  6966. anything.
  6967. 'known_size_p (SIZE)'
  6968. Return true if SIZE represents a known range size, false if it is
  6969. -1 or all ones (for signed and unsigned types respectively).
  6970. 'ranges_maybe_overlap_p (POS1, SIZE1, POS2, SIZE2)'
  6971. Return true if the range described by POS1 and SIZE1 _might_
  6972. overlap the range described by POS2 and SIZE2 (in other words,
  6973. return true if we cannot prove that the ranges are disjoint).
  6974. 'ranges_known_overlap_p (POS1, SIZE1, POS2, SIZE2)'
  6975. Return true if the range described by POS1 and SIZE1 is known to
  6976. overlap the range described by POS2 and SIZE2.
  6977. 'known_subrange_p (POS1, SIZE1, POS2, SIZE2)'
  6978. Return true if the range described by POS1 and SIZE1 is known to be
  6979. contained in the range described by POS2 and SIZE2.
  6980. 'maybe_in_range_p (VALUE, POS, SIZE)'
  6981. Return true if VALUE _might_ be in the range described by POS and
  6982. SIZE (in other words, return true if we cannot prove that VALUE is
  6983. outside that range).
  6984. 'known_in_range_p (VALUE, POS, SIZE)'
  6985. Return true if VALUE is known to be in the range described by POS
  6986. and SIZE.
  6987. 'endpoint_representable_p (POS, SIZE)'
  6988. Return true if the range described by POS and SIZE is open-ended or
  6989. if the endpoint (POS + SIZE) is representable in the same type as
  6990. POS and SIZE. The function returns false if adding SIZE to POS
  6991. makes conceptual sense but could overflow.
  6992. There is also a 'poly_int' version of the 'IN_RANGE_P' macro:
  6993. 'coeffs_in_range_p (X, LOWER, UPPER)'
  6994. Return true if every coefficient of X is in the inclusive range
  6995. [LOWER, UPPER]. This function can be useful when testing whether
  6996. an operation would cause the values of coefficients to overflow.
  6997. Note that the function does not indicate whether X itself is in the
  6998. given range. X can be either a constant or a 'poly_int'.
  6999. 
  7000. File: gccint.info, Node: Sorting poly_ints, Prev: Range checks on poly_ints, Up: Comparisons involving poly_int
  7001. 10.3.7 Sorting 'poly_int's
  7002. --------------------------
  7003. 'poly_int' provides the following routine for sorting:
  7004. 'compare_sizes_for_sort (A, B)'
  7005. Compare A and B in reverse lexicographical order (that is, compare
  7006. the highest-indexed coefficients first). This can be useful when
  7007. sorting data structures, since it has the effect of separating
  7008. constant and non-constant values. If all values are nonnegative,
  7009. the constant values come first.
  7010. Note that the values do not necessarily end up in numerical order.
  7011. For example, '1 + 1X' would come after '100' in the sort order, but
  7012. may well be less than '100' at run time.
  7013. 
  7014. File: gccint.info, Node: Arithmetic on poly_ints, Next: Alignment of poly_ints, Prev: Comparisons involving poly_int, Up: poly_int
  7015. 10.4 Arithmetic on 'poly_int's
  7016. ==============================
  7017. Addition, subtraction, negation and bit inversion all work normally for
  7018. 'poly_int's. Multiplication by a constant multiplier and left shifting
  7019. by a constant shift amount also work normally. General multiplication
  7020. of two 'poly_int's is not supported and is not useful in practice.
  7021. Other operations are only conditionally supported: the operation might
  7022. succeed or might fail, depending on the inputs.
  7023. This section describes both types of operation.
  7024. * Menu:
  7025. * Using poly_int with C++ arithmetic operators::
  7026. * wi arithmetic on poly_ints::
  7027. * Division of poly_ints::
  7028. * Other poly_int arithmetic::
  7029. 
  7030. File: gccint.info, Node: Using poly_int with C++ arithmetic operators, Next: wi arithmetic on poly_ints, Up: Arithmetic on poly_ints
  7031. 10.4.1 Using 'poly_int' with C++ arithmetic operators
  7032. -----------------------------------------------------
  7033. The following C++ expressions are supported, where P1 and P2 are
  7034. 'poly_int's and where C1 and C2 are scalars:
  7035. -P1
  7036. ~P1
  7037. P1 + P2
  7038. P1 + C2
  7039. C1 + P2
  7040. P1 - P2
  7041. P1 - C2
  7042. C1 - P2
  7043. C1 * P2
  7044. P1 * C2
  7045. P1 << C2
  7046. P1 += P2
  7047. P1 += C2
  7048. P1 -= P2
  7049. P1 -= C2
  7050. P1 *= C2
  7051. P1 <<= C2
  7052. These arithmetic operations handle integer ranks in a similar way to
  7053. C++. The main difference is that every coefficient narrower than
  7054. 'HOST_WIDE_INT' promotes to 'HOST_WIDE_INT', whereas in C++ everything
  7055. narrower than 'int' promotes to 'int'. For example:
  7056. poly_uint16 + int -> poly_int64
  7057. unsigned int + poly_uint16 -> poly_int64
  7058. poly_int64 + int -> poly_int64
  7059. poly_int32 + poly_uint64 -> poly_uint64
  7060. uint64 + poly_int64 -> poly_uint64
  7061. poly_offset_int + int32 -> poly_offset_int
  7062. offset_int + poly_uint16 -> poly_offset_int
  7063. In the first two examples, both coefficients are narrower than
  7064. 'HOST_WIDE_INT', so the result has coefficients of type 'HOST_WIDE_INT'.
  7065. In the other examples, the coefficient with the highest rank "wins".
  7066. If one of the operands is 'wide_int' or 'poly_wide_int', the rules are
  7067. the same as for 'wide_int' arithmetic.
  7068. 
  7069. File: gccint.info, Node: wi arithmetic on poly_ints, Next: Division of poly_ints, Prev: Using poly_int with C++ arithmetic operators, Up: Arithmetic on poly_ints
  7070. 10.4.2 'wi' arithmetic on 'poly_int's
  7071. -------------------------------------
  7072. As well as the C++ operators, 'poly_int' supports the following 'wi'
  7073. routines:
  7074. wi::neg (P1, &OVERFLOW)
  7075. wi::add (P1, P2)
  7076. wi::add (P1, C2)
  7077. wi::add (C1, P1)
  7078. wi::add (P1, P2, SIGN, &OVERFLOW)
  7079. wi::sub (P1, P2)
  7080. wi::sub (P1, C2)
  7081. wi::sub (C1, P1)
  7082. wi::sub (P1, P2, SIGN, &OVERFLOW)
  7083. wi::mul (P1, C2)
  7084. wi::mul (C1, P1)
  7085. wi::mul (P1, C2, SIGN, &OVERFLOW)
  7086. wi::lshift (P1, C2)
  7087. These routines just check whether overflow occurs on any individual
  7088. coefficient; it is not possible to know at compile time whether the
  7089. final runtime value would overflow.
  7090. 
  7091. File: gccint.info, Node: Division of poly_ints, Next: Other poly_int arithmetic, Prev: wi arithmetic on poly_ints, Up: Arithmetic on poly_ints
  7092. 10.4.3 Division of 'poly_int's
  7093. ------------------------------
  7094. Division of 'poly_int's is possible for certain inputs. The functions
  7095. for division return true if the operation is possible and in most cases
  7096. return the results by pointer. The routines are:
  7097. 'multiple_p (A, B)'
  7098. 'multiple_p (A, B, &QUOTIENT)'
  7099. Return true if A is an exact multiple of B, storing the result in
  7100. QUOTIENT if so. There are overloads for various combinations of
  7101. polynomial and constant A, B and QUOTIENT.
  7102. 'constant_multiple_p (A, B)'
  7103. 'constant_multiple_p (A, B, &QUOTIENT)'
  7104. Like 'multiple_p', but also test whether the multiple is a
  7105. compile-time constant.
  7106. 'can_div_trunc_p (A, B, &QUOTIENT)'
  7107. 'can_div_trunc_p (A, B, &QUOTIENT, &REMAINDER)'
  7108. Return true if we can calculate 'trunc (A / B)' at compile time,
  7109. storing the result in QUOTIENT and REMAINDER if so.
  7110. 'can_div_away_from_zero_p (A, B, &QUOTIENT)'
  7111. Return true if we can calculate 'A / B' at compile time, rounding
  7112. away from zero. Store the result in QUOTIENT if so.
  7113. Note that this is true if and only if 'can_div_trunc_p' is true.
  7114. The only difference is in the rounding of the result.
  7115. There is also an asserting form of division:
  7116. 'exact_div (A, B)'
  7117. Assert that A is a multiple of B and return 'A / B'. The result is
  7118. a 'poly_int' if A is a 'poly_int'.
  7119. 
  7120. File: gccint.info, Node: Other poly_int arithmetic, Prev: Division of poly_ints, Up: Arithmetic on poly_ints
  7121. 10.4.4 Other 'poly_int' arithmetic
  7122. ----------------------------------
  7123. There are tentative routines for other operations besides division:
  7124. 'can_ior_p (A, B, &RESULT)'
  7125. Return true if we can calculate 'A | B' at compile time, storing
  7126. the result in RESULT if so.
  7127. Also, ANDs with a value '(1 << Y) - 1' or its inverse can be treated as
  7128. alignment operations. *Note Alignment of poly_ints::.
  7129. In addition, the following miscellaneous routines are available:
  7130. 'coeff_gcd (A)'
  7131. Return the greatest common divisor of all nonzero coefficients in
  7132. A, or zero if A is known to be zero.
  7133. 'common_multiple (A, B)'
  7134. Return a value that is a multiple of both A and B, where one value
  7135. is a 'poly_int' and the other is a scalar. The result will be the
  7136. least common multiple for some indeterminate values but not
  7137. necessarily for all.
  7138. 'force_common_multiple (A, B)'
  7139. Return a value that is a multiple of both 'poly_int' A and
  7140. 'poly_int' B, asserting that such a value exists. The result will
  7141. be the least common multiple for some indeterminate values but not
  7142. necessarily for all.
  7143. When using this routine, please add a comment explaining why the
  7144. assertion is known to hold.
  7145. Please add any other operations that you find to be useful.
  7146. 
  7147. File: gccint.info, Node: Alignment of poly_ints, Next: Computing bounds on poly_ints, Prev: Arithmetic on poly_ints, Up: poly_int
  7148. 10.5 Alignment of 'poly_int's
  7149. =============================
  7150. 'poly_int' provides various routines for aligning values and for
  7151. querying misalignments. In each case the alignment must be a power of
  7152. 2.
  7153. 'can_align_p (VALUE, ALIGN)'
  7154. Return true if we can align VALUE up or down to the nearest
  7155. multiple of ALIGN at compile time. The answer is the same for both
  7156. directions.
  7157. 'can_align_down (VALUE, ALIGN, &ALIGNED)'
  7158. Return true if 'can_align_p'; if so, set ALIGNED to the greatest
  7159. aligned value that is less than or equal to VALUE.
  7160. 'can_align_up (VALUE, ALIGN, &ALIGNED)'
  7161. Return true if 'can_align_p'; if so, set ALIGNED to the lowest
  7162. aligned value that is greater than or equal to VALUE.
  7163. 'known_equal_after_align_down (A, B, ALIGN)'
  7164. Return true if we can align A and B down to the nearest ALIGN
  7165. boundary at compile time and if the two results are equal.
  7166. 'known_equal_after_align_up (A, B, ALIGN)'
  7167. Return true if we can align A and B up to the nearest ALIGN
  7168. boundary at compile time and if the two results are equal.
  7169. 'aligned_lower_bound (VALUE, ALIGN)'
  7170. Return a result that is no greater than VALUE and that is aligned
  7171. to ALIGN. The result will the closest aligned value for some
  7172. indeterminate values but not necessarily for all.
  7173. For example, suppose we are allocating an object of SIZE bytes in a
  7174. downward-growing stack whose current limit is given by LIMIT. If
  7175. the object requires ALIGN bytes of alignment, the new stack limit
  7176. is given by:
  7177. aligned_lower_bound (LIMIT - SIZE, ALIGN)
  7178. 'aligned_upper_bound (VALUE, ALIGN)'
  7179. Likewise return a result that is no less than VALUE and that is
  7180. aligned to ALIGN. This is the routine that would be used for
  7181. upward-growing stacks in the scenario just described.
  7182. 'known_misalignment (VALUE, ALIGN, &MISALIGN)'
  7183. Return true if we can calculate the misalignment of VALUE with
  7184. respect to ALIGN at compile time, storing the result in MISALIGN if
  7185. so.
  7186. 'known_alignment (VALUE)'
  7187. Return the minimum alignment that VALUE is known to have (in other
  7188. words, the largest alignment that can be guaranteed whatever the
  7189. values of the indeterminates turn out to be). Return 0 if VALUE is
  7190. known to be 0.
  7191. 'force_align_down (VALUE, ALIGN)'
  7192. Assert that VALUE can be aligned down to ALIGN at compile time and
  7193. return the result. When using this routine, please add a comment
  7194. explaining why the assertion is known to hold.
  7195. 'force_align_up (VALUE, ALIGN)'
  7196. Likewise, but aligning up.
  7197. 'force_align_down_and_div (VALUE, ALIGN)'
  7198. Divide the result of 'force_align_down' by ALIGN. Again, please
  7199. add a comment explaining why the assertion in 'force_align_down' is
  7200. known to hold.
  7201. 'force_align_up_and_div (VALUE, ALIGN)'
  7202. Likewise for 'force_align_up'.
  7203. 'force_get_misalignment (VALUE, ALIGN)'
  7204. Assert that we can calculate the misalignment of VALUE with respect
  7205. to ALIGN at compile time and return the misalignment. When using
  7206. this function, please add a comment explaining why the assertion is
  7207. known to hold.
  7208. 
  7209. File: gccint.info, Node: Computing bounds on poly_ints, Next: Converting poly_ints, Prev: Alignment of poly_ints, Up: poly_int
  7210. 10.6 Computing bounds on 'poly_int's
  7211. ====================================
  7212. 'poly_int' also provides routines for calculating lower and upper
  7213. bounds:
  7214. 'constant_lower_bound (A)'
  7215. Assert that A is nonnegative and return the smallest value it can
  7216. have.
  7217. 'lower_bound (A, B)'
  7218. Return a value that is always less than or equal to both A and B.
  7219. It will be the greatest such value for some indeterminate values
  7220. but necessarily for all.
  7221. 'upper_bound (A, B)'
  7222. Return a value that is always greater than or equal to both A and
  7223. B. It will be the least such value for some indeterminate values
  7224. but necessarily for all.
  7225. 
  7226. File: gccint.info, Node: Converting poly_ints, Next: Miscellaneous poly_int routines, Prev: Computing bounds on poly_ints, Up: poly_int
  7227. 10.7 Converting 'poly_int's
  7228. ===========================
  7229. A 'poly_int<N, T>' can be constructed from up to N individual T
  7230. coefficients, with the remaining coefficients being implicitly zero. In
  7231. particular, this means that every 'poly_int<N, T>' can be constructed
  7232. from a single scalar T, or something compatible with T.
  7233. Also, a 'poly_int<N, T>' can be constructed from a 'poly_int<N, U>' if
  7234. T can be constructed from U.
  7235. The following functions provide other forms of conversion, or test
  7236. whether such a conversion would succeed.
  7237. 'VALUE.is_constant ()'
  7238. Return true if 'poly_int' VALUE is a compile-time constant.
  7239. 'VALUE.is_constant (&C1)'
  7240. Return true if 'poly_int' VALUE is a compile-time constant, storing
  7241. it in C1 if so. C1 must be able to hold all constant values of
  7242. VALUE without loss of precision.
  7243. 'VALUE.to_constant ()'
  7244. Assert that VALUE is a compile-time constant and return its value.
  7245. When using this function, please add a comment explaining why the
  7246. condition is known to hold (for example, because an earlier phase
  7247. of analysis rejected non-constants).
  7248. 'VALUE.to_shwi (&P2)'
  7249. Return true if 'poly_int<N, T>' VALUE can be represented without
  7250. loss of precision as a 'poly_int<N, 'HOST_WIDE_INT'>', storing it
  7251. in that form in P2 if so.
  7252. 'VALUE.to_uhwi (&P2)'
  7253. Return true if 'poly_int<N, T>' VALUE can be represented without
  7254. loss of precision as a 'poly_int<N, 'unsigned HOST_WIDE_INT'>',
  7255. storing it in that form in P2 if so.
  7256. 'VALUE.force_shwi ()'
  7257. Forcibly convert each coefficient of 'poly_int<N, T>' VALUE to
  7258. 'HOST_WIDE_INT', truncating any that are out of range. Return the
  7259. result as a 'poly_int<N, 'HOST_WIDE_INT'>'.
  7260. 'VALUE.force_uhwi ()'
  7261. Forcibly convert each coefficient of 'poly_int<N, T>' VALUE to
  7262. 'unsigned HOST_WIDE_INT', truncating any that are out of range.
  7263. Return the result as a 'poly_int<N, 'unsigned HOST_WIDE_INT'>'.
  7264. 'wi::shwi (VALUE, PRECISION)'
  7265. Return a 'poly_int' with the same value as VALUE, but with the
  7266. coefficients converted from 'HOST_WIDE_INT' to 'wide_int'.
  7267. PRECISION specifies the precision of the 'wide_int' cofficients; if
  7268. this is wider than a 'HOST_WIDE_INT', the coefficients of VALUE
  7269. will be sign-extended to fit.
  7270. 'wi::uhwi (VALUE, PRECISION)'
  7271. Like 'wi::shwi', except that VALUE has coefficients of type
  7272. 'unsigned HOST_WIDE_INT'. If PRECISION is wider than a
  7273. 'HOST_WIDE_INT', the coefficients of VALUE will be zero-extended to
  7274. fit.
  7275. 'wi::sext (VALUE, PRECISION)'
  7276. Return a 'poly_int' of the same type as VALUE, sign-extending every
  7277. coefficient from the low PRECISION bits. This in effect applies
  7278. 'wi::sext' to each coefficient individually.
  7279. 'wi::zext (VALUE, PRECISION)'
  7280. Like 'wi::sext', but for zero extension.
  7281. 'poly_wide_int::from (VALUE, PRECISION, SIGN)'
  7282. Convert VALUE to a 'poly_wide_int' in which each coefficient has
  7283. PRECISION bits. Extend the coefficients according to SIGN if the
  7284. coefficients have fewer bits.
  7285. 'poly_offset_int::from (VALUE, SIGN)'
  7286. Convert VALUE to a 'poly_offset_int', extending its coefficients
  7287. according to SIGN if they have fewer bits than 'offset_int'.
  7288. 'poly_widest_int::from (VALUE, SIGN)'
  7289. Convert VALUE to a 'poly_widest_int', extending its coefficients
  7290. according to SIGN if they have fewer bits than 'widest_int'.
  7291. 
  7292. File: gccint.info, Node: Miscellaneous poly_int routines, Next: Guidelines for using poly_int, Prev: Converting poly_ints, Up: poly_int
  7293. 10.8 Miscellaneous 'poly_int' routines
  7294. ======================================
  7295. 'print_dec (VALUE, FILE, SIGN)'
  7296. 'print_dec (VALUE, FILE)'
  7297. Print VALUE to FILE as a decimal value, interpreting the
  7298. coefficients according to SIGN. The final argument is optional if
  7299. VALUE has an inherent sign; for example, 'poly_int64' values print
  7300. as signed by default and 'poly_uint64' values print as unsigned by
  7301. default.
  7302. This is a simply a 'poly_int' version of a wide-int routine.
  7303. 
  7304. File: gccint.info, Node: Guidelines for using poly_int, Prev: Miscellaneous poly_int routines, Up: poly_int
  7305. 10.9 Guidelines for using 'poly_int'
  7306. ====================================
  7307. One of the main design goals of 'poly_int' was to make it easy to write
  7308. target-independent code that handles variable-sized registers even when
  7309. the current target has fixed-sized registers. There are two aspects to
  7310. this:
  7311. * The set of 'poly_int' operations should be complete enough that the
  7312. question in most cases becomes "Can we do this operation on these
  7313. particular 'poly_int' values? If not, bail out" rather than "Are
  7314. these 'poly_int' values constant? If so, do the operation,
  7315. otherwise bail out".
  7316. * If target-independent code compiles and runs correctly on a target
  7317. with one value of 'NUM_POLY_INT_COEFFS', and if the code does not
  7318. use asserting functions like 'to_constant', it is reasonable to
  7319. assume that the code also works on targets with other values of
  7320. 'NUM_POLY_INT_COEFFS'. There is no need to check this during
  7321. everyday development.
  7322. So the general principle is: if target-independent code is dealing with
  7323. a 'poly_int' value, it is better to operate on it as a 'poly_int' if at
  7324. all possible, choosing conservatively-correct behavior if a particular
  7325. operation fails. For example, the following code handles an index 'pos'
  7326. into a sequence of vectors that each have 'nunits' elements:
  7327. /* Calculate which vector contains the result, and which lane of
  7328. that vector we need. */
  7329. if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))
  7330. {
  7331. if (dump_enabled_p ())
  7332. dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
  7333. "Cannot determine which vector holds the"
  7334. " final result.\n");
  7335. return false;
  7336. }
  7337. However, there are some contexts in which operating on a 'poly_int' is
  7338. not possible or does not make sense. One example is when handling
  7339. static initializers, since no current target supports the concept of a
  7340. variable-length static initializer. In these situations, a reasonable
  7341. fallback is:
  7342. if (POLY_VALUE.is_constant (&CONST_VALUE))
  7343. {
  7344. ...
  7345. /* Operate on CONST_VALUE. */
  7346. ...
  7347. }
  7348. else
  7349. {
  7350. ...
  7351. /* Conservatively correct fallback. */
  7352. ...
  7353. }
  7354. 'poly_int' also provides some asserting functions like 'to_constant'.
  7355. Please only use these functions if there is a good theoretical reason to
  7356. believe that the assertion cannot fire. For example, if some work is
  7357. divided into an analysis phase and an implementation phase, the analysis
  7358. phase might reject inputs that are not 'is_constant', in which case the
  7359. implementation phase can reasonably use 'to_constant' on the remaining
  7360. inputs. The assertions should not be used to discover whether a
  7361. condition ever occurs "in the field"; in other words, they should not be
  7362. used to restrict code to constants at first, with the intention of only
  7363. implementing a 'poly_int' version if a user hits the assertion.
  7364. If a particular asserting function like 'to_constant' is needed more
  7365. than once for the same reason, it is probably worth adding a helper
  7366. function or macro for that situation, so that the justification only
  7367. needs to be given once. For example:
  7368. /* Return the size of an element in a vector of size SIZE, given that
  7369. the vector has NELTS elements. The return value is in the same units
  7370. as SIZE (either bits or bytes).
  7371. to_constant () is safe in this situation because vector elements are
  7372. always constant-sized scalars. */
  7373. #define vector_element_size(SIZE, NELTS) \
  7374. (exact_div (SIZE, NELTS).to_constant ())
  7375. Target-specific code in 'config/CPU' only needs to handle non-constant
  7376. 'poly_int's if 'NUM_POLY_INT_COEFFS' is greater than one. For other
  7377. targets, 'poly_int' degenerates to a compile-time constant and is often
  7378. interchangable with a normal scalar integer. There are two main
  7379. exceptions:
  7380. * Sometimes an explicit cast to an integer type might be needed, such
  7381. as to resolve ambiguities in a '?:' expression, or when passing
  7382. values through '...' to things like print functions.
  7383. * Target macros are included in target-independent code and so do not
  7384. have access to the implicit conversion to a scalar integer. If
  7385. this becomes a problem for a particular target macro, the possible
  7386. solutions, in order of preference, are:
  7387. * Convert the target macro to a target hook (for all targets).
  7388. * Put the target's implementation of the target macro in its
  7389. 'CPU.c' file and call it from the target macro in the 'CPU.h'
  7390. file.
  7391. * Add 'to_constant ()' calls where necessary. The previous
  7392. option is preferable because it will help with any future
  7393. conversion of the macro to a hook.
  7394. 
  7395. File: gccint.info, Node: GENERIC, Next: GIMPLE, Prev: poly_int, Up: Top
  7396. 11 GENERIC
  7397. **********
  7398. The purpose of GENERIC is simply to provide a language-independent way
  7399. of representing an entire function in trees. To this end, it was
  7400. necessary to add a few new tree codes to the back end, but almost
  7401. everything was already there. If you can express it with the codes in
  7402. 'gcc/tree.def', it's GENERIC.
  7403. Early on, there was a great deal of debate about how to think about
  7404. statements in a tree IL. In GENERIC, a statement is defined as any
  7405. expression whose value, if any, is ignored. A statement will always
  7406. have 'TREE_SIDE_EFFECTS' set (or it will be discarded), but a
  7407. non-statement expression may also have side effects. A 'CALL_EXPR', for
  7408. instance.
  7409. It would be possible for some local optimizations to work on the
  7410. GENERIC form of a function; indeed, the adapted tree inliner works fine
  7411. on GENERIC, but the current compiler performs inlining after lowering to
  7412. GIMPLE (a restricted form described in the next section). Indeed,
  7413. currently the frontends perform this lowering before handing off to
  7414. 'tree_rest_of_compilation', but this seems inelegant.
  7415. * Menu:
  7416. * Deficiencies:: Topics net yet covered in this document.
  7417. * Tree overview:: All about 'tree's.
  7418. * Types:: Fundamental and aggregate types.
  7419. * Declarations:: Type declarations and variables.
  7420. * Attributes:: Declaration and type attributes.
  7421. * Expressions: Expression trees. Operating on data.
  7422. * Statements:: Control flow and related trees.
  7423. * Functions:: Function bodies, linkage, and other aspects.
  7424. * Language-dependent trees:: Topics and trees specific to language front ends.
  7425. * C and C++ Trees:: Trees specific to C and C++.
  7426. * Java Trees:: Trees specific to Java.
  7427. 
  7428. File: gccint.info, Node: Deficiencies, Next: Tree overview, Up: GENERIC
  7429. 11.1 Deficiencies
  7430. =================
  7431. There are many places in which this document is incomplet and incorrekt.
  7432. It is, as of yet, only _preliminary_ documentation.
  7433. 
  7434. File: gccint.info, Node: Tree overview, Next: Types, Prev: Deficiencies, Up: GENERIC
  7435. 11.2 Overview
  7436. =============
  7437. The central data structure used by the internal representation is the
  7438. 'tree'. These nodes, while all of the C type 'tree', are of many
  7439. varieties. A 'tree' is a pointer type, but the object to which it
  7440. points may be of a variety of types. From this point forward, we will
  7441. refer to trees in ordinary type, rather than in 'this font', except when
  7442. talking about the actual C type 'tree'.
  7443. You can tell what kind of node a particular tree is by using the
  7444. 'TREE_CODE' macro. Many, many macros take trees as input and return
  7445. trees as output. However, most macros require a certain kind of tree
  7446. node as input. In other words, there is a type-system for trees, but it
  7447. is not reflected in the C type-system.
  7448. For safety, it is useful to configure GCC with '--enable-checking'.
  7449. Although this results in a significant performance penalty (since all
  7450. tree types are checked at run-time), and is therefore inappropriate in a
  7451. release version, it is extremely helpful during the development process.
  7452. Many macros behave as predicates. Many, although not all, of these
  7453. predicates end in '_P'. Do not rely on the result type of these macros
  7454. being of any particular type. You may, however, rely on the fact that
  7455. the type can be compared to '0', so that statements like
  7456. if (TEST_P (t) && !TEST_P (y))
  7457. x = 1;
  7458. and
  7459. int i = (TEST_P (t) != 0);
  7460. are legal. Macros that return 'int' values now may be changed to return
  7461. 'tree' values, or other pointers in the future. Even those that
  7462. continue to return 'int' may return multiple nonzero codes where
  7463. previously they returned only zero and one. Therefore, you should not
  7464. write code like
  7465. if (TEST_P (t) == 1)
  7466. as this code is not guaranteed to work correctly in the future.
  7467. You should not take the address of values returned by the macros or
  7468. functions described here. In particular, no guarantee is given that the
  7469. values are lvalues.
  7470. In general, the names of macros are all in uppercase, while the names
  7471. of functions are entirely in lowercase. There are rare exceptions to
  7472. this rule. You should assume that any macro or function whose name is
  7473. made up entirely of uppercase letters may evaluate its arguments more
  7474. than once. You may assume that a macro or function whose name is made
  7475. up entirely of lowercase letters will evaluate its arguments only once.
  7476. The 'error_mark_node' is a special tree. Its tree code is
  7477. 'ERROR_MARK', but since there is only ever one node with that code, the
  7478. usual practice is to compare the tree against 'error_mark_node'. (This
  7479. test is just a test for pointer equality.) If an error has occurred
  7480. during front-end processing the flag 'errorcount' will be set. If the
  7481. front end has encountered code it cannot handle, it will issue a message
  7482. to the user and set 'sorrycount'. When these flags are set, any macro
  7483. or function which normally returns a tree of a particular kind may
  7484. instead return the 'error_mark_node'. Thus, if you intend to do any
  7485. processing of erroneous code, you must be prepared to deal with the
  7486. 'error_mark_node'.
  7487. Occasionally, a particular tree slot (like an operand to an expression,
  7488. or a particular field in a declaration) will be referred to as "reserved
  7489. for the back end". These slots are used to store RTL when the tree is
  7490. converted to RTL for use by the GCC back end. However, if that process
  7491. is not taking place (e.g., if the front end is being hooked up to an
  7492. intelligent editor), then those slots may be used by the back end
  7493. presently in use.
  7494. If you encounter situations that do not match this documentation, such
  7495. as tree nodes of types not mentioned here, or macros documented to
  7496. return entities of a particular kind that instead return entities of
  7497. some different kind, you have found a bug, either in the front end or in
  7498. the documentation. Please report these bugs as you would any other bug.
  7499. * Menu:
  7500. * Macros and Functions::Macros and functions that can be used with all trees.
  7501. * Identifiers:: The names of things.
  7502. * Containers:: Lists and vectors.
  7503. 
  7504. File: gccint.info, Node: Macros and Functions, Next: Identifiers, Up: Tree overview
  7505. 11.2.1 Trees
  7506. ------------
  7507. All GENERIC trees have two fields in common. First, 'TREE_CHAIN' is a
  7508. pointer that can be used as a singly-linked list to other trees. The
  7509. other is 'TREE_TYPE'. Many trees store the type of an expression or
  7510. declaration in this field.
  7511. These are some other functions for handling trees:
  7512. 'tree_size'
  7513. Return the number of bytes a tree takes.
  7514. 'build0'
  7515. 'build1'
  7516. 'build2'
  7517. 'build3'
  7518. 'build4'
  7519. 'build5'
  7520. 'build6'
  7521. These functions build a tree and supply values to put in each
  7522. parameter. The basic signature is 'code, type, [operands]'.
  7523. 'code' is the 'TREE_CODE', and 'type' is a tree representing the
  7524. 'TREE_TYPE'. These are followed by the operands, each of which is
  7525. also a tree.
  7526. 
  7527. File: gccint.info, Node: Identifiers, Next: Containers, Prev: Macros and Functions, Up: Tree overview
  7528. 11.2.2 Identifiers
  7529. ------------------
  7530. An 'IDENTIFIER_NODE' represents a slightly more general concept than the
  7531. standard C or C++ concept of identifier. In particular, an
  7532. 'IDENTIFIER_NODE' may contain a '$', or other extraordinary characters.
  7533. There are never two distinct 'IDENTIFIER_NODE's representing the same
  7534. identifier. Therefore, you may use pointer equality to compare
  7535. 'IDENTIFIER_NODE's, rather than using a routine like 'strcmp'. Use
  7536. 'get_identifier' to obtain the unique 'IDENTIFIER_NODE' for a supplied
  7537. string.
  7538. You can use the following macros to access identifiers:
  7539. 'IDENTIFIER_POINTER'
  7540. The string represented by the identifier, represented as a 'char*'.
  7541. This string is always 'NUL'-terminated, and contains no embedded
  7542. 'NUL' characters.
  7543. 'IDENTIFIER_LENGTH'
  7544. The length of the string returned by 'IDENTIFIER_POINTER', not
  7545. including the trailing 'NUL'. This value of 'IDENTIFIER_LENGTH
  7546. (x)' is always the same as 'strlen (IDENTIFIER_POINTER (x))'.
  7547. 'IDENTIFIER_OPNAME_P'
  7548. This predicate holds if the identifier represents the name of an
  7549. overloaded operator. In this case, you should not depend on the
  7550. contents of either the 'IDENTIFIER_POINTER' or the
  7551. 'IDENTIFIER_LENGTH'.
  7552. 'IDENTIFIER_TYPENAME_P'
  7553. This predicate holds if the identifier represents the name of a
  7554. user-defined conversion operator. In this case, the 'TREE_TYPE' of
  7555. the 'IDENTIFIER_NODE' holds the type to which the conversion
  7556. operator converts.
  7557. 
  7558. File: gccint.info, Node: Containers, Prev: Identifiers, Up: Tree overview
  7559. 11.2.3 Containers
  7560. -----------------
  7561. Two common container data structures can be represented directly with
  7562. tree nodes. A 'TREE_LIST' is a singly linked list containing two trees
  7563. per node. These are the 'TREE_PURPOSE' and 'TREE_VALUE' of each node.
  7564. (Often, the 'TREE_PURPOSE' contains some kind of tag, or additional
  7565. information, while the 'TREE_VALUE' contains the majority of the
  7566. payload. In other cases, the 'TREE_PURPOSE' is simply 'NULL_TREE',
  7567. while in still others both the 'TREE_PURPOSE' and 'TREE_VALUE' are of
  7568. equal stature.) Given one 'TREE_LIST' node, the next node is found by
  7569. following the 'TREE_CHAIN'. If the 'TREE_CHAIN' is 'NULL_TREE', then
  7570. you have reached the end of the list.
  7571. A 'TREE_VEC' is a simple vector. The 'TREE_VEC_LENGTH' is an integer
  7572. (not a tree) giving the number of nodes in the vector. The nodes
  7573. themselves are accessed using the 'TREE_VEC_ELT' macro, which takes two
  7574. arguments. The first is the 'TREE_VEC' in question; the second is an
  7575. integer indicating which element in the vector is desired. The elements
  7576. are indexed from zero.
  7577. 
  7578. File: gccint.info, Node: Types, Next: Declarations, Prev: Tree overview, Up: GENERIC
  7579. 11.3 Types
  7580. ==========
  7581. All types have corresponding tree nodes. However, you should not assume
  7582. that there is exactly one tree node corresponding to each type. There
  7583. are often multiple nodes corresponding to the same type.
  7584. For the most part, different kinds of types have different tree codes.
  7585. (For example, pointer types use a 'POINTER_TYPE' code while arrays use
  7586. an 'ARRAY_TYPE' code.) However, pointers to member functions use the
  7587. 'RECORD_TYPE' code. Therefore, when writing a 'switch' statement that
  7588. depends on the code associated with a particular type, you should take
  7589. care to handle pointers to member functions under the 'RECORD_TYPE' case
  7590. label.
  7591. The following functions and macros deal with cv-qualification of types:
  7592. 'TYPE_MAIN_VARIANT'
  7593. This macro returns the unqualified version of a type. It may be
  7594. applied to an unqualified type, but it is not always the identity
  7595. function in that case.
  7596. A few other macros and functions are usable with all types:
  7597. 'TYPE_SIZE'
  7598. The number of bits required to represent the type, represented as
  7599. an 'INTEGER_CST'. For an incomplete type, 'TYPE_SIZE' will be
  7600. 'NULL_TREE'.
  7601. 'TYPE_ALIGN'
  7602. The alignment of the type, in bits, represented as an 'int'.
  7603. 'TYPE_NAME'
  7604. This macro returns a declaration (in the form of a 'TYPE_DECL') for
  7605. the type. (Note this macro does _not_ return an 'IDENTIFIER_NODE',
  7606. as you might expect, given its name!) You can look at the
  7607. 'DECL_NAME' of the 'TYPE_DECL' to obtain the actual name of the
  7608. type. The 'TYPE_NAME' will be 'NULL_TREE' for a type that is not a
  7609. built-in type, the result of a typedef, or a named class type.
  7610. 'TYPE_CANONICAL'
  7611. This macro returns the "canonical" type for the given type node.
  7612. Canonical types are used to improve performance in the C++ and
  7613. Objective-C++ front ends by allowing efficient comparison between
  7614. two type nodes in 'same_type_p': if the 'TYPE_CANONICAL' values of
  7615. the types are equal, the types are equivalent; otherwise, the types
  7616. are not equivalent. The notion of equivalence for canonical types
  7617. is the same as the notion of type equivalence in the language
  7618. itself. For instance,
  7619. When 'TYPE_CANONICAL' is 'NULL_TREE', there is no canonical type
  7620. for the given type node. In this case, comparison between this
  7621. type and any other type requires the compiler to perform a deep,
  7622. "structural" comparison to see if the two type nodes have the same
  7623. form and properties.
  7624. The canonical type for a node is always the most fundamental type
  7625. in the equivalence class of types. For instance, 'int' is its own
  7626. canonical type. A typedef 'I' of 'int' will have 'int' as its
  7627. canonical type. Similarly, 'I*' and a typedef 'IP' (defined to
  7628. 'I*') will has 'int*' as their canonical type. When building a new
  7629. type node, be sure to set 'TYPE_CANONICAL' to the appropriate
  7630. canonical type. If the new type is a compound type (built from
  7631. other types), and any of those other types require structural
  7632. equality, use 'SET_TYPE_STRUCTURAL_EQUALITY' to ensure that the new
  7633. type also requires structural equality. Finally, if for some
  7634. reason you cannot guarantee that 'TYPE_CANONICAL' will point to the
  7635. canonical type, use 'SET_TYPE_STRUCTURAL_EQUALITY' to make sure
  7636. that the new type-and any type constructed based on it-requires
  7637. structural equality. If you suspect that the canonical type system
  7638. is miscomparing types, pass '--param verify-canonical-types=1' to
  7639. the compiler or configure with '--enable-checking' to force the
  7640. compiler to verify its canonical-type comparisons against the
  7641. structural comparisons; the compiler will then print any warnings
  7642. if the canonical types miscompare.
  7643. 'TYPE_STRUCTURAL_EQUALITY_P'
  7644. This predicate holds when the node requires structural equality
  7645. checks, e.g., when 'TYPE_CANONICAL' is 'NULL_TREE'.
  7646. 'SET_TYPE_STRUCTURAL_EQUALITY'
  7647. This macro states that the type node it is given requires
  7648. structural equality checks, e.g., it sets 'TYPE_CANONICAL' to
  7649. 'NULL_TREE'.
  7650. 'same_type_p'
  7651. This predicate takes two types as input, and holds if they are the
  7652. same type. For example, if one type is a 'typedef' for the other,
  7653. or both are 'typedef's for the same type. This predicate also
  7654. holds if the two trees given as input are simply copies of one
  7655. another; i.e., there is no difference between them at the source
  7656. level, but, for whatever reason, a duplicate has been made in the
  7657. representation. You should never use '==' (pointer equality) to
  7658. compare types; always use 'same_type_p' instead.
  7659. Detailed below are the various kinds of types, and the macros that can
  7660. be used to access them. Although other kinds of types are used
  7661. elsewhere in G++, the types described here are the only ones that you
  7662. will encounter while examining the intermediate representation.
  7663. 'VOID_TYPE'
  7664. Used to represent the 'void' type.
  7665. 'INTEGER_TYPE'
  7666. Used to represent the various integral types, including 'char',
  7667. 'short', 'int', 'long', and 'long long'. This code is not used for
  7668. enumeration types, nor for the 'bool' type. The 'TYPE_PRECISION'
  7669. is the number of bits used in the representation, represented as an
  7670. 'unsigned int'. (Note that in the general case this is not the
  7671. same value as 'TYPE_SIZE'; suppose that there were a 24-bit integer
  7672. type, but that alignment requirements for the ABI required 32-bit
  7673. alignment. Then, 'TYPE_SIZE' would be an 'INTEGER_CST' for 32,
  7674. while 'TYPE_PRECISION' would be 24.) The integer type is unsigned
  7675. if 'TYPE_UNSIGNED' holds; otherwise, it is signed.
  7676. The 'TYPE_MIN_VALUE' is an 'INTEGER_CST' for the smallest integer
  7677. that may be represented by this type. Similarly, the
  7678. 'TYPE_MAX_VALUE' is an 'INTEGER_CST' for the largest integer that
  7679. may be represented by this type.
  7680. 'REAL_TYPE'
  7681. Used to represent the 'float', 'double', and 'long double' types.
  7682. The number of bits in the floating-point representation is given by
  7683. 'TYPE_PRECISION', as in the 'INTEGER_TYPE' case.
  7684. 'FIXED_POINT_TYPE'
  7685. Used to represent the 'short _Fract', '_Fract', 'long _Fract',
  7686. 'long long _Fract', 'short _Accum', '_Accum', 'long _Accum', and
  7687. 'long long _Accum' types. The number of bits in the fixed-point
  7688. representation is given by 'TYPE_PRECISION', as in the
  7689. 'INTEGER_TYPE' case. There may be padding bits, fractional bits
  7690. and integral bits. The number of fractional bits is given by
  7691. 'TYPE_FBIT', and the number of integral bits is given by
  7692. 'TYPE_IBIT'. The fixed-point type is unsigned if 'TYPE_UNSIGNED'
  7693. holds; otherwise, it is signed. The fixed-point type is saturating
  7694. if 'TYPE_SATURATING' holds; otherwise, it is not saturating.
  7695. 'COMPLEX_TYPE'
  7696. Used to represent GCC built-in '__complex__' data types. The
  7697. 'TREE_TYPE' is the type of the real and imaginary parts.
  7698. 'ENUMERAL_TYPE'
  7699. Used to represent an enumeration type. The 'TYPE_PRECISION' gives
  7700. (as an 'int'), the number of bits used to represent the type. If
  7701. there are no negative enumeration constants, 'TYPE_UNSIGNED' will
  7702. hold. The minimum and maximum enumeration constants may be
  7703. obtained with 'TYPE_MIN_VALUE' and 'TYPE_MAX_VALUE', respectively;
  7704. each of these macros returns an 'INTEGER_CST'.
  7705. The actual enumeration constants themselves may be obtained by
  7706. looking at the 'TYPE_VALUES'. This macro will return a
  7707. 'TREE_LIST', containing the constants. The 'TREE_PURPOSE' of each
  7708. node will be an 'IDENTIFIER_NODE' giving the name of the constant;
  7709. the 'TREE_VALUE' will be an 'INTEGER_CST' giving the value assigned
  7710. to that constant. These constants will appear in the order in
  7711. which they were declared. The 'TREE_TYPE' of each of these
  7712. constants will be the type of enumeration type itself.
  7713. 'BOOLEAN_TYPE'
  7714. Used to represent the 'bool' type.
  7715. 'POINTER_TYPE'
  7716. Used to represent pointer types, and pointer to data member types.
  7717. The 'TREE_TYPE' gives the type to which this type points.
  7718. 'REFERENCE_TYPE'
  7719. Used to represent reference types. The 'TREE_TYPE' gives the type
  7720. to which this type refers.
  7721. 'FUNCTION_TYPE'
  7722. Used to represent the type of non-member functions and of static
  7723. member functions. The 'TREE_TYPE' gives the return type of the
  7724. function. The 'TYPE_ARG_TYPES' are a 'TREE_LIST' of the argument
  7725. types. The 'TREE_VALUE' of each node in this list is the type of
  7726. the corresponding argument; the 'TREE_PURPOSE' is an expression for
  7727. the default argument value, if any. If the last node in the list
  7728. is 'void_list_node' (a 'TREE_LIST' node whose 'TREE_VALUE' is the
  7729. 'void_type_node'), then functions of this type do not take variable
  7730. arguments. Otherwise, they do take a variable number of arguments.
  7731. Note that in C (but not in C++) a function declared like 'void f()'
  7732. is an unprototyped function taking a variable number of arguments;
  7733. the 'TYPE_ARG_TYPES' of such a function will be 'NULL'.
  7734. 'METHOD_TYPE'
  7735. Used to represent the type of a non-static member function. Like a
  7736. 'FUNCTION_TYPE', the return type is given by the 'TREE_TYPE'. The
  7737. type of '*this', i.e., the class of which functions of this type
  7738. are a member, is given by the 'TYPE_METHOD_BASETYPE'. The
  7739. 'TYPE_ARG_TYPES' is the parameter list, as for a 'FUNCTION_TYPE',
  7740. and includes the 'this' argument.
  7741. 'ARRAY_TYPE'
  7742. Used to represent array types. The 'TREE_TYPE' gives the type of
  7743. the elements in the array. If the array-bound is present in the
  7744. type, the 'TYPE_DOMAIN' is an 'INTEGER_TYPE' whose 'TYPE_MIN_VALUE'
  7745. and 'TYPE_MAX_VALUE' will be the lower and upper bounds of the
  7746. array, respectively. The 'TYPE_MIN_VALUE' will always be an
  7747. 'INTEGER_CST' for zero, while the 'TYPE_MAX_VALUE' will be one less
  7748. than the number of elements in the array, i.e., the highest value
  7749. which may be used to index an element in the array.
  7750. 'RECORD_TYPE'
  7751. Used to represent 'struct' and 'class' types, as well as pointers
  7752. to member functions and similar constructs in other languages.
  7753. 'TYPE_FIELDS' contains the items contained in this type, each of
  7754. which can be a 'FIELD_DECL', 'VAR_DECL', 'CONST_DECL', or
  7755. 'TYPE_DECL'. You may not make any assumptions about the ordering
  7756. of the fields in the type or whether one or more of them overlap.
  7757. 'UNION_TYPE'
  7758. Used to represent 'union' types. Similar to 'RECORD_TYPE' except
  7759. that all 'FIELD_DECL' nodes in 'TYPE_FIELD' start at bit position
  7760. zero.
  7761. 'QUAL_UNION_TYPE'
  7762. Used to represent part of a variant record in Ada. Similar to
  7763. 'UNION_TYPE' except that each 'FIELD_DECL' has a 'DECL_QUALIFIER'
  7764. field, which contains a boolean expression that indicates whether
  7765. the field is present in the object. The type will only have one
  7766. field, so each field's 'DECL_QUALIFIER' is only evaluated if none
  7767. of the expressions in the previous fields in 'TYPE_FIELDS' are
  7768. nonzero. Normally these expressions will reference a field in the
  7769. outer object using a 'PLACEHOLDER_EXPR'.
  7770. 'LANG_TYPE'
  7771. This node is used to represent a language-specific type. The front
  7772. end must handle it.
  7773. 'OFFSET_TYPE'
  7774. This node is used to represent a pointer-to-data member. For a
  7775. data member 'X::m' the 'TYPE_OFFSET_BASETYPE' is 'X' and the
  7776. 'TREE_TYPE' is the type of 'm'.
  7777. There are variables whose values represent some of the basic types.
  7778. These include:
  7779. 'void_type_node'
  7780. A node for 'void'.
  7781. 'integer_type_node'
  7782. A node for 'int'.
  7783. 'unsigned_type_node.'
  7784. A node for 'unsigned int'.
  7785. 'char_type_node.'
  7786. A node for 'char'.
  7787. It may sometimes be useful to compare one of these variables with a type
  7788. in hand, using 'same_type_p'.
  7789. 
  7790. File: gccint.info, Node: Declarations, Next: Attributes, Prev: Types, Up: GENERIC
  7791. 11.4 Declarations
  7792. =================
  7793. This section covers the various kinds of declarations that appear in the
  7794. internal representation, except for declarations of functions
  7795. (represented by 'FUNCTION_DECL' nodes), which are described in *note
  7796. Functions::.
  7797. * Menu:
  7798. * Working with declarations:: Macros and functions that work on
  7799. declarations.
  7800. * Internal structure:: How declaration nodes are represented.
  7801. 
  7802. File: gccint.info, Node: Working with declarations, Next: Internal structure, Up: Declarations
  7803. 11.4.1 Working with declarations
  7804. --------------------------------
  7805. Some macros can be used with any kind of declaration. These include:
  7806. 'DECL_NAME'
  7807. This macro returns an 'IDENTIFIER_NODE' giving the name of the
  7808. entity.
  7809. 'TREE_TYPE'
  7810. This macro returns the type of the entity declared.
  7811. 'EXPR_FILENAME'
  7812. This macro returns the name of the file in which the entity was
  7813. declared, as a 'char*'. For an entity declared implicitly by the
  7814. compiler (like '__builtin_memcpy'), this will be the string
  7815. '"<internal>"'.
  7816. 'EXPR_LINENO'
  7817. This macro returns the line number at which the entity was
  7818. declared, as an 'int'.
  7819. 'DECL_ARTIFICIAL'
  7820. This predicate holds if the declaration was implicitly generated by
  7821. the compiler. For example, this predicate will hold of an
  7822. implicitly declared member function, or of the 'TYPE_DECL'
  7823. implicitly generated for a class type. Recall that in C++ code
  7824. like:
  7825. struct S {};
  7826. is roughly equivalent to C code like:
  7827. struct S {};
  7828. typedef struct S S;
  7829. The implicitly generated 'typedef' declaration is represented by a
  7830. 'TYPE_DECL' for which 'DECL_ARTIFICIAL' holds.
  7831. The various kinds of declarations include:
  7832. 'LABEL_DECL'
  7833. These nodes are used to represent labels in function bodies. For
  7834. more information, see *note Functions::. These nodes only appear
  7835. in block scopes.
  7836. 'CONST_DECL'
  7837. These nodes are used to represent enumeration constants. The value
  7838. of the constant is given by 'DECL_INITIAL' which will be an
  7839. 'INTEGER_CST' with the same type as the 'TREE_TYPE' of the
  7840. 'CONST_DECL', i.e., an 'ENUMERAL_TYPE'.
  7841. 'RESULT_DECL'
  7842. These nodes represent the value returned by a function. When a
  7843. value is assigned to a 'RESULT_DECL', that indicates that the value
  7844. should be returned, via bitwise copy, by the function. You can use
  7845. 'DECL_SIZE' and 'DECL_ALIGN' on a 'RESULT_DECL', just as with a
  7846. 'VAR_DECL'.
  7847. 'TYPE_DECL'
  7848. These nodes represent 'typedef' declarations. The 'TREE_TYPE' is
  7849. the type declared to have the name given by 'DECL_NAME'. In some
  7850. cases, there is no associated name.
  7851. 'VAR_DECL'
  7852. These nodes represent variables with namespace or block scope, as
  7853. well as static data members. The 'DECL_SIZE' and 'DECL_ALIGN' are
  7854. analogous to 'TYPE_SIZE' and 'TYPE_ALIGN'. For a declaration, you
  7855. should always use the 'DECL_SIZE' and 'DECL_ALIGN' rather than the
  7856. 'TYPE_SIZE' and 'TYPE_ALIGN' given by the 'TREE_TYPE', since
  7857. special attributes may have been applied to the variable to give it
  7858. a particular size and alignment. You may use the predicates
  7859. 'DECL_THIS_STATIC' or 'DECL_THIS_EXTERN' to test whether the
  7860. storage class specifiers 'static' or 'extern' were used to declare
  7861. a variable.
  7862. If this variable is initialized (but does not require a
  7863. constructor), the 'DECL_INITIAL' will be an expression for the
  7864. initializer. The initializer should be evaluated, and a bitwise
  7865. copy into the variable performed. If the 'DECL_INITIAL' is the
  7866. 'error_mark_node', there is an initializer, but it is given by an
  7867. explicit statement later in the code; no bitwise copy is required.
  7868. GCC provides an extension that allows either automatic variables,
  7869. or global variables, to be placed in particular registers. This
  7870. extension is being used for a particular 'VAR_DECL' if
  7871. 'DECL_REGISTER' holds for the 'VAR_DECL', and if
  7872. 'DECL_ASSEMBLER_NAME' is not equal to 'DECL_NAME'. In that case,
  7873. 'DECL_ASSEMBLER_NAME' is the name of the register into which the
  7874. variable will be placed.
  7875. 'PARM_DECL'
  7876. Used to represent a parameter to a function. Treat these nodes
  7877. similarly to 'VAR_DECL' nodes. These nodes only appear in the
  7878. 'DECL_ARGUMENTS' for a 'FUNCTION_DECL'.
  7879. The 'DECL_ARG_TYPE' for a 'PARM_DECL' is the type that will
  7880. actually be used when a value is passed to this function. It may
  7881. be a wider type than the 'TREE_TYPE' of the parameter; for example,
  7882. the ordinary type might be 'short' while the 'DECL_ARG_TYPE' is
  7883. 'int'.
  7884. 'DEBUG_EXPR_DECL'
  7885. Used to represent an anonymous debug-information temporary created
  7886. to hold an expression as it is optimized away, so that its value
  7887. can be referenced in debug bind statements.
  7888. 'FIELD_DECL'
  7889. These nodes represent non-static data members. The 'DECL_SIZE' and
  7890. 'DECL_ALIGN' behave as for 'VAR_DECL' nodes. The position of the
  7891. field within the parent record is specified by a combination of
  7892. three attributes. 'DECL_FIELD_OFFSET' is the position, counting in
  7893. bytes, of the 'DECL_OFFSET_ALIGN'-bit sized word containing the bit
  7894. of the field closest to the beginning of the structure.
  7895. 'DECL_FIELD_BIT_OFFSET' is the bit offset of the first bit of the
  7896. field within this word; this may be nonzero even for fields that
  7897. are not bit-fields, since 'DECL_OFFSET_ALIGN' may be greater than
  7898. the natural alignment of the field's type.
  7899. If 'DECL_C_BIT_FIELD' holds, this field is a bit-field. In a
  7900. bit-field, 'DECL_BIT_FIELD_TYPE' also contains the type that was
  7901. originally specified for it, while DECL_TYPE may be a modified type
  7902. with lesser precision, according to the size of the bit field.
  7903. 'NAMESPACE_DECL'
  7904. Namespaces provide a name hierarchy for other declarations. They
  7905. appear in the 'DECL_CONTEXT' of other '_DECL' nodes.
  7906. 
  7907. File: gccint.info, Node: Internal structure, Prev: Working with declarations, Up: Declarations
  7908. 11.4.2 Internal structure
  7909. -------------------------
  7910. 'DECL' nodes are represented internally as a hierarchy of structures.
  7911. * Menu:
  7912. * Current structure hierarchy:: The current DECL node structure
  7913. hierarchy.
  7914. * Adding new DECL node types:: How to add a new DECL node to a
  7915. frontend.
  7916. 
  7917. File: gccint.info, Node: Current structure hierarchy, Next: Adding new DECL node types, Up: Internal structure
  7918. 11.4.2.1 Current structure hierarchy
  7919. ....................................
  7920. 'struct tree_decl_minimal'
  7921. This is the minimal structure to inherit from in order for common
  7922. 'DECL' macros to work. The fields it contains are a unique ID,
  7923. source location, context, and name.
  7924. 'struct tree_decl_common'
  7925. This structure inherits from 'struct tree_decl_minimal'. It
  7926. contains fields that most 'DECL' nodes need, such as a field to
  7927. store alignment, machine mode, size, and attributes.
  7928. 'struct tree_field_decl'
  7929. This structure inherits from 'struct tree_decl_common'. It is used
  7930. to represent 'FIELD_DECL'.
  7931. 'struct tree_label_decl'
  7932. This structure inherits from 'struct tree_decl_common'. It is used
  7933. to represent 'LABEL_DECL'.
  7934. 'struct tree_translation_unit_decl'
  7935. This structure inherits from 'struct tree_decl_common'. It is used
  7936. to represent 'TRANSLATION_UNIT_DECL'.
  7937. 'struct tree_decl_with_rtl'
  7938. This structure inherits from 'struct tree_decl_common'. It
  7939. contains a field to store the low-level RTL associated with a
  7940. 'DECL' node.
  7941. 'struct tree_result_decl'
  7942. This structure inherits from 'struct tree_decl_with_rtl'. It is
  7943. used to represent 'RESULT_DECL'.
  7944. 'struct tree_const_decl'
  7945. This structure inherits from 'struct tree_decl_with_rtl'. It is
  7946. used to represent 'CONST_DECL'.
  7947. 'struct tree_parm_decl'
  7948. This structure inherits from 'struct tree_decl_with_rtl'. It is
  7949. used to represent 'PARM_DECL'.
  7950. 'struct tree_decl_with_vis'
  7951. This structure inherits from 'struct tree_decl_with_rtl'. It
  7952. contains fields necessary to store visibility information, as well
  7953. as a section name and assembler name.
  7954. 'struct tree_var_decl'
  7955. This structure inherits from 'struct tree_decl_with_vis'. It is
  7956. used to represent 'VAR_DECL'.
  7957. 'struct tree_function_decl'
  7958. This structure inherits from 'struct tree_decl_with_vis'. It is
  7959. used to represent 'FUNCTION_DECL'.
  7960. 
  7961. File: gccint.info, Node: Adding new DECL node types, Prev: Current structure hierarchy, Up: Internal structure
  7962. 11.4.2.2 Adding new DECL node types
  7963. ...................................
  7964. Adding a new 'DECL' tree consists of the following steps
  7965. Add a new tree code for the 'DECL' node
  7966. For language specific 'DECL' nodes, there is a '.def' file in each
  7967. frontend directory where the tree code should be added. For 'DECL'
  7968. nodes that are part of the middle-end, the code should be added to
  7969. 'tree.def'.
  7970. Create a new structure type for the 'DECL' node
  7971. These structures should inherit from one of the existing structures
  7972. in the language hierarchy by using that structure as the first
  7973. member.
  7974. struct tree_foo_decl
  7975. {
  7976. struct tree_decl_with_vis common;
  7977. }
  7978. Would create a structure name 'tree_foo_decl' that inherits from
  7979. 'struct tree_decl_with_vis'.
  7980. For language specific 'DECL' nodes, this new structure type should
  7981. go in the appropriate '.h' file. For 'DECL' nodes that are part of
  7982. the middle-end, the structure type should go in 'tree.h'.
  7983. Add a member to the tree structure enumerator for the node
  7984. For garbage collection and dynamic checking purposes, each 'DECL'
  7985. node structure type is required to have a unique enumerator value
  7986. specified with it. For language specific 'DECL' nodes, this new
  7987. enumerator value should go in the appropriate '.def' file. For
  7988. 'DECL' nodes that are part of the middle-end, the enumerator values
  7989. are specified in 'treestruct.def'.
  7990. Update 'union tree_node'
  7991. In order to make your new structure type usable, it must be added
  7992. to 'union tree_node'. For language specific 'DECL' nodes, a new
  7993. entry should be added to the appropriate '.h' file of the form
  7994. struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;
  7995. For 'DECL' nodes that are part of the middle-end, the additional
  7996. member goes directly into 'union tree_node' in 'tree.h'.
  7997. Update dynamic checking info
  7998. In order to be able to check whether accessing a named portion of
  7999. 'union tree_node' is legal, and whether a certain 'DECL' node
  8000. contains one of the enumerated 'DECL' node structures in the
  8001. hierarchy, a simple lookup table is used. This lookup table needs
  8002. to be kept up to date with the tree structure hierarchy, or else
  8003. checking and containment macros will fail inappropriately.
  8004. For language specific 'DECL' nodes, their is an 'init_ts' function
  8005. in an appropriate '.c' file, which initializes the lookup table.
  8006. Code setting up the table for new 'DECL' nodes should be added
  8007. there. For each 'DECL' tree code and enumerator value representing
  8008. a member of the inheritance hierarchy, the table should contain 1
  8009. if that tree code inherits (directly or indirectly) from that
  8010. member. Thus, a 'FOO_DECL' node derived from 'struct
  8011. decl_with_rtl', and enumerator value 'TS_FOO_DECL', would be set up
  8012. as follows
  8013. tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1;
  8014. tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1;
  8015. tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1;
  8016. tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1;
  8017. For 'DECL' nodes that are part of the middle-end, the setup code
  8018. goes into 'tree.c'.
  8019. Add macros to access any new fields and flags
  8020. Each added field or flag should have a macro that is used to access
  8021. it, that performs appropriate checking to ensure only the right
  8022. type of 'DECL' nodes access the field.
  8023. These macros generally take the following form
  8024. #define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname
  8025. However, if the structure is simply a base class for further
  8026. structures, something like the following should be used
  8027. #define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)
  8028. #define BASE_STRUCT_FIELDNAME(NODE) \
  8029. (BASE_STRUCT_CHECK(NODE)->base_struct.fieldname
  8030. Reading them from the generated 'all-tree.def' file (which in turn
  8031. includes all the 'tree.def' files), 'gencheck.c' is used during
  8032. GCC's build to generate the '*_CHECK' macros for all tree codes.
  8033. 
  8034. File: gccint.info, Node: Attributes, Next: Expression trees, Prev: Declarations, Up: GENERIC
  8035. 11.5 Attributes in trees
  8036. ========================
  8037. Attributes, as specified using the '__attribute__' keyword, are
  8038. represented internally as a 'TREE_LIST'. The 'TREE_PURPOSE' is the name
  8039. of the attribute, as an 'IDENTIFIER_NODE'. The 'TREE_VALUE' is a
  8040. 'TREE_LIST' of the arguments of the attribute, if any, or 'NULL_TREE' if
  8041. there are no arguments; the arguments are stored as the 'TREE_VALUE' of
  8042. successive entries in the list, and may be identifiers or expressions.
  8043. The 'TREE_CHAIN' of the attribute is the next attribute in a list of
  8044. attributes applying to the same declaration or type, or 'NULL_TREE' if
  8045. there are no further attributes in the list.
  8046. Attributes may be attached to declarations and to types; these
  8047. attributes may be accessed with the following macros. All attributes
  8048. are stored in this way, and many also cause other changes to the
  8049. declaration or type or to other internal compiler data structures.
  8050. -- Tree Macro: tree DECL_ATTRIBUTES (tree DECL)
  8051. This macro returns the attributes on the declaration DECL.
  8052. -- Tree Macro: tree TYPE_ATTRIBUTES (tree TYPE)
  8053. This macro returns the attributes on the type TYPE.
  8054. 
  8055. File: gccint.info, Node: Expression trees, Next: Statements, Prev: Attributes, Up: GENERIC
  8056. 11.6 Expressions
  8057. ================
  8058. The internal representation for expressions is for the most part quite
  8059. straightforward. However, there are a few facts that one must bear in
  8060. mind. In particular, the expression "tree" is actually a directed
  8061. acyclic graph. (For example there may be many references to the integer
  8062. constant zero throughout the source program; many of these will be
  8063. represented by the same expression node.) You should not rely on
  8064. certain kinds of node being shared, nor should you rely on certain kinds
  8065. of nodes being unshared.
  8066. The following macros can be used with all expression nodes:
  8067. 'TREE_TYPE'
  8068. Returns the type of the expression. This value may not be
  8069. precisely the same type that would be given the expression in the
  8070. original program.
  8071. In what follows, some nodes that one might expect to always have type
  8072. 'bool' are documented to have either integral or boolean type. At some
  8073. point in the future, the C front end may also make use of this same
  8074. intermediate representation, and at this point these nodes will
  8075. certainly have integral type. The previous sentence is not meant to
  8076. imply that the C++ front end does not or will not give these nodes
  8077. integral type.
  8078. Below, we list the various kinds of expression nodes. Except where
  8079. noted otherwise, the operands to an expression are accessed using the
  8080. 'TREE_OPERAND' macro. For example, to access the first operand to a
  8081. binary plus expression 'expr', use:
  8082. TREE_OPERAND (expr, 0)
  8083. As this example indicates, the operands are zero-indexed.
  8084. * Menu:
  8085. * Constants: Constant expressions.
  8086. * Storage References::
  8087. * Unary and Binary Expressions::
  8088. * Vectors::
  8089. 
  8090. File: gccint.info, Node: Constant expressions, Next: Storage References, Up: Expression trees
  8091. 11.6.1 Constant expressions
  8092. ---------------------------
  8093. The table below begins with constants, moves on to unary expressions,
  8094. then proceeds to binary expressions, and concludes with various other
  8095. kinds of expressions:
  8096. 'INTEGER_CST'
  8097. These nodes represent integer constants. Note that the type of
  8098. these constants is obtained with 'TREE_TYPE'; they are not always
  8099. of type 'int'. In particular, 'char' constants are represented
  8100. with 'INTEGER_CST' nodes. The value of the integer constant 'e' is
  8101. represented in an array of HOST_WIDE_INT. There are enough elements
  8102. in the array to represent the value without taking extra elements
  8103. for redundant 0s or -1. The number of elements used to represent
  8104. 'e' is available via 'TREE_INT_CST_NUNITS'. Element 'i' can be
  8105. extracted by using 'TREE_INT_CST_ELT (e, i)'. 'TREE_INT_CST_LOW'
  8106. is a shorthand for 'TREE_INT_CST_ELT (e, 0)'.
  8107. The functions 'tree_fits_shwi_p' and 'tree_fits_uhwi_p' can be used
  8108. to tell if the value is small enough to fit in a signed
  8109. HOST_WIDE_INT or an unsigned HOST_WIDE_INT respectively. The value
  8110. can then be extracted using 'tree_to_shwi' and 'tree_to_uhwi'.
  8111. 'REAL_CST'
  8112. FIXME: Talk about how to obtain representations of this constant,
  8113. do comparisons, and so forth.
  8114. 'FIXED_CST'
  8115. These nodes represent fixed-point constants. The type of these
  8116. constants is obtained with 'TREE_TYPE'. 'TREE_FIXED_CST_PTR'
  8117. points to a 'struct fixed_value'; 'TREE_FIXED_CST' returns the
  8118. structure itself. 'struct fixed_value' contains 'data' with the
  8119. size of two 'HOST_BITS_PER_WIDE_INT' and 'mode' as the associated
  8120. fixed-point machine mode for 'data'.
  8121. 'COMPLEX_CST'
  8122. These nodes are used to represent complex number constants, that is
  8123. a '__complex__' whose parts are constant nodes. The
  8124. 'TREE_REALPART' and 'TREE_IMAGPART' return the real and the
  8125. imaginary parts respectively.
  8126. 'VECTOR_CST'
  8127. These nodes are used to represent vector constants. Each vector
  8128. constant V is treated as a specific instance of an arbitrary-length
  8129. sequence that itself contains 'VECTOR_CST_NPATTERNS (V)'
  8130. interleaved patterns. Each pattern has the form:
  8131. { BASE0, BASE1, BASE1 + STEP, BASE1 + STEP * 2, ... }
  8132. The first three elements in each pattern are enough to determine
  8133. the values of the other elements. However, if all STEPs are zero,
  8134. only the first two elements are needed. If in addition each BASE1
  8135. is equal to the corresponding BASE0, only the first element in each
  8136. pattern is needed. The number of encoded elements per pattern is
  8137. given by 'VECTOR_CST_NELTS_PER_PATTERN (V)'.
  8138. For example, the constant:
  8139. { 0, 1, 2, 6, 3, 8, 4, 10, 5, 12, 6, 14, 7, 16, 8, 18 }
  8140. is interpreted as an interleaving of the sequences:
  8141. { 0, 2, 3, 4, 5, 6, 7, 8 }
  8142. { 1, 6, 8, 10, 12, 14, 16, 18 }
  8143. where the sequences are represented by the following patterns:
  8144. BASE0 == 0, BASE1 == 2, STEP == 1
  8145. BASE0 == 1, BASE1 == 6, STEP == 2
  8146. In this case:
  8147. VECTOR_CST_NPATTERNS (V) == 2
  8148. VECTOR_CST_NELTS_PER_PATTERN (V) == 3
  8149. The vector is therefore encoded using the first 6 elements ('{ 0,
  8150. 1, 2, 6, 3, 8 }'), with the remaining 10 elements being implicit
  8151. extensions of them.
  8152. Sometimes this scheme can create two possible encodings of the same
  8153. vector. For example { 0, 1 } could be seen as two patterns with
  8154. one element each or one pattern with two elements (BASE0 and
  8155. BASE1). The canonical encoding is always the one with the fewest
  8156. patterns or (if both encodings have the same number of petterns)
  8157. the one with the fewest encoded elements.
  8158. 'vector_cst_encoding_nelts (V)' gives the total number of encoded
  8159. elements in V, which is 6 in the example above.
  8160. 'VECTOR_CST_ENCODED_ELTS (V)' gives a pointer to the elements
  8161. encoded in V and 'VECTOR_CST_ENCODED_ELT (V, I)' accesses the value
  8162. of encoded element I.
  8163. 'VECTOR_CST_DUPLICATE_P (V)' is true if V simply contains repeated
  8164. instances of 'VECTOR_CST_NPATTERNS (V)' values. This is a
  8165. shorthand for testing 'VECTOR_CST_NELTS_PER_PATTERN (V) == 1'.
  8166. 'VECTOR_CST_STEPPED_P (V)' is true if at least one pattern in V has
  8167. a nonzero step. This is a shorthand for testing
  8168. 'VECTOR_CST_NELTS_PER_PATTERN (V) == 3'.
  8169. The utility function 'vector_cst_elt' gives the value of an
  8170. arbitrary index as a 'tree'. 'vector_cst_int_elt' gives the same
  8171. value as a 'wide_int'.
  8172. 'STRING_CST'
  8173. These nodes represent string-constants. The 'TREE_STRING_LENGTH'
  8174. returns the length of the string, as an 'int'. The
  8175. 'TREE_STRING_POINTER' is a 'char*' containing the string itself.
  8176. The string may not be 'NUL'-terminated, and it may contain embedded
  8177. 'NUL' characters. Therefore, the 'TREE_STRING_LENGTH' includes the
  8178. trailing 'NUL' if it is present.
  8179. For wide string constants, the 'TREE_STRING_LENGTH' is the number
  8180. of bytes in the string, and the 'TREE_STRING_POINTER' points to an
  8181. array of the bytes of the string, as represented on the target
  8182. system (that is, as integers in the target endianness). Wide and
  8183. non-wide string constants are distinguished only by the 'TREE_TYPE'
  8184. of the 'STRING_CST'.
  8185. FIXME: The formats of string constants are not well-defined when
  8186. the target system bytes are not the same width as host system
  8187. bytes.
  8188. 'POLY_INT_CST'
  8189. These nodes represent invariants that depend on some
  8190. target-specific runtime parameters. They consist of
  8191. 'NUM_POLY_INT_COEFFS' coefficients, with the first coefficient
  8192. being the constant term and the others being multipliers that are
  8193. applied to the runtime parameters.
  8194. 'POLY_INT_CST_ELT (X, I)' references coefficient number I of
  8195. 'POLY_INT_CST' node X. Each coefficient is an 'INTEGER_CST'.
  8196. 
  8197. File: gccint.info, Node: Storage References, Next: Unary and Binary Expressions, Prev: Constant expressions, Up: Expression trees
  8198. 11.6.2 References to storage
  8199. ----------------------------
  8200. 'ARRAY_REF'
  8201. These nodes represent array accesses. The first operand is the
  8202. array; the second is the index. To calculate the address of the
  8203. memory accessed, you must scale the index by the size of the type
  8204. of the array elements. The type of these expressions must be the
  8205. type of a component of the array. The third and fourth operands
  8206. are used after gimplification to represent the lower bound and
  8207. component size but should not be used directly; call
  8208. 'array_ref_low_bound' and 'array_ref_element_size' instead.
  8209. 'ARRAY_RANGE_REF'
  8210. These nodes represent access to a range (or "slice") of an array.
  8211. The operands are the same as that for 'ARRAY_REF' and have the same
  8212. meanings. The type of these expressions must be an array whose
  8213. component type is the same as that of the first operand. The range
  8214. of that array type determines the amount of data these expressions
  8215. access.
  8216. 'TARGET_MEM_REF'
  8217. These nodes represent memory accesses whose address directly map to
  8218. an addressing mode of the target architecture. The first argument
  8219. is 'TMR_SYMBOL' and must be a 'VAR_DECL' of an object with a fixed
  8220. address. The second argument is 'TMR_BASE' and the third one is
  8221. 'TMR_INDEX'. The fourth argument is 'TMR_STEP' and must be an
  8222. 'INTEGER_CST'. The fifth argument is 'TMR_OFFSET' and must be an
  8223. 'INTEGER_CST'. Any of the arguments may be NULL if the appropriate
  8224. component does not appear in the address. Address of the
  8225. 'TARGET_MEM_REF' is determined in the following way.
  8226. &TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET
  8227. The sixth argument is the reference to the original memory access,
  8228. which is preserved for the purposes of the RTL alias analysis. The
  8229. seventh argument is a tag representing the results of tree level
  8230. alias analysis.
  8231. 'ADDR_EXPR'
  8232. These nodes are used to represent the address of an object. (These
  8233. expressions will always have pointer or reference type.) The
  8234. operand may be another expression, or it may be a declaration.
  8235. As an extension, GCC allows users to take the address of a label.
  8236. In this case, the operand of the 'ADDR_EXPR' will be a
  8237. 'LABEL_DECL'. The type of such an expression is 'void*'.
  8238. If the object addressed is not an lvalue, a temporary is created,
  8239. and the address of the temporary is used.
  8240. 'INDIRECT_REF'
  8241. These nodes are used to represent the object pointed to by a
  8242. pointer. The operand is the pointer being dereferenced; it will
  8243. always have pointer or reference type.
  8244. 'MEM_REF'
  8245. These nodes are used to represent the object pointed to by a
  8246. pointer offset by a constant. The first operand is the pointer
  8247. being dereferenced; it will always have pointer or reference type.
  8248. The second operand is a pointer constant. Its type is specifying
  8249. the type to be used for type-based alias analysis.
  8250. 'COMPONENT_REF'
  8251. These nodes represent non-static data member accesses. The first
  8252. operand is the object (rather than a pointer to it); the second
  8253. operand is the 'FIELD_DECL' for the data member. The third operand
  8254. represents the byte offset of the field, but should not be used
  8255. directly; call 'component_ref_field_offset' instead.
  8256. 
  8257. File: gccint.info, Node: Unary and Binary Expressions, Next: Vectors, Prev: Storage References, Up: Expression trees
  8258. 11.6.3 Unary and Binary Expressions
  8259. -----------------------------------
  8260. 'NEGATE_EXPR'
  8261. These nodes represent unary negation of the single operand, for
  8262. both integer and floating-point types. The type of negation can be
  8263. determined by looking at the type of the expression.
  8264. The behavior of this operation on signed arithmetic overflow is
  8265. controlled by the 'flag_wrapv' and 'flag_trapv' variables.
  8266. 'ABS_EXPR'
  8267. These nodes represent the absolute value of the single operand, for
  8268. both integer and floating-point types. This is typically used to
  8269. implement the 'abs', 'labs' and 'llabs' builtins for integer types,
  8270. and the 'fabs', 'fabsf' and 'fabsl' builtins for floating point
  8271. types. The type of abs operation can be determined by looking at
  8272. the type of the expression.
  8273. This node is not used for complex types. To represent the modulus
  8274. or complex abs of a complex value, use the 'BUILT_IN_CABS',
  8275. 'BUILT_IN_CABSF' or 'BUILT_IN_CABSL' builtins, as used to implement
  8276. the C99 'cabs', 'cabsf' and 'cabsl' built-in functions.
  8277. 'BIT_NOT_EXPR'
  8278. These nodes represent bitwise complement, and will always have
  8279. integral type. The only operand is the value to be complemented.
  8280. 'TRUTH_NOT_EXPR'
  8281. These nodes represent logical negation, and will always have
  8282. integral (or boolean) type. The operand is the value being
  8283. negated. The type of the operand and that of the result are always
  8284. of 'BOOLEAN_TYPE' or 'INTEGER_TYPE'.
  8285. 'PREDECREMENT_EXPR'
  8286. 'PREINCREMENT_EXPR'
  8287. 'POSTDECREMENT_EXPR'
  8288. 'POSTINCREMENT_EXPR'
  8289. These nodes represent increment and decrement expressions. The
  8290. value of the single operand is computed, and the operand
  8291. incremented or decremented. In the case of 'PREDECREMENT_EXPR' and
  8292. 'PREINCREMENT_EXPR', the value of the expression is the value
  8293. resulting after the increment or decrement; in the case of
  8294. 'POSTDECREMENT_EXPR' and 'POSTINCREMENT_EXPR' is the value before
  8295. the increment or decrement occurs. The type of the operand, like
  8296. that of the result, will be either integral, boolean, or
  8297. floating-point.
  8298. 'FIX_TRUNC_EXPR'
  8299. These nodes represent conversion of a floating-point value to an
  8300. integer. The single operand will have a floating-point type, while
  8301. the complete expression will have an integral (or boolean) type.
  8302. The operand is rounded towards zero.
  8303. 'FLOAT_EXPR'
  8304. These nodes represent conversion of an integral (or boolean) value
  8305. to a floating-point value. The single operand will have integral
  8306. type, while the complete expression will have a floating-point
  8307. type.
  8308. FIXME: How is the operand supposed to be rounded? Is this
  8309. dependent on '-mieee'?
  8310. 'COMPLEX_EXPR'
  8311. These nodes are used to represent complex numbers constructed from
  8312. two expressions of the same (integer or real) type. The first
  8313. operand is the real part and the second operand is the imaginary
  8314. part.
  8315. 'CONJ_EXPR'
  8316. These nodes represent the conjugate of their operand.
  8317. 'REALPART_EXPR'
  8318. 'IMAGPART_EXPR'
  8319. These nodes represent respectively the real and the imaginary parts
  8320. of complex numbers (their sole argument).
  8321. 'NON_LVALUE_EXPR'
  8322. These nodes indicate that their one and only operand is not an
  8323. lvalue. A back end can treat these identically to the single
  8324. operand.
  8325. 'NOP_EXPR'
  8326. These nodes are used to represent conversions that do not require
  8327. any code-generation. For example, conversion of a 'char*' to an
  8328. 'int*' does not require any code be generated; such a conversion is
  8329. represented by a 'NOP_EXPR'. The single operand is the expression
  8330. to be converted. The conversion from a pointer to a reference is
  8331. also represented with a 'NOP_EXPR'.
  8332. 'CONVERT_EXPR'
  8333. These nodes are similar to 'NOP_EXPR's, but are used in those
  8334. situations where code may need to be generated. For example, if an
  8335. 'int*' is converted to an 'int' code may need to be generated on
  8336. some platforms. These nodes are never used for C++-specific
  8337. conversions, like conversions between pointers to different classes
  8338. in an inheritance hierarchy. Any adjustments that need to be made
  8339. in such cases are always indicated explicitly. Similarly, a
  8340. user-defined conversion is never represented by a 'CONVERT_EXPR';
  8341. instead, the function calls are made explicit.
  8342. 'FIXED_CONVERT_EXPR'
  8343. These nodes are used to represent conversions that involve
  8344. fixed-point values. For example, from a fixed-point value to
  8345. another fixed-point value, from an integer to a fixed-point value,
  8346. from a fixed-point value to an integer, from a floating-point value
  8347. to a fixed-point value, or from a fixed-point value to a
  8348. floating-point value.
  8349. 'LSHIFT_EXPR'
  8350. 'RSHIFT_EXPR'
  8351. These nodes represent left and right shifts, respectively. The
  8352. first operand is the value to shift; it will always be of integral
  8353. type. The second operand is an expression for the number of bits
  8354. by which to shift. Right shift should be treated as arithmetic,
  8355. i.e., the high-order bits should be zero-filled when the expression
  8356. has unsigned type and filled with the sign bit when the expression
  8357. has signed type. Note that the result is undefined if the second
  8358. operand is larger than or equal to the first operand's type size.
  8359. Unlike most nodes, these can have a vector as first operand and a
  8360. scalar as second operand.
  8361. 'BIT_IOR_EXPR'
  8362. 'BIT_XOR_EXPR'
  8363. 'BIT_AND_EXPR'
  8364. These nodes represent bitwise inclusive or, bitwise exclusive or,
  8365. and bitwise and, respectively. Both operands will always have
  8366. integral type.
  8367. 'TRUTH_ANDIF_EXPR'
  8368. 'TRUTH_ORIF_EXPR'
  8369. These nodes represent logical "and" and logical "or", respectively.
  8370. These operators are not strict; i.e., the second operand is
  8371. evaluated only if the value of the expression is not determined by
  8372. evaluation of the first operand. The type of the operands and that
  8373. of the result are always of 'BOOLEAN_TYPE' or 'INTEGER_TYPE'.
  8374. 'TRUTH_AND_EXPR'
  8375. 'TRUTH_OR_EXPR'
  8376. 'TRUTH_XOR_EXPR'
  8377. These nodes represent logical and, logical or, and logical
  8378. exclusive or. They are strict; both arguments are always
  8379. evaluated. There are no corresponding operators in C or C++, but
  8380. the front end will sometimes generate these expressions anyhow, if
  8381. it can tell that strictness does not matter. The type of the
  8382. operands and that of the result are always of 'BOOLEAN_TYPE' or
  8383. 'INTEGER_TYPE'.
  8384. 'POINTER_PLUS_EXPR'
  8385. This node represents pointer arithmetic. The first operand is
  8386. always a pointer/reference type. The second operand is always an
  8387. unsigned integer type compatible with sizetype. This and
  8388. POINTER_DIFF_EXPR are the only binary arithmetic operators that can
  8389. operate on pointer types.
  8390. 'POINTER_DIFF_EXPR'
  8391. This node represents pointer subtraction. The two operands always
  8392. have pointer/reference type. It returns a signed integer of the
  8393. same precision as the pointers. The behavior is undefined if the
  8394. difference of the two pointers, seen as infinite precision
  8395. non-negative integers, does not fit in the result type. The result
  8396. does not depend on the pointer type, it is not divided by the size
  8397. of the pointed-to type.
  8398. 'PLUS_EXPR'
  8399. 'MINUS_EXPR'
  8400. 'MULT_EXPR'
  8401. These nodes represent various binary arithmetic operations.
  8402. Respectively, these operations are addition, subtraction (of the
  8403. second operand from the first) and multiplication. Their operands
  8404. may have either integral or floating type, but there will never be
  8405. case in which one operand is of floating type and the other is of
  8406. integral type.
  8407. The behavior of these operations on signed arithmetic overflow is
  8408. controlled by the 'flag_wrapv' and 'flag_trapv' variables.
  8409. 'MULT_HIGHPART_EXPR'
  8410. This node represents the "high-part" of a widening multiplication.
  8411. For an integral type with B bits of precision, the result is the
  8412. most significant B bits of the full 2B product.
  8413. 'RDIV_EXPR'
  8414. This node represents a floating point division operation.
  8415. 'TRUNC_DIV_EXPR'
  8416. 'FLOOR_DIV_EXPR'
  8417. 'CEIL_DIV_EXPR'
  8418. 'ROUND_DIV_EXPR'
  8419. These nodes represent integer division operations that return an
  8420. integer result. 'TRUNC_DIV_EXPR' rounds towards zero,
  8421. 'FLOOR_DIV_EXPR' rounds towards negative infinity, 'CEIL_DIV_EXPR'
  8422. rounds towards positive infinity and 'ROUND_DIV_EXPR' rounds to the
  8423. closest integer. Integer division in C and C++ is truncating, i.e.
  8424. 'TRUNC_DIV_EXPR'.
  8425. The behavior of these operations on signed arithmetic overflow,
  8426. when dividing the minimum signed integer by minus one, is
  8427. controlled by the 'flag_wrapv' and 'flag_trapv' variables.
  8428. 'TRUNC_MOD_EXPR'
  8429. 'FLOOR_MOD_EXPR'
  8430. 'CEIL_MOD_EXPR'
  8431. 'ROUND_MOD_EXPR'
  8432. These nodes represent the integer remainder or modulus operation.
  8433. The integer modulus of two operands 'a' and 'b' is defined as 'a -
  8434. (a/b)*b' where the division calculated using the corresponding
  8435. division operator. Hence for 'TRUNC_MOD_EXPR' this definition
  8436. assumes division using truncation towards zero, i.e.
  8437. 'TRUNC_DIV_EXPR'. Integer remainder in C and C++ uses truncating
  8438. division, i.e. 'TRUNC_MOD_EXPR'.
  8439. 'EXACT_DIV_EXPR'
  8440. The 'EXACT_DIV_EXPR' code is used to represent integer divisions
  8441. where the numerator is known to be an exact multiple of the
  8442. denominator. This allows the backend to choose between the faster
  8443. of 'TRUNC_DIV_EXPR', 'CEIL_DIV_EXPR' and 'FLOOR_DIV_EXPR' for the
  8444. current target.
  8445. 'LT_EXPR'
  8446. 'LE_EXPR'
  8447. 'GT_EXPR'
  8448. 'GE_EXPR'
  8449. 'EQ_EXPR'
  8450. 'NE_EXPR'
  8451. These nodes represent the less than, less than or equal to, greater
  8452. than, greater than or equal to, equal, and not equal comparison
  8453. operators. The first and second operands will either be both of
  8454. integral type, both of floating type or both of vector type. The
  8455. result type of these expressions will always be of integral,
  8456. boolean or signed integral vector type. These operations return
  8457. the result type's zero value for false, the result type's one value
  8458. for true, and a vector whose elements are zero (false) or minus one
  8459. (true) for vectors.
  8460. For floating point comparisons, if we honor IEEE NaNs and either
  8461. operand is NaN, then 'NE_EXPR' always returns true and the
  8462. remaining operators always return false. On some targets,
  8463. comparisons against an IEEE NaN, other than equality and
  8464. inequality, may generate a floating point exception.
  8465. 'ORDERED_EXPR'
  8466. 'UNORDERED_EXPR'
  8467. These nodes represent non-trapping ordered and unordered comparison
  8468. operators. These operations take two floating point operands and
  8469. determine whether they are ordered or unordered relative to each
  8470. other. If either operand is an IEEE NaN, their comparison is
  8471. defined to be unordered, otherwise the comparison is defined to be
  8472. ordered. The result type of these expressions will always be of
  8473. integral or boolean type. These operations return the result
  8474. type's zero value for false, and the result type's one value for
  8475. true.
  8476. 'UNLT_EXPR'
  8477. 'UNLE_EXPR'
  8478. 'UNGT_EXPR'
  8479. 'UNGE_EXPR'
  8480. 'UNEQ_EXPR'
  8481. 'LTGT_EXPR'
  8482. These nodes represent the unordered comparison operators. These
  8483. operations take two floating point operands and determine whether
  8484. the operands are unordered or are less than, less than or equal to,
  8485. greater than, greater than or equal to, or equal respectively. For
  8486. example, 'UNLT_EXPR' returns true if either operand is an IEEE NaN
  8487. or the first operand is less than the second. With the possible
  8488. exception of 'LTGT_EXPR', all of these operations are guaranteed
  8489. not to generate a floating point exception. The result type of
  8490. these expressions will always be of integral or boolean type.
  8491. These operations return the result type's zero value for false, and
  8492. the result type's one value for true.
  8493. 'MODIFY_EXPR'
  8494. These nodes represent assignment. The left-hand side is the first
  8495. operand; the right-hand side is the second operand. The left-hand
  8496. side will be a 'VAR_DECL', 'INDIRECT_REF', 'COMPONENT_REF', or
  8497. other lvalue.
  8498. These nodes are used to represent not only assignment with '=' but
  8499. also compound assignments (like '+='), by reduction to '='
  8500. assignment. In other words, the representation for 'i += 3' looks
  8501. just like that for 'i = i + 3'.
  8502. 'INIT_EXPR'
  8503. These nodes are just like 'MODIFY_EXPR', but are used only when a
  8504. variable is initialized, rather than assigned to subsequently.
  8505. This means that we can assume that the target of the initialization
  8506. is not used in computing its own value; any reference to the lhs in
  8507. computing the rhs is undefined.
  8508. 'COMPOUND_EXPR'
  8509. These nodes represent comma-expressions. The first operand is an
  8510. expression whose value is computed and thrown away prior to the
  8511. evaluation of the second operand. The value of the entire
  8512. expression is the value of the second operand.
  8513. 'COND_EXPR'
  8514. These nodes represent '?:' expressions. The first operand is of
  8515. boolean or integral type. If it evaluates to a nonzero value, the
  8516. second operand should be evaluated, and returned as the value of
  8517. the expression. Otherwise, the third operand is evaluated, and
  8518. returned as the value of the expression.
  8519. The second operand must have the same type as the entire
  8520. expression, unless it unconditionally throws an exception or calls
  8521. a noreturn function, in which case it should have void type. The
  8522. same constraints apply to the third operand. This allows array
  8523. bounds checks to be represented conveniently as '(i >= 0 && i < 10)
  8524. ? i : abort()'.
  8525. As a GNU extension, the C language front-ends allow the second
  8526. operand of the '?:' operator may be omitted in the source. For
  8527. example, 'x ? : 3' is equivalent to 'x ? x : 3', assuming that 'x'
  8528. is an expression without side effects. In the tree representation,
  8529. however, the second operand is always present, possibly protected
  8530. by 'SAVE_EXPR' if the first argument does cause side effects.
  8531. 'CALL_EXPR'
  8532. These nodes are used to represent calls to functions, including
  8533. non-static member functions. 'CALL_EXPR's are implemented as
  8534. expression nodes with a variable number of operands. Rather than
  8535. using 'TREE_OPERAND' to extract them, it is preferable to use the
  8536. specialized accessor macros and functions that operate specifically
  8537. on 'CALL_EXPR' nodes.
  8538. 'CALL_EXPR_FN' returns a pointer to the function to call; it is
  8539. always an expression whose type is a 'POINTER_TYPE'.
  8540. The number of arguments to the call is returned by
  8541. 'call_expr_nargs', while the arguments themselves can be accessed
  8542. with the 'CALL_EXPR_ARG' macro. The arguments are zero-indexed and
  8543. numbered left-to-right. You can iterate over the arguments using
  8544. 'FOR_EACH_CALL_EXPR_ARG', as in:
  8545. tree call, arg;
  8546. call_expr_arg_iterator iter;
  8547. FOR_EACH_CALL_EXPR_ARG (arg, iter, call)
  8548. /* arg is bound to successive arguments of call. */
  8549. ...;
  8550. For non-static member functions, there will be an operand
  8551. corresponding to the 'this' pointer. There will always be
  8552. expressions corresponding to all of the arguments, even if the
  8553. function is declared with default arguments and some arguments are
  8554. not explicitly provided at the call sites.
  8555. 'CALL_EXPR's also have a 'CALL_EXPR_STATIC_CHAIN' operand that is
  8556. used to implement nested functions. This operand is otherwise
  8557. null.
  8558. 'CLEANUP_POINT_EXPR'
  8559. These nodes represent full-expressions. The single operand is an
  8560. expression to evaluate. Any destructor calls engendered by the
  8561. creation of temporaries during the evaluation of that expression
  8562. should be performed immediately after the expression is evaluated.
  8563. 'CONSTRUCTOR'
  8564. These nodes represent the brace-enclosed initializers for a
  8565. structure or an array. They contain a sequence of component values
  8566. made out of a vector of constructor_elt, which is a ('INDEX',
  8567. 'VALUE') pair.
  8568. If the 'TREE_TYPE' of the 'CONSTRUCTOR' is a 'RECORD_TYPE',
  8569. 'UNION_TYPE' or 'QUAL_UNION_TYPE' then the 'INDEX' of each node in
  8570. the sequence will be a 'FIELD_DECL' and the 'VALUE' will be the
  8571. expression used to initialize that field.
  8572. If the 'TREE_TYPE' of the 'CONSTRUCTOR' is an 'ARRAY_TYPE', then
  8573. the 'INDEX' of each node in the sequence will be an 'INTEGER_CST'
  8574. or a 'RANGE_EXPR' of two 'INTEGER_CST's. A single 'INTEGER_CST'
  8575. indicates which element of the array is being assigned to. A
  8576. 'RANGE_EXPR' indicates an inclusive range of elements to
  8577. initialize. In both cases the 'VALUE' is the corresponding
  8578. initializer. It is re-evaluated for each element of a
  8579. 'RANGE_EXPR'. If the 'INDEX' is 'NULL_TREE', then the initializer
  8580. is for the next available array element.
  8581. In the front end, you should not depend on the fields appearing in
  8582. any particular order. However, in the middle end, fields must
  8583. appear in declaration order. You should not assume that all fields
  8584. will be represented. Unrepresented fields will be cleared
  8585. (zeroed), unless the CONSTRUCTOR_NO_CLEARING flag is set, in which
  8586. case their value becomes undefined.
  8587. 'COMPOUND_LITERAL_EXPR'
  8588. These nodes represent ISO C99 compound literals. The
  8589. 'COMPOUND_LITERAL_EXPR_DECL_EXPR' is a 'DECL_EXPR' containing an
  8590. anonymous 'VAR_DECL' for the unnamed object represented by the
  8591. compound literal; the 'DECL_INITIAL' of that 'VAR_DECL' is a
  8592. 'CONSTRUCTOR' representing the brace-enclosed list of initializers
  8593. in the compound literal. That anonymous 'VAR_DECL' can also be
  8594. accessed directly by the 'COMPOUND_LITERAL_EXPR_DECL' macro.
  8595. 'SAVE_EXPR'
  8596. A 'SAVE_EXPR' represents an expression (possibly involving side
  8597. effects) that is used more than once. The side effects should
  8598. occur only the first time the expression is evaluated. Subsequent
  8599. uses should just reuse the computed value. The first operand to
  8600. the 'SAVE_EXPR' is the expression to evaluate. The side effects
  8601. should be executed where the 'SAVE_EXPR' is first encountered in a
  8602. depth-first preorder traversal of the expression tree.
  8603. 'TARGET_EXPR'
  8604. A 'TARGET_EXPR' represents a temporary object. The first operand
  8605. is a 'VAR_DECL' for the temporary variable. The second operand is
  8606. the initializer for the temporary. The initializer is evaluated
  8607. and, if non-void, copied (bitwise) into the temporary. If the
  8608. initializer is void, that means that it will perform the
  8609. initialization itself.
  8610. Often, a 'TARGET_EXPR' occurs on the right-hand side of an
  8611. assignment, or as the second operand to a comma-expression which is
  8612. itself the right-hand side of an assignment, etc. In this case, we
  8613. say that the 'TARGET_EXPR' is "normal"; otherwise, we say it is
  8614. "orphaned". For a normal 'TARGET_EXPR' the temporary variable
  8615. should be treated as an alias for the left-hand side of the
  8616. assignment, rather than as a new temporary variable.
  8617. The third operand to the 'TARGET_EXPR', if present, is a
  8618. cleanup-expression (i.e., destructor call) for the temporary. If
  8619. this expression is orphaned, then this expression must be executed
  8620. when the statement containing this expression is complete. These
  8621. cleanups must always be executed in the order opposite to that in
  8622. which they were encountered. Note that if a temporary is created
  8623. on one branch of a conditional operator (i.e., in the second or
  8624. third operand to a 'COND_EXPR'), the cleanup must be run only if
  8625. that branch is actually executed.
  8626. 'VA_ARG_EXPR'
  8627. This node is used to implement support for the C/C++ variable
  8628. argument-list mechanism. It represents expressions like 'va_arg
  8629. (ap, type)'. Its 'TREE_TYPE' yields the tree representation for
  8630. 'type' and its sole argument yields the representation for 'ap'.
  8631. 'ANNOTATE_EXPR'
  8632. This node is used to attach markers to an expression. The first
  8633. operand is the annotated expression, the second is an 'INTEGER_CST'
  8634. with a value from 'enum annot_expr_kind', the third is an
  8635. 'INTEGER_CST'.
  8636. 
  8637. File: gccint.info, Node: Vectors, Prev: Unary and Binary Expressions, Up: Expression trees
  8638. 11.6.4 Vectors
  8639. --------------
  8640. 'VEC_DUPLICATE_EXPR'
  8641. This node has a single operand and represents a vector in which
  8642. every element is equal to that operand.
  8643. 'VEC_SERIES_EXPR'
  8644. This node represents a vector formed from a scalar base and step,
  8645. given as the first and second operands respectively. Element I of
  8646. the result is equal to 'BASE + I*STEP'.
  8647. This node is restricted to integral types, in order to avoid
  8648. specifying the rounding behavior for floating-point types.
  8649. 'VEC_LSHIFT_EXPR'
  8650. 'VEC_RSHIFT_EXPR'
  8651. These nodes represent whole vector left and right shifts,
  8652. respectively. The first operand is the vector to shift; it will
  8653. always be of vector type. The second operand is an expression for
  8654. the number of bits by which to shift. Note that the result is
  8655. undefined if the second operand is larger than or equal to the
  8656. first operand's type size.
  8657. 'VEC_WIDEN_MULT_HI_EXPR'
  8658. 'VEC_WIDEN_MULT_LO_EXPR'
  8659. These nodes represent widening vector multiplication of the high
  8660. and low parts of the two input vectors, respectively. Their
  8661. operands are vectors that contain the same number of elements ('N')
  8662. of the same integral type. The result is a vector that contains
  8663. half as many elements, of an integral type whose size is twice as
  8664. wide. In the case of 'VEC_WIDEN_MULT_HI_EXPR' the high 'N/2'
  8665. elements of the two vector are multiplied to produce the vector of
  8666. 'N/2' products. In the case of 'VEC_WIDEN_MULT_LO_EXPR' the low
  8667. 'N/2' elements of the two vector are multiplied to produce the
  8668. vector of 'N/2' products.
  8669. 'VEC_UNPACK_HI_EXPR'
  8670. 'VEC_UNPACK_LO_EXPR'
  8671. These nodes represent unpacking of the high and low parts of the
  8672. input vector, respectively. The single operand is a vector that
  8673. contains 'N' elements of the same integral or floating point type.
  8674. The result is a vector that contains half as many elements, of an
  8675. integral or floating point type whose size is twice as wide. In
  8676. the case of 'VEC_UNPACK_HI_EXPR' the high 'N/2' elements of the
  8677. vector are extracted and widened (promoted). In the case of
  8678. 'VEC_UNPACK_LO_EXPR' the low 'N/2' elements of the vector are
  8679. extracted and widened (promoted).
  8680. 'VEC_UNPACK_FLOAT_HI_EXPR'
  8681. 'VEC_UNPACK_FLOAT_LO_EXPR'
  8682. These nodes represent unpacking of the high and low parts of the
  8683. input vector, where the values are converted from fixed point to
  8684. floating point. The single operand is a vector that contains 'N'
  8685. elements of the same integral type. The result is a vector that
  8686. contains half as many elements of a floating point type whose size
  8687. is twice as wide. In the case of 'VEC_UNPACK_HI_EXPR' the high
  8688. 'N/2' elements of the vector are extracted, converted and widened.
  8689. In the case of 'VEC_UNPACK_LO_EXPR' the low 'N/2' elements of the
  8690. vector are extracted, converted and widened.
  8691. 'VEC_PACK_TRUNC_EXPR'
  8692. This node represents packing of truncated elements of the two input
  8693. vectors into the output vector. Input operands are vectors that
  8694. contain the same number of elements of the same integral or
  8695. floating point type. The result is a vector that contains twice as
  8696. many elements of an integral or floating point type whose size is
  8697. half as wide. The elements of the two vectors are demoted and
  8698. merged (concatenated) to form the output vector.
  8699. 'VEC_PACK_SAT_EXPR'
  8700. This node represents packing of elements of the two input vectors
  8701. into the output vector using saturation. Input operands are
  8702. vectors that contain the same number of elements of the same
  8703. integral type. The result is a vector that contains twice as many
  8704. elements of an integral type whose size is half as wide. The
  8705. elements of the two vectors are demoted and merged (concatenated)
  8706. to form the output vector.
  8707. 'VEC_PACK_FIX_TRUNC_EXPR'
  8708. This node represents packing of elements of the two input vectors
  8709. into the output vector, where the values are converted from
  8710. floating point to fixed point. Input operands are vectors that
  8711. contain the same number of elements of a floating point type. The
  8712. result is a vector that contains twice as many elements of an
  8713. integral type whose size is half as wide. The elements of the two
  8714. vectors are merged (concatenated) to form the output vector.
  8715. 'VEC_COND_EXPR'
  8716. These nodes represent '?:' expressions. The three operands must be
  8717. vectors of the same size and number of elements. The second and
  8718. third operands must have the same type as the entire expression.
  8719. The first operand is of signed integral vector type. If an element
  8720. of the first operand evaluates to a zero value, the corresponding
  8721. element of the result is taken from the third operand. If it
  8722. evaluates to a minus one value, it is taken from the second
  8723. operand. It should never evaluate to any other value currently,
  8724. but optimizations should not rely on that property. In contrast
  8725. with a 'COND_EXPR', all operands are always evaluated.
  8726. 'SAD_EXPR'
  8727. This node represents the Sum of Absolute Differences operation.
  8728. The three operands must be vectors of integral types. The first
  8729. and second operand must have the same type. The size of the vector
  8730. element of the third operand must be at lease twice of the size of
  8731. the vector element of the first and second one. The SAD is
  8732. calculated between the first and second operands, added to the
  8733. third operand, and returned.
  8734. 
  8735. File: gccint.info, Node: Statements, Next: Functions, Prev: Expression trees, Up: GENERIC
  8736. 11.7 Statements
  8737. ===============
  8738. Most statements in GIMPLE are assignment statements, represented by
  8739. 'GIMPLE_ASSIGN'. No other C expressions can appear at statement level;
  8740. a reference to a volatile object is converted into a 'GIMPLE_ASSIGN'.
  8741. There are also several varieties of complex statements.
  8742. * Menu:
  8743. * Basic Statements::
  8744. * Blocks::
  8745. * Statement Sequences::
  8746. * Empty Statements::
  8747. * Jumps::
  8748. * Cleanups::
  8749. * OpenMP::
  8750. * OpenACC::
  8751. 
  8752. File: gccint.info, Node: Basic Statements, Next: Blocks, Up: Statements
  8753. 11.7.1 Basic Statements
  8754. -----------------------
  8755. 'ASM_EXPR'
  8756. Used to represent an inline assembly statement. For an inline
  8757. assembly statement like:
  8758. asm ("mov x, y");
  8759. The 'ASM_STRING' macro will return a 'STRING_CST' node for '"mov x,
  8760. y"'. If the original statement made use of the extended-assembly
  8761. syntax, then 'ASM_OUTPUTS', 'ASM_INPUTS', and 'ASM_CLOBBERS' will
  8762. be the outputs, inputs, and clobbers for the statement, represented
  8763. as 'STRING_CST' nodes. The extended-assembly syntax looks like:
  8764. asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
  8765. The first string is the 'ASM_STRING', containing the instruction
  8766. template. The next two strings are the output and inputs,
  8767. respectively; this statement has no clobbers. As this example
  8768. indicates, "plain" assembly statements are merely a special case of
  8769. extended assembly statements; they have no cv-qualifiers, outputs,
  8770. inputs, or clobbers. All of the strings will be 'NUL'-terminated,
  8771. and will contain no embedded 'NUL'-characters.
  8772. If the assembly statement is declared 'volatile', or if the
  8773. statement was not an extended assembly statement, and is therefore
  8774. implicitly volatile, then the predicate 'ASM_VOLATILE_P' will hold
  8775. of the 'ASM_EXPR'.
  8776. 'DECL_EXPR'
  8777. Used to represent a local declaration. The 'DECL_EXPR_DECL' macro
  8778. can be used to obtain the entity declared. This declaration may be
  8779. a 'LABEL_DECL', indicating that the label declared is a local
  8780. label. (As an extension, GCC allows the declaration of labels with
  8781. scope.) In C, this declaration may be a 'FUNCTION_DECL',
  8782. indicating the use of the GCC nested function extension. For more
  8783. information, *note Functions::.
  8784. 'LABEL_EXPR'
  8785. Used to represent a label. The 'LABEL_DECL' declared by this
  8786. statement can be obtained with the 'LABEL_EXPR_LABEL' macro. The
  8787. 'IDENTIFIER_NODE' giving the name of the label can be obtained from
  8788. the 'LABEL_DECL' with 'DECL_NAME'.
  8789. 'GOTO_EXPR'
  8790. Used to represent a 'goto' statement. The 'GOTO_DESTINATION' will
  8791. usually be a 'LABEL_DECL'. However, if the "computed goto"
  8792. extension has been used, the 'GOTO_DESTINATION' will be an
  8793. arbitrary expression indicating the destination. This expression
  8794. will always have pointer type.
  8795. 'RETURN_EXPR'
  8796. Used to represent a 'return' statement. Operand 0 represents the
  8797. value to return. It should either be the 'RESULT_DECL' for the
  8798. containing function, or a 'MODIFY_EXPR' or 'INIT_EXPR' setting the
  8799. function's 'RESULT_DECL'. It will be 'NULL_TREE' if the statement
  8800. was just
  8801. return;
  8802. 'LOOP_EXPR'
  8803. These nodes represent "infinite" loops. The 'LOOP_EXPR_BODY'
  8804. represents the body of the loop. It should be executed forever,
  8805. unless an 'EXIT_EXPR' is encountered.
  8806. 'EXIT_EXPR'
  8807. These nodes represent conditional exits from the nearest enclosing
  8808. 'LOOP_EXPR'. The single operand is the condition; if it is
  8809. nonzero, then the loop should be exited. An 'EXIT_EXPR' will only
  8810. appear within a 'LOOP_EXPR'.
  8811. 'SWITCH_STMT'
  8812. Used to represent a 'switch' statement. The 'SWITCH_STMT_COND' is
  8813. the expression on which the switch is occurring. See the
  8814. documentation for an 'IF_STMT' for more information on the
  8815. representation used for the condition. The 'SWITCH_STMT_BODY' is
  8816. the body of the switch statement. The 'SWITCH_STMT_TYPE' is the
  8817. original type of switch expression as given in the source, before
  8818. any compiler conversions.
  8819. 'CASE_LABEL_EXPR'
  8820. Use to represent a 'case' label, range of 'case' labels, or a
  8821. 'default' label. If 'CASE_LOW' is 'NULL_TREE', then this is a
  8822. 'default' label. Otherwise, if 'CASE_HIGH' is 'NULL_TREE', then
  8823. this is an ordinary 'case' label. In this case, 'CASE_LOW' is an
  8824. expression giving the value of the label. Both 'CASE_LOW' and
  8825. 'CASE_HIGH' are 'INTEGER_CST' nodes. These values will have the
  8826. same type as the condition expression in the switch statement.
  8827. Otherwise, if both 'CASE_LOW' and 'CASE_HIGH' are defined, the
  8828. statement is a range of case labels. Such statements originate
  8829. with the extension that allows users to write things of the form:
  8830. case 2 ... 5:
  8831. The first value will be 'CASE_LOW', while the second will be
  8832. 'CASE_HIGH'.
  8833. 'DEBUG_BEGIN_STMT'
  8834. Marks the beginning of a source statement, for purposes of debug
  8835. information generation.
  8836. 
  8837. File: gccint.info, Node: Blocks, Next: Statement Sequences, Prev: Basic Statements, Up: Statements
  8838. 11.7.2 Blocks
  8839. -------------
  8840. Block scopes and the variables they declare in GENERIC are expressed
  8841. using the 'BIND_EXPR' code, which in previous versions of GCC was
  8842. primarily used for the C statement-expression extension.
  8843. Variables in a block are collected into 'BIND_EXPR_VARS' in declaration
  8844. order through their 'TREE_CHAIN' field. Any runtime initialization is
  8845. moved out of 'DECL_INITIAL' and into a statement in the controlled
  8846. block. When gimplifying from C or C++, this initialization replaces the
  8847. 'DECL_STMT'. These variables will never require cleanups. The scope of
  8848. these variables is just the body
  8849. Variable-length arrays (VLAs) complicate this process, as their size
  8850. often refers to variables initialized earlier in the block and their
  8851. initialization involves an explicit stack allocation. To handle this,
  8852. we add an indirection and replace them with a pointer to stack space
  8853. allocated by means of 'alloca'. In most cases, we also arrange for this
  8854. space to be reclaimed when the enclosing 'BIND_EXPR' is exited, the
  8855. exception to this being when there is an explicit call to 'alloca' in
  8856. the source code, in which case the stack is left depressed on exit of
  8857. the 'BIND_EXPR'.
  8858. A C++ program will usually contain more 'BIND_EXPR's than there are
  8859. syntactic blocks in the source code, since several C++ constructs have
  8860. implicit scopes associated with them. On the other hand, although the
  8861. C++ front end uses pseudo-scopes to handle cleanups for objects with
  8862. destructors, these don't translate into the GIMPLE form; multiple
  8863. declarations at the same level use the same 'BIND_EXPR'.
  8864. 
  8865. File: gccint.info, Node: Statement Sequences, Next: Empty Statements, Prev: Blocks, Up: Statements
  8866. 11.7.3 Statement Sequences
  8867. --------------------------
  8868. Multiple statements at the same nesting level are collected into a
  8869. 'STATEMENT_LIST'. Statement lists are modified and traversed using the
  8870. interface in 'tree-iterator.h'.
  8871. 
  8872. File: gccint.info, Node: Empty Statements, Next: Jumps, Prev: Statement Sequences, Up: Statements
  8873. 11.7.4 Empty Statements
  8874. -----------------------
  8875. Whenever possible, statements with no effect are discarded. But if they
  8876. are nested within another construct which cannot be discarded for some
  8877. reason, they are instead replaced with an empty statement, generated by
  8878. 'build_empty_stmt'. Initially, all empty statements were shared, after
  8879. the pattern of the Java front end, but this caused a lot of trouble in
  8880. practice.
  8881. An empty statement is represented as '(void)0'.
  8882. 
  8883. File: gccint.info, Node: Jumps, Next: Cleanups, Prev: Empty Statements, Up: Statements
  8884. 11.7.5 Jumps
  8885. ------------
  8886. Other jumps are expressed by either 'GOTO_EXPR' or 'RETURN_EXPR'.
  8887. The operand of a 'GOTO_EXPR' must be either a label or a variable
  8888. containing the address to jump to.
  8889. The operand of a 'RETURN_EXPR' is either 'NULL_TREE', 'RESULT_DECL', or
  8890. a 'MODIFY_EXPR' which sets the return value. It would be nice to move
  8891. the 'MODIFY_EXPR' into a separate statement, but the special return
  8892. semantics in 'expand_return' make that difficult. It may still happen
  8893. in the future, perhaps by moving most of that logic into
  8894. 'expand_assignment'.
  8895. 
  8896. File: gccint.info, Node: Cleanups, Next: OpenMP, Prev: Jumps, Up: Statements
  8897. 11.7.6 Cleanups
  8898. ---------------
  8899. Destructors for local C++ objects and similar dynamic cleanups are
  8900. represented in GIMPLE by a 'TRY_FINALLY_EXPR'. 'TRY_FINALLY_EXPR' has
  8901. two operands, both of which are a sequence of statements to execute.
  8902. The first sequence is executed. When it completes the second sequence
  8903. is executed.
  8904. The first sequence may complete in the following ways:
  8905. 1. Execute the last statement in the sequence and fall off the end.
  8906. 2. Execute a goto statement ('GOTO_EXPR') to an ordinary label outside
  8907. the sequence.
  8908. 3. Execute a return statement ('RETURN_EXPR').
  8909. 4. Throw an exception. This is currently not explicitly represented
  8910. in GIMPLE.
  8911. The second sequence is not executed if the first sequence completes by
  8912. calling 'setjmp' or 'exit' or any other function that does not return.
  8913. The second sequence is also not executed if the first sequence completes
  8914. via a non-local goto or a computed goto (in general the compiler does
  8915. not know whether such a goto statement exits the first sequence or not,
  8916. so we assume that it doesn't).
  8917. After the second sequence is executed, if it completes normally by
  8918. falling off the end, execution continues wherever the first sequence
  8919. would have continued, by falling off the end, or doing a goto, etc.
  8920. 'TRY_FINALLY_EXPR' complicates the flow graph, since the cleanup needs
  8921. to appear on every edge out of the controlled block; this reduces the
  8922. freedom to move code across these edges. Therefore, the EH lowering
  8923. pass which runs before most of the optimization passes eliminates these
  8924. expressions by explicitly adding the cleanup to each edge. Rethrowing
  8925. the exception is represented using 'RESX_EXPR'.
  8926. 
  8927. File: gccint.info, Node: OpenMP, Next: OpenACC, Prev: Cleanups, Up: Statements
  8928. 11.7.7 OpenMP
  8929. -------------
  8930. All the statements starting with 'OMP_' represent directives and clauses
  8931. used by the OpenMP API <http://www.openmp.org/>.
  8932. 'OMP_PARALLEL'
  8933. Represents '#pragma omp parallel [clause1 ... clauseN]'. It has
  8934. four operands:
  8935. Operand 'OMP_PARALLEL_BODY' is valid while in GENERIC and High
  8936. GIMPLE forms. It contains the body of code to be executed by all
  8937. the threads. During GIMPLE lowering, this operand becomes 'NULL'
  8938. and the body is emitted linearly after 'OMP_PARALLEL'.
  8939. Operand 'OMP_PARALLEL_CLAUSES' is the list of clauses associated
  8940. with the directive.
  8941. Operand 'OMP_PARALLEL_FN' is created by 'pass_lower_omp', it
  8942. contains the 'FUNCTION_DECL' for the function that will contain the
  8943. body of the parallel region.
  8944. Operand 'OMP_PARALLEL_DATA_ARG' is also created by
  8945. 'pass_lower_omp'. If there are shared variables to be communicated
  8946. to the children threads, this operand will contain the 'VAR_DECL'
  8947. that contains all the shared values and variables.
  8948. 'OMP_FOR'
  8949. Represents '#pragma omp for [clause1 ... clauseN]'. It has six
  8950. operands:
  8951. Operand 'OMP_FOR_BODY' contains the loop body.
  8952. Operand 'OMP_FOR_CLAUSES' is the list of clauses associated with
  8953. the directive.
  8954. Operand 'OMP_FOR_INIT' is the loop initialization code of the form
  8955. 'VAR = N1'.
  8956. Operand 'OMP_FOR_COND' is the loop conditional expression of the
  8957. form 'VAR {<,>,<=,>=} N2'.
  8958. Operand 'OMP_FOR_INCR' is the loop index increment of the form 'VAR
  8959. {+=,-=} INCR'.
  8960. Operand 'OMP_FOR_PRE_BODY' contains side effect code from operands
  8961. 'OMP_FOR_INIT', 'OMP_FOR_COND' and 'OMP_FOR_INC'. These side
  8962. effects are part of the 'OMP_FOR' block but must be evaluated
  8963. before the start of loop body.
  8964. The loop index variable 'VAR' must be a signed integer variable,
  8965. which is implicitly private to each thread. Bounds 'N1' and 'N2'
  8966. and the increment expression 'INCR' are required to be loop
  8967. invariant integer expressions that are evaluated without any
  8968. synchronization. The evaluation order, frequency of evaluation and
  8969. side effects are unspecified by the standard.
  8970. 'OMP_SECTIONS'
  8971. Represents '#pragma omp sections [clause1 ... clauseN]'.
  8972. Operand 'OMP_SECTIONS_BODY' contains the sections body, which in
  8973. turn contains a set of 'OMP_SECTION' nodes for each of the
  8974. concurrent sections delimited by '#pragma omp section'.
  8975. Operand 'OMP_SECTIONS_CLAUSES' is the list of clauses associated
  8976. with the directive.
  8977. 'OMP_SECTION'
  8978. Section delimiter for 'OMP_SECTIONS'.
  8979. 'OMP_SINGLE'
  8980. Represents '#pragma omp single'.
  8981. Operand 'OMP_SINGLE_BODY' contains the body of code to be executed
  8982. by a single thread.
  8983. Operand 'OMP_SINGLE_CLAUSES' is the list of clauses associated with
  8984. the directive.
  8985. 'OMP_MASTER'
  8986. Represents '#pragma omp master'.
  8987. Operand 'OMP_MASTER_BODY' contains the body of code to be executed
  8988. by the master thread.
  8989. 'OMP_ORDERED'
  8990. Represents '#pragma omp ordered'.
  8991. Operand 'OMP_ORDERED_BODY' contains the body of code to be executed
  8992. in the sequential order dictated by the loop index variable.
  8993. 'OMP_CRITICAL'
  8994. Represents '#pragma omp critical [name]'.
  8995. Operand 'OMP_CRITICAL_BODY' is the critical section.
  8996. Operand 'OMP_CRITICAL_NAME' is an optional identifier to label the
  8997. critical section.
  8998. 'OMP_RETURN'
  8999. This does not represent any OpenMP directive, it is an artificial
  9000. marker to indicate the end of the body of an OpenMP. It is used by
  9001. the flow graph ('tree-cfg.c') and OpenMP region building code
  9002. ('omp-low.c').
  9003. 'OMP_CONTINUE'
  9004. Similarly, this instruction does not represent an OpenMP directive,
  9005. it is used by 'OMP_FOR' (and similar codes) as well as
  9006. 'OMP_SECTIONS' to mark the place where the code needs to loop to
  9007. the next iteration, or the next section, respectively.
  9008. In some cases, 'OMP_CONTINUE' is placed right before 'OMP_RETURN'.
  9009. But if there are cleanups that need to occur right after the
  9010. looping body, it will be emitted between 'OMP_CONTINUE' and
  9011. 'OMP_RETURN'.
  9012. 'OMP_ATOMIC'
  9013. Represents '#pragma omp atomic'.
  9014. Operand 0 is the address at which the atomic operation is to be
  9015. performed.
  9016. Operand 1 is the expression to evaluate. The gimplifier tries
  9017. three alternative code generation strategies. Whenever possible,
  9018. an atomic update built-in is used. If that fails, a
  9019. compare-and-swap loop is attempted. If that also fails, a regular
  9020. critical section around the expression is used.
  9021. 'OMP_CLAUSE'
  9022. Represents clauses associated with one of the 'OMP_' directives.
  9023. Clauses are represented by separate subcodes defined in 'tree.h'.
  9024. Clauses codes can be one of: 'OMP_CLAUSE_PRIVATE',
  9025. 'OMP_CLAUSE_SHARED', 'OMP_CLAUSE_FIRSTPRIVATE',
  9026. 'OMP_CLAUSE_LASTPRIVATE', 'OMP_CLAUSE_COPYIN',
  9027. 'OMP_CLAUSE_COPYPRIVATE', 'OMP_CLAUSE_IF',
  9028. 'OMP_CLAUSE_NUM_THREADS', 'OMP_CLAUSE_SCHEDULE',
  9029. 'OMP_CLAUSE_NOWAIT', 'OMP_CLAUSE_ORDERED', 'OMP_CLAUSE_DEFAULT',
  9030. 'OMP_CLAUSE_REDUCTION', 'OMP_CLAUSE_COLLAPSE', 'OMP_CLAUSE_UNTIED',
  9031. 'OMP_CLAUSE_FINAL', and 'OMP_CLAUSE_MERGEABLE'. Each code
  9032. represents the corresponding OpenMP clause.
  9033. Clauses associated with the same directive are chained together via
  9034. 'OMP_CLAUSE_CHAIN'. Those clauses that accept a list of variables
  9035. are restricted to exactly one, accessed with 'OMP_CLAUSE_VAR'.
  9036. Therefore, multiple variables under the same clause 'C' need to be
  9037. represented as multiple 'C' clauses chained together. This
  9038. facilitates adding new clauses during compilation.
  9039. 
  9040. File: gccint.info, Node: OpenACC, Prev: OpenMP, Up: Statements
  9041. 11.7.8 OpenACC
  9042. --------------
  9043. All the statements starting with 'OACC_' represent directives and
  9044. clauses used by the OpenACC API <https://www.openacc.org>.
  9045. 'OACC_CACHE'
  9046. Represents '#pragma acc cache (var ...)'.
  9047. 'OACC_DATA'
  9048. Represents '#pragma acc data [clause1 ... clauseN]'.
  9049. 'OACC_DECLARE'
  9050. Represents '#pragma acc declare [clause1 ... clauseN]'.
  9051. 'OACC_ENTER_DATA'
  9052. Represents '#pragma acc enter data [clause1 ... clauseN]'.
  9053. 'OACC_EXIT_DATA'
  9054. Represents '#pragma acc exit data [clause1 ... clauseN]'.
  9055. 'OACC_HOST_DATA'
  9056. Represents '#pragma acc host_data [clause1 ... clauseN]'.
  9057. 'OACC_KERNELS'
  9058. Represents '#pragma acc kernels [clause1 ... clauseN]'.
  9059. 'OACC_LOOP'
  9060. Represents '#pragma acc loop [clause1 ... clauseN]'.
  9061. See the description of the 'OMP_FOR' code.
  9062. 'OACC_PARALLEL'
  9063. Represents '#pragma acc parallel [clause1 ... clauseN]'.
  9064. 'OACC_UPDATE'
  9065. Represents '#pragma acc update [clause1 ... clauseN]'.
  9066. 
  9067. File: gccint.info, Node: Functions, Next: Language-dependent trees, Prev: Statements, Up: GENERIC
  9068. 11.8 Functions
  9069. ==============
  9070. A function is represented by a 'FUNCTION_DECL' node. It stores the
  9071. basic pieces of the function such as body, parameters, and return type
  9072. as well as information on the surrounding context, visibility, and
  9073. linkage.
  9074. * Menu:
  9075. * Function Basics:: Function names, body, and parameters.
  9076. * Function Properties:: Context, linkage, etc.
  9077. 
  9078. File: gccint.info, Node: Function Basics, Next: Function Properties, Up: Functions
  9079. 11.8.1 Function Basics
  9080. ----------------------
  9081. A function has four core parts: the name, the parameters, the result,
  9082. and the body. The following macros and functions access these parts of
  9083. a 'FUNCTION_DECL' as well as other basic features:
  9084. 'DECL_NAME'
  9085. This macro returns the unqualified name of the function, as an
  9086. 'IDENTIFIER_NODE'. For an instantiation of a function template,
  9087. the 'DECL_NAME' is the unqualified name of the template, not
  9088. something like 'f<int>'. The value of 'DECL_NAME' is undefined
  9089. when used on a constructor, destructor, overloaded operator, or
  9090. type-conversion operator, or any function that is implicitly
  9091. generated by the compiler. See below for macros that can be used
  9092. to distinguish these cases.
  9093. 'DECL_ASSEMBLER_NAME'
  9094. This macro returns the mangled name of the function, also an
  9095. 'IDENTIFIER_NODE'. This name does not contain leading underscores
  9096. on systems that prefix all identifiers with underscores. The
  9097. mangled name is computed in the same way on all platforms; if
  9098. special processing is required to deal with the object file format
  9099. used on a particular platform, it is the responsibility of the back
  9100. end to perform those modifications. (Of course, the back end
  9101. should not modify 'DECL_ASSEMBLER_NAME' itself.)
  9102. Using 'DECL_ASSEMBLER_NAME' will cause additional memory to be
  9103. allocated (for the mangled name of the entity) so it should be used
  9104. only when emitting assembly code. It should not be used within the
  9105. optimizers to determine whether or not two declarations are the
  9106. same, even though some of the existing optimizers do use it in that
  9107. way. These uses will be removed over time.
  9108. 'DECL_ARGUMENTS'
  9109. This macro returns the 'PARM_DECL' for the first argument to the
  9110. function. Subsequent 'PARM_DECL' nodes can be obtained by
  9111. following the 'TREE_CHAIN' links.
  9112. 'DECL_RESULT'
  9113. This macro returns the 'RESULT_DECL' for the function.
  9114. 'DECL_SAVED_TREE'
  9115. This macro returns the complete body of the function.
  9116. 'TREE_TYPE'
  9117. This macro returns the 'FUNCTION_TYPE' or 'METHOD_TYPE' for the
  9118. function.
  9119. 'DECL_INITIAL'
  9120. A function that has a definition in the current translation unit
  9121. will have a non-'NULL' 'DECL_INITIAL'. However, back ends should
  9122. not make use of the particular value given by 'DECL_INITIAL'.
  9123. It should contain a tree of 'BLOCK' nodes that mirrors the scopes
  9124. that variables are bound in the function. Each block contains a
  9125. list of decls declared in a basic block, a pointer to a chain of
  9126. blocks at the next lower scope level, then a pointer to the next
  9127. block at the same level and a backpointer to the parent 'BLOCK' or
  9128. 'FUNCTION_DECL'. So given a function as follows:
  9129. void foo()
  9130. {
  9131. int a;
  9132. {
  9133. int b;
  9134. }
  9135. int c;
  9136. }
  9137. you would get the following:
  9138. tree foo = FUNCTION_DECL;
  9139. tree decl_a = VAR_DECL;
  9140. tree decl_b = VAR_DECL;
  9141. tree decl_c = VAR_DECL;
  9142. tree block_a = BLOCK;
  9143. tree block_b = BLOCK;
  9144. tree block_c = BLOCK;
  9145. BLOCK_VARS(block_a) = decl_a;
  9146. BLOCK_SUBBLOCKS(block_a) = block_b;
  9147. BLOCK_CHAIN(block_a) = block_c;
  9148. BLOCK_SUPERCONTEXT(block_a) = foo;
  9149. BLOCK_VARS(block_b) = decl_b;
  9150. BLOCK_SUPERCONTEXT(block_b) = block_a;
  9151. BLOCK_VARS(block_c) = decl_c;
  9152. BLOCK_SUPERCONTEXT(block_c) = foo;
  9153. DECL_INITIAL(foo) = block_a;
  9154. 
  9155. File: gccint.info, Node: Function Properties, Prev: Function Basics, Up: Functions
  9156. 11.8.2 Function Properties
  9157. --------------------------
  9158. To determine the scope of a function, you can use the 'DECL_CONTEXT'
  9159. macro. This macro will return the class (either a 'RECORD_TYPE' or a
  9160. 'UNION_TYPE') or namespace (a 'NAMESPACE_DECL') of which the function is
  9161. a member. For a virtual function, this macro returns the class in which
  9162. the function was actually defined, not the base class in which the
  9163. virtual declaration occurred.
  9164. In C, the 'DECL_CONTEXT' for a function maybe another function. This
  9165. representation indicates that the GNU nested function extension is in
  9166. use. For details on the semantics of nested functions, see the GCC
  9167. Manual. The nested function can refer to local variables in its
  9168. containing function. Such references are not explicitly marked in the
  9169. tree structure; back ends must look at the 'DECL_CONTEXT' for the
  9170. referenced 'VAR_DECL'. If the 'DECL_CONTEXT' for the referenced
  9171. 'VAR_DECL' is not the same as the function currently being processed,
  9172. and neither 'DECL_EXTERNAL' nor 'TREE_STATIC' hold, then the reference
  9173. is to a local variable in a containing function, and the back end must
  9174. take appropriate action.
  9175. 'DECL_EXTERNAL'
  9176. This predicate holds if the function is undefined.
  9177. 'TREE_PUBLIC'
  9178. This predicate holds if the function has external linkage.
  9179. 'TREE_STATIC'
  9180. This predicate holds if the function has been defined.
  9181. 'TREE_THIS_VOLATILE'
  9182. This predicate holds if the function does not return normally.
  9183. 'TREE_READONLY'
  9184. This predicate holds if the function can only read its arguments.
  9185. 'DECL_PURE_P'
  9186. This predicate holds if the function can only read its arguments,
  9187. but may also read global memory.
  9188. 'DECL_VIRTUAL_P'
  9189. This predicate holds if the function is virtual.
  9190. 'DECL_ARTIFICIAL'
  9191. This macro holds if the function was implicitly generated by the
  9192. compiler, rather than explicitly declared. In addition to
  9193. implicitly generated class member functions, this macro holds for
  9194. the special functions created to implement static initialization
  9195. and destruction, to compute run-time type information, and so
  9196. forth.
  9197. 'DECL_FUNCTION_SPECIFIC_TARGET'
  9198. This macro returns a tree node that holds the target options that
  9199. are to be used to compile this particular function or 'NULL_TREE'
  9200. if the function is to be compiled with the target options specified
  9201. on the command line.
  9202. 'DECL_FUNCTION_SPECIFIC_OPTIMIZATION'
  9203. This macro returns a tree node that holds the optimization options
  9204. that are to be used to compile this particular function or
  9205. 'NULL_TREE' if the function is to be compiled with the optimization
  9206. options specified on the command line.
  9207. 
  9208. File: gccint.info, Node: Language-dependent trees, Next: C and C++ Trees, Prev: Functions, Up: GENERIC
  9209. 11.9 Language-dependent trees
  9210. =============================
  9211. Front ends may wish to keep some state associated with various GENERIC
  9212. trees while parsing. To support this, trees provide a set of flags that
  9213. may be used by the front end. They are accessed using
  9214. 'TREE_LANG_FLAG_n' where 'n' is currently 0 through 6.
  9215. If necessary, a front end can use some language-dependent tree codes in
  9216. its GENERIC representation, so long as it provides a hook for converting
  9217. them to GIMPLE and doesn't expect them to work with any (hypothetical)
  9218. optimizers that run before the conversion to GIMPLE. The intermediate
  9219. representation used while parsing C and C++ looks very little like
  9220. GENERIC, but the C and C++ gimplifier hooks are perfectly happy to take
  9221. it as input and spit out GIMPLE.
  9222. 
  9223. File: gccint.info, Node: C and C++ Trees, Next: Java Trees, Prev: Language-dependent trees, Up: GENERIC
  9224. 11.10 C and C++ Trees
  9225. =====================
  9226. This section documents the internal representation used by GCC to
  9227. represent C and C++ source programs. When presented with a C or C++
  9228. source program, GCC parses the program, performs semantic analysis
  9229. (including the generation of error messages), and then produces the
  9230. internal representation described here. This representation contains a
  9231. complete representation for the entire translation unit provided as
  9232. input to the front end. This representation is then typically processed
  9233. by a code-generator in order to produce machine code, but could also be
  9234. used in the creation of source browsers, intelligent editors, automatic
  9235. documentation generators, interpreters, and any other programs needing
  9236. the ability to process C or C++ code.
  9237. This section explains the internal representation. In particular, it
  9238. documents the internal representation for C and C++ source constructs,
  9239. and the macros, functions, and variables that can be used to access
  9240. these constructs. The C++ representation is largely a superset of the
  9241. representation used in the C front end. There is only one construct
  9242. used in C that does not appear in the C++ front end and that is the GNU
  9243. "nested function" extension. Many of the macros documented here do not
  9244. apply in C because the corresponding language constructs do not appear
  9245. in C.
  9246. The C and C++ front ends generate a mix of GENERIC trees and ones
  9247. specific to C and C++. These language-specific trees are higher-level
  9248. constructs than the ones in GENERIC to make the parser's job easier.
  9249. This section describes those trees that aren't part of GENERIC as well
  9250. as aspects of GENERIC trees that are treated in a language-specific
  9251. manner.
  9252. If you are developing a "back end", be it is a code-generator or some
  9253. other tool, that uses this representation, you may occasionally find
  9254. that you need to ask questions not easily answered by the functions and
  9255. macros available here. If that situation occurs, it is quite likely
  9256. that GCC already supports the functionality you desire, but that the
  9257. interface is simply not documented here. In that case, you should ask
  9258. the GCC maintainers (via mail to <gcc@gcc.gnu.org>) about documenting
  9259. the functionality you require. Similarly, if you find yourself writing
  9260. functions that do not deal directly with your back end, but instead
  9261. might be useful to other people using the GCC front end, you should
  9262. submit your patches for inclusion in GCC.
  9263. * Menu:
  9264. * Types for C++:: Fundamental and aggregate types.
  9265. * Namespaces:: Namespaces.
  9266. * Classes:: Classes.
  9267. * Functions for C++:: Overloading and accessors for C++.
  9268. * Statements for C++:: Statements specific to C and C++.
  9269. * C++ Expressions:: From 'typeid' to 'throw'.
  9270. 
  9271. File: gccint.info, Node: Types for C++, Next: Namespaces, Up: C and C++ Trees
  9272. 11.10.1 Types for C++
  9273. ---------------------
  9274. In C++, an array type is not qualified; rather the type of the array
  9275. elements is qualified. This situation is reflected in the intermediate
  9276. representation. The macros described here will always examine the
  9277. qualification of the underlying element type when applied to an array
  9278. type. (If the element type is itself an array, then the recursion
  9279. continues until a non-array type is found, and the qualification of this
  9280. type is examined.) So, for example, 'CP_TYPE_CONST_P' will hold of the
  9281. type 'const int ()[7]', denoting an array of seven 'int's.
  9282. The following functions and macros deal with cv-qualification of types:
  9283. 'cp_type_quals'
  9284. This function returns the set of type qualifiers applied to this
  9285. type. This value is 'TYPE_UNQUALIFIED' if no qualifiers have been
  9286. applied. The 'TYPE_QUAL_CONST' bit is set if the type is
  9287. 'const'-qualified. The 'TYPE_QUAL_VOLATILE' bit is set if the type
  9288. is 'volatile'-qualified. The 'TYPE_QUAL_RESTRICT' bit is set if
  9289. the type is 'restrict'-qualified.
  9290. 'CP_TYPE_CONST_P'
  9291. This macro holds if the type is 'const'-qualified.
  9292. 'CP_TYPE_VOLATILE_P'
  9293. This macro holds if the type is 'volatile'-qualified.
  9294. 'CP_TYPE_RESTRICT_P'
  9295. This macro holds if the type is 'restrict'-qualified.
  9296. 'CP_TYPE_CONST_NON_VOLATILE_P'
  9297. This predicate holds for a type that is 'const'-qualified, but
  9298. _not_ 'volatile'-qualified; other cv-qualifiers are ignored as
  9299. well: only the 'const'-ness is tested.
  9300. A few other macros and functions are usable with all types:
  9301. 'TYPE_SIZE'
  9302. The number of bits required to represent the type, represented as
  9303. an 'INTEGER_CST'. For an incomplete type, 'TYPE_SIZE' will be
  9304. 'NULL_TREE'.
  9305. 'TYPE_ALIGN'
  9306. The alignment of the type, in bits, represented as an 'int'.
  9307. 'TYPE_NAME'
  9308. This macro returns a declaration (in the form of a 'TYPE_DECL') for
  9309. the type. (Note this macro does _not_ return an 'IDENTIFIER_NODE',
  9310. as you might expect, given its name!) You can look at the
  9311. 'DECL_NAME' of the 'TYPE_DECL' to obtain the actual name of the
  9312. type. The 'TYPE_NAME' will be 'NULL_TREE' for a type that is not a
  9313. built-in type, the result of a typedef, or a named class type.
  9314. 'CP_INTEGRAL_TYPE'
  9315. This predicate holds if the type is an integral type. Notice that
  9316. in C++, enumerations are _not_ integral types.
  9317. 'ARITHMETIC_TYPE_P'
  9318. This predicate holds if the type is an integral type (in the C++
  9319. sense) or a floating point type.
  9320. 'CLASS_TYPE_P'
  9321. This predicate holds for a class-type.
  9322. 'TYPE_BUILT_IN'
  9323. This predicate holds for a built-in type.
  9324. 'TYPE_PTRDATAMEM_P'
  9325. This predicate holds if the type is a pointer to data member.
  9326. 'TYPE_PTR_P'
  9327. This predicate holds if the type is a pointer type, and the pointee
  9328. is not a data member.
  9329. 'TYPE_PTRFN_P'
  9330. This predicate holds for a pointer to function type.
  9331. 'TYPE_PTROB_P'
  9332. This predicate holds for a pointer to object type. Note however
  9333. that it does not hold for the generic pointer to object type 'void
  9334. *'. You may use 'TYPE_PTROBV_P' to test for a pointer to object
  9335. type as well as 'void *'.
  9336. The table below describes types specific to C and C++ as well as
  9337. language-dependent info about GENERIC types.
  9338. 'POINTER_TYPE'
  9339. Used to represent pointer types, and pointer to data member types.
  9340. If 'TREE_TYPE' is a pointer to data member type, then
  9341. 'TYPE_PTRDATAMEM_P' will hold. For a pointer to data member type
  9342. of the form 'T X::*', 'TYPE_PTRMEM_CLASS_TYPE' will be the type
  9343. 'X', while 'TYPE_PTRMEM_POINTED_TO_TYPE' will be the type 'T'.
  9344. 'RECORD_TYPE'
  9345. Used to represent 'struct' and 'class' types in C and C++. If
  9346. 'TYPE_PTRMEMFUNC_P' holds, then this type is a pointer-to-member
  9347. type. In that case, the 'TYPE_PTRMEMFUNC_FN_TYPE' is a
  9348. 'POINTER_TYPE' pointing to a 'METHOD_TYPE'. The 'METHOD_TYPE' is
  9349. the type of a function pointed to by the pointer-to-member
  9350. function. If 'TYPE_PTRMEMFUNC_P' does not hold, this type is a
  9351. class type. For more information, *note Classes::.
  9352. 'UNKNOWN_TYPE'
  9353. This node is used to represent a type the knowledge of which is
  9354. insufficient for a sound processing.
  9355. 'TYPENAME_TYPE'
  9356. Used to represent a construct of the form 'typename T::A'. The
  9357. 'TYPE_CONTEXT' is 'T'; the 'TYPE_NAME' is an 'IDENTIFIER_NODE' for
  9358. 'A'. If the type is specified via a template-id, then
  9359. 'TYPENAME_TYPE_FULLNAME' yields a 'TEMPLATE_ID_EXPR'. The
  9360. 'TREE_TYPE' is non-'NULL' if the node is implicitly generated in
  9361. support for the implicit typename extension; in which case the
  9362. 'TREE_TYPE' is a type node for the base-class.
  9363. 'TYPEOF_TYPE'
  9364. Used to represent the '__typeof__' extension. The 'TYPE_FIELDS' is
  9365. the expression the type of which is being represented.
  9366. 
  9367. File: gccint.info, Node: Namespaces, Next: Classes, Prev: Types for C++, Up: C and C++ Trees
  9368. 11.10.2 Namespaces
  9369. ------------------
  9370. The root of the entire intermediate representation is the variable
  9371. 'global_namespace'. This is the namespace specified with '::' in C++
  9372. source code. All other namespaces, types, variables, functions, and so
  9373. forth can be found starting with this namespace.
  9374. However, except for the fact that it is distinguished as the root of
  9375. the representation, the global namespace is no different from any other
  9376. namespace. Thus, in what follows, we describe namespaces generally,
  9377. rather than the global namespace in particular.
  9378. A namespace is represented by a 'NAMESPACE_DECL' node.
  9379. The following macros and functions can be used on a 'NAMESPACE_DECL':
  9380. 'DECL_NAME'
  9381. This macro is used to obtain the 'IDENTIFIER_NODE' corresponding to
  9382. the unqualified name of the name of the namespace (*note
  9383. Identifiers::). The name of the global namespace is '::', even
  9384. though in C++ the global namespace is unnamed. However, you should
  9385. use comparison with 'global_namespace', rather than 'DECL_NAME' to
  9386. determine whether or not a namespace is the global one. An unnamed
  9387. namespace will have a 'DECL_NAME' equal to
  9388. 'anonymous_namespace_name'. Within a single translation unit, all
  9389. unnamed namespaces will have the same name.
  9390. 'DECL_CONTEXT'
  9391. This macro returns the enclosing namespace. The 'DECL_CONTEXT' for
  9392. the 'global_namespace' is 'NULL_TREE'.
  9393. 'DECL_NAMESPACE_ALIAS'
  9394. If this declaration is for a namespace alias, then
  9395. 'DECL_NAMESPACE_ALIAS' is the namespace for which this one is an
  9396. alias.
  9397. Do not attempt to use 'cp_namespace_decls' for a namespace which is
  9398. an alias. Instead, follow 'DECL_NAMESPACE_ALIAS' links until you
  9399. reach an ordinary, non-alias, namespace, and call
  9400. 'cp_namespace_decls' there.
  9401. 'DECL_NAMESPACE_STD_P'
  9402. This predicate holds if the namespace is the special '::std'
  9403. namespace.
  9404. 'cp_namespace_decls'
  9405. This function will return the declarations contained in the
  9406. namespace, including types, overloaded functions, other namespaces,
  9407. and so forth. If there are no declarations, this function will
  9408. return 'NULL_TREE'. The declarations are connected through their
  9409. 'TREE_CHAIN' fields.
  9410. Although most entries on this list will be declarations,
  9411. 'TREE_LIST' nodes may also appear. In this case, the 'TREE_VALUE'
  9412. will be an 'OVERLOAD'. The value of the 'TREE_PURPOSE' is
  9413. unspecified; back ends should ignore this value. As with the other
  9414. kinds of declarations returned by 'cp_namespace_decls', the
  9415. 'TREE_CHAIN' will point to the next declaration in this list.
  9416. For more information on the kinds of declarations that can occur on
  9417. this list, *Note Declarations::. Some declarations will not appear
  9418. on this list. In particular, no 'FIELD_DECL', 'LABEL_DECL', or
  9419. 'PARM_DECL' nodes will appear here.
  9420. This function cannot be used with namespaces that have
  9421. 'DECL_NAMESPACE_ALIAS' set.
  9422. 
  9423. File: gccint.info, Node: Classes, Next: Functions for C++, Prev: Namespaces, Up: C and C++ Trees
  9424. 11.10.3 Classes
  9425. ---------------
  9426. Besides namespaces, the other high-level scoping construct in C++ is the
  9427. class. (Throughout this manual the term "class" is used to mean the
  9428. types referred to in the ANSI/ISO C++ Standard as classes; these include
  9429. types defined with the 'class', 'struct', and 'union' keywords.)
  9430. A class type is represented by either a 'RECORD_TYPE' or a
  9431. 'UNION_TYPE'. A class declared with the 'union' tag is represented by a
  9432. 'UNION_TYPE', while classes declared with either the 'struct' or the
  9433. 'class' tag are represented by 'RECORD_TYPE's. You can use the
  9434. 'CLASSTYPE_DECLARED_CLASS' macro to discern whether or not a particular
  9435. type is a 'class' as opposed to a 'struct'. This macro will be true
  9436. only for classes declared with the 'class' tag.
  9437. Almost all members are available on the 'TYPE_FIELDS' list. Given one
  9438. member, the next can be found by following the 'TREE_CHAIN'. You should
  9439. not depend in any way on the order in which fields appear on this list.
  9440. All nodes on this list will be 'DECL' nodes. A 'FIELD_DECL' is used to
  9441. represent a non-static data member, a 'VAR_DECL' is used to represent a
  9442. static data member, and a 'TYPE_DECL' is used to represent a type. Note
  9443. that the 'CONST_DECL' for an enumeration constant will appear on this
  9444. list, if the enumeration type was declared in the class. (Of course,
  9445. the 'TYPE_DECL' for the enumeration type will appear here as well.)
  9446. There are no entries for base classes on this list. In particular,
  9447. there is no 'FIELD_DECL' for the "base-class portion" of an object. If
  9448. a function member is overloaded, each of the overloaded functions
  9449. appears; no 'OVERLOAD' nodes appear on the 'TYPE_FIELDS' list.
  9450. Implicitly declared functions (including default constructors, copy
  9451. constructors, assignment operators, and destructors) will appear on this
  9452. list as well.
  9453. The 'TYPE_VFIELD' is a compiler-generated field used to point to
  9454. virtual function tables. It may or may not appear on the 'TYPE_FIELDS'
  9455. list. However, back ends should handle the 'TYPE_VFIELD' just like all
  9456. the entries on the 'TYPE_FIELDS' list.
  9457. Every class has an associated "binfo", which can be obtained with
  9458. 'TYPE_BINFO'. Binfos are used to represent base-classes. The binfo
  9459. given by 'TYPE_BINFO' is the degenerate case, whereby every class is
  9460. considered to be its own base-class. The base binfos for a particular
  9461. binfo are held in a vector, whose length is obtained with
  9462. 'BINFO_N_BASE_BINFOS'. The base binfos themselves are obtained with
  9463. 'BINFO_BASE_BINFO' and 'BINFO_BASE_ITERATE'. To add a new binfo, use
  9464. 'BINFO_BASE_APPEND'. The vector of base binfos can be obtained with
  9465. 'BINFO_BASE_BINFOS', but normally you do not need to use that. The
  9466. class type associated with a binfo is given by 'BINFO_TYPE'. It is not
  9467. always the case that 'BINFO_TYPE (TYPE_BINFO (x))', because of typedefs
  9468. and qualified types. Neither is it the case that 'TYPE_BINFO
  9469. (BINFO_TYPE (y))' is the same binfo as 'y'. The reason is that if 'y'
  9470. is a binfo representing a base-class 'B' of a derived class 'D', then
  9471. 'BINFO_TYPE (y)' will be 'B', and 'TYPE_BINFO (BINFO_TYPE (y))' will be
  9472. 'B' as its own base-class, rather than as a base-class of 'D'.
  9473. The access to a base type can be found with 'BINFO_BASE_ACCESS'. This
  9474. will produce 'access_public_node', 'access_private_node' or
  9475. 'access_protected_node'. If bases are always public,
  9476. 'BINFO_BASE_ACCESSES' may be 'NULL'.
  9477. 'BINFO_VIRTUAL_P' is used to specify whether the binfo is inherited
  9478. virtually or not. The other flags, 'BINFO_FLAG_0' to 'BINFO_FLAG_6',
  9479. can be used for language specific use.
  9480. The following macros can be used on a tree node representing a
  9481. class-type.
  9482. 'LOCAL_CLASS_P'
  9483. This predicate holds if the class is local class _i.e._ declared
  9484. inside a function body.
  9485. 'TYPE_POLYMORPHIC_P'
  9486. This predicate holds if the class has at least one virtual function
  9487. (declared or inherited).
  9488. 'TYPE_HAS_DEFAULT_CONSTRUCTOR'
  9489. This predicate holds whenever its argument represents a class-type
  9490. with default constructor.
  9491. 'CLASSTYPE_HAS_MUTABLE'
  9492. 'TYPE_HAS_MUTABLE_P'
  9493. These predicates hold for a class-type having a mutable data
  9494. member.
  9495. 'CLASSTYPE_NON_POD_P'
  9496. This predicate holds only for class-types that are not PODs.
  9497. 'TYPE_HAS_NEW_OPERATOR'
  9498. This predicate holds for a class-type that defines 'operator new'.
  9499. 'TYPE_HAS_ARRAY_NEW_OPERATOR'
  9500. This predicate holds for a class-type for which 'operator new[]' is
  9501. defined.
  9502. 'TYPE_OVERLOADS_CALL_EXPR'
  9503. This predicate holds for class-type for which the function call
  9504. 'operator()' is overloaded.
  9505. 'TYPE_OVERLOADS_ARRAY_REF'
  9506. This predicate holds for a class-type that overloads 'operator[]'
  9507. 'TYPE_OVERLOADS_ARROW'
  9508. This predicate holds for a class-type for which 'operator->' is
  9509. overloaded.
  9510. 
  9511. File: gccint.info, Node: Functions for C++, Next: Statements for C++, Prev: Classes, Up: C and C++ Trees
  9512. 11.10.4 Functions for C++
  9513. -------------------------
  9514. A function is represented by a 'FUNCTION_DECL' node. A set of
  9515. overloaded functions is sometimes represented by an 'OVERLOAD' node.
  9516. An 'OVERLOAD' node is not a declaration, so none of the 'DECL_' macros
  9517. should be used on an 'OVERLOAD'. An 'OVERLOAD' node is similar to a
  9518. 'TREE_LIST'. Use 'OVL_CURRENT' to get the function associated with an
  9519. 'OVERLOAD' node; use 'OVL_NEXT' to get the next 'OVERLOAD' node in the
  9520. list of overloaded functions. The macros 'OVL_CURRENT' and 'OVL_NEXT'
  9521. are actually polymorphic; you can use them to work with 'FUNCTION_DECL'
  9522. nodes as well as with overloads. In the case of a 'FUNCTION_DECL',
  9523. 'OVL_CURRENT' will always return the function itself, and 'OVL_NEXT'
  9524. will always be 'NULL_TREE'.
  9525. To determine the scope of a function, you can use the 'DECL_CONTEXT'
  9526. macro. This macro will return the class (either a 'RECORD_TYPE' or a
  9527. 'UNION_TYPE') or namespace (a 'NAMESPACE_DECL') of which the function is
  9528. a member. For a virtual function, this macro returns the class in which
  9529. the function was actually defined, not the base class in which the
  9530. virtual declaration occurred.
  9531. If a friend function is defined in a class scope, the
  9532. 'DECL_FRIEND_CONTEXT' macro can be used to determine the class in which
  9533. it was defined. For example, in
  9534. class C { friend void f() {} };
  9535. the 'DECL_CONTEXT' for 'f' will be the 'global_namespace', but the
  9536. 'DECL_FRIEND_CONTEXT' will be the 'RECORD_TYPE' for 'C'.
  9537. The following macros and functions can be used on a 'FUNCTION_DECL':
  9538. 'DECL_MAIN_P'
  9539. This predicate holds for a function that is the program entry point
  9540. '::code'.
  9541. 'DECL_LOCAL_FUNCTION_P'
  9542. This predicate holds if the function was declared at block scope,
  9543. even though it has a global scope.
  9544. 'DECL_ANTICIPATED'
  9545. This predicate holds if the function is a built-in function but its
  9546. prototype is not yet explicitly declared.
  9547. 'DECL_EXTERN_C_FUNCTION_P'
  9548. This predicate holds if the function is declared as an ''extern
  9549. "C"'' function.
  9550. 'DECL_LINKONCE_P'
  9551. This macro holds if multiple copies of this function may be emitted
  9552. in various translation units. It is the responsibility of the
  9553. linker to merge the various copies. Template instantiations are
  9554. the most common example of functions for which 'DECL_LINKONCE_P'
  9555. holds; G++ instantiates needed templates in all translation units
  9556. which require them, and then relies on the linker to remove
  9557. duplicate instantiations.
  9558. FIXME: This macro is not yet implemented.
  9559. 'DECL_FUNCTION_MEMBER_P'
  9560. This macro holds if the function is a member of a class, rather
  9561. than a member of a namespace.
  9562. 'DECL_STATIC_FUNCTION_P'
  9563. This predicate holds if the function a static member function.
  9564. 'DECL_NONSTATIC_MEMBER_FUNCTION_P'
  9565. This macro holds for a non-static member function.
  9566. 'DECL_CONST_MEMFUNC_P'
  9567. This predicate holds for a 'const'-member function.
  9568. 'DECL_VOLATILE_MEMFUNC_P'
  9569. This predicate holds for a 'volatile'-member function.
  9570. 'DECL_CONSTRUCTOR_P'
  9571. This macro holds if the function is a constructor.
  9572. 'DECL_NONCONVERTING_P'
  9573. This predicate holds if the constructor is a non-converting
  9574. constructor.
  9575. 'DECL_COMPLETE_CONSTRUCTOR_P'
  9576. This predicate holds for a function which is a constructor for an
  9577. object of a complete type.
  9578. 'DECL_BASE_CONSTRUCTOR_P'
  9579. This predicate holds for a function which is a constructor for a
  9580. base class sub-object.
  9581. 'DECL_COPY_CONSTRUCTOR_P'
  9582. This predicate holds for a function which is a copy-constructor.
  9583. 'DECL_DESTRUCTOR_P'
  9584. This macro holds if the function is a destructor.
  9585. 'DECL_COMPLETE_DESTRUCTOR_P'
  9586. This predicate holds if the function is the destructor for an
  9587. object a complete type.
  9588. 'DECL_OVERLOADED_OPERATOR_P'
  9589. This macro holds if the function is an overloaded operator.
  9590. 'DECL_CONV_FN_P'
  9591. This macro holds if the function is a type-conversion operator.
  9592. 'DECL_GLOBAL_CTOR_P'
  9593. This predicate holds if the function is a file-scope initialization
  9594. function.
  9595. 'DECL_GLOBAL_DTOR_P'
  9596. This predicate holds if the function is a file-scope finalization
  9597. function.
  9598. 'DECL_THUNK_P'
  9599. This predicate holds if the function is a thunk.
  9600. These functions represent stub code that adjusts the 'this' pointer
  9601. and then jumps to another function. When the jumped-to function
  9602. returns, control is transferred directly to the caller, without
  9603. returning to the thunk. The first parameter to the thunk is always
  9604. the 'this' pointer; the thunk should add 'THUNK_DELTA' to this
  9605. value. (The 'THUNK_DELTA' is an 'int', not an 'INTEGER_CST'.)
  9606. Then, if 'THUNK_VCALL_OFFSET' (an 'INTEGER_CST') is nonzero the
  9607. adjusted 'this' pointer must be adjusted again. The complete
  9608. calculation is given by the following pseudo-code:
  9609. this += THUNK_DELTA
  9610. if (THUNK_VCALL_OFFSET)
  9611. this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET]
  9612. Finally, the thunk should jump to the location given by
  9613. 'DECL_INITIAL'; this will always be an expression for the address
  9614. of a function.
  9615. 'DECL_NON_THUNK_FUNCTION_P'
  9616. This predicate holds if the function is _not_ a thunk function.
  9617. 'GLOBAL_INIT_PRIORITY'
  9618. If either 'DECL_GLOBAL_CTOR_P' or 'DECL_GLOBAL_DTOR_P' holds, then
  9619. this gives the initialization priority for the function. The
  9620. linker will arrange that all functions for which
  9621. 'DECL_GLOBAL_CTOR_P' holds are run in increasing order of priority
  9622. before 'main' is called. When the program exits, all functions for
  9623. which 'DECL_GLOBAL_DTOR_P' holds are run in the reverse order.
  9624. 'TYPE_RAISES_EXCEPTIONS'
  9625. This macro returns the list of exceptions that a (member-)function
  9626. can raise. The returned list, if non 'NULL', is comprised of nodes
  9627. whose 'TREE_VALUE' represents a type.
  9628. 'TYPE_NOTHROW_P'
  9629. This predicate holds when the exception-specification of its
  9630. arguments is of the form ''()''.
  9631. 'DECL_ARRAY_DELETE_OPERATOR_P'
  9632. This predicate holds if the function an overloaded 'operator
  9633. delete[]'.
  9634. 
  9635. File: gccint.info, Node: Statements for C++, Next: C++ Expressions, Prev: Functions for C++, Up: C and C++ Trees
  9636. 11.10.5 Statements for C++
  9637. --------------------------
  9638. A function that has a definition in the current translation unit will
  9639. have a non-'NULL' 'DECL_INITIAL'. However, back ends should not make
  9640. use of the particular value given by 'DECL_INITIAL'.
  9641. The 'DECL_SAVED_TREE' macro will give the complete body of the
  9642. function.
  9643. 11.10.5.1 Statements
  9644. ....................
  9645. There are tree nodes corresponding to all of the source-level statement
  9646. constructs, used within the C and C++ frontends. These are enumerated
  9647. here, together with a list of the various macros that can be used to
  9648. obtain information about them. There are a few macros that can be used
  9649. with all statements:
  9650. 'STMT_IS_FULL_EXPR_P'
  9651. In C++, statements normally constitute "full expressions";
  9652. temporaries created during a statement are destroyed when the
  9653. statement is complete. However, G++ sometimes represents
  9654. expressions by statements; these statements will not have
  9655. 'STMT_IS_FULL_EXPR_P' set. Temporaries created during such
  9656. statements should be destroyed when the innermost enclosing
  9657. statement with 'STMT_IS_FULL_EXPR_P' set is exited.
  9658. Here is the list of the various statement nodes, and the macros used to
  9659. access them. This documentation describes the use of these nodes in
  9660. non-template functions (including instantiations of template functions).
  9661. In template functions, the same nodes are used, but sometimes in
  9662. slightly different ways.
  9663. Many of the statements have substatements. For example, a 'while' loop
  9664. will have a body, which is itself a statement. If the substatement is
  9665. 'NULL_TREE', it is considered equivalent to a statement consisting of a
  9666. single ';', i.e., an expression statement in which the expression has
  9667. been omitted. A substatement may in fact be a list of statements,
  9668. connected via their 'TREE_CHAIN's. So, you should always process the
  9669. statement tree by looping over substatements, like this:
  9670. void process_stmt (stmt)
  9671. tree stmt;
  9672. {
  9673. while (stmt)
  9674. {
  9675. switch (TREE_CODE (stmt))
  9676. {
  9677. case IF_STMT:
  9678. process_stmt (THEN_CLAUSE (stmt));
  9679. /* More processing here. */
  9680. break;
  9681. ...
  9682. }
  9683. stmt = TREE_CHAIN (stmt);
  9684. }
  9685. }
  9686. In other words, while the 'then' clause of an 'if' statement in C++ can
  9687. be only one statement (although that one statement may be a compound
  9688. statement), the intermediate representation will sometimes use several
  9689. statements chained together.
  9690. 'BREAK_STMT'
  9691. Used to represent a 'break' statement. There are no additional
  9692. fields.
  9693. 'CLEANUP_STMT'
  9694. Used to represent an action that should take place upon exit from
  9695. the enclosing scope. Typically, these actions are calls to
  9696. destructors for local objects, but back ends cannot rely on this
  9697. fact. If these nodes are in fact representing such destructors,
  9698. 'CLEANUP_DECL' will be the 'VAR_DECL' destroyed. Otherwise,
  9699. 'CLEANUP_DECL' will be 'NULL_TREE'. In any case, the
  9700. 'CLEANUP_EXPR' is the expression to execute. The cleanups executed
  9701. on exit from a scope should be run in the reverse order of the
  9702. order in which the associated 'CLEANUP_STMT's were encountered.
  9703. 'CONTINUE_STMT'
  9704. Used to represent a 'continue' statement. There are no additional
  9705. fields.
  9706. 'CTOR_STMT'
  9707. Used to mark the beginning (if 'CTOR_BEGIN_P' holds) or end (if
  9708. 'CTOR_END_P' holds of the main body of a constructor. See also
  9709. 'SUBOBJECT' for more information on how to use these nodes.
  9710. 'DO_STMT'
  9711. Used to represent a 'do' loop. The body of the loop is given by
  9712. 'DO_BODY' while the termination condition for the loop is given by
  9713. 'DO_COND'. The condition for a 'do'-statement is always an
  9714. expression.
  9715. 'EMPTY_CLASS_EXPR'
  9716. Used to represent a temporary object of a class with no data whose
  9717. address is never taken. (All such objects are interchangeable.)
  9718. The 'TREE_TYPE' represents the type of the object.
  9719. 'EXPR_STMT'
  9720. Used to represent an expression statement. Use 'EXPR_STMT_EXPR' to
  9721. obtain the expression.
  9722. 'FOR_STMT'
  9723. Used to represent a 'for' statement. The 'FOR_INIT_STMT' is the
  9724. initialization statement for the loop. The 'FOR_COND' is the
  9725. termination condition. The 'FOR_EXPR' is the expression executed
  9726. right before the 'FOR_COND' on each loop iteration; often, this
  9727. expression increments a counter. The body of the loop is given by
  9728. 'FOR_BODY'. Note that 'FOR_INIT_STMT' and 'FOR_BODY' return
  9729. statements, while 'FOR_COND' and 'FOR_EXPR' return expressions.
  9730. 'HANDLER'
  9731. Used to represent a C++ 'catch' block. The 'HANDLER_TYPE' is the
  9732. type of exception that will be caught by this handler; it is equal
  9733. (by pointer equality) to 'NULL' if this handler is for all types.
  9734. 'HANDLER_PARMS' is the 'DECL_STMT' for the catch parameter, and
  9735. 'HANDLER_BODY' is the code for the block itself.
  9736. 'IF_STMT'
  9737. Used to represent an 'if' statement. The 'IF_COND' is the
  9738. expression.
  9739. If the condition is a 'TREE_LIST', then the 'TREE_PURPOSE' is a
  9740. statement (usually a 'DECL_STMT'). Each time the condition is
  9741. evaluated, the statement should be executed. Then, the
  9742. 'TREE_VALUE' should be used as the conditional expression itself.
  9743. This representation is used to handle C++ code like this:
  9744. C++ distinguishes between this and 'COND_EXPR' for handling
  9745. templates.
  9746. if (int i = 7) ...
  9747. where there is a new local variable (or variables) declared within
  9748. the condition.
  9749. The 'THEN_CLAUSE' represents the statement given by the 'then'
  9750. condition, while the 'ELSE_CLAUSE' represents the statement given
  9751. by the 'else' condition.
  9752. 'SUBOBJECT'
  9753. In a constructor, these nodes are used to mark the point at which a
  9754. subobject of 'this' is fully constructed. If, after this point, an
  9755. exception is thrown before a 'CTOR_STMT' with 'CTOR_END_P' set is
  9756. encountered, the 'SUBOBJECT_CLEANUP' must be executed. The
  9757. cleanups must be executed in the reverse order in which they
  9758. appear.
  9759. 'SWITCH_STMT'
  9760. Used to represent a 'switch' statement. The 'SWITCH_STMT_COND' is
  9761. the expression on which the switch is occurring. See the
  9762. documentation for an 'IF_STMT' for more information on the
  9763. representation used for the condition. The 'SWITCH_STMT_BODY' is
  9764. the body of the switch statement. The 'SWITCH_STMT_TYPE' is the
  9765. original type of switch expression as given in the source, before
  9766. any compiler conversions.
  9767. 'TRY_BLOCK'
  9768. Used to represent a 'try' block. The body of the try block is
  9769. given by 'TRY_STMTS'. Each of the catch blocks is a 'HANDLER'
  9770. node. The first handler is given by 'TRY_HANDLERS'. Subsequent
  9771. handlers are obtained by following the 'TREE_CHAIN' link from one
  9772. handler to the next. The body of the handler is given by
  9773. 'HANDLER_BODY'.
  9774. If 'CLEANUP_P' holds of the 'TRY_BLOCK', then the 'TRY_HANDLERS'
  9775. will not be a 'HANDLER' node. Instead, it will be an expression
  9776. that should be executed if an exception is thrown in the try block.
  9777. It must rethrow the exception after executing that code. And, if
  9778. an exception is thrown while the expression is executing,
  9779. 'terminate' must be called.
  9780. 'USING_STMT'
  9781. Used to represent a 'using' directive. The namespace is given by
  9782. 'USING_STMT_NAMESPACE', which will be a NAMESPACE_DECL. This node
  9783. is needed inside template functions, to implement using directives
  9784. during instantiation.
  9785. 'WHILE_STMT'
  9786. Used to represent a 'while' loop. The 'WHILE_COND' is the
  9787. termination condition for the loop. See the documentation for an
  9788. 'IF_STMT' for more information on the representation used for the
  9789. condition.
  9790. The 'WHILE_BODY' is the body of the loop.
  9791. 
  9792. File: gccint.info, Node: C++ Expressions, Prev: Statements for C++, Up: C and C++ Trees
  9793. 11.10.6 C++ Expressions
  9794. -----------------------
  9795. This section describes expressions specific to the C and C++ front ends.
  9796. 'TYPEID_EXPR'
  9797. Used to represent a 'typeid' expression.
  9798. 'NEW_EXPR'
  9799. 'VEC_NEW_EXPR'
  9800. Used to represent a call to 'new' and 'new[]' respectively.
  9801. 'DELETE_EXPR'
  9802. 'VEC_DELETE_EXPR'
  9803. Used to represent a call to 'delete' and 'delete[]' respectively.
  9804. 'MEMBER_REF'
  9805. Represents a reference to a member of a class.
  9806. 'THROW_EXPR'
  9807. Represents an instance of 'throw' in the program. Operand 0, which
  9808. is the expression to throw, may be 'NULL_TREE'.
  9809. 'AGGR_INIT_EXPR'
  9810. An 'AGGR_INIT_EXPR' represents the initialization as the return
  9811. value of a function call, or as the result of a constructor. An
  9812. 'AGGR_INIT_EXPR' will only appear as a full-expression, or as the
  9813. second operand of a 'TARGET_EXPR'. 'AGGR_INIT_EXPR's have a
  9814. representation similar to that of 'CALL_EXPR's. You can use the
  9815. 'AGGR_INIT_EXPR_FN' and 'AGGR_INIT_EXPR_ARG' macros to access the
  9816. function to call and the arguments to pass.
  9817. If 'AGGR_INIT_VIA_CTOR_P' holds of the 'AGGR_INIT_EXPR', then the
  9818. initialization is via a constructor call. The address of the
  9819. 'AGGR_INIT_EXPR_SLOT' operand, which is always a 'VAR_DECL', is
  9820. taken, and this value replaces the first argument in the argument
  9821. list.
  9822. In either case, the expression is void.
  9823. 
  9824. File: gccint.info, Node: Java Trees, Prev: C and C++ Trees, Up: GENERIC
  9825. 11.11 Java Trees
  9826. ================
  9827. 
  9828. File: gccint.info, Node: GIMPLE, Next: Tree SSA, Prev: GENERIC, Up: Top
  9829. 12 GIMPLE
  9830. *********
  9831. GIMPLE is a three-address representation derived from GENERIC by
  9832. breaking down GENERIC expressions into tuples of no more than 3 operands
  9833. (with some exceptions like function calls). GIMPLE was heavily
  9834. influenced by the SIMPLE IL used by the McCAT compiler project at McGill
  9835. University, though we have made some different choices. For one thing,
  9836. SIMPLE doesn't support 'goto'.
  9837. Temporaries are introduced to hold intermediate values needed to
  9838. compute complex expressions. Additionally, all the control structures
  9839. used in GENERIC are lowered into conditional jumps, lexical scopes are
  9840. removed and exception regions are converted into an on the side
  9841. exception region tree.
  9842. The compiler pass which converts GENERIC into GIMPLE is referred to as
  9843. the 'gimplifier'. The gimplifier works recursively, generating GIMPLE
  9844. tuples out of the original GENERIC expressions.
  9845. One of the early implementation strategies used for the GIMPLE
  9846. representation was to use the same internal data structures used by
  9847. front ends to represent parse trees. This simplified implementation
  9848. because we could leverage existing functionality and interfaces.
  9849. However, GIMPLE is a much more restrictive representation than abstract
  9850. syntax trees (AST), therefore it does not require the full structural
  9851. complexity provided by the main tree data structure.
  9852. The GENERIC representation of a function is stored in the
  9853. 'DECL_SAVED_TREE' field of the associated 'FUNCTION_DECL' tree node. It
  9854. is converted to GIMPLE by a call to 'gimplify_function_tree'.
  9855. If a front end wants to include language-specific tree codes in the
  9856. tree representation which it provides to the back end, it must provide a
  9857. definition of 'LANG_HOOKS_GIMPLIFY_EXPR' which knows how to convert the
  9858. front end trees to GIMPLE. Usually such a hook will involve much of the
  9859. same code for expanding front end trees to RTL. This function can
  9860. return fully lowered GIMPLE, or it can return GENERIC trees and let the
  9861. main gimplifier lower them the rest of the way; this is often simpler.
  9862. GIMPLE that is not fully lowered is known as "High GIMPLE" and consists
  9863. of the IL before the pass 'pass_lower_cf'. High GIMPLE contains some
  9864. container statements like lexical scopes (represented by 'GIMPLE_BIND')
  9865. and nested expressions (e.g., 'GIMPLE_TRY'), while "Low GIMPLE" exposes
  9866. all of the implicit jumps for control and exception expressions directly
  9867. in the IL and EH region trees.
  9868. The C and C++ front ends currently convert directly from front end
  9869. trees to GIMPLE, and hand that off to the back end rather than first
  9870. converting to GENERIC. Their gimplifier hooks know about all the
  9871. '_STMT' nodes and how to convert them to GENERIC forms. There was some
  9872. work done on a genericization pass which would run first, but the
  9873. existence of 'STMT_EXPR' meant that in order to convert all of the C
  9874. statements into GENERIC equivalents would involve walking the entire
  9875. tree anyway, so it was simpler to lower all the way. This might change
  9876. in the future if someone writes an optimization pass which would work
  9877. better with higher-level trees, but currently the optimizers all expect
  9878. GIMPLE.
  9879. You can request to dump a C-like representation of the GIMPLE form with
  9880. the flag '-fdump-tree-gimple'.
  9881. * Menu:
  9882. * Tuple representation::
  9883. * Class hierarchy of GIMPLE statements::
  9884. * GIMPLE instruction set::
  9885. * GIMPLE Exception Handling::
  9886. * Temporaries::
  9887. * Operands::
  9888. * Manipulating GIMPLE statements::
  9889. * Tuple specific accessors::
  9890. * GIMPLE sequences::
  9891. * Sequence iterators::
  9892. * Adding a new GIMPLE statement code::
  9893. * Statement and operand traversals::
  9894. 
  9895. File: gccint.info, Node: Tuple representation, Next: Class hierarchy of GIMPLE statements, Up: GIMPLE
  9896. 12.1 Tuple representation
  9897. =========================
  9898. GIMPLE instructions are tuples of variable size divided in two groups: a
  9899. header describing the instruction and its locations, and a variable
  9900. length body with all the operands. Tuples are organized into a
  9901. hierarchy with 3 main classes of tuples.
  9902. 12.1.1 'gimple' (gsbase)
  9903. ------------------------
  9904. This is the root of the hierarchy, it holds basic information needed by
  9905. most GIMPLE statements. There are some fields that may not be relevant
  9906. to every GIMPLE statement, but those were moved into the base structure
  9907. to take advantage of holes left by other fields (thus making the
  9908. structure more compact). The structure takes 4 words (32 bytes) on 64
  9909. bit hosts:
  9910. Field Size (bits)
  9911. 'code' 8
  9912. 'subcode' 16
  9913. 'no_warning' 1
  9914. 'visited' 1
  9915. 'nontemporal_move' 1
  9916. 'plf' 2
  9917. 'modified' 1
  9918. 'has_volatile_ops' 1
  9919. 'references_memory_p' 1
  9920. 'uid' 32
  9921. 'location' 32
  9922. 'num_ops' 32
  9923. 'bb' 64
  9924. 'block' 63
  9925. Total size 32 bytes
  9926. * 'code' Main identifier for a GIMPLE instruction.
  9927. * 'subcode' Used to distinguish different variants of the same basic
  9928. instruction or provide flags applicable to a given code. The
  9929. 'subcode' flags field has different uses depending on the code of
  9930. the instruction, but mostly it distinguishes instructions of the
  9931. same family. The most prominent use of this field is in
  9932. assignments, where subcode indicates the operation done on the RHS
  9933. of the assignment. For example, a = b + c is encoded as
  9934. 'GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>'.
  9935. * 'no_warning' Bitflag to indicate whether a warning has already been
  9936. issued on this statement.
  9937. * 'visited' General purpose "visited" marker. Set and cleared by
  9938. each pass when needed.
  9939. * 'nontemporal_move' Bitflag used in assignments that represent
  9940. non-temporal moves. Although this bitflag is only used in
  9941. assignments, it was moved into the base to take advantage of the
  9942. bit holes left by the previous fields.
  9943. * 'plf' Pass Local Flags. This 2-bit mask can be used as general
  9944. purpose markers by any pass. Passes are responsible for clearing
  9945. and setting these two flags accordingly.
  9946. * 'modified' Bitflag to indicate whether the statement has been
  9947. modified. Used mainly by the operand scanner to determine when to
  9948. re-scan a statement for operands.
  9949. * 'has_volatile_ops' Bitflag to indicate whether this statement
  9950. contains operands that have been marked volatile.
  9951. * 'references_memory_p' Bitflag to indicate whether this statement
  9952. contains memory references (i.e., its operands are either global
  9953. variables, or pointer dereferences or anything that must reside in
  9954. memory).
  9955. * 'uid' This is an unsigned integer used by passes that want to
  9956. assign IDs to every statement. These IDs must be assigned and used
  9957. by each pass.
  9958. * 'location' This is a 'location_t' identifier to specify source code
  9959. location for this statement. It is inherited from the front end.
  9960. * 'num_ops' Number of operands that this statement has. This
  9961. specifies the size of the operand vector embedded in the tuple.
  9962. Only used in some tuples, but it is declared in the base tuple to
  9963. take advantage of the 32-bit hole left by the previous fields.
  9964. * 'bb' Basic block holding the instruction.
  9965. * 'block' Lexical block holding this statement. Also used for debug
  9966. information generation.
  9967. 12.1.2 'gimple_statement_with_ops'
  9968. ----------------------------------
  9969. This tuple is actually split in two: 'gimple_statement_with_ops_base'
  9970. and 'gimple_statement_with_ops'. This is needed to accommodate the way
  9971. the operand vector is allocated. The operand vector is defined to be an
  9972. array of 1 element. So, to allocate a dynamic number of operands, the
  9973. memory allocator ('gimple_alloc') simply allocates enough memory to hold
  9974. the structure itself plus 'N - 1' operands which run "off the end" of
  9975. the structure. For example, to allocate space for a tuple with 3
  9976. operands, 'gimple_alloc' reserves 'sizeof (struct
  9977. gimple_statement_with_ops) + 2 * sizeof (tree)' bytes.
  9978. On the other hand, several fields in this tuple need to be shared with
  9979. the 'gimple_statement_with_memory_ops' tuple. So, these common fields
  9980. are placed in 'gimple_statement_with_ops_base' which is then inherited
  9981. from the other two tuples.
  9982. 'gsbase' 256
  9983. 'def_ops' 64
  9984. 'use_ops' 64
  9985. 'op' 'num_ops' * 64
  9986. Total 48 + 8 * 'num_ops' bytes
  9987. size
  9988. * 'gsbase' Inherited from 'struct gimple'.
  9989. * 'def_ops' Array of pointers into the operand array indicating all
  9990. the slots that contain a variable written-to by the statement.
  9991. This array is also used for immediate use chaining. Note that it
  9992. would be possible to not rely on this array, but the changes
  9993. required to implement this are pretty invasive.
  9994. * 'use_ops' Similar to 'def_ops' but for variables read by the
  9995. statement.
  9996. * 'op' Array of trees with 'num_ops' slots.
  9997. 12.1.3 'gimple_statement_with_memory_ops'
  9998. -----------------------------------------
  9999. This tuple is essentially identical to 'gimple_statement_with_ops',
  10000. except that it contains 4 additional fields to hold vectors related
  10001. memory stores and loads. Similar to the previous case, the structure is
  10002. split in two to accommodate for the operand vector
  10003. ('gimple_statement_with_memory_ops_base' and
  10004. 'gimple_statement_with_memory_ops').
  10005. Field Size (bits)
  10006. 'gsbase' 256
  10007. 'def_ops' 64
  10008. 'use_ops' 64
  10009. 'vdef_ops' 64
  10010. 'vuse_ops' 64
  10011. 'stores' 64
  10012. 'loads' 64
  10013. 'op' 'num_ops' * 64
  10014. Total size 80 + 8 * 'num_ops' bytes
  10015. * 'vdef_ops' Similar to 'def_ops' but for 'VDEF' operators. There is
  10016. one entry per memory symbol written by this statement. This is
  10017. used to maintain the memory SSA use-def and def-def chains.
  10018. * 'vuse_ops' Similar to 'use_ops' but for 'VUSE' operators. There is
  10019. one entry per memory symbol loaded by this statement. This is used
  10020. to maintain the memory SSA use-def chains.
  10021. * 'stores' Bitset with all the UIDs for the symbols written-to by the
  10022. statement. This is different than 'vdef_ops' in that all the
  10023. affected symbols are mentioned in this set. If memory partitioning
  10024. is enabled, the 'vdef_ops' vector will refer to memory partitions.
  10025. Furthermore, no SSA information is stored in this set.
  10026. * 'loads' Similar to 'stores', but for memory loads. (Note that
  10027. there is some amount of redundancy here, it should be possible to
  10028. reduce memory utilization further by removing these sets).
  10029. All the other tuples are defined in terms of these three basic ones.
  10030. Each tuple will add some fields.
  10031. 
  10032. File: gccint.info, Node: Class hierarchy of GIMPLE statements, Next: GIMPLE instruction set, Prev: Tuple representation, Up: GIMPLE
  10033. 12.2 Class hierarchy of GIMPLE statements
  10034. =========================================
  10035. The following diagram shows the C++ inheritance hierarchy of statement
  10036. kinds, along with their relationships to 'GSS_' values (layouts) and
  10037. 'GIMPLE_' values (codes):
  10038. gimple
  10039. | layout: GSS_BASE
  10040. | used for 4 codes: GIMPLE_ERROR_MARK
  10041. | GIMPLE_NOP
  10042. | GIMPLE_OMP_SECTIONS_SWITCH
  10043. | GIMPLE_PREDICT
  10044. |
  10045. + gimple_statement_with_ops_base
  10046. | | (no GSS layout)
  10047. | |
  10048. | + gimple_statement_with_ops
  10049. | | | layout: GSS_WITH_OPS
  10050. | | |
  10051. | | + gcond
  10052. | | | code: GIMPLE_COND
  10053. | | |
  10054. | | + gdebug
  10055. | | | code: GIMPLE_DEBUG
  10056. | | |
  10057. | | + ggoto
  10058. | | | code: GIMPLE_GOTO
  10059. | | |
  10060. | | + glabel
  10061. | | | code: GIMPLE_LABEL
  10062. | | |
  10063. | | + gswitch
  10064. | | code: GIMPLE_SWITCH
  10065. | |
  10066. | + gimple_statement_with_memory_ops_base
  10067. | | layout: GSS_WITH_MEM_OPS_BASE
  10068. | |
  10069. | + gimple_statement_with_memory_ops
  10070. | | | layout: GSS_WITH_MEM_OPS
  10071. | | |
  10072. | | + gassign
  10073. | | | code GIMPLE_ASSIGN
  10074. | | |
  10075. | | + greturn
  10076. | | code GIMPLE_RETURN
  10077. | |
  10078. | + gcall
  10079. | | layout: GSS_CALL, code: GIMPLE_CALL
  10080. | |
  10081. | + gasm
  10082. | | layout: GSS_ASM, code: GIMPLE_ASM
  10083. | |
  10084. | + gtransaction
  10085. | layout: GSS_TRANSACTION, code: GIMPLE_TRANSACTION
  10086. |
  10087. + gimple_statement_omp
  10088. | | layout: GSS_OMP. Used for code GIMPLE_OMP_SECTION
  10089. | |
  10090. | + gomp_critical
  10091. | | layout: GSS_OMP_CRITICAL, code: GIMPLE_OMP_CRITICAL
  10092. | |
  10093. | + gomp_for
  10094. | | layout: GSS_OMP_FOR, code: GIMPLE_OMP_FOR
  10095. | |
  10096. | + gomp_parallel_layout
  10097. | | | layout: GSS_OMP_PARALLEL_LAYOUT
  10098. | | |
  10099. | | + gimple_statement_omp_taskreg
  10100. | | | |
  10101. | | | + gomp_parallel
  10102. | | | | code: GIMPLE_OMP_PARALLEL
  10103. | | | |
  10104. | | | + gomp_task
  10105. | | | code: GIMPLE_OMP_TASK
  10106. | | |
  10107. | | + gimple_statement_omp_target
  10108. | | code: GIMPLE_OMP_TARGET
  10109. | |
  10110. | + gomp_sections
  10111. | | layout: GSS_OMP_SECTIONS, code: GIMPLE_OMP_SECTIONS
  10112. | |
  10113. | + gimple_statement_omp_single_layout
  10114. | | layout: GSS_OMP_SINGLE_LAYOUT
  10115. | |
  10116. | + gomp_single
  10117. | | code: GIMPLE_OMP_SINGLE
  10118. | |
  10119. | + gomp_teams
  10120. | code: GIMPLE_OMP_TEAMS
  10121. |
  10122. + gbind
  10123. | layout: GSS_BIND, code: GIMPLE_BIND
  10124. |
  10125. + gcatch
  10126. | layout: GSS_CATCH, code: GIMPLE_CATCH
  10127. |
  10128. + geh_filter
  10129. | layout: GSS_EH_FILTER, code: GIMPLE_EH_FILTER
  10130. |
  10131. + geh_else
  10132. | layout: GSS_EH_ELSE, code: GIMPLE_EH_ELSE
  10133. |
  10134. + geh_mnt
  10135. | layout: GSS_EH_MNT, code: GIMPLE_EH_MUST_NOT_THROW
  10136. |
  10137. + gphi
  10138. | layout: GSS_PHI, code: GIMPLE_PHI
  10139. |
  10140. + gimple_statement_eh_ctrl
  10141. | | layout: GSS_EH_CTRL
  10142. | |
  10143. | + gresx
  10144. | | code: GIMPLE_RESX
  10145. | |
  10146. | + geh_dispatch
  10147. | code: GIMPLE_EH_DISPATCH
  10148. |
  10149. + gtry
  10150. | layout: GSS_TRY, code: GIMPLE_TRY
  10151. |
  10152. + gimple_statement_wce
  10153. | layout: GSS_WCE, code: GIMPLE_WITH_CLEANUP_EXPR
  10154. |
  10155. + gomp_continue
  10156. | layout: GSS_OMP_CONTINUE, code: GIMPLE_OMP_CONTINUE
  10157. |
  10158. + gomp_atomic_load
  10159. | layout: GSS_OMP_ATOMIC_LOAD, code: GIMPLE_OMP_ATOMIC_LOAD
  10160. |
  10161. + gimple_statement_omp_atomic_store_layout
  10162. | layout: GSS_OMP_ATOMIC_STORE_LAYOUT,
  10163. | code: GIMPLE_OMP_ATOMIC_STORE
  10164. |
  10165. + gomp_atomic_store
  10166. | code: GIMPLE_OMP_ATOMIC_STORE
  10167. |
  10168. + gomp_return
  10169. code: GIMPLE_OMP_RETURN
  10170. 
  10171. File: gccint.info, Node: GIMPLE instruction set, Next: GIMPLE Exception Handling, Prev: Class hierarchy of GIMPLE statements, Up: GIMPLE
  10172. 12.3 GIMPLE instruction set
  10173. ===========================
  10174. The following table briefly describes the GIMPLE instruction set.
  10175. Instruction High GIMPLE Low GIMPLE
  10176. 'GIMPLE_ASM' x x
  10177. 'GIMPLE_ASSIGN' x x
  10178. 'GIMPLE_BIND' x
  10179. 'GIMPLE_CALL' x x
  10180. 'GIMPLE_CATCH' x
  10181. 'GIMPLE_COND' x x
  10182. 'GIMPLE_DEBUG' x x
  10183. 'GIMPLE_EH_FILTER' x
  10184. 'GIMPLE_GOTO' x x
  10185. 'GIMPLE_LABEL' x x
  10186. 'GIMPLE_NOP' x x
  10187. 'GIMPLE_OMP_ATOMIC_LOAD' x x
  10188. 'GIMPLE_OMP_ATOMIC_STORE' x x
  10189. 'GIMPLE_OMP_CONTINUE' x x
  10190. 'GIMPLE_OMP_CRITICAL' x x
  10191. 'GIMPLE_OMP_FOR' x x
  10192. 'GIMPLE_OMP_MASTER' x x
  10193. 'GIMPLE_OMP_ORDERED' x x
  10194. 'GIMPLE_OMP_PARALLEL' x x
  10195. 'GIMPLE_OMP_RETURN' x x
  10196. 'GIMPLE_OMP_SECTION' x x
  10197. 'GIMPLE_OMP_SECTIONS' x x
  10198. 'GIMPLE_OMP_SECTIONS_SWITCH' x x
  10199. 'GIMPLE_OMP_SINGLE' x x
  10200. 'GIMPLE_PHI' x
  10201. 'GIMPLE_RESX' x
  10202. 'GIMPLE_RETURN' x x
  10203. 'GIMPLE_SWITCH' x x
  10204. 'GIMPLE_TRY' x
  10205. 
  10206. File: gccint.info, Node: GIMPLE Exception Handling, Next: Temporaries, Prev: GIMPLE instruction set, Up: GIMPLE
  10207. 12.4 Exception Handling
  10208. =======================
  10209. Other exception handling constructs are represented using
  10210. 'GIMPLE_TRY_CATCH'. 'GIMPLE_TRY_CATCH' has two operands. The first
  10211. operand is a sequence of statements to execute. If executing these
  10212. statements does not throw an exception, then the second operand is
  10213. ignored. Otherwise, if an exception is thrown, then the second operand
  10214. of the 'GIMPLE_TRY_CATCH' is checked. The second operand may have the
  10215. following forms:
  10216. 1. A sequence of statements to execute. When an exception occurs,
  10217. these statements are executed, and then the exception is rethrown.
  10218. 2. A sequence of 'GIMPLE_CATCH' statements. Each 'GIMPLE_CATCH' has a
  10219. list of applicable exception types and handler code. If the thrown
  10220. exception matches one of the caught types, the associated handler
  10221. code is executed. If the handler code falls off the bottom,
  10222. execution continues after the original 'GIMPLE_TRY_CATCH'.
  10223. 3. A 'GIMPLE_EH_FILTER' statement. This has a list of permitted
  10224. exception types, and code to handle a match failure. If the thrown
  10225. exception does not match one of the allowed types, the associated
  10226. match failure code is executed. If the thrown exception does
  10227. match, it continues unwinding the stack looking for the next
  10228. handler.
  10229. Currently throwing an exception is not directly represented in GIMPLE,
  10230. since it is implemented by calling a function. At some point in the
  10231. future we will want to add some way to express that the call will throw
  10232. an exception of a known type.
  10233. Just before running the optimizers, the compiler lowers the high-level
  10234. EH constructs above into a set of 'goto's, magic labels, and EH regions.
  10235. Continuing to unwind at the end of a cleanup is represented with a
  10236. 'GIMPLE_RESX'.
  10237. 
  10238. File: gccint.info, Node: Temporaries, Next: Operands, Prev: GIMPLE Exception Handling, Up: GIMPLE
  10239. 12.5 Temporaries
  10240. ================
  10241. When gimplification encounters a subexpression that is too complex, it
  10242. creates a new temporary variable to hold the value of the subexpression,
  10243. and adds a new statement to initialize it before the current statement.
  10244. These special temporaries are known as 'expression temporaries', and are
  10245. allocated using 'get_formal_tmp_var'. The compiler tries to always
  10246. evaluate identical expressions into the same temporary, to simplify
  10247. elimination of redundant calculations.
  10248. We can only use expression temporaries when we know that it will not be
  10249. reevaluated before its value is used, and that it will not be otherwise
  10250. modified(1). Other temporaries can be allocated using
  10251. 'get_initialized_tmp_var' or 'create_tmp_var'.
  10252. Currently, an expression like 'a = b + 5' is not reduced any further.
  10253. We tried converting it to something like
  10254. T1 = b + 5;
  10255. a = T1;
  10256. but this bloated the representation for minimal benefit. However, a
  10257. variable which must live in memory cannot appear in an expression; its
  10258. value is explicitly loaded into a temporary first. Similarly, storing
  10259. the value of an expression to a memory variable goes through a
  10260. temporary.
  10261. ---------- Footnotes ----------
  10262. (1) These restrictions are derived from those in Morgan 4.8.
  10263. 
  10264. File: gccint.info, Node: Operands, Next: Manipulating GIMPLE statements, Prev: Temporaries, Up: GIMPLE
  10265. 12.6 Operands
  10266. =============
  10267. In general, expressions in GIMPLE consist of an operation and the
  10268. appropriate number of simple operands; these operands must either be a
  10269. GIMPLE rvalue ('is_gimple_val'), i.e. a constant or a register variable.
  10270. More complex operands are factored out into temporaries, so that
  10271. a = b + c + d
  10272. becomes
  10273. T1 = b + c;
  10274. a = T1 + d;
  10275. The same rule holds for arguments to a 'GIMPLE_CALL'.
  10276. The target of an assignment is usually a variable, but can also be a
  10277. 'MEM_REF' or a compound lvalue as described below.
  10278. * Menu:
  10279. * Compound Expressions::
  10280. * Compound Lvalues::
  10281. * Conditional Expressions::
  10282. * Logical Operators::
  10283. 
  10284. File: gccint.info, Node: Compound Expressions, Next: Compound Lvalues, Up: Operands
  10285. 12.6.1 Compound Expressions
  10286. ---------------------------
  10287. The left-hand side of a C comma expression is simply moved into a
  10288. separate statement.
  10289. 
  10290. File: gccint.info, Node: Compound Lvalues, Next: Conditional Expressions, Prev: Compound Expressions, Up: Operands
  10291. 12.6.2 Compound Lvalues
  10292. -----------------------
  10293. Currently compound lvalues involving array and structure field
  10294. references are not broken down; an expression like 'a.b[2] = 42' is not
  10295. reduced any further (though complex array subscripts are). This
  10296. restriction is a workaround for limitations in later optimizers; if we
  10297. were to convert this to
  10298. T1 = &a.b;
  10299. T1[2] = 42;
  10300. alias analysis would not remember that the reference to 'T1[2]' came by
  10301. way of 'a.b', so it would think that the assignment could alias another
  10302. member of 'a'; this broke 'struct-alias-1.c'. Future optimizer
  10303. improvements may make this limitation unnecessary.
  10304. 
  10305. File: gccint.info, Node: Conditional Expressions, Next: Logical Operators, Prev: Compound Lvalues, Up: Operands
  10306. 12.6.3 Conditional Expressions
  10307. ------------------------------
  10308. A C '?:' expression is converted into an 'if' statement with each branch
  10309. assigning to the same temporary. So,
  10310. a = b ? c : d;
  10311. becomes
  10312. if (b == 1)
  10313. T1 = c;
  10314. else
  10315. T1 = d;
  10316. a = T1;
  10317. The GIMPLE level if-conversion pass re-introduces '?:' expression, if
  10318. appropriate. It is used to vectorize loops with conditions using vector
  10319. conditional operations.
  10320. Note that in GIMPLE, 'if' statements are represented using
  10321. 'GIMPLE_COND', as described below.
  10322. 
  10323. File: gccint.info, Node: Logical Operators, Prev: Conditional Expressions, Up: Operands
  10324. 12.6.4 Logical Operators
  10325. ------------------------
  10326. Except when they appear in the condition operand of a 'GIMPLE_COND',
  10327. logical 'and' and 'or' operators are simplified as follows: 'a = b && c'
  10328. becomes
  10329. T1 = (bool)b;
  10330. if (T1 == true)
  10331. T1 = (bool)c;
  10332. a = T1;
  10333. Note that 'T1' in this example cannot be an expression temporary,
  10334. because it has two different assignments.
  10335. 12.6.5 Manipulating operands
  10336. ----------------------------
  10337. All gimple operands are of type 'tree'. But only certain types of trees
  10338. are allowed to be used as operand tuples. Basic validation is
  10339. controlled by the function 'get_gimple_rhs_class', which given a tree
  10340. code, returns an 'enum' with the following values of type 'enum
  10341. gimple_rhs_class'
  10342. * 'GIMPLE_INVALID_RHS' The tree cannot be used as a GIMPLE operand.
  10343. * 'GIMPLE_TERNARY_RHS' The tree is a valid GIMPLE ternary operation.
  10344. * 'GIMPLE_BINARY_RHS' The tree is a valid GIMPLE binary operation.
  10345. * 'GIMPLE_UNARY_RHS' The tree is a valid GIMPLE unary operation.
  10346. * 'GIMPLE_SINGLE_RHS' The tree is a single object, that cannot be
  10347. split into simpler operands (for instance, 'SSA_NAME', 'VAR_DECL',
  10348. 'COMPONENT_REF', etc).
  10349. This operand class also acts as an escape hatch for tree nodes that
  10350. may be flattened out into the operand vector, but would need more
  10351. than two slots on the RHS. For instance, a 'COND_EXPR' expression
  10352. of the form '(a op b) ? x : y' could be flattened out on the
  10353. operand vector using 4 slots, but it would also require additional
  10354. processing to distinguish 'c = a op b' from 'c = a op b ? x : y'.
  10355. Something similar occurs with 'ASSERT_EXPR'. In time, these
  10356. special case tree expressions should be flattened into the operand
  10357. vector.
  10358. For tree nodes in the categories 'GIMPLE_TERNARY_RHS',
  10359. 'GIMPLE_BINARY_RHS' and 'GIMPLE_UNARY_RHS', they cannot be stored inside
  10360. tuples directly. They first need to be flattened and separated into
  10361. individual components. For instance, given the GENERIC expression
  10362. a = b + c
  10363. its tree representation is:
  10364. MODIFY_EXPR <VAR_DECL <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
  10365. In this case, the GIMPLE form for this statement is logically identical
  10366. to its GENERIC form but in GIMPLE, the 'PLUS_EXPR' on the RHS of the
  10367. assignment is not represented as a tree, instead the two operands are
  10368. taken out of the 'PLUS_EXPR' sub-tree and flattened into the GIMPLE
  10369. tuple as follows:
  10370. GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
  10371. 12.6.6 Operand vector allocation
  10372. --------------------------------
  10373. The operand vector is stored at the bottom of the three tuple structures
  10374. that accept operands. This means, that depending on the code of a given
  10375. statement, its operand vector will be at different offsets from the base
  10376. of the structure. To access tuple operands use the following accessors
  10377. -- GIMPLE function: unsigned gimple_num_ops (gimple g)
  10378. Returns the number of operands in statement G.
  10379. -- GIMPLE function: tree gimple_op (gimple g, unsigned i)
  10380. Returns operand 'I' from statement 'G'.
  10381. -- GIMPLE function: tree * gimple_ops (gimple g)
  10382. Returns a pointer into the operand vector for statement 'G'. This
  10383. is computed using an internal table called 'gimple_ops_offset_'[].
  10384. This table is indexed by the gimple code of 'G'.
  10385. When the compiler is built, this table is filled-in using the sizes
  10386. of the structures used by each statement code defined in
  10387. gimple.def. Since the operand vector is at the bottom of the
  10388. structure, for a gimple code 'C' the offset is computed as sizeof
  10389. (struct-of 'C') - sizeof (tree).
  10390. This mechanism adds one memory indirection to every access when
  10391. using 'gimple_op'(), if this becomes a bottleneck, a pass can
  10392. choose to memoize the result from 'gimple_ops'() and use that to
  10393. access the operands.
  10394. 12.6.7 Operand validation
  10395. -------------------------
  10396. When adding a new operand to a gimple statement, the operand will be
  10397. validated according to what each tuple accepts in its operand vector.
  10398. These predicates are called by the 'gimple_NAME_set_...()'. Each tuple
  10399. will use one of the following predicates (Note, this list is not
  10400. exhaustive):
  10401. -- GIMPLE function: bool is_gimple_val (tree t)
  10402. Returns true if t is a "GIMPLE value", which are all the
  10403. non-addressable stack variables (variables for which
  10404. 'is_gimple_reg' returns true) and constants (expressions for which
  10405. 'is_gimple_min_invariant' returns true).
  10406. -- GIMPLE function: bool is_gimple_addressable (tree t)
  10407. Returns true if t is a symbol or memory reference whose address can
  10408. be taken.
  10409. -- GIMPLE function: bool is_gimple_asm_val (tree t)
  10410. Similar to 'is_gimple_val' but it also accepts hard registers.
  10411. -- GIMPLE function: bool is_gimple_call_addr (tree t)
  10412. Return true if t is a valid expression to use as the function
  10413. called by a 'GIMPLE_CALL'.
  10414. -- GIMPLE function: bool is_gimple_mem_ref_addr (tree t)
  10415. Return true if t is a valid expression to use as first operand of a
  10416. 'MEM_REF' expression.
  10417. -- GIMPLE function: bool is_gimple_constant (tree t)
  10418. Return true if t is a valid gimple constant.
  10419. -- GIMPLE function: bool is_gimple_min_invariant (tree t)
  10420. Return true if t is a valid minimal invariant. This is different
  10421. from constants, in that the specific value of t may not be known at
  10422. compile time, but it is known that it doesn't change (e.g., the
  10423. address of a function local variable).
  10424. -- GIMPLE function: bool is_gimple_ip_invariant (tree t)
  10425. Return true if t is an interprocedural invariant. This means that
  10426. t is a valid invariant in all functions (e.g. it can be an address
  10427. of a global variable but not of a local one).
  10428. -- GIMPLE function: bool is_gimple_ip_invariant_address (tree t)
  10429. Return true if t is an 'ADDR_EXPR' that does not change once the
  10430. program is running (and which is valid in all functions).
  10431. 12.6.8 Statement validation
  10432. ---------------------------
  10433. -- GIMPLE function: bool is_gimple_assign (gimple g)
  10434. Return true if the code of g is 'GIMPLE_ASSIGN'.
  10435. -- GIMPLE function: bool is_gimple_call (gimple g)
  10436. Return true if the code of g is 'GIMPLE_CALL'.
  10437. -- GIMPLE function: bool is_gimple_debug (gimple g)
  10438. Return true if the code of g is 'GIMPLE_DEBUG'.
  10439. -- GIMPLE function: bool gimple_assign_cast_p (const_gimple g)
  10440. Return true if g is a 'GIMPLE_ASSIGN' that performs a type cast
  10441. operation.
  10442. -- GIMPLE function: bool gimple_debug_bind_p (gimple g)
  10443. Return true if g is a 'GIMPLE_DEBUG' that binds the value of an
  10444. expression to a variable.
  10445. -- GIMPLE function: bool is_gimple_omp (gimple g)
  10446. Return true if g is any of the OpenMP codes.
  10447. -- GIMPLE function: gimple_debug_begin_stmt_p (gimple g)
  10448. Return true if g is a 'GIMPLE_DEBUG' that marks the beginning of a
  10449. source statement.
  10450. -- GIMPLE function: gimple_debug_inline_entry_p (gimple g)
  10451. Return true if g is a 'GIMPLE_DEBUG' that marks the entry point of
  10452. an inlined function.
  10453. -- GIMPLE function: gimple_debug_nonbind_marker_p (gimple g)
  10454. Return true if g is a 'GIMPLE_DEBUG' that marks a program location,
  10455. without any variable binding.
  10456. 
  10457. File: gccint.info, Node: Manipulating GIMPLE statements, Next: Tuple specific accessors, Prev: Operands, Up: GIMPLE
  10458. 12.7 Manipulating GIMPLE statements
  10459. ===================================
  10460. This section documents all the functions available to handle each of the
  10461. GIMPLE instructions.
  10462. 12.7.1 Common accessors
  10463. -----------------------
  10464. The following are common accessors for gimple statements.
  10465. -- GIMPLE function: enum gimple_code gimple_code (gimple g)
  10466. Return the code for statement 'G'.
  10467. -- GIMPLE function: basic_block gimple_bb (gimple g)
  10468. Return the basic block to which statement 'G' belongs to.
  10469. -- GIMPLE function: tree gimple_block (gimple g)
  10470. Return the lexical scope block holding statement 'G'.
  10471. -- GIMPLE function: tree gimple_expr_type (gimple stmt)
  10472. Return the type of the main expression computed by 'STMT'. Return
  10473. 'void_type_node' if 'STMT' computes nothing. This will only return
  10474. something meaningful for 'GIMPLE_ASSIGN', 'GIMPLE_COND' and
  10475. 'GIMPLE_CALL'. For all other tuple codes, it will return
  10476. 'void_type_node'.
  10477. -- GIMPLE function: enum tree_code gimple_expr_code (gimple stmt)
  10478. Return the tree code for the expression computed by 'STMT'. This
  10479. is only meaningful for 'GIMPLE_CALL', 'GIMPLE_ASSIGN' and
  10480. 'GIMPLE_COND'. If 'STMT' is 'GIMPLE_CALL', it will return
  10481. 'CALL_EXPR'. For 'GIMPLE_COND', it returns the code of the
  10482. comparison predicate. For 'GIMPLE_ASSIGN' it returns the code of
  10483. the operation performed by the 'RHS' of the assignment.
  10484. -- GIMPLE function: void gimple_set_block (gimple g, tree block)
  10485. Set the lexical scope block of 'G' to 'BLOCK'.
  10486. -- GIMPLE function: location_t gimple_locus (gimple g)
  10487. Return locus information for statement 'G'.
  10488. -- GIMPLE function: void gimple_set_locus (gimple g, location_t locus)
  10489. Set locus information for statement 'G'.
  10490. -- GIMPLE function: bool gimple_locus_empty_p (gimple g)
  10491. Return true if 'G' does not have locus information.
  10492. -- GIMPLE function: bool gimple_no_warning_p (gimple stmt)
  10493. Return true if no warnings should be emitted for statement 'STMT'.
  10494. -- GIMPLE function: void gimple_set_visited (gimple stmt, bool
  10495. visited_p)
  10496. Set the visited status on statement 'STMT' to 'VISITED_P'.
  10497. -- GIMPLE function: bool gimple_visited_p (gimple stmt)
  10498. Return the visited status on statement 'STMT'.
  10499. -- GIMPLE function: void gimple_set_plf (gimple stmt, enum plf_mask
  10500. plf, bool val_p)
  10501. Set pass local flag 'PLF' on statement 'STMT' to 'VAL_P'.
  10502. -- GIMPLE function: unsigned int gimple_plf (gimple stmt, enum plf_mask
  10503. plf)
  10504. Return the value of pass local flag 'PLF' on statement 'STMT'.
  10505. -- GIMPLE function: bool gimple_has_ops (gimple g)
  10506. Return true if statement 'G' has register or memory operands.
  10507. -- GIMPLE function: bool gimple_has_mem_ops (gimple g)
  10508. Return true if statement 'G' has memory operands.
  10509. -- GIMPLE function: unsigned gimple_num_ops (gimple g)
  10510. Return the number of operands for statement 'G'.
  10511. -- GIMPLE function: tree * gimple_ops (gimple g)
  10512. Return the array of operands for statement 'G'.
  10513. -- GIMPLE function: tree gimple_op (gimple g, unsigned i)
  10514. Return operand 'I' for statement 'G'.
  10515. -- GIMPLE function: tree * gimple_op_ptr (gimple g, unsigned i)
  10516. Return a pointer to operand 'I' for statement 'G'.
  10517. -- GIMPLE function: void gimple_set_op (gimple g, unsigned i, tree op)
  10518. Set operand 'I' of statement 'G' to 'OP'.
  10519. -- GIMPLE function: bitmap gimple_addresses_taken (gimple stmt)
  10520. Return the set of symbols that have had their address taken by
  10521. 'STMT'.
  10522. -- GIMPLE function: struct def_optype_d * gimple_def_ops (gimple g)
  10523. Return the set of 'DEF' operands for statement 'G'.
  10524. -- GIMPLE function: void gimple_set_def_ops (gimple g, struct
  10525. def_optype_d *def)
  10526. Set 'DEF' to be the set of 'DEF' operands for statement 'G'.
  10527. -- GIMPLE function: struct use_optype_d * gimple_use_ops (gimple g)
  10528. Return the set of 'USE' operands for statement 'G'.
  10529. -- GIMPLE function: void gimple_set_use_ops (gimple g, struct
  10530. use_optype_d *use)
  10531. Set 'USE' to be the set of 'USE' operands for statement 'G'.
  10532. -- GIMPLE function: struct voptype_d * gimple_vuse_ops (gimple g)
  10533. Return the set of 'VUSE' operands for statement 'G'.
  10534. -- GIMPLE function: void gimple_set_vuse_ops (gimple g, struct
  10535. voptype_d *ops)
  10536. Set 'OPS' to be the set of 'VUSE' operands for statement 'G'.
  10537. -- GIMPLE function: struct voptype_d * gimple_vdef_ops (gimple g)
  10538. Return the set of 'VDEF' operands for statement 'G'.
  10539. -- GIMPLE function: void gimple_set_vdef_ops (gimple g, struct
  10540. voptype_d *ops)
  10541. Set 'OPS' to be the set of 'VDEF' operands for statement 'G'.
  10542. -- GIMPLE function: bitmap gimple_loaded_syms (gimple g)
  10543. Return the set of symbols loaded by statement 'G'. Each element of
  10544. the set is the 'DECL_UID' of the corresponding symbol.
  10545. -- GIMPLE function: bitmap gimple_stored_syms (gimple g)
  10546. Return the set of symbols stored by statement 'G'. Each element of
  10547. the set is the 'DECL_UID' of the corresponding symbol.
  10548. -- GIMPLE function: bool gimple_modified_p (gimple g)
  10549. Return true if statement 'G' has operands and the modified field
  10550. has been set.
  10551. -- GIMPLE function: bool gimple_has_volatile_ops (gimple stmt)
  10552. Return true if statement 'STMT' contains volatile operands.
  10553. -- GIMPLE function: void gimple_set_has_volatile_ops (gimple stmt, bool
  10554. volatilep)
  10555. Return true if statement 'STMT' contains volatile operands.
  10556. -- GIMPLE function: void update_stmt (gimple s)
  10557. Mark statement 'S' as modified, and update it.
  10558. -- GIMPLE function: void update_stmt_if_modified (gimple s)
  10559. Update statement 'S' if it has been marked modified.
  10560. -- GIMPLE function: gimple gimple_copy (gimple stmt)
  10561. Return a deep copy of statement 'STMT'.
  10562. 
  10563. File: gccint.info, Node: Tuple specific accessors, Next: GIMPLE sequences, Prev: Manipulating GIMPLE statements, Up: GIMPLE
  10564. 12.8 Tuple specific accessors
  10565. =============================
  10566. * Menu:
  10567. * GIMPLE_ASM::
  10568. * GIMPLE_ASSIGN::
  10569. * GIMPLE_BIND::
  10570. * GIMPLE_CALL::
  10571. * GIMPLE_CATCH::
  10572. * GIMPLE_COND::
  10573. * GIMPLE_DEBUG::
  10574. * GIMPLE_EH_FILTER::
  10575. * GIMPLE_LABEL::
  10576. * GIMPLE_GOTO::
  10577. * GIMPLE_NOP::
  10578. * GIMPLE_OMP_ATOMIC_LOAD::
  10579. * GIMPLE_OMP_ATOMIC_STORE::
  10580. * GIMPLE_OMP_CONTINUE::
  10581. * GIMPLE_OMP_CRITICAL::
  10582. * GIMPLE_OMP_FOR::
  10583. * GIMPLE_OMP_MASTER::
  10584. * GIMPLE_OMP_ORDERED::
  10585. * GIMPLE_OMP_PARALLEL::
  10586. * GIMPLE_OMP_RETURN::
  10587. * GIMPLE_OMP_SECTION::
  10588. * GIMPLE_OMP_SECTIONS::
  10589. * GIMPLE_OMP_SINGLE::
  10590. * GIMPLE_PHI::
  10591. * GIMPLE_RESX::
  10592. * GIMPLE_RETURN::
  10593. * GIMPLE_SWITCH::
  10594. * GIMPLE_TRY::
  10595. * GIMPLE_WITH_CLEANUP_EXPR::
  10596. 
  10597. File: gccint.info, Node: GIMPLE_ASM, Next: GIMPLE_ASSIGN, Up: Tuple specific accessors
  10598. 12.8.1 'GIMPLE_ASM'
  10599. -------------------
  10600. -- GIMPLE function: gasm *gimple_build_asm_vec ( const char *string,
  10601. vec<tree, va_gc> *inputs, vec<tree, va_gc> *outputs, vec<tree,
  10602. va_gc> *clobbers, vec<tree, va_gc> *labels)
  10603. Build a 'GIMPLE_ASM' statement. This statement is used for
  10604. building in-line assembly constructs. 'STRING' is the assembly
  10605. code. 'INPUTS', 'OUTPUTS', 'CLOBBERS' and 'LABELS' are the inputs,
  10606. outputs, clobbered registers and labels.
  10607. -- GIMPLE function: unsigned gimple_asm_ninputs (const gasm *g)
  10608. Return the number of input operands for 'GIMPLE_ASM' 'G'.
  10609. -- GIMPLE function: unsigned gimple_asm_noutputs (const gasm *g)
  10610. Return the number of output operands for 'GIMPLE_ASM' 'G'.
  10611. -- GIMPLE function: unsigned gimple_asm_nclobbers (const gasm *g)
  10612. Return the number of clobber operands for 'GIMPLE_ASM' 'G'.
  10613. -- GIMPLE function: tree gimple_asm_input_op (const gasm *g, unsigned
  10614. index)
  10615. Return input operand 'INDEX' of 'GIMPLE_ASM' 'G'.
  10616. -- GIMPLE function: void gimple_asm_set_input_op (gasm *g, unsigned
  10617. index, tree in_op)
  10618. Set 'IN_OP' to be input operand 'INDEX' in 'GIMPLE_ASM' 'G'.
  10619. -- GIMPLE function: tree gimple_asm_output_op (const gasm *g, unsigned
  10620. index)
  10621. Return output operand 'INDEX' of 'GIMPLE_ASM' 'G'.
  10622. -- GIMPLE function: void gimple_asm_set_output_op (gasm *g, unsigned
  10623. index, tree out_op)
  10624. Set 'OUT_OP' to be output operand 'INDEX' in 'GIMPLE_ASM' 'G'.
  10625. -- GIMPLE function: tree gimple_asm_clobber_op (const gasm *g, unsigned
  10626. index)
  10627. Return clobber operand 'INDEX' of 'GIMPLE_ASM' 'G'.
  10628. -- GIMPLE function: void gimple_asm_set_clobber_op (gasm *g, unsigned
  10629. index, tree clobber_op)
  10630. Set 'CLOBBER_OP' to be clobber operand 'INDEX' in 'GIMPLE_ASM' 'G'.
  10631. -- GIMPLE function: const char * gimple_asm_string (const gasm *g)
  10632. Return the string representing the assembly instruction in
  10633. 'GIMPLE_ASM' 'G'.
  10634. -- GIMPLE function: bool gimple_asm_volatile_p (const gasm *g)
  10635. Return true if 'G' is an asm statement marked volatile.
  10636. -- GIMPLE function: void gimple_asm_set_volatile (gasm *g, bool
  10637. volatile_p)
  10638. Mark asm statement 'G' as volatile or non-volatile based on
  10639. 'VOLATILE_P'.
  10640. 
  10641. File: gccint.info, Node: GIMPLE_ASSIGN, Next: GIMPLE_BIND, Prev: GIMPLE_ASM, Up: Tuple specific accessors
  10642. 12.8.2 'GIMPLE_ASSIGN'
  10643. ----------------------
  10644. -- GIMPLE function: gassign *gimple_build_assign (tree lhs, tree rhs)
  10645. Build a 'GIMPLE_ASSIGN' statement. The left-hand side is an lvalue
  10646. passed in lhs. The right-hand side can be either a unary or binary
  10647. tree expression. The expression tree rhs will be flattened and its
  10648. operands assigned to the corresponding operand slots in the new
  10649. statement. This function is useful when you already have a tree
  10650. expression that you want to convert into a tuple. However, try to
  10651. avoid building expression trees for the sole purpose of calling
  10652. this function. If you already have the operands in separate trees,
  10653. it is better to use 'gimple_build_assign' with 'enum tree_code'
  10654. argument and separate arguments for each operand.
  10655. -- GIMPLE function: gassign *gimple_build_assign (tree lhs, enum
  10656. tree_code subcode, tree op1, tree op2, tree op3)
  10657. This function is similar to two operand 'gimple_build_assign', but
  10658. is used to build a 'GIMPLE_ASSIGN' statement when the operands of
  10659. the right-hand side of the assignment are already split into
  10660. different operands.
  10661. The left-hand side is an lvalue passed in lhs. Subcode is the
  10662. 'tree_code' for the right-hand side of the assignment. Op1, op2
  10663. and op3 are the operands.
  10664. -- GIMPLE function: gassign *gimple_build_assign (tree lhs, enum
  10665. tree_code subcode, tree op1, tree op2)
  10666. Like the above 5 operand 'gimple_build_assign', but with the last
  10667. argument 'NULL' - this overload should not be used for
  10668. 'GIMPLE_TERNARY_RHS' assignments.
  10669. -- GIMPLE function: gassign *gimple_build_assign (tree lhs, enum
  10670. tree_code subcode, tree op1)
  10671. Like the above 4 operand 'gimple_build_assign', but with the last
  10672. argument 'NULL' - this overload should be used only for
  10673. 'GIMPLE_UNARY_RHS' and 'GIMPLE_SINGLE_RHS' assignments.
  10674. -- GIMPLE function: gimple gimplify_assign (tree dst, tree src,
  10675. gimple_seq *seq_p)
  10676. Build a new 'GIMPLE_ASSIGN' tuple and append it to the end of
  10677. '*SEQ_P'.
  10678. 'DST'/'SRC' are the destination and source respectively. You can pass
  10679. ungimplified trees in 'DST' or 'SRC', in which case they will be
  10680. converted to a gimple operand if necessary.
  10681. This function returns the newly created 'GIMPLE_ASSIGN' tuple.
  10682. -- GIMPLE function: enum tree_code gimple_assign_rhs_code (gimple g)
  10683. Return the code of the expression computed on the 'RHS' of
  10684. assignment statement 'G'.
  10685. -- GIMPLE function: enum gimple_rhs_class gimple_assign_rhs_class
  10686. (gimple g)
  10687. Return the gimple rhs class of the code for the expression computed
  10688. on the rhs of assignment statement 'G'. This will never return
  10689. 'GIMPLE_INVALID_RHS'.
  10690. -- GIMPLE function: tree gimple_assign_lhs (gimple g)
  10691. Return the 'LHS' of assignment statement 'G'.
  10692. -- GIMPLE function: tree * gimple_assign_lhs_ptr (gimple g)
  10693. Return a pointer to the 'LHS' of assignment statement 'G'.
  10694. -- GIMPLE function: tree gimple_assign_rhs1 (gimple g)
  10695. Return the first operand on the 'RHS' of assignment statement 'G'.
  10696. -- GIMPLE function: tree * gimple_assign_rhs1_ptr (gimple g)
  10697. Return the address of the first operand on the 'RHS' of assignment
  10698. statement 'G'.
  10699. -- GIMPLE function: tree gimple_assign_rhs2 (gimple g)
  10700. Return the second operand on the 'RHS' of assignment statement 'G'.
  10701. -- GIMPLE function: tree * gimple_assign_rhs2_ptr (gimple g)
  10702. Return the address of the second operand on the 'RHS' of assignment
  10703. statement 'G'.
  10704. -- GIMPLE function: tree gimple_assign_rhs3 (gimple g)
  10705. Return the third operand on the 'RHS' of assignment statement 'G'.
  10706. -- GIMPLE function: tree * gimple_assign_rhs3_ptr (gimple g)
  10707. Return the address of the third operand on the 'RHS' of assignment
  10708. statement 'G'.
  10709. -- GIMPLE function: void gimple_assign_set_lhs (gimple g, tree lhs)
  10710. Set 'LHS' to be the 'LHS' operand of assignment statement 'G'.
  10711. -- GIMPLE function: void gimple_assign_set_rhs1 (gimple g, tree rhs)
  10712. Set 'RHS' to be the first operand on the 'RHS' of assignment
  10713. statement 'G'.
  10714. -- GIMPLE function: void gimple_assign_set_rhs2 (gimple g, tree rhs)
  10715. Set 'RHS' to be the second operand on the 'RHS' of assignment
  10716. statement 'G'.
  10717. -- GIMPLE function: void gimple_assign_set_rhs3 (gimple g, tree rhs)
  10718. Set 'RHS' to be the third operand on the 'RHS' of assignment
  10719. statement 'G'.
  10720. -- GIMPLE function: bool gimple_assign_cast_p (const_gimple s)
  10721. Return true if 'S' is a type-cast assignment.
  10722. 
  10723. File: gccint.info, Node: GIMPLE_BIND, Next: GIMPLE_CALL, Prev: GIMPLE_ASSIGN, Up: Tuple specific accessors
  10724. 12.8.3 'GIMPLE_BIND'
  10725. --------------------
  10726. -- GIMPLE function: gbind *gimple_build_bind (tree vars, gimple_seq
  10727. body)
  10728. Build a 'GIMPLE_BIND' statement with a list of variables in 'VARS'
  10729. and a body of statements in sequence 'BODY'.
  10730. -- GIMPLE function: tree gimple_bind_vars (const gbind *g)
  10731. Return the variables declared in the 'GIMPLE_BIND' statement 'G'.
  10732. -- GIMPLE function: void gimple_bind_set_vars (gbind *g, tree vars)
  10733. Set 'VARS' to be the set of variables declared in the 'GIMPLE_BIND'
  10734. statement 'G'.
  10735. -- GIMPLE function: void gimple_bind_append_vars (gbind *g, tree vars)
  10736. Append 'VARS' to the set of variables declared in the 'GIMPLE_BIND'
  10737. statement 'G'.
  10738. -- GIMPLE function: gimple_seq gimple_bind_body (gbind *g)
  10739. Return the GIMPLE sequence contained in the 'GIMPLE_BIND' statement
  10740. 'G'.
  10741. -- GIMPLE function: void gimple_bind_set_body (gbind *g, gimple_seq
  10742. seq)
  10743. Set 'SEQ' to be sequence contained in the 'GIMPLE_BIND' statement
  10744. 'G'.
  10745. -- GIMPLE function: void gimple_bind_add_stmt (gbind *gs, gimple stmt)
  10746. Append a statement to the end of a 'GIMPLE_BIND''s body.
  10747. -- GIMPLE function: void gimple_bind_add_seq (gbind *gs, gimple_seq
  10748. seq)
  10749. Append a sequence of statements to the end of a 'GIMPLE_BIND''s
  10750. body.
  10751. -- GIMPLE function: tree gimple_bind_block (const gbind *g)
  10752. Return the 'TREE_BLOCK' node associated with 'GIMPLE_BIND'
  10753. statement 'G'. This is analogous to the 'BIND_EXPR_BLOCK' field in
  10754. trees.
  10755. -- GIMPLE function: void gimple_bind_set_block (gbind *g, tree block)
  10756. Set 'BLOCK' to be the 'TREE_BLOCK' node associated with
  10757. 'GIMPLE_BIND' statement 'G'.
  10758. 
  10759. File: gccint.info, Node: GIMPLE_CALL, Next: GIMPLE_CATCH, Prev: GIMPLE_BIND, Up: Tuple specific accessors
  10760. 12.8.4 'GIMPLE_CALL'
  10761. --------------------
  10762. -- GIMPLE function: gcall *gimple_build_call (tree fn, unsigned nargs,
  10763. ...)
  10764. Build a 'GIMPLE_CALL' statement to function 'FN'. The argument
  10765. 'FN' must be either a 'FUNCTION_DECL' or a gimple call address as
  10766. determined by 'is_gimple_call_addr'. 'NARGS' are the number of
  10767. arguments. The rest of the arguments follow the argument 'NARGS',
  10768. and must be trees that are valid as rvalues in gimple (i.e., each
  10769. operand is validated with 'is_gimple_operand').
  10770. -- GIMPLE function: gcall *gimple_build_call_from_tree (tree call_expr,
  10771. tree fnptrtype)
  10772. Build a 'GIMPLE_CALL' from a 'CALL_EXPR' node. The arguments and
  10773. the function are taken from the expression directly. The type of
  10774. the 'GIMPLE_CALL' is set from the second parameter passed by a
  10775. caller. This routine assumes that 'call_expr' is already in GIMPLE
  10776. form. That is, its operands are GIMPLE values and the function
  10777. call needs no further simplification. All the call flags in
  10778. 'call_expr' are copied over to the new 'GIMPLE_CALL'.
  10779. -- GIMPLE function: gcall *gimple_build_call_vec (tree fn, 'vec<tree>'
  10780. args)
  10781. Identical to 'gimple_build_call' but the arguments are stored in a
  10782. 'vec<tree>'.
  10783. -- GIMPLE function: tree gimple_call_lhs (gimple g)
  10784. Return the 'LHS' of call statement 'G'.
  10785. -- GIMPLE function: tree * gimple_call_lhs_ptr (gimple g)
  10786. Return a pointer to the 'LHS' of call statement 'G'.
  10787. -- GIMPLE function: void gimple_call_set_lhs (gimple g, tree lhs)
  10788. Set 'LHS' to be the 'LHS' operand of call statement 'G'.
  10789. -- GIMPLE function: tree gimple_call_fn (gimple g)
  10790. Return the tree node representing the function called by call
  10791. statement 'G'.
  10792. -- GIMPLE function: void gimple_call_set_fn (gcall *g, tree fn)
  10793. Set 'FN' to be the function called by call statement 'G'. This has
  10794. to be a gimple value specifying the address of the called function.
  10795. -- GIMPLE function: tree gimple_call_fndecl (gimple g)
  10796. If a given 'GIMPLE_CALL''s callee is a 'FUNCTION_DECL', return it.
  10797. Otherwise return 'NULL'. This function is analogous to
  10798. 'get_callee_fndecl' in 'GENERIC'.
  10799. -- GIMPLE function: tree gimple_call_set_fndecl (gimple g, tree fndecl)
  10800. Set the called function to 'FNDECL'.
  10801. -- GIMPLE function: tree gimple_call_return_type (const gcall *g)
  10802. Return the type returned by call statement 'G'.
  10803. -- GIMPLE function: tree gimple_call_chain (gimple g)
  10804. Return the static chain for call statement 'G'.
  10805. -- GIMPLE function: void gimple_call_set_chain (gcall *g, tree chain)
  10806. Set 'CHAIN' to be the static chain for call statement 'G'.
  10807. -- GIMPLE function: unsigned gimple_call_num_args (gimple g)
  10808. Return the number of arguments used by call statement 'G'.
  10809. -- GIMPLE function: tree gimple_call_arg (gimple g, unsigned index)
  10810. Return the argument at position 'INDEX' for call statement 'G'.
  10811. The first argument is 0.
  10812. -- GIMPLE function: tree * gimple_call_arg_ptr (gimple g, unsigned
  10813. index)
  10814. Return a pointer to the argument at position 'INDEX' for call
  10815. statement 'G'.
  10816. -- GIMPLE function: void gimple_call_set_arg (gimple g, unsigned index,
  10817. tree arg)
  10818. Set 'ARG' to be the argument at position 'INDEX' for call statement
  10819. 'G'.
  10820. -- GIMPLE function: void gimple_call_set_tail (gcall *s)
  10821. Mark call statement 'S' as being a tail call (i.e., a call just
  10822. before the exit of a function). These calls are candidate for tail
  10823. call optimization.
  10824. -- GIMPLE function: bool gimple_call_tail_p (gcall *s)
  10825. Return true if 'GIMPLE_CALL' 'S' is marked as a tail call.
  10826. -- GIMPLE function: bool gimple_call_noreturn_p (gimple s)
  10827. Return true if 'S' is a noreturn call.
  10828. -- GIMPLE function: gimple gimple_call_copy_skip_args (gcall *stmt,
  10829. bitmap args_to_skip)
  10830. Build a 'GIMPLE_CALL' identical to 'STMT' but skipping the
  10831. arguments in the positions marked by the set 'ARGS_TO_SKIP'.
  10832. 
  10833. File: gccint.info, Node: GIMPLE_CATCH, Next: GIMPLE_COND, Prev: GIMPLE_CALL, Up: Tuple specific accessors
  10834. 12.8.5 'GIMPLE_CATCH'
  10835. ---------------------
  10836. -- GIMPLE function: gcatch *gimple_build_catch (tree types, gimple_seq
  10837. handler)
  10838. Build a 'GIMPLE_CATCH' statement. 'TYPES' are the tree types this
  10839. catch handles. 'HANDLER' is a sequence of statements with the code
  10840. for the handler.
  10841. -- GIMPLE function: tree gimple_catch_types (const gcatch *g)
  10842. Return the types handled by 'GIMPLE_CATCH' statement 'G'.
  10843. -- GIMPLE function: tree * gimple_catch_types_ptr (gcatch *g)
  10844. Return a pointer to the types handled by 'GIMPLE_CATCH' statement
  10845. 'G'.
  10846. -- GIMPLE function: gimple_seq gimple_catch_handler (gcatch *g)
  10847. Return the GIMPLE sequence representing the body of the handler of
  10848. 'GIMPLE_CATCH' statement 'G'.
  10849. -- GIMPLE function: void gimple_catch_set_types (gcatch *g, tree t)
  10850. Set 'T' to be the set of types handled by 'GIMPLE_CATCH' 'G'.
  10851. -- GIMPLE function: void gimple_catch_set_handler (gcatch *g,
  10852. gimple_seq handler)
  10853. Set 'HANDLER' to be the body of 'GIMPLE_CATCH' 'G'.
  10854. 
  10855. File: gccint.info, Node: GIMPLE_COND, Next: GIMPLE_DEBUG, Prev: GIMPLE_CATCH, Up: Tuple specific accessors
  10856. 12.8.6 'GIMPLE_COND'
  10857. --------------------
  10858. -- GIMPLE function: gcond *gimple_build_cond ( enum tree_code
  10859. pred_code, tree lhs, tree rhs, tree t_label, tree f_label)
  10860. Build a 'GIMPLE_COND' statement. 'A' 'GIMPLE_COND' statement
  10861. compares 'LHS' and 'RHS' and if the condition in 'PRED_CODE' is
  10862. true, jump to the label in 't_label', otherwise jump to the label
  10863. in 'f_label'. 'PRED_CODE' are relational operator tree codes like
  10864. 'EQ_EXPR', 'LT_EXPR', 'LE_EXPR', 'NE_EXPR', etc.
  10865. -- GIMPLE function: gcond *gimple_build_cond_from_tree (tree cond, tree
  10866. t_label, tree f_label)
  10867. Build a 'GIMPLE_COND' statement from the conditional expression
  10868. tree 'COND'. 'T_LABEL' and 'F_LABEL' are as in
  10869. 'gimple_build_cond'.
  10870. -- GIMPLE function: enum tree_code gimple_cond_code (gimple g)
  10871. Return the code of the predicate computed by conditional statement
  10872. 'G'.
  10873. -- GIMPLE function: void gimple_cond_set_code (gcond *g, enum tree_code
  10874. code)
  10875. Set 'CODE' to be the predicate code for the conditional statement
  10876. 'G'.
  10877. -- GIMPLE function: tree gimple_cond_lhs (gimple g)
  10878. Return the 'LHS' of the predicate computed by conditional statement
  10879. 'G'.
  10880. -- GIMPLE function: void gimple_cond_set_lhs (gcond *g, tree lhs)
  10881. Set 'LHS' to be the 'LHS' operand of the predicate computed by
  10882. conditional statement 'G'.
  10883. -- GIMPLE function: tree gimple_cond_rhs (gimple g)
  10884. Return the 'RHS' operand of the predicate computed by conditional
  10885. 'G'.
  10886. -- GIMPLE function: void gimple_cond_set_rhs (gcond *g, tree rhs)
  10887. Set 'RHS' to be the 'RHS' operand of the predicate computed by
  10888. conditional statement 'G'.
  10889. -- GIMPLE function: tree gimple_cond_true_label (const gcond *g)
  10890. Return the label used by conditional statement 'G' when its
  10891. predicate evaluates to true.
  10892. -- GIMPLE function: void gimple_cond_set_true_label (gcond *g, tree
  10893. label)
  10894. Set 'LABEL' to be the label used by conditional statement 'G' when
  10895. its predicate evaluates to true.
  10896. -- GIMPLE function: void gimple_cond_set_false_label (gcond *g, tree
  10897. label)
  10898. Set 'LABEL' to be the label used by conditional statement 'G' when
  10899. its predicate evaluates to false.
  10900. -- GIMPLE function: tree gimple_cond_false_label (const gcond *g)
  10901. Return the label used by conditional statement 'G' when its
  10902. predicate evaluates to false.
  10903. -- GIMPLE function: void gimple_cond_make_false (gcond *g)
  10904. Set the conditional 'COND_STMT' to be of the form 'if (1 == 0)'.
  10905. -- GIMPLE function: void gimple_cond_make_true (gcond *g)
  10906. Set the conditional 'COND_STMT' to be of the form 'if (1 == 1)'.
  10907. 
  10908. File: gccint.info, Node: GIMPLE_DEBUG, Next: GIMPLE_EH_FILTER, Prev: GIMPLE_COND, Up: Tuple specific accessors
  10909. 12.8.7 'GIMPLE_DEBUG'
  10910. ---------------------
  10911. -- GIMPLE function: gdebug *gimple_build_debug_bind (tree var, tree
  10912. value, gimple stmt)
  10913. Build a 'GIMPLE_DEBUG' statement with 'GIMPLE_DEBUG_BIND'
  10914. 'subcode'. The effect of this statement is to tell debug
  10915. information generation machinery that the value of user variable
  10916. 'var' is given by 'value' at that point, and to remain with that
  10917. value until 'var' runs out of scope, a dynamically-subsequent debug
  10918. bind statement overrides the binding, or conflicting values reach a
  10919. control flow merge point. Even if components of the 'value'
  10920. expression change afterwards, the variable is supposed to retain
  10921. the same value, though not necessarily the same location.
  10922. It is expected that 'var' be most often a tree for automatic user
  10923. variables ('VAR_DECL' or 'PARM_DECL') that satisfy the requirements
  10924. for gimple registers, but it may also be a tree for a scalarized
  10925. component of a user variable ('ARRAY_REF', 'COMPONENT_REF'), or a
  10926. debug temporary ('DEBUG_EXPR_DECL').
  10927. As for 'value', it can be an arbitrary tree expression, but it is
  10928. recommended that it be in a suitable form for a gimple assignment
  10929. 'RHS'. It is not expected that user variables that could appear as
  10930. 'var' ever appear in 'value', because in the latter we'd have their
  10931. 'SSA_NAME's instead, but even if they were not in SSA form, user
  10932. variables appearing in 'value' are to be regarded as part of the
  10933. executable code space, whereas those in 'var' are to be regarded as
  10934. part of the source code space. There is no way to refer to the
  10935. value bound to a user variable within a 'value' expression.
  10936. If 'value' is 'GIMPLE_DEBUG_BIND_NOVALUE', debug information
  10937. generation machinery is informed that the variable 'var' is
  10938. unbound, i.e., that its value is indeterminate, which sometimes
  10939. means it is really unavailable, and other times that the compiler
  10940. could not keep track of it.
  10941. Block and location information for the newly-created stmt are taken
  10942. from 'stmt', if given.
  10943. -- GIMPLE function: tree gimple_debug_bind_get_var (gimple stmt)
  10944. Return the user variable VAR that is bound at 'stmt'.
  10945. -- GIMPLE function: tree gimple_debug_bind_get_value (gimple stmt)
  10946. Return the value expression that is bound to a user variable at
  10947. 'stmt'.
  10948. -- GIMPLE function: tree * gimple_debug_bind_get_value_ptr (gimple
  10949. stmt)
  10950. Return a pointer to the value expression that is bound to a user
  10951. variable at 'stmt'.
  10952. -- GIMPLE function: void gimple_debug_bind_set_var (gimple stmt, tree
  10953. var)
  10954. Modify the user variable bound at 'stmt' to VAR.
  10955. -- GIMPLE function: void gimple_debug_bind_set_value (gimple stmt, tree
  10956. var)
  10957. Modify the value bound to the user variable bound at 'stmt' to
  10958. VALUE.
  10959. -- GIMPLE function: void gimple_debug_bind_reset_value (gimple stmt)
  10960. Modify the value bound to the user variable bound at 'stmt' so that
  10961. the variable becomes unbound.
  10962. -- GIMPLE function: bool gimple_debug_bind_has_value_p (gimple stmt)
  10963. Return 'TRUE' if 'stmt' binds a user variable to a value, and
  10964. 'FALSE' if it unbinds the variable.
  10965. -- GIMPLE function: gimple gimple_build_debug_begin_stmt (tree block,
  10966. location_t location)
  10967. Build a 'GIMPLE_DEBUG' statement with 'GIMPLE_DEBUG_BEGIN_STMT'
  10968. 'subcode'. The effect of this statement is to tell debug
  10969. information generation machinery that the user statement at the
  10970. given 'location' and 'block' starts at the point at which the
  10971. statement is inserted. The intent is that side effects (e.g.
  10972. variable bindings) of all prior user statements are observable, and
  10973. that none of the side effects of subsequent user statements are.
  10974. -- GIMPLE function: gimple gimple_build_debug_inline_entry (tree block,
  10975. location_t location)
  10976. Build a 'GIMPLE_DEBUG' statement with 'GIMPLE_DEBUG_INLINE_ENTRY'
  10977. 'subcode'. The effect of this statement is to tell debug
  10978. information generation machinery that a function call at 'location'
  10979. underwent inline substitution, that 'block' is the enclosing
  10980. lexical block created for the substitution, and that at the point
  10981. of the program in which the stmt is inserted, all parameters for
  10982. the inlined function are bound to the respective arguments, and
  10983. none of the side effects of its stmts are observable.
  10984. 
  10985. File: gccint.info, Node: GIMPLE_EH_FILTER, Next: GIMPLE_LABEL, Prev: GIMPLE_DEBUG, Up: Tuple specific accessors
  10986. 12.8.8 'GIMPLE_EH_FILTER'
  10987. -------------------------
  10988. -- GIMPLE function: geh_filter *gimple_build_eh_filter (tree types,
  10989. gimple_seq failure)
  10990. Build a 'GIMPLE_EH_FILTER' statement. 'TYPES' are the filter's
  10991. types. 'FAILURE' is a sequence with the filter's failure action.
  10992. -- GIMPLE function: tree gimple_eh_filter_types (gimple g)
  10993. Return the types handled by 'GIMPLE_EH_FILTER' statement 'G'.
  10994. -- GIMPLE function: tree * gimple_eh_filter_types_ptr (gimple g)
  10995. Return a pointer to the types handled by 'GIMPLE_EH_FILTER'
  10996. statement 'G'.
  10997. -- GIMPLE function: gimple_seq gimple_eh_filter_failure (gimple g)
  10998. Return the sequence of statement to execute when 'GIMPLE_EH_FILTER'
  10999. statement fails.
  11000. -- GIMPLE function: void gimple_eh_filter_set_types (geh_filter *g,
  11001. tree types)
  11002. Set 'TYPES' to be the set of types handled by 'GIMPLE_EH_FILTER'
  11003. 'G'.
  11004. -- GIMPLE function: void gimple_eh_filter_set_failure (geh_filter *g,
  11005. gimple_seq failure)
  11006. Set 'FAILURE' to be the sequence of statements to execute on
  11007. failure for 'GIMPLE_EH_FILTER' 'G'.
  11008. -- GIMPLE function: tree gimple_eh_must_not_throw_fndecl ( geh_mnt
  11009. *eh_mnt_stmt)
  11010. Get the function decl to be called by the MUST_NOT_THROW region.
  11011. -- GIMPLE function: void gimple_eh_must_not_throw_set_fndecl ( geh_mnt
  11012. *eh_mnt_stmt, tree decl)
  11013. Set the function decl to be called by GS to DECL.
  11014. 
  11015. File: gccint.info, Node: GIMPLE_LABEL, Next: GIMPLE_GOTO, Prev: GIMPLE_EH_FILTER, Up: Tuple specific accessors
  11016. 12.8.9 'GIMPLE_LABEL'
  11017. ---------------------
  11018. -- GIMPLE function: glabel *gimple_build_label (tree label)
  11019. Build a 'GIMPLE_LABEL' statement with corresponding to the tree
  11020. label, 'LABEL'.
  11021. -- GIMPLE function: tree gimple_label_label (const glabel *g)
  11022. Return the 'LABEL_DECL' node used by 'GIMPLE_LABEL' statement 'G'.
  11023. -- GIMPLE function: void gimple_label_set_label (glabel *g, tree label)
  11024. Set 'LABEL' to be the 'LABEL_DECL' node used by 'GIMPLE_LABEL'
  11025. statement 'G'.
  11026. 
  11027. File: gccint.info, Node: GIMPLE_GOTO, Next: GIMPLE_NOP, Prev: GIMPLE_LABEL, Up: Tuple specific accessors
  11028. 12.8.10 'GIMPLE_GOTO'
  11029. ---------------------
  11030. -- GIMPLE function: ggoto *gimple_build_goto (tree dest)
  11031. Build a 'GIMPLE_GOTO' statement to label 'DEST'.
  11032. -- GIMPLE function: tree gimple_goto_dest (gimple g)
  11033. Return the destination of the unconditional jump 'G'.
  11034. -- GIMPLE function: void gimple_goto_set_dest (ggoto *g, tree dest)
  11035. Set 'DEST' to be the destination of the unconditional jump 'G'.
  11036. 
  11037. File: gccint.info, Node: GIMPLE_NOP, Next: GIMPLE_OMP_ATOMIC_LOAD, Prev: GIMPLE_GOTO, Up: Tuple specific accessors
  11038. 12.8.11 'GIMPLE_NOP'
  11039. --------------------
  11040. -- GIMPLE function: gimple gimple_build_nop (void)
  11041. Build a 'GIMPLE_NOP' statement.
  11042. -- GIMPLE function: bool gimple_nop_p (gimple g)
  11043. Returns 'TRUE' if statement 'G' is a 'GIMPLE_NOP'.
  11044. 
  11045. File: gccint.info, Node: GIMPLE_OMP_ATOMIC_LOAD, Next: GIMPLE_OMP_ATOMIC_STORE, Prev: GIMPLE_NOP, Up: Tuple specific accessors
  11046. 12.8.12 'GIMPLE_OMP_ATOMIC_LOAD'
  11047. --------------------------------
  11048. -- GIMPLE function: gomp_atomic_load *gimple_build_omp_atomic_load (
  11049. tree lhs, tree rhs)
  11050. Build a 'GIMPLE_OMP_ATOMIC_LOAD' statement. 'LHS' is the left-hand
  11051. side of the assignment. 'RHS' is the right-hand side of the
  11052. assignment.
  11053. -- GIMPLE function: void gimple_omp_atomic_load_set_lhs (
  11054. gomp_atomic_load *g, tree lhs)
  11055. Set the 'LHS' of an atomic load.
  11056. -- GIMPLE function: tree gimple_omp_atomic_load_lhs ( const
  11057. gomp_atomic_load *g)
  11058. Get the 'LHS' of an atomic load.
  11059. -- GIMPLE function: void gimple_omp_atomic_load_set_rhs (
  11060. gomp_atomic_load *g, tree rhs)
  11061. Set the 'RHS' of an atomic set.
  11062. -- GIMPLE function: tree gimple_omp_atomic_load_rhs ( const
  11063. gomp_atomic_load *g)
  11064. Get the 'RHS' of an atomic set.
  11065. 
  11066. File: gccint.info, Node: GIMPLE_OMP_ATOMIC_STORE, Next: GIMPLE_OMP_CONTINUE, Prev: GIMPLE_OMP_ATOMIC_LOAD, Up: Tuple specific accessors
  11067. 12.8.13 'GIMPLE_OMP_ATOMIC_STORE'
  11068. ---------------------------------
  11069. -- GIMPLE function: gomp_atomic_store *gimple_build_omp_atomic_store (
  11070. tree val)
  11071. Build a 'GIMPLE_OMP_ATOMIC_STORE' statement. 'VAL' is the value to
  11072. be stored.
  11073. -- GIMPLE function: void gimple_omp_atomic_store_set_val (
  11074. gomp_atomic_store *g, tree val)
  11075. Set the value being stored in an atomic store.
  11076. -- GIMPLE function: tree gimple_omp_atomic_store_val ( const
  11077. gomp_atomic_store *g)
  11078. Return the value being stored in an atomic store.
  11079. 
  11080. File: gccint.info, Node: GIMPLE_OMP_CONTINUE, Next: GIMPLE_OMP_CRITICAL, Prev: GIMPLE_OMP_ATOMIC_STORE, Up: Tuple specific accessors
  11081. 12.8.14 'GIMPLE_OMP_CONTINUE'
  11082. -----------------------------
  11083. -- GIMPLE function: gomp_continue *gimple_build_omp_continue ( tree
  11084. control_def, tree control_use)
  11085. Build a 'GIMPLE_OMP_CONTINUE' statement. 'CONTROL_DEF' is the
  11086. definition of the control variable. 'CONTROL_USE' is the use of
  11087. the control variable.
  11088. -- GIMPLE function: tree gimple_omp_continue_control_def ( const
  11089. gomp_continue *s)
  11090. Return the definition of the control variable on a
  11091. 'GIMPLE_OMP_CONTINUE' in 'S'.
  11092. -- GIMPLE function: tree gimple_omp_continue_control_def_ptr (
  11093. gomp_continue *s)
  11094. Same as above, but return the pointer.
  11095. -- GIMPLE function: tree gimple_omp_continue_set_control_def (
  11096. gomp_continue *s)
  11097. Set the control variable definition for a 'GIMPLE_OMP_CONTINUE'
  11098. statement in 'S'.
  11099. -- GIMPLE function: tree gimple_omp_continue_control_use ( const
  11100. gomp_continue *s)
  11101. Return the use of the control variable on a 'GIMPLE_OMP_CONTINUE'
  11102. in 'S'.
  11103. -- GIMPLE function: tree gimple_omp_continue_control_use_ptr (
  11104. gomp_continue *s)
  11105. Same as above, but return the pointer.
  11106. -- GIMPLE function: tree gimple_omp_continue_set_control_use (
  11107. gomp_continue *s)
  11108. Set the control variable use for a 'GIMPLE_OMP_CONTINUE' statement
  11109. in 'S'.
  11110. 
  11111. File: gccint.info, Node: GIMPLE_OMP_CRITICAL, Next: GIMPLE_OMP_FOR, Prev: GIMPLE_OMP_CONTINUE, Up: Tuple specific accessors
  11112. 12.8.15 'GIMPLE_OMP_CRITICAL'
  11113. -----------------------------
  11114. -- GIMPLE function: gomp_critical *gimple_build_omp_critical (
  11115. gimple_seq body, tree name)
  11116. Build a 'GIMPLE_OMP_CRITICAL' statement. 'BODY' is the sequence of
  11117. statements for which only one thread can execute. 'NAME' is an
  11118. optional identifier for this critical block.
  11119. -- GIMPLE function: tree gimple_omp_critical_name ( const gomp_critical
  11120. *g)
  11121. Return the name associated with 'OMP_CRITICAL' statement 'G'.
  11122. -- GIMPLE function: tree * gimple_omp_critical_name_ptr ( gomp_critical
  11123. *g)
  11124. Return a pointer to the name associated with 'OMP' critical
  11125. statement 'G'.
  11126. -- GIMPLE function: void gimple_omp_critical_set_name ( gomp_critical
  11127. *g, tree name)
  11128. Set 'NAME' to be the name associated with 'OMP' critical statement
  11129. 'G'.
  11130. 
  11131. File: gccint.info, Node: GIMPLE_OMP_FOR, Next: GIMPLE_OMP_MASTER, Prev: GIMPLE_OMP_CRITICAL, Up: Tuple specific accessors
  11132. 12.8.16 'GIMPLE_OMP_FOR'
  11133. ------------------------
  11134. -- GIMPLE function: gomp_for *gimple_build_omp_for (gimple_seq body,
  11135. tree clauses, tree index, tree initial, tree final, tree incr,
  11136. gimple_seq pre_body, enum tree_code omp_for_cond)
  11137. Build a 'GIMPLE_OMP_FOR' statement. 'BODY' is sequence of
  11138. statements inside the for loop. 'CLAUSES', are any of the loop
  11139. construct's clauses. 'PRE_BODY' is the sequence of statements that
  11140. are loop invariant. 'INDEX' is the index variable. 'INITIAL' is
  11141. the initial value of 'INDEX'. 'FINAL' is final value of 'INDEX'.
  11142. OMP_FOR_COND is the predicate used to compare 'INDEX' and 'FINAL'.
  11143. 'INCR' is the increment expression.
  11144. -- GIMPLE function: tree gimple_omp_for_clauses (gimple g)
  11145. Return the clauses associated with 'OMP_FOR' 'G'.
  11146. -- GIMPLE function: tree * gimple_omp_for_clauses_ptr (gimple g)
  11147. Return a pointer to the 'OMP_FOR' 'G'.
  11148. -- GIMPLE function: void gimple_omp_for_set_clauses (gimple g, tree
  11149. clauses)
  11150. Set 'CLAUSES' to be the list of clauses associated with 'OMP_FOR'
  11151. 'G'.
  11152. -- GIMPLE function: tree gimple_omp_for_index (gimple g)
  11153. Return the index variable for 'OMP_FOR' 'G'.
  11154. -- GIMPLE function: tree * gimple_omp_for_index_ptr (gimple g)
  11155. Return a pointer to the index variable for 'OMP_FOR' 'G'.
  11156. -- GIMPLE function: void gimple_omp_for_set_index (gimple g, tree
  11157. index)
  11158. Set 'INDEX' to be the index variable for 'OMP_FOR' 'G'.
  11159. -- GIMPLE function: tree gimple_omp_for_initial (gimple g)
  11160. Return the initial value for 'OMP_FOR' 'G'.
  11161. -- GIMPLE function: tree * gimple_omp_for_initial_ptr (gimple g)
  11162. Return a pointer to the initial value for 'OMP_FOR' 'G'.
  11163. -- GIMPLE function: void gimple_omp_for_set_initial (gimple g, tree
  11164. initial)
  11165. Set 'INITIAL' to be the initial value for 'OMP_FOR' 'G'.
  11166. -- GIMPLE function: tree gimple_omp_for_final (gimple g)
  11167. Return the final value for 'OMP_FOR' 'G'.
  11168. -- GIMPLE function: tree * gimple_omp_for_final_ptr (gimple g)
  11169. turn a pointer to the final value for 'OMP_FOR' 'G'.
  11170. -- GIMPLE function: void gimple_omp_for_set_final (gimple g, tree
  11171. final)
  11172. Set 'FINAL' to be the final value for 'OMP_FOR' 'G'.
  11173. -- GIMPLE function: tree gimple_omp_for_incr (gimple g)
  11174. Return the increment value for 'OMP_FOR' 'G'.
  11175. -- GIMPLE function: tree * gimple_omp_for_incr_ptr (gimple g)
  11176. Return a pointer to the increment value for 'OMP_FOR' 'G'.
  11177. -- GIMPLE function: void gimple_omp_for_set_incr (gimple g, tree incr)
  11178. Set 'INCR' to be the increment value for 'OMP_FOR' 'G'.
  11179. -- GIMPLE function: gimple_seq gimple_omp_for_pre_body (gimple g)
  11180. Return the sequence of statements to execute before the 'OMP_FOR'
  11181. statement 'G' starts.
  11182. -- GIMPLE function: void gimple_omp_for_set_pre_body (gimple g,
  11183. gimple_seq pre_body)
  11184. Set 'PRE_BODY' to be the sequence of statements to execute before
  11185. the 'OMP_FOR' statement 'G' starts.
  11186. -- GIMPLE function: void gimple_omp_for_set_cond (gimple g, enum
  11187. tree_code cond)
  11188. Set 'COND' to be the condition code for 'OMP_FOR' 'G'.
  11189. -- GIMPLE function: enum tree_code gimple_omp_for_cond (gimple g)
  11190. Return the condition code associated with 'OMP_FOR' 'G'.
  11191. 
  11192. File: gccint.info, Node: GIMPLE_OMP_MASTER, Next: GIMPLE_OMP_ORDERED, Prev: GIMPLE_OMP_FOR, Up: Tuple specific accessors
  11193. 12.8.17 'GIMPLE_OMP_MASTER'
  11194. ---------------------------
  11195. -- GIMPLE function: gimple gimple_build_omp_master (gimple_seq body)
  11196. Build a 'GIMPLE_OMP_MASTER' statement. 'BODY' is the sequence of
  11197. statements to be executed by just the master.
  11198. 
  11199. File: gccint.info, Node: GIMPLE_OMP_ORDERED, Next: GIMPLE_OMP_PARALLEL, Prev: GIMPLE_OMP_MASTER, Up: Tuple specific accessors
  11200. 12.8.18 'GIMPLE_OMP_ORDERED'
  11201. ----------------------------
  11202. -- GIMPLE function: gimple gimple_build_omp_ordered (gimple_seq body)
  11203. Build a 'GIMPLE_OMP_ORDERED' statement.
  11204. 'BODY' is the sequence of statements inside a loop that will executed
  11205. in sequence.
  11206. 
  11207. File: gccint.info, Node: GIMPLE_OMP_PARALLEL, Next: GIMPLE_OMP_RETURN, Prev: GIMPLE_OMP_ORDERED, Up: Tuple specific accessors
  11208. 12.8.19 'GIMPLE_OMP_PARALLEL'
  11209. -----------------------------
  11210. -- GIMPLE function: gomp_parallel *gimple_build_omp_parallel
  11211. (gimple_seq body, tree clauses, tree child_fn, tree data_arg)
  11212. Build a 'GIMPLE_OMP_PARALLEL' statement.
  11213. 'BODY' is sequence of statements which are executed in parallel.
  11214. 'CLAUSES', are the 'OMP' parallel construct's clauses. 'CHILD_FN' is
  11215. the function created for the parallel threads to execute. 'DATA_ARG'
  11216. are the shared data argument(s).
  11217. -- GIMPLE function: bool gimple_omp_parallel_combined_p (gimple g)
  11218. Return true if 'OMP' parallel statement 'G' has the
  11219. 'GF_OMP_PARALLEL_COMBINED' flag set.
  11220. -- GIMPLE function: void gimple_omp_parallel_set_combined_p (gimple g)
  11221. Set the 'GF_OMP_PARALLEL_COMBINED' field in 'OMP' parallel
  11222. statement 'G'.
  11223. -- GIMPLE function: gimple_seq gimple_omp_body (gimple g)
  11224. Return the body for the 'OMP' statement 'G'.
  11225. -- GIMPLE function: void gimple_omp_set_body (gimple g, gimple_seq
  11226. body)
  11227. Set 'BODY' to be the body for the 'OMP' statement 'G'.
  11228. -- GIMPLE function: tree gimple_omp_parallel_clauses (gimple g)
  11229. Return the clauses associated with 'OMP_PARALLEL' 'G'.
  11230. -- GIMPLE function: tree * gimple_omp_parallel_clauses_ptr (
  11231. gomp_parallel *g)
  11232. Return a pointer to the clauses associated with 'OMP_PARALLEL' 'G'.
  11233. -- GIMPLE function: void gimple_omp_parallel_set_clauses (
  11234. gomp_parallel *g, tree clauses)
  11235. Set 'CLAUSES' to be the list of clauses associated with
  11236. 'OMP_PARALLEL' 'G'.
  11237. -- GIMPLE function: tree gimple_omp_parallel_child_fn ( const
  11238. gomp_parallel *g)
  11239. Return the child function used to hold the body of 'OMP_PARALLEL'
  11240. 'G'.
  11241. -- GIMPLE function: tree * gimple_omp_parallel_child_fn_ptr (
  11242. gomp_parallel *g)
  11243. Return a pointer to the child function used to hold the body of
  11244. 'OMP_PARALLEL' 'G'.
  11245. -- GIMPLE function: void gimple_omp_parallel_set_child_fn (
  11246. gomp_parallel *g, tree child_fn)
  11247. Set 'CHILD_FN' to be the child function for 'OMP_PARALLEL' 'G'.
  11248. -- GIMPLE function: tree gimple_omp_parallel_data_arg ( const
  11249. gomp_parallel *g)
  11250. Return the artificial argument used to send variables and values
  11251. from the parent to the children threads in 'OMP_PARALLEL' 'G'.
  11252. -- GIMPLE function: tree * gimple_omp_parallel_data_arg_ptr (
  11253. gomp_parallel *g)
  11254. Return a pointer to the data argument for 'OMP_PARALLEL' 'G'.
  11255. -- GIMPLE function: void gimple_omp_parallel_set_data_arg (
  11256. gomp_parallel *g, tree data_arg)
  11257. Set 'DATA_ARG' to be the data argument for 'OMP_PARALLEL' 'G'.
  11258. 
  11259. File: gccint.info, Node: GIMPLE_OMP_RETURN, Next: GIMPLE_OMP_SECTION, Prev: GIMPLE_OMP_PARALLEL, Up: Tuple specific accessors
  11260. 12.8.20 'GIMPLE_OMP_RETURN'
  11261. ---------------------------
  11262. -- GIMPLE function: gimple gimple_build_omp_return (bool wait_p)
  11263. Build a 'GIMPLE_OMP_RETURN' statement. 'WAIT_P' is true if this is
  11264. a non-waiting return.
  11265. -- GIMPLE function: void gimple_omp_return_set_nowait (gimple s)
  11266. Set the nowait flag on 'GIMPLE_OMP_RETURN' statement 'S'.
  11267. -- GIMPLE function: bool gimple_omp_return_nowait_p (gimple g)
  11268. Return true if 'OMP' return statement 'G' has the
  11269. 'GF_OMP_RETURN_NOWAIT' flag set.
  11270. 
  11271. File: gccint.info, Node: GIMPLE_OMP_SECTION, Next: GIMPLE_OMP_SECTIONS, Prev: GIMPLE_OMP_RETURN, Up: Tuple specific accessors
  11272. 12.8.21 'GIMPLE_OMP_SECTION'
  11273. ----------------------------
  11274. -- GIMPLE function: gimple gimple_build_omp_section (gimple_seq body)
  11275. Build a 'GIMPLE_OMP_SECTION' statement for a sections statement.
  11276. 'BODY' is the sequence of statements in the section.
  11277. -- GIMPLE function: bool gimple_omp_section_last_p (gimple g)
  11278. Return true if 'OMP' section statement 'G' has the
  11279. 'GF_OMP_SECTION_LAST' flag set.
  11280. -- GIMPLE function: void gimple_omp_section_set_last (gimple g)
  11281. Set the 'GF_OMP_SECTION_LAST' flag on 'G'.
  11282. 
  11283. File: gccint.info, Node: GIMPLE_OMP_SECTIONS, Next: GIMPLE_OMP_SINGLE, Prev: GIMPLE_OMP_SECTION, Up: Tuple specific accessors
  11284. 12.8.22 'GIMPLE_OMP_SECTIONS'
  11285. -----------------------------
  11286. -- GIMPLE function: gomp_sections *gimple_build_omp_sections (
  11287. gimple_seq body, tree clauses)
  11288. Build a 'GIMPLE_OMP_SECTIONS' statement. 'BODY' is a sequence of
  11289. section statements. 'CLAUSES' are any of the 'OMP' sections
  11290. construct's clauses: private, firstprivate, lastprivate, reduction,
  11291. and nowait.
  11292. -- GIMPLE function: gimple gimple_build_omp_sections_switch (void)
  11293. Build a 'GIMPLE_OMP_SECTIONS_SWITCH' statement.
  11294. -- GIMPLE function: tree gimple_omp_sections_control (gimple g)
  11295. Return the control variable associated with the
  11296. 'GIMPLE_OMP_SECTIONS' in 'G'.
  11297. -- GIMPLE function: tree * gimple_omp_sections_control_ptr (gimple g)
  11298. Return a pointer to the clauses associated with the
  11299. 'GIMPLE_OMP_SECTIONS' in 'G'.
  11300. -- GIMPLE function: void gimple_omp_sections_set_control (gimple g,
  11301. tree control)
  11302. Set 'CONTROL' to be the set of clauses associated with the
  11303. 'GIMPLE_OMP_SECTIONS' in 'G'.
  11304. -- GIMPLE function: tree gimple_omp_sections_clauses (gimple g)
  11305. Return the clauses associated with 'OMP_SECTIONS' 'G'.
  11306. -- GIMPLE function: tree * gimple_omp_sections_clauses_ptr (gimple g)
  11307. Return a pointer to the clauses associated with 'OMP_SECTIONS' 'G'.
  11308. -- GIMPLE function: void gimple_omp_sections_set_clauses (gimple g,
  11309. tree clauses)
  11310. Set 'CLAUSES' to be the set of clauses associated with
  11311. 'OMP_SECTIONS' 'G'.
  11312. 
  11313. File: gccint.info, Node: GIMPLE_OMP_SINGLE, Next: GIMPLE_PHI, Prev: GIMPLE_OMP_SECTIONS, Up: Tuple specific accessors
  11314. 12.8.23 'GIMPLE_OMP_SINGLE'
  11315. ---------------------------
  11316. -- GIMPLE function: gomp_single *gimple_build_omp_single ( gimple_seq
  11317. body, tree clauses)
  11318. Build a 'GIMPLE_OMP_SINGLE' statement. 'BODY' is the sequence of
  11319. statements that will be executed once. 'CLAUSES' are any of the
  11320. 'OMP' single construct's clauses: private, firstprivate,
  11321. copyprivate, nowait.
  11322. -- GIMPLE function: tree gimple_omp_single_clauses (gimple g)
  11323. Return the clauses associated with 'OMP_SINGLE' 'G'.
  11324. -- GIMPLE function: tree * gimple_omp_single_clauses_ptr (gimple g)
  11325. Return a pointer to the clauses associated with 'OMP_SINGLE' 'G'.
  11326. -- GIMPLE function: void gimple_omp_single_set_clauses ( gomp_single
  11327. *g, tree clauses)
  11328. Set 'CLAUSES' to be the clauses associated with 'OMP_SINGLE' 'G'.
  11329. 
  11330. File: gccint.info, Node: GIMPLE_PHI, Next: GIMPLE_RESX, Prev: GIMPLE_OMP_SINGLE, Up: Tuple specific accessors
  11331. 12.8.24 'GIMPLE_PHI'
  11332. --------------------
  11333. -- GIMPLE function: unsigned gimple_phi_capacity (gimple g)
  11334. Return the maximum number of arguments supported by 'GIMPLE_PHI'
  11335. 'G'.
  11336. -- GIMPLE function: unsigned gimple_phi_num_args (gimple g)
  11337. Return the number of arguments in 'GIMPLE_PHI' 'G'. This must
  11338. always be exactly the number of incoming edges for the basic block
  11339. holding 'G'.
  11340. -- GIMPLE function: tree gimple_phi_result (gimple g)
  11341. Return the 'SSA' name created by 'GIMPLE_PHI' 'G'.
  11342. -- GIMPLE function: tree * gimple_phi_result_ptr (gimple g)
  11343. Return a pointer to the 'SSA' name created by 'GIMPLE_PHI' 'G'.
  11344. -- GIMPLE function: void gimple_phi_set_result (gphi *g, tree result)
  11345. Set 'RESULT' to be the 'SSA' name created by 'GIMPLE_PHI' 'G'.
  11346. -- GIMPLE function: struct phi_arg_d * gimple_phi_arg (gimple g, index)
  11347. Return the 'PHI' argument corresponding to incoming edge 'INDEX'
  11348. for 'GIMPLE_PHI' 'G'.
  11349. -- GIMPLE function: void gimple_phi_set_arg (gphi *g, index, struct
  11350. phi_arg_d * phiarg)
  11351. Set 'PHIARG' to be the argument corresponding to incoming edge
  11352. 'INDEX' for 'GIMPLE_PHI' 'G'.
  11353. 
  11354. File: gccint.info, Node: GIMPLE_RESX, Next: GIMPLE_RETURN, Prev: GIMPLE_PHI, Up: Tuple specific accessors
  11355. 12.8.25 'GIMPLE_RESX'
  11356. ---------------------
  11357. -- GIMPLE function: gresx *gimple_build_resx (int region)
  11358. Build a 'GIMPLE_RESX' statement which is a statement. This
  11359. statement is a placeholder for _Unwind_Resume before we know if a
  11360. function call or a branch is needed. 'REGION' is the exception
  11361. region from which control is flowing.
  11362. -- GIMPLE function: int gimple_resx_region (const gresx *g)
  11363. Return the region number for 'GIMPLE_RESX' 'G'.
  11364. -- GIMPLE function: void gimple_resx_set_region (gresx *g, int region)
  11365. Set 'REGION' to be the region number for 'GIMPLE_RESX' 'G'.
  11366. 
  11367. File: gccint.info, Node: GIMPLE_RETURN, Next: GIMPLE_SWITCH, Prev: GIMPLE_RESX, Up: Tuple specific accessors
  11368. 12.8.26 'GIMPLE_RETURN'
  11369. -----------------------
  11370. -- GIMPLE function: greturn *gimple_build_return (tree retval)
  11371. Build a 'GIMPLE_RETURN' statement whose return value is retval.
  11372. -- GIMPLE function: tree gimple_return_retval (const greturn *g)
  11373. Return the return value for 'GIMPLE_RETURN' 'G'.
  11374. -- GIMPLE function: void gimple_return_set_retval (greturn *g, tree
  11375. retval)
  11376. Set 'RETVAL' to be the return value for 'GIMPLE_RETURN' 'G'.
  11377. 
  11378. File: gccint.info, Node: GIMPLE_SWITCH, Next: GIMPLE_TRY, Prev: GIMPLE_RETURN, Up: Tuple specific accessors
  11379. 12.8.27 'GIMPLE_SWITCH'
  11380. -----------------------
  11381. -- GIMPLE function: gswitch *gimple_build_switch (tree index, tree
  11382. default_label, 'vec'<tree> *args)
  11383. Build a 'GIMPLE_SWITCH' statement. 'INDEX' is the index variable
  11384. to switch on, and 'DEFAULT_LABEL' represents the default label.
  11385. 'ARGS' is a vector of 'CASE_LABEL_EXPR' trees that contain the
  11386. non-default case labels. Each label is a tree of code
  11387. 'CASE_LABEL_EXPR'.
  11388. -- GIMPLE function: unsigned gimple_switch_num_labels ( const gswitch
  11389. *g)
  11390. Return the number of labels associated with the switch statement
  11391. 'G'.
  11392. -- GIMPLE function: void gimple_switch_set_num_labels (gswitch *g,
  11393. unsigned nlabels)
  11394. Set 'NLABELS' to be the number of labels for the switch statement
  11395. 'G'.
  11396. -- GIMPLE function: tree gimple_switch_index (const gswitch *g)
  11397. Return the index variable used by the switch statement 'G'.
  11398. -- GIMPLE function: void gimple_switch_set_index (gswitch *g, tree
  11399. index)
  11400. Set 'INDEX' to be the index variable for switch statement 'G'.
  11401. -- GIMPLE function: tree gimple_switch_label (const gswitch *g,
  11402. unsigned index)
  11403. Return the label numbered 'INDEX'. The default label is 0,
  11404. followed by any labels in a switch statement.
  11405. -- GIMPLE function: void gimple_switch_set_label (gswitch *g, unsigned
  11406. index, tree label)
  11407. Set the label number 'INDEX' to 'LABEL'. 0 is always the default
  11408. label.
  11409. -- GIMPLE function: tree gimple_switch_default_label ( const gswitch
  11410. *g)
  11411. Return the default label for a switch statement.
  11412. -- GIMPLE function: void gimple_switch_set_default_label (gswitch *g,
  11413. tree label)
  11414. Set the default label for a switch statement.
  11415. 
  11416. File: gccint.info, Node: GIMPLE_TRY, Next: GIMPLE_WITH_CLEANUP_EXPR, Prev: GIMPLE_SWITCH, Up: Tuple specific accessors
  11417. 12.8.28 'GIMPLE_TRY'
  11418. --------------------
  11419. -- GIMPLE function: gtry *gimple_build_try (gimple_seq eval, gimple_seq
  11420. cleanup, unsigned int kind)
  11421. Build a 'GIMPLE_TRY' statement. 'EVAL' is a sequence with the
  11422. expression to evaluate. 'CLEANUP' is a sequence of statements to
  11423. run at clean-up time. 'KIND' is the enumeration value
  11424. 'GIMPLE_TRY_CATCH' if this statement denotes a try/catch construct
  11425. or 'GIMPLE_TRY_FINALLY' if this statement denotes a try/finally
  11426. construct.
  11427. -- GIMPLE function: enum gimple_try_flags gimple_try_kind (gimple g)
  11428. Return the kind of try block represented by 'GIMPLE_TRY' 'G'. This
  11429. is either 'GIMPLE_TRY_CATCH' or 'GIMPLE_TRY_FINALLY'.
  11430. -- GIMPLE function: bool gimple_try_catch_is_cleanup (gimple g)
  11431. Return the 'GIMPLE_TRY_CATCH_IS_CLEANUP' flag.
  11432. -- GIMPLE function: gimple_seq gimple_try_eval (gimple g)
  11433. Return the sequence of statements used as the body for 'GIMPLE_TRY'
  11434. 'G'.
  11435. -- GIMPLE function: gimple_seq gimple_try_cleanup (gimple g)
  11436. Return the sequence of statements used as the cleanup body for
  11437. 'GIMPLE_TRY' 'G'.
  11438. -- GIMPLE function: void gimple_try_set_catch_is_cleanup (gimple g,
  11439. bool catch_is_cleanup)
  11440. Set the 'GIMPLE_TRY_CATCH_IS_CLEANUP' flag.
  11441. -- GIMPLE function: void gimple_try_set_eval (gtry *g, gimple_seq eval)
  11442. Set 'EVAL' to be the sequence of statements to use as the body for
  11443. 'GIMPLE_TRY' 'G'.
  11444. -- GIMPLE function: void gimple_try_set_cleanup (gtry *g, gimple_seq
  11445. cleanup)
  11446. Set 'CLEANUP' to be the sequence of statements to use as the
  11447. cleanup body for 'GIMPLE_TRY' 'G'.
  11448. 
  11449. File: gccint.info, Node: GIMPLE_WITH_CLEANUP_EXPR, Prev: GIMPLE_TRY, Up: Tuple specific accessors
  11450. 12.8.29 'GIMPLE_WITH_CLEANUP_EXPR'
  11451. ----------------------------------
  11452. -- GIMPLE function: gimple gimple_build_wce (gimple_seq cleanup)
  11453. Build a 'GIMPLE_WITH_CLEANUP_EXPR' statement. 'CLEANUP' is the
  11454. clean-up expression.
  11455. -- GIMPLE function: gimple_seq gimple_wce_cleanup (gimple g)
  11456. Return the cleanup sequence for cleanup statement 'G'.
  11457. -- GIMPLE function: void gimple_wce_set_cleanup (gimple g, gimple_seq
  11458. cleanup)
  11459. Set 'CLEANUP' to be the cleanup sequence for 'G'.
  11460. -- GIMPLE function: bool gimple_wce_cleanup_eh_only (gimple g)
  11461. Return the 'CLEANUP_EH_ONLY' flag for a 'WCE' tuple.
  11462. -- GIMPLE function: void gimple_wce_set_cleanup_eh_only (gimple g, bool
  11463. eh_only_p)
  11464. Set the 'CLEANUP_EH_ONLY' flag for a 'WCE' tuple.
  11465. 
  11466. File: gccint.info, Node: GIMPLE sequences, Next: Sequence iterators, Prev: Tuple specific accessors, Up: GIMPLE
  11467. 12.9 GIMPLE sequences
  11468. =====================
  11469. GIMPLE sequences are the tuple equivalent of 'STATEMENT_LIST''s used in
  11470. 'GENERIC'. They are used to chain statements together, and when used in
  11471. conjunction with sequence iterators, provide a framework for iterating
  11472. through statements.
  11473. GIMPLE sequences are of type struct 'gimple_sequence', but are more
  11474. commonly passed by reference to functions dealing with sequences. The
  11475. type for a sequence pointer is 'gimple_seq' which is the same as struct
  11476. 'gimple_sequence' *. When declaring a local sequence, you can define a
  11477. local variable of type struct 'gimple_sequence'. When declaring a
  11478. sequence allocated on the garbage collected heap, use the function
  11479. 'gimple_seq_alloc' documented below.
  11480. There are convenience functions for iterating through sequences in the
  11481. section entitled Sequence Iterators.
  11482. Below is a list of functions to manipulate and query sequences.
  11483. -- GIMPLE function: void gimple_seq_add_stmt (gimple_seq *seq, gimple
  11484. g)
  11485. Link a gimple statement to the end of the sequence *'SEQ' if 'G' is
  11486. not 'NULL'. If *'SEQ' is 'NULL', allocate a sequence before
  11487. linking.
  11488. -- GIMPLE function: void gimple_seq_add_seq (gimple_seq *dest,
  11489. gimple_seq src)
  11490. Append sequence 'SRC' to the end of sequence *'DEST' if 'SRC' is
  11491. not 'NULL'. If *'DEST' is 'NULL', allocate a new sequence before
  11492. appending.
  11493. -- GIMPLE function: gimple_seq gimple_seq_deep_copy (gimple_seq src)
  11494. Perform a deep copy of sequence 'SRC' and return the result.
  11495. -- GIMPLE function: gimple_seq gimple_seq_reverse (gimple_seq seq)
  11496. Reverse the order of the statements in the sequence 'SEQ'. Return
  11497. 'SEQ'.
  11498. -- GIMPLE function: gimple gimple_seq_first (gimple_seq s)
  11499. Return the first statement in sequence 'S'.
  11500. -- GIMPLE function: gimple gimple_seq_last (gimple_seq s)
  11501. Return the last statement in sequence 'S'.
  11502. -- GIMPLE function: void gimple_seq_set_last (gimple_seq s, gimple
  11503. last)
  11504. Set the last statement in sequence 'S' to the statement in 'LAST'.
  11505. -- GIMPLE function: void gimple_seq_set_first (gimple_seq s, gimple
  11506. first)
  11507. Set the first statement in sequence 'S' to the statement in
  11508. 'FIRST'.
  11509. -- GIMPLE function: void gimple_seq_init (gimple_seq s)
  11510. Initialize sequence 'S' to an empty sequence.
  11511. -- GIMPLE function: gimple_seq gimple_seq_alloc (void)
  11512. Allocate a new sequence in the garbage collected store and return
  11513. it.
  11514. -- GIMPLE function: void gimple_seq_copy (gimple_seq dest, gimple_seq
  11515. src)
  11516. Copy the sequence 'SRC' into the sequence 'DEST'.
  11517. -- GIMPLE function: bool gimple_seq_empty_p (gimple_seq s)
  11518. Return true if the sequence 'S' is empty.
  11519. -- GIMPLE function: gimple_seq bb_seq (basic_block bb)
  11520. Returns the sequence of statements in 'BB'.
  11521. -- GIMPLE function: void set_bb_seq (basic_block bb, gimple_seq seq)
  11522. Sets the sequence of statements in 'BB' to 'SEQ'.
  11523. -- GIMPLE function: bool gimple_seq_singleton_p (gimple_seq seq)
  11524. Determine whether 'SEQ' contains exactly one statement.
  11525. 
  11526. File: gccint.info, Node: Sequence iterators, Next: Adding a new GIMPLE statement code, Prev: GIMPLE sequences, Up: GIMPLE
  11527. 12.10 Sequence iterators
  11528. ========================
  11529. Sequence iterators are convenience constructs for iterating through
  11530. statements in a sequence. Given a sequence 'SEQ', here is a typical use
  11531. of gimple sequence iterators:
  11532. gimple_stmt_iterator gsi;
  11533. for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
  11534. {
  11535. gimple g = gsi_stmt (gsi);
  11536. /* Do something with gimple statement G. */
  11537. }
  11538. Backward iterations are possible:
  11539. for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
  11540. Forward and backward iterations on basic blocks are possible with
  11541. 'gsi_start_bb' and 'gsi_last_bb'.
  11542. In the documentation below we sometimes refer to enum
  11543. 'gsi_iterator_update'. The valid options for this enumeration are:
  11544. * 'GSI_NEW_STMT' Only valid when a single statement is added. Move
  11545. the iterator to it.
  11546. * 'GSI_SAME_STMT' Leave the iterator at the same statement.
  11547. * 'GSI_CONTINUE_LINKING' Move iterator to whatever position is
  11548. suitable for linking other statements in the same direction.
  11549. Below is a list of the functions used to manipulate and use statement
  11550. iterators.
  11551. -- GIMPLE function: gimple_stmt_iterator gsi_start (gimple_seq seq)
  11552. Return a new iterator pointing to the sequence 'SEQ''s first
  11553. statement. If 'SEQ' is empty, the iterator's basic block is
  11554. 'NULL'. Use 'gsi_start_bb' instead when the iterator needs to
  11555. always have the correct basic block set.
  11556. -- GIMPLE function: gimple_stmt_iterator gsi_start_bb (basic_block bb)
  11557. Return a new iterator pointing to the first statement in basic
  11558. block 'BB'.
  11559. -- GIMPLE function: gimple_stmt_iterator gsi_last (gimple_seq seq)
  11560. Return a new iterator initially pointing to the last statement of
  11561. sequence 'SEQ'. If 'SEQ' is empty, the iterator's basic block is
  11562. 'NULL'. Use 'gsi_last_bb' instead when the iterator needs to
  11563. always have the correct basic block set.
  11564. -- GIMPLE function: gimple_stmt_iterator gsi_last_bb (basic_block bb)
  11565. Return a new iterator pointing to the last statement in basic block
  11566. 'BB'.
  11567. -- GIMPLE function: bool gsi_end_p (gimple_stmt_iterator i)
  11568. Return 'TRUE' if at the end of 'I'.
  11569. -- GIMPLE function: bool gsi_one_before_end_p (gimple_stmt_iterator i)
  11570. Return 'TRUE' if we're one statement before the end of 'I'.
  11571. -- GIMPLE function: void gsi_next (gimple_stmt_iterator *i)
  11572. Advance the iterator to the next gimple statement.
  11573. -- GIMPLE function: void gsi_prev (gimple_stmt_iterator *i)
  11574. Advance the iterator to the previous gimple statement.
  11575. -- GIMPLE function: gimple gsi_stmt (gimple_stmt_iterator i)
  11576. Return the current stmt.
  11577. -- GIMPLE function: gimple_stmt_iterator gsi_after_labels (basic_block
  11578. bb)
  11579. Return a block statement iterator that points to the first
  11580. non-label statement in block 'BB'.
  11581. -- GIMPLE function: gimple * gsi_stmt_ptr (gimple_stmt_iterator *i)
  11582. Return a pointer to the current stmt.
  11583. -- GIMPLE function: basic_block gsi_bb (gimple_stmt_iterator i)
  11584. Return the basic block associated with this iterator.
  11585. -- GIMPLE function: gimple_seq gsi_seq (gimple_stmt_iterator i)
  11586. Return the sequence associated with this iterator.
  11587. -- GIMPLE function: void gsi_remove (gimple_stmt_iterator *i, bool
  11588. remove_eh_info)
  11589. Remove the current stmt from the sequence. The iterator is updated
  11590. to point to the next statement. When 'REMOVE_EH_INFO' is true we
  11591. remove the statement pointed to by iterator 'I' from the 'EH'
  11592. tables. Otherwise we do not modify the 'EH' tables. Generally,
  11593. 'REMOVE_EH_INFO' should be true when the statement is going to be
  11594. removed from the 'IL' and not reinserted elsewhere.
  11595. -- GIMPLE function: void gsi_link_seq_before (gimple_stmt_iterator *i,
  11596. gimple_seq seq, enum gsi_iterator_update mode)
  11597. Links the sequence of statements 'SEQ' before the statement pointed
  11598. by iterator 'I'. 'MODE' indicates what to do with the iterator
  11599. after insertion (see 'enum gsi_iterator_update' above).
  11600. -- GIMPLE function: void gsi_link_before (gimple_stmt_iterator *i,
  11601. gimple g, enum gsi_iterator_update mode)
  11602. Links statement 'G' before the statement pointed-to by iterator
  11603. 'I'. Updates iterator 'I' according to 'MODE'.
  11604. -- GIMPLE function: void gsi_link_seq_after (gimple_stmt_iterator *i,
  11605. gimple_seq seq, enum gsi_iterator_update mode)
  11606. Links sequence 'SEQ' after the statement pointed-to by iterator
  11607. 'I'. 'MODE' is as in 'gsi_insert_after'.
  11608. -- GIMPLE function: void gsi_link_after (gimple_stmt_iterator *i,
  11609. gimple g, enum gsi_iterator_update mode)
  11610. Links statement 'G' after the statement pointed-to by iterator 'I'.
  11611. 'MODE' is as in 'gsi_insert_after'.
  11612. -- GIMPLE function: gimple_seq gsi_split_seq_after
  11613. (gimple_stmt_iterator i)
  11614. Move all statements in the sequence after 'I' to a new sequence.
  11615. Return this new sequence.
  11616. -- GIMPLE function: gimple_seq gsi_split_seq_before
  11617. (gimple_stmt_iterator *i)
  11618. Move all statements in the sequence before 'I' to a new sequence.
  11619. Return this new sequence.
  11620. -- GIMPLE function: void gsi_replace (gimple_stmt_iterator *i, gimple
  11621. stmt, bool update_eh_info)
  11622. Replace the statement pointed-to by 'I' to 'STMT'. If
  11623. 'UPDATE_EH_INFO' is true, the exception handling information of the
  11624. original statement is moved to the new statement.
  11625. -- GIMPLE function: void gsi_insert_before (gimple_stmt_iterator *i,
  11626. gimple stmt, enum gsi_iterator_update mode)
  11627. Insert statement 'STMT' before the statement pointed-to by iterator
  11628. 'I', update 'STMT''s basic block and scan it for new operands.
  11629. 'MODE' specifies how to update iterator 'I' after insertion (see
  11630. enum 'gsi_iterator_update').
  11631. -- GIMPLE function: void gsi_insert_seq_before (gimple_stmt_iterator
  11632. *i, gimple_seq seq, enum gsi_iterator_update mode)
  11633. Like 'gsi_insert_before', but for all the statements in 'SEQ'.
  11634. -- GIMPLE function: void gsi_insert_after (gimple_stmt_iterator *i,
  11635. gimple stmt, enum gsi_iterator_update mode)
  11636. Insert statement 'STMT' after the statement pointed-to by iterator
  11637. 'I', update 'STMT''s basic block and scan it for new operands.
  11638. 'MODE' specifies how to update iterator 'I' after insertion (see
  11639. enum 'gsi_iterator_update').
  11640. -- GIMPLE function: void gsi_insert_seq_after (gimple_stmt_iterator *i,
  11641. gimple_seq seq, enum gsi_iterator_update mode)
  11642. Like 'gsi_insert_after', but for all the statements in 'SEQ'.
  11643. -- GIMPLE function: gimple_stmt_iterator gsi_for_stmt (gimple stmt)
  11644. Finds iterator for 'STMT'.
  11645. -- GIMPLE function: void gsi_move_after (gimple_stmt_iterator *from,
  11646. gimple_stmt_iterator *to)
  11647. Move the statement at 'FROM' so it comes right after the statement
  11648. at 'TO'.
  11649. -- GIMPLE function: void gsi_move_before (gimple_stmt_iterator *from,
  11650. gimple_stmt_iterator *to)
  11651. Move the statement at 'FROM' so it comes right before the statement
  11652. at 'TO'.
  11653. -- GIMPLE function: void gsi_move_to_bb_end (gimple_stmt_iterator
  11654. *from, basic_block bb)
  11655. Move the statement at 'FROM' to the end of basic block 'BB'.
  11656. -- GIMPLE function: void gsi_insert_on_edge (edge e, gimple stmt)
  11657. Add 'STMT' to the pending list of edge 'E'. No actual insertion is
  11658. made until a call to 'gsi_commit_edge_inserts'() is made.
  11659. -- GIMPLE function: void gsi_insert_seq_on_edge (edge e, gimple_seq
  11660. seq)
  11661. Add the sequence of statements in 'SEQ' to the pending list of edge
  11662. 'E'. No actual insertion is made until a call to
  11663. 'gsi_commit_edge_inserts'() is made.
  11664. -- GIMPLE function: basic_block gsi_insert_on_edge_immediate (edge e,
  11665. gimple stmt)
  11666. Similar to 'gsi_insert_on_edge'+'gsi_commit_edge_inserts'. If a
  11667. new block has to be created, it is returned.
  11668. -- GIMPLE function: void gsi_commit_one_edge_insert (edge e,
  11669. basic_block *new_bb)
  11670. Commit insertions pending at edge 'E'. If a new block is created,
  11671. set 'NEW_BB' to this block, otherwise set it to 'NULL'.
  11672. -- GIMPLE function: void gsi_commit_edge_inserts (void)
  11673. This routine will commit all pending edge insertions, creating any
  11674. new basic blocks which are necessary.
  11675. 
  11676. File: gccint.info, Node: Adding a new GIMPLE statement code, Next: Statement and operand traversals, Prev: Sequence iterators, Up: GIMPLE
  11677. 12.11 Adding a new GIMPLE statement code
  11678. ========================================
  11679. The first step in adding a new GIMPLE statement code, is modifying the
  11680. file 'gimple.def', which contains all the GIMPLE codes. Then you must
  11681. add a corresponding gimple subclass located in 'gimple.h'. This in
  11682. turn, will require you to add a corresponding 'GTY' tag in
  11683. 'gsstruct.def', and code to handle this tag in 'gss_for_code' which is
  11684. located in 'gimple.c'.
  11685. In order for the garbage collector to know the size of the structure
  11686. you created in 'gimple.h', you need to add a case to handle your new
  11687. GIMPLE statement in 'gimple_size' which is located in 'gimple.c'.
  11688. You will probably want to create a function to build the new gimple
  11689. statement in 'gimple.c'. The function should be called
  11690. 'gimple_build_NEW-TUPLE-NAME', and should return the new tuple as a
  11691. pointer to the appropriate gimple subclass.
  11692. If your new statement requires accessors for any members or operands it
  11693. may have, put simple inline accessors in 'gimple.h' and any non-trivial
  11694. accessors in 'gimple.c' with a corresponding prototype in 'gimple.h'.
  11695. You should add the new statement subclass to the class hierarchy
  11696. diagram in 'gimple.texi'.
  11697. 
  11698. File: gccint.info, Node: Statement and operand traversals, Prev: Adding a new GIMPLE statement code, Up: GIMPLE
  11699. 12.12 Statement and operand traversals
  11700. ======================================
  11701. There are two functions available for walking statements and sequences:
  11702. 'walk_gimple_stmt' and 'walk_gimple_seq', accordingly, and a third
  11703. function for walking the operands in a statement: 'walk_gimple_op'.
  11704. -- GIMPLE function: tree walk_gimple_stmt (gimple_stmt_iterator *gsi,
  11705. walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct
  11706. walk_stmt_info *wi)
  11707. This function is used to walk the current statement in 'GSI',
  11708. optionally using traversal state stored in 'WI'. If 'WI' is
  11709. 'NULL', no state is kept during the traversal.
  11710. The callback 'CALLBACK_STMT' is called. If 'CALLBACK_STMT' returns
  11711. true, it means that the callback function has handled all the
  11712. operands of the statement and it is not necessary to walk its
  11713. operands.
  11714. If 'CALLBACK_STMT' is 'NULL' or it returns false, 'CALLBACK_OP' is
  11715. called on each operand of the statement via 'walk_gimple_op'. If
  11716. 'walk_gimple_op' returns non-'NULL' for any operand, the remaining
  11717. operands are not scanned.
  11718. The return value is that returned by the last call to
  11719. 'walk_gimple_op', or 'NULL_TREE' if no 'CALLBACK_OP' is specified.
  11720. -- GIMPLE function: tree walk_gimple_op (gimple stmt, walk_tree_fn
  11721. callback_op, struct walk_stmt_info *wi)
  11722. Use this function to walk the operands of statement 'STMT'. Every
  11723. operand is walked via 'walk_tree' with optional state information
  11724. in 'WI'.
  11725. 'CALLBACK_OP' is called on each operand of 'STMT' via 'walk_tree'.
  11726. Additional parameters to 'walk_tree' must be stored in 'WI'. For
  11727. each operand 'OP', 'walk_tree' is called as:
  11728. walk_tree (&OP, CALLBACK_OP, WI, PSET)
  11729. If 'CALLBACK_OP' returns non-'NULL' for an operand, the remaining
  11730. operands are not scanned. The return value is that returned by the
  11731. last call to 'walk_tree', or 'NULL_TREE' if no 'CALLBACK_OP' is
  11732. specified.
  11733. -- GIMPLE function: tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn
  11734. callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info
  11735. *wi)
  11736. This function walks all the statements in the sequence 'SEQ'
  11737. calling 'walk_gimple_stmt' on each one. 'WI' is as in
  11738. 'walk_gimple_stmt'. If 'walk_gimple_stmt' returns non-'NULL', the
  11739. walk is stopped and the value returned. Otherwise, all the
  11740. statements are walked and 'NULL_TREE' returned.
  11741. 
  11742. File: gccint.info, Node: Tree SSA, Next: RTL, Prev: GIMPLE, Up: Top
  11743. 13 Analysis and Optimization of GIMPLE tuples
  11744. *********************************************
  11745. GCC uses three main intermediate languages to represent the program
  11746. during compilation: GENERIC, GIMPLE and RTL. GENERIC is a
  11747. language-independent representation generated by each front end. It is
  11748. used to serve as an interface between the parser and optimizer. GENERIC
  11749. is a common representation that is able to represent programs written in
  11750. all the languages supported by GCC.
  11751. GIMPLE and RTL are used to optimize the program. GIMPLE is used for
  11752. target and language independent optimizations (e.g., inlining, constant
  11753. propagation, tail call elimination, redundancy elimination, etc). Much
  11754. like GENERIC, GIMPLE is a language independent, tree based
  11755. representation. However, it differs from GENERIC in that the GIMPLE
  11756. grammar is more restrictive: expressions contain no more than 3 operands
  11757. (except function calls), it has no control flow structures and
  11758. expressions with side effects are only allowed on the right hand side of
  11759. assignments. See the chapter describing GENERIC and GIMPLE for more
  11760. details.
  11761. This chapter describes the data structures and functions used in the
  11762. GIMPLE optimizers (also known as "tree optimizers" or "middle end"). In
  11763. particular, it focuses on all the macros, data structures, functions and
  11764. programming constructs needed to implement optimization passes for
  11765. GIMPLE.
  11766. * Menu:
  11767. * Annotations:: Attributes for variables.
  11768. * SSA Operands:: SSA names referenced by GIMPLE statements.
  11769. * SSA:: Static Single Assignment representation.
  11770. * Alias analysis:: Representing aliased loads and stores.
  11771. * Memory model:: Memory model used by the middle-end.
  11772. 
  11773. File: gccint.info, Node: Annotations, Next: SSA Operands, Up: Tree SSA
  11774. 13.1 Annotations
  11775. ================
  11776. The optimizers need to associate attributes with variables during the
  11777. optimization process. For instance, we need to know whether a variable
  11778. has aliases. All these attributes are stored in data structures called
  11779. annotations which are then linked to the field 'ann' in 'struct
  11780. tree_common'.
  11781. 
  11782. File: gccint.info, Node: SSA Operands, Next: SSA, Prev: Annotations, Up: Tree SSA
  11783. 13.2 SSA Operands
  11784. =================
  11785. Almost every GIMPLE statement will contain a reference to a variable or
  11786. memory location. Since statements come in different shapes and sizes,
  11787. their operands are going to be located at various spots inside the
  11788. statement's tree. To facilitate access to the statement's operands,
  11789. they are organized into lists associated inside each statement's
  11790. annotation. Each element in an operand list is a pointer to a
  11791. 'VAR_DECL', 'PARM_DECL' or 'SSA_NAME' tree node. This provides a very
  11792. convenient way of examining and replacing operands.
  11793. Data flow analysis and optimization is done on all tree nodes
  11794. representing variables. Any node for which 'SSA_VAR_P' returns nonzero
  11795. is considered when scanning statement operands. However, not all
  11796. 'SSA_VAR_P' variables are processed in the same way. For the purposes
  11797. of optimization, we need to distinguish between references to local
  11798. scalar variables and references to globals, statics, structures, arrays,
  11799. aliased variables, etc. The reason is simple, the compiler can gather
  11800. complete data flow information for a local scalar. On the other hand, a
  11801. global variable may be modified by a function call, it may not be
  11802. possible to keep track of all the elements of an array or the fields of
  11803. a structure, etc.
  11804. The operand scanner gathers two kinds of operands: "real" and
  11805. "virtual". An operand for which 'is_gimple_reg' returns true is
  11806. considered real, otherwise it is a virtual operand. We also distinguish
  11807. between uses and definitions. An operand is used if its value is loaded
  11808. by the statement (e.g., the operand at the RHS of an assignment). If
  11809. the statement assigns a new value to the operand, the operand is
  11810. considered a definition (e.g., the operand at the LHS of an assignment).
  11811. Virtual and real operands also have very different data flow
  11812. properties. Real operands are unambiguous references to the full object
  11813. that they represent. For instance, given
  11814. {
  11815. int a, b;
  11816. a = b
  11817. }
  11818. Since 'a' and 'b' are non-aliased locals, the statement 'a = b' will
  11819. have one real definition and one real use because variable 'a' is
  11820. completely modified with the contents of variable 'b'. Real definition
  11821. are also known as "killing definitions". Similarly, the use of 'b'
  11822. reads all its bits.
  11823. In contrast, virtual operands are used with variables that can have a
  11824. partial or ambiguous reference. This includes structures, arrays,
  11825. globals, and aliased variables. In these cases, we have two types of
  11826. definitions. For globals, structures, and arrays, we can determine from
  11827. a statement whether a variable of these types has a killing definition.
  11828. If the variable does, then the statement is marked as having a "must
  11829. definition" of that variable. However, if a statement is only defining
  11830. a part of the variable (i.e. a field in a structure), or if we know that
  11831. a statement might define the variable but we cannot say for sure, then
  11832. we mark that statement as having a "may definition". For instance,
  11833. given
  11834. {
  11835. int a, b, *p;
  11836. if (...)
  11837. p = &a;
  11838. else
  11839. p = &b;
  11840. *p = 5;
  11841. return *p;
  11842. }
  11843. The assignment '*p = 5' may be a definition of 'a' or 'b'. If we
  11844. cannot determine statically where 'p' is pointing to at the time of the
  11845. store operation, we create virtual definitions to mark that statement as
  11846. a potential definition site for 'a' and 'b'. Memory loads are similarly
  11847. marked with virtual use operands. Virtual operands are shown in tree
  11848. dumps right before the statement that contains them. To request a tree
  11849. dump with virtual operands, use the '-vops' option to '-fdump-tree':
  11850. {
  11851. int a, b, *p;
  11852. if (...)
  11853. p = &a;
  11854. else
  11855. p = &b;
  11856. # a = VDEF <a>
  11857. # b = VDEF <b>
  11858. *p = 5;
  11859. # VUSE <a>
  11860. # VUSE <b>
  11861. return *p;
  11862. }
  11863. Notice that 'VDEF' operands have two copies of the referenced variable.
  11864. This indicates that this is not a killing definition of that variable.
  11865. In this case we refer to it as a "may definition" or "aliased store".
  11866. The presence of the second copy of the variable in the 'VDEF' operand
  11867. will become important when the function is converted into SSA form.
  11868. This will be used to link all the non-killing definitions to prevent
  11869. optimizations from making incorrect assumptions about them.
  11870. Operands are updated as soon as the statement is finished via a call to
  11871. 'update_stmt'. If statement elements are changed via 'SET_USE' or
  11872. 'SET_DEF', then no further action is required (i.e., those macros take
  11873. care of updating the statement). If changes are made by manipulating
  11874. the statement's tree directly, then a call must be made to 'update_stmt'
  11875. when complete. Calling one of the 'bsi_insert' routines or
  11876. 'bsi_replace' performs an implicit call to 'update_stmt'.
  11877. 13.2.1 Operand Iterators And Access Routines
  11878. --------------------------------------------
  11879. Operands are collected by 'tree-ssa-operands.c'. They are stored inside
  11880. each statement's annotation and can be accessed through either the
  11881. operand iterators or an access routine.
  11882. The following access routines are available for examining operands:
  11883. 1. 'SINGLE_SSA_{USE,DEF,TREE}_OPERAND': These accessors will return
  11884. NULL unless there is exactly one operand matching the specified
  11885. flags. If there is exactly one operand, the operand is returned as
  11886. either a 'tree', 'def_operand_p', or 'use_operand_p'.
  11887. tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags);
  11888. use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES);
  11889. def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS);
  11890. 2. 'ZERO_SSA_OPERANDS': This macro returns true if there are no
  11891. operands matching the specified flags.
  11892. if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
  11893. return;
  11894. 3. 'NUM_SSA_OPERANDS': This macro Returns the number of operands
  11895. matching 'flags'. This actually executes a loop to perform the
  11896. count, so only use this if it is really needed.
  11897. int count = NUM_SSA_OPERANDS (stmt, flags)
  11898. If you wish to iterate over some or all operands, use the
  11899. 'FOR_EACH_SSA_{USE,DEF,TREE}_OPERAND' iterator. For example, to print
  11900. all the operands for a statement:
  11901. void
  11902. print_ops (tree stmt)
  11903. {
  11904. ssa_op_iter;
  11905. tree var;
  11906. FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)
  11907. print_generic_expr (stderr, var, TDF_SLIM);
  11908. }
  11909. How to choose the appropriate iterator:
  11910. 1. Determine whether you are need to see the operand pointers, or just
  11911. the trees, and choose the appropriate macro:
  11912. Need Macro:
  11913. ---- -------
  11914. use_operand_p FOR_EACH_SSA_USE_OPERAND
  11915. def_operand_p FOR_EACH_SSA_DEF_OPERAND
  11916. tree FOR_EACH_SSA_TREE_OPERAND
  11917. 2. You need to declare a variable of the type you are interested in,
  11918. and an ssa_op_iter structure which serves as the loop controlling
  11919. variable.
  11920. 3. Determine which operands you wish to use, and specify the flags of
  11921. those you are interested in. They are documented in
  11922. 'tree-ssa-operands.h':
  11923. #define SSA_OP_USE 0x01 /* Real USE operands. */
  11924. #define SSA_OP_DEF 0x02 /* Real DEF operands. */
  11925. #define SSA_OP_VUSE 0x04 /* VUSE operands. */
  11926. #define SSA_OP_VDEF 0x08 /* VDEF operands. */
  11927. /* These are commonly grouped operand flags. */
  11928. #define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE)
  11929. #define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF)
  11930. #define SSA_OP_ALL_VIRTUALS (SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_DEFS)
  11931. #define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE)
  11932. #define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)
  11933. #define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)
  11934. So if you want to look at the use pointers for all the 'USE' and 'VUSE'
  11935. operands, you would do something like:
  11936. use_operand_p use_p;
  11937. ssa_op_iter iter;
  11938. FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))
  11939. {
  11940. process_use_ptr (use_p);
  11941. }
  11942. The 'TREE' macro is basically the same as the 'USE' and 'DEF' macros,
  11943. only with the use or def dereferenced via 'USE_FROM_PTR (use_p)' and
  11944. 'DEF_FROM_PTR (def_p)'. Since we aren't using operand pointers, use and
  11945. defs flags can be mixed.
  11946. tree var;
  11947. ssa_op_iter iter;
  11948. FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE)
  11949. {
  11950. print_generic_expr (stderr, var, TDF_SLIM);
  11951. }
  11952. 'VDEF's are broken into two flags, one for the 'DEF' portion
  11953. ('SSA_OP_VDEF') and one for the USE portion ('SSA_OP_VUSE').
  11954. There are many examples in the code, in addition to the documentation
  11955. in 'tree-ssa-operands.h' and 'ssa-iterators.h'.
  11956. There are also a couple of variants on the stmt iterators regarding PHI
  11957. nodes.
  11958. 'FOR_EACH_PHI_ARG' Works exactly like 'FOR_EACH_SSA_USE_OPERAND',
  11959. except it works over 'PHI' arguments instead of statement operands.
  11960. /* Look at every virtual PHI use. */
  11961. FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES)
  11962. {
  11963. my_code;
  11964. }
  11965. /* Look at every real PHI use. */
  11966. FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES)
  11967. my_code;
  11968. /* Look at every PHI use. */
  11969. FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES)
  11970. my_code;
  11971. 'FOR_EACH_PHI_OR_STMT_{USE,DEF}' works exactly like
  11972. 'FOR_EACH_SSA_{USE,DEF}_OPERAND', except it will function on either a
  11973. statement or a 'PHI' node. These should be used when it is appropriate
  11974. but they are not quite as efficient as the individual 'FOR_EACH_PHI' and
  11975. 'FOR_EACH_SSA' routines.
  11976. FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags)
  11977. {
  11978. my_code;
  11979. }
  11980. FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags)
  11981. {
  11982. my_code;
  11983. }
  11984. 13.2.2 Immediate Uses
  11985. ---------------------
  11986. Immediate use information is now always available. Using the immediate
  11987. use iterators, you may examine every use of any 'SSA_NAME'. For
  11988. instance, to change each use of 'ssa_var' to 'ssa_var2' and call
  11989. fold_stmt on each stmt after that is done:
  11990. use_operand_p imm_use_p;
  11991. imm_use_iterator iterator;
  11992. tree ssa_var, stmt;
  11993. FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
  11994. {
  11995. FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
  11996. SET_USE (imm_use_p, ssa_var_2);
  11997. fold_stmt (stmt);
  11998. }
  11999. There are 2 iterators which can be used. 'FOR_EACH_IMM_USE_FAST' is
  12000. used when the immediate uses are not changed, i.e., you are looking at
  12001. the uses, but not setting them.
  12002. If they do get changed, then care must be taken that things are not
  12003. changed under the iterators, so use the 'FOR_EACH_IMM_USE_STMT' and
  12004. 'FOR_EACH_IMM_USE_ON_STMT' iterators. They attempt to preserve the
  12005. sanity of the use list by moving all the uses for a statement into a
  12006. controlled position, and then iterating over those uses. Then the
  12007. optimization can manipulate the stmt when all the uses have been
  12008. processed. This is a little slower than the FAST version since it adds
  12009. a placeholder element and must sort through the list a bit for each
  12010. statement. This placeholder element must be also be removed if the loop
  12011. is terminated early. The macro 'BREAK_FROM_IMM_USE_SAFE' is provided to
  12012. do this :
  12013. FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
  12014. {
  12015. if (stmt == last_stmt)
  12016. BREAK_FROM_SAFE_IMM_USE (iter);
  12017. FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
  12018. SET_USE (imm_use_p, ssa_var_2);
  12019. fold_stmt (stmt);
  12020. }
  12021. There are checks in 'verify_ssa' which verify that the immediate use
  12022. list is up to date, as well as checking that an optimization didn't
  12023. break from the loop without using this macro. It is safe to simply
  12024. 'break'; from a 'FOR_EACH_IMM_USE_FAST' traverse.
  12025. Some useful functions and macros:
  12026. 1. 'has_zero_uses (ssa_var)' : Returns true if there are no uses of
  12027. 'ssa_var'.
  12028. 2. 'has_single_use (ssa_var)' : Returns true if there is only a single
  12029. use of 'ssa_var'.
  12030. 3. 'single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt)' :
  12031. Returns true if there is only a single use of 'ssa_var', and also
  12032. returns the use pointer and statement it occurs in, in the second
  12033. and third parameters.
  12034. 4. 'num_imm_uses (ssa_var)' : Returns the number of immediate uses of
  12035. 'ssa_var'. It is better not to use this if possible since it
  12036. simply utilizes a loop to count the uses.
  12037. 5. 'PHI_ARG_INDEX_FROM_USE (use_p)' : Given a use within a 'PHI' node,
  12038. return the index number for the use. An assert is triggered if the
  12039. use isn't located in a 'PHI' node.
  12040. 6. 'USE_STMT (use_p)' : Return the statement a use occurs in.
  12041. Note that uses are not put into an immediate use list until their
  12042. statement is actually inserted into the instruction stream via a 'bsi_*'
  12043. routine.
  12044. It is also still possible to utilize lazy updating of statements, but
  12045. this should be used only when absolutely required. Both alias analysis
  12046. and the dominator optimizations currently do this.
  12047. When lazy updating is being used, the immediate use information is out
  12048. of date and cannot be used reliably. Lazy updating is achieved by
  12049. simply marking statements modified via calls to 'gimple_set_modified'
  12050. instead of 'update_stmt'. When lazy updating is no longer required, all
  12051. the modified statements must have 'update_stmt' called in order to bring
  12052. them up to date. This must be done before the optimization is finished,
  12053. or 'verify_ssa' will trigger an abort.
  12054. This is done with a simple loop over the instruction stream:
  12055. block_stmt_iterator bsi;
  12056. basic_block bb;
  12057. FOR_EACH_BB (bb)
  12058. {
  12059. for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
  12060. update_stmt_if_modified (bsi_stmt (bsi));
  12061. }
  12062. 
  12063. File: gccint.info, Node: SSA, Next: Alias analysis, Prev: SSA Operands, Up: Tree SSA
  12064. 13.3 Static Single Assignment
  12065. =============================
  12066. Most of the tree optimizers rely on the data flow information provided
  12067. by the Static Single Assignment (SSA) form. We implement the SSA form
  12068. as described in 'R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K.
  12069. Zadeck. Efficiently Computing Static Single Assignment Form and the
  12070. Control Dependence Graph. ACM Transactions on Programming Languages and
  12071. Systems, 13(4):451-490, October 1991'.
  12072. The SSA form is based on the premise that program variables are
  12073. assigned in exactly one location in the program. Multiple assignments
  12074. to the same variable create new versions of that variable. Naturally,
  12075. actual programs are seldom in SSA form initially because variables tend
  12076. to be assigned multiple times. The compiler modifies the program
  12077. representation so that every time a variable is assigned in the code, a
  12078. new version of the variable is created. Different versions of the same
  12079. variable are distinguished by subscripting the variable name with its
  12080. version number. Variables used in the right-hand side of expressions
  12081. are renamed so that their version number matches that of the most recent
  12082. assignment.
  12083. We represent variable versions using 'SSA_NAME' nodes. The renaming
  12084. process in 'tree-ssa.c' wraps every real and virtual operand with an
  12085. 'SSA_NAME' node which contains the version number and the statement that
  12086. created the 'SSA_NAME'. Only definitions and virtual definitions may
  12087. create new 'SSA_NAME' nodes.
  12088. Sometimes, flow of control makes it impossible to determine the most
  12089. recent version of a variable. In these cases, the compiler inserts an
  12090. artificial definition for that variable called "PHI function" or "PHI
  12091. node". This new definition merges all the incoming versions of the
  12092. variable to create a new name for it. For instance,
  12093. if (...)
  12094. a_1 = 5;
  12095. else if (...)
  12096. a_2 = 2;
  12097. else
  12098. a_3 = 13;
  12099. # a_4 = PHI <a_1, a_2, a_3>
  12100. return a_4;
  12101. Since it is not possible to determine which of the three branches will
  12102. be taken at runtime, we don't know which of 'a_1', 'a_2' or 'a_3' to use
  12103. at the return statement. So, the SSA renamer creates a new version
  12104. 'a_4' which is assigned the result of "merging" 'a_1', 'a_2' and 'a_3'.
  12105. Hence, PHI nodes mean "one of these operands. I don't know which".
  12106. The following functions can be used to examine PHI nodes
  12107. -- Function: gimple_phi_result (PHI)
  12108. Returns the 'SSA_NAME' created by PHI node PHI (i.e., PHI's LHS).
  12109. -- Function: gimple_phi_num_args (PHI)
  12110. Returns the number of arguments in PHI. This number is exactly the
  12111. number of incoming edges to the basic block holding PHI.
  12112. -- Function: gimple_phi_arg (PHI, I)
  12113. Returns Ith argument of PHI.
  12114. -- Function: gimple_phi_arg_edge (PHI, I)
  12115. Returns the incoming edge for the Ith argument of PHI.
  12116. -- Function: gimple_phi_arg_def (PHI, I)
  12117. Returns the 'SSA_NAME' for the Ith argument of PHI.
  12118. 13.3.1 Preserving the SSA form
  12119. ------------------------------
  12120. Some optimization passes make changes to the function that invalidate
  12121. the SSA property. This can happen when a pass has added new symbols or
  12122. changed the program so that variables that were previously aliased
  12123. aren't anymore. Whenever something like this happens, the affected
  12124. symbols must be renamed into SSA form again. Transformations that emit
  12125. new code or replicate existing statements will also need to update the
  12126. SSA form.
  12127. Since GCC implements two different SSA forms for register and virtual
  12128. variables, keeping the SSA form up to date depends on whether you are
  12129. updating register or virtual names. In both cases, the general idea
  12130. behind incremental SSA updates is similar: when new SSA names are
  12131. created, they typically are meant to replace other existing names in the
  12132. program.
  12133. For instance, given the following code:
  12134. 1 L0:
  12135. 2 x_1 = PHI (0, x_5)
  12136. 3 if (x_1 < 10)
  12137. 4 if (x_1 > 7)
  12138. 5 y_2 = 0
  12139. 6 else
  12140. 7 y_3 = x_1 + x_7
  12141. 8 endif
  12142. 9 x_5 = x_1 + 1
  12143. 10 goto L0;
  12144. 11 endif
  12145. Suppose that we insert new names 'x_10' and 'x_11' (lines '4' and '8').
  12146. 1 L0:
  12147. 2 x_1 = PHI (0, x_5)
  12148. 3 if (x_1 < 10)
  12149. 4 x_10 = ...
  12150. 5 if (x_1 > 7)
  12151. 6 y_2 = 0
  12152. 7 else
  12153. 8 x_11 = ...
  12154. 9 y_3 = x_1 + x_7
  12155. 10 endif
  12156. 11 x_5 = x_1 + 1
  12157. 12 goto L0;
  12158. 13 endif
  12159. We want to replace all the uses of 'x_1' with the new definitions of
  12160. 'x_10' and 'x_11'. Note that the only uses that should be replaced are
  12161. those at lines '5', '9' and '11'. Also, the use of 'x_7' at line '9'
  12162. should _not_ be replaced (this is why we cannot just mark symbol 'x' for
  12163. renaming).
  12164. Additionally, we may need to insert a PHI node at line '11' because
  12165. that is a merge point for 'x_10' and 'x_11'. So the use of 'x_1' at
  12166. line '11' will be replaced with the new PHI node. The insertion of PHI
  12167. nodes is optional. They are not strictly necessary to preserve the SSA
  12168. form, and depending on what the caller inserted, they may not even be
  12169. useful for the optimizers.
  12170. Updating the SSA form is a two step process. First, the pass has to
  12171. identify which names need to be updated and/or which symbols need to be
  12172. renamed into SSA form for the first time. When new names are introduced
  12173. to replace existing names in the program, the mapping between the old
  12174. and the new names are registered by calling 'register_new_name_mapping'
  12175. (note that if your pass creates new code by duplicating basic blocks,
  12176. the call to 'tree_duplicate_bb' will set up the necessary mappings
  12177. automatically).
  12178. After the replacement mappings have been registered and new symbols
  12179. marked for renaming, a call to 'update_ssa' makes the registered
  12180. changes. This can be done with an explicit call or by creating 'TODO'
  12181. flags in the 'tree_opt_pass' structure for your pass. There are several
  12182. 'TODO' flags that control the behavior of 'update_ssa':
  12183. * 'TODO_update_ssa'. Update the SSA form inserting PHI nodes for
  12184. newly exposed symbols and virtual names marked for updating. When
  12185. updating real names, only insert PHI nodes for a real name 'O_j' in
  12186. blocks reached by all the new and old definitions for 'O_j'. If
  12187. the iterated dominance frontier for 'O_j' is not pruned, we may end
  12188. up inserting PHI nodes in blocks that have one or more edges with
  12189. no incoming definition for 'O_j'. This would lead to uninitialized
  12190. warnings for 'O_j''s symbol.
  12191. * 'TODO_update_ssa_no_phi'. Update the SSA form without inserting
  12192. any new PHI nodes at all. This is used by passes that have either
  12193. inserted all the PHI nodes themselves or passes that need only to
  12194. patch use-def and def-def chains for virtuals (e.g., DCE).
  12195. * 'TODO_update_ssa_full_phi'. Insert PHI nodes everywhere they are
  12196. needed. No pruning of the IDF is done. This is used by passes
  12197. that need the PHI nodes for 'O_j' even if it means that some
  12198. arguments will come from the default definition of 'O_j''s symbol
  12199. (e.g., 'pass_linear_transform').
  12200. WARNING: If you need to use this flag, chances are that your pass
  12201. may be doing something wrong. Inserting PHI nodes for an old name
  12202. where not all edges carry a new replacement may lead to silent
  12203. codegen errors or spurious uninitialized warnings.
  12204. * 'TODO_update_ssa_only_virtuals'. Passes that update the SSA form
  12205. on their own may want to delegate the updating of virtual names to
  12206. the generic updater. Since FUD chains are easier to maintain, this
  12207. simplifies the work they need to do. NOTE: If this flag is used,
  12208. any OLD->NEW mappings for real names are explicitly destroyed and
  12209. only the symbols marked for renaming are processed.
  12210. 13.3.2 Examining 'SSA_NAME' nodes
  12211. ---------------------------------
  12212. The following macros can be used to examine 'SSA_NAME' nodes
  12213. -- Macro: SSA_NAME_DEF_STMT (VAR)
  12214. Returns the statement S that creates the 'SSA_NAME' VAR. If S is
  12215. an empty statement (i.e., 'IS_EMPTY_STMT (S)' returns 'true'), it
  12216. means that the first reference to this variable is a USE or a VUSE.
  12217. -- Macro: SSA_NAME_VERSION (VAR)
  12218. Returns the version number of the 'SSA_NAME' object VAR.
  12219. 13.3.3 Walking the dominator tree
  12220. ---------------------------------
  12221. -- Tree SSA function: void walk_dominator_tree (WALK_DATA, BB)
  12222. This function walks the dominator tree for the current CFG calling
  12223. a set of callback functions defined in STRUCT DOM_WALK_DATA in
  12224. 'domwalk.h'. The call back functions you need to define give you
  12225. hooks to execute custom code at various points during traversal:
  12226. 1. Once to initialize any local data needed while processing BB
  12227. and its children. This local data is pushed into an internal
  12228. stack which is automatically pushed and popped as the walker
  12229. traverses the dominator tree.
  12230. 2. Once before traversing all the statements in the BB.
  12231. 3. Once for every statement inside BB.
  12232. 4. Once after traversing all the statements and before recursing
  12233. into BB's dominator children.
  12234. 5. It then recurses into all the dominator children of BB.
  12235. 6. After recursing into all the dominator children of BB it can,
  12236. optionally, traverse every statement in BB again (i.e.,
  12237. repeating steps 2 and 3).
  12238. 7. Once after walking the statements in BB and BB's dominator
  12239. children. At this stage, the block local data stack is
  12240. popped.
  12241. 
  12242. File: gccint.info, Node: Alias analysis, Next: Memory model, Prev: SSA, Up: Tree SSA
  12243. 13.4 Alias analysis
  12244. ===================
  12245. Alias analysis in GIMPLE SSA form consists of two pieces. First the
  12246. virtual SSA web ties conflicting memory accesses and provides a SSA
  12247. use-def chain and SSA immediate-use chains for walking possibly
  12248. dependent memory accesses. Second an alias-oracle can be queried to
  12249. disambiguate explicit and implicit memory references.
  12250. 1. Memory SSA form.
  12251. All statements that may use memory have exactly one accompanied use
  12252. of a virtual SSA name that represents the state of memory at the
  12253. given point in the IL.
  12254. All statements that may define memory have exactly one accompanied
  12255. definition of a virtual SSA name using the previous state of memory
  12256. and defining the new state of memory after the given point in the
  12257. IL.
  12258. int i;
  12259. int foo (void)
  12260. {
  12261. # .MEM_3 = VDEF <.MEM_2(D)>
  12262. i = 1;
  12263. # VUSE <.MEM_3>
  12264. return i;
  12265. }
  12266. The virtual SSA names in this case are '.MEM_2(D)' and '.MEM_3'.
  12267. The store to the global variable 'i' defines '.MEM_3' invalidating
  12268. '.MEM_2(D)'. The load from 'i' uses that new state '.MEM_3'.
  12269. The virtual SSA web serves as constraints to SSA optimizers
  12270. preventing illegitimate code-motion and optimization. It also
  12271. provides a way to walk related memory statements.
  12272. 2. Points-to and escape analysis.
  12273. Points-to analysis builds a set of constraints from the GIMPLE SSA
  12274. IL representing all pointer operations and facts we do or do not
  12275. know about pointers. Solving this set of constraints yields a
  12276. conservatively correct solution for each pointer variable in the
  12277. program (though we are only interested in SSA name pointers) as to
  12278. what it may possibly point to.
  12279. This points-to solution for a given SSA name pointer is stored in
  12280. the 'pt_solution' sub-structure of the 'SSA_NAME_PTR_INFO' record.
  12281. The following accessor functions are available:
  12282. * 'pt_solution_includes'
  12283. * 'pt_solutions_intersect'
  12284. Points-to analysis also computes the solution for two special set
  12285. of pointers, 'ESCAPED' and 'CALLUSED'. Those represent all memory
  12286. that has escaped the scope of analysis or that is used by pure or
  12287. nested const calls.
  12288. 3. Type-based alias analysis
  12289. Type-based alias analysis is frontend dependent though generic
  12290. support is provided by the middle-end in 'alias.c'. TBAA code is
  12291. used by both tree optimizers and RTL optimizers.
  12292. Every language that wishes to perform language-specific alias
  12293. analysis should define a function that computes, given a 'tree'
  12294. node, an alias set for the node. Nodes in different alias sets are
  12295. not allowed to alias. For an example, see the C front-end function
  12296. 'c_get_alias_set'.
  12297. 4. Tree alias-oracle
  12298. The tree alias-oracle provides means to disambiguate two memory
  12299. references and memory references against statements. The following
  12300. queries are available:
  12301. * 'refs_may_alias_p'
  12302. * 'ref_maybe_used_by_stmt_p'
  12303. * 'stmt_may_clobber_ref_p'
  12304. In addition to those two kind of statement walkers are available
  12305. walking statements related to a reference ref.
  12306. 'walk_non_aliased_vuses' walks over dominating memory defining
  12307. statements and calls back if the statement does not clobber ref
  12308. providing the non-aliased VUSE. The walk stops at the first
  12309. clobbering statement or if asked to. 'walk_aliased_vdefs' walks
  12310. over dominating memory defining statements and calls back on each
  12311. statement clobbering ref providing its aliasing VDEF. The walk
  12312. stops if asked to.
  12313. 
  12314. File: gccint.info, Node: Memory model, Prev: Alias analysis, Up: Tree SSA
  12315. 13.5 Memory model
  12316. =================
  12317. The memory model used by the middle-end models that of the C/C++
  12318. languages. The middle-end has the notion of an effective type of a
  12319. memory region which is used for type-based alias analysis.
  12320. The following is a refinement of ISO C99 6.5/6, clarifying the block
  12321. copy case to follow common sense and extending the concept of a dynamic
  12322. effective type to objects with a declared type as required for C++.
  12323. The effective type of an object for an access to its stored value is
  12324. the declared type of the object or the effective type determined by
  12325. a previous store to it. If a value is stored into an object through
  12326. an lvalue having a type that is not a character type, then the
  12327. type of the lvalue becomes the effective type of the object for that
  12328. access and for subsequent accesses that do not modify the stored value.
  12329. If a value is copied into an object using memcpy or memmove,
  12330. or is copied as an array of character type, then the effective type
  12331. of the modified object for that access and for subsequent accesses that
  12332. do not modify the value is undetermined. For all other accesses to an
  12333. object, the effective type of the object is simply the type of the
  12334. lvalue used for the access.
  12335. 
  12336. File: gccint.info, Node: RTL, Next: Control Flow, Prev: Tree SSA, Up: Top
  12337. 14 RTL Representation
  12338. *********************
  12339. The last part of the compiler work is done on a low-level intermediate
  12340. representation called Register Transfer Language. In this language, the
  12341. instructions to be output are described, pretty much one by one, in an
  12342. algebraic form that describes what the instruction does.
  12343. RTL is inspired by Lisp lists. It has both an internal form, made up
  12344. of structures that point at other structures, and a textual form that is
  12345. used in the machine description and in printed debugging dumps. The
  12346. textual form uses nested parentheses to indicate the pointers in the
  12347. internal form.
  12348. * Menu:
  12349. * RTL Objects:: Expressions vs vectors vs strings vs integers.
  12350. * RTL Classes:: Categories of RTL expression objects, and their structure.
  12351. * Accessors:: Macros to access expression operands or vector elts.
  12352. * Special Accessors:: Macros to access specific annotations on RTL.
  12353. * Flags:: Other flags in an RTL expression.
  12354. * Machine Modes:: Describing the size and format of a datum.
  12355. * Constants:: Expressions with constant values.
  12356. * Regs and Memory:: Expressions representing register contents or memory.
  12357. * Arithmetic:: Expressions representing arithmetic on other expressions.
  12358. * Comparisons:: Expressions representing comparison of expressions.
  12359. * Bit-Fields:: Expressions representing bit-fields in memory or reg.
  12360. * Vector Operations:: Expressions involving vector datatypes.
  12361. * Conversions:: Extending, truncating, floating or fixing.
  12362. * RTL Declarations:: Declaring volatility, constancy, etc.
  12363. * Side Effects:: Expressions for storing in registers, etc.
  12364. * Incdec:: Embedded side-effects for autoincrement addressing.
  12365. * Assembler:: Representing 'asm' with operands.
  12366. * Debug Information:: Expressions representing debugging information.
  12367. * Insns:: Expression types for entire insns.
  12368. * Calls:: RTL representation of function call insns.
  12369. * Sharing:: Some expressions are unique; others *must* be copied.
  12370. * Reading RTL:: Reading textual RTL from a file.
  12371. 
  12372. File: gccint.info, Node: RTL Objects, Next: RTL Classes, Up: RTL
  12373. 14.1 RTL Object Types
  12374. =====================
  12375. RTL uses five kinds of objects: expressions, integers, wide integers,
  12376. strings and vectors. Expressions are the most important ones. An RTL
  12377. expression ("RTX", for short) is a C structure, but it is usually
  12378. referred to with a pointer; a type that is given the typedef name 'rtx'.
  12379. An integer is simply an 'int'; their written form uses decimal digits.
  12380. A wide integer is an integral object whose type is 'HOST_WIDE_INT';
  12381. their written form uses decimal digits.
  12382. A string is a sequence of characters. In core it is represented as a
  12383. 'char *' in usual C fashion, and it is written in C syntax as well.
  12384. However, strings in RTL may never be null. If you write an empty string
  12385. in a machine description, it is represented in core as a null pointer
  12386. rather than as a pointer to a null character. In certain contexts,
  12387. these null pointers instead of strings are valid. Within RTL code,
  12388. strings are most commonly found inside 'symbol_ref' expressions, but
  12389. they appear in other contexts in the RTL expressions that make up
  12390. machine descriptions.
  12391. In a machine description, strings are normally written with double
  12392. quotes, as you would in C. However, strings in machine descriptions may
  12393. extend over many lines, which is invalid C, and adjacent string
  12394. constants are not concatenated as they are in C. Any string constant
  12395. may be surrounded with a single set of parentheses. Sometimes this
  12396. makes the machine description easier to read.
  12397. There is also a special syntax for strings, which can be useful when C
  12398. code is embedded in a machine description. Wherever a string can
  12399. appear, it is also valid to write a C-style brace block. The entire
  12400. brace block, including the outermost pair of braces, is considered to be
  12401. the string constant. Double quote characters inside the braces are not
  12402. special. Therefore, if you write string constants in the C code, you
  12403. need not escape each quote character with a backslash.
  12404. A vector contains an arbitrary number of pointers to expressions. The
  12405. number of elements in the vector is explicitly present in the vector.
  12406. The written form of a vector consists of square brackets ('[...]')
  12407. surrounding the elements, in sequence and with whitespace separating
  12408. them. Vectors of length zero are not created; null pointers are used
  12409. instead.
  12410. Expressions are classified by "expression codes" (also called RTX
  12411. codes). The expression code is a name defined in 'rtl.def', which is
  12412. also (in uppercase) a C enumeration constant. The possible expression
  12413. codes and their meanings are machine-independent. The code of an RTX
  12414. can be extracted with the macro 'GET_CODE (X)' and altered with
  12415. 'PUT_CODE (X, NEWCODE)'.
  12416. The expression code determines how many operands the expression
  12417. contains, and what kinds of objects they are. In RTL, unlike Lisp, you
  12418. cannot tell by looking at an operand what kind of object it is.
  12419. Instead, you must know from its context--from the expression code of the
  12420. containing expression. For example, in an expression of code 'subreg',
  12421. the first operand is to be regarded as an expression and the second
  12422. operand as a polynomial integer. In an expression of code 'plus', there
  12423. are two operands, both of which are to be regarded as expressions. In a
  12424. 'symbol_ref' expression, there is one operand, which is to be regarded
  12425. as a string.
  12426. Expressions are written as parentheses containing the name of the
  12427. expression type, its flags and machine mode if any, and then the
  12428. operands of the expression (separated by spaces).
  12429. Expression code names in the 'md' file are written in lowercase, but
  12430. when they appear in C code they are written in uppercase. In this
  12431. manual, they are shown as follows: 'const_int'.
  12432. In a few contexts a null pointer is valid where an expression is
  12433. normally wanted. The written form of this is '(nil)'.
  12434. 
  12435. File: gccint.info, Node: RTL Classes, Next: Accessors, Prev: RTL Objects, Up: RTL
  12436. 14.2 RTL Classes and Formats
  12437. ============================
  12438. The various expression codes are divided into several "classes", which
  12439. are represented by single characters. You can determine the class of an
  12440. RTX code with the macro 'GET_RTX_CLASS (CODE)'. Currently, 'rtl.def'
  12441. defines these classes:
  12442. 'RTX_OBJ'
  12443. An RTX code that represents an actual object, such as a register
  12444. ('REG') or a memory location ('MEM', 'SYMBOL_REF'). 'LO_SUM') is
  12445. also included; instead, 'SUBREG' and 'STRICT_LOW_PART' are not in
  12446. this class, but in class 'x'.
  12447. 'RTX_CONST_OBJ'
  12448. An RTX code that represents a constant object. 'HIGH' is also
  12449. included in this class.
  12450. 'RTX_COMPARE'
  12451. An RTX code for a non-symmetric comparison, such as 'GEU' or 'LT'.
  12452. 'RTX_COMM_COMPARE'
  12453. An RTX code for a symmetric (commutative) comparison, such as 'EQ'
  12454. or 'ORDERED'.
  12455. 'RTX_UNARY'
  12456. An RTX code for a unary arithmetic operation, such as 'NEG', 'NOT',
  12457. or 'ABS'. This category also includes value extension (sign or
  12458. zero) and conversions between integer and floating point.
  12459. 'RTX_COMM_ARITH'
  12460. An RTX code for a commutative binary operation, such as 'PLUS' or
  12461. 'AND'. 'NE' and 'EQ' are comparisons, so they have class '<'.
  12462. 'RTX_BIN_ARITH'
  12463. An RTX code for a non-commutative binary operation, such as
  12464. 'MINUS', 'DIV', or 'ASHIFTRT'.
  12465. 'RTX_BITFIELD_OPS'
  12466. An RTX code for a bit-field operation. Currently only
  12467. 'ZERO_EXTRACT' and 'SIGN_EXTRACT'. These have three inputs and are
  12468. lvalues (so they can be used for insertion as well). *Note
  12469. Bit-Fields::.
  12470. 'RTX_TERNARY'
  12471. An RTX code for other three input operations. Currently only
  12472. 'IF_THEN_ELSE', 'VEC_MERGE', 'SIGN_EXTRACT', 'ZERO_EXTRACT', and
  12473. 'FMA'.
  12474. 'RTX_INSN'
  12475. An RTX code for an entire instruction: 'INSN', 'JUMP_INSN', and
  12476. 'CALL_INSN'. *Note Insns::.
  12477. 'RTX_MATCH'
  12478. An RTX code for something that matches in insns, such as
  12479. 'MATCH_DUP'. These only occur in machine descriptions.
  12480. 'RTX_AUTOINC'
  12481. An RTX code for an auto-increment addressing mode, such as
  12482. 'POST_INC'. 'XEXP (X, 0)' gives the auto-modified register.
  12483. 'RTX_EXTRA'
  12484. All other RTX codes. This category includes the remaining codes
  12485. used only in machine descriptions ('DEFINE_*', etc.). It also
  12486. includes all the codes describing side effects ('SET', 'USE',
  12487. 'CLOBBER', etc.) and the non-insns that may appear on an insn
  12488. chain, such as 'NOTE', 'BARRIER', and 'CODE_LABEL'. 'SUBREG' is
  12489. also part of this class.
  12490. For each expression code, 'rtl.def' specifies the number of contained
  12491. objects and their kinds using a sequence of characters called the
  12492. "format" of the expression code. For example, the format of 'subreg' is
  12493. 'ep'.
  12494. These are the most commonly used format characters:
  12495. 'e'
  12496. An expression (actually a pointer to an expression).
  12497. 'i'
  12498. An integer.
  12499. 'w'
  12500. A wide integer.
  12501. 's'
  12502. A string.
  12503. 'E'
  12504. A vector of expressions.
  12505. A few other format characters are used occasionally:
  12506. 'u'
  12507. 'u' is equivalent to 'e' except that it is printed differently in
  12508. debugging dumps. It is used for pointers to insns.
  12509. 'n'
  12510. 'n' is equivalent to 'i' except that it is printed differently in
  12511. debugging dumps. It is used for the line number or code number of
  12512. a 'note' insn.
  12513. 'S'
  12514. 'S' indicates a string which is optional. In the RTL objects in
  12515. core, 'S' is equivalent to 's', but when the object is read, from
  12516. an 'md' file, the string value of this operand may be omitted. An
  12517. omitted string is taken to be the null string.
  12518. 'V'
  12519. 'V' indicates a vector which is optional. In the RTL objects in
  12520. core, 'V' is equivalent to 'E', but when the object is read from an
  12521. 'md' file, the vector value of this operand may be omitted. An
  12522. omitted vector is effectively the same as a vector of no elements.
  12523. 'B'
  12524. 'B' indicates a pointer to basic block structure.
  12525. 'p'
  12526. A polynomial integer. At present this is used only for
  12527. 'SUBREG_BYTE'.
  12528. '0'
  12529. '0' means a slot whose contents do not fit any normal category.
  12530. '0' slots are not printed at all in dumps, and are often used in
  12531. special ways by small parts of the compiler.
  12532. There are macros to get the number of operands and the format of an
  12533. expression code:
  12534. 'GET_RTX_LENGTH (CODE)'
  12535. Number of operands of an RTX of code CODE.
  12536. 'GET_RTX_FORMAT (CODE)'
  12537. The format of an RTX of code CODE, as a C string.
  12538. Some classes of RTX codes always have the same format. For example, it
  12539. is safe to assume that all comparison operations have format 'ee'.
  12540. '1'
  12541. All codes of this class have format 'e'.
  12542. '<'
  12543. 'c'
  12544. '2'
  12545. All codes of these classes have format 'ee'.
  12546. 'b'
  12547. '3'
  12548. All codes of these classes have format 'eee'.
  12549. 'i'
  12550. All codes of this class have formats that begin with 'iuueiee'.
  12551. *Note Insns::. Note that not all RTL objects linked onto an insn
  12552. chain are of class 'i'.
  12553. 'o'
  12554. 'm'
  12555. 'x'
  12556. You can make no assumptions about the format of these codes.
  12557. 
  12558. File: gccint.info, Node: Accessors, Next: Special Accessors, Prev: RTL Classes, Up: RTL
  12559. 14.3 Access to Operands
  12560. =======================
  12561. Operands of expressions are accessed using the macros 'XEXP', 'XINT',
  12562. 'XWINT' and 'XSTR'. Each of these macros takes two arguments: an
  12563. expression-pointer (RTX) and an operand number (counting from zero).
  12564. Thus,
  12565. XEXP (X, 2)
  12566. accesses operand 2 of expression X, as an expression.
  12567. XINT (X, 2)
  12568. accesses the same operand as an integer. 'XSTR', used in the same
  12569. fashion, would access it as a string.
  12570. Any operand can be accessed as an integer, as an expression or as a
  12571. string. You must choose the correct method of access for the kind of
  12572. value actually stored in the operand. You would do this based on the
  12573. expression code of the containing expression. That is also how you
  12574. would know how many operands there are.
  12575. For example, if X is an 'int_list' expression, you know that it has two
  12576. operands which can be correctly accessed as 'XINT (X, 0)' and 'XEXP (X,
  12577. 1)'. Incorrect accesses like 'XEXP (X, 0)' and 'XINT (X, 1)' would
  12578. compile, but would trigger an internal compiler error when rtl checking
  12579. is enabled. Nothing stops you from writing 'XEXP (X, 28)' either, but
  12580. this will access memory past the end of the expression with
  12581. unpredictable results.
  12582. Access to operands which are vectors is more complicated. You can use
  12583. the macro 'XVEC' to get the vector-pointer itself, or the macros
  12584. 'XVECEXP' and 'XVECLEN' to access the elements and length of a vector.
  12585. 'XVEC (EXP, IDX)'
  12586. Access the vector-pointer which is operand number IDX in EXP.
  12587. 'XVECLEN (EXP, IDX)'
  12588. Access the length (number of elements) in the vector which is in
  12589. operand number IDX in EXP. This value is an 'int'.
  12590. 'XVECEXP (EXP, IDX, ELTNUM)'
  12591. Access element number ELTNUM in the vector which is in operand
  12592. number IDX in EXP. This value is an RTX.
  12593. It is up to you to make sure that ELTNUM is not negative and is
  12594. less than 'XVECLEN (EXP, IDX)'.
  12595. All the macros defined in this section expand into lvalues and
  12596. therefore can be used to assign the operands, lengths and vector
  12597. elements as well as to access them.
  12598. 
  12599. File: gccint.info, Node: Special Accessors, Next: Flags, Prev: Accessors, Up: RTL
  12600. 14.4 Access to Special Operands
  12601. ===============================
  12602. Some RTL nodes have special annotations associated with them.
  12603. 'MEM'
  12604. 'MEM_ALIAS_SET (X)'
  12605. If 0, X is not in any alias set, and may alias anything.
  12606. Otherwise, X can only alias 'MEM's in a conflicting alias set.
  12607. This value is set in a language-dependent manner in the
  12608. front-end, and should not be altered in the back-end. In some
  12609. front-ends, these numbers may correspond in some way to types,
  12610. or other language-level entities, but they need not, and the
  12611. back-end makes no such assumptions. These set numbers are
  12612. tested with 'alias_sets_conflict_p'.
  12613. 'MEM_EXPR (X)'
  12614. If this register is known to hold the value of some user-level
  12615. declaration, this is that tree node. It may also be a
  12616. 'COMPONENT_REF', in which case this is some field reference,
  12617. and 'TREE_OPERAND (X, 0)' contains the declaration, or another
  12618. 'COMPONENT_REF', or null if there is no compile-time object
  12619. associated with the reference.
  12620. 'MEM_OFFSET_KNOWN_P (X)'
  12621. True if the offset of the memory reference from 'MEM_EXPR' is
  12622. known. 'MEM_OFFSET (X)' provides the offset if so.
  12623. 'MEM_OFFSET (X)'
  12624. The offset from the start of 'MEM_EXPR'. The value is only
  12625. valid if 'MEM_OFFSET_KNOWN_P (X)' is true.
  12626. 'MEM_SIZE_KNOWN_P (X)'
  12627. True if the size of the memory reference is known. 'MEM_SIZE
  12628. (X)' provides its size if so.
  12629. 'MEM_SIZE (X)'
  12630. The size in bytes of the memory reference. This is mostly
  12631. relevant for 'BLKmode' references as otherwise the size is
  12632. implied by the mode. The value is only valid if
  12633. 'MEM_SIZE_KNOWN_P (X)' is true.
  12634. 'MEM_ALIGN (X)'
  12635. The known alignment in bits of the memory reference.
  12636. 'MEM_ADDR_SPACE (X)'
  12637. The address space of the memory reference. This will commonly
  12638. be zero for the generic address space.
  12639. 'REG'
  12640. 'ORIGINAL_REGNO (X)'
  12641. This field holds the number the register "originally" had; for
  12642. a pseudo register turned into a hard reg this will hold the
  12643. old pseudo register number.
  12644. 'REG_EXPR (X)'
  12645. If this register is known to hold the value of some user-level
  12646. declaration, this is that tree node.
  12647. 'REG_OFFSET (X)'
  12648. If this register is known to hold the value of some user-level
  12649. declaration, this is the offset into that logical storage.
  12650. 'SYMBOL_REF'
  12651. 'SYMBOL_REF_DECL (X)'
  12652. If the 'symbol_ref' X was created for a 'VAR_DECL' or a
  12653. 'FUNCTION_DECL', that tree is recorded here. If this value is
  12654. null, then X was created by back end code generation routines,
  12655. and there is no associated front end symbol table entry.
  12656. 'SYMBOL_REF_DECL' may also point to a tree of class ''c'',
  12657. that is, some sort of constant. In this case, the
  12658. 'symbol_ref' is an entry in the per-file constant pool; again,
  12659. there is no associated front end symbol table entry.
  12660. 'SYMBOL_REF_CONSTANT (X)'
  12661. If 'CONSTANT_POOL_ADDRESS_P (X)' is true, this is the constant
  12662. pool entry for X. It is null otherwise.
  12663. 'SYMBOL_REF_DATA (X)'
  12664. A field of opaque type used to store 'SYMBOL_REF_DECL' or
  12665. 'SYMBOL_REF_CONSTANT'.
  12666. 'SYMBOL_REF_FLAGS (X)'
  12667. In a 'symbol_ref', this is used to communicate various
  12668. predicates about the symbol. Some of these are common enough
  12669. to be computed by common code, some are specific to the
  12670. target. The common bits are:
  12671. 'SYMBOL_FLAG_FUNCTION'
  12672. Set if the symbol refers to a function.
  12673. 'SYMBOL_FLAG_LOCAL'
  12674. Set if the symbol is local to this "module". See
  12675. 'TARGET_BINDS_LOCAL_P'.
  12676. 'SYMBOL_FLAG_EXTERNAL'
  12677. Set if this symbol is not defined in this translation
  12678. unit. Note that this is not the inverse of
  12679. 'SYMBOL_FLAG_LOCAL'.
  12680. 'SYMBOL_FLAG_SMALL'
  12681. Set if the symbol is located in the small data section.
  12682. See 'TARGET_IN_SMALL_DATA_P'.
  12683. 'SYMBOL_REF_TLS_MODEL (X)'
  12684. This is a multi-bit field accessor that returns the
  12685. 'tls_model' to be used for a thread-local storage symbol.
  12686. It returns zero for non-thread-local symbols.
  12687. 'SYMBOL_FLAG_HAS_BLOCK_INFO'
  12688. Set if the symbol has 'SYMBOL_REF_BLOCK' and
  12689. 'SYMBOL_REF_BLOCK_OFFSET' fields.
  12690. 'SYMBOL_FLAG_ANCHOR'
  12691. Set if the symbol is used as a section anchor. "Section
  12692. anchors" are symbols that have a known position within an
  12693. 'object_block' and that can be used to access nearby
  12694. members of that block. They are used to implement
  12695. '-fsection-anchors'.
  12696. If this flag is set, then 'SYMBOL_FLAG_HAS_BLOCK_INFO'
  12697. will be too.
  12698. Bits beginning with 'SYMBOL_FLAG_MACH_DEP' are available for
  12699. the target's use.
  12700. 'SYMBOL_REF_BLOCK (X)'
  12701. If 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the 'object_block'
  12702. structure to which the symbol belongs, or 'NULL' if it has not been
  12703. assigned a block.
  12704. 'SYMBOL_REF_BLOCK_OFFSET (X)'
  12705. If 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the offset of X from
  12706. the first object in 'SYMBOL_REF_BLOCK (X)'. The value is negative
  12707. if X has not yet been assigned to a block, or it has not been given
  12708. an offset within that block.
  12709. 
  12710. File: gccint.info, Node: Flags, Next: Machine Modes, Prev: Special Accessors, Up: RTL
  12711. 14.5 Flags in an RTL Expression
  12712. ===============================
  12713. RTL expressions contain several flags (one-bit bit-fields) that are used
  12714. in certain types of expression. Most often they are accessed with the
  12715. following macros, which expand into lvalues.
  12716. 'CROSSING_JUMP_P (X)'
  12717. Nonzero in a 'jump_insn' if it crosses between hot and cold
  12718. sections, which could potentially be very far apart in the
  12719. executable. The presence of this flag indicates to other
  12720. optimizations that this branching instruction should not be
  12721. "collapsed" into a simpler branching construct. It is used when
  12722. the optimization to partition basic blocks into hot and cold
  12723. sections is turned on.
  12724. 'CONSTANT_POOL_ADDRESS_P (X)'
  12725. Nonzero in a 'symbol_ref' if it refers to part of the current
  12726. function's constant pool. For most targets these addresses are in
  12727. a '.rodata' section entirely separate from the function, but for
  12728. some targets the addresses are close to the beginning of the
  12729. function. In either case GCC assumes these addresses can be
  12730. addressed directly, perhaps with the help of base registers.
  12731. Stored in the 'unchanging' field and printed as '/u'.
  12732. 'INSN_ANNULLED_BRANCH_P (X)'
  12733. In a 'jump_insn', 'call_insn', or 'insn' indicates that the branch
  12734. is an annulling one. See the discussion under 'sequence' below.
  12735. Stored in the 'unchanging' field and printed as '/u'.
  12736. 'INSN_DELETED_P (X)'
  12737. In an 'insn', 'call_insn', 'jump_insn', 'code_label',
  12738. 'jump_table_data', 'barrier', or 'note', nonzero if the insn has
  12739. been deleted. Stored in the 'volatil' field and printed as '/v'.
  12740. 'INSN_FROM_TARGET_P (X)'
  12741. In an 'insn' or 'jump_insn' or 'call_insn' in a delay slot of a
  12742. branch, indicates that the insn is from the target of the branch.
  12743. If the branch insn has 'INSN_ANNULLED_BRANCH_P' set, this insn will
  12744. only be executed if the branch is taken. For annulled branches
  12745. with 'INSN_FROM_TARGET_P' clear, the insn will be executed only if
  12746. the branch is not taken. When 'INSN_ANNULLED_BRANCH_P' is not set,
  12747. this insn will always be executed. Stored in the 'in_struct' field
  12748. and printed as '/s'.
  12749. 'LABEL_PRESERVE_P (X)'
  12750. In a 'code_label' or 'note', indicates that the label is referenced
  12751. by code or data not visible to the RTL of a given function. Labels
  12752. referenced by a non-local goto will have this bit set. Stored in
  12753. the 'in_struct' field and printed as '/s'.
  12754. 'LABEL_REF_NONLOCAL_P (X)'
  12755. In 'label_ref' and 'reg_label' expressions, nonzero if this is a
  12756. reference to a non-local label. Stored in the 'volatil' field and
  12757. printed as '/v'.
  12758. 'MEM_KEEP_ALIAS_SET_P (X)'
  12759. In 'mem' expressions, 1 if we should keep the alias set for this
  12760. mem unchanged when we access a component. Set to 1, for example,
  12761. when we are already in a non-addressable component of an aggregate.
  12762. Stored in the 'jump' field and printed as '/j'.
  12763. 'MEM_VOLATILE_P (X)'
  12764. In 'mem', 'asm_operands', and 'asm_input' expressions, nonzero for
  12765. volatile memory references. Stored in the 'volatil' field and
  12766. printed as '/v'.
  12767. 'MEM_NOTRAP_P (X)'
  12768. In 'mem', nonzero for memory references that will not trap. Stored
  12769. in the 'call' field and printed as '/c'.
  12770. 'MEM_POINTER (X)'
  12771. Nonzero in a 'mem' if the memory reference holds a pointer. Stored
  12772. in the 'frame_related' field and printed as '/f'.
  12773. 'MEM_READONLY_P (X)'
  12774. Nonzero in a 'mem', if the memory is statically allocated and
  12775. read-only.
  12776. Read-only in this context means never modified during the lifetime
  12777. of the program, not necessarily in ROM or in write-disabled pages.
  12778. A common example of the later is a shared library's global offset
  12779. table. This table is initialized by the runtime loader, so the
  12780. memory is technically writable, but after control is transferred
  12781. from the runtime loader to the application, this memory will never
  12782. be subsequently modified.
  12783. Stored in the 'unchanging' field and printed as '/u'.
  12784. 'PREFETCH_SCHEDULE_BARRIER_P (X)'
  12785. In a 'prefetch', indicates that the prefetch is a scheduling
  12786. barrier. No other INSNs will be moved over it. Stored in the
  12787. 'volatil' field and printed as '/v'.
  12788. 'REG_FUNCTION_VALUE_P (X)'
  12789. Nonzero in a 'reg' if it is the place in which this function's
  12790. value is going to be returned. (This happens only in a hard
  12791. register.) Stored in the 'return_val' field and printed as '/i'.
  12792. 'REG_POINTER (X)'
  12793. Nonzero in a 'reg' if the register holds a pointer. Stored in the
  12794. 'frame_related' field and printed as '/f'.
  12795. 'REG_USERVAR_P (X)'
  12796. In a 'reg', nonzero if it corresponds to a variable present in the
  12797. user's source code. Zero for temporaries generated internally by
  12798. the compiler. Stored in the 'volatil' field and printed as '/v'.
  12799. The same hard register may be used also for collecting the values
  12800. of functions called by this one, but 'REG_FUNCTION_VALUE_P' is zero
  12801. in this kind of use.
  12802. 'RTL_CONST_CALL_P (X)'
  12803. In a 'call_insn' indicates that the insn represents a call to a
  12804. const function. Stored in the 'unchanging' field and printed as
  12805. '/u'.
  12806. 'RTL_PURE_CALL_P (X)'
  12807. In a 'call_insn' indicates that the insn represents a call to a
  12808. pure function. Stored in the 'return_val' field and printed as
  12809. '/i'.
  12810. 'RTL_CONST_OR_PURE_CALL_P (X)'
  12811. In a 'call_insn', true if 'RTL_CONST_CALL_P' or 'RTL_PURE_CALL_P'
  12812. is true.
  12813. 'RTL_LOOPING_CONST_OR_PURE_CALL_P (X)'
  12814. In a 'call_insn' indicates that the insn represents a possibly
  12815. infinite looping call to a const or pure function. Stored in the
  12816. 'call' field and printed as '/c'. Only true if one of
  12817. 'RTL_CONST_CALL_P' or 'RTL_PURE_CALL_P' is true.
  12818. 'RTX_FRAME_RELATED_P (X)'
  12819. Nonzero in an 'insn', 'call_insn', 'jump_insn', 'barrier', or 'set'
  12820. which is part of a function prologue and sets the stack pointer,
  12821. sets the frame pointer, or saves a register. This flag should also
  12822. be set on an instruction that sets up a temporary register to use
  12823. in place of the frame pointer. Stored in the 'frame_related' field
  12824. and printed as '/f'.
  12825. In particular, on RISC targets where there are limits on the sizes
  12826. of immediate constants, it is sometimes impossible to reach the
  12827. register save area directly from the stack pointer. In that case,
  12828. a temporary register is used that is near enough to the register
  12829. save area, and the Canonical Frame Address, i.e., DWARF2's logical
  12830. frame pointer, register must (temporarily) be changed to be this
  12831. temporary register. So, the instruction that sets this temporary
  12832. register must be marked as 'RTX_FRAME_RELATED_P'.
  12833. If the marked instruction is overly complex (defined in terms of
  12834. what 'dwarf2out_frame_debug_expr' can handle), you will also have
  12835. to create a 'REG_FRAME_RELATED_EXPR' note and attach it to the
  12836. instruction. This note should contain a simple expression of the
  12837. computation performed by this instruction, i.e., one that
  12838. 'dwarf2out_frame_debug_expr' can handle.
  12839. This flag is required for exception handling support on targets
  12840. with RTL prologues.
  12841. 'SCHED_GROUP_P (X)'
  12842. During instruction scheduling, in an 'insn', 'call_insn',
  12843. 'jump_insn' or 'jump_table_data', indicates that the previous insn
  12844. must be scheduled together with this insn. This is used to ensure
  12845. that certain groups of instructions will not be split up by the
  12846. instruction scheduling pass, for example, 'use' insns before a
  12847. 'call_insn' may not be separated from the 'call_insn'. Stored in
  12848. the 'in_struct' field and printed as '/s'.
  12849. 'SET_IS_RETURN_P (X)'
  12850. For a 'set', nonzero if it is for a return. Stored in the 'jump'
  12851. field and printed as '/j'.
  12852. 'SIBLING_CALL_P (X)'
  12853. For a 'call_insn', nonzero if the insn is a sibling call. Stored
  12854. in the 'jump' field and printed as '/j'.
  12855. 'STRING_POOL_ADDRESS_P (X)'
  12856. For a 'symbol_ref' expression, nonzero if it addresses this
  12857. function's string constant pool. Stored in the 'frame_related'
  12858. field and printed as '/f'.
  12859. 'SUBREG_PROMOTED_UNSIGNED_P (X)'
  12860. Returns a value greater then zero for a 'subreg' that has
  12861. 'SUBREG_PROMOTED_VAR_P' nonzero if the object being referenced is
  12862. kept zero-extended, zero if it is kept sign-extended, and less then
  12863. zero if it is extended some other way via the 'ptr_extend'
  12864. instruction. Stored in the 'unchanging' field and 'volatil' field,
  12865. printed as '/u' and '/v'. This macro may only be used to get the
  12866. value it may not be used to change the value. Use
  12867. 'SUBREG_PROMOTED_UNSIGNED_SET' to change the value.
  12868. 'SUBREG_PROMOTED_UNSIGNED_SET (X)'
  12869. Set the 'unchanging' and 'volatil' fields in a 'subreg' to reflect
  12870. zero, sign, or other extension. If 'volatil' is zero, then
  12871. 'unchanging' as nonzero means zero extension and as zero means sign
  12872. extension. If 'volatil' is nonzero then some other type of
  12873. extension was done via the 'ptr_extend' instruction.
  12874. 'SUBREG_PROMOTED_VAR_P (X)'
  12875. Nonzero in a 'subreg' if it was made when accessing an object that
  12876. was promoted to a wider mode in accord with the 'PROMOTED_MODE'
  12877. machine description macro (*note Storage Layout::). In this case,
  12878. the mode of the 'subreg' is the declared mode of the object and the
  12879. mode of 'SUBREG_REG' is the mode of the register that holds the
  12880. object. Promoted variables are always either sign- or
  12881. zero-extended to the wider mode on every assignment. Stored in the
  12882. 'in_struct' field and printed as '/s'.
  12883. 'SYMBOL_REF_USED (X)'
  12884. In a 'symbol_ref', indicates that X has been used. This is
  12885. normally only used to ensure that X is only declared external once.
  12886. Stored in the 'used' field.
  12887. 'SYMBOL_REF_WEAK (X)'
  12888. In a 'symbol_ref', indicates that X has been declared weak. Stored
  12889. in the 'return_val' field and printed as '/i'.
  12890. 'SYMBOL_REF_FLAG (X)'
  12891. In a 'symbol_ref', this is used as a flag for machine-specific
  12892. purposes. Stored in the 'volatil' field and printed as '/v'.
  12893. Most uses of 'SYMBOL_REF_FLAG' are historic and may be subsumed by
  12894. 'SYMBOL_REF_FLAGS'. Certainly use of 'SYMBOL_REF_FLAGS' is
  12895. mandatory if the target requires more than one bit of storage.
  12896. These are the fields to which the above macros refer:
  12897. 'call'
  12898. In a 'mem', 1 means that the memory reference will not trap.
  12899. In a 'call', 1 means that this pure or const call may possibly
  12900. infinite loop.
  12901. In an RTL dump, this flag is represented as '/c'.
  12902. 'frame_related'
  12903. In an 'insn' or 'set' expression, 1 means that it is part of a
  12904. function prologue and sets the stack pointer, sets the frame
  12905. pointer, saves a register, or sets up a temporary register to use
  12906. in place of the frame pointer.
  12907. In 'reg' expressions, 1 means that the register holds a pointer.
  12908. In 'mem' expressions, 1 means that the memory reference holds a
  12909. pointer.
  12910. In 'symbol_ref' expressions, 1 means that the reference addresses
  12911. this function's string constant pool.
  12912. In an RTL dump, this flag is represented as '/f'.
  12913. 'in_struct'
  12914. In 'reg' expressions, it is 1 if the register has its entire life
  12915. contained within the test expression of some loop.
  12916. In 'subreg' expressions, 1 means that the 'subreg' is accessing an
  12917. object that has had its mode promoted from a wider mode.
  12918. In 'label_ref' expressions, 1 means that the referenced label is
  12919. outside the innermost loop containing the insn in which the
  12920. 'label_ref' was found.
  12921. In 'code_label' expressions, it is 1 if the label may never be
  12922. deleted. This is used for labels which are the target of non-local
  12923. gotos. Such a label that would have been deleted is replaced with
  12924. a 'note' of type 'NOTE_INSN_DELETED_LABEL'.
  12925. In an 'insn' during dead-code elimination, 1 means that the insn is
  12926. dead code.
  12927. In an 'insn' or 'jump_insn' during reorg for an insn in the delay
  12928. slot of a branch, 1 means that this insn is from the target of the
  12929. branch.
  12930. In an 'insn' during instruction scheduling, 1 means that this insn
  12931. must be scheduled as part of a group together with the previous
  12932. insn.
  12933. In an RTL dump, this flag is represented as '/s'.
  12934. 'return_val'
  12935. In 'reg' expressions, 1 means the register contains the value to be
  12936. returned by the current function. On machines that pass parameters
  12937. in registers, the same register number may be used for parameters
  12938. as well, but this flag is not set on such uses.
  12939. In 'symbol_ref' expressions, 1 means the referenced symbol is weak.
  12940. In 'call' expressions, 1 means the call is pure.
  12941. In an RTL dump, this flag is represented as '/i'.
  12942. 'jump'
  12943. In a 'mem' expression, 1 means we should keep the alias set for
  12944. this mem unchanged when we access a component.
  12945. In a 'set', 1 means it is for a return.
  12946. In a 'call_insn', 1 means it is a sibling call.
  12947. In a 'jump_insn', 1 means it is a crossing jump.
  12948. In an RTL dump, this flag is represented as '/j'.
  12949. 'unchanging'
  12950. In 'reg' and 'mem' expressions, 1 means that the value of the
  12951. expression never changes.
  12952. In 'subreg' expressions, it is 1 if the 'subreg' references an
  12953. unsigned object whose mode has been promoted to a wider mode.
  12954. In an 'insn' or 'jump_insn' in the delay slot of a branch
  12955. instruction, 1 means an annulling branch should be used.
  12956. In a 'symbol_ref' expression, 1 means that this symbol addresses
  12957. something in the per-function constant pool.
  12958. In a 'call_insn' 1 means that this instruction is a call to a const
  12959. function.
  12960. In an RTL dump, this flag is represented as '/u'.
  12961. 'used'
  12962. This flag is used directly (without an access macro) at the end of
  12963. RTL generation for a function, to count the number of times an
  12964. expression appears in insns. Expressions that appear more than
  12965. once are copied, according to the rules for shared structure (*note
  12966. Sharing::).
  12967. For a 'reg', it is used directly (without an access macro) by the
  12968. leaf register renumbering code to ensure that each register is only
  12969. renumbered once.
  12970. In a 'symbol_ref', it indicates that an external declaration for
  12971. the symbol has already been written.
  12972. 'volatil'
  12973. In a 'mem', 'asm_operands', or 'asm_input' expression, it is 1 if
  12974. the memory reference is volatile. Volatile memory references may
  12975. not be deleted, reordered or combined.
  12976. In a 'symbol_ref' expression, it is used for machine-specific
  12977. purposes.
  12978. In a 'reg' expression, it is 1 if the value is a user-level
  12979. variable. 0 indicates an internal compiler temporary.
  12980. In an 'insn', 1 means the insn has been deleted.
  12981. In 'label_ref' and 'reg_label' expressions, 1 means a reference to
  12982. a non-local label.
  12983. In 'prefetch' expressions, 1 means that the containing insn is a
  12984. scheduling barrier.
  12985. In an RTL dump, this flag is represented as '/v'.
  12986. 
  12987. File: gccint.info, Node: Machine Modes, Next: Constants, Prev: Flags, Up: RTL
  12988. 14.6 Machine Modes
  12989. ==================
  12990. A machine mode describes a size of data object and the representation
  12991. used for it. In the C code, machine modes are represented by an
  12992. enumeration type, 'machine_mode', defined in 'machmode.def'. Each RTL
  12993. expression has room for a machine mode and so do certain kinds of tree
  12994. expressions (declarations and types, to be precise).
  12995. In debugging dumps and machine descriptions, the machine mode of an RTL
  12996. expression is written after the expression code with a colon to separate
  12997. them. The letters 'mode' which appear at the end of each machine mode
  12998. name are omitted. For example, '(reg:SI 38)' is a 'reg' expression with
  12999. machine mode 'SImode'. If the mode is 'VOIDmode', it is not written at
  13000. all.
  13001. Here is a table of machine modes. The term "byte" below refers to an
  13002. object of 'BITS_PER_UNIT' bits (*note Storage Layout::).
  13003. 'BImode'
  13004. "Bit" mode represents a single bit, for predicate registers.
  13005. 'QImode'
  13006. "Quarter-Integer" mode represents a single byte treated as an
  13007. integer.
  13008. 'HImode'
  13009. "Half-Integer" mode represents a two-byte integer.
  13010. 'PSImode'
  13011. "Partial Single Integer" mode represents an integer which occupies
  13012. four bytes but which doesn't really use all four. On some
  13013. machines, this is the right mode to use for pointers.
  13014. 'SImode'
  13015. "Single Integer" mode represents a four-byte integer.
  13016. 'PDImode'
  13017. "Partial Double Integer" mode represents an integer which occupies
  13018. eight bytes but which doesn't really use all eight. On some
  13019. machines, this is the right mode to use for certain pointers.
  13020. 'DImode'
  13021. "Double Integer" mode represents an eight-byte integer.
  13022. 'TImode'
  13023. "Tetra Integer" (?) mode represents a sixteen-byte integer.
  13024. 'OImode'
  13025. "Octa Integer" (?) mode represents a thirty-two-byte integer.
  13026. 'XImode'
  13027. "Hexadeca Integer" (?) mode represents a sixty-four-byte integer.
  13028. 'QFmode'
  13029. "Quarter-Floating" mode represents a quarter-precision (single
  13030. byte) floating point number.
  13031. 'HFmode'
  13032. "Half-Floating" mode represents a half-precision (two byte)
  13033. floating point number.
  13034. 'TQFmode'
  13035. "Three-Quarter-Floating" (?) mode represents a
  13036. three-quarter-precision (three byte) floating point number.
  13037. 'SFmode'
  13038. "Single Floating" mode represents a four byte floating point
  13039. number. In the common case, of a processor with IEEE arithmetic
  13040. and 8-bit bytes, this is a single-precision IEEE floating point
  13041. number; it can also be used for double-precision (on processors
  13042. with 16-bit bytes) and single-precision VAX and IBM types.
  13043. 'DFmode'
  13044. "Double Floating" mode represents an eight byte floating point
  13045. number. In the common case, of a processor with IEEE arithmetic
  13046. and 8-bit bytes, this is a double-precision IEEE floating point
  13047. number.
  13048. 'XFmode'
  13049. "Extended Floating" mode represents an IEEE extended floating point
  13050. number. This mode only has 80 meaningful bits (ten bytes). Some
  13051. processors require such numbers to be padded to twelve bytes,
  13052. others to sixteen; this mode is used for either.
  13053. 'SDmode'
  13054. "Single Decimal Floating" mode represents a four byte decimal
  13055. floating point number (as distinct from conventional binary
  13056. floating point).
  13057. 'DDmode'
  13058. "Double Decimal Floating" mode represents an eight byte decimal
  13059. floating point number.
  13060. 'TDmode'
  13061. "Tetra Decimal Floating" mode represents a sixteen byte decimal
  13062. floating point number all 128 of whose bits are meaningful.
  13063. 'TFmode'
  13064. "Tetra Floating" mode represents a sixteen byte floating point
  13065. number all 128 of whose bits are meaningful. One common use is the
  13066. IEEE quad-precision format.
  13067. 'QQmode'
  13068. "Quarter-Fractional" mode represents a single byte treated as a
  13069. signed fractional number. The default format is "s.7".
  13070. 'HQmode'
  13071. "Half-Fractional" mode represents a two-byte signed fractional
  13072. number. The default format is "s.15".
  13073. 'SQmode'
  13074. "Single Fractional" mode represents a four-byte signed fractional
  13075. number. The default format is "s.31".
  13076. 'DQmode'
  13077. "Double Fractional" mode represents an eight-byte signed fractional
  13078. number. The default format is "s.63".
  13079. 'TQmode'
  13080. "Tetra Fractional" mode represents a sixteen-byte signed fractional
  13081. number. The default format is "s.127".
  13082. 'UQQmode'
  13083. "Unsigned Quarter-Fractional" mode represents a single byte treated
  13084. as an unsigned fractional number. The default format is ".8".
  13085. 'UHQmode'
  13086. "Unsigned Half-Fractional" mode represents a two-byte unsigned
  13087. fractional number. The default format is ".16".
  13088. 'USQmode'
  13089. "Unsigned Single Fractional" mode represents a four-byte unsigned
  13090. fractional number. The default format is ".32".
  13091. 'UDQmode'
  13092. "Unsigned Double Fractional" mode represents an eight-byte unsigned
  13093. fractional number. The default format is ".64".
  13094. 'UTQmode'
  13095. "Unsigned Tetra Fractional" mode represents a sixteen-byte unsigned
  13096. fractional number. The default format is ".128".
  13097. 'HAmode'
  13098. "Half-Accumulator" mode represents a two-byte signed accumulator.
  13099. The default format is "s8.7".
  13100. 'SAmode'
  13101. "Single Accumulator" mode represents a four-byte signed
  13102. accumulator. The default format is "s16.15".
  13103. 'DAmode'
  13104. "Double Accumulator" mode represents an eight-byte signed
  13105. accumulator. The default format is "s32.31".
  13106. 'TAmode'
  13107. "Tetra Accumulator" mode represents a sixteen-byte signed
  13108. accumulator. The default format is "s64.63".
  13109. 'UHAmode'
  13110. "Unsigned Half-Accumulator" mode represents a two-byte unsigned
  13111. accumulator. The default format is "8.8".
  13112. 'USAmode'
  13113. "Unsigned Single Accumulator" mode represents a four-byte unsigned
  13114. accumulator. The default format is "16.16".
  13115. 'UDAmode'
  13116. "Unsigned Double Accumulator" mode represents an eight-byte
  13117. unsigned accumulator. The default format is "32.32".
  13118. 'UTAmode'
  13119. "Unsigned Tetra Accumulator" mode represents a sixteen-byte
  13120. unsigned accumulator. The default format is "64.64".
  13121. 'CCmode'
  13122. "Condition Code" mode represents the value of a condition code,
  13123. which is a machine-specific set of bits used to represent the
  13124. result of a comparison operation. Other machine-specific modes may
  13125. also be used for the condition code. These modes are not used on
  13126. machines that use 'cc0' (*note Condition Code::).
  13127. 'BLKmode'
  13128. "Block" mode represents values that are aggregates to which none of
  13129. the other modes apply. In RTL, only memory references can have
  13130. this mode, and only if they appear in string-move or vector
  13131. instructions. On machines which have no such instructions,
  13132. 'BLKmode' will not appear in RTL.
  13133. 'VOIDmode'
  13134. Void mode means the absence of a mode or an unspecified mode. For
  13135. example, RTL expressions of code 'const_int' have mode 'VOIDmode'
  13136. because they can be taken to have whatever mode the context
  13137. requires. In debugging dumps of RTL, 'VOIDmode' is expressed by
  13138. the absence of any mode.
  13139. 'QCmode, HCmode, SCmode, DCmode, XCmode, TCmode'
  13140. These modes stand for a complex number represented as a pair of
  13141. floating point values. The floating point values are in 'QFmode',
  13142. 'HFmode', 'SFmode', 'DFmode', 'XFmode', and 'TFmode', respectively.
  13143. 'CQImode, CHImode, CSImode, CDImode, CTImode, COImode, CPSImode'
  13144. These modes stand for a complex number represented as a pair of
  13145. integer values. The integer values are in 'QImode', 'HImode',
  13146. 'SImode', 'DImode', 'TImode', 'OImode', and 'PSImode',
  13147. respectively.
  13148. 'BND32mode BND64mode'
  13149. These modes stand for bounds for pointer of 32 and 64 bit size
  13150. respectively. Mode size is double pointer mode size.
  13151. The machine description defines 'Pmode' as a C macro which expands into
  13152. the machine mode used for addresses. Normally this is the mode whose
  13153. size is 'BITS_PER_WORD', 'SImode' on 32-bit machines.
  13154. The only modes which a machine description must support are 'QImode',
  13155. and the modes corresponding to 'BITS_PER_WORD', 'FLOAT_TYPE_SIZE' and
  13156. 'DOUBLE_TYPE_SIZE'. The compiler will attempt to use 'DImode' for
  13157. 8-byte structures and unions, but this can be prevented by overriding
  13158. the definition of 'MAX_FIXED_MODE_SIZE'. Alternatively, you can have
  13159. the compiler use 'TImode' for 16-byte structures and unions. Likewise,
  13160. you can arrange for the C type 'short int' to avoid using 'HImode'.
  13161. Very few explicit references to machine modes remain in the compiler
  13162. and these few references will soon be removed. Instead, the machine
  13163. modes are divided into mode classes. These are represented by the
  13164. enumeration type 'enum mode_class' defined in 'machmode.h'. The
  13165. possible mode classes are:
  13166. 'MODE_INT'
  13167. Integer modes. By default these are 'BImode', 'QImode', 'HImode',
  13168. 'SImode', 'DImode', 'TImode', and 'OImode'.
  13169. 'MODE_PARTIAL_INT'
  13170. The "partial integer" modes, 'PQImode', 'PHImode', 'PSImode' and
  13171. 'PDImode'.
  13172. 'MODE_FLOAT'
  13173. Floating point modes. By default these are 'QFmode', 'HFmode',
  13174. 'TQFmode', 'SFmode', 'DFmode', 'XFmode' and 'TFmode'.
  13175. 'MODE_DECIMAL_FLOAT'
  13176. Decimal floating point modes. By default these are 'SDmode',
  13177. 'DDmode' and 'TDmode'.
  13178. 'MODE_FRACT'
  13179. Signed fractional modes. By default these are 'QQmode', 'HQmode',
  13180. 'SQmode', 'DQmode' and 'TQmode'.
  13181. 'MODE_UFRACT'
  13182. Unsigned fractional modes. By default these are 'UQQmode',
  13183. 'UHQmode', 'USQmode', 'UDQmode' and 'UTQmode'.
  13184. 'MODE_ACCUM'
  13185. Signed accumulator modes. By default these are 'HAmode', 'SAmode',
  13186. 'DAmode' and 'TAmode'.
  13187. 'MODE_UACCUM'
  13188. Unsigned accumulator modes. By default these are 'UHAmode',
  13189. 'USAmode', 'UDAmode' and 'UTAmode'.
  13190. 'MODE_COMPLEX_INT'
  13191. Complex integer modes. (These are not currently implemented).
  13192. 'MODE_COMPLEX_FLOAT'
  13193. Complex floating point modes. By default these are 'QCmode',
  13194. 'HCmode', 'SCmode', 'DCmode', 'XCmode', and 'TCmode'.
  13195. 'MODE_FUNCTION'
  13196. Algol or Pascal function variables including a static chain.
  13197. (These are not currently implemented).
  13198. 'MODE_CC'
  13199. Modes representing condition code values. These are 'CCmode' plus
  13200. any 'CC_MODE' modes listed in the 'MACHINE-modes.def'. *Note Jump
  13201. Patterns::, also see *note Condition Code::.
  13202. 'MODE_POINTER_BOUNDS'
  13203. Pointer bounds modes. Used to represent values of pointer bounds
  13204. type. Operations in these modes may be executed as NOPs depending
  13205. on hardware features and environment setup.
  13206. 'MODE_RANDOM'
  13207. This is a catchall mode class for modes which don't fit into the
  13208. above classes. Currently 'VOIDmode' and 'BLKmode' are in
  13209. 'MODE_RANDOM'.
  13210. 'machmode.h' also defines various wrapper classes that combine a
  13211. 'machine_mode' with a static assertion that a particular condition
  13212. holds. The classes are:
  13213. 'scalar_int_mode'
  13214. A mode that has class 'MODE_INT' or 'MODE_PARTIAL_INT'.
  13215. 'scalar_float_mode'
  13216. A mode that has class 'MODE_FLOAT' or 'MODE_DECIMAL_FLOAT'.
  13217. 'scalar_mode'
  13218. A mode that holds a single numerical value. In practice this means
  13219. that the mode is a 'scalar_int_mode', is a 'scalar_float_mode', or
  13220. has class 'MODE_FRACT', 'MODE_UFRACT', 'MODE_ACCUM', 'MODE_UACCUM'
  13221. or 'MODE_POINTER_BOUNDS'.
  13222. 'complex_mode'
  13223. A mode that has class 'MODE_COMPLEX_INT' or 'MODE_COMPLEX_FLOAT'.
  13224. 'fixed_size_mode'
  13225. A mode whose size is known at compile time.
  13226. Named modes use the most constrained of the available wrapper classes,
  13227. if one exists, otherwise they use 'machine_mode'. For example, 'QImode'
  13228. is a 'scalar_int_mode', 'SFmode' is a 'scalar_float_mode' and 'BLKmode'
  13229. is a plain 'machine_mode'. It is possible to refer to any mode as a raw
  13230. 'machine_mode' by adding the 'E_' prefix, where 'E' stands for
  13231. "enumeration". For example, the raw 'machine_mode' names of the modes
  13232. just mentioned are 'E_QImode', 'E_SFmode' and 'E_BLKmode' respectively.
  13233. The wrapper classes implicitly convert to 'machine_mode' and to any
  13234. wrapper class that represents a more general condition; for example
  13235. 'scalar_int_mode' and 'scalar_float_mode' both convert to 'scalar_mode'
  13236. and all three convert to 'fixed_size_mode'. The classes act like
  13237. 'machine_mode's that accept only certain named modes.
  13238. 'machmode.h' also defines a template class 'opt_mode<T>' that holds a
  13239. 'T' or nothing, where 'T' can be either 'machine_mode' or one of the
  13240. wrapper classes above. The main operations on an 'opt_mode<T>' X are as
  13241. follows:
  13242. 'X.exists ()'
  13243. Return true if X holds a mode rather than nothing.
  13244. 'X.exists (&Y)'
  13245. Return true if X holds a mode rather than nothing, storing the mode
  13246. in Y if so. Y must be assignment-compatible with T.
  13247. 'X.require ()'
  13248. Assert that X holds a mode rather than nothing and return that
  13249. mode.
  13250. 'X = Y'
  13251. Set X to Y, where Y is a T or implicitly converts to a T.
  13252. The default constructor sets an 'opt_mode<T>' to nothing. There is
  13253. also a constructor that takes an initial value of type T.
  13254. It is possible to use the 'is-a.h' accessors on a 'machine_mode' or
  13255. machine mode wrapper X:
  13256. 'is_a <T> (X)'
  13257. Return true if X meets the conditions for wrapper class T.
  13258. 'is_a <T> (X, &Y)'
  13259. Return true if X meets the conditions for wrapper class T, storing
  13260. it in Y if so. Y must be assignment-compatible with T.
  13261. 'as_a <T> (X)'
  13262. Assert that X meets the conditions for wrapper class T and return
  13263. it as a T.
  13264. 'dyn_cast <T> (X)'
  13265. Return an 'opt_mode<T>' that holds X if X meets the conditions for
  13266. wrapper class T and that holds nothing otherwise.
  13267. The purpose of these wrapper classes is to give stronger static type
  13268. checking. For example, if a function takes a 'scalar_int_mode', a
  13269. caller that has a general 'machine_mode' must either check or assert
  13270. that the code is indeed a scalar integer first, using one of the
  13271. functions above.
  13272. The wrapper classes are normal C++ classes, with user-defined
  13273. constructors. Sometimes it is useful to have a POD version of the same
  13274. type, particularly if the type appears in a 'union'. The template class
  13275. 'pod_mode<T>' provides a POD version of wrapper class T. It is
  13276. assignment-compatible with T and implicitly converts to both
  13277. 'machine_mode' and T.
  13278. Here are some C macros that relate to machine modes:
  13279. 'GET_MODE (X)'
  13280. Returns the machine mode of the RTX X.
  13281. 'PUT_MODE (X, NEWMODE)'
  13282. Alters the machine mode of the RTX X to be NEWMODE.
  13283. 'NUM_MACHINE_MODES'
  13284. Stands for the number of machine modes available on the target
  13285. machine. This is one greater than the largest numeric value of any
  13286. machine mode.
  13287. 'GET_MODE_NAME (M)'
  13288. Returns the name of mode M as a string.
  13289. 'GET_MODE_CLASS (M)'
  13290. Returns the mode class of mode M.
  13291. 'GET_MODE_WIDER_MODE (M)'
  13292. Returns the next wider natural mode. For example, the expression
  13293. 'GET_MODE_WIDER_MODE (QImode)' returns 'HImode'.
  13294. 'GET_MODE_SIZE (M)'
  13295. Returns the size in bytes of a datum of mode M.
  13296. 'GET_MODE_BITSIZE (M)'
  13297. Returns the size in bits of a datum of mode M.
  13298. 'GET_MODE_IBIT (M)'
  13299. Returns the number of integral bits of a datum of fixed-point mode
  13300. M.
  13301. 'GET_MODE_FBIT (M)'
  13302. Returns the number of fractional bits of a datum of fixed-point
  13303. mode M.
  13304. 'GET_MODE_MASK (M)'
  13305. Returns a bitmask containing 1 for all bits in a word that fit
  13306. within mode M. This macro can only be used for modes whose bitsize
  13307. is less than or equal to 'HOST_BITS_PER_INT'.
  13308. 'GET_MODE_ALIGNMENT (M)'
  13309. Return the required alignment, in bits, for an object of mode M.
  13310. 'GET_MODE_UNIT_SIZE (M)'
  13311. Returns the size in bytes of the subunits of a datum of mode M.
  13312. This is the same as 'GET_MODE_SIZE' except in the case of complex
  13313. modes. For them, the unit size is the size of the real or
  13314. imaginary part.
  13315. 'GET_MODE_NUNITS (M)'
  13316. Returns the number of units contained in a mode, i.e.,
  13317. 'GET_MODE_SIZE' divided by 'GET_MODE_UNIT_SIZE'.
  13318. 'GET_CLASS_NARROWEST_MODE (C)'
  13319. Returns the narrowest mode in mode class C.
  13320. The following 3 variables are defined on every target. They can be
  13321. used to allocate buffers that are guaranteed to be large enough to hold
  13322. any value that can be represented on the target. The first two can be
  13323. overridden by defining them in the target's mode.def file, however, the
  13324. value must be a constant that can determined very early in the
  13325. compilation process. The third symbol cannot be overridden.
  13326. 'BITS_PER_UNIT'
  13327. The number of bits in an addressable storage unit (byte). If you
  13328. do not define this, the default is 8.
  13329. 'MAX_BITSIZE_MODE_ANY_INT'
  13330. The maximum bitsize of any mode that is used in integer math. This
  13331. should be overridden by the target if it uses large integers as
  13332. containers for larger vectors but otherwise never uses the contents
  13333. to compute integer values.
  13334. 'MAX_BITSIZE_MODE_ANY_MODE'
  13335. The bitsize of the largest mode on the target. The default value
  13336. is the largest mode size given in the mode definition file, which
  13337. is always correct for targets whose modes have a fixed size.
  13338. Targets that might increase the size of a mode beyond this default
  13339. should define 'MAX_BITSIZE_MODE_ANY_MODE' to the actual upper limit
  13340. in 'MACHINE-modes.def'.
  13341. The global variables 'byte_mode' and 'word_mode' contain modes whose
  13342. classes are 'MODE_INT' and whose bitsizes are either 'BITS_PER_UNIT' or
  13343. 'BITS_PER_WORD', respectively. On 32-bit machines, these are 'QImode'
  13344. and 'SImode', respectively.
  13345. 
  13346. File: gccint.info, Node: Constants, Next: Regs and Memory, Prev: Machine Modes, Up: RTL
  13347. 14.7 Constant Expression Types
  13348. ==============================
  13349. The simplest RTL expressions are those that represent constant values.
  13350. '(const_int I)'
  13351. This type of expression represents the integer value I. I is
  13352. customarily accessed with the macro 'INTVAL' as in 'INTVAL (EXP)',
  13353. which is equivalent to 'XWINT (EXP, 0)'.
  13354. Constants generated for modes with fewer bits than in
  13355. 'HOST_WIDE_INT' must be sign extended to full width (e.g., with
  13356. 'gen_int_mode'). For constants for modes with more bits than in
  13357. 'HOST_WIDE_INT' the implied high order bits of that constant are
  13358. copies of the top bit. Note however that values are neither
  13359. inherently signed nor inherently unsigned; where necessary,
  13360. signedness is determined by the rtl operation instead.
  13361. There is only one expression object for the integer value zero; it
  13362. is the value of the variable 'const0_rtx'. Likewise, the only
  13363. expression for integer value one is found in 'const1_rtx', the only
  13364. expression for integer value two is found in 'const2_rtx', and the
  13365. only expression for integer value negative one is found in
  13366. 'constm1_rtx'. Any attempt to create an expression of code
  13367. 'const_int' and value zero, one, two or negative one will return
  13368. 'const0_rtx', 'const1_rtx', 'const2_rtx' or 'constm1_rtx' as
  13369. appropriate.
  13370. Similarly, there is only one object for the integer whose value is
  13371. 'STORE_FLAG_VALUE'. It is found in 'const_true_rtx'. If
  13372. 'STORE_FLAG_VALUE' is one, 'const_true_rtx' and 'const1_rtx' will
  13373. point to the same object. If 'STORE_FLAG_VALUE' is -1,
  13374. 'const_true_rtx' and 'constm1_rtx' will point to the same object.
  13375. '(const_double:M I0 I1 ...)'
  13376. This represents either a floating-point constant of mode M or (on
  13377. older ports that do not define 'TARGET_SUPPORTS_WIDE_INT') an
  13378. integer constant too large to fit into 'HOST_BITS_PER_WIDE_INT'
  13379. bits but small enough to fit within twice that number of bits. In
  13380. the latter case, M will be 'VOIDmode'. For integral values
  13381. constants for modes with more bits than twice the number in
  13382. 'HOST_WIDE_INT' the implied high order bits of that constant are
  13383. copies of the top bit of 'CONST_DOUBLE_HIGH'. Note however that
  13384. integral values are neither inherently signed nor inherently
  13385. unsigned; where necessary, signedness is determined by the rtl
  13386. operation instead.
  13387. On more modern ports, 'CONST_DOUBLE' only represents floating point
  13388. values. New ports define 'TARGET_SUPPORTS_WIDE_INT' to make this
  13389. designation.
  13390. If M is 'VOIDmode', the bits of the value are stored in I0 and I1.
  13391. I0 is customarily accessed with the macro 'CONST_DOUBLE_LOW' and I1
  13392. with 'CONST_DOUBLE_HIGH'.
  13393. If the constant is floating point (regardless of its precision),
  13394. then the number of integers used to store the value depends on the
  13395. size of 'REAL_VALUE_TYPE' (*note Floating Point::). The integers
  13396. represent a floating point number, but not precisely in the target
  13397. machine's or host machine's floating point format. To convert them
  13398. to the precise bit pattern used by the target machine, use the
  13399. macro 'REAL_VALUE_TO_TARGET_DOUBLE' and friends (*note Data
  13400. Output::).
  13401. '(const_wide_int:M NUNITS ELT0 ...)'
  13402. This contains an array of 'HOST_WIDE_INT's that is large enough to
  13403. hold any constant that can be represented on the target. This form
  13404. of rtl is only used on targets that define
  13405. 'TARGET_SUPPORTS_WIDE_INT' to be nonzero and then 'CONST_DOUBLE's
  13406. are only used to hold floating-point values. If the target leaves
  13407. 'TARGET_SUPPORTS_WIDE_INT' defined as 0, 'CONST_WIDE_INT's are not
  13408. used and 'CONST_DOUBLE's are as they were before.
  13409. The values are stored in a compressed format. The higher-order 0s
  13410. or -1s are not represented if they are just the logical sign
  13411. extension of the number that is represented.
  13412. 'CONST_WIDE_INT_VEC (CODE)'
  13413. Returns the entire array of 'HOST_WIDE_INT's that are used to store
  13414. the value. This macro should be rarely used.
  13415. 'CONST_WIDE_INT_NUNITS (CODE)'
  13416. The number of 'HOST_WIDE_INT's used to represent the number. Note
  13417. that this generally is smaller than the number of 'HOST_WIDE_INT's
  13418. implied by the mode size.
  13419. 'CONST_WIDE_INT_NUNITS (CODE,I)'
  13420. Returns the 'i'th element of the array. Element 0 is contains the
  13421. low order bits of the constant.
  13422. '(const_fixed:M ...)'
  13423. Represents a fixed-point constant of mode M. The operand is a data
  13424. structure of type 'struct fixed_value' and is accessed with the
  13425. macro 'CONST_FIXED_VALUE'. The high part of data is accessed with
  13426. 'CONST_FIXED_VALUE_HIGH'; the low part is accessed with
  13427. 'CONST_FIXED_VALUE_LOW'.
  13428. '(const_poly_int:M [C0 C1 ...])'
  13429. Represents a 'poly_int'-style polynomial integer with coefficients
  13430. C0, C1, .... The coefficients are 'wide_int'-based integers rather
  13431. than rtxes. 'CONST_POLY_INT_COEFFS' gives the values of individual
  13432. coefficients (which is mostly only useful in low-level routines)
  13433. and 'const_poly_int_value' gives the full 'poly_int' value.
  13434. '(const_vector:M [X0 X1 ...])'
  13435. Represents a vector constant. The values in square brackets are
  13436. elements of the vector, which are always 'const_int',
  13437. 'const_wide_int', 'const_double' or 'const_fixed' expressions.
  13438. Each vector constant V is treated as a specific instance of an
  13439. arbitrary-length sequence that itself contains
  13440. 'CONST_VECTOR_NPATTERNS (V)' interleaved patterns. Each pattern
  13441. has the form:
  13442. { BASE0, BASE1, BASE1 + STEP, BASE1 + STEP * 2, ... }
  13443. The first three elements in each pattern are enough to determine
  13444. the values of the other elements. However, if all STEPs are zero,
  13445. only the first two elements are needed. If in addition each BASE1
  13446. is equal to the corresponding BASE0, only the first element in each
  13447. pattern is needed. The number of determining elements per pattern
  13448. is given by 'CONST_VECTOR_NELTS_PER_PATTERN (V)'.
  13449. For example, the constant:
  13450. { 0, 1, 2, 6, 3, 8, 4, 10, 5, 12, 6, 14, 7, 16, 8, 18 }
  13451. is interpreted as an interleaving of the sequences:
  13452. { 0, 2, 3, 4, 5, 6, 7, 8 }
  13453. { 1, 6, 8, 10, 12, 14, 16, 18 }
  13454. where the sequences are represented by the following patterns:
  13455. BASE0 == 0, BASE1 == 2, STEP == 1
  13456. BASE0 == 1, BASE1 == 6, STEP == 2
  13457. In this case:
  13458. CONST_VECTOR_NPATTERNS (V) == 2
  13459. CONST_VECTOR_NELTS_PER_PATTERN (V) == 3
  13460. Thus the first 6 elements ('{ 0, 1, 2, 6, 3, 8 }') are enough to
  13461. determine the whole sequence; we refer to them as the "encoded"
  13462. elements. They are the only elements present in the square
  13463. brackets for variable-length 'const_vector's (i.e. for
  13464. 'const_vector's whose mode M has a variable number of elements).
  13465. However, as a convenience to code that needs to handle both
  13466. 'const_vector's and 'parallel's, all elements are present in the
  13467. square brackets for fixed-length 'const_vector's; the encoding
  13468. scheme simply reduces the amount of work involved in processing
  13469. constants that follow a regular pattern.
  13470. Sometimes this scheme can create two possible encodings of the same
  13471. vector. For example { 0, 1 } could be seen as two patterns with
  13472. one element each or one pattern with two elements (BASE0 and
  13473. BASE1). The canonical encoding is always the one with the fewest
  13474. patterns or (if both encodings have the same number of petterns)
  13475. the one with the fewest encoded elements.
  13476. 'const_vector_encoding_nelts (V)' gives the total number of encoded
  13477. elements in V, which is 6 in the example above.
  13478. 'CONST_VECTOR_ENCODED_ELT (V, I)' accesses the value of encoded
  13479. element I.
  13480. 'CONST_VECTOR_DUPLICATE_P (V)' is true if V simply contains
  13481. repeated instances of 'CONST_VECTOR_NPATTERNS (V)' values. This is
  13482. a shorthand for testing 'CONST_VECTOR_NELTS_PER_PATTERN (V) == 1'.
  13483. 'CONST_VECTOR_STEPPED_P (V)' is true if at least one pattern in V
  13484. has a nonzero step. This is a shorthand for testing
  13485. 'CONST_VECTOR_NELTS_PER_PATTERN (V) == 3'.
  13486. 'CONST_VECTOR_NUNITS (V)' gives the total number of elements in V;
  13487. it is a shorthand for getting the number of units in 'GET_MODE
  13488. (V)'.
  13489. The utility function 'const_vector_elt' gives the value of an
  13490. arbitrary element as an 'rtx'. 'const_vector_int_elt' gives the
  13491. same value as a 'wide_int'.
  13492. '(const_string STR)'
  13493. Represents a constant string with value STR. Currently this is
  13494. used only for insn attributes (*note Insn Attributes::) since
  13495. constant strings in C are placed in memory.
  13496. '(symbol_ref:MODE SYMBOL)'
  13497. Represents the value of an assembler label for data. SYMBOL is a
  13498. string that describes the name of the assembler label. If it
  13499. starts with a '*', the label is the rest of SYMBOL not including
  13500. the '*'. Otherwise, the label is SYMBOL, usually prefixed with
  13501. '_'.
  13502. The 'symbol_ref' contains a mode, which is usually 'Pmode'.
  13503. Usually that is the only mode for which a symbol is directly valid.
  13504. '(label_ref:MODE LABEL)'
  13505. Represents the value of an assembler label for code. It contains
  13506. one operand, an expression, which must be a 'code_label' or a
  13507. 'note' of type 'NOTE_INSN_DELETED_LABEL' that appears in the
  13508. instruction sequence to identify the place where the label should
  13509. go.
  13510. The reason for using a distinct expression type for code label
  13511. references is so that jump optimization can distinguish them.
  13512. The 'label_ref' contains a mode, which is usually 'Pmode'. Usually
  13513. that is the only mode for which a label is directly valid.
  13514. '(const:M EXP)'
  13515. Represents a constant that is the result of an assembly-time
  13516. arithmetic computation. The operand, EXP, contains only
  13517. 'const_int', 'symbol_ref', 'label_ref' or 'unspec' expressions,
  13518. combined with 'plus' and 'minus'. Any such 'unspec's are
  13519. target-specific and typically represent some form of relocation
  13520. operator. M should be a valid address mode.
  13521. '(high:M EXP)'
  13522. Represents the high-order bits of EXP, usually a 'symbol_ref'. The
  13523. number of bits is machine-dependent and is normally the number of
  13524. bits specified in an instruction that initializes the high order
  13525. bits of a register. It is used with 'lo_sum' to represent the
  13526. typical two-instruction sequence used in RISC machines to reference
  13527. a global memory location.
  13528. M should be 'Pmode'.
  13529. The macro 'CONST0_RTX (MODE)' refers to an expression with value 0 in
  13530. mode MODE. If mode MODE is of mode class 'MODE_INT', it returns
  13531. 'const0_rtx'. If mode MODE is of mode class 'MODE_FLOAT', it returns a
  13532. 'CONST_DOUBLE' expression in mode MODE. Otherwise, it returns a
  13533. 'CONST_VECTOR' expression in mode MODE. Similarly, the macro
  13534. 'CONST1_RTX (MODE)' refers to an expression with value 1 in mode MODE
  13535. and similarly for 'CONST2_RTX'. The 'CONST1_RTX' and 'CONST2_RTX'
  13536. macros are undefined for vector modes.
  13537. 
  13538. File: gccint.info, Node: Regs and Memory, Next: Arithmetic, Prev: Constants, Up: RTL
  13539. 14.8 Registers and Memory
  13540. =========================
  13541. Here are the RTL expression types for describing access to machine
  13542. registers and to main memory.
  13543. '(reg:M N)'
  13544. For small values of the integer N (those that are less than
  13545. 'FIRST_PSEUDO_REGISTER'), this stands for a reference to machine
  13546. register number N: a "hard register". For larger values of N, it
  13547. stands for a temporary value or "pseudo register". The compiler's
  13548. strategy is to generate code assuming an unlimited number of such
  13549. pseudo registers, and later convert them into hard registers or
  13550. into memory references.
  13551. M is the machine mode of the reference. It is necessary because
  13552. machines can generally refer to each register in more than one
  13553. mode. For example, a register may contain a full word but there
  13554. may be instructions to refer to it as a half word or as a single
  13555. byte, as well as instructions to refer to it as a floating point
  13556. number of various precisions.
  13557. Even for a register that the machine can access in only one mode,
  13558. the mode must always be specified.
  13559. The symbol 'FIRST_PSEUDO_REGISTER' is defined by the machine
  13560. description, since the number of hard registers on the machine is
  13561. an invariant characteristic of the machine. Note, however, that
  13562. not all of the machine registers must be general registers. All
  13563. the machine registers that can be used for storage of data are
  13564. given hard register numbers, even those that can be used only in
  13565. certain instructions or can hold only certain types of data.
  13566. A hard register may be accessed in various modes throughout one
  13567. function, but each pseudo register is given a natural mode and is
  13568. accessed only in that mode. When it is necessary to describe an
  13569. access to a pseudo register using a nonnatural mode, a 'subreg'
  13570. expression is used.
  13571. A 'reg' expression with a machine mode that specifies more than one
  13572. word of data may actually stand for several consecutive registers.
  13573. If in addition the register number specifies a hardware register,
  13574. then it actually represents several consecutive hardware registers
  13575. starting with the specified one.
  13576. Each pseudo register number used in a function's RTL code is
  13577. represented by a unique 'reg' expression.
  13578. Some pseudo register numbers, those within the range of
  13579. 'FIRST_VIRTUAL_REGISTER' to 'LAST_VIRTUAL_REGISTER' only appear
  13580. during the RTL generation phase and are eliminated before the
  13581. optimization phases. These represent locations in the stack frame
  13582. that cannot be determined until RTL generation for the function has
  13583. been completed. The following virtual register numbers are
  13584. defined:
  13585. 'VIRTUAL_INCOMING_ARGS_REGNUM'
  13586. This points to the first word of the incoming arguments passed
  13587. on the stack. Normally these arguments are placed there by
  13588. the caller, but the callee may have pushed some arguments that
  13589. were previously passed in registers.
  13590. When RTL generation is complete, this virtual register is
  13591. replaced by the sum of the register given by
  13592. 'ARG_POINTER_REGNUM' and the value of 'FIRST_PARM_OFFSET'.
  13593. 'VIRTUAL_STACK_VARS_REGNUM'
  13594. If 'FRAME_GROWS_DOWNWARD' is defined to a nonzero value, this
  13595. points to immediately above the first variable on the stack.
  13596. Otherwise, it points to the first variable on the stack.
  13597. 'VIRTUAL_STACK_VARS_REGNUM' is replaced with the sum of the
  13598. register given by 'FRAME_POINTER_REGNUM' and the value
  13599. 'TARGET_STARTING_FRAME_OFFSET'.
  13600. 'VIRTUAL_STACK_DYNAMIC_REGNUM'
  13601. This points to the location of dynamically allocated memory on
  13602. the stack immediately after the stack pointer has been
  13603. adjusted by the amount of memory desired.
  13604. This virtual register is replaced by the sum of the register
  13605. given by 'STACK_POINTER_REGNUM' and the value
  13606. 'STACK_DYNAMIC_OFFSET'.
  13607. 'VIRTUAL_OUTGOING_ARGS_REGNUM'
  13608. This points to the location in the stack at which outgoing
  13609. arguments should be written when the stack is pre-pushed
  13610. (arguments pushed using push insns should always use
  13611. 'STACK_POINTER_REGNUM').
  13612. This virtual register is replaced by the sum of the register
  13613. given by 'STACK_POINTER_REGNUM' and the value
  13614. 'STACK_POINTER_OFFSET'.
  13615. '(subreg:M1 REG:M2 BYTENUM)'
  13616. 'subreg' expressions are used to refer to a register in a machine
  13617. mode other than its natural one, or to refer to one register of a
  13618. multi-part 'reg' that actually refers to several registers.
  13619. Each pseudo register has a natural mode. If it is necessary to
  13620. operate on it in a different mode, the register must be enclosed in
  13621. a 'subreg'.
  13622. There are currently three supported types for the first operand of
  13623. a 'subreg':
  13624. * pseudo registers This is the most common case. Most 'subreg's
  13625. have pseudo 'reg's as their first operand.
  13626. * mem 'subreg's of 'mem' were common in earlier versions of GCC
  13627. and are still supported. During the reload pass these are
  13628. replaced by plain 'mem's. On machines that do not do
  13629. instruction scheduling, use of 'subreg's of 'mem' are still
  13630. used, but this is no longer recommended. Such 'subreg's are
  13631. considered to be 'register_operand's rather than
  13632. 'memory_operand's before and during reload. Because of this,
  13633. the scheduling passes cannot properly schedule instructions
  13634. with 'subreg's of 'mem', so for machines that do scheduling,
  13635. 'subreg's of 'mem' should never be used. To support this, the
  13636. combine and recog passes have explicit code to inhibit the
  13637. creation of 'subreg's of 'mem' when 'INSN_SCHEDULING' is
  13638. defined.
  13639. The use of 'subreg's of 'mem' after the reload pass is an area
  13640. that is not well understood and should be avoided. There is
  13641. still some code in the compiler to support this, but this code
  13642. has possibly rotted. This use of 'subreg's is discouraged and
  13643. will most likely not be supported in the future.
  13644. * hard registers It is seldom necessary to wrap hard registers
  13645. in 'subreg's; such registers would normally reduce to a single
  13646. 'reg' rtx. This use of 'subreg's is discouraged and may not
  13647. be supported in the future.
  13648. 'subreg's of 'subreg's are not supported. Using
  13649. 'simplify_gen_subreg' is the recommended way to avoid this problem.
  13650. 'subreg's come in two distinct flavors, each having its own usage
  13651. and rules:
  13652. Paradoxical subregs
  13653. When M1 is strictly wider than M2, the 'subreg' expression is
  13654. called "paradoxical". The canonical test for this class of
  13655. 'subreg' is:
  13656. paradoxical_subreg_p (M1, M2)
  13657. Paradoxical 'subreg's can be used as both lvalues and rvalues.
  13658. When used as an lvalue, the low-order bits of the source value
  13659. are stored in REG and the high-order bits are discarded. When
  13660. used as an rvalue, the low-order bits of the 'subreg' are
  13661. taken from REG while the high-order bits may or may not be
  13662. defined.
  13663. The high-order bits of rvalues are defined in the following
  13664. circumstances:
  13665. * 'subreg's of 'mem' When M2 is smaller than a word, the
  13666. macro 'LOAD_EXTEND_OP', can control how the high-order
  13667. bits are defined.
  13668. * 'subreg' of 'reg's The upper bits are defined when
  13669. 'SUBREG_PROMOTED_VAR_P' is true.
  13670. 'SUBREG_PROMOTED_UNSIGNED_P' describes what the upper
  13671. bits hold. Such subregs usually represent local
  13672. variables, register variables and parameter pseudo
  13673. variables that have been promoted to a wider mode.
  13674. BYTENUM is always zero for a paradoxical 'subreg', even on
  13675. big-endian targets.
  13676. For example, the paradoxical 'subreg':
  13677. (set (subreg:SI (reg:HI X) 0) Y)
  13678. stores the lower 2 bytes of Y in X and discards the upper 2
  13679. bytes. A subsequent:
  13680. (set Z (subreg:SI (reg:HI X) 0))
  13681. would set the lower two bytes of Z to Y and set the upper two
  13682. bytes to an unknown value assuming 'SUBREG_PROMOTED_VAR_P' is
  13683. false.
  13684. Normal subregs
  13685. When M1 is at least as narrow as M2 the 'subreg' expression is
  13686. called "normal".
  13687. Normal 'subreg's restrict consideration to certain bits of
  13688. REG. For this purpose, REG is divided into
  13689. individually-addressable blocks in which each block has:
  13690. REGMODE_NATURAL_SIZE (M2)
  13691. bytes. Usually the value is 'UNITS_PER_WORD'; that is, most
  13692. targets usually treat each word of a register as being
  13693. independently addressable.
  13694. There are two types of normal 'subreg'. If M1 is known to be
  13695. no bigger than a block, the 'subreg' refers to the
  13696. least-significant part (or "lowpart") of one block of REG. If
  13697. M1 is known to be larger than a block, the 'subreg' refers to
  13698. two or more complete blocks.
  13699. When used as an lvalue, 'subreg' is a block-based accessor.
  13700. Storing to a 'subreg' modifies all the blocks of REG that
  13701. overlap the 'subreg', but it leaves the other blocks of REG
  13702. alone.
  13703. When storing to a normal 'subreg' that is smaller than a
  13704. block, the other bits of the referenced block are usually left
  13705. in an undefined state. This laxity makes it easier to
  13706. generate efficient code for such instructions. To represent
  13707. an instruction that preserves all the bits outside of those in
  13708. the 'subreg', use 'strict_low_part' or 'zero_extract' around
  13709. the 'subreg'.
  13710. BYTENUM must identify the offset of the first byte of the
  13711. 'subreg' from the start of REG, assuming that REG is laid out
  13712. in memory order. The memory order of bytes is defined by two
  13713. target macros, 'WORDS_BIG_ENDIAN' and 'BYTES_BIG_ENDIAN':
  13714. * 'WORDS_BIG_ENDIAN', if set to 1, says that byte number
  13715. zero is part of the most significant word; otherwise, it
  13716. is part of the least significant word.
  13717. * 'BYTES_BIG_ENDIAN', if set to 1, says that byte number
  13718. zero is the most significant byte within a word;
  13719. otherwise, it is the least significant byte within a
  13720. word.
  13721. On a few targets, 'FLOAT_WORDS_BIG_ENDIAN' disagrees with
  13722. 'WORDS_BIG_ENDIAN'. However, most parts of the compiler treat
  13723. floating point values as if they had the same endianness as
  13724. integer values. This works because they handle them solely as
  13725. a collection of integer values, with no particular numerical
  13726. value. Only real.c and the runtime libraries care about
  13727. 'FLOAT_WORDS_BIG_ENDIAN'.
  13728. Thus,
  13729. (subreg:HI (reg:SI X) 2)
  13730. on a 'BYTES_BIG_ENDIAN', 'UNITS_PER_WORD == 4' target is the
  13731. same as
  13732. (subreg:HI (reg:SI X) 0)
  13733. on a little-endian, 'UNITS_PER_WORD == 4' target. Both
  13734. 'subreg's access the lower two bytes of register X.
  13735. Note that the byte offset is a polynomial integer; it may not
  13736. be a compile-time constant on targets with variable-sized
  13737. modes. However, the restrictions above mean that there are
  13738. only a certain set of acceptable offsets for a given
  13739. combination of M1 and M2. The compiler can always tell which
  13740. blocks a valid subreg occupies, and whether the subreg is a
  13741. lowpart of a block.
  13742. A 'MODE_PARTIAL_INT' mode behaves as if it were as wide as the
  13743. corresponding 'MODE_INT' mode, except that it has an unknown number
  13744. of undefined bits. For example:
  13745. (subreg:PSI (reg:SI 0) 0)
  13746. accesses the whole of '(reg:SI 0)', but the exact relationship
  13747. between the 'PSImode' value and the 'SImode' value is not defined.
  13748. If we assume 'REGMODE_NATURAL_SIZE (DImode) <= 4', then the
  13749. following two 'subreg's:
  13750. (subreg:PSI (reg:DI 0) 0)
  13751. (subreg:PSI (reg:DI 0) 4)
  13752. represent independent 4-byte accesses to the two halves of '(reg:DI
  13753. 0)'. Both 'subreg's have an unknown number of undefined bits.
  13754. If 'REGMODE_NATURAL_SIZE (PSImode) <= 2' then these two 'subreg's:
  13755. (subreg:HI (reg:PSI 0) 0)
  13756. (subreg:HI (reg:PSI 0) 2)
  13757. represent independent 2-byte accesses that together span the whole
  13758. of '(reg:PSI 0)'. Storing to the first 'subreg' does not affect
  13759. the value of the second, and vice versa. '(reg:PSI 0)' has an
  13760. unknown number of undefined bits, so the assignment:
  13761. (set (subreg:HI (reg:PSI 0) 0) (reg:HI 4))
  13762. does not guarantee that '(subreg:HI (reg:PSI 0) 0)' has the value
  13763. '(reg:HI 4)'.
  13764. The rules above apply to both pseudo REGs and hard REGs. If the
  13765. semantics are not correct for particular combinations of M1, M2 and
  13766. hard REG, the target-specific code must ensure that those
  13767. combinations are never used. For example:
  13768. TARGET_CAN_CHANGE_MODE_CLASS (M2, M1, CLASS)
  13769. must be false for every class CLASS that includes REG.
  13770. GCC must be able to determine at compile time whether a subreg is
  13771. paradoxical, whether it occupies a whole number of blocks, or
  13772. whether it is a lowpart of a block. This means that certain
  13773. combinations of variable-sized mode are not permitted. For
  13774. example, if M2 holds N 'SI' values, where N is greater than zero,
  13775. it is not possible to form a 'DI' 'subreg' of it; such a 'subreg'
  13776. would be paradoxical when N is 1 but not when N is greater than 1.
  13777. The first operand of a 'subreg' expression is customarily accessed
  13778. with the 'SUBREG_REG' macro and the second operand is customarily
  13779. accessed with the 'SUBREG_BYTE' macro.
  13780. It has been several years since a platform in which
  13781. 'BYTES_BIG_ENDIAN' not equal to 'WORDS_BIG_ENDIAN' has been tested.
  13782. Anyone wishing to support such a platform in the future may be
  13783. confronted with code rot.
  13784. '(scratch:M)'
  13785. This represents a scratch register that will be required for the
  13786. execution of a single instruction and not used subsequently. It is
  13787. converted into a 'reg' by either the local register allocator or
  13788. the reload pass.
  13789. 'scratch' is usually present inside a 'clobber' operation (*note
  13790. Side Effects::).
  13791. '(cc0)'
  13792. This refers to the machine's condition code register. It has no
  13793. operands and may not have a machine mode. There are two ways to
  13794. use it:
  13795. * To stand for a complete set of condition code flags. This is
  13796. best on most machines, where each comparison sets the entire
  13797. series of flags.
  13798. With this technique, '(cc0)' may be validly used in only two
  13799. contexts: as the destination of an assignment (in test and
  13800. compare instructions) and in comparison operators comparing
  13801. against zero ('const_int' with value zero; that is to say,
  13802. 'const0_rtx').
  13803. * To stand for a single flag that is the result of a single
  13804. condition. This is useful on machines that have only a single
  13805. flag bit, and in which comparison instructions must specify
  13806. the condition to test.
  13807. With this technique, '(cc0)' may be validly used in only two
  13808. contexts: as the destination of an assignment (in test and
  13809. compare instructions) where the source is a comparison
  13810. operator, and as the first operand of 'if_then_else' (in a
  13811. conditional branch).
  13812. There is only one expression object of code 'cc0'; it is the value
  13813. of the variable 'cc0_rtx'. Any attempt to create an expression of
  13814. code 'cc0' will return 'cc0_rtx'.
  13815. Instructions can set the condition code implicitly. On many
  13816. machines, nearly all instructions set the condition code based on
  13817. the value that they compute or store. It is not necessary to
  13818. record these actions explicitly in the RTL because the machine
  13819. description includes a prescription for recognizing the
  13820. instructions that do so (by means of the macro 'NOTICE_UPDATE_CC').
  13821. *Note Condition Code::. Only instructions whose sole purpose is to
  13822. set the condition code, and instructions that use the condition
  13823. code, need mention '(cc0)'.
  13824. On some machines, the condition code register is given a register
  13825. number and a 'reg' is used instead of '(cc0)'. This is usually the
  13826. preferable approach if only a small subset of instructions modify
  13827. the condition code. Other machines store condition codes in
  13828. general registers; in such cases a pseudo register should be used.
  13829. Some machines, such as the SPARC and RS/6000, have two sets of
  13830. arithmetic instructions, one that sets and one that does not set
  13831. the condition code. This is best handled by normally generating
  13832. the instruction that does not set the condition code, and making a
  13833. pattern that both performs the arithmetic and sets the condition
  13834. code register (which would not be '(cc0)' in this case). For
  13835. examples, search for 'addcc' and 'andcc' in 'sparc.md'.
  13836. '(pc)'
  13837. This represents the machine's program counter. It has no operands
  13838. and may not have a machine mode. '(pc)' may be validly used only
  13839. in certain specific contexts in jump instructions.
  13840. There is only one expression object of code 'pc'; it is the value
  13841. of the variable 'pc_rtx'. Any attempt to create an expression of
  13842. code 'pc' will return 'pc_rtx'.
  13843. All instructions that do not jump alter the program counter
  13844. implicitly by incrementing it, but there is no need to mention this
  13845. in the RTL.
  13846. '(mem:M ADDR ALIAS)'
  13847. This RTX represents a reference to main memory at an address
  13848. represented by the expression ADDR. M specifies how large a unit
  13849. of memory is accessed. ALIAS specifies an alias set for the
  13850. reference. In general two items are in different alias sets if
  13851. they cannot reference the same memory address.
  13852. The construct '(mem:BLK (scratch))' is considered to alias all
  13853. other memories. Thus it may be used as a memory barrier in
  13854. epilogue stack deallocation patterns.
  13855. '(concatM RTX RTX)'
  13856. This RTX represents the concatenation of two other RTXs. This is
  13857. used for complex values. It should only appear in the RTL attached
  13858. to declarations and during RTL generation. It should not appear in
  13859. the ordinary insn chain.
  13860. '(concatnM [RTX ...])'
  13861. This RTX represents the concatenation of all the RTX to make a
  13862. single value. Like 'concat', this should only appear in
  13863. declarations, and not in the insn chain.
  13864. 
  13865. File: gccint.info, Node: Arithmetic, Next: Comparisons, Prev: Regs and Memory, Up: RTL
  13866. 14.9 RTL Expressions for Arithmetic
  13867. ===================================
  13868. Unless otherwise specified, all the operands of arithmetic expressions
  13869. must be valid for mode M. An operand is valid for mode M if it has mode
  13870. M, or if it is a 'const_int' or 'const_double' and M is a mode of class
  13871. 'MODE_INT'.
  13872. For commutative binary operations, constants should be placed in the
  13873. second operand.
  13874. '(plus:M X Y)'
  13875. '(ss_plus:M X Y)'
  13876. '(us_plus:M X Y)'
  13877. These three expressions all represent the sum of the values
  13878. represented by X and Y carried out in machine mode M. They differ
  13879. in their behavior on overflow of integer modes. 'plus' wraps round
  13880. modulo the width of M; 'ss_plus' saturates at the maximum signed
  13881. value representable in M; 'us_plus' saturates at the maximum
  13882. unsigned value.
  13883. '(lo_sum:M X Y)'
  13884. This expression represents the sum of X and the low-order bits of
  13885. Y. It is used with 'high' (*note Constants::) to represent the
  13886. typical two-instruction sequence used in RISC machines to reference
  13887. a global memory location.
  13888. The number of low order bits is machine-dependent but is normally
  13889. the number of bits in a 'Pmode' item minus the number of bits set
  13890. by 'high'.
  13891. M should be 'Pmode'.
  13892. '(minus:M X Y)'
  13893. '(ss_minus:M X Y)'
  13894. '(us_minus:M X Y)'
  13895. These three expressions represent the result of subtracting Y from
  13896. X, carried out in mode M. Behavior on overflow is the same as for
  13897. the three variants of 'plus' (see above).
  13898. '(compare:M X Y)'
  13899. Represents the result of subtracting Y from X for purposes of
  13900. comparison. The result is computed without overflow, as if with
  13901. infinite precision.
  13902. Of course, machines cannot really subtract with infinite precision.
  13903. However, they can pretend to do so when only the sign of the result
  13904. will be used, which is the case when the result is stored in the
  13905. condition code. And that is the _only_ way this kind of expression
  13906. may validly be used: as a value to be stored in the condition
  13907. codes, either '(cc0)' or a register. *Note Comparisons::.
  13908. The mode M is not related to the modes of X and Y, but instead is
  13909. the mode of the condition code value. If '(cc0)' is used, it is
  13910. 'VOIDmode'. Otherwise it is some mode in class 'MODE_CC', often
  13911. 'CCmode'. *Note Condition Code::. If M is 'VOIDmode' or 'CCmode',
  13912. the operation returns sufficient information (in an unspecified
  13913. format) so that any comparison operator can be applied to the
  13914. result of the 'COMPARE' operation. For other modes in class
  13915. 'MODE_CC', the operation only returns a subset of this information.
  13916. Normally, X and Y must have the same mode. Otherwise, 'compare' is
  13917. valid only if the mode of X is in class 'MODE_INT' and Y is a
  13918. 'const_int' or 'const_double' with mode 'VOIDmode'. The mode of X
  13919. determines what mode the comparison is to be done in; thus it must
  13920. not be 'VOIDmode'.
  13921. If one of the operands is a constant, it should be placed in the
  13922. second operand and the comparison code adjusted as appropriate.
  13923. A 'compare' specifying two 'VOIDmode' constants is not valid since
  13924. there is no way to know in what mode the comparison is to be
  13925. performed; the comparison must either be folded during the
  13926. compilation or the first operand must be loaded into a register
  13927. while its mode is still known.
  13928. '(neg:M X)'
  13929. '(ss_neg:M X)'
  13930. '(us_neg:M X)'
  13931. These two expressions represent the negation (subtraction from
  13932. zero) of the value represented by X, carried out in mode M. They
  13933. differ in the behavior on overflow of integer modes. In the case
  13934. of 'neg', the negation of the operand may be a number not
  13935. representable in mode M, in which case it is truncated to M.
  13936. 'ss_neg' and 'us_neg' ensure that an out-of-bounds result saturates
  13937. to the maximum or minimum signed or unsigned value.
  13938. '(mult:M X Y)'
  13939. '(ss_mult:M X Y)'
  13940. '(us_mult:M X Y)'
  13941. Represents the signed product of the values represented by X and Y
  13942. carried out in machine mode M. 'ss_mult' and 'us_mult' ensure that
  13943. an out-of-bounds result saturates to the maximum or minimum signed
  13944. or unsigned value.
  13945. Some machines support a multiplication that generates a product
  13946. wider than the operands. Write the pattern for this as
  13947. (mult:M (sign_extend:M X) (sign_extend:M Y))
  13948. where M is wider than the modes of X and Y, which need not be the
  13949. same.
  13950. For unsigned widening multiplication, use the same idiom, but with
  13951. 'zero_extend' instead of 'sign_extend'.
  13952. '(fma:M X Y Z)'
  13953. Represents the 'fma', 'fmaf', and 'fmal' builtin functions, which
  13954. compute 'X * Y + Z' without doing an intermediate rounding step.
  13955. '(div:M X Y)'
  13956. '(ss_div:M X Y)'
  13957. Represents the quotient in signed division of X by Y, carried out
  13958. in machine mode M. If M is a floating point mode, it represents
  13959. the exact quotient; otherwise, the integerized quotient. 'ss_div'
  13960. ensures that an out-of-bounds result saturates to the maximum or
  13961. minimum signed value.
  13962. Some machines have division instructions in which the operands and
  13963. quotient widths are not all the same; you should represent such
  13964. instructions using 'truncate' and 'sign_extend' as in,
  13965. (truncate:M1 (div:M2 X (sign_extend:M2 Y)))
  13966. '(udiv:M X Y)'
  13967. '(us_div:M X Y)'
  13968. Like 'div' but represents unsigned division. 'us_div' ensures that
  13969. an out-of-bounds result saturates to the maximum or minimum
  13970. unsigned value.
  13971. '(mod:M X Y)'
  13972. '(umod:M X Y)'
  13973. Like 'div' and 'udiv' but represent the remainder instead of the
  13974. quotient.
  13975. '(smin:M X Y)'
  13976. '(smax:M X Y)'
  13977. Represents the smaller (for 'smin') or larger (for 'smax') of X and
  13978. Y, interpreted as signed values in mode M. When used with floating
  13979. point, if both operands are zeros, or if either operand is 'NaN',
  13980. then it is unspecified which of the two operands is returned as the
  13981. result.
  13982. '(umin:M X Y)'
  13983. '(umax:M X Y)'
  13984. Like 'smin' and 'smax', but the values are interpreted as unsigned
  13985. integers.
  13986. '(not:M X)'
  13987. Represents the bitwise complement of the value represented by X,
  13988. carried out in mode M, which must be a fixed-point machine mode.
  13989. '(and:M X Y)'
  13990. Represents the bitwise logical-and of the values represented by X
  13991. and Y, carried out in machine mode M, which must be a fixed-point
  13992. machine mode.
  13993. '(ior:M X Y)'
  13994. Represents the bitwise inclusive-or of the values represented by X
  13995. and Y, carried out in machine mode M, which must be a fixed-point
  13996. mode.
  13997. '(xor:M X Y)'
  13998. Represents the bitwise exclusive-or of the values represented by X
  13999. and Y, carried out in machine mode M, which must be a fixed-point
  14000. mode.
  14001. '(ashift:M X C)'
  14002. '(ss_ashift:M X C)'
  14003. '(us_ashift:M X C)'
  14004. These three expressions represent the result of arithmetically
  14005. shifting X left by C places. They differ in their behavior on
  14006. overflow of integer modes. An 'ashift' operation is a plain shift
  14007. with no special behavior in case of a change in the sign bit;
  14008. 'ss_ashift' and 'us_ashift' saturates to the minimum or maximum
  14009. representable value if any of the bits shifted out differs from the
  14010. final sign bit.
  14011. X have mode M, a fixed-point machine mode. C be a fixed-point mode
  14012. or be a constant with mode 'VOIDmode'; which mode is determined by
  14013. the mode called for in the machine description entry for the
  14014. left-shift instruction. For example, on the VAX, the mode of C is
  14015. 'QImode' regardless of M.
  14016. '(lshiftrt:M X C)'
  14017. '(ashiftrt:M X C)'
  14018. Like 'ashift' but for right shift. Unlike the case for left shift,
  14019. these two operations are distinct.
  14020. '(rotate:M X C)'
  14021. '(rotatert:M X C)'
  14022. Similar but represent left and right rotate. If C is a constant,
  14023. use 'rotate'.
  14024. '(abs:M X)'
  14025. '(ss_abs:M X)'
  14026. Represents the absolute value of X, computed in mode M. 'ss_abs'
  14027. ensures that an out-of-bounds result saturates to the maximum
  14028. signed value.
  14029. '(sqrt:M X)'
  14030. Represents the square root of X, computed in mode M. Most often M
  14031. will be a floating point mode.
  14032. '(ffs:M X)'
  14033. Represents one plus the index of the least significant 1-bit in X,
  14034. represented as an integer of mode M. (The value is zero if X is
  14035. zero.) The mode of X must be M or 'VOIDmode'.
  14036. '(clrsb:M X)'
  14037. Represents the number of redundant leading sign bits in X,
  14038. represented as an integer of mode M, starting at the most
  14039. significant bit position. This is one less than the number of
  14040. leading sign bits (either 0 or 1), with no special cases. The mode
  14041. of X must be M or 'VOIDmode'.
  14042. '(clz:M X)'
  14043. Represents the number of leading 0-bits in X, represented as an
  14044. integer of mode M, starting at the most significant bit position.
  14045. If X is zero, the value is determined by
  14046. 'CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Note that this is one
  14047. of the few expressions that is not invariant under widening. The
  14048. mode of X must be M or 'VOIDmode'.
  14049. '(ctz:M X)'
  14050. Represents the number of trailing 0-bits in X, represented as an
  14051. integer of mode M, starting at the least significant bit position.
  14052. If X is zero, the value is determined by
  14053. 'CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Except for this case,
  14054. 'ctz(x)' is equivalent to 'ffs(X) - 1'. The mode of X must be M or
  14055. 'VOIDmode'.
  14056. '(popcount:M X)'
  14057. Represents the number of 1-bits in X, represented as an integer of
  14058. mode M. The mode of X must be M or 'VOIDmode'.
  14059. '(parity:M X)'
  14060. Represents the number of 1-bits modulo 2 in X, represented as an
  14061. integer of mode M. The mode of X must be M or 'VOIDmode'.
  14062. '(bswap:M X)'
  14063. Represents the value X with the order of bytes reversed, carried
  14064. out in mode M, which must be a fixed-point machine mode. The mode
  14065. of X must be M or 'VOIDmode'.
  14066. 
  14067. File: gccint.info, Node: Comparisons, Next: Bit-Fields, Prev: Arithmetic, Up: RTL
  14068. 14.10 Comparison Operations
  14069. ===========================
  14070. Comparison operators test a relation on two operands and are considered
  14071. to represent a machine-dependent nonzero value described by, but not
  14072. necessarily equal to, 'STORE_FLAG_VALUE' (*note Misc::) if the relation
  14073. holds, or zero if it does not, for comparison operators whose results
  14074. have a 'MODE_INT' mode, 'FLOAT_STORE_FLAG_VALUE' (*note Misc::) if the
  14075. relation holds, or zero if it does not, for comparison operators that
  14076. return floating-point values, and a vector of either
  14077. 'VECTOR_STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or of
  14078. zeros if it does not, for comparison operators that return vector
  14079. results. The mode of the comparison operation is independent of the
  14080. mode of the data being compared. If the comparison operation is being
  14081. tested (e.g., the first operand of an 'if_then_else'), the mode must be
  14082. 'VOIDmode'.
  14083. There are two ways that comparison operations may be used. The
  14084. comparison operators may be used to compare the condition codes '(cc0)'
  14085. against zero, as in '(eq (cc0) (const_int 0))'. Such a construct
  14086. actually refers to the result of the preceding instruction in which the
  14087. condition codes were set. The instruction setting the condition code
  14088. must be adjacent to the instruction using the condition code; only
  14089. 'note' insns may separate them.
  14090. Alternatively, a comparison operation may directly compare two data
  14091. objects. The mode of the comparison is determined by the operands; they
  14092. must both be valid for a common machine mode. A comparison with both
  14093. operands constant would be invalid as the machine mode could not be
  14094. deduced from it, but such a comparison should never exist in RTL due to
  14095. constant folding.
  14096. In the example above, if '(cc0)' were last set to '(compare X Y)', the
  14097. comparison operation is identical to '(eq X Y)'. Usually only one style
  14098. of comparisons is supported on a particular machine, but the combine
  14099. pass will try to merge the operations to produce the 'eq' shown in case
  14100. it exists in the context of the particular insn involved.
  14101. Inequality comparisons come in two flavors, signed and unsigned. Thus,
  14102. there are distinct expression codes 'gt' and 'gtu' for signed and
  14103. unsigned greater-than. These can produce different results for the same
  14104. pair of integer values: for example, 1 is signed greater-than -1 but not
  14105. unsigned greater-than, because -1 when regarded as unsigned is actually
  14106. '0xffffffff' which is greater than 1.
  14107. The signed comparisons are also used for floating point values.
  14108. Floating point comparisons are distinguished by the machine modes of the
  14109. operands.
  14110. '(eq:M X Y)'
  14111. 'STORE_FLAG_VALUE' if the values represented by X and Y are equal,
  14112. otherwise 0.
  14113. '(ne:M X Y)'
  14114. 'STORE_FLAG_VALUE' if the values represented by X and Y are not
  14115. equal, otherwise 0.
  14116. '(gt:M X Y)'
  14117. 'STORE_FLAG_VALUE' if the X is greater than Y. If they are
  14118. fixed-point, the comparison is done in a signed sense.
  14119. '(gtu:M X Y)'
  14120. Like 'gt' but does unsigned comparison, on fixed-point numbers
  14121. only.
  14122. '(lt:M X Y)'
  14123. '(ltu:M X Y)'
  14124. Like 'gt' and 'gtu' but test for "less than".
  14125. '(ge:M X Y)'
  14126. '(geu:M X Y)'
  14127. Like 'gt' and 'gtu' but test for "greater than or equal".
  14128. '(le:M X Y)'
  14129. '(leu:M X Y)'
  14130. Like 'gt' and 'gtu' but test for "less than or equal".
  14131. '(if_then_else COND THEN ELSE)'
  14132. This is not a comparison operation but is listed here because it is
  14133. always used in conjunction with a comparison operation. To be
  14134. precise, COND is a comparison expression. This expression
  14135. represents a choice, according to COND, between the value
  14136. represented by THEN and the one represented by ELSE.
  14137. On most machines, 'if_then_else' expressions are valid only to
  14138. express conditional jumps.
  14139. '(cond [TEST1 VALUE1 TEST2 VALUE2 ...] DEFAULT)'
  14140. Similar to 'if_then_else', but more general. Each of TEST1, TEST2,
  14141. ... is performed in turn. The result of this expression is the
  14142. VALUE corresponding to the first nonzero test, or DEFAULT if none
  14143. of the tests are nonzero expressions.
  14144. This is currently not valid for instruction patterns and is
  14145. supported only for insn attributes. *Note Insn Attributes::.
  14146. 
  14147. File: gccint.info, Node: Bit-Fields, Next: Vector Operations, Prev: Comparisons, Up: RTL
  14148. 14.11 Bit-Fields
  14149. ================
  14150. Special expression codes exist to represent bit-field instructions.
  14151. '(sign_extract:M LOC SIZE POS)'
  14152. This represents a reference to a sign-extended bit-field contained
  14153. or starting in LOC (a memory or register reference). The bit-field
  14154. is SIZE bits wide and starts at bit POS. The compilation option
  14155. 'BITS_BIG_ENDIAN' says which end of the memory unit POS counts
  14156. from.
  14157. If LOC is in memory, its mode must be a single-byte integer mode.
  14158. If LOC is in a register, the mode to use is specified by the
  14159. operand of the 'insv' or 'extv' pattern (*note Standard Names::)
  14160. and is usually a full-word integer mode, which is the default if
  14161. none is specified.
  14162. The mode of POS is machine-specific and is also specified in the
  14163. 'insv' or 'extv' pattern.
  14164. The mode M is the same as the mode that would be used for LOC if it
  14165. were a register.
  14166. A 'sign_extract' can not appear as an lvalue, or part thereof, in
  14167. RTL.
  14168. '(zero_extract:M LOC SIZE POS)'
  14169. Like 'sign_extract' but refers to an unsigned or zero-extended
  14170. bit-field. The same sequence of bits are extracted, but they are
  14171. filled to an entire word with zeros instead of by sign-extension.
  14172. Unlike 'sign_extract', this type of expressions can be lvalues in
  14173. RTL; they may appear on the left side of an assignment, indicating
  14174. insertion of a value into the specified bit-field.
  14175. 
  14176. File: gccint.info, Node: Vector Operations, Next: Conversions, Prev: Bit-Fields, Up: RTL
  14177. 14.12 Vector Operations
  14178. =======================
  14179. All normal RTL expressions can be used with vector modes; they are
  14180. interpreted as operating on each part of the vector independently.
  14181. Additionally, there are a few new expressions to describe specific
  14182. vector operations.
  14183. '(vec_merge:M VEC1 VEC2 ITEMS)'
  14184. This describes a merge operation between two vectors. The result
  14185. is a vector of mode M; its elements are selected from either VEC1
  14186. or VEC2. Which elements are selected is described by ITEMS, which
  14187. is a bit mask represented by a 'const_int'; a zero bit indicates
  14188. the corresponding element in the result vector is taken from VEC2
  14189. while a set bit indicates it is taken from VEC1.
  14190. '(vec_select:M VEC1 SELECTION)'
  14191. This describes an operation that selects parts of a vector. VEC1
  14192. is the source vector, and SELECTION is a 'parallel' that contains a
  14193. 'const_int' for each of the subparts of the result vector, giving
  14194. the number of the source subpart that should be stored into it.
  14195. The result mode M is either the submode for a single element of
  14196. VEC1 (if only one subpart is selected), or another vector mode with
  14197. that element submode (if multiple subparts are selected).
  14198. '(vec_concat:M X1 X2)'
  14199. Describes a vector concat operation. The result is a concatenation
  14200. of the vectors or scalars X1 and X2; its length is the sum of the
  14201. lengths of the two inputs.
  14202. '(vec_duplicate:M X)'
  14203. This operation converts a scalar into a vector or a small vector
  14204. into a larger one by duplicating the input values. The output
  14205. vector mode must have the same submodes as the input vector mode or
  14206. the scalar modes, and the number of output parts must be an integer
  14207. multiple of the number of input parts.
  14208. '(vec_series:M BASE STEP)'
  14209. This operation creates a vector in which element I is equal to
  14210. 'BASE + I*STEP'. M must be a vector integer mode.
  14211. 
  14212. File: gccint.info, Node: Conversions, Next: RTL Declarations, Prev: Vector Operations, Up: RTL
  14213. 14.13 Conversions
  14214. =================
  14215. All conversions between machine modes must be represented by explicit
  14216. conversion operations. For example, an expression which is the sum of a
  14217. byte and a full word cannot be written as '(plus:SI (reg:QI 34) (reg:SI
  14218. 80))' because the 'plus' operation requires two operands of the same
  14219. machine mode. Therefore, the byte-sized operand is enclosed in a
  14220. conversion operation, as in
  14221. (plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))
  14222. The conversion operation is not a mere placeholder, because there may
  14223. be more than one way of converting from a given starting mode to the
  14224. desired final mode. The conversion operation code says how to do it.
  14225. For all conversion operations, X must not be 'VOIDmode' because the
  14226. mode in which to do the conversion would not be known. The conversion
  14227. must either be done at compile-time or X must be placed into a register.
  14228. '(sign_extend:M X)'
  14229. Represents the result of sign-extending the value X to machine mode
  14230. M. M must be a fixed-point mode and X a fixed-point value of a
  14231. mode narrower than M.
  14232. '(zero_extend:M X)'
  14233. Represents the result of zero-extending the value X to machine mode
  14234. M. M must be a fixed-point mode and X a fixed-point value of a
  14235. mode narrower than M.
  14236. '(float_extend:M X)'
  14237. Represents the result of extending the value X to machine mode M.
  14238. M must be a floating point mode and X a floating point value of a
  14239. mode narrower than M.
  14240. '(truncate:M X)'
  14241. Represents the result of truncating the value X to machine mode M.
  14242. M must be a fixed-point mode and X a fixed-point value of a mode
  14243. wider than M.
  14244. '(ss_truncate:M X)'
  14245. Represents the result of truncating the value X to machine mode M,
  14246. using signed saturation in the case of overflow. Both M and the
  14247. mode of X must be fixed-point modes.
  14248. '(us_truncate:M X)'
  14249. Represents the result of truncating the value X to machine mode M,
  14250. using unsigned saturation in the case of overflow. Both M and the
  14251. mode of X must be fixed-point modes.
  14252. '(float_truncate:M X)'
  14253. Represents the result of truncating the value X to machine mode M.
  14254. M must be a floating point mode and X a floating point value of a
  14255. mode wider than M.
  14256. '(float:M X)'
  14257. Represents the result of converting fixed point value X, regarded
  14258. as signed, to floating point mode M.
  14259. '(unsigned_float:M X)'
  14260. Represents the result of converting fixed point value X, regarded
  14261. as unsigned, to floating point mode M.
  14262. '(fix:M X)'
  14263. When M is a floating-point mode, represents the result of
  14264. converting floating point value X (valid for mode M) to an integer,
  14265. still represented in floating point mode M, by rounding towards
  14266. zero.
  14267. When M is a fixed-point mode, represents the result of converting
  14268. floating point value X to mode M, regarded as signed. How rounding
  14269. is done is not specified, so this operation may be used validly in
  14270. compiling C code only for integer-valued operands.
  14271. '(unsigned_fix:M X)'
  14272. Represents the result of converting floating point value X to fixed
  14273. point mode M, regarded as unsigned. How rounding is done is not
  14274. specified.
  14275. '(fract_convert:M X)'
  14276. Represents the result of converting fixed-point value X to
  14277. fixed-point mode M, signed integer value X to fixed-point mode M,
  14278. floating-point value X to fixed-point mode M, fixed-point value X
  14279. to integer mode M regarded as signed, or fixed-point value X to
  14280. floating-point mode M. When overflows or underflows happen, the
  14281. results are undefined.
  14282. '(sat_fract:M X)'
  14283. Represents the result of converting fixed-point value X to
  14284. fixed-point mode M, signed integer value X to fixed-point mode M,
  14285. or floating-point value X to fixed-point mode M. When overflows or
  14286. underflows happen, the results are saturated to the maximum or the
  14287. minimum.
  14288. '(unsigned_fract_convert:M X)'
  14289. Represents the result of converting fixed-point value X to integer
  14290. mode M regarded as unsigned, or unsigned integer value X to
  14291. fixed-point mode M. When overflows or underflows happen, the
  14292. results are undefined.
  14293. '(unsigned_sat_fract:M X)'
  14294. Represents the result of converting unsigned integer value X to
  14295. fixed-point mode M. When overflows or underflows happen, the
  14296. results are saturated to the maximum or the minimum.
  14297. 
  14298. File: gccint.info, Node: RTL Declarations, Next: Side Effects, Prev: Conversions, Up: RTL
  14299. 14.14 Declarations
  14300. ==================
  14301. Declaration expression codes do not represent arithmetic operations but
  14302. rather state assertions about their operands.
  14303. '(strict_low_part (subreg:M (reg:N R) 0))'
  14304. This expression code is used in only one context: as the
  14305. destination operand of a 'set' expression. In addition, the
  14306. operand of this expression must be a non-paradoxical 'subreg'
  14307. expression.
  14308. The presence of 'strict_low_part' says that the part of the
  14309. register which is meaningful in mode N, but is not part of mode M,
  14310. is not to be altered. Normally, an assignment to such a subreg is
  14311. allowed to have undefined effects on the rest of the register when
  14312. M is smaller than 'REGMODE_NATURAL_SIZE (N)'.
  14313. 
  14314. File: gccint.info, Node: Side Effects, Next: Incdec, Prev: RTL Declarations, Up: RTL
  14315. 14.15 Side Effect Expressions
  14316. =============================
  14317. The expression codes described so far represent values, not actions.
  14318. But machine instructions never produce values; they are meaningful only
  14319. for their side effects on the state of the machine. Special expression
  14320. codes are used to represent side effects.
  14321. The body of an instruction is always one of these side effect codes;
  14322. the codes described above, which represent values, appear only as the
  14323. operands of these.
  14324. '(set LVAL X)'
  14325. Represents the action of storing the value of X into the place
  14326. represented by LVAL. LVAL must be an expression representing a
  14327. place that can be stored in: 'reg' (or 'subreg', 'strict_low_part'
  14328. or 'zero_extract'), 'mem', 'pc', 'parallel', or 'cc0'.
  14329. If LVAL is a 'reg', 'subreg' or 'mem', it has a machine mode; then
  14330. X must be valid for that mode.
  14331. If LVAL is a 'reg' whose machine mode is less than the full width
  14332. of the register, then it means that the part of the register
  14333. specified by the machine mode is given the specified value and the
  14334. rest of the register receives an undefined value. Likewise, if
  14335. LVAL is a 'subreg' whose machine mode is narrower than the mode of
  14336. the register, the rest of the register can be changed in an
  14337. undefined way.
  14338. If LVAL is a 'strict_low_part' of a subreg, then the part of the
  14339. register specified by the machine mode of the 'subreg' is given the
  14340. value X and the rest of the register is not changed.
  14341. If LVAL is a 'zero_extract', then the referenced part of the
  14342. bit-field (a memory or register reference) specified by the
  14343. 'zero_extract' is given the value X and the rest of the bit-field
  14344. is not changed. Note that 'sign_extract' can not appear in LVAL.
  14345. If LVAL is '(cc0)', it has no machine mode, and X may be either a
  14346. 'compare' expression or a value that may have any mode. The latter
  14347. case represents a "test" instruction. The expression '(set (cc0)
  14348. (reg:M N))' is equivalent to '(set (cc0) (compare (reg:M N)
  14349. (const_int 0)))'. Use the former expression to save space during
  14350. the compilation.
  14351. If LVAL is a 'parallel', it is used to represent the case of a
  14352. function returning a structure in multiple registers. Each element
  14353. of the 'parallel' is an 'expr_list' whose first operand is a 'reg'
  14354. and whose second operand is a 'const_int' representing the offset
  14355. (in bytes) into the structure at which the data in that register
  14356. corresponds. The first element may be null to indicate that the
  14357. structure is also passed partly in memory.
  14358. If LVAL is '(pc)', we have a jump instruction, and the
  14359. possibilities for X are very limited. It may be a 'label_ref'
  14360. expression (unconditional jump). It may be an 'if_then_else'
  14361. (conditional jump), in which case either the second or the third
  14362. operand must be '(pc)' (for the case which does not jump) and the
  14363. other of the two must be a 'label_ref' (for the case which does
  14364. jump). X may also be a 'mem' or '(plus:SI (pc) Y)', where Y may be
  14365. a 'reg' or a 'mem'; these unusual patterns are used to represent
  14366. jumps through branch tables.
  14367. If LVAL is neither '(cc0)' nor '(pc)', the mode of LVAL must not be
  14368. 'VOIDmode' and the mode of X must be valid for the mode of LVAL.
  14369. LVAL is customarily accessed with the 'SET_DEST' macro and X with
  14370. the 'SET_SRC' macro.
  14371. '(return)'
  14372. As the sole expression in a pattern, represents a return from the
  14373. current function, on machines where this can be done with one
  14374. instruction, such as VAXen. On machines where a multi-instruction
  14375. "epilogue" must be executed in order to return from the function,
  14376. returning is done by jumping to a label which precedes the
  14377. epilogue, and the 'return' expression code is never used.
  14378. Inside an 'if_then_else' expression, represents the value to be
  14379. placed in 'pc' to return to the caller.
  14380. Note that an insn pattern of '(return)' is logically equivalent to
  14381. '(set (pc) (return))', but the latter form is never used.
  14382. '(simple_return)'
  14383. Like '(return)', but truly represents only a function return, while
  14384. '(return)' may represent an insn that also performs other functions
  14385. of the function epilogue. Like '(return)', this may also occur in
  14386. conditional jumps.
  14387. '(call FUNCTION NARGS)'
  14388. Represents a function call. FUNCTION is a 'mem' expression whose
  14389. address is the address of the function to be called. NARGS is an
  14390. expression which can be used for two purposes: on some machines it
  14391. represents the number of bytes of stack argument; on others, it
  14392. represents the number of argument registers.
  14393. Each machine has a standard machine mode which FUNCTION must have.
  14394. The machine description defines macro 'FUNCTION_MODE' to expand
  14395. into the requisite mode name. The purpose of this mode is to
  14396. specify what kind of addressing is allowed, on machines where the
  14397. allowed kinds of addressing depend on the machine mode being
  14398. addressed.
  14399. '(clobber X)'
  14400. Represents the storing or possible storing of an unpredictable,
  14401. undescribed value into X, which must be a 'reg', 'scratch',
  14402. 'parallel' or 'mem' expression.
  14403. One place this is used is in string instructions that store
  14404. standard values into particular hard registers. It may not be
  14405. worth the trouble to describe the values that are stored, but it is
  14406. essential to inform the compiler that the registers will be
  14407. altered, lest it attempt to keep data in them across the string
  14408. instruction.
  14409. If X is '(mem:BLK (const_int 0))' or '(mem:BLK (scratch))', it
  14410. means that all memory locations must be presumed clobbered. If X
  14411. is a 'parallel', it has the same meaning as a 'parallel' in a 'set'
  14412. expression.
  14413. Note that the machine description classifies certain hard registers
  14414. as "call-clobbered". All function call instructions are assumed by
  14415. default to clobber these registers, so there is no need to use
  14416. 'clobber' expressions to indicate this fact. Also, each function
  14417. call is assumed to have the potential to alter any memory location,
  14418. unless the function is declared 'const'.
  14419. If the last group of expressions in a 'parallel' are each a
  14420. 'clobber' expression whose arguments are 'reg' or 'match_scratch'
  14421. (*note RTL Template::) expressions, the combiner phase can add the
  14422. appropriate 'clobber' expressions to an insn it has constructed
  14423. when doing so will cause a pattern to be matched.
  14424. This feature can be used, for example, on a machine that whose
  14425. multiply and add instructions don't use an MQ register but which
  14426. has an add-accumulate instruction that does clobber the MQ
  14427. register. Similarly, a combined instruction might require a
  14428. temporary register while the constituent instructions might not.
  14429. When a 'clobber' expression for a register appears inside a
  14430. 'parallel' with other side effects, the register allocator
  14431. guarantees that the register is unoccupied both before and after
  14432. that insn if it is a hard register clobber. For pseudo-register
  14433. clobber, the register allocator and the reload pass do not assign
  14434. the same hard register to the clobber and the input operands if
  14435. there is an insn alternative containing the '&' constraint (*note
  14436. Modifiers::) for the clobber and the hard register is in register
  14437. classes of the clobber in the alternative. You can clobber either
  14438. a specific hard register, a pseudo register, or a 'scratch'
  14439. expression; in the latter two cases, GCC will allocate a hard
  14440. register that is available there for use as a temporary.
  14441. For instructions that require a temporary register, you should use
  14442. 'scratch' instead of a pseudo-register because this will allow the
  14443. combiner phase to add the 'clobber' when required. You do this by
  14444. coding ('clobber' ('match_scratch' ...)). If you do clobber a
  14445. pseudo register, use one which appears nowhere else--generate a new
  14446. one each time. Otherwise, you may confuse CSE.
  14447. There is one other known use for clobbering a pseudo register in a
  14448. 'parallel': when one of the input operands of the insn is also
  14449. clobbered by the insn. In this case, using the same pseudo
  14450. register in the clobber and elsewhere in the insn produces the
  14451. expected results.
  14452. '(use X)'
  14453. Represents the use of the value of X. It indicates that the value
  14454. in X at this point in the program is needed, even though it may not
  14455. be apparent why this is so. Therefore, the compiler will not
  14456. attempt to delete previous instructions whose only effect is to
  14457. store a value in X. X must be a 'reg' expression.
  14458. In some situations, it may be tempting to add a 'use' of a register
  14459. in a 'parallel' to describe a situation where the value of a
  14460. special register will modify the behavior of the instruction. A
  14461. hypothetical example might be a pattern for an addition that can
  14462. either wrap around or use saturating addition depending on the
  14463. value of a special control register:
  14464. (parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)
  14465. (reg:SI 4)] 0))
  14466. (use (reg:SI 1))])
  14467. This will not work, several of the optimizers only look at
  14468. expressions locally; it is very likely that if you have multiple
  14469. insns with identical inputs to the 'unspec', they will be optimized
  14470. away even if register 1 changes in between.
  14471. This means that 'use' can _only_ be used to describe that the
  14472. register is live. You should think twice before adding 'use'
  14473. statements, more often you will want to use 'unspec' instead. The
  14474. 'use' RTX is most commonly useful to describe that a fixed register
  14475. is implicitly used in an insn. It is also safe to use in patterns
  14476. where the compiler knows for other reasons that the result of the
  14477. whole pattern is variable, such as 'movmemM' or 'call' patterns.
  14478. During the reload phase, an insn that has a 'use' as pattern can
  14479. carry a reg_equal note. These 'use' insns will be deleted before
  14480. the reload phase exits.
  14481. During the delayed branch scheduling phase, X may be an insn. This
  14482. indicates that X previously was located at this place in the code
  14483. and its data dependencies need to be taken into account. These
  14484. 'use' insns will be deleted before the delayed branch scheduling
  14485. phase exits.
  14486. '(parallel [X0 X1 ...])'
  14487. Represents several side effects performed in parallel. The square
  14488. brackets stand for a vector; the operand of 'parallel' is a vector
  14489. of expressions. X0, X1 and so on are individual side effect
  14490. expressions--expressions of code 'set', 'call', 'return',
  14491. 'simple_return', 'clobber' or 'use'.
  14492. "In parallel" means that first all the values used in the
  14493. individual side-effects are computed, and second all the actual
  14494. side-effects are performed. For example,
  14495. (parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
  14496. (set (mem:SI (reg:SI 1)) (reg:SI 1))])
  14497. says unambiguously that the values of hard register 1 and the
  14498. memory location addressed by it are interchanged. In both places
  14499. where '(reg:SI 1)' appears as a memory address it refers to the
  14500. value in register 1 _before_ the execution of the insn.
  14501. It follows that it is _incorrect_ to use 'parallel' and expect the
  14502. result of one 'set' to be available for the next one. For example,
  14503. people sometimes attempt to represent a jump-if-zero instruction
  14504. this way:
  14505. (parallel [(set (cc0) (reg:SI 34))
  14506. (set (pc) (if_then_else
  14507. (eq (cc0) (const_int 0))
  14508. (label_ref ...)
  14509. (pc)))])
  14510. But this is incorrect, because it says that the jump condition
  14511. depends on the condition code value _before_ this instruction, not
  14512. on the new value that is set by this instruction.
  14513. Peephole optimization, which takes place together with final
  14514. assembly code output, can produce insns whose patterns consist of a
  14515. 'parallel' whose elements are the operands needed to output the
  14516. resulting assembler code--often 'reg', 'mem' or constant
  14517. expressions. This would not be well-formed RTL at any other stage
  14518. in compilation, but it is OK then because no further optimization
  14519. remains to be done. However, the definition of the macro
  14520. 'NOTICE_UPDATE_CC', if any, must deal with such insns if you define
  14521. any peephole optimizations.
  14522. '(cond_exec [COND EXPR])'
  14523. Represents a conditionally executed expression. The EXPR is
  14524. executed only if the COND is nonzero. The COND expression must not
  14525. have side-effects, but the EXPR may very well have side-effects.
  14526. '(sequence [INSNS ...])'
  14527. Represents a sequence of insns. If a 'sequence' appears in the
  14528. chain of insns, then each of the INSNS that appears in the sequence
  14529. must be suitable for appearing in the chain of insns, i.e. must
  14530. satisfy the 'INSN_P' predicate.
  14531. After delay-slot scheduling is completed, an insn and all the insns
  14532. that reside in its delay slots are grouped together into a
  14533. 'sequence'. The insn requiring the delay slot is the first insn in
  14534. the vector; subsequent insns are to be placed in the delay slot.
  14535. 'INSN_ANNULLED_BRANCH_P' is set on an insn in a delay slot to
  14536. indicate that a branch insn should be used that will conditionally
  14537. annul the effect of the insns in the delay slots. In such a case,
  14538. 'INSN_FROM_TARGET_P' indicates that the insn is from the target of
  14539. the branch and should be executed only if the branch is taken;
  14540. otherwise the insn should be executed only if the branch is not
  14541. taken. *Note Delay Slots::.
  14542. Some back ends also use 'sequence' objects for purposes other than
  14543. delay-slot groups. This is not supported in the common parts of
  14544. the compiler, which treat such sequences as delay-slot groups.
  14545. DWARF2 Call Frame Address (CFA) adjustments are sometimes also
  14546. expressed using 'sequence' objects as the value of a
  14547. 'RTX_FRAME_RELATED_P' note. This only happens if the CFA
  14548. adjustments cannot be easily derived from the pattern of the
  14549. instruction to which the note is attached. In such cases, the
  14550. value of the note is used instead of best-guesing the semantics of
  14551. the instruction. The back end can attach notes containing a
  14552. 'sequence' of 'set' patterns that express the effect of the parent
  14553. instruction.
  14554. These expression codes appear in place of a side effect, as the body of
  14555. an insn, though strictly speaking they do not always describe side
  14556. effects as such:
  14557. '(asm_input S)'
  14558. Represents literal assembler code as described by the string S.
  14559. '(unspec [OPERANDS ...] INDEX)'
  14560. '(unspec_volatile [OPERANDS ...] INDEX)'
  14561. Represents a machine-specific operation on OPERANDS. INDEX selects
  14562. between multiple machine-specific operations. 'unspec_volatile' is
  14563. used for volatile operations and operations that may trap; 'unspec'
  14564. is used for other operations.
  14565. These codes may appear inside a 'pattern' of an insn, inside a
  14566. 'parallel', or inside an expression.
  14567. '(addr_vec:M [LR0 LR1 ...])'
  14568. Represents a table of jump addresses. The vector elements LR0,
  14569. etc., are 'label_ref' expressions. The mode M specifies how much
  14570. space is given to each address; normally M would be 'Pmode'.
  14571. '(addr_diff_vec:M BASE [LR0 LR1 ...] MIN MAX FLAGS)'
  14572. Represents a table of jump addresses expressed as offsets from
  14573. BASE. The vector elements LR0, etc., are 'label_ref' expressions
  14574. and so is BASE. The mode M specifies how much space is given to
  14575. each address-difference. MIN and MAX are set up by branch
  14576. shortening and hold a label with a minimum and a maximum address,
  14577. respectively. FLAGS indicates the relative position of BASE, MIN
  14578. and MAX to the containing insn and of MIN and MAX to BASE. See
  14579. rtl.def for details.
  14580. '(prefetch:M ADDR RW LOCALITY)'
  14581. Represents prefetch of memory at address ADDR. Operand RW is 1 if
  14582. the prefetch is for data to be written, 0 otherwise; targets that
  14583. do not support write prefetches should treat this as a normal
  14584. prefetch. Operand LOCALITY specifies the amount of temporal
  14585. locality; 0 if there is none or 1, 2, or 3 for increasing levels of
  14586. temporal locality; targets that do not support locality hints
  14587. should ignore this.
  14588. This insn is used to minimize cache-miss latency by moving data
  14589. into a cache before it is accessed. It should use only
  14590. non-faulting data prefetch instructions.
  14591. 
  14592. File: gccint.info, Node: Incdec, Next: Assembler, Prev: Side Effects, Up: RTL
  14593. 14.16 Embedded Side-Effects on Addresses
  14594. ========================================
  14595. Six special side-effect expression codes appear as memory addresses.
  14596. '(pre_dec:M X)'
  14597. Represents the side effect of decrementing X by a standard amount
  14598. and represents also the value that X has after being decremented.
  14599. X must be a 'reg' or 'mem', but most machines allow only a 'reg'.
  14600. M must be the machine mode for pointers on the machine in use. The
  14601. amount X is decremented by is the length in bytes of the machine
  14602. mode of the containing memory reference of which this expression
  14603. serves as the address. Here is an example of its use:
  14604. (mem:DF (pre_dec:SI (reg:SI 39)))
  14605. This says to decrement pseudo register 39 by the length of a
  14606. 'DFmode' value and use the result to address a 'DFmode' value.
  14607. '(pre_inc:M X)'
  14608. Similar, but specifies incrementing X instead of decrementing it.
  14609. '(post_dec:M X)'
  14610. Represents the same side effect as 'pre_dec' but a different value.
  14611. The value represented here is the value X has before being
  14612. decremented.
  14613. '(post_inc:M X)'
  14614. Similar, but specifies incrementing X instead of decrementing it.
  14615. '(post_modify:M X Y)'
  14616. Represents the side effect of setting X to Y and represents X
  14617. before X is modified. X must be a 'reg' or 'mem', but most
  14618. machines allow only a 'reg'. M must be the machine mode for
  14619. pointers on the machine in use.
  14620. The expression Y must be one of three forms: '(plus:M X Z)',
  14621. '(minus:M X Z)', or '(plus:M X I)', where Z is an index register
  14622. and I is a constant.
  14623. Here is an example of its use:
  14624. (mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)
  14625. (reg:SI 48))))
  14626. This says to modify pseudo register 42 by adding the contents of
  14627. pseudo register 48 to it, after the use of what ever 42 points to.
  14628. '(pre_modify:M X EXPR)'
  14629. Similar except side effects happen before the use.
  14630. These embedded side effect expressions must be used with care.
  14631. Instruction patterns may not use them. Until the 'flow' pass of the
  14632. compiler, they may occur only to represent pushes onto the stack. The
  14633. 'flow' pass finds cases where registers are incremented or decremented
  14634. in one instruction and used as an address shortly before or after; these
  14635. cases are then transformed to use pre- or post-increment or -decrement.
  14636. If a register used as the operand of these expressions is used in
  14637. another address in an insn, the original value of the register is used.
  14638. Uses of the register outside of an address are not permitted within the
  14639. same insn as a use in an embedded side effect expression because such
  14640. insns behave differently on different machines and hence must be treated
  14641. as ambiguous and disallowed.
  14642. An instruction that can be represented with an embedded side effect
  14643. could also be represented using 'parallel' containing an additional
  14644. 'set' to describe how the address register is altered. This is not done
  14645. because machines that allow these operations at all typically allow them
  14646. wherever a memory address is called for. Describing them as additional
  14647. parallel stores would require doubling the number of entries in the
  14648. machine description.
  14649. 
  14650. File: gccint.info, Node: Assembler, Next: Debug Information, Prev: Incdec, Up: RTL
  14651. 14.17 Assembler Instructions as Expressions
  14652. ===========================================
  14653. The RTX code 'asm_operands' represents a value produced by a
  14654. user-specified assembler instruction. It is used to represent an 'asm'
  14655. statement with arguments. An 'asm' statement with a single output
  14656. operand, like this:
  14657. asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));
  14658. is represented using a single 'asm_operands' RTX which represents the
  14659. value that is stored in 'outputvar':
  14660. (set RTX-FOR-OUTPUTVAR
  14661. (asm_operands "foo %1,%2,%0" "a" 0
  14662. [RTX-FOR-ADDITION-RESULT RTX-FOR-*Z]
  14663. [(asm_input:M1 "g")
  14664. (asm_input:M2 "di")]))
  14665. Here the operands of the 'asm_operands' RTX are the assembler template
  14666. string, the output-operand's constraint, the index-number of the output
  14667. operand among the output operands specified, a vector of input operand
  14668. RTX's, and a vector of input-operand modes and constraints. The mode M1
  14669. is the mode of the sum 'x+y'; M2 is that of '*z'.
  14670. When an 'asm' statement has multiple output values, its insn has
  14671. several such 'set' RTX's inside of a 'parallel'. Each 'set' contains an
  14672. 'asm_operands'; all of these share the same assembler template and
  14673. vectors, but each contains the constraint for the respective output
  14674. operand. They are also distinguished by the output-operand index
  14675. number, which is 0, 1, ... for successive output operands.
  14676. 
  14677. File: gccint.info, Node: Debug Information, Next: Insns, Prev: Assembler, Up: RTL
  14678. 14.18 Variable Location Debug Information in RTL
  14679. ================================================
  14680. Variable tracking relies on 'MEM_EXPR' and 'REG_EXPR' annotations to
  14681. determine what user variables memory and register references refer to.
  14682. Variable tracking at assignments uses these notes only when they refer
  14683. to variables that live at fixed locations (e.g., addressable variables,
  14684. global non-automatic variables). For variables whose location may vary,
  14685. it relies on the following types of notes.
  14686. '(var_location:MODE VAR EXP STAT)'
  14687. Binds variable 'var', a tree, to value EXP, an RTL expression. It
  14688. appears only in 'NOTE_INSN_VAR_LOCATION' and 'DEBUG_INSN's, with
  14689. slightly different meanings. MODE, if present, represents the mode
  14690. of EXP, which is useful if it is a modeless expression. STAT is
  14691. only meaningful in notes, indicating whether the variable is known
  14692. to be initialized or uninitialized.
  14693. '(debug_expr:MODE DECL)'
  14694. Stands for the value bound to the 'DEBUG_EXPR_DECL' DECL, that
  14695. points back to it, within value expressions in 'VAR_LOCATION'
  14696. nodes.
  14697. '(debug_implicit_ptr:MODE DECL)'
  14698. Stands for the location of a DECL that is no longer addressable.
  14699. '(entry_value:MODE DECL)'
  14700. Stands for the value a DECL had at the entry point of the
  14701. containing function.
  14702. '(debug_parameter_ref:MODE DECL)'
  14703. Refers to a parameter that was completely optimized out.
  14704. '(debug_marker:MODE)'
  14705. Marks a program location. With 'VOIDmode', it stands for the
  14706. beginning of a statement, a recommended inspection point logically
  14707. after all prior side effects, and before any subsequent side
  14708. effects. With 'BLKmode', it indicates an inline entry point: the
  14709. lexical block encoded in the 'INSN_LOCATION' is the enclosing block
  14710. that encloses the inlined function.
  14711. 
  14712. File: gccint.info, Node: Insns, Next: Calls, Prev: Debug Information, Up: RTL
  14713. 14.19 Insns
  14714. ===========
  14715. The RTL representation of the code for a function is a doubly-linked
  14716. chain of objects called "insns". Insns are expressions with special
  14717. codes that are used for no other purpose. Some insns are actual
  14718. instructions; others represent dispatch tables for 'switch' statements;
  14719. others represent labels to jump to or various sorts of declarative
  14720. information.
  14721. In addition to its own specific data, each insn must have a unique
  14722. id-number that distinguishes it from all other insns in the current
  14723. function (after delayed branch scheduling, copies of an insn with the
  14724. same id-number may be present in multiple places in a function, but
  14725. these copies will always be identical and will only appear inside a
  14726. 'sequence'), and chain pointers to the preceding and following insns.
  14727. These three fields occupy the same position in every insn, independent
  14728. of the expression code of the insn. They could be accessed with 'XEXP'
  14729. and 'XINT', but instead three special macros are always used:
  14730. 'INSN_UID (I)'
  14731. Accesses the unique id of insn I.
  14732. 'PREV_INSN (I)'
  14733. Accesses the chain pointer to the insn preceding I. If I is the
  14734. first insn, this is a null pointer.
  14735. 'NEXT_INSN (I)'
  14736. Accesses the chain pointer to the insn following I. If I is the
  14737. last insn, this is a null pointer.
  14738. The first insn in the chain is obtained by calling 'get_insns'; the
  14739. last insn is the result of calling 'get_last_insn'. Within the chain
  14740. delimited by these insns, the 'NEXT_INSN' and 'PREV_INSN' pointers must
  14741. always correspond: if INSN is not the first insn,
  14742. NEXT_INSN (PREV_INSN (INSN)) == INSN
  14743. is always true and if INSN is not the last insn,
  14744. PREV_INSN (NEXT_INSN (INSN)) == INSN
  14745. is always true.
  14746. After delay slot scheduling, some of the insns in the chain might be
  14747. 'sequence' expressions, which contain a vector of insns. The value of
  14748. 'NEXT_INSN' in all but the last of these insns is the next insn in the
  14749. vector; the value of 'NEXT_INSN' of the last insn in the vector is the
  14750. same as the value of 'NEXT_INSN' for the 'sequence' in which it is
  14751. contained. Similar rules apply for 'PREV_INSN'.
  14752. This means that the above invariants are not necessarily true for insns
  14753. inside 'sequence' expressions. Specifically, if INSN is the first insn
  14754. in a 'sequence', 'NEXT_INSN (PREV_INSN (INSN))' is the insn containing
  14755. the 'sequence' expression, as is the value of 'PREV_INSN (NEXT_INSN
  14756. (INSN))' if INSN is the last insn in the 'sequence' expression. You can
  14757. use these expressions to find the containing 'sequence' expression.
  14758. Every insn has one of the following expression codes:
  14759. 'insn'
  14760. The expression code 'insn' is used for instructions that do not
  14761. jump and do not do function calls. 'sequence' expressions are
  14762. always contained in insns with code 'insn' even if one of those
  14763. insns should jump or do function calls.
  14764. Insns with code 'insn' have four additional fields beyond the three
  14765. mandatory ones listed above. These four are described in a table
  14766. below.
  14767. 'jump_insn'
  14768. The expression code 'jump_insn' is used for instructions that may
  14769. jump (or, more generally, may contain 'label_ref' expressions to
  14770. which 'pc' can be set in that instruction). If there is an
  14771. instruction to return from the current function, it is recorded as
  14772. a 'jump_insn'.
  14773. 'jump_insn' insns have the same extra fields as 'insn' insns,
  14774. accessed in the same way and in addition contain a field
  14775. 'JUMP_LABEL' which is defined once jump optimization has completed.
  14776. For simple conditional and unconditional jumps, this field contains
  14777. the 'code_label' to which this insn will (possibly conditionally)
  14778. branch. In a more complex jump, 'JUMP_LABEL' records one of the
  14779. labels that the insn refers to; other jump target labels are
  14780. recorded as 'REG_LABEL_TARGET' notes. The exception is 'addr_vec'
  14781. and 'addr_diff_vec', where 'JUMP_LABEL' is 'NULL_RTX' and the only
  14782. way to find the labels is to scan the entire body of the insn.
  14783. Return insns count as jumps, but their 'JUMP_LABEL' is 'RETURN' or
  14784. 'SIMPLE_RETURN'.
  14785. 'call_insn'
  14786. The expression code 'call_insn' is used for instructions that may
  14787. do function calls. It is important to distinguish these
  14788. instructions because they imply that certain registers and memory
  14789. locations may be altered unpredictably.
  14790. 'call_insn' insns have the same extra fields as 'insn' insns,
  14791. accessed in the same way and in addition contain a field
  14792. 'CALL_INSN_FUNCTION_USAGE', which contains a list (chain of
  14793. 'expr_list' expressions) containing 'use', 'clobber' and sometimes
  14794. 'set' expressions that denote hard registers and 'mem's used or
  14795. clobbered by the called function.
  14796. A 'mem' generally points to a stack slot in which arguments passed
  14797. to the libcall by reference (*note TARGET_PASS_BY_REFERENCE:
  14798. Register Arguments.) are stored. If the argument is caller-copied
  14799. (*note TARGET_CALLEE_COPIES: Register Arguments.), the stack slot
  14800. will be mentioned in 'clobber' and 'use' entries; if it's
  14801. callee-copied, only a 'use' will appear, and the 'mem' may point to
  14802. addresses that are not stack slots.
  14803. Registers occurring inside a 'clobber' in this list augment
  14804. registers specified in 'CALL_USED_REGISTERS' (*note Register
  14805. Basics::).
  14806. If the list contains a 'set' involving two registers, it indicates
  14807. that the function returns one of its arguments. Such a 'set' may
  14808. look like a no-op if the same register holds the argument and the
  14809. return value.
  14810. 'code_label'
  14811. A 'code_label' insn represents a label that a jump insn can jump
  14812. to. It contains two special fields of data in addition to the
  14813. three standard ones. 'CODE_LABEL_NUMBER' is used to hold the
  14814. "label number", a number that identifies this label uniquely among
  14815. all the labels in the compilation (not just in the current
  14816. function). Ultimately, the label is represented in the assembler
  14817. output as an assembler label, usually of the form 'LN' where N is
  14818. the label number.
  14819. When a 'code_label' appears in an RTL expression, it normally
  14820. appears within a 'label_ref' which represents the address of the
  14821. label, as a number.
  14822. Besides as a 'code_label', a label can also be represented as a
  14823. 'note' of type 'NOTE_INSN_DELETED_LABEL'.
  14824. The field 'LABEL_NUSES' is only defined once the jump optimization
  14825. phase is completed. It contains the number of times this label is
  14826. referenced in the current function.
  14827. The field 'LABEL_KIND' differentiates four different types of
  14828. labels: 'LABEL_NORMAL', 'LABEL_STATIC_ENTRY', 'LABEL_GLOBAL_ENTRY',
  14829. and 'LABEL_WEAK_ENTRY'. The only labels that do not have type
  14830. 'LABEL_NORMAL' are "alternate entry points" to the current
  14831. function. These may be static (visible only in the containing
  14832. translation unit), global (exposed to all translation units), or
  14833. weak (global, but can be overridden by another symbol with the same
  14834. name).
  14835. Much of the compiler treats all four kinds of label identically.
  14836. Some of it needs to know whether or not a label is an alternate
  14837. entry point; for this purpose, the macro 'LABEL_ALT_ENTRY_P' is
  14838. provided. It is equivalent to testing whether 'LABEL_KIND (label)
  14839. == LABEL_NORMAL'. The only place that cares about the distinction
  14840. between static, global, and weak alternate entry points, besides
  14841. the front-end code that creates them, is the function
  14842. 'output_alternate_entry_point', in 'final.c'.
  14843. To set the kind of a label, use the 'SET_LABEL_KIND' macro.
  14844. 'jump_table_data'
  14845. A 'jump_table_data' insn is a placeholder for the jump-table data
  14846. of a 'casesi' or 'tablejump' insn. They are placed after a
  14847. 'tablejump_p' insn. A 'jump_table_data' insn is not part o a basic
  14848. blockm but it is associated with the basic block that ends with the
  14849. 'tablejump_p' insn. The 'PATTERN' of a 'jump_table_data' is always
  14850. either an 'addr_vec' or an 'addr_diff_vec', and a 'jump_table_data'
  14851. insn is always preceded by a 'code_label'. The 'tablejump_p' insn
  14852. refers to that 'code_label' via its 'JUMP_LABEL'.
  14853. 'barrier'
  14854. Barriers are placed in the instruction stream when control cannot
  14855. flow past them. They are placed after unconditional jump
  14856. instructions to indicate that the jumps are unconditional and after
  14857. calls to 'volatile' functions, which do not return (e.g., 'exit').
  14858. They contain no information beyond the three standard fields.
  14859. 'note'
  14860. 'note' insns are used to represent additional debugging and
  14861. declarative information. They contain two nonstandard fields, an
  14862. integer which is accessed with the macro 'NOTE_LINE_NUMBER' and a
  14863. string accessed with 'NOTE_SOURCE_FILE'.
  14864. If 'NOTE_LINE_NUMBER' is positive, the note represents the position
  14865. of a source line and 'NOTE_SOURCE_FILE' is the source file name
  14866. that the line came from. These notes control generation of line
  14867. number data in the assembler output.
  14868. Otherwise, 'NOTE_LINE_NUMBER' is not really a line number but a
  14869. code with one of the following values (and 'NOTE_SOURCE_FILE' must
  14870. contain a null pointer):
  14871. 'NOTE_INSN_DELETED'
  14872. Such a note is completely ignorable. Some passes of the
  14873. compiler delete insns by altering them into notes of this
  14874. kind.
  14875. 'NOTE_INSN_DELETED_LABEL'
  14876. This marks what used to be a 'code_label', but was not used
  14877. for other purposes than taking its address and was transformed
  14878. to mark that no code jumps to it.
  14879. 'NOTE_INSN_BLOCK_BEG'
  14880. 'NOTE_INSN_BLOCK_END'
  14881. These types of notes indicate the position of the beginning
  14882. and end of a level of scoping of variable names. They control
  14883. the output of debugging information.
  14884. 'NOTE_INSN_EH_REGION_BEG'
  14885. 'NOTE_INSN_EH_REGION_END'
  14886. These types of notes indicate the position of the beginning
  14887. and end of a level of scoping for exception handling.
  14888. 'NOTE_EH_HANDLER' identifies which region is associated with
  14889. these notes.
  14890. 'NOTE_INSN_FUNCTION_BEG'
  14891. Appears at the start of the function body, after the function
  14892. prologue.
  14893. 'NOTE_INSN_VAR_LOCATION'
  14894. This note is used to generate variable location debugging
  14895. information. It indicates that the user variable in its
  14896. 'VAR_LOCATION' operand is at the location given in the RTL
  14897. expression, or holds a value that can be computed by
  14898. evaluating the RTL expression from that static point in the
  14899. program up to the next such note for the same user variable.
  14900. 'NOTE_INSN_BEGIN_STMT'
  14901. This note is used to generate 'is_stmt' markers in line number
  14902. debuggign information. It indicates the beginning of a user
  14903. statement.
  14904. 'NOTE_INSN_INLINE_ENTRY'
  14905. This note is used to generate 'entry_pc' for inlined
  14906. subroutines in debugging information. It indicates an
  14907. inspection point at which all arguments for the inlined
  14908. function have been bound, and before its first statement.
  14909. These codes are printed symbolically when they appear in debugging
  14910. dumps.
  14911. 'debug_insn'
  14912. The expression code 'debug_insn' is used for pseudo-instructions
  14913. that hold debugging information for variable tracking at
  14914. assignments (see '-fvar-tracking-assignments' option). They are
  14915. the RTL representation of 'GIMPLE_DEBUG' statements (*note
  14916. GIMPLE_DEBUG::), with a 'VAR_LOCATION' operand that binds a user
  14917. variable tree to an RTL representation of the 'value' in the
  14918. corresponding statement. A 'DEBUG_EXPR' in it stands for the value
  14919. bound to the corresponding 'DEBUG_EXPR_DECL'.
  14920. 'GIMPLE_DEBUG_BEGIN_STMT' and 'GIMPLE_DEBUG_INLINE_ENTRY' are
  14921. expanded to RTL as a 'DEBUG_INSN' with a 'DEBUG_MARKER' 'PATTERN';
  14922. the difference is the RTL mode: the former's 'DEBUG_MARKER' is
  14923. 'VOIDmode', whereas the latter is 'BLKmode'; information about the
  14924. inlined function can be taken from the lexical block encoded in the
  14925. 'INSN_LOCATION'. These 'DEBUG_INSN's, that do not carry
  14926. 'VAR_LOCATION' information, just 'DEBUG_MARKER's, can be detected
  14927. by testing 'DEBUG_MARKER_INSN_P', whereas those that do can be
  14928. recognized as 'DEBUG_BIND_INSN_P'.
  14929. Throughout optimization passes, 'DEBUG_INSN's are not reordered
  14930. with respect to each other, particularly during scheduling.
  14931. Binding information is kept in pseudo-instruction form, so that,
  14932. unlike notes, it gets the same treatment and adjustments that
  14933. regular instructions would. It is the variable tracking pass that
  14934. turns these pseudo-instructions into 'NOTE_INSN_VAR_LOCATION',
  14935. 'NOTE_INSN_BEGIN_STMT' and 'NOTE_INSN_INLINE_ENTRY' notes,
  14936. analyzing control flow, value equivalences and changes to registers
  14937. and memory referenced in value expressions, propagating the values
  14938. of debug temporaries and determining expressions that can be used
  14939. to compute the value of each user variable at as many points
  14940. (ranges, actually) in the program as possible.
  14941. Unlike 'NOTE_INSN_VAR_LOCATION', the value expression in an
  14942. 'INSN_VAR_LOCATION' denotes a value at that specific point in the
  14943. program, rather than an expression that can be evaluated at any
  14944. later point before an overriding 'VAR_LOCATION' is encountered.
  14945. E.g., if a user variable is bound to a 'REG' and then a subsequent
  14946. insn modifies the 'REG', the note location would keep mapping the
  14947. user variable to the register across the insn, whereas the insn
  14948. location would keep the variable bound to the value, so that the
  14949. variable tracking pass would emit another location note for the
  14950. variable at the point in which the register is modified.
  14951. The machine mode of an insn is normally 'VOIDmode', but some phases use
  14952. the mode for various purposes.
  14953. The common subexpression elimination pass sets the mode of an insn to
  14954. 'QImode' when it is the first insn in a block that has already been
  14955. processed.
  14956. The second Haifa scheduling pass, for targets that can multiple issue,
  14957. sets the mode of an insn to 'TImode' when it is believed that the
  14958. instruction begins an issue group. That is, when the instruction cannot
  14959. issue simultaneously with the previous. This may be relied on by later
  14960. passes, in particular machine-dependent reorg.
  14961. Here is a table of the extra fields of 'insn', 'jump_insn' and
  14962. 'call_insn' insns:
  14963. 'PATTERN (I)'
  14964. An expression for the side effect performed by this insn. This
  14965. must be one of the following codes: 'set', 'call', 'use',
  14966. 'clobber', 'return', 'simple_return', 'asm_input', 'asm_output',
  14967. 'addr_vec', 'addr_diff_vec', 'trap_if', 'unspec',
  14968. 'unspec_volatile', 'parallel', 'cond_exec', or 'sequence'. If it
  14969. is a 'parallel', each element of the 'parallel' must be one these
  14970. codes, except that 'parallel' expressions cannot be nested and
  14971. 'addr_vec' and 'addr_diff_vec' are not permitted inside a
  14972. 'parallel' expression.
  14973. 'INSN_CODE (I)'
  14974. An integer that says which pattern in the machine description
  14975. matches this insn, or -1 if the matching has not yet been
  14976. attempted.
  14977. Such matching is never attempted and this field remains -1 on an
  14978. insn whose pattern consists of a single 'use', 'clobber',
  14979. 'asm_input', 'addr_vec' or 'addr_diff_vec' expression.
  14980. Matching is also never attempted on insns that result from an 'asm'
  14981. statement. These contain at least one 'asm_operands' expression.
  14982. The function 'asm_noperands' returns a non-negative value for such
  14983. insns.
  14984. In the debugging output, this field is printed as a number followed
  14985. by a symbolic representation that locates the pattern in the 'md'
  14986. file as some small positive or negative offset from a named
  14987. pattern.
  14988. 'LOG_LINKS (I)'
  14989. A list (chain of 'insn_list' expressions) giving information about
  14990. dependencies between instructions within a basic block. Neither a
  14991. jump nor a label may come between the related insns. These are
  14992. only used by the schedulers and by combine. This is a deprecated
  14993. data structure. Def-use and use-def chains are now preferred.
  14994. 'REG_NOTES (I)'
  14995. A list (chain of 'expr_list', 'insn_list' and 'int_list'
  14996. expressions) giving miscellaneous information about the insn. It
  14997. is often information pertaining to the registers used in this insn.
  14998. The 'LOG_LINKS' field of an insn is a chain of 'insn_list' expressions.
  14999. Each of these has two operands: the first is an insn, and the second is
  15000. another 'insn_list' expression (the next one in the chain). The last
  15001. 'insn_list' in the chain has a null pointer as second operand. The
  15002. significant thing about the chain is which insns appear in it (as first
  15003. operands of 'insn_list' expressions). Their order is not significant.
  15004. This list is originally set up by the flow analysis pass; it is a null
  15005. pointer until then. Flow only adds links for those data dependencies
  15006. which can be used for instruction combination. For each insn, the flow
  15007. analysis pass adds a link to insns which store into registers values
  15008. that are used for the first time in this insn.
  15009. The 'REG_NOTES' field of an insn is a chain similar to the 'LOG_LINKS'
  15010. field but it includes 'expr_list' and 'int_list' expressions in addition
  15011. to 'insn_list' expressions. There are several kinds of register notes,
  15012. which are distinguished by the machine mode, which in a register note is
  15013. really understood as being an 'enum reg_note'. The first operand OP of
  15014. the note is data whose meaning depends on the kind of note.
  15015. The macro 'REG_NOTE_KIND (X)' returns the kind of register note. Its
  15016. counterpart, the macro 'PUT_REG_NOTE_KIND (X, NEWKIND)' sets the
  15017. register note type of X to be NEWKIND.
  15018. Register notes are of three classes: They may say something about an
  15019. input to an insn, they may say something about an output of an insn, or
  15020. they may create a linkage between two insns. There are also a set of
  15021. values that are only used in 'LOG_LINKS'.
  15022. These register notes annotate inputs to an insn:
  15023. 'REG_DEAD'
  15024. The value in OP dies in this insn; that is to say, altering the
  15025. value immediately after this insn would not affect the future
  15026. behavior of the program.
  15027. It does not follow that the register OP has no useful value after
  15028. this insn since OP is not necessarily modified by this insn.
  15029. Rather, no subsequent instruction uses the contents of OP.
  15030. 'REG_UNUSED'
  15031. The register OP being set by this insn will not be used in a
  15032. subsequent insn. This differs from a 'REG_DEAD' note, which
  15033. indicates that the value in an input will not be used subsequently.
  15034. These two notes are independent; both may be present for the same
  15035. register.
  15036. 'REG_INC'
  15037. The register OP is incremented (or decremented; at this level there
  15038. is no distinction) by an embedded side effect inside this insn.
  15039. This means it appears in a 'post_inc', 'pre_inc', 'post_dec' or
  15040. 'pre_dec' expression.
  15041. 'REG_NONNEG'
  15042. The register OP is known to have a nonnegative value when this insn
  15043. is reached. This is used so that decrement and branch until zero
  15044. instructions, such as the m68k dbra, can be matched.
  15045. The 'REG_NONNEG' note is added to insns only if the machine
  15046. description has a 'decrement_and_branch_until_zero' pattern.
  15047. 'REG_LABEL_OPERAND'
  15048. This insn uses OP, a 'code_label' or a 'note' of type
  15049. 'NOTE_INSN_DELETED_LABEL', but is not a 'jump_insn', or it is a
  15050. 'jump_insn' that refers to the operand as an ordinary operand. The
  15051. label may still eventually be a jump target, but if so in an
  15052. indirect jump in a subsequent insn. The presence of this note
  15053. allows jump optimization to be aware that OP is, in fact, being
  15054. used, and flow optimization to build an accurate flow graph.
  15055. 'REG_LABEL_TARGET'
  15056. This insn is a 'jump_insn' but not an 'addr_vec' or
  15057. 'addr_diff_vec'. It uses OP, a 'code_label' as a direct or
  15058. indirect jump target. Its purpose is similar to that of
  15059. 'REG_LABEL_OPERAND'. This note is only present if the insn has
  15060. multiple targets; the last label in the insn (in the highest
  15061. numbered insn-field) goes into the 'JUMP_LABEL' field and does not
  15062. have a 'REG_LABEL_TARGET' note. *Note JUMP_LABEL: Insns.
  15063. 'REG_SETJMP'
  15064. Appears attached to each 'CALL_INSN' to 'setjmp' or a related
  15065. function.
  15066. The following notes describe attributes of outputs of an insn:
  15067. 'REG_EQUIV'
  15068. 'REG_EQUAL'
  15069. This note is only valid on an insn that sets only one register and
  15070. indicates that that register will be equal to OP at run time; the
  15071. scope of this equivalence differs between the two types of notes.
  15072. The value which the insn explicitly copies into the register may
  15073. look different from OP, but they will be equal at run time. If the
  15074. output of the single 'set' is a 'strict_low_part' or 'zero_extract'
  15075. expression, the note refers to the register that is contained in
  15076. its first operand.
  15077. For 'REG_EQUIV', the register is equivalent to OP throughout the
  15078. entire function, and could validly be replaced in all its
  15079. occurrences by OP. ("Validly" here refers to the data flow of the
  15080. program; simple replacement may make some insns invalid.) For
  15081. example, when a constant is loaded into a register that is never
  15082. assigned any other value, this kind of note is used.
  15083. When a parameter is copied into a pseudo-register at entry to a
  15084. function, a note of this kind records that the register is
  15085. equivalent to the stack slot where the parameter was passed.
  15086. Although in this case the register may be set by other insns, it is
  15087. still valid to replace the register by the stack slot throughout
  15088. the function.
  15089. A 'REG_EQUIV' note is also used on an instruction which copies a
  15090. register parameter into a pseudo-register at entry to a function,
  15091. if there is a stack slot where that parameter could be stored.
  15092. Although other insns may set the pseudo-register, it is valid for
  15093. the compiler to replace the pseudo-register by stack slot
  15094. throughout the function, provided the compiler ensures that the
  15095. stack slot is properly initialized by making the replacement in the
  15096. initial copy instruction as well. This is used on machines for
  15097. which the calling convention allocates stack space for register
  15098. parameters. See 'REG_PARM_STACK_SPACE' in *note Stack Arguments::.
  15099. In the case of 'REG_EQUAL', the register that is set by this insn
  15100. will be equal to OP at run time at the end of this insn but not
  15101. necessarily elsewhere in the function. In this case, OP is
  15102. typically an arithmetic expression. For example, when a sequence
  15103. of insns such as a library call is used to perform an arithmetic
  15104. operation, this kind of note is attached to the insn that produces
  15105. or copies the final value.
  15106. These two notes are used in different ways by the compiler passes.
  15107. 'REG_EQUAL' is used by passes prior to register allocation (such as
  15108. common subexpression elimination and loop optimization) to tell
  15109. them how to think of that value. 'REG_EQUIV' notes are used by
  15110. register allocation to indicate that there is an available
  15111. substitute expression (either a constant or a 'mem' expression for
  15112. the location of a parameter on the stack) that may be used in place
  15113. of a register if insufficient registers are available.
  15114. Except for stack homes for parameters, which are indicated by a
  15115. 'REG_EQUIV' note and are not useful to the early optimization
  15116. passes and pseudo registers that are equivalent to a memory
  15117. location throughout their entire life, which is not detected until
  15118. later in the compilation, all equivalences are initially indicated
  15119. by an attached 'REG_EQUAL' note. In the early stages of register
  15120. allocation, a 'REG_EQUAL' note is changed into a 'REG_EQUIV' note
  15121. if OP is a constant and the insn represents the only set of its
  15122. destination register.
  15123. Thus, compiler passes prior to register allocation need only check
  15124. for 'REG_EQUAL' notes and passes subsequent to register allocation
  15125. need only check for 'REG_EQUIV' notes.
  15126. These notes describe linkages between insns. They occur in pairs: one
  15127. insn has one of a pair of notes that points to a second insn, which has
  15128. the inverse note pointing back to the first insn.
  15129. 'REG_CC_SETTER'
  15130. 'REG_CC_USER'
  15131. On machines that use 'cc0', the insns which set and use 'cc0' set
  15132. and use 'cc0' are adjacent. However, when branch delay slot
  15133. filling is done, this may no longer be true. In this case a
  15134. 'REG_CC_USER' note will be placed on the insn setting 'cc0' to
  15135. point to the insn using 'cc0' and a 'REG_CC_SETTER' note will be
  15136. placed on the insn using 'cc0' to point to the insn setting 'cc0'.
  15137. These values are only used in the 'LOG_LINKS' field, and indicate the
  15138. type of dependency that each link represents. Links which indicate a
  15139. data dependence (a read after write dependence) do not use any code,
  15140. they simply have mode 'VOIDmode', and are printed without any
  15141. descriptive text.
  15142. 'REG_DEP_TRUE'
  15143. This indicates a true dependence (a read after write dependence).
  15144. 'REG_DEP_OUTPUT'
  15145. This indicates an output dependence (a write after write
  15146. dependence).
  15147. 'REG_DEP_ANTI'
  15148. This indicates an anti dependence (a write after read dependence).
  15149. These notes describe information gathered from gcov profile data. They
  15150. are stored in the 'REG_NOTES' field of an insn.
  15151. 'REG_BR_PROB'
  15152. This is used to specify the ratio of branches to non-branches of a
  15153. branch insn according to the profile data. The note is represented
  15154. as an 'int_list' expression whose integer value is an encoding of
  15155. 'profile_probability' type. 'profile_probability' provide member
  15156. function 'from_reg_br_prob_note' and 'to_reg_br_prob_note' to
  15157. extract and store the probability into the RTL encoding.
  15158. 'REG_BR_PRED'
  15159. These notes are found in JUMP insns after delayed branch scheduling
  15160. has taken place. They indicate both the direction and the
  15161. likelihood of the JUMP. The format is a bitmask of ATTR_FLAG_*
  15162. values.
  15163. 'REG_FRAME_RELATED_EXPR'
  15164. This is used on an RTX_FRAME_RELATED_P insn wherein the attached
  15165. expression is used in place of the actual insn pattern. This is
  15166. done in cases where the pattern is either complex or misleading.
  15167. The note 'REG_CALL_NOCF_CHECK' is used in conjunction with the
  15168. '-fcf-protection=branch' option. The note is set if a 'nocf_check'
  15169. attribute is specified for a function type or a pointer to function
  15170. type. The note is stored in the 'REG_NOTES' field of an insn.
  15171. 'REG_CALL_NOCF_CHECK'
  15172. Users have control through the 'nocf_check' attribute to identify
  15173. which calls to a function should be skipped from control-flow
  15174. instrumentation when the option '-fcf-protection=branch' is
  15175. specified. The compiler puts a 'REG_CALL_NOCF_CHECK' note on each
  15176. 'CALL_INSN' instruction that has a function type marked with a
  15177. 'nocf_check' attribute.
  15178. For convenience, the machine mode in an 'insn_list' or 'expr_list' is
  15179. printed using these symbolic codes in debugging dumps.
  15180. The only difference between the expression codes 'insn_list' and
  15181. 'expr_list' is that the first operand of an 'insn_list' is assumed to be
  15182. an insn and is printed in debugging dumps as the insn's unique id; the
  15183. first operand of an 'expr_list' is printed in the ordinary way as an
  15184. expression.
  15185. 
  15186. File: gccint.info, Node: Calls, Next: Sharing, Prev: Insns, Up: RTL
  15187. 14.20 RTL Representation of Function-Call Insns
  15188. ===============================================
  15189. Insns that call subroutines have the RTL expression code 'call_insn'.
  15190. These insns must satisfy special rules, and their bodies must use a
  15191. special RTL expression code, 'call'.
  15192. A 'call' expression has two operands, as follows:
  15193. (call (mem:FM ADDR) NBYTES)
  15194. Here NBYTES is an operand that represents the number of bytes of
  15195. argument data being passed to the subroutine, FM is a machine mode
  15196. (which must equal as the definition of the 'FUNCTION_MODE' macro in the
  15197. machine description) and ADDR represents the address of the subroutine.
  15198. For a subroutine that returns no value, the 'call' expression as shown
  15199. above is the entire body of the insn, except that the insn might also
  15200. contain 'use' or 'clobber' expressions.
  15201. For a subroutine that returns a value whose mode is not 'BLKmode', the
  15202. value is returned in a hard register. If this register's number is R,
  15203. then the body of the call insn looks like this:
  15204. (set (reg:M R)
  15205. (call (mem:FM ADDR) NBYTES))
  15206. This RTL expression makes it clear (to the optimizer passes) that the
  15207. appropriate register receives a useful value in this insn.
  15208. When a subroutine returns a 'BLKmode' value, it is handled by passing
  15209. to the subroutine the address of a place to store the value. So the
  15210. call insn itself does not "return" any value, and it has the same RTL
  15211. form as a call that returns nothing.
  15212. On some machines, the call instruction itself clobbers some register,
  15213. for example to contain the return address. 'call_insn' insns on these
  15214. machines should have a body which is a 'parallel' that contains both the
  15215. 'call' expression and 'clobber' expressions that indicate which
  15216. registers are destroyed. Similarly, if the call instruction requires
  15217. some register other than the stack pointer that is not explicitly
  15218. mentioned in its RTL, a 'use' subexpression should mention that
  15219. register.
  15220. Functions that are called are assumed to modify all registers listed in
  15221. the configuration macro 'CALL_USED_REGISTERS' (*note Register Basics::)
  15222. and, with the exception of 'const' functions and library calls, to
  15223. modify all of memory.
  15224. Insns containing just 'use' expressions directly precede the
  15225. 'call_insn' insn to indicate which registers contain inputs to the
  15226. function. Similarly, if registers other than those in
  15227. 'CALL_USED_REGISTERS' are clobbered by the called function, insns
  15228. containing a single 'clobber' follow immediately after the call to
  15229. indicate which registers.
  15230. 
  15231. File: gccint.info, Node: Sharing, Next: Reading RTL, Prev: Calls, Up: RTL
  15232. 14.21 Structure Sharing Assumptions
  15233. ===================================
  15234. The compiler assumes that certain kinds of RTL expressions are unique;
  15235. there do not exist two distinct objects representing the same value. In
  15236. other cases, it makes an opposite assumption: that no RTL expression
  15237. object of a certain kind appears in more than one place in the
  15238. containing structure.
  15239. These assumptions refer to a single function; except for the RTL
  15240. objects that describe global variables and external functions, and a few
  15241. standard objects such as small integer constants, no RTL objects are
  15242. common to two functions.
  15243. * Each pseudo-register has only a single 'reg' object to represent
  15244. it, and therefore only a single machine mode.
  15245. * For any symbolic label, there is only one 'symbol_ref' object
  15246. referring to it.
  15247. * All 'const_int' expressions with equal values are shared.
  15248. * All 'const_poly_int' expressions with equal modes and values are
  15249. shared.
  15250. * There is only one 'pc' expression.
  15251. * There is only one 'cc0' expression.
  15252. * There is only one 'const_double' expression with value 0 for each
  15253. floating point mode. Likewise for values 1 and 2.
  15254. * There is only one 'const_vector' expression with value 0 for each
  15255. vector mode, be it an integer or a double constant vector.
  15256. * No 'label_ref' or 'scratch' appears in more than one place in the
  15257. RTL structure; in other words, it is safe to do a tree-walk of all
  15258. the insns in the function and assume that each time a 'label_ref'
  15259. or 'scratch' is seen it is distinct from all others that are seen.
  15260. * Only one 'mem' object is normally created for each static variable
  15261. or stack slot, so these objects are frequently shared in all the
  15262. places they appear. However, separate but equal objects for these
  15263. variables are occasionally made.
  15264. * When a single 'asm' statement has multiple output operands, a
  15265. distinct 'asm_operands' expression is made for each output operand.
  15266. However, these all share the vector which contains the sequence of
  15267. input operands. This sharing is used later on to test whether two
  15268. 'asm_operands' expressions come from the same statement, so all
  15269. optimizations must carefully preserve the sharing if they copy the
  15270. vector at all.
  15271. * No RTL object appears in more than one place in the RTL structure
  15272. except as described above. Many passes of the compiler rely on
  15273. this by assuming that they can modify RTL objects in place without
  15274. unwanted side-effects on other insns.
  15275. * During initial RTL generation, shared structure is freely
  15276. introduced. After all the RTL for a function has been generated,
  15277. all shared structure is copied by 'unshare_all_rtl' in
  15278. 'emit-rtl.c', after which the above rules are guaranteed to be
  15279. followed.
  15280. * During the combiner pass, shared structure within an insn can exist
  15281. temporarily. However, the shared structure is copied before the
  15282. combiner is finished with the insn. This is done by calling
  15283. 'copy_rtx_if_shared', which is a subroutine of 'unshare_all_rtl'.
  15284. 
  15285. File: gccint.info, Node: Reading RTL, Prev: Sharing, Up: RTL
  15286. 14.22 Reading RTL
  15287. =================
  15288. To read an RTL object from a file, call 'read_rtx'. It takes one
  15289. argument, a stdio stream, and returns a single RTL object. This routine
  15290. is defined in 'read-rtl.c'. It is not available in the compiler itself,
  15291. only the various programs that generate the compiler back end from the
  15292. machine description.
  15293. People frequently have the idea of using RTL stored as text in a file
  15294. as an interface between a language front end and the bulk of GCC. This
  15295. idea is not feasible.
  15296. GCC was designed to use RTL internally only. Correct RTL for a given
  15297. program is very dependent on the particular target machine. And the RTL
  15298. does not contain all the information about the program.
  15299. The proper way to interface GCC to a new language front end is with the
  15300. "tree" data structure, described in the files 'tree.h' and 'tree.def'.
  15301. The documentation for this structure (*note GENERIC::) is incomplete.
  15302. 
  15303. File: gccint.info, Node: Control Flow, Next: Loop Analysis and Representation, Prev: RTL, Up: Top
  15304. 15 Control Flow Graph
  15305. *********************
  15306. A control flow graph (CFG) is a data structure built on top of the
  15307. intermediate code representation (the RTL or 'GIMPLE' instruction
  15308. stream) abstracting the control flow behavior of a function that is
  15309. being compiled. The CFG is a directed graph where the vertices
  15310. represent basic blocks and edges represent possible transfer of control
  15311. flow from one basic block to another. The data structures used to
  15312. represent the control flow graph are defined in 'basic-block.h'.
  15313. In GCC, the representation of control flow is maintained throughout the
  15314. compilation process, from constructing the CFG early in 'pass_build_cfg'
  15315. to 'pass_free_cfg' (see 'passes.def'). The CFG takes various different
  15316. modes and may undergo extensive manipulations, but the graph is always
  15317. valid between its construction and its release. This way, transfer of
  15318. information such as data flow, a measured profile, or the loop tree, can
  15319. be propagated through the passes pipeline, and even from 'GIMPLE' to
  15320. 'RTL'.
  15321. Often the CFG may be better viewed as integral part of instruction
  15322. chain, than structure built on the top of it. Updating the compiler's
  15323. intermediate representation for instructions can not be easily done
  15324. without proper maintenance of the CFG simultaneously.
  15325. * Menu:
  15326. * Basic Blocks:: The definition and representation of basic blocks.
  15327. * Edges:: Types of edges and their representation.
  15328. * Profile information:: Representation of frequencies and probabilities.
  15329. * Maintaining the CFG:: Keeping the control flow graph and up to date.
  15330. * Liveness information:: Using and maintaining liveness information.
  15331. 
  15332. File: gccint.info, Node: Basic Blocks, Next: Edges, Up: Control Flow
  15333. 15.1 Basic Blocks
  15334. =================
  15335. A basic block is a straight-line sequence of code with only one entry
  15336. point and only one exit. In GCC, basic blocks are represented using the
  15337. 'basic_block' data type.
  15338. Special basic blocks represent possible entry and exit points of a
  15339. function. These blocks are called 'ENTRY_BLOCK_PTR' and
  15340. 'EXIT_BLOCK_PTR'. These blocks do not contain any code.
  15341. The 'BASIC_BLOCK' array contains all basic blocks in an unspecified
  15342. order. Each 'basic_block' structure has a field that holds a unique
  15343. integer identifier 'index' that is the index of the block in the
  15344. 'BASIC_BLOCK' array. The total number of basic blocks in the function
  15345. is 'n_basic_blocks'. Both the basic block indices and the total number
  15346. of basic blocks may vary during the compilation process, as passes
  15347. reorder, create, duplicate, and destroy basic blocks. The index for any
  15348. block should never be greater than 'last_basic_block'. The indices 0
  15349. and 1 are special codes reserved for 'ENTRY_BLOCK' and 'EXIT_BLOCK', the
  15350. indices of 'ENTRY_BLOCK_PTR' and 'EXIT_BLOCK_PTR'.
  15351. Two pointer members of the 'basic_block' structure are the pointers
  15352. 'next_bb' and 'prev_bb'. These are used to keep doubly linked chain of
  15353. basic blocks in the same order as the underlying instruction stream.
  15354. The chain of basic blocks is updated transparently by the provided API
  15355. for manipulating the CFG. The macro 'FOR_EACH_BB' can be used to visit
  15356. all the basic blocks in lexicographical order, except 'ENTRY_BLOCK' and
  15357. 'EXIT_BLOCK'. The macro 'FOR_ALL_BB' also visits all basic blocks in
  15358. lexicographical order, including 'ENTRY_BLOCK' and 'EXIT_BLOCK'.
  15359. The functions 'post_order_compute' and 'inverted_post_order_compute'
  15360. can be used to compute topological orders of the CFG. The orders are
  15361. stored as vectors of basic block indices. The 'BASIC_BLOCK' array can
  15362. be used to iterate each basic block by index. Dominator traversals are
  15363. also possible using 'walk_dominator_tree'. Given two basic blocks A and
  15364. B, block A dominates block B if A is _always_ executed before B.
  15365. Each 'basic_block' also contains pointers to the first instruction (the
  15366. "head") and the last instruction (the "tail") or "end" of the
  15367. instruction stream contained in a basic block. In fact, since the
  15368. 'basic_block' data type is used to represent blocks in both major
  15369. intermediate representations of GCC ('GIMPLE' and RTL), there are
  15370. pointers to the head and end of a basic block for both representations,
  15371. stored in intermediate representation specific data in the 'il' field of
  15372. 'struct basic_block_def'.
  15373. For RTL, these pointers are 'BB_HEAD' and 'BB_END'.
  15374. In the RTL representation of a function, the instruction stream
  15375. contains not only the "real" instructions, but also "notes" or "insn
  15376. notes" (to distinguish them from "reg notes"). Any function that moves
  15377. or duplicates the basic blocks needs to take care of updating of these
  15378. notes. Many of these notes expect that the instruction stream consists
  15379. of linear regions, so updating can sometimes be tedious. All types of
  15380. insn notes are defined in 'insn-notes.def'.
  15381. In the RTL function representation, the instructions contained in a
  15382. basic block always follow a 'NOTE_INSN_BASIC_BLOCK', but zero or more
  15383. 'CODE_LABEL' nodes can precede the block note. A basic block ends with
  15384. a control flow instruction or with the last instruction before the next
  15385. 'CODE_LABEL' or 'NOTE_INSN_BASIC_BLOCK'. By definition, a 'CODE_LABEL'
  15386. cannot appear in the middle of the instruction stream of a basic block.
  15387. In addition to notes, the jump table vectors are also represented as
  15388. "pseudo-instructions" inside the insn stream. These vectors never
  15389. appear in the basic block and should always be placed just after the
  15390. table jump instructions referencing them. After removing the table-jump
  15391. it is often difficult to eliminate the code computing the address and
  15392. referencing the vector, so cleaning up these vectors is postponed until
  15393. after liveness analysis. Thus the jump table vectors may appear in the
  15394. insn stream unreferenced and without any purpose. Before any edge is
  15395. made "fall-thru", the existence of such construct in the way needs to be
  15396. checked by calling 'can_fallthru' function.
  15397. For the 'GIMPLE' representation, the PHI nodes and statements contained
  15398. in a basic block are in a 'gimple_seq' pointed to by the basic block
  15399. intermediate language specific pointers. Abstract containers and
  15400. iterators are used to access the PHI nodes and statements in a basic
  15401. blocks. These iterators are called "GIMPLE statement iterators" (GSIs).
  15402. Grep for '^gsi' in the various 'gimple-*' and 'tree-*' files. There is
  15403. a 'gimple_stmt_iterator' type for iterating over all kinds of statement,
  15404. and a 'gphi_iterator' subclass for iterating over PHI nodes. The
  15405. following snippet will pretty-print all PHI nodes the statements of the
  15406. current function in the GIMPLE representation.
  15407. basic_block bb;
  15408. FOR_EACH_BB (bb)
  15409. {
  15410. gphi_iterator pi;
  15411. gimple_stmt_iterator si;
  15412. for (pi = gsi_start_phis (bb); !gsi_end_p (pi); gsi_next (&pi))
  15413. {
  15414. gphi *phi = pi.phi ();
  15415. print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
  15416. }
  15417. for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
  15418. {
  15419. gimple stmt = gsi_stmt (si);
  15420. print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
  15421. }
  15422. }
  15423. 
  15424. File: gccint.info, Node: Edges, Next: Profile information, Prev: Basic Blocks, Up: Control Flow
  15425. 15.2 Edges
  15426. ==========
  15427. Edges represent possible control flow transfers from the end of some
  15428. basic block A to the head of another basic block B. We say that A is a
  15429. predecessor of B, and B is a successor of A. Edges are represented in
  15430. GCC with the 'edge' data type. Each 'edge' acts as a link between two
  15431. basic blocks: The 'src' member of an edge points to the predecessor
  15432. basic block of the 'dest' basic block. The members 'preds' and 'succs'
  15433. of the 'basic_block' data type point to type-safe vectors of edges to
  15434. the predecessors and successors of the block.
  15435. When walking the edges in an edge vector, "edge iterators" should be
  15436. used. Edge iterators are constructed using the 'edge_iterator' data
  15437. structure and several methods are available to operate on them:
  15438. 'ei_start'
  15439. This function initializes an 'edge_iterator' that points to the
  15440. first edge in a vector of edges.
  15441. 'ei_last'
  15442. This function initializes an 'edge_iterator' that points to the
  15443. last edge in a vector of edges.
  15444. 'ei_end_p'
  15445. This predicate is 'true' if an 'edge_iterator' represents the last
  15446. edge in an edge vector.
  15447. 'ei_one_before_end_p'
  15448. This predicate is 'true' if an 'edge_iterator' represents the
  15449. second last edge in an edge vector.
  15450. 'ei_next'
  15451. This function takes a pointer to an 'edge_iterator' and makes it
  15452. point to the next edge in the sequence.
  15453. 'ei_prev'
  15454. This function takes a pointer to an 'edge_iterator' and makes it
  15455. point to the previous edge in the sequence.
  15456. 'ei_edge'
  15457. This function returns the 'edge' currently pointed to by an
  15458. 'edge_iterator'.
  15459. 'ei_safe_safe'
  15460. This function returns the 'edge' currently pointed to by an
  15461. 'edge_iterator', but returns 'NULL' if the iterator is pointing at
  15462. the end of the sequence. This function has been provided for
  15463. existing code makes the assumption that a 'NULL' edge indicates the
  15464. end of the sequence.
  15465. The convenience macro 'FOR_EACH_EDGE' can be used to visit all of the
  15466. edges in a sequence of predecessor or successor edges. It must not be
  15467. used when an element might be removed during the traversal, otherwise
  15468. elements will be missed. Here is an example of how to use the macro:
  15469. edge e;
  15470. edge_iterator ei;
  15471. FOR_EACH_EDGE (e, ei, bb->succs)
  15472. {
  15473. if (e->flags & EDGE_FALLTHRU)
  15474. break;
  15475. }
  15476. There are various reasons why control flow may transfer from one block
  15477. to another. One possibility is that some instruction, for example a
  15478. 'CODE_LABEL', in a linearized instruction stream just always starts a
  15479. new basic block. In this case a "fall-thru" edge links the basic block
  15480. to the first following basic block. But there are several other reasons
  15481. why edges may be created. The 'flags' field of the 'edge' data type is
  15482. used to store information about the type of edge we are dealing with.
  15483. Each edge is of one of the following types:
  15484. _jump_
  15485. No type flags are set for edges corresponding to jump instructions.
  15486. These edges are used for unconditional or conditional jumps and in
  15487. RTL also for table jumps. They are the easiest to manipulate as
  15488. they may be freely redirected when the flow graph is not in SSA
  15489. form.
  15490. _fall-thru_
  15491. Fall-thru edges are present in case where the basic block may
  15492. continue execution to the following one without branching. These
  15493. edges have the 'EDGE_FALLTHRU' flag set. Unlike other types of
  15494. edges, these edges must come into the basic block immediately
  15495. following in the instruction stream. The function
  15496. 'force_nonfallthru' is available to insert an unconditional jump in
  15497. the case that redirection is needed. Note that this may require
  15498. creation of a new basic block.
  15499. _exception handling_
  15500. Exception handling edges represent possible control transfers from
  15501. a trapping instruction to an exception handler. The definition of
  15502. "trapping" varies. In C++, only function calls can throw, but for
  15503. Ada exceptions like division by zero or segmentation fault are
  15504. defined and thus each instruction possibly throwing this kind of
  15505. exception needs to be handled as control flow instruction.
  15506. Exception edges have the 'EDGE_ABNORMAL' and 'EDGE_EH' flags set.
  15507. When updating the instruction stream it is easy to change possibly
  15508. trapping instruction to non-trapping, by simply removing the
  15509. exception edge. The opposite conversion is difficult, but should
  15510. not happen anyway. The edges can be eliminated via
  15511. 'purge_dead_edges' call.
  15512. In the RTL representation, the destination of an exception edge is
  15513. specified by 'REG_EH_REGION' note attached to the insn. In case of
  15514. a trapping call the 'EDGE_ABNORMAL_CALL' flag is set too. In the
  15515. 'GIMPLE' representation, this extra flag is not set.
  15516. In the RTL representation, the predicate 'may_trap_p' may be used
  15517. to check whether instruction still may trap or not. For the tree
  15518. representation, the 'tree_could_trap_p' predicate is available, but
  15519. this predicate only checks for possible memory traps, as in
  15520. dereferencing an invalid pointer location.
  15521. _sibling calls_
  15522. Sibling calls or tail calls terminate the function in a
  15523. non-standard way and thus an edge to the exit must be present.
  15524. 'EDGE_SIBCALL' and 'EDGE_ABNORMAL' are set in such case. These
  15525. edges only exist in the RTL representation.
  15526. _computed jumps_
  15527. Computed jumps contain edges to all labels in the function
  15528. referenced from the code. All those edges have 'EDGE_ABNORMAL'
  15529. flag set. The edges used to represent computed jumps often cause
  15530. compile time performance problems, since functions consisting of
  15531. many taken labels and many computed jumps may have _very_ dense
  15532. flow graphs, so these edges need to be handled with special care.
  15533. During the earlier stages of the compilation process, GCC tries to
  15534. avoid such dense flow graphs by factoring computed jumps. For
  15535. example, given the following series of jumps,
  15536. goto *x;
  15537. [ ... ]
  15538. goto *x;
  15539. [ ... ]
  15540. goto *x;
  15541. [ ... ]
  15542. factoring the computed jumps results in the following code sequence
  15543. which has a much simpler flow graph:
  15544. goto y;
  15545. [ ... ]
  15546. goto y;
  15547. [ ... ]
  15548. goto y;
  15549. [ ... ]
  15550. y:
  15551. goto *x;
  15552. However, the classic problem with this transformation is that it
  15553. has a runtime cost in there resulting code: An extra jump.
  15554. Therefore, the computed jumps are un-factored in the later passes
  15555. of the compiler (in the pass called
  15556. 'pass_duplicate_computed_gotos'). Be aware of that when you work
  15557. on passes in that area. There have been numerous examples already
  15558. where the compile time for code with unfactored computed jumps
  15559. caused some serious headaches.
  15560. _nonlocal goto handlers_
  15561. GCC allows nested functions to return into caller using a 'goto' to
  15562. a label passed to as an argument to the callee. The labels passed
  15563. to nested functions contain special code to cleanup after function
  15564. call. Such sections of code are referred to as "nonlocal goto
  15565. receivers". If a function contains such nonlocal goto receivers,
  15566. an edge from the call to the label is created with the
  15567. 'EDGE_ABNORMAL' and 'EDGE_ABNORMAL_CALL' flags set.
  15568. _function entry points_
  15569. By definition, execution of function starts at basic block 0, so
  15570. there is always an edge from the 'ENTRY_BLOCK_PTR' to basic block
  15571. 0. There is no 'GIMPLE' representation for alternate entry points
  15572. at this moment. In RTL, alternate entry points are specified by
  15573. 'CODE_LABEL' with 'LABEL_ALTERNATE_NAME' defined. This feature is
  15574. currently used for multiple entry point prologues and is limited to
  15575. post-reload passes only. This can be used by back-ends to emit
  15576. alternate prologues for functions called from different contexts.
  15577. In future full support for multiple entry functions defined by
  15578. Fortran 90 needs to be implemented.
  15579. _function exits_
  15580. In the pre-reload representation a function terminates after the
  15581. last instruction in the insn chain and no explicit return
  15582. instructions are used. This corresponds to the fall-thru edge into
  15583. exit block. After reload, optimal RTL epilogues are used that use
  15584. explicit (conditional) return instructions that are represented by
  15585. edges with no flags set.
  15586. 
  15587. File: gccint.info, Node: Profile information, Next: Maintaining the CFG, Prev: Edges, Up: Control Flow
  15588. 15.3 Profile information
  15589. ========================
  15590. In many cases a compiler must make a choice whether to trade speed in
  15591. one part of code for speed in another, or to trade code size for code
  15592. speed. In such cases it is useful to know information about how often
  15593. some given block will be executed. That is the purpose for maintaining
  15594. profile within the flow graph. GCC can handle profile information
  15595. obtained through "profile feedback", but it can also estimate branch
  15596. probabilities based on statics and heuristics.
  15597. The feedback based profile is produced by compiling the program with
  15598. instrumentation, executing it on a train run and reading the numbers of
  15599. executions of basic blocks and edges back to the compiler while
  15600. re-compiling the program to produce the final executable. This method
  15601. provides very accurate information about where a program spends most of
  15602. its time on the train run. Whether it matches the average run of course
  15603. depends on the choice of train data set, but several studies have shown
  15604. that the behavior of a program usually changes just marginally over
  15605. different data sets.
  15606. When profile feedback is not available, the compiler may be asked to
  15607. attempt to predict the behavior of each branch in the program using a
  15608. set of heuristics (see 'predict.def' for details) and compute estimated
  15609. frequencies of each basic block by propagating the probabilities over
  15610. the graph.
  15611. Each 'basic_block' contains two integer fields to represent profile
  15612. information: 'frequency' and 'count'. The 'frequency' is an estimation
  15613. how often is basic block executed within a function. It is represented
  15614. as an integer scaled in the range from 0 to 'BB_FREQ_BASE'. The most
  15615. frequently executed basic block in function is initially set to
  15616. 'BB_FREQ_BASE' and the rest of frequencies are scaled accordingly.
  15617. During optimization, the frequency of the most frequent basic block can
  15618. both decrease (for instance by loop unrolling) or grow (for instance by
  15619. cross-jumping optimization), so scaling sometimes has to be performed
  15620. multiple times.
  15621. The 'count' contains hard-counted numbers of execution measured during
  15622. training runs and is nonzero only when profile feedback is available.
  15623. This value is represented as the host's widest integer (typically a 64
  15624. bit integer) of the special type 'gcov_type'.
  15625. Most optimization passes can use only the frequency information of a
  15626. basic block, but a few passes may want to know hard execution counts.
  15627. The frequencies should always match the counts after scaling, however
  15628. during updating of the profile information numerical error may
  15629. accumulate into quite large errors.
  15630. Each edge also contains a branch probability field: an integer in the
  15631. range from 0 to 'REG_BR_PROB_BASE'. It represents probability of
  15632. passing control from the end of the 'src' basic block to the 'dest'
  15633. basic block, i.e. the probability that control will flow along this
  15634. edge. The 'EDGE_FREQUENCY' macro is available to compute how frequently
  15635. a given edge is taken. There is a 'count' field for each edge as well,
  15636. representing same information as for a basic block.
  15637. The basic block frequencies are not represented in the instruction
  15638. stream, but in the RTL representation the edge frequencies are
  15639. represented for conditional jumps (via the 'REG_BR_PROB' macro) since
  15640. they are used when instructions are output to the assembly file and the
  15641. flow graph is no longer maintained.
  15642. The probability that control flow arrives via a given edge to its
  15643. destination basic block is called "reverse probability" and is not
  15644. directly represented, but it may be easily computed from frequencies of
  15645. basic blocks.
  15646. Updating profile information is a delicate task that can unfortunately
  15647. not be easily integrated with the CFG manipulation API. Many of the
  15648. functions and hooks to modify the CFG, such as
  15649. 'redirect_edge_and_branch', do not have enough information to easily
  15650. update the profile, so updating it is in the majority of cases left up
  15651. to the caller. It is difficult to uncover bugs in the profile updating
  15652. code, because they manifest themselves only by producing worse code, and
  15653. checking profile consistency is not possible because of numeric error
  15654. accumulation. Hence special attention needs to be given to this issue
  15655. in each pass that modifies the CFG.
  15656. It is important to point out that 'REG_BR_PROB_BASE' and 'BB_FREQ_BASE'
  15657. are both set low enough to be possible to compute second power of any
  15658. frequency or probability in the flow graph, it is not possible to even
  15659. square the 'count' field, as modern CPUs are fast enough to execute
  15660. $2^32$ operations quickly.
  15661. 
  15662. File: gccint.info, Node: Maintaining the CFG, Next: Liveness information, Prev: Profile information, Up: Control Flow
  15663. 15.4 Maintaining the CFG
  15664. ========================
  15665. An important task of each compiler pass is to keep both the control flow
  15666. graph and all profile information up-to-date. Reconstruction of the
  15667. control flow graph after each pass is not an option, since it may be
  15668. very expensive and lost profile information cannot be reconstructed at
  15669. all.
  15670. GCC has two major intermediate representations, and both use the
  15671. 'basic_block' and 'edge' data types to represent control flow. Both
  15672. representations share as much of the CFG maintenance code as possible.
  15673. For each representation, a set of "hooks" is defined so that each
  15674. representation can provide its own implementation of CFG manipulation
  15675. routines when necessary. These hooks are defined in 'cfghooks.h'.
  15676. There are hooks for almost all common CFG manipulations, including block
  15677. splitting and merging, edge redirection and creating and deleting basic
  15678. blocks. These hooks should provide everything you need to maintain and
  15679. manipulate the CFG in both the RTL and 'GIMPLE' representation.
  15680. At the moment, the basic block boundaries are maintained transparently
  15681. when modifying instructions, so there rarely is a need to move them
  15682. manually (such as in case someone wants to output instruction outside
  15683. basic block explicitly).
  15684. In the RTL representation, each instruction has a 'BLOCK_FOR_INSN'
  15685. value that represents pointer to the basic block that contains the
  15686. instruction. In the 'GIMPLE' representation, the function 'gimple_bb'
  15687. returns a pointer to the basic block containing the queried statement.
  15688. When changes need to be applied to a function in its 'GIMPLE'
  15689. representation, "GIMPLE statement iterators" should be used. These
  15690. iterators provide an integrated abstraction of the flow graph and the
  15691. instruction stream. Block statement iterators are constructed using the
  15692. 'gimple_stmt_iterator' data structure and several modifiers are
  15693. available, including the following:
  15694. 'gsi_start'
  15695. This function initializes a 'gimple_stmt_iterator' that points to
  15696. the first non-empty statement in a basic block.
  15697. 'gsi_last'
  15698. This function initializes a 'gimple_stmt_iterator' that points to
  15699. the last statement in a basic block.
  15700. 'gsi_end_p'
  15701. This predicate is 'true' if a 'gimple_stmt_iterator' represents the
  15702. end of a basic block.
  15703. 'gsi_next'
  15704. This function takes a 'gimple_stmt_iterator' and makes it point to
  15705. its successor.
  15706. 'gsi_prev'
  15707. This function takes a 'gimple_stmt_iterator' and makes it point to
  15708. its predecessor.
  15709. 'gsi_insert_after'
  15710. This function inserts a statement after the 'gimple_stmt_iterator'
  15711. passed in. The final parameter determines whether the statement
  15712. iterator is updated to point to the newly inserted statement, or
  15713. left pointing to the original statement.
  15714. 'gsi_insert_before'
  15715. This function inserts a statement before the 'gimple_stmt_iterator'
  15716. passed in. The final parameter determines whether the statement
  15717. iterator is updated to point to the newly inserted statement, or
  15718. left pointing to the original statement.
  15719. 'gsi_remove'
  15720. This function removes the 'gimple_stmt_iterator' passed in and
  15721. rechains the remaining statements in a basic block, if any.
  15722. In the RTL representation, the macros 'BB_HEAD' and 'BB_END' may be
  15723. used to get the head and end 'rtx' of a basic block. No abstract
  15724. iterators are defined for traversing the insn chain, but you can just
  15725. use 'NEXT_INSN' and 'PREV_INSN' instead. *Note Insns::.
  15726. Usually a code manipulating pass simplifies the instruction stream and
  15727. the flow of control, possibly eliminating some edges. This may for
  15728. example happen when a conditional jump is replaced with an unconditional
  15729. jump. Updating of edges is not transparent and each optimization pass
  15730. is required to do so manually. However only few cases occur in
  15731. practice. The pass may call 'purge_dead_edges' on a given basic block
  15732. to remove superfluous edges, if any.
  15733. Another common scenario is redirection of branch instructions, but this
  15734. is best modeled as redirection of edges in the control flow graph and
  15735. thus use of 'redirect_edge_and_branch' is preferred over more low level
  15736. functions, such as 'redirect_jump' that operate on RTL chain only. The
  15737. CFG hooks defined in 'cfghooks.h' should provide the complete API
  15738. required for manipulating and maintaining the CFG.
  15739. It is also possible that a pass has to insert control flow instruction
  15740. into the middle of a basic block, thus creating an entry point in the
  15741. middle of the basic block, which is impossible by definition: The block
  15742. must be split to make sure it only has one entry point, i.e. the head of
  15743. the basic block. The CFG hook 'split_block' may be used when an
  15744. instruction in the middle of a basic block has to become the target of a
  15745. jump or branch instruction.
  15746. For a global optimizer, a common operation is to split edges in the
  15747. flow graph and insert instructions on them. In the RTL representation,
  15748. this can be easily done using the 'insert_insn_on_edge' function that
  15749. emits an instruction "on the edge", caching it for a later
  15750. 'commit_edge_insertions' call that will take care of moving the inserted
  15751. instructions off the edge into the instruction stream contained in a
  15752. basic block. This includes the creation of new basic blocks where
  15753. needed. In the 'GIMPLE' representation, the equivalent functions are
  15754. 'gsi_insert_on_edge' which inserts a block statement iterator on an
  15755. edge, and 'gsi_commit_edge_inserts' which flushes the instruction to
  15756. actual instruction stream.
  15757. While debugging the optimization pass, the 'verify_flow_info' function
  15758. may be useful to find bugs in the control flow graph updating code.
  15759. 
  15760. File: gccint.info, Node: Liveness information, Prev: Maintaining the CFG, Up: Control Flow
  15761. 15.5 Liveness information
  15762. =========================
  15763. Liveness information is useful to determine whether some register is
  15764. "live" at given point of program, i.e. that it contains a value that may
  15765. be used at a later point in the program. This information is used, for
  15766. instance, during register allocation, as the pseudo registers only need
  15767. to be assigned to a unique hard register or to a stack slot if they are
  15768. live. The hard registers and stack slots may be freely reused for other
  15769. values when a register is dead.
  15770. Liveness information is available in the back end starting with
  15771. 'pass_df_initialize' and ending with 'pass_df_finish'. Three flavors of
  15772. live analysis are available: With 'LR', it is possible to determine at
  15773. any point 'P' in the function if the register may be used on some path
  15774. from 'P' to the end of the function. With 'UR', it is possible to
  15775. determine if there is a path from the beginning of the function to 'P'
  15776. that defines the variable. 'LIVE' is the intersection of the 'LR' and
  15777. 'UR' and a variable is live at 'P' if there is both an assignment that
  15778. reaches it from the beginning of the function and a use that can be
  15779. reached on some path from 'P' to the end of the function.
  15780. In general 'LIVE' is the most useful of the three. The macros
  15781. 'DF_[LR,UR,LIVE]_[IN,OUT]' can be used to access this information. The
  15782. macros take a basic block number and return a bitmap that is indexed by
  15783. the register number. This information is only guaranteed to be up to
  15784. date after calls are made to 'df_analyze'. See the file 'df-core.c' for
  15785. details on using the dataflow.
  15786. The liveness information is stored partly in the RTL instruction stream
  15787. and partly in the flow graph. Local information is stored in the
  15788. instruction stream: Each instruction may contain 'REG_DEAD' notes
  15789. representing that the value of a given register is no longer needed, or
  15790. 'REG_UNUSED' notes representing that the value computed by the
  15791. instruction is never used. The second is useful for instructions
  15792. computing multiple values at once.
  15793. 
  15794. File: gccint.info, Node: Loop Analysis and Representation, Next: Machine Desc, Prev: Control Flow, Up: Top
  15795. 16 Analysis and Representation of Loops
  15796. ***************************************
  15797. GCC provides extensive infrastructure for work with natural loops, i.e.,
  15798. strongly connected components of CFG with only one entry block. This
  15799. chapter describes representation of loops in GCC, both on GIMPLE and in
  15800. RTL, as well as the interfaces to loop-related analyses (induction
  15801. variable analysis and number of iterations analysis).
  15802. * Menu:
  15803. * Loop representation:: Representation and analysis of loops.
  15804. * Loop querying:: Getting information about loops.
  15805. * Loop manipulation:: Loop manipulation functions.
  15806. * LCSSA:: Loop-closed SSA form.
  15807. * Scalar evolutions:: Induction variables on GIMPLE.
  15808. * loop-iv:: Induction variables on RTL.
  15809. * Number of iterations:: Number of iterations analysis.
  15810. * Dependency analysis:: Data dependency analysis.
  15811. 
  15812. File: gccint.info, Node: Loop representation, Next: Loop querying, Up: Loop Analysis and Representation
  15813. 16.1 Loop representation
  15814. ========================
  15815. This chapter describes the representation of loops in GCC, and functions
  15816. that can be used to build, modify and analyze this representation. Most
  15817. of the interfaces and data structures are declared in 'cfgloop.h'. Loop
  15818. structures are analyzed and this information disposed or updated at the
  15819. discretion of individual passes. Still most of the generic CFG
  15820. manipulation routines are aware of loop structures and try to keep them
  15821. up-to-date. By this means an increasing part of the compilation
  15822. pipeline is setup to maintain loop structure across passes to allow
  15823. attaching meta information to individual loops for consumption by later
  15824. passes.
  15825. In general, a natural loop has one entry block (header) and possibly
  15826. several back edges (latches) leading to the header from the inside of
  15827. the loop. Loops with several latches may appear if several loops share
  15828. a single header, or if there is a branching in the middle of the loop.
  15829. The representation of loops in GCC however allows only loops with a
  15830. single latch. During loop analysis, headers of such loops are split and
  15831. forwarder blocks are created in order to disambiguate their structures.
  15832. Heuristic based on profile information and structure of the induction
  15833. variables in the loops is used to determine whether the latches
  15834. correspond to sub-loops or to control flow in a single loop. This means
  15835. that the analysis sometimes changes the CFG, and if you run it in the
  15836. middle of an optimization pass, you must be able to deal with the new
  15837. blocks. You may avoid CFG changes by passing
  15838. 'LOOPS_MAY_HAVE_MULTIPLE_LATCHES' flag to the loop discovery, note
  15839. however that most other loop manipulation functions will not work
  15840. correctly for loops with multiple latch edges (the functions that only
  15841. query membership of blocks to loops and subloop relationships, or
  15842. enumerate and test loop exits, can be expected to work).
  15843. Body of the loop is the set of blocks that are dominated by its header,
  15844. and reachable from its latch against the direction of edges in CFG. The
  15845. loops are organized in a containment hierarchy (tree) such that all the
  15846. loops immediately contained inside loop L are the children of L in the
  15847. tree. This tree is represented by the 'struct loops' structure. The
  15848. root of this tree is a fake loop that contains all blocks in the
  15849. function. Each of the loops is represented in a 'struct loop'
  15850. structure. Each loop is assigned an index ('num' field of the 'struct
  15851. loop' structure), and the pointer to the loop is stored in the
  15852. corresponding field of the 'larray' vector in the loops structure. The
  15853. indices do not have to be continuous, there may be empty ('NULL')
  15854. entries in the 'larray' created by deleting loops. Also, there is no
  15855. guarantee on the relative order of a loop and its subloops in the
  15856. numbering. The index of a loop never changes.
  15857. The entries of the 'larray' field should not be accessed directly. The
  15858. function 'get_loop' returns the loop description for a loop with the
  15859. given index. 'number_of_loops' function returns number of loops in the
  15860. function. To traverse all loops, use 'FOR_EACH_LOOP' macro. The
  15861. 'flags' argument of the macro is used to determine the direction of
  15862. traversal and the set of loops visited. Each loop is guaranteed to be
  15863. visited exactly once, regardless of the changes to the loop tree, and
  15864. the loops may be removed during the traversal. The newly created loops
  15865. are never traversed, if they need to be visited, this must be done
  15866. separately after their creation. The 'FOR_EACH_LOOP' macro allocates
  15867. temporary variables. If the 'FOR_EACH_LOOP' loop were ended using break
  15868. or goto, they would not be released; 'FOR_EACH_LOOP_BREAK' macro must be
  15869. used instead.
  15870. Each basic block contains the reference to the innermost loop it
  15871. belongs to ('loop_father'). For this reason, it is only possible to
  15872. have one 'struct loops' structure initialized at the same time for each
  15873. CFG. The global variable 'current_loops' contains the 'struct loops'
  15874. structure. Many of the loop manipulation functions assume that
  15875. dominance information is up-to-date.
  15876. The loops are analyzed through 'loop_optimizer_init' function. The
  15877. argument of this function is a set of flags represented in an integer
  15878. bitmask. These flags specify what other properties of the loop
  15879. structures should be calculated/enforced and preserved later:
  15880. * 'LOOPS_MAY_HAVE_MULTIPLE_LATCHES': If this flag is set, no changes
  15881. to CFG will be performed in the loop analysis, in particular, loops
  15882. with multiple latch edges will not be disambiguated. If a loop has
  15883. multiple latches, its latch block is set to NULL. Most of the loop
  15884. manipulation functions will not work for loops in this shape. No
  15885. other flags that require CFG changes can be passed to
  15886. loop_optimizer_init.
  15887. * 'LOOPS_HAVE_PREHEADERS': Forwarder blocks are created in such a way
  15888. that each loop has only one entry edge, and additionally, the
  15889. source block of this entry edge has only one successor. This
  15890. creates a natural place where the code can be moved out of the
  15891. loop, and ensures that the entry edge of the loop leads from its
  15892. immediate super-loop.
  15893. * 'LOOPS_HAVE_SIMPLE_LATCHES': Forwarder blocks are created to force
  15894. the latch block of each loop to have only one successor. This
  15895. ensures that the latch of the loop does not belong to any of its
  15896. sub-loops, and makes manipulation with the loops significantly
  15897. easier. Most of the loop manipulation functions assume that the
  15898. loops are in this shape. Note that with this flag, the "normal"
  15899. loop without any control flow inside and with one exit consists of
  15900. two basic blocks.
  15901. * 'LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS': Basic blocks and edges in
  15902. the strongly connected components that are not natural loops (have
  15903. more than one entry block) are marked with 'BB_IRREDUCIBLE_LOOP'
  15904. and 'EDGE_IRREDUCIBLE_LOOP' flags. The flag is not set for blocks
  15905. and edges that belong to natural loops that are in such an
  15906. irreducible region (but it is set for the entry and exit edges of
  15907. such a loop, if they lead to/from this region).
  15908. * 'LOOPS_HAVE_RECORDED_EXITS': The lists of exits are recorded and
  15909. updated for each loop. This makes some functions (e.g.,
  15910. 'get_loop_exit_edges') more efficient. Some functions (e.g.,
  15911. 'single_exit') can be used only if the lists of exits are recorded.
  15912. These properties may also be computed/enforced later, using functions
  15913. 'create_preheaders', 'force_single_succ_latches',
  15914. 'mark_irreducible_loops' and 'record_loop_exits'. The properties can be
  15915. queried using 'loops_state_satisfies_p'.
  15916. The memory occupied by the loops structures should be freed with
  15917. 'loop_optimizer_finalize' function. When loop structures are setup to
  15918. be preserved across passes this function reduces the information to be
  15919. kept up-to-date to a minimum (only 'LOOPS_MAY_HAVE_MULTIPLE_LATCHES'
  15920. set).
  15921. The CFG manipulation functions in general do not update loop
  15922. structures. Specialized versions that additionally do so are provided
  15923. for the most common tasks. On GIMPLE, 'cleanup_tree_cfg_loop' function
  15924. can be used to cleanup CFG while updating the loops structures if
  15925. 'current_loops' is set.
  15926. At the moment loop structure is preserved from the start of GIMPLE loop
  15927. optimizations until the end of RTL loop optimizations. During this time
  15928. a loop can be tracked by its 'struct loop' and number.
  15929. 
  15930. File: gccint.info, Node: Loop querying, Next: Loop manipulation, Prev: Loop representation, Up: Loop Analysis and Representation
  15931. 16.2 Loop querying
  15932. ==================
  15933. The functions to query the information about loops are declared in
  15934. 'cfgloop.h'. Some of the information can be taken directly from the
  15935. structures. 'loop_father' field of each basic block contains the
  15936. innermost loop to that the block belongs. The most useful fields of
  15937. loop structure (that are kept up-to-date at all times) are:
  15938. * 'header', 'latch': Header and latch basic blocks of the loop.
  15939. * 'num_nodes': Number of basic blocks in the loop (including the
  15940. basic blocks of the sub-loops).
  15941. * 'outer', 'inner', 'next': The super-loop, the first sub-loop, and
  15942. the sibling of the loop in the loops tree.
  15943. There are other fields in the loop structures, many of them used only
  15944. by some of the passes, or not updated during CFG changes; in general,
  15945. they should not be accessed directly.
  15946. The most important functions to query loop structures are:
  15947. * 'loop_depth': The depth of the loop in the loops tree, i.e., the
  15948. number of super-loops of the loop.
  15949. * 'flow_loops_dump': Dumps the information about loops to a file.
  15950. * 'verify_loop_structure': Checks consistency of the loop structures.
  15951. * 'loop_latch_edge': Returns the latch edge of a loop.
  15952. * 'loop_preheader_edge': If loops have preheaders, returns the
  15953. preheader edge of a loop.
  15954. * 'flow_loop_nested_p': Tests whether loop is a sub-loop of another
  15955. loop.
  15956. * 'flow_bb_inside_loop_p': Tests whether a basic block belongs to a
  15957. loop (including its sub-loops).
  15958. * 'find_common_loop': Finds the common super-loop of two loops.
  15959. * 'superloop_at_depth': Returns the super-loop of a loop with the
  15960. given depth.
  15961. * 'tree_num_loop_insns', 'num_loop_insns': Estimates the number of
  15962. insns in the loop, on GIMPLE and on RTL.
  15963. * 'loop_exit_edge_p': Tests whether edge is an exit from a loop.
  15964. * 'mark_loop_exit_edges': Marks all exit edges of all loops with
  15965. 'EDGE_LOOP_EXIT' flag.
  15966. * 'get_loop_body', 'get_loop_body_in_dom_order',
  15967. 'get_loop_body_in_bfs_order': Enumerates the basic blocks in the
  15968. loop in depth-first search order in reversed CFG, ordered by
  15969. dominance relation, and breath-first search order, respectively.
  15970. * 'single_exit': Returns the single exit edge of the loop, or 'NULL'
  15971. if the loop has more than one exit. You can only use this function
  15972. if LOOPS_HAVE_MARKED_SINGLE_EXITS property is used.
  15973. * 'get_loop_exit_edges': Enumerates the exit edges of a loop.
  15974. * 'just_once_each_iteration_p': Returns true if the basic block is
  15975. executed exactly once during each iteration of a loop (that is, it
  15976. does not belong to a sub-loop, and it dominates the latch of the
  15977. loop).
  15978. 
  15979. File: gccint.info, Node: Loop manipulation, Next: LCSSA, Prev: Loop querying, Up: Loop Analysis and Representation
  15980. 16.3 Loop manipulation
  15981. ======================
  15982. The loops tree can be manipulated using the following functions:
  15983. * 'flow_loop_tree_node_add': Adds a node to the tree.
  15984. * 'flow_loop_tree_node_remove': Removes a node from the tree.
  15985. * 'add_bb_to_loop': Adds a basic block to a loop.
  15986. * 'remove_bb_from_loops': Removes a basic block from loops.
  15987. Most low-level CFG functions update loops automatically. The following
  15988. functions handle some more complicated cases of CFG manipulations:
  15989. * 'remove_path': Removes an edge and all blocks it dominates.
  15990. * 'split_loop_exit_edge': Splits exit edge of the loop, ensuring that
  15991. PHI node arguments remain in the loop (this ensures that
  15992. loop-closed SSA form is preserved). Only useful on GIMPLE.
  15993. Finally, there are some higher-level loop transformations implemented.
  15994. While some of them are written so that they should work on non-innermost
  15995. loops, they are mostly untested in that case, and at the moment, they
  15996. are only reliable for the innermost loops:
  15997. * 'create_iv': Creates a new induction variable. Only works on
  15998. GIMPLE. 'standard_iv_increment_position' can be used to find a
  15999. suitable place for the iv increment.
  16000. * 'duplicate_loop_to_header_edge',
  16001. 'tree_duplicate_loop_to_header_edge': These functions (on RTL and
  16002. on GIMPLE) duplicate the body of the loop prescribed number of
  16003. times on one of the edges entering loop header, thus performing
  16004. either loop unrolling or loop peeling. 'can_duplicate_loop_p'
  16005. ('can_unroll_loop_p' on GIMPLE) must be true for the duplicated
  16006. loop.
  16007. * 'loop_version': This function creates a copy of a loop, and a
  16008. branch before them that selects one of them depending on the
  16009. prescribed condition. This is useful for optimizations that need
  16010. to verify some assumptions in runtime (one of the copies of the
  16011. loop is usually left unchanged, while the other one is transformed
  16012. in some way).
  16013. * 'tree_unroll_loop': Unrolls the loop, including peeling the extra
  16014. iterations to make the number of iterations divisible by unroll
  16015. factor, updating the exit condition, and removing the exits that
  16016. now cannot be taken. Works only on GIMPLE.
  16017. 
  16018. File: gccint.info, Node: LCSSA, Next: Scalar evolutions, Prev: Loop manipulation, Up: Loop Analysis and Representation
  16019. 16.4 Loop-closed SSA form
  16020. =========================
  16021. Throughout the loop optimizations on tree level, one extra condition is
  16022. enforced on the SSA form: No SSA name is used outside of the loop in
  16023. that it is defined. The SSA form satisfying this condition is called
  16024. "loop-closed SSA form" - LCSSA. To enforce LCSSA, PHI nodes must be
  16025. created at the exits of the loops for the SSA names that are used
  16026. outside of them. Only the real operands (not virtual SSA names) are
  16027. held in LCSSA, in order to save memory.
  16028. There are various benefits of LCSSA:
  16029. * Many optimizations (value range analysis, final value replacement)
  16030. are interested in the values that are defined in the loop and used
  16031. outside of it, i.e., exactly those for that we create new PHI
  16032. nodes.
  16033. * In induction variable analysis, it is not necessary to specify the
  16034. loop in that the analysis should be performed - the scalar
  16035. evolution analysis always returns the results with respect to the
  16036. loop in that the SSA name is defined.
  16037. * It makes updating of SSA form during loop transformations simpler.
  16038. Without LCSSA, operations like loop unrolling may force creation of
  16039. PHI nodes arbitrarily far from the loop, while in LCSSA, the SSA
  16040. form can be updated locally. However, since we only keep real
  16041. operands in LCSSA, we cannot use this advantage (we could have
  16042. local updating of real operands, but it is not much more efficient
  16043. than to use generic SSA form updating for it as well; the amount of
  16044. changes to SSA is the same).
  16045. However, it also means LCSSA must be updated. This is usually
  16046. straightforward, unless you create a new value in loop and use it
  16047. outside, or unless you manipulate loop exit edges (functions are
  16048. provided to make these manipulations simple).
  16049. 'rewrite_into_loop_closed_ssa' is used to rewrite SSA form to LCSSA, and
  16050. 'verify_loop_closed_ssa' to check that the invariant of LCSSA is
  16051. preserved.
  16052. 
  16053. File: gccint.info, Node: Scalar evolutions, Next: loop-iv, Prev: LCSSA, Up: Loop Analysis and Representation
  16054. 16.5 Scalar evolutions
  16055. ======================
  16056. Scalar evolutions (SCEV) are used to represent results of induction
  16057. variable analysis on GIMPLE. They enable us to represent variables with
  16058. complicated behavior in a simple and consistent way (we only use it to
  16059. express values of polynomial induction variables, but it is possible to
  16060. extend it). The interfaces to SCEV analysis are declared in
  16061. 'tree-scalar-evolution.h'. To use scalar evolutions analysis,
  16062. 'scev_initialize' must be used. To stop using SCEV, 'scev_finalize'
  16063. should be used. SCEV analysis caches results in order to save time and
  16064. memory. This cache however is made invalid by most of the loop
  16065. transformations, including removal of code. If such a transformation is
  16066. performed, 'scev_reset' must be called to clean the caches.
  16067. Given an SSA name, its behavior in loops can be analyzed using the
  16068. 'analyze_scalar_evolution' function. The returned SCEV however does not
  16069. have to be fully analyzed and it may contain references to other SSA
  16070. names defined in the loop. To resolve these (potentially recursive)
  16071. references, 'instantiate_parameters' or 'resolve_mixers' functions must
  16072. be used. 'instantiate_parameters' is useful when you use the results of
  16073. SCEV only for some analysis, and when you work with whole nest of loops
  16074. at once. It will try replacing all SSA names by their SCEV in all
  16075. loops, including the super-loops of the current loop, thus providing a
  16076. complete information about the behavior of the variable in the loop
  16077. nest. 'resolve_mixers' is useful if you work with only one loop at a
  16078. time, and if you possibly need to create code based on the value of the
  16079. induction variable. It will only resolve the SSA names defined in the
  16080. current loop, leaving the SSA names defined outside unchanged, even if
  16081. their evolution in the outer loops is known.
  16082. The SCEV is a normal tree expression, except for the fact that it may
  16083. contain several special tree nodes. One of them is 'SCEV_NOT_KNOWN',
  16084. used for SSA names whose value cannot be expressed. The other one is
  16085. 'POLYNOMIAL_CHREC'. Polynomial chrec has three arguments - base, step
  16086. and loop (both base and step may contain further polynomial chrecs).
  16087. Type of the expression and of base and step must be the same. A
  16088. variable has evolution 'POLYNOMIAL_CHREC(base, step, loop)' if it is (in
  16089. the specified loop) equivalent to 'x_1' in the following example
  16090. while (...)
  16091. {
  16092. x_1 = phi (base, x_2);
  16093. x_2 = x_1 + step;
  16094. }
  16095. Note that this includes the language restrictions on the operations.
  16096. For example, if we compile C code and 'x' has signed type, then the
  16097. overflow in addition would cause undefined behavior, and we may assume
  16098. that this does not happen. Hence, the value with this SCEV cannot
  16099. overflow (which restricts the number of iterations of such a loop).
  16100. In many cases, one wants to restrict the attention just to affine
  16101. induction variables. In this case, the extra expressive power of SCEV
  16102. is not useful, and may complicate the optimizations. In this case,
  16103. 'simple_iv' function may be used to analyze a value - the result is a
  16104. loop-invariant base and step.
  16105. 
  16106. File: gccint.info, Node: loop-iv, Next: Number of iterations, Prev: Scalar evolutions, Up: Loop Analysis and Representation
  16107. 16.6 IV analysis on RTL
  16108. =======================
  16109. The induction variable on RTL is simple and only allows analysis of
  16110. affine induction variables, and only in one loop at once. The interface
  16111. is declared in 'cfgloop.h'. Before analyzing induction variables in a
  16112. loop L, 'iv_analysis_loop_init' function must be called on L. After the
  16113. analysis (possibly calling 'iv_analysis_loop_init' for several loops) is
  16114. finished, 'iv_analysis_done' should be called. The following functions
  16115. can be used to access the results of the analysis:
  16116. * 'iv_analyze': Analyzes a single register used in the given insn.
  16117. If no use of the register in this insn is found, the following
  16118. insns are scanned, so that this function can be called on the insn
  16119. returned by get_condition.
  16120. * 'iv_analyze_result': Analyzes result of the assignment in the given
  16121. insn.
  16122. * 'iv_analyze_expr': Analyzes a more complicated expression. All its
  16123. operands are analyzed by 'iv_analyze', and hence they must be used
  16124. in the specified insn or one of the following insns.
  16125. The description of the induction variable is provided in 'struct
  16126. rtx_iv'. In order to handle subregs, the representation is a bit
  16127. complicated; if the value of the 'extend' field is not 'UNKNOWN', the
  16128. value of the induction variable in the i-th iteration is
  16129. delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)),
  16130. with the following exception: if 'first_special' is true, then the
  16131. value in the first iteration (when 'i' is zero) is 'delta + mult *
  16132. base'. However, if 'extend' is equal to 'UNKNOWN', then 'first_special'
  16133. must be false, 'delta' 0, 'mult' 1 and the value in the i-th iteration
  16134. is
  16135. subreg_{mode} (base + i * step)
  16136. The function 'get_iv_value' can be used to perform these calculations.
  16137. 
  16138. File: gccint.info, Node: Number of iterations, Next: Dependency analysis, Prev: loop-iv, Up: Loop Analysis and Representation
  16139. 16.7 Number of iterations analysis
  16140. ==================================
  16141. Both on GIMPLE and on RTL, there are functions available to determine
  16142. the number of iterations of a loop, with a similar interface. The
  16143. number of iterations of a loop in GCC is defined as the number of
  16144. executions of the loop latch. In many cases, it is not possible to
  16145. determine the number of iterations unconditionally - the determined
  16146. number is correct only if some assumptions are satisfied. The analysis
  16147. tries to verify these conditions using the information contained in the
  16148. program; if it fails, the conditions are returned together with the
  16149. result. The following information and conditions are provided by the
  16150. analysis:
  16151. * 'assumptions': If this condition is false, the rest of the
  16152. information is invalid.
  16153. * 'noloop_assumptions' on RTL, 'may_be_zero' on GIMPLE: If this
  16154. condition is true, the loop exits in the first iteration.
  16155. * 'infinite': If this condition is true, the loop is infinite. This
  16156. condition is only available on RTL. On GIMPLE, conditions for
  16157. finiteness of the loop are included in 'assumptions'.
  16158. * 'niter_expr' on RTL, 'niter' on GIMPLE: The expression that gives
  16159. number of iterations. The number of iterations is defined as the
  16160. number of executions of the loop latch.
  16161. Both on GIMPLE and on RTL, it necessary for the induction variable
  16162. analysis framework to be initialized (SCEV on GIMPLE, loop-iv on RTL).
  16163. On GIMPLE, the results are stored to 'struct tree_niter_desc' structure.
  16164. Number of iterations before the loop is exited through a given exit can
  16165. be determined using 'number_of_iterations_exit' function. On RTL, the
  16166. results are returned in 'struct niter_desc' structure. The
  16167. corresponding function is named 'check_simple_exit'. There are also
  16168. functions that pass through all the exits of a loop and try to find one
  16169. with easy to determine number of iterations - 'find_loop_niter' on
  16170. GIMPLE and 'find_simple_exit' on RTL. Finally, there are functions that
  16171. provide the same information, but additionally cache it, so that
  16172. repeated calls to number of iterations are not so costly -
  16173. 'number_of_latch_executions' on GIMPLE and 'get_simple_loop_desc' on
  16174. RTL.
  16175. Note that some of these functions may behave slightly differently than
  16176. others - some of them return only the expression for the number of
  16177. iterations, and fail if there are some assumptions. The function
  16178. 'number_of_latch_executions' works only for single-exit loops. The
  16179. function 'number_of_cond_exit_executions' can be used to determine
  16180. number of executions of the exit condition of a single-exit loop (i.e.,
  16181. the 'number_of_latch_executions' increased by one).
  16182. On GIMPLE, below constraint flags affect semantics of some APIs of
  16183. number of iterations analyzer:
  16184. * 'LOOP_C_INFINITE': If this constraint flag is set, the loop is
  16185. known to be infinite. APIs like 'number_of_iterations_exit' can
  16186. return false directly without doing any analysis.
  16187. * 'LOOP_C_FINITE': If this constraint flag is set, the loop is known
  16188. to be finite, in other words, loop's number of iterations can be
  16189. computed with 'assumptions' be true.
  16190. Generally, the constraint flags are set/cleared by consumers which are
  16191. loop optimizers. It's also the consumers' responsibility to set/clear
  16192. constraints correctly. Failing to do that might result in hard to track
  16193. down bugs in scev/niter consumers. One typical use case is vectorizer:
  16194. it drives number of iterations analyzer by setting 'LOOP_C_FINITE' and
  16195. vectorizes possibly infinite loop by versioning loop with analysis
  16196. result. In return, constraints set by consumers can also help number of
  16197. iterations analyzer in following optimizers. For example, 'niter' of a
  16198. loop versioned under 'assumptions' is valid unconditionally.
  16199. Other constraints may be added in the future, for example, a constraint
  16200. indicating that loops' latch must roll thus 'may_be_zero' would be false
  16201. unconditionally.
  16202. 
  16203. File: gccint.info, Node: Dependency analysis, Prev: Number of iterations, Up: Loop Analysis and Representation
  16204. 16.8 Data Dependency Analysis
  16205. =============================
  16206. The code for the data dependence analysis can be found in
  16207. 'tree-data-ref.c' and its interface and data structures are described in
  16208. 'tree-data-ref.h'. The function that computes the data dependences for
  16209. all the array and pointer references for a given loop is
  16210. 'compute_data_dependences_for_loop'. This function is currently used by
  16211. the linear loop transform and the vectorization passes. Before calling
  16212. this function, one has to allocate two vectors: a first vector will
  16213. contain the set of data references that are contained in the analyzed
  16214. loop body, and the second vector will contain the dependence relations
  16215. between the data references. Thus if the vector of data references is
  16216. of size 'n', the vector containing the dependence relations will contain
  16217. 'n*n' elements. However if the analyzed loop contains side effects,
  16218. such as calls that potentially can interfere with the data references in
  16219. the current analyzed loop, the analysis stops while scanning the loop
  16220. body for data references, and inserts a single 'chrec_dont_know' in the
  16221. dependence relation array.
  16222. The data references are discovered in a particular order during the
  16223. scanning of the loop body: the loop body is analyzed in execution order,
  16224. and the data references of each statement are pushed at the end of the
  16225. data reference array. Two data references syntactically occur in the
  16226. program in the same order as in the array of data references. This
  16227. syntactic order is important in some classical data dependence tests,
  16228. and mapping this order to the elements of this array avoids costly
  16229. queries to the loop body representation.
  16230. Three types of data references are currently handled: ARRAY_REF,
  16231. INDIRECT_REF and COMPONENT_REF. The data structure for the data
  16232. reference is 'data_reference', where 'data_reference_p' is a name of a
  16233. pointer to the data reference structure. The structure contains the
  16234. following elements:
  16235. * 'base_object_info': Provides information about the base object of
  16236. the data reference and its access functions. These access
  16237. functions represent the evolution of the data reference in the loop
  16238. relative to its base, in keeping with the classical meaning of the
  16239. data reference access function for the support of arrays. For
  16240. example, for a reference 'a.b[i][j]', the base object is 'a.b' and
  16241. the access functions, one for each array subscript, are: '{i_init,
  16242. + i_step}_1, {j_init, +, j_step}_2'.
  16243. * 'first_location_in_loop': Provides information about the first
  16244. location accessed by the data reference in the loop and about the
  16245. access function used to represent evolution relative to this
  16246. location. This data is used to support pointers, and is not used
  16247. for arrays (for which we have base objects). Pointer accesses are
  16248. represented as a one-dimensional access that starts from the first
  16249. location accessed in the loop. For example:
  16250. for1 i
  16251. for2 j
  16252. *((int *)p + i + j) = a[i][j];
  16253. The access function of the pointer access is '{0, + 4B}_for2'
  16254. relative to 'p + i'. The access functions of the array are
  16255. '{i_init, + i_step}_for1' and '{j_init, +, j_step}_for2' relative
  16256. to 'a'.
  16257. Usually, the object the pointer refers to is either unknown, or we
  16258. cannot prove that the access is confined to the boundaries of a
  16259. certain object.
  16260. Two data references can be compared only if at least one of these
  16261. two representations has all its fields filled for both data
  16262. references.
  16263. The current strategy for data dependence tests is as follows: If
  16264. both 'a' and 'b' are represented as arrays, compare 'a.base_object'
  16265. and 'b.base_object'; if they are equal, apply dependence tests (use
  16266. access functions based on base_objects). Else if both 'a' and 'b'
  16267. are represented as pointers, compare 'a.first_location' and
  16268. 'b.first_location'; if they are equal, apply dependence tests (use
  16269. access functions based on first location). However, if 'a' and 'b'
  16270. are represented differently, only try to prove that the bases are
  16271. definitely different.
  16272. * Aliasing information.
  16273. * Alignment information.
  16274. The structure describing the relation between two data references is
  16275. 'data_dependence_relation' and the shorter name for a pointer to such a
  16276. structure is 'ddr_p'. This structure contains:
  16277. * a pointer to each data reference,
  16278. * a tree node 'are_dependent' that is set to 'chrec_known' if the
  16279. analysis has proved that there is no dependence between these two
  16280. data references, 'chrec_dont_know' if the analysis was not able to
  16281. determine any useful result and potentially there could exist a
  16282. dependence between these data references, and 'are_dependent' is
  16283. set to 'NULL_TREE' if there exist a dependence relation between the
  16284. data references, and the description of this dependence relation is
  16285. given in the 'subscripts', 'dir_vects', and 'dist_vects' arrays,
  16286. * a boolean that determines whether the dependence relation can be
  16287. represented by a classical distance vector,
  16288. * an array 'subscripts' that contains a description of each subscript
  16289. of the data references. Given two array accesses a subscript is
  16290. the tuple composed of the access functions for a given dimension.
  16291. For example, given 'A[f1][f2][f3]' and 'B[g1][g2][g3]', there are
  16292. three subscripts: '(f1, g1), (f2, g2), (f3, g3)'.
  16293. * two arrays 'dir_vects' and 'dist_vects' that contain classical
  16294. representations of the data dependences under the form of direction
  16295. and distance dependence vectors,
  16296. * an array of loops 'loop_nest' that contains the loops to which the
  16297. distance and direction vectors refer to.
  16298. Several functions for pretty printing the information extracted by the
  16299. data dependence analysis are available: 'dump_ddrs' prints with a
  16300. maximum verbosity the details of a data dependence relations array,
  16301. 'dump_dist_dir_vectors' prints only the classical distance and direction
  16302. vectors for a data dependence relations array, and
  16303. 'dump_data_references' prints the details of the data references
  16304. contained in a data reference array.
  16305. 
  16306. File: gccint.info, Node: Machine Desc, Next: Target Macros, Prev: Loop Analysis and Representation, Up: Top
  16307. 17 Machine Descriptions
  16308. ***********************
  16309. A machine description has two parts: a file of instruction patterns
  16310. ('.md' file) and a C header file of macro definitions.
  16311. The '.md' file for a target machine contains a pattern for each
  16312. instruction that the target machine supports (or at least each
  16313. instruction that is worth telling the compiler about). It may also
  16314. contain comments. A semicolon causes the rest of the line to be a
  16315. comment, unless the semicolon is inside a quoted string.
  16316. See the next chapter for information on the C header file.
  16317. * Menu:
  16318. * Overview:: How the machine description is used.
  16319. * Patterns:: How to write instruction patterns.
  16320. * Example:: An explained example of a 'define_insn' pattern.
  16321. * RTL Template:: The RTL template defines what insns match a pattern.
  16322. * Output Template:: The output template says how to make assembler code
  16323. from such an insn.
  16324. * Output Statement:: For more generality, write C code to output
  16325. the assembler code.
  16326. * Predicates:: Controlling what kinds of operands can be used
  16327. for an insn.
  16328. * Constraints:: Fine-tuning operand selection.
  16329. * Standard Names:: Names mark patterns to use for code generation.
  16330. * Pattern Ordering:: When the order of patterns makes a difference.
  16331. * Dependent Patterns:: Having one pattern may make you need another.
  16332. * Jump Patterns:: Special considerations for patterns for jump insns.
  16333. * Looping Patterns:: How to define patterns for special looping insns.
  16334. * Insn Canonicalizations::Canonicalization of Instructions
  16335. * Expander Definitions::Generating a sequence of several RTL insns
  16336. for a standard operation.
  16337. * Insn Splitting:: Splitting Instructions into Multiple Instructions.
  16338. * Including Patterns:: Including Patterns in Machine Descriptions.
  16339. * Peephole Definitions::Defining machine-specific peephole optimizations.
  16340. * Insn Attributes:: Specifying the value of attributes for generated insns.
  16341. * Conditional Execution::Generating 'define_insn' patterns for
  16342. predication.
  16343. * Define Subst:: Generating 'define_insn' and 'define_expand'
  16344. patterns from other patterns.
  16345. * Constant Definitions::Defining symbolic constants that can be used in the
  16346. md file.
  16347. * Iterators:: Using iterators to generate patterns from a template.
  16348. 
  16349. File: gccint.info, Node: Overview, Next: Patterns, Up: Machine Desc
  16350. 17.1 Overview of How the Machine Description is Used
  16351. ====================================================
  16352. There are three main conversions that happen in the compiler:
  16353. 1. The front end reads the source code and builds a parse tree.
  16354. 2. The parse tree is used to generate an RTL insn list based on named
  16355. instruction patterns.
  16356. 3. The insn list is matched against the RTL templates to produce
  16357. assembler code.
  16358. For the generate pass, only the names of the insns matter, from either
  16359. a named 'define_insn' or a 'define_expand'. The compiler will choose
  16360. the pattern with the right name and apply the operands according to the
  16361. documentation later in this chapter, without regard for the RTL template
  16362. or operand constraints. Note that the names the compiler looks for are
  16363. hard-coded in the compiler--it will ignore unnamed patterns and patterns
  16364. with names it doesn't know about, but if you don't provide a named
  16365. pattern it needs, it will abort.
  16366. If a 'define_insn' is used, the template given is inserted into the
  16367. insn list. If a 'define_expand' is used, one of three things happens,
  16368. based on the condition logic. The condition logic may manually create
  16369. new insns for the insn list, say via 'emit_insn()', and invoke 'DONE'.
  16370. For certain named patterns, it may invoke 'FAIL' to tell the compiler to
  16371. use an alternate way of performing that task. If it invokes neither
  16372. 'DONE' nor 'FAIL', the template given in the pattern is inserted, as if
  16373. the 'define_expand' were a 'define_insn'.
  16374. Once the insn list is generated, various optimization passes convert,
  16375. replace, and rearrange the insns in the insn list. This is where the
  16376. 'define_split' and 'define_peephole' patterns get used, for example.
  16377. Finally, the insn list's RTL is matched up with the RTL templates in
  16378. the 'define_insn' patterns, and those patterns are used to emit the
  16379. final assembly code. For this purpose, each named 'define_insn' acts
  16380. like it's unnamed, since the names are ignored.
  16381. 
  16382. File: gccint.info, Node: Patterns, Next: Example, Prev: Overview, Up: Machine Desc
  16383. 17.2 Everything about Instruction Patterns
  16384. ==========================================
  16385. A 'define_insn' expression is used to define instruction patterns to
  16386. which insns may be matched. A 'define_insn' expression contains an
  16387. incomplete RTL expression, with pieces to be filled in later, operand
  16388. constraints that restrict how the pieces can be filled in, and an output
  16389. template or C code to generate the assembler output.
  16390. A 'define_insn' is an RTL expression containing four or five operands:
  16391. 1. An optional name. The presence of a name indicates that this
  16392. instruction pattern can perform a certain standard job for the
  16393. RTL-generation pass of the compiler. This pass knows certain names
  16394. and will use the instruction patterns with those names, if the
  16395. names are defined in the machine description.
  16396. The absence of a name is indicated by writing an empty string where
  16397. the name should go. Nameless instruction patterns are never used
  16398. for generating RTL code, but they may permit several simpler insns
  16399. to be combined later on.
  16400. Names that are not thus known and used in RTL-generation have no
  16401. effect; they are equivalent to no name at all.
  16402. For the purpose of debugging the compiler, you may also specify a
  16403. name beginning with the '*' character. Such a name is used only
  16404. for identifying the instruction in RTL dumps; it is equivalent to
  16405. having a nameless pattern for all other purposes. Names beginning
  16406. with the '*' character are not required to be unique.
  16407. 2. The "RTL template": This is a vector of incomplete RTL expressions
  16408. which describe the semantics of the instruction (*note RTL
  16409. Template::). It is incomplete because it may contain
  16410. 'match_operand', 'match_operator', and 'match_dup' expressions that
  16411. stand for operands of the instruction.
  16412. If the vector has multiple elements, the RTL template is treated as
  16413. a 'parallel' expression.
  16414. 3. The condition: This is a string which contains a C expression.
  16415. When the compiler attempts to match RTL against a pattern, the
  16416. condition is evaluated. If the condition evaluates to 'true', the
  16417. match is permitted. The condition may be an empty string, which is
  16418. treated as always 'true'.
  16419. For a named pattern, the condition may not depend on the data in
  16420. the insn being matched, but only the target-machine-type flags.
  16421. The compiler needs to test these conditions during initialization
  16422. in order to learn exactly which named instructions are available in
  16423. a particular run.
  16424. For nameless patterns, the condition is applied only when matching
  16425. an individual insn, and only after the insn has matched the
  16426. pattern's recognition template. The insn's operands may be found
  16427. in the vector 'operands'.
  16428. An instruction condition cannot become more restrictive as
  16429. compilation progresses. If the condition accepts a particular RTL
  16430. instruction at one stage of compilation, it must continue to accept
  16431. that instruction until the final pass. For example,
  16432. '!reload_completed' and 'can_create_pseudo_p ()' are both invalid
  16433. instruction conditions, because they are true during the earlier
  16434. RTL passes and false during the later ones. For the same reason,
  16435. if a condition accepts an instruction before register allocation,
  16436. it cannot later try to control register allocation by excluding
  16437. certain register or value combinations.
  16438. Although a condition cannot become more restrictive as compilation
  16439. progresses, the condition for a nameless pattern _can_ become more
  16440. permissive. For example, a nameless instruction can require
  16441. 'reload_completed' to be true, in which case it only matches after
  16442. register allocation.
  16443. 4. The "output template" or "output statement": This is either a
  16444. string, or a fragment of C code which returns a string.
  16445. When simple substitution isn't general enough, you can specify a
  16446. piece of C code to compute the output. *Note Output Statement::.
  16447. 5. The "insn attributes": This is an optional vector containing the
  16448. values of attributes for insns matching this pattern (*note Insn
  16449. Attributes::).
  16450. 
  16451. File: gccint.info, Node: Example, Next: RTL Template, Prev: Patterns, Up: Machine Desc
  16452. 17.3 Example of 'define_insn'
  16453. =============================
  16454. Here is an example of an instruction pattern, taken from the machine
  16455. description for the 68000/68020.
  16456. (define_insn "tstsi"
  16457. [(set (cc0)
  16458. (match_operand:SI 0 "general_operand" "rm"))]
  16459. ""
  16460. "*
  16461. {
  16462. if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
  16463. return \"tstl %0\";
  16464. return \"cmpl #0,%0\";
  16465. }")
  16466. This can also be written using braced strings:
  16467. (define_insn "tstsi"
  16468. [(set (cc0)
  16469. (match_operand:SI 0 "general_operand" "rm"))]
  16470. ""
  16471. {
  16472. if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
  16473. return "tstl %0";
  16474. return "cmpl #0,%0";
  16475. })
  16476. This describes an instruction which sets the condition codes based on
  16477. the value of a general operand. It has no condition, so any insn with
  16478. an RTL description of the form shown may be matched to this pattern.
  16479. The name 'tstsi' means "test a 'SImode' value" and tells the RTL
  16480. generation pass that, when it is necessary to test such a value, an insn
  16481. to do so can be constructed using this pattern.
  16482. The output control string is a piece of C code which chooses which
  16483. output template to return based on the kind of operand and the specific
  16484. type of CPU for which code is being generated.
  16485. '"rm"' is an operand constraint. Its meaning is explained below.
  16486. 
  16487. File: gccint.info, Node: RTL Template, Next: Output Template, Prev: Example, Up: Machine Desc
  16488. 17.4 RTL Template
  16489. =================
  16490. The RTL template is used to define which insns match the particular
  16491. pattern and how to find their operands. For named patterns, the RTL
  16492. template also says how to construct an insn from specified operands.
  16493. Construction involves substituting specified operands into a copy of
  16494. the template. Matching involves determining the values that serve as
  16495. the operands in the insn being matched. Both of these activities are
  16496. controlled by special expression types that direct matching and
  16497. substitution of the operands.
  16498. '(match_operand:M N PREDICATE CONSTRAINT)'
  16499. This expression is a placeholder for operand number N of the insn.
  16500. When constructing an insn, operand number N will be substituted at
  16501. this point. When matching an insn, whatever appears at this
  16502. position in the insn will be taken as operand number N; but it must
  16503. satisfy PREDICATE or this instruction pattern will not match at
  16504. all.
  16505. Operand numbers must be chosen consecutively counting from zero in
  16506. each instruction pattern. There may be only one 'match_operand'
  16507. expression in the pattern for each operand number. Usually
  16508. operands are numbered in the order of appearance in 'match_operand'
  16509. expressions. In the case of a 'define_expand', any operand numbers
  16510. used only in 'match_dup' expressions have higher values than all
  16511. other operand numbers.
  16512. PREDICATE is a string that is the name of a function that accepts
  16513. two arguments, an expression and a machine mode. *Note
  16514. Predicates::. During matching, the function will be called with
  16515. the putative operand as the expression and M as the mode argument
  16516. (if M is not specified, 'VOIDmode' will be used, which normally
  16517. causes PREDICATE to accept any mode). If it returns zero, this
  16518. instruction pattern fails to match. PREDICATE may be an empty
  16519. string; then it means no test is to be done on the operand, so
  16520. anything which occurs in this position is valid.
  16521. Most of the time, PREDICATE will reject modes other than M--but not
  16522. always. For example, the predicate 'address_operand' uses M as the
  16523. mode of memory ref that the address should be valid for. Many
  16524. predicates accept 'const_int' nodes even though their mode is
  16525. 'VOIDmode'.
  16526. CONSTRAINT controls reloading and the choice of the best register
  16527. class to use for a value, as explained later (*note Constraints::).
  16528. If the constraint would be an empty string, it can be omitted.
  16529. People are often unclear on the difference between the constraint
  16530. and the predicate. The predicate helps decide whether a given insn
  16531. matches the pattern. The constraint plays no role in this
  16532. decision; instead, it controls various decisions in the case of an
  16533. insn which does match.
  16534. '(match_scratch:M N CONSTRAINT)'
  16535. This expression is also a placeholder for operand number N and
  16536. indicates that operand must be a 'scratch' or 'reg' expression.
  16537. When matching patterns, this is equivalent to
  16538. (match_operand:M N "scratch_operand" CONSTRAINT)
  16539. but, when generating RTL, it produces a ('scratch':M) expression.
  16540. If the last few expressions in a 'parallel' are 'clobber'
  16541. expressions whose operands are either a hard register or
  16542. 'match_scratch', the combiner can add or delete them when
  16543. necessary. *Note Side Effects::.
  16544. '(match_dup N)'
  16545. This expression is also a placeholder for operand number N. It is
  16546. used when the operand needs to appear more than once in the insn.
  16547. In construction, 'match_dup' acts just like 'match_operand': the
  16548. operand is substituted into the insn being constructed. But in
  16549. matching, 'match_dup' behaves differently. It assumes that operand
  16550. number N has already been determined by a 'match_operand' appearing
  16551. earlier in the recognition template, and it matches only an
  16552. identical-looking expression.
  16553. Note that 'match_dup' should not be used to tell the compiler that
  16554. a particular register is being used for two operands (example:
  16555. 'add' that adds one register to another; the second register is
  16556. both an input operand and the output operand). Use a matching
  16557. constraint (*note Simple Constraints::) for those. 'match_dup' is
  16558. for the cases where one operand is used in two places in the
  16559. template, such as an instruction that computes both a quotient and
  16560. a remainder, where the opcode takes two input operands but the RTL
  16561. template has to refer to each of those twice; once for the quotient
  16562. pattern and once for the remainder pattern.
  16563. '(match_operator:M N PREDICATE [OPERANDS...])'
  16564. This pattern is a kind of placeholder for a variable RTL expression
  16565. code.
  16566. When constructing an insn, it stands for an RTL expression whose
  16567. expression code is taken from that of operand N, and whose operands
  16568. are constructed from the patterns OPERANDS.
  16569. When matching an expression, it matches an expression if the
  16570. function PREDICATE returns nonzero on that expression _and_ the
  16571. patterns OPERANDS match the operands of the expression.
  16572. Suppose that the function 'commutative_operator' is defined as
  16573. follows, to match any expression whose operator is one of the
  16574. commutative arithmetic operators of RTL and whose mode is MODE:
  16575. int
  16576. commutative_integer_operator (x, mode)
  16577. rtx x;
  16578. machine_mode mode;
  16579. {
  16580. enum rtx_code code = GET_CODE (x);
  16581. if (GET_MODE (x) != mode)
  16582. return 0;
  16583. return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
  16584. || code == EQ || code == NE);
  16585. }
  16586. Then the following pattern will match any RTL expression consisting
  16587. of a commutative operator applied to two general operands:
  16588. (match_operator:SI 3 "commutative_operator"
  16589. [(match_operand:SI 1 "general_operand" "g")
  16590. (match_operand:SI 2 "general_operand" "g")])
  16591. Here the vector '[OPERANDS...]' contains two patterns because the
  16592. expressions to be matched all contain two operands.
  16593. When this pattern does match, the two operands of the commutative
  16594. operator are recorded as operands 1 and 2 of the insn. (This is
  16595. done by the two instances of 'match_operand'.) Operand 3 of the
  16596. insn will be the entire commutative expression: use 'GET_CODE
  16597. (operands[3])' to see which commutative operator was used.
  16598. The machine mode M of 'match_operator' works like that of
  16599. 'match_operand': it is passed as the second argument to the
  16600. predicate function, and that function is solely responsible for
  16601. deciding whether the expression to be matched "has" that mode.
  16602. When constructing an insn, argument 3 of the gen-function will
  16603. specify the operation (i.e. the expression code) for the expression
  16604. to be made. It should be an RTL expression, whose expression code
  16605. is copied into a new expression whose operands are arguments 1 and
  16606. 2 of the gen-function. The subexpressions of argument 3 are not
  16607. used; only its expression code matters.
  16608. When 'match_operator' is used in a pattern for matching an insn, it
  16609. usually best if the operand number of the 'match_operator' is
  16610. higher than that of the actual operands of the insn. This improves
  16611. register allocation because the register allocator often looks at
  16612. operands 1 and 2 of insns to see if it can do register tying.
  16613. There is no way to specify constraints in 'match_operator'. The
  16614. operand of the insn which corresponds to the 'match_operator' never
  16615. has any constraints because it is never reloaded as a whole.
  16616. However, if parts of its OPERANDS are matched by 'match_operand'
  16617. patterns, those parts may have constraints of their own.
  16618. '(match_op_dup:M N[OPERANDS...])'
  16619. Like 'match_dup', except that it applies to operators instead of
  16620. operands. When constructing an insn, operand number N will be
  16621. substituted at this point. But in matching, 'match_op_dup' behaves
  16622. differently. It assumes that operand number N has already been
  16623. determined by a 'match_operator' appearing earlier in the
  16624. recognition template, and it matches only an identical-looking
  16625. expression.
  16626. '(match_parallel N PREDICATE [SUBPAT...])'
  16627. This pattern is a placeholder for an insn that consists of a
  16628. 'parallel' expression with a variable number of elements. This
  16629. expression should only appear at the top level of an insn pattern.
  16630. When constructing an insn, operand number N will be substituted at
  16631. this point. When matching an insn, it matches if the body of the
  16632. insn is a 'parallel' expression with at least as many elements as
  16633. the vector of SUBPAT expressions in the 'match_parallel', if each
  16634. SUBPAT matches the corresponding element of the 'parallel', _and_
  16635. the function PREDICATE returns nonzero on the 'parallel' that is
  16636. the body of the insn. It is the responsibility of the predicate to
  16637. validate elements of the 'parallel' beyond those listed in the
  16638. 'match_parallel'.
  16639. A typical use of 'match_parallel' is to match load and store
  16640. multiple expressions, which can contain a variable number of
  16641. elements in a 'parallel'. For example,
  16642. (define_insn ""
  16643. [(match_parallel 0 "load_multiple_operation"
  16644. [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
  16645. (match_operand:SI 2 "memory_operand" "m"))
  16646. (use (reg:SI 179))
  16647. (clobber (reg:SI 179))])]
  16648. ""
  16649. "loadm 0,0,%1,%2")
  16650. This example comes from 'a29k.md'. The function
  16651. 'load_multiple_operation' is defined in 'a29k.c' and checks that
  16652. subsequent elements in the 'parallel' are the same as the 'set' in
  16653. the pattern, except that they are referencing subsequent registers
  16654. and memory locations.
  16655. An insn that matches this pattern might look like:
  16656. (parallel
  16657. [(set (reg:SI 20) (mem:SI (reg:SI 100)))
  16658. (use (reg:SI 179))
  16659. (clobber (reg:SI 179))
  16660. (set (reg:SI 21)
  16661. (mem:SI (plus:SI (reg:SI 100)
  16662. (const_int 4))))
  16663. (set (reg:SI 22)
  16664. (mem:SI (plus:SI (reg:SI 100)
  16665. (const_int 8))))])
  16666. '(match_par_dup N [SUBPAT...])'
  16667. Like 'match_op_dup', but for 'match_parallel' instead of
  16668. 'match_operator'.
  16669. 
  16670. File: gccint.info, Node: Output Template, Next: Output Statement, Prev: RTL Template, Up: Machine Desc
  16671. 17.5 Output Templates and Operand Substitution
  16672. ==============================================
  16673. The "output template" is a string which specifies how to output the
  16674. assembler code for an instruction pattern. Most of the template is a
  16675. fixed string which is output literally. The character '%' is used to
  16676. specify where to substitute an operand; it can also be used to identify
  16677. places where different variants of the assembler require different
  16678. syntax.
  16679. In the simplest case, a '%' followed by a digit N says to output
  16680. operand N at that point in the string.
  16681. '%' followed by a letter and a digit says to output an operand in an
  16682. alternate fashion. Four letters have standard, built-in meanings
  16683. described below. The machine description macro 'PRINT_OPERAND' can
  16684. define additional letters with nonstandard meanings.
  16685. '%cDIGIT' can be used to substitute an operand that is a constant value
  16686. without the syntax that normally indicates an immediate operand.
  16687. '%nDIGIT' is like '%cDIGIT' except that the value of the constant is
  16688. negated before printing.
  16689. '%aDIGIT' can be used to substitute an operand as if it were a memory
  16690. reference, with the actual operand treated as the address. This may be
  16691. useful when outputting a "load address" instruction, because often the
  16692. assembler syntax for such an instruction requires you to write the
  16693. operand as if it were a memory reference.
  16694. '%lDIGIT' is used to substitute a 'label_ref' into a jump instruction.
  16695. '%=' outputs a number which is unique to each instruction in the entire
  16696. compilation. This is useful for making local labels to be referred to
  16697. more than once in a single template that generates multiple assembler
  16698. instructions.
  16699. '%' followed by a punctuation character specifies a substitution that
  16700. does not use an operand. Only one case is standard: '%%' outputs a '%'
  16701. into the assembler code. Other nonstandard cases can be defined in the
  16702. 'PRINT_OPERAND' macro. You must also define which punctuation
  16703. characters are valid with the 'PRINT_OPERAND_PUNCT_VALID_P' macro.
  16704. The template may generate multiple assembler instructions. Write the
  16705. text for the instructions, with '\;' between them.
  16706. When the RTL contains two operands which are required by constraint to
  16707. match each other, the output template must refer only to the
  16708. lower-numbered operand. Matching operands are not always identical, and
  16709. the rest of the compiler arranges to put the proper RTL expression for
  16710. printing into the lower-numbered operand.
  16711. One use of nonstandard letters or punctuation following '%' is to
  16712. distinguish between different assembler languages for the same machine;
  16713. for example, Motorola syntax versus MIT syntax for the 68000. Motorola
  16714. syntax requires periods in most opcode names, while MIT syntax does not.
  16715. For example, the opcode 'movel' in MIT syntax is 'move.l' in Motorola
  16716. syntax. The same file of patterns is used for both kinds of output
  16717. syntax, but the character sequence '%.' is used in each place where
  16718. Motorola syntax wants a period. The 'PRINT_OPERAND' macro for Motorola
  16719. syntax defines the sequence to output a period; the macro for MIT syntax
  16720. defines it to do nothing.
  16721. As a special case, a template consisting of the single character '#'
  16722. instructs the compiler to first split the insn, and then output the
  16723. resulting instructions separately. This helps eliminate redundancy in
  16724. the output templates. If you have a 'define_insn' that needs to emit
  16725. multiple assembler instructions, and there is a matching 'define_split'
  16726. already defined, then you can simply use '#' as the output template
  16727. instead of writing an output template that emits the multiple assembler
  16728. instructions.
  16729. Note that '#' only has an effect while generating assembly code; it
  16730. does not affect whether a split occurs earlier. An associated
  16731. 'define_split' must exist and it must be suitable for use after register
  16732. allocation.
  16733. If the macro 'ASSEMBLER_DIALECT' is defined, you can use construct of
  16734. the form '{option0|option1|option2}' in the templates. These describe
  16735. multiple variants of assembler language syntax. *Note Instruction
  16736. Output::.
  16737. 
  16738. File: gccint.info, Node: Output Statement, Next: Predicates, Prev: Output Template, Up: Machine Desc
  16739. 17.6 C Statements for Assembler Output
  16740. ======================================
  16741. Often a single fixed template string cannot produce correct and
  16742. efficient assembler code for all the cases that are recognized by a
  16743. single instruction pattern. For example, the opcodes may depend on the
  16744. kinds of operands; or some unfortunate combinations of operands may
  16745. require extra machine instructions.
  16746. If the output control string starts with a '@', then it is actually a
  16747. series of templates, each on a separate line. (Blank lines and leading
  16748. spaces and tabs are ignored.) The templates correspond to the pattern's
  16749. constraint alternatives (*note Multi-Alternative::). For example, if a
  16750. target machine has a two-address add instruction 'addr' to add into a
  16751. register and another 'addm' to add a register to memory, you might write
  16752. this pattern:
  16753. (define_insn "addsi3"
  16754. [(set (match_operand:SI 0 "general_operand" "=r,m")
  16755. (plus:SI (match_operand:SI 1 "general_operand" "0,0")
  16756. (match_operand:SI 2 "general_operand" "g,r")))]
  16757. ""
  16758. "@
  16759. addr %2,%0
  16760. addm %2,%0")
  16761. If the output control string starts with a '*', then it is not an
  16762. output template but rather a piece of C program that should compute a
  16763. template. It should execute a 'return' statement to return the
  16764. template-string you want. Most such templates use C string literals,
  16765. which require doublequote characters to delimit them. To include these
  16766. doublequote characters in the string, prefix each one with '\'.
  16767. If the output control string is written as a brace block instead of a
  16768. double-quoted string, it is automatically assumed to be C code. In that
  16769. case, it is not necessary to put in a leading asterisk, or to escape the
  16770. doublequotes surrounding C string literals.
  16771. The operands may be found in the array 'operands', whose C data type is
  16772. 'rtx []'.
  16773. It is very common to select different ways of generating assembler code
  16774. based on whether an immediate operand is within a certain range. Be
  16775. careful when doing this, because the result of 'INTVAL' is an integer on
  16776. the host machine. If the host machine has more bits in an 'int' than
  16777. the target machine has in the mode in which the constant will be used,
  16778. then some of the bits you get from 'INTVAL' will be superfluous. For
  16779. proper results, you must carefully disregard the values of those bits.
  16780. It is possible to output an assembler instruction and then go on to
  16781. output or compute more of them, using the subroutine 'output_asm_insn'.
  16782. This receives two arguments: a template-string and a vector of operands.
  16783. The vector may be 'operands', or it may be another array of 'rtx' that
  16784. you declare locally and initialize yourself.
  16785. When an insn pattern has multiple alternatives in its constraints,
  16786. often the appearance of the assembler code is determined mostly by which
  16787. alternative was matched. When this is so, the C code can test the
  16788. variable 'which_alternative', which is the ordinal number of the
  16789. alternative that was actually satisfied (0 for the first, 1 for the
  16790. second alternative, etc.).
  16791. For example, suppose there are two opcodes for storing zero, 'clrreg'
  16792. for registers and 'clrmem' for memory locations. Here is how a pattern
  16793. could use 'which_alternative' to choose between them:
  16794. (define_insn ""
  16795. [(set (match_operand:SI 0 "general_operand" "=r,m")
  16796. (const_int 0))]
  16797. ""
  16798. {
  16799. return (which_alternative == 0
  16800. ? "clrreg %0" : "clrmem %0");
  16801. })
  16802. The example above, where the assembler code to generate was _solely_
  16803. determined by the alternative, could also have been specified as
  16804. follows, having the output control string start with a '@':
  16805. (define_insn ""
  16806. [(set (match_operand:SI 0 "general_operand" "=r,m")
  16807. (const_int 0))]
  16808. ""
  16809. "@
  16810. clrreg %0
  16811. clrmem %0")
  16812. If you just need a little bit of C code in one (or a few) alternatives,
  16813. you can use '*' inside of a '@' multi-alternative template:
  16814. (define_insn ""
  16815. [(set (match_operand:SI 0 "general_operand" "=r,<,m")
  16816. (const_int 0))]
  16817. ""
  16818. "@
  16819. clrreg %0
  16820. * return stack_mem_p (operands[0]) ? \"push 0\" : \"clrmem %0\";
  16821. clrmem %0")
  16822. 
  16823. File: gccint.info, Node: Predicates, Next: Constraints, Prev: Output Statement, Up: Machine Desc
  16824. 17.7 Predicates
  16825. ===============
  16826. A predicate determines whether a 'match_operand' or 'match_operator'
  16827. expression matches, and therefore whether the surrounding instruction
  16828. pattern will be used for that combination of operands. GCC has a number
  16829. of machine-independent predicates, and you can define machine-specific
  16830. predicates as needed. By convention, predicates used with
  16831. 'match_operand' have names that end in '_operand', and those used with
  16832. 'match_operator' have names that end in '_operator'.
  16833. All predicates are boolean functions (in the mathematical sense) of two
  16834. arguments: the RTL expression that is being considered at that position
  16835. in the instruction pattern, and the machine mode that the
  16836. 'match_operand' or 'match_operator' specifies. In this section, the
  16837. first argument is called OP and the second argument MODE. Predicates
  16838. can be called from C as ordinary two-argument functions; this can be
  16839. useful in output templates or other machine-specific code.
  16840. Operand predicates can allow operands that are not actually acceptable
  16841. to the hardware, as long as the constraints give reload the ability to
  16842. fix them up (*note Constraints::). However, GCC will usually generate
  16843. better code if the predicates specify the requirements of the machine
  16844. instructions as closely as possible. Reload cannot fix up operands that
  16845. must be constants ("immediate operands"); you must use a predicate that
  16846. allows only constants, or else enforce the requirement in the extra
  16847. condition.
  16848. Most predicates handle their MODE argument in a uniform manner. If
  16849. MODE is 'VOIDmode' (unspecified), then OP can have any mode. If MODE is
  16850. anything else, then OP must have the same mode, unless OP is a
  16851. 'CONST_INT' or integer 'CONST_DOUBLE'. These RTL expressions always
  16852. have 'VOIDmode', so it would be counterproductive to check that their
  16853. mode matches. Instead, predicates that accept 'CONST_INT' and/or
  16854. integer 'CONST_DOUBLE' check that the value stored in the constant will
  16855. fit in the requested mode.
  16856. Predicates with this behavior are called "normal". 'genrecog' can
  16857. optimize the instruction recognizer based on knowledge of how normal
  16858. predicates treat modes. It can also diagnose certain kinds of common
  16859. errors in the use of normal predicates; for instance, it is almost
  16860. always an error to use a normal predicate without specifying a mode.
  16861. Predicates that do something different with their MODE argument are
  16862. called "special". The generic predicates 'address_operand' and
  16863. 'pmode_register_operand' are special predicates. 'genrecog' does not do
  16864. any optimizations or diagnosis when special predicates are used.
  16865. * Menu:
  16866. * Machine-Independent Predicates:: Predicates available to all back ends.
  16867. * Defining Predicates:: How to write machine-specific predicate
  16868. functions.
  16869. 
  16870. File: gccint.info, Node: Machine-Independent Predicates, Next: Defining Predicates, Up: Predicates
  16871. 17.7.1 Machine-Independent Predicates
  16872. -------------------------------------
  16873. These are the generic predicates available to all back ends. They are
  16874. defined in 'recog.c'. The first category of predicates allow only
  16875. constant, or "immediate", operands.
  16876. -- Function: immediate_operand
  16877. This predicate allows any sort of constant that fits in MODE. It
  16878. is an appropriate choice for instructions that take operands that
  16879. must be constant.
  16880. -- Function: const_int_operand
  16881. This predicate allows any 'CONST_INT' expression that fits in MODE.
  16882. It is an appropriate choice for an immediate operand that does not
  16883. allow a symbol or label.
  16884. -- Function: const_double_operand
  16885. This predicate accepts any 'CONST_DOUBLE' expression that has
  16886. exactly MODE. If MODE is 'VOIDmode', it will also accept
  16887. 'CONST_INT'. It is intended for immediate floating point
  16888. constants.
  16889. The second category of predicates allow only some kind of machine
  16890. register.
  16891. -- Function: register_operand
  16892. This predicate allows any 'REG' or 'SUBREG' expression that is
  16893. valid for MODE. It is often suitable for arithmetic instruction
  16894. operands on a RISC machine.
  16895. -- Function: pmode_register_operand
  16896. This is a slight variant on 'register_operand' which works around a
  16897. limitation in the machine-description reader.
  16898. (match_operand N "pmode_register_operand" CONSTRAINT)
  16899. means exactly what
  16900. (match_operand:P N "register_operand" CONSTRAINT)
  16901. would mean, if the machine-description reader accepted ':P' mode
  16902. suffixes. Unfortunately, it cannot, because 'Pmode' is an alias
  16903. for some other mode, and might vary with machine-specific options.
  16904. *Note Misc::.
  16905. -- Function: scratch_operand
  16906. This predicate allows hard registers and 'SCRATCH' expressions, but
  16907. not pseudo-registers. It is used internally by 'match_scratch'; it
  16908. should not be used directly.
  16909. The third category of predicates allow only some kind of memory
  16910. reference.
  16911. -- Function: memory_operand
  16912. This predicate allows any valid reference to a quantity of mode
  16913. MODE in memory, as determined by the weak form of
  16914. 'GO_IF_LEGITIMATE_ADDRESS' (*note Addressing Modes::).
  16915. -- Function: address_operand
  16916. This predicate is a little unusual; it allows any operand that is a
  16917. valid expression for the _address_ of a quantity of mode MODE,
  16918. again determined by the weak form of 'GO_IF_LEGITIMATE_ADDRESS'.
  16919. To first order, if '(mem:MODE (EXP))' is acceptable to
  16920. 'memory_operand', then EXP is acceptable to 'address_operand'.
  16921. Note that EXP does not necessarily have the mode MODE.
  16922. -- Function: indirect_operand
  16923. This is a stricter form of 'memory_operand' which allows only
  16924. memory references with a 'general_operand' as the address
  16925. expression. New uses of this predicate are discouraged, because
  16926. 'general_operand' is very permissive, so it's hard to tell what an
  16927. 'indirect_operand' does or does not allow. If a target has
  16928. different requirements for memory operands for different
  16929. instructions, it is better to define target-specific predicates
  16930. which enforce the hardware's requirements explicitly.
  16931. -- Function: push_operand
  16932. This predicate allows a memory reference suitable for pushing a
  16933. value onto the stack. This will be a 'MEM' which refers to
  16934. 'stack_pointer_rtx', with a side effect in its address expression
  16935. (*note Incdec::); which one is determined by the 'STACK_PUSH_CODE'
  16936. macro (*note Frame Layout::).
  16937. -- Function: pop_operand
  16938. This predicate allows a memory reference suitable for popping a
  16939. value off the stack. Again, this will be a 'MEM' referring to
  16940. 'stack_pointer_rtx', with a side effect in its address expression.
  16941. However, this time 'STACK_POP_CODE' is expected.
  16942. The fourth category of predicates allow some combination of the above
  16943. operands.
  16944. -- Function: nonmemory_operand
  16945. This predicate allows any immediate or register operand valid for
  16946. MODE.
  16947. -- Function: nonimmediate_operand
  16948. This predicate allows any register or memory operand valid for
  16949. MODE.
  16950. -- Function: general_operand
  16951. This predicate allows any immediate, register, or memory operand
  16952. valid for MODE.
  16953. Finally, there are two generic operator predicates.
  16954. -- Function: comparison_operator
  16955. This predicate matches any expression which performs an arithmetic
  16956. comparison in MODE; that is, 'COMPARISON_P' is true for the
  16957. expression code.
  16958. -- Function: ordered_comparison_operator
  16959. This predicate matches any expression which performs an arithmetic
  16960. comparison in MODE and whose expression code is valid for integer
  16961. modes; that is, the expression code will be one of 'eq', 'ne',
  16962. 'lt', 'ltu', 'le', 'leu', 'gt', 'gtu', 'ge', 'geu'.
  16963. 
  16964. File: gccint.info, Node: Defining Predicates, Prev: Machine-Independent Predicates, Up: Predicates
  16965. 17.7.2 Defining Machine-Specific Predicates
  16966. -------------------------------------------
  16967. Many machines have requirements for their operands that cannot be
  16968. expressed precisely using the generic predicates. You can define
  16969. additional predicates using 'define_predicate' and
  16970. 'define_special_predicate' expressions. These expressions have three
  16971. operands:
  16972. * The name of the predicate, as it will be referred to in
  16973. 'match_operand' or 'match_operator' expressions.
  16974. * An RTL expression which evaluates to true if the predicate allows
  16975. the operand OP, false if it does not. This expression can only use
  16976. the following RTL codes:
  16977. 'MATCH_OPERAND'
  16978. When written inside a predicate expression, a 'MATCH_OPERAND'
  16979. expression evaluates to true if the predicate it names would
  16980. allow OP. The operand number and constraint are ignored. Due
  16981. to limitations in 'genrecog', you can only refer to generic
  16982. predicates and predicates that have already been defined.
  16983. 'MATCH_CODE'
  16984. This expression evaluates to true if OP or a specified
  16985. subexpression of OP has one of a given list of RTX codes.
  16986. The first operand of this expression is a string constant
  16987. containing a comma-separated list of RTX code names (in lower
  16988. case). These are the codes for which the 'MATCH_CODE' will be
  16989. true.
  16990. The second operand is a string constant which indicates what
  16991. subexpression of OP to examine. If it is absent or the empty
  16992. string, OP itself is examined. Otherwise, the string constant
  16993. must be a sequence of digits and/or lowercase letters. Each
  16994. character indicates a subexpression to extract from the
  16995. current expression; for the first character this is OP, for
  16996. the second and subsequent characters it is the result of the
  16997. previous character. A digit N extracts 'XEXP (E, N)'; a
  16998. letter L extracts 'XVECEXP (E, 0, N)' where N is the
  16999. alphabetic ordinal of L (0 for 'a', 1 for 'b', and so on).
  17000. The 'MATCH_CODE' then examines the RTX code of the
  17001. subexpression extracted by the complete string. It is not
  17002. possible to extract components of an 'rtvec' that is not at
  17003. position 0 within its RTX object.
  17004. 'MATCH_TEST'
  17005. This expression has one operand, a string constant containing
  17006. a C expression. The predicate's arguments, OP and MODE, are
  17007. available with those names in the C expression. The
  17008. 'MATCH_TEST' evaluates to true if the C expression evaluates
  17009. to a nonzero value. 'MATCH_TEST' expressions must not have
  17010. side effects.
  17011. 'AND'
  17012. 'IOR'
  17013. 'NOT'
  17014. 'IF_THEN_ELSE'
  17015. The basic 'MATCH_' expressions can be combined using these
  17016. logical operators, which have the semantics of the C operators
  17017. '&&', '||', '!', and '? :' respectively. As in Common Lisp,
  17018. you may give an 'AND' or 'IOR' expression an arbitrary number
  17019. of arguments; this has exactly the same effect as writing a
  17020. chain of two-argument 'AND' or 'IOR' expressions.
  17021. * An optional block of C code, which should execute 'return true' if
  17022. the predicate is found to match and 'return false' if it does not.
  17023. It must not have any side effects. The predicate arguments, OP and
  17024. MODE, are available with those names.
  17025. If a code block is present in a predicate definition, then the RTL
  17026. expression must evaluate to true _and_ the code block must execute
  17027. 'return true' for the predicate to allow the operand. The RTL
  17028. expression is evaluated first; do not re-check anything in the code
  17029. block that was checked in the RTL expression.
  17030. The program 'genrecog' scans 'define_predicate' and
  17031. 'define_special_predicate' expressions to determine which RTX codes are
  17032. possibly allowed. You should always make this explicit in the RTL
  17033. predicate expression, using 'MATCH_OPERAND' and 'MATCH_CODE'.
  17034. Here is an example of a simple predicate definition, from the IA64
  17035. machine description:
  17036. ;; True if OP is a 'SYMBOL_REF' which refers to the sdata section.
  17037. (define_predicate "small_addr_symbolic_operand"
  17038. (and (match_code "symbol_ref")
  17039. (match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))
  17040. And here is another, showing the use of the C block.
  17041. ;; True if OP is a register operand that is (or could be) a GR reg.
  17042. (define_predicate "gr_register_operand"
  17043. (match_operand 0 "register_operand")
  17044. {
  17045. unsigned int regno;
  17046. if (GET_CODE (op) == SUBREG)
  17047. op = SUBREG_REG (op);
  17048. regno = REGNO (op);
  17049. return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
  17050. })
  17051. Predicates written with 'define_predicate' automatically include a test
  17052. that MODE is 'VOIDmode', or OP has the same mode as MODE, or OP is a
  17053. 'CONST_INT' or 'CONST_DOUBLE'. They do _not_ check specifically for
  17054. integer 'CONST_DOUBLE', nor do they test that the value of either kind
  17055. of constant fits in the requested mode. This is because target-specific
  17056. predicates that take constants usually have to do more stringent value
  17057. checks anyway. If you need the exact same treatment of 'CONST_INT' or
  17058. 'CONST_DOUBLE' that the generic predicates provide, use a
  17059. 'MATCH_OPERAND' subexpression to call 'const_int_operand',
  17060. 'const_double_operand', or 'immediate_operand'.
  17061. Predicates written with 'define_special_predicate' do not get any
  17062. automatic mode checks, and are treated as having special mode handling
  17063. by 'genrecog'.
  17064. The program 'genpreds' is responsible for generating code to test
  17065. predicates. It also writes a header file containing function
  17066. declarations for all machine-specific predicates. It is not necessary
  17067. to declare these predicates in 'CPU-protos.h'.
  17068. 
  17069. File: gccint.info, Node: Constraints, Next: Standard Names, Prev: Predicates, Up: Machine Desc
  17070. 17.8 Operand Constraints
  17071. ========================
  17072. Each 'match_operand' in an instruction pattern can specify constraints
  17073. for the operands allowed. The constraints allow you to fine-tune
  17074. matching within the set of operands allowed by the predicate.
  17075. Constraints can say whether an operand may be in a register, and which
  17076. kinds of register; whether the operand can be a memory reference, and
  17077. which kinds of address; whether the operand may be an immediate
  17078. constant, and which possible values it may have. Constraints can also
  17079. require two operands to match. Side-effects aren't allowed in operands
  17080. of inline 'asm', unless '<' or '>' constraints are used, because there
  17081. is no guarantee that the side effects will happen exactly once in an
  17082. instruction that can update the addressing register.
  17083. * Menu:
  17084. * Simple Constraints:: Basic use of constraints.
  17085. * Multi-Alternative:: When an insn has two alternative constraint-patterns.
  17086. * Class Preferences:: Constraints guide which hard register to put things in.
  17087. * Modifiers:: More precise control over effects of constraints.
  17088. * Machine Constraints:: Existing constraints for some particular machines.
  17089. * Disable Insn Alternatives:: Disable insn alternatives using attributes.
  17090. * Define Constraints:: How to define machine-specific constraints.
  17091. * C Constraint Interface:: How to test constraints from C code.
  17092. 
  17093. File: gccint.info, Node: Simple Constraints, Next: Multi-Alternative, Up: Constraints
  17094. 17.8.1 Simple Constraints
  17095. -------------------------
  17096. The simplest kind of constraint is a string full of letters, each of
  17097. which describes one kind of operand that is permitted. Here are the
  17098. letters that are allowed:
  17099. whitespace
  17100. Whitespace characters are ignored and can be inserted at any
  17101. position except the first. This enables each alternative for
  17102. different operands to be visually aligned in the machine
  17103. description even if they have different number of constraints and
  17104. modifiers.
  17105. 'm'
  17106. A memory operand is allowed, with any kind of address that the
  17107. machine supports in general. Note that the letter used for the
  17108. general memory constraint can be re-defined by a back end using the
  17109. 'TARGET_MEM_CONSTRAINT' macro.
  17110. 'o'
  17111. A memory operand is allowed, but only if the address is
  17112. "offsettable". This means that adding a small integer (actually,
  17113. the width in bytes of the operand, as determined by its machine
  17114. mode) may be added to the address and the result is also a valid
  17115. memory address.
  17116. For example, an address which is constant is offsettable; so is an
  17117. address that is the sum of a register and a constant (as long as a
  17118. slightly larger constant is also within the range of
  17119. address-offsets supported by the machine); but an autoincrement or
  17120. autodecrement address is not offsettable. More complicated
  17121. indirect/indexed addresses may or may not be offsettable depending
  17122. on the other addressing modes that the machine supports.
  17123. Note that in an output operand which can be matched by another
  17124. operand, the constraint letter 'o' is valid only when accompanied
  17125. by both '<' (if the target machine has predecrement addressing) and
  17126. '>' (if the target machine has preincrement addressing).
  17127. 'V'
  17128. A memory operand that is not offsettable. In other words, anything
  17129. that would fit the 'm' constraint but not the 'o' constraint.
  17130. '<'
  17131. A memory operand with autodecrement addressing (either predecrement
  17132. or postdecrement) is allowed. In inline 'asm' this constraint is
  17133. only allowed if the operand is used exactly once in an instruction
  17134. that can handle the side effects. Not using an operand with '<' in
  17135. constraint string in the inline 'asm' pattern at all or using it in
  17136. multiple instructions isn't valid, because the side effects
  17137. wouldn't be performed or would be performed more than once.
  17138. Furthermore, on some targets the operand with '<' in constraint
  17139. string must be accompanied by special instruction suffixes like
  17140. '%U0' instruction suffix on PowerPC or '%P0' on IA-64.
  17141. '>'
  17142. A memory operand with autoincrement addressing (either preincrement
  17143. or postincrement) is allowed. In inline 'asm' the same
  17144. restrictions as for '<' apply.
  17145. 'r'
  17146. A register operand is allowed provided that it is in a general
  17147. register.
  17148. 'i'
  17149. An immediate integer operand (one with constant value) is allowed.
  17150. This includes symbolic constants whose values will be known only at
  17151. assembly time or later.
  17152. 'n'
  17153. An immediate integer operand with a known numeric value is allowed.
  17154. Many systems cannot support assembly-time constants for operands
  17155. less than a word wide. Constraints for these operands should use
  17156. 'n' rather than 'i'.
  17157. 'I', 'J', 'K', ... 'P'
  17158. Other letters in the range 'I' through 'P' may be defined in a
  17159. machine-dependent fashion to permit immediate integer operands with
  17160. explicit integer values in specified ranges. For example, on the
  17161. 68000, 'I' is defined to stand for the range of values 1 to 8.
  17162. This is the range permitted as a shift count in the shift
  17163. instructions.
  17164. 'E'
  17165. An immediate floating operand (expression code 'const_double') is
  17166. allowed, but only if the target floating point format is the same
  17167. as that of the host machine (on which the compiler is running).
  17168. 'F'
  17169. An immediate floating operand (expression code 'const_double' or
  17170. 'const_vector') is allowed.
  17171. 'G', 'H'
  17172. 'G' and 'H' may be defined in a machine-dependent fashion to permit
  17173. immediate floating operands in particular ranges of values.
  17174. 's'
  17175. An immediate integer operand whose value is not an explicit integer
  17176. is allowed.
  17177. This might appear strange; if an insn allows a constant operand
  17178. with a value not known at compile time, it certainly must allow any
  17179. known value. So why use 's' instead of 'i'? Sometimes it allows
  17180. better code to be generated.
  17181. For example, on the 68000 in a fullword instruction it is possible
  17182. to use an immediate operand; but if the immediate value is between
  17183. -128 and 127, better code results from loading the value into a
  17184. register and using the register. This is because the load into the
  17185. register can be done with a 'moveq' instruction. We arrange for
  17186. this to happen by defining the letter 'K' to mean "any integer
  17187. outside the range -128 to 127", and then specifying 'Ks' in the
  17188. operand constraints.
  17189. 'g'
  17190. Any register, memory or immediate integer operand is allowed,
  17191. except for registers that are not general registers.
  17192. 'X'
  17193. Any operand whatsoever is allowed, even if it does not satisfy
  17194. 'general_operand'. This is normally used in the constraint of a
  17195. 'match_scratch' when certain alternatives will not actually require
  17196. a scratch register.
  17197. '0', '1', '2', ... '9'
  17198. An operand that matches the specified operand number is allowed.
  17199. If a digit is used together with letters within the same
  17200. alternative, the digit should come last.
  17201. This number is allowed to be more than a single digit. If multiple
  17202. digits are encountered consecutively, they are interpreted as a
  17203. single decimal integer. There is scant chance for ambiguity, since
  17204. to-date it has never been desirable that '10' be interpreted as
  17205. matching either operand 1 _or_ operand 0. Should this be desired,
  17206. one can use multiple alternatives instead.
  17207. This is called a "matching constraint" and what it really means is
  17208. that the assembler has only a single operand that fills two roles
  17209. considered separate in the RTL insn. For example, an add insn has
  17210. two input operands and one output operand in the RTL, but on most
  17211. CISC machines an add instruction really has only two operands, one
  17212. of them an input-output operand:
  17213. addl #35,r12
  17214. Matching constraints are used in these circumstances. More
  17215. precisely, the two operands that match must include one input-only
  17216. operand and one output-only operand. Moreover, the digit must be a
  17217. smaller number than the number of the operand that uses it in the
  17218. constraint.
  17219. For operands to match in a particular case usually means that they
  17220. are identical-looking RTL expressions. But in a few special cases
  17221. specific kinds of dissimilarity are allowed. For example, '*x' as
  17222. an input operand will match '*x++' as an output operand. For
  17223. proper results in such cases, the output template should always use
  17224. the output-operand's number when printing the operand.
  17225. 'p'
  17226. An operand that is a valid memory address is allowed. This is for
  17227. "load address" and "push address" instructions.
  17228. 'p' in the constraint must be accompanied by 'address_operand' as
  17229. the predicate in the 'match_operand'. This predicate interprets
  17230. the mode specified in the 'match_operand' as the mode of the memory
  17231. reference for which the address would be valid.
  17232. OTHER-LETTERS
  17233. Other letters can be defined in machine-dependent fashion to stand
  17234. for particular classes of registers or other arbitrary operand
  17235. types. 'd', 'a' and 'f' are defined on the 68000/68020 to stand
  17236. for data, address and floating point registers.
  17237. In order to have valid assembler code, each operand must satisfy its
  17238. constraint. But a failure to do so does not prevent the pattern from
  17239. applying to an insn. Instead, it directs the compiler to modify the
  17240. code so that the constraint will be satisfied. Usually this is done by
  17241. copying an operand into a register.
  17242. Contrast, therefore, the two instruction patterns that follow:
  17243. (define_insn ""
  17244. [(set (match_operand:SI 0 "general_operand" "=r")
  17245. (plus:SI (match_dup 0)
  17246. (match_operand:SI 1 "general_operand" "r")))]
  17247. ""
  17248. "...")
  17249. which has two operands, one of which must appear in two places, and
  17250. (define_insn ""
  17251. [(set (match_operand:SI 0 "general_operand" "=r")
  17252. (plus:SI (match_operand:SI 1 "general_operand" "0")
  17253. (match_operand:SI 2 "general_operand" "r")))]
  17254. ""
  17255. "...")
  17256. which has three operands, two of which are required by a constraint to
  17257. be identical. If we are considering an insn of the form
  17258. (insn N PREV NEXT
  17259. (set (reg:SI 3)
  17260. (plus:SI (reg:SI 6) (reg:SI 109)))
  17261. ...)
  17262. the first pattern would not apply at all, because this insn does not
  17263. contain two identical subexpressions in the right place. The pattern
  17264. would say, "That does not look like an add instruction; try other
  17265. patterns". The second pattern would say, "Yes, that's an add
  17266. instruction, but there is something wrong with it". It would direct the
  17267. reload pass of the compiler to generate additional insns to make the
  17268. constraint true. The results might look like this:
  17269. (insn N2 PREV N
  17270. (set (reg:SI 3) (reg:SI 6))
  17271. ...)
  17272. (insn N N2 NEXT
  17273. (set (reg:SI 3)
  17274. (plus:SI (reg:SI 3) (reg:SI 109)))
  17275. ...)
  17276. It is up to you to make sure that each operand, in each pattern, has
  17277. constraints that can handle any RTL expression that could be present for
  17278. that operand. (When multiple alternatives are in use, each pattern
  17279. must, for each possible combination of operand expressions, have at
  17280. least one alternative which can handle that combination of operands.)
  17281. The constraints don't need to _allow_ any possible operand--when this is
  17282. the case, they do not constrain--but they must at least point the way to
  17283. reloading any possible operand so that it will fit.
  17284. * If the constraint accepts whatever operands the predicate permits,
  17285. there is no problem: reloading is never necessary for this operand.
  17286. For example, an operand whose constraints permit everything except
  17287. registers is safe provided its predicate rejects registers.
  17288. An operand whose predicate accepts only constant values is safe
  17289. provided its constraints include the letter 'i'. If any possible
  17290. constant value is accepted, then nothing less than 'i' will do; if
  17291. the predicate is more selective, then the constraints may also be
  17292. more selective.
  17293. * Any operand expression can be reloaded by copying it into a
  17294. register. So if an operand's constraints allow some kind of
  17295. register, it is certain to be safe. It need not permit all classes
  17296. of registers; the compiler knows how to copy a register into
  17297. another register of the proper class in order to make an
  17298. instruction valid.
  17299. * A nonoffsettable memory reference can be reloaded by copying the
  17300. address into a register. So if the constraint uses the letter 'o',
  17301. all memory references are taken care of.
  17302. * A constant operand can be reloaded by allocating space in memory to
  17303. hold it as preinitialized data. Then the memory reference can be
  17304. used in place of the constant. So if the constraint uses the
  17305. letters 'o' or 'm', constant operands are not a problem.
  17306. * If the constraint permits a constant and a pseudo register used in
  17307. an insn was not allocated to a hard register and is equivalent to a
  17308. constant, the register will be replaced with the constant. If the
  17309. predicate does not permit a constant and the insn is re-recognized
  17310. for some reason, the compiler will crash. Thus the predicate must
  17311. always recognize any objects allowed by the constraint.
  17312. If the operand's predicate can recognize registers, but the constraint
  17313. does not permit them, it can make the compiler crash. When this operand
  17314. happens to be a register, the reload pass will be stymied, because it
  17315. does not know how to copy a register temporarily into memory.
  17316. If the predicate accepts a unary operator, the constraint applies to
  17317. the operand. For example, the MIPS processor at ISA level 3 supports an
  17318. instruction which adds two registers in 'SImode' to produce a 'DImode'
  17319. result, but only if the registers are correctly sign extended. This
  17320. predicate for the input operands accepts a 'sign_extend' of an 'SImode'
  17321. register. Write the constraint to indicate the type of register that is
  17322. required for the operand of the 'sign_extend'.
  17323. 
  17324. File: gccint.info, Node: Multi-Alternative, Next: Class Preferences, Prev: Simple Constraints, Up: Constraints
  17325. 17.8.2 Multiple Alternative Constraints
  17326. ---------------------------------------
  17327. Sometimes a single instruction has multiple alternative sets of possible
  17328. operands. For example, on the 68000, a logical-or instruction can
  17329. combine register or an immediate value into memory, or it can combine
  17330. any kind of operand into a register; but it cannot combine one memory
  17331. location into another.
  17332. These constraints are represented as multiple alternatives. An
  17333. alternative can be described by a series of letters for each operand.
  17334. The overall constraint for an operand is made from the letters for this
  17335. operand from the first alternative, a comma, the letters for this
  17336. operand from the second alternative, a comma, and so on until the last
  17337. alternative. All operands for a single instruction must have the same
  17338. number of alternatives. Here is how it is done for fullword logical-or
  17339. on the 68000:
  17340. (define_insn "iorsi3"
  17341. [(set (match_operand:SI 0 "general_operand" "=m,d")
  17342. (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
  17343. (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
  17344. ...)
  17345. The first alternative has 'm' (memory) for operand 0, '0' for operand 1
  17346. (meaning it must match operand 0), and 'dKs' for operand 2. The second
  17347. alternative has 'd' (data register) for operand 0, '0' for operand 1,
  17348. and 'dmKs' for operand 2. The '=' and '%' in the constraints apply to
  17349. all the alternatives; their meaning is explained in the next section
  17350. (*note Class Preferences::).
  17351. If all the operands fit any one alternative, the instruction is valid.
  17352. Otherwise, for each alternative, the compiler counts how many
  17353. instructions must be added to copy the operands so that that alternative
  17354. applies. The alternative requiring the least copying is chosen. If two
  17355. alternatives need the same amount of copying, the one that comes first
  17356. is chosen. These choices can be altered with the '?' and '!'
  17357. characters:
  17358. '?'
  17359. Disparage slightly the alternative that the '?' appears in, as a
  17360. choice when no alternative applies exactly. The compiler regards
  17361. this alternative as one unit more costly for each '?' that appears
  17362. in it.
  17363. '!'
  17364. Disparage severely the alternative that the '!' appears in. This
  17365. alternative can still be used if it fits without reloading, but if
  17366. reloading is needed, some other alternative will be used.
  17367. '^'
  17368. This constraint is analogous to '?' but it disparages slightly the
  17369. alternative only if the operand with the '^' needs a reload.
  17370. '$'
  17371. This constraint is analogous to '!' but it disparages severely the
  17372. alternative only if the operand with the '$' needs a reload.
  17373. When an insn pattern has multiple alternatives in its constraints,
  17374. often the appearance of the assembler code is determined mostly by which
  17375. alternative was matched. When this is so, the C code for writing the
  17376. assembler code can use the variable 'which_alternative', which is the
  17377. ordinal number of the alternative that was actually satisfied (0 for the
  17378. first, 1 for the second alternative, etc.). *Note Output Statement::.
  17379. 
  17380. File: gccint.info, Node: Class Preferences, Next: Modifiers, Prev: Multi-Alternative, Up: Constraints
  17381. 17.8.3 Register Class Preferences
  17382. ---------------------------------
  17383. The operand constraints have another function: they enable the compiler
  17384. to decide which kind of hardware register a pseudo register is best
  17385. allocated to. The compiler examines the constraints that apply to the
  17386. insns that use the pseudo register, looking for the machine-dependent
  17387. letters such as 'd' and 'a' that specify classes of registers. The
  17388. pseudo register is put in whichever class gets the most "votes". The
  17389. constraint letters 'g' and 'r' also vote: they vote in favor of a
  17390. general register. The machine description says which registers are
  17391. considered general.
  17392. Of course, on some machines all registers are equivalent, and no
  17393. register classes are defined. Then none of this complexity is relevant.
  17394. 
  17395. File: gccint.info, Node: Modifiers, Next: Machine Constraints, Prev: Class Preferences, Up: Constraints
  17396. 17.8.4 Constraint Modifier Characters
  17397. -------------------------------------
  17398. Here are constraint modifier characters.
  17399. '='
  17400. Means that this operand is written to by this instruction: the
  17401. previous value is discarded and replaced by new data.
  17402. '+'
  17403. Means that this operand is both read and written by the
  17404. instruction.
  17405. When the compiler fixes up the operands to satisfy the constraints,
  17406. it needs to know which operands are read by the instruction and
  17407. which are written by it. '=' identifies an operand which is only
  17408. written; '+' identifies an operand that is both read and written;
  17409. all other operands are assumed to only be read.
  17410. If you specify '=' or '+' in a constraint, you put it in the first
  17411. character of the constraint string.
  17412. '&'
  17413. Means (in a particular alternative) that this operand is an
  17414. "earlyclobber" operand, which is written before the instruction is
  17415. finished using the input operands. Therefore, this operand may not
  17416. lie in a register that is read by the instruction or as part of any
  17417. memory address.
  17418. '&' applies only to the alternative in which it is written. In
  17419. constraints with multiple alternatives, sometimes one alternative
  17420. requires '&' while others do not. See, for example, the 'movdf'
  17421. insn of the 68000.
  17422. A operand which is read by the instruction can be tied to an
  17423. earlyclobber operand if its only use as an input occurs before the
  17424. early result is written. Adding alternatives of this form often
  17425. allows GCC to produce better code when only some of the read
  17426. operands can be affected by the earlyclobber. See, for example,
  17427. the 'mulsi3' insn of the ARM.
  17428. Furthermore, if the "earlyclobber" operand is also a read/write
  17429. operand, then that operand is written only after it's used.
  17430. '&' does not obviate the need to write '=' or '+'. As
  17431. "earlyclobber" operands are always written, a read-only
  17432. "earlyclobber" operand is ill-formed and will be rejected by the
  17433. compiler.
  17434. '%'
  17435. Declares the instruction to be commutative for this operand and the
  17436. following operand. This means that the compiler may interchange
  17437. the two operands if that is the cheapest way to make all operands
  17438. fit the constraints. '%' applies to all alternatives and must
  17439. appear as the first character in the constraint. Only read-only
  17440. operands can use '%'.
  17441. This is often used in patterns for addition instructions that
  17442. really have only two operands: the result must go in one of the
  17443. arguments. Here for example, is how the 68000 halfword-add
  17444. instruction is defined:
  17445. (define_insn "addhi3"
  17446. [(set (match_operand:HI 0 "general_operand" "=m,r")
  17447. (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
  17448. (match_operand:HI 2 "general_operand" "di,g")))]
  17449. ...)
  17450. GCC can only handle one commutative pair in an asm; if you use
  17451. more, the compiler may fail. Note that you need not use the
  17452. modifier if the two alternatives are strictly identical; this would
  17453. only waste time in the reload pass. The modifier is not
  17454. operational after register allocation, so the result of
  17455. 'define_peephole2' and 'define_split's performed after reload
  17456. cannot rely on '%' to make the intended insn match.
  17457. '#'
  17458. Says that all following characters, up to the next comma, are to be
  17459. ignored as a constraint. They are significant only for choosing
  17460. register preferences.
  17461. '*'
  17462. Says that the following character should be ignored when choosing
  17463. register preferences. '*' has no effect on the meaning of the
  17464. constraint as a constraint, and no effect on reloading. For LRA
  17465. '*' additionally disparages slightly the alternative if the
  17466. following character matches the operand.
  17467. Here is an example: the 68000 has an instruction to sign-extend a
  17468. halfword in a data register, and can also sign-extend a value by
  17469. copying it into an address register. While either kind of register
  17470. is acceptable, the constraints on an address-register destination
  17471. are less strict, so it is best if register allocation makes an
  17472. address register its goal. Therefore, '*' is used so that the 'd'
  17473. constraint letter (for data register) is ignored when computing
  17474. register preferences.
  17475. (define_insn "extendhisi2"
  17476. [(set (match_operand:SI 0 "general_operand" "=*d,a")
  17477. (sign_extend:SI
  17478. (match_operand:HI 1 "general_operand" "0,g")))]
  17479. ...)
  17480. 
  17481. File: gccint.info, Node: Machine Constraints, Next: Disable Insn Alternatives, Prev: Modifiers, Up: Constraints
  17482. 17.8.5 Constraints for Particular Machines
  17483. ------------------------------------------
  17484. Whenever possible, you should use the general-purpose constraint letters
  17485. in 'asm' arguments, since they will convey meaning more readily to
  17486. people reading your code. Failing that, use the constraint letters that
  17487. usually have very similar meanings across architectures. The most
  17488. commonly used constraints are 'm' and 'r' (for memory and
  17489. general-purpose registers respectively; *note Simple Constraints::), and
  17490. 'I', usually the letter indicating the most common immediate-constant
  17491. format.
  17492. Each architecture defines additional constraints. These constraints
  17493. are used by the compiler itself for instruction generation, as well as
  17494. for 'asm' statements; therefore, some of the constraints are not
  17495. particularly useful for 'asm'. Here is a summary of some of the
  17496. machine-dependent constraints available on some particular machines; it
  17497. includes both constraints that are useful for 'asm' and constraints that
  17498. aren't. The compiler source file mentioned in the table heading for
  17499. each architecture is the definitive reference for the meanings of that
  17500. architecture's constraints.
  17501. _AArch64 family--'config/aarch64/constraints.md'_
  17502. 'k'
  17503. The stack pointer register ('SP')
  17504. 'w'
  17505. Floating point register, Advanced SIMD vector register or SVE
  17506. vector register
  17507. 'Upl'
  17508. One of the low eight SVE predicate registers ('P0' to 'P7')
  17509. 'Upa'
  17510. Any of the SVE predicate registers ('P0' to 'P15')
  17511. 'I'
  17512. Integer constant that is valid as an immediate operand in an
  17513. 'ADD' instruction
  17514. 'J'
  17515. Integer constant that is valid as an immediate operand in a
  17516. 'SUB' instruction (once negated)
  17517. 'K'
  17518. Integer constant that can be used with a 32-bit logical
  17519. instruction
  17520. 'L'
  17521. Integer constant that can be used with a 64-bit logical
  17522. instruction
  17523. 'M'
  17524. Integer constant that is valid as an immediate operand in a
  17525. 32-bit 'MOV' pseudo instruction. The 'MOV' may be assembled
  17526. to one of several different machine instructions depending on
  17527. the value
  17528. 'N'
  17529. Integer constant that is valid as an immediate operand in a
  17530. 64-bit 'MOV' pseudo instruction
  17531. 'S'
  17532. An absolute symbolic address or a label reference
  17533. 'Y'
  17534. Floating point constant zero
  17535. 'Z'
  17536. Integer constant zero
  17537. 'Ush'
  17538. The high part (bits 12 and upwards) of the pc-relative address
  17539. of a symbol within 4GB of the instruction
  17540. 'Q'
  17541. A memory address which uses a single base register with no
  17542. offset
  17543. 'Ump'
  17544. A memory address suitable for a load/store pair instruction in
  17545. SI, DI, SF and DF modes
  17546. _ARC --'config/arc/constraints.md'_
  17547. 'q'
  17548. Registers usable in ARCompact 16-bit instructions: 'r0'-'r3',
  17549. 'r12'-'r15'. This constraint can only match when the '-mq'
  17550. option is in effect.
  17551. 'e'
  17552. Registers usable as base-regs of memory addresses in ARCompact
  17553. 16-bit memory instructions: 'r0'-'r3', 'r12'-'r15', 'sp'.
  17554. This constraint can only match when the '-mq' option is in
  17555. effect.
  17556. 'D'
  17557. ARC FPX (dpfp) 64-bit registers. 'D0', 'D1'.
  17558. 'I'
  17559. A signed 12-bit integer constant.
  17560. 'Cal'
  17561. constant for arithmetic/logical operations. This might be any
  17562. constant that can be put into a long immediate by the assmbler
  17563. or linker without involving a PIC relocation.
  17564. 'K'
  17565. A 3-bit unsigned integer constant.
  17566. 'L'
  17567. A 6-bit unsigned integer constant.
  17568. 'CnL'
  17569. One's complement of a 6-bit unsigned integer constant.
  17570. 'CmL'
  17571. Two's complement of a 6-bit unsigned integer constant.
  17572. 'M'
  17573. A 5-bit unsigned integer constant.
  17574. 'O'
  17575. A 7-bit unsigned integer constant.
  17576. 'P'
  17577. A 8-bit unsigned integer constant.
  17578. 'H'
  17579. Any const_double value.
  17580. _ARM family--'config/arm/constraints.md'_
  17581. 'h'
  17582. In Thumb state, the core registers 'r8'-'r15'.
  17583. 'k'
  17584. The stack pointer register.
  17585. 'l'
  17586. In Thumb State the core registers 'r0'-'r7'. In ARM state
  17587. this is an alias for the 'r' constraint.
  17588. 't'
  17589. VFP floating-point registers 's0'-'s31'. Used for 32 bit
  17590. values.
  17591. 'w'
  17592. VFP floating-point registers 'd0'-'d31' and the appropriate
  17593. subset 'd0'-'d15' based on command line options. Used for 64
  17594. bit values only. Not valid for Thumb1.
  17595. 'y'
  17596. The iWMMX co-processor registers.
  17597. 'z'
  17598. The iWMMX GR registers.
  17599. 'G'
  17600. The floating-point constant 0.0
  17601. 'I'
  17602. Integer that is valid as an immediate operand in a data
  17603. processing instruction. That is, an integer in the range 0 to
  17604. 255 rotated by a multiple of 2
  17605. 'J'
  17606. Integer in the range -4095 to 4095
  17607. 'K'
  17608. Integer that satisfies constraint 'I' when inverted (ones
  17609. complement)
  17610. 'L'
  17611. Integer that satisfies constraint 'I' when negated (twos
  17612. complement)
  17613. 'M'
  17614. Integer in the range 0 to 32
  17615. 'Q'
  17616. A memory reference where the exact address is in a single
  17617. register (''m'' is preferable for 'asm' statements)
  17618. 'R'
  17619. An item in the constant pool
  17620. 'S'
  17621. A symbol in the text segment of the current file
  17622. 'Uv'
  17623. A memory reference suitable for VFP load/store insns
  17624. (reg+constant offset)
  17625. 'Uy'
  17626. A memory reference suitable for iWMMXt load/store
  17627. instructions.
  17628. 'Uq'
  17629. A memory reference suitable for the ARMv4 ldrsb instruction.
  17630. _AVR family--'config/avr/constraints.md'_
  17631. 'l'
  17632. Registers from r0 to r15
  17633. 'a'
  17634. Registers from r16 to r23
  17635. 'd'
  17636. Registers from r16 to r31
  17637. 'w'
  17638. Registers from r24 to r31. These registers can be used in
  17639. 'adiw' command
  17640. 'e'
  17641. Pointer register (r26-r31)
  17642. 'b'
  17643. Base pointer register (r28-r31)
  17644. 'q'
  17645. Stack pointer register (SPH:SPL)
  17646. 't'
  17647. Temporary register r0
  17648. 'x'
  17649. Register pair X (r27:r26)
  17650. 'y'
  17651. Register pair Y (r29:r28)
  17652. 'z'
  17653. Register pair Z (r31:r30)
  17654. 'I'
  17655. Constant greater than -1, less than 64
  17656. 'J'
  17657. Constant greater than -64, less than 1
  17658. 'K'
  17659. Constant integer 2
  17660. 'L'
  17661. Constant integer 0
  17662. 'M'
  17663. Constant that fits in 8 bits
  17664. 'N'
  17665. Constant integer -1
  17666. 'O'
  17667. Constant integer 8, 16, or 24
  17668. 'P'
  17669. Constant integer 1
  17670. 'G'
  17671. A floating point constant 0.0
  17672. 'Q'
  17673. A memory address based on Y or Z pointer with displacement.
  17674. _Blackfin family--'config/bfin/constraints.md'_
  17675. 'a'
  17676. P register
  17677. 'd'
  17678. D register
  17679. 'z'
  17680. A call clobbered P register.
  17681. 'qN'
  17682. A single register. If N is in the range 0 to 7, the
  17683. corresponding D register. If it is 'A', then the register P0.
  17684. 'D'
  17685. Even-numbered D register
  17686. 'W'
  17687. Odd-numbered D register
  17688. 'e'
  17689. Accumulator register.
  17690. 'A'
  17691. Even-numbered accumulator register.
  17692. 'B'
  17693. Odd-numbered accumulator register.
  17694. 'b'
  17695. I register
  17696. 'v'
  17697. B register
  17698. 'f'
  17699. M register
  17700. 'c'
  17701. Registers used for circular buffering, i.e. I, B, or L
  17702. registers.
  17703. 'C'
  17704. The CC register.
  17705. 't'
  17706. LT0 or LT1.
  17707. 'k'
  17708. LC0 or LC1.
  17709. 'u'
  17710. LB0 or LB1.
  17711. 'x'
  17712. Any D, P, B, M, I or L register.
  17713. 'y'
  17714. Additional registers typically used only in prologues and
  17715. epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and
  17716. USP.
  17717. 'w'
  17718. Any register except accumulators or CC.
  17719. 'Ksh'
  17720. Signed 16 bit integer (in the range -32768 to 32767)
  17721. 'Kuh'
  17722. Unsigned 16 bit integer (in the range 0 to 65535)
  17723. 'Ks7'
  17724. Signed 7 bit integer (in the range -64 to 63)
  17725. 'Ku7'
  17726. Unsigned 7 bit integer (in the range 0 to 127)
  17727. 'Ku5'
  17728. Unsigned 5 bit integer (in the range 0 to 31)
  17729. 'Ks4'
  17730. Signed 4 bit integer (in the range -8 to 7)
  17731. 'Ks3'
  17732. Signed 3 bit integer (in the range -3 to 4)
  17733. 'Ku3'
  17734. Unsigned 3 bit integer (in the range 0 to 7)
  17735. 'PN'
  17736. Constant N, where N is a single-digit constant in the range 0
  17737. to 4.
  17738. 'PA'
  17739. An integer equal to one of the MACFLAG_XXX constants that is
  17740. suitable for use with either accumulator.
  17741. 'PB'
  17742. An integer equal to one of the MACFLAG_XXX constants that is
  17743. suitable for use only with accumulator A1.
  17744. 'M1'
  17745. Constant 255.
  17746. 'M2'
  17747. Constant 65535.
  17748. 'J'
  17749. An integer constant with exactly a single bit set.
  17750. 'L'
  17751. An integer constant with all bits set except exactly one.
  17752. 'H'
  17753. 'Q'
  17754. Any SYMBOL_REF.
  17755. _CR16 Architecture--'config/cr16/cr16.h'_
  17756. 'b'
  17757. Registers from r0 to r14 (registers without stack pointer)
  17758. 't'
  17759. Register from r0 to r11 (all 16-bit registers)
  17760. 'p'
  17761. Register from r12 to r15 (all 32-bit registers)
  17762. 'I'
  17763. Signed constant that fits in 4 bits
  17764. 'J'
  17765. Signed constant that fits in 5 bits
  17766. 'K'
  17767. Signed constant that fits in 6 bits
  17768. 'L'
  17769. Unsigned constant that fits in 4 bits
  17770. 'M'
  17771. Signed constant that fits in 32 bits
  17772. 'N'
  17773. Check for 64 bits wide constants for add/sub instructions
  17774. 'G'
  17775. Floating point constant that is legal for store immediate
  17776. _Epiphany--'config/epiphany/constraints.md'_
  17777. 'U16'
  17778. An unsigned 16-bit constant.
  17779. 'K'
  17780. An unsigned 5-bit constant.
  17781. 'L'
  17782. A signed 11-bit constant.
  17783. 'Cm1'
  17784. A signed 11-bit constant added to -1. Can only match when the
  17785. '-m1reg-REG' option is active.
  17786. 'Cl1'
  17787. Left-shift of -1, i.e., a bit mask with a block of leading
  17788. ones, the rest being a block of trailing zeroes. Can only
  17789. match when the '-m1reg-REG' option is active.
  17790. 'Cr1'
  17791. Right-shift of -1, i.e., a bit mask with a trailing block of
  17792. ones, the rest being zeroes. Or to put it another way, one
  17793. less than a power of two. Can only match when the
  17794. '-m1reg-REG' option is active.
  17795. 'Cal'
  17796. Constant for arithmetic/logical operations. This is like 'i',
  17797. except that for position independent code, no symbols /
  17798. expressions needing relocations are allowed.
  17799. 'Csy'
  17800. Symbolic constant for call/jump instruction.
  17801. 'Rcs'
  17802. The register class usable in short insns. This is a register
  17803. class constraint, and can thus drive register allocation.
  17804. This constraint won't match unless '-mprefer-short-insn-regs'
  17805. is in effect.
  17806. 'Rsc'
  17807. The the register class of registers that can be used to hold a
  17808. sibcall call address. I.e., a caller-saved register.
  17809. 'Rct'
  17810. Core control register class.
  17811. 'Rgs'
  17812. The register group usable in short insns. This constraint
  17813. does not use a register class, so that it only passively
  17814. matches suitable registers, and doesn't drive register
  17815. allocation.
  17816. 'Car'
  17817. Constant suitable for the addsi3_r pattern. This is a valid
  17818. offset For byte, halfword, or word addressing.
  17819. 'Rra'
  17820. Matches the return address if it can be replaced with the link
  17821. register.
  17822. 'Rcc'
  17823. Matches the integer condition code register.
  17824. 'Sra'
  17825. Matches the return address if it is in a stack slot.
  17826. 'Cfm'
  17827. Matches control register values to switch fp mode, which are
  17828. encapsulated in 'UNSPEC_FP_MODE'.
  17829. _FRV--'config/frv/frv.h'_
  17830. 'a'
  17831. Register in the class 'ACC_REGS' ('acc0' to 'acc7').
  17832. 'b'
  17833. Register in the class 'EVEN_ACC_REGS' ('acc0' to 'acc7').
  17834. 'c'
  17835. Register in the class 'CC_REGS' ('fcc0' to 'fcc3' and 'icc0'
  17836. to 'icc3').
  17837. 'd'
  17838. Register in the class 'GPR_REGS' ('gr0' to 'gr63').
  17839. 'e'
  17840. Register in the class 'EVEN_REGS' ('gr0' to 'gr63'). Odd
  17841. registers are excluded not in the class but through the use of
  17842. a machine mode larger than 4 bytes.
  17843. 'f'
  17844. Register in the class 'FPR_REGS' ('fr0' to 'fr63').
  17845. 'h'
  17846. Register in the class 'FEVEN_REGS' ('fr0' to 'fr63'). Odd
  17847. registers are excluded not in the class but through the use of
  17848. a machine mode larger than 4 bytes.
  17849. 'l'
  17850. Register in the class 'LR_REG' (the 'lr' register).
  17851. 'q'
  17852. Register in the class 'QUAD_REGS' ('gr2' to 'gr63'). Register
  17853. numbers not divisible by 4 are excluded not in the class but
  17854. through the use of a machine mode larger than 8 bytes.
  17855. 't'
  17856. Register in the class 'ICC_REGS' ('icc0' to 'icc3').
  17857. 'u'
  17858. Register in the class 'FCC_REGS' ('fcc0' to 'fcc3').
  17859. 'v'
  17860. Register in the class 'ICR_REGS' ('cc4' to 'cc7').
  17861. 'w'
  17862. Register in the class 'FCR_REGS' ('cc0' to 'cc3').
  17863. 'x'
  17864. Register in the class 'QUAD_FPR_REGS' ('fr0' to 'fr63').
  17865. Register numbers not divisible by 4 are excluded not in the
  17866. class but through the use of a machine mode larger than 8
  17867. bytes.
  17868. 'z'
  17869. Register in the class 'SPR_REGS' ('lcr' and 'lr').
  17870. 'A'
  17871. Register in the class 'QUAD_ACC_REGS' ('acc0' to 'acc7').
  17872. 'B'
  17873. Register in the class 'ACCG_REGS' ('accg0' to 'accg7').
  17874. 'C'
  17875. Register in the class 'CR_REGS' ('cc0' to 'cc7').
  17876. 'G'
  17877. Floating point constant zero
  17878. 'I'
  17879. 6-bit signed integer constant
  17880. 'J'
  17881. 10-bit signed integer constant
  17882. 'L'
  17883. 16-bit signed integer constant
  17884. 'M'
  17885. 16-bit unsigned integer constant
  17886. 'N'
  17887. 12-bit signed integer constant that is negative--i.e. in the
  17888. range of -2048 to -1
  17889. 'O'
  17890. Constant zero
  17891. 'P'
  17892. 12-bit signed integer constant that is greater than zero--i.e.
  17893. in the range of 1 to 2047.
  17894. _FT32--'config/ft32/constraints.md'_
  17895. 'A'
  17896. An absolute address
  17897. 'B'
  17898. An offset address
  17899. 'W'
  17900. A register indirect memory operand
  17901. 'e'
  17902. An offset address.
  17903. 'f'
  17904. An offset address.
  17905. 'O'
  17906. The constant zero or one
  17907. 'I'
  17908. A 16-bit signed constant (-32768 ... 32767)
  17909. 'w'
  17910. A bitfield mask suitable for bext or bins
  17911. 'x'
  17912. An inverted bitfield mask suitable for bext or bins
  17913. 'L'
  17914. A 16-bit unsigned constant, multiple of 4 (0 ... 65532)
  17915. 'S'
  17916. A 20-bit signed constant (-524288 ... 524287)
  17917. 'b'
  17918. A constant for a bitfield width (1 ... 16)
  17919. 'KA'
  17920. A 10-bit signed constant (-512 ... 511)
  17921. _Hewlett-Packard PA-RISC--'config/pa/pa.h'_
  17922. 'a'
  17923. General register 1
  17924. 'f'
  17925. Floating point register
  17926. 'q'
  17927. Shift amount register
  17928. 'x'
  17929. Floating point register (deprecated)
  17930. 'y'
  17931. Upper floating point register (32-bit), floating point
  17932. register (64-bit)
  17933. 'Z'
  17934. Any register
  17935. 'I'
  17936. Signed 11-bit integer constant
  17937. 'J'
  17938. Signed 14-bit integer constant
  17939. 'K'
  17940. Integer constant that can be deposited with a 'zdepi'
  17941. instruction
  17942. 'L'
  17943. Signed 5-bit integer constant
  17944. 'M'
  17945. Integer constant 0
  17946. 'N'
  17947. Integer constant that can be loaded with a 'ldil' instruction
  17948. 'O'
  17949. Integer constant whose value plus one is a power of 2
  17950. 'P'
  17951. Integer constant that can be used for 'and' operations in
  17952. 'depi' and 'extru' instructions
  17953. 'S'
  17954. Integer constant 31
  17955. 'U'
  17956. Integer constant 63
  17957. 'G'
  17958. Floating-point constant 0.0
  17959. 'A'
  17960. A 'lo_sum' data-linkage-table memory operand
  17961. 'Q'
  17962. A memory operand that can be used as the destination operand
  17963. of an integer store instruction
  17964. 'R'
  17965. A scaled or unscaled indexed memory operand
  17966. 'T'
  17967. A memory operand for floating-point loads and stores
  17968. 'W'
  17969. A register indirect memory operand
  17970. _Intel IA-64--'config/ia64/ia64.h'_
  17971. 'a'
  17972. General register 'r0' to 'r3' for 'addl' instruction
  17973. 'b'
  17974. Branch register
  17975. 'c'
  17976. Predicate register ('c' as in "conditional")
  17977. 'd'
  17978. Application register residing in M-unit
  17979. 'e'
  17980. Application register residing in I-unit
  17981. 'f'
  17982. Floating-point register
  17983. 'm'
  17984. Memory operand. If used together with '<' or '>', the operand
  17985. can have postincrement and postdecrement which require
  17986. printing with '%Pn' on IA-64.
  17987. 'G'
  17988. Floating-point constant 0.0 or 1.0
  17989. 'I'
  17990. 14-bit signed integer constant
  17991. 'J'
  17992. 22-bit signed integer constant
  17993. 'K'
  17994. 8-bit signed integer constant for logical instructions
  17995. 'L'
  17996. 8-bit adjusted signed integer constant for compare pseudo-ops
  17997. 'M'
  17998. 6-bit unsigned integer constant for shift counts
  17999. 'N'
  18000. 9-bit signed integer constant for load and store
  18001. postincrements
  18002. 'O'
  18003. The constant zero
  18004. 'P'
  18005. 0 or -1 for 'dep' instruction
  18006. 'Q'
  18007. Non-volatile memory for floating-point loads and stores
  18008. 'R'
  18009. Integer constant in the range 1 to 4 for 'shladd' instruction
  18010. 'S'
  18011. Memory operand except postincrement and postdecrement. This
  18012. is now roughly the same as 'm' when not used together with '<'
  18013. or '>'.
  18014. _M32C--'config/m32c/m32c.c'_
  18015. 'Rsp'
  18016. 'Rfb'
  18017. 'Rsb'
  18018. '$sp', '$fb', '$sb'.
  18019. 'Rcr'
  18020. Any control register, when they're 16 bits wide (nothing if
  18021. control registers are 24 bits wide)
  18022. 'Rcl'
  18023. Any control register, when they're 24 bits wide.
  18024. 'R0w'
  18025. 'R1w'
  18026. 'R2w'
  18027. 'R3w'
  18028. $r0, $r1, $r2, $r3.
  18029. 'R02'
  18030. $r0 or $r2, or $r2r0 for 32 bit values.
  18031. 'R13'
  18032. $r1 or $r3, or $r3r1 for 32 bit values.
  18033. 'Rdi'
  18034. A register that can hold a 64 bit value.
  18035. 'Rhl'
  18036. $r0 or $r1 (registers with addressable high/low bytes)
  18037. 'R23'
  18038. $r2 or $r3
  18039. 'Raa'
  18040. Address registers
  18041. 'Raw'
  18042. Address registers when they're 16 bits wide.
  18043. 'Ral'
  18044. Address registers when they're 24 bits wide.
  18045. 'Rqi'
  18046. Registers that can hold QI values.
  18047. 'Rad'
  18048. Registers that can be used with displacements ($a0, $a1, $sb).
  18049. 'Rsi'
  18050. Registers that can hold 32 bit values.
  18051. 'Rhi'
  18052. Registers that can hold 16 bit values.
  18053. 'Rhc'
  18054. Registers chat can hold 16 bit values, including all control
  18055. registers.
  18056. 'Rra'
  18057. $r0 through R1, plus $a0 and $a1.
  18058. 'Rfl'
  18059. The flags register.
  18060. 'Rmm'
  18061. The memory-based pseudo-registers $mem0 through $mem15.
  18062. 'Rpi'
  18063. Registers that can hold pointers (16 bit registers for r8c,
  18064. m16c; 24 bit registers for m32cm, m32c).
  18065. 'Rpa'
  18066. Matches multiple registers in a PARALLEL to form a larger
  18067. register. Used to match function return values.
  18068. 'Is3'
  18069. -8 ... 7
  18070. 'IS1'
  18071. -128 ... 127
  18072. 'IS2'
  18073. -32768 ... 32767
  18074. 'IU2'
  18075. 0 ... 65535
  18076. 'In4'
  18077. -8 ... -1 or 1 ... 8
  18078. 'In5'
  18079. -16 ... -1 or 1 ... 16
  18080. 'In6'
  18081. -32 ... -1 or 1 ... 32
  18082. 'IM2'
  18083. -65536 ... -1
  18084. 'Ilb'
  18085. An 8 bit value with exactly one bit set.
  18086. 'Ilw'
  18087. A 16 bit value with exactly one bit set.
  18088. 'Sd'
  18089. The common src/dest memory addressing modes.
  18090. 'Sa'
  18091. Memory addressed using $a0 or $a1.
  18092. 'Si'
  18093. Memory addressed with immediate addresses.
  18094. 'Ss'
  18095. Memory addressed using the stack pointer ($sp).
  18096. 'Sf'
  18097. Memory addressed using the frame base register ($fb).
  18098. 'Ss'
  18099. Memory addressed using the small base register ($sb).
  18100. 'S1'
  18101. $r1h
  18102. _MicroBlaze--'config/microblaze/constraints.md'_
  18103. 'd'
  18104. A general register ('r0' to 'r31').
  18105. 'z'
  18106. A status register ('rmsr', '$fcc1' to '$fcc7').
  18107. _MIPS--'config/mips/constraints.md'_
  18108. 'd'
  18109. A general-purpose register. This is equivalent to 'r' unless
  18110. generating MIPS16 code, in which case the MIPS16 register set
  18111. is used.
  18112. 'f'
  18113. A floating-point register (if available).
  18114. 'h'
  18115. Formerly the 'hi' register. This constraint is no longer
  18116. supported.
  18117. 'l'
  18118. The 'lo' register. Use this register to store values that are
  18119. no bigger than a word.
  18120. 'x'
  18121. The concatenated 'hi' and 'lo' registers. Use this register
  18122. to store doubleword values.
  18123. 'c'
  18124. A register suitable for use in an indirect jump. This will
  18125. always be '$25' for '-mabicalls'.
  18126. 'v'
  18127. Register '$3'. Do not use this constraint in new code; it is
  18128. retained only for compatibility with glibc.
  18129. 'y'
  18130. Equivalent to 'r'; retained for backwards compatibility.
  18131. 'z'
  18132. A floating-point condition code register.
  18133. 'I'
  18134. A signed 16-bit constant (for arithmetic instructions).
  18135. 'J'
  18136. Integer zero.
  18137. 'K'
  18138. An unsigned 16-bit constant (for logic instructions).
  18139. 'L'
  18140. A signed 32-bit constant in which the lower 16 bits are zero.
  18141. Such constants can be loaded using 'lui'.
  18142. 'M'
  18143. A constant that cannot be loaded using 'lui', 'addiu' or
  18144. 'ori'.
  18145. 'N'
  18146. A constant in the range -65535 to -1 (inclusive).
  18147. 'O'
  18148. A signed 15-bit constant.
  18149. 'P'
  18150. A constant in the range 1 to 65535 (inclusive).
  18151. 'G'
  18152. Floating-point zero.
  18153. 'R'
  18154. An address that can be used in a non-macro load or store.
  18155. 'ZC'
  18156. A memory operand whose address is formed by a base register
  18157. and offset that is suitable for use in instructions with the
  18158. same addressing mode as 'll' and 'sc'.
  18159. 'ZD'
  18160. An address suitable for a 'prefetch' instruction, or for any
  18161. other instruction with the same addressing mode as 'prefetch'.
  18162. _Motorola 680x0--'config/m68k/constraints.md'_
  18163. 'a'
  18164. Address register
  18165. 'd'
  18166. Data register
  18167. 'f'
  18168. 68881 floating-point register, if available
  18169. 'I'
  18170. Integer in the range 1 to 8
  18171. 'J'
  18172. 16-bit signed number
  18173. 'K'
  18174. Signed number whose magnitude is greater than 0x80
  18175. 'L'
  18176. Integer in the range -8 to -1
  18177. 'M'
  18178. Signed number whose magnitude is greater than 0x100
  18179. 'N'
  18180. Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
  18181. 'O'
  18182. 16 (for rotate using swap)
  18183. 'P'
  18184. Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
  18185. 'R'
  18186. Numbers that mov3q can handle
  18187. 'G'
  18188. Floating point constant that is not a 68881 constant
  18189. 'S'
  18190. Operands that satisfy 'm' when -mpcrel is in effect
  18191. 'T'
  18192. Operands that satisfy 's' when -mpcrel is not in effect
  18193. 'Q'
  18194. Address register indirect addressing mode
  18195. 'U'
  18196. Register offset addressing
  18197. 'W'
  18198. const_call_operand
  18199. 'Cs'
  18200. symbol_ref or const
  18201. 'Ci'
  18202. const_int
  18203. 'C0'
  18204. const_int 0
  18205. 'Cj'
  18206. Range of signed numbers that don't fit in 16 bits
  18207. 'Cmvq'
  18208. Integers valid for mvq
  18209. 'Capsw'
  18210. Integers valid for a moveq followed by a swap
  18211. 'Cmvz'
  18212. Integers valid for mvz
  18213. 'Cmvs'
  18214. Integers valid for mvs
  18215. 'Ap'
  18216. push_operand
  18217. 'Ac'
  18218. Non-register operands allowed in clr
  18219. _Moxie--'config/moxie/constraints.md'_
  18220. 'A'
  18221. An absolute address
  18222. 'B'
  18223. An offset address
  18224. 'W'
  18225. A register indirect memory operand
  18226. 'I'
  18227. A constant in the range of 0 to 255.
  18228. 'N'
  18229. A constant in the range of 0 to -255.
  18230. _MSP430-'config/msp430/constraints.md'_
  18231. 'R12'
  18232. Register R12.
  18233. 'R13'
  18234. Register R13.
  18235. 'K'
  18236. Integer constant 1.
  18237. 'L'
  18238. Integer constant -1^20..1^19.
  18239. 'M'
  18240. Integer constant 1-4.
  18241. 'Ya'
  18242. Memory references which do not require an extended MOVX
  18243. instruction.
  18244. 'Yl'
  18245. Memory reference, labels only.
  18246. 'Ys'
  18247. Memory reference, stack only.
  18248. _NDS32--'config/nds32/constraints.md'_
  18249. 'w'
  18250. LOW register class $r0 to $r7 constraint for V3/V3M ISA.
  18251. 'l'
  18252. LOW register class $r0 to $r7.
  18253. 'd'
  18254. MIDDLE register class $r0 to $r11, $r16 to $r19.
  18255. 'h'
  18256. HIGH register class $r12 to $r14, $r20 to $r31.
  18257. 't'
  18258. Temporary assist register $ta (i.e. $r15).
  18259. 'k'
  18260. Stack register $sp.
  18261. 'Iu03'
  18262. Unsigned immediate 3-bit value.
  18263. 'In03'
  18264. Negative immediate 3-bit value in the range of -7-0.
  18265. 'Iu04'
  18266. Unsigned immediate 4-bit value.
  18267. 'Is05'
  18268. Signed immediate 5-bit value.
  18269. 'Iu05'
  18270. Unsigned immediate 5-bit value.
  18271. 'In05'
  18272. Negative immediate 5-bit value in the range of -31-0.
  18273. 'Ip05'
  18274. Unsigned immediate 5-bit value for movpi45 instruction with
  18275. range 16-47.
  18276. 'Iu06'
  18277. Unsigned immediate 6-bit value constraint for addri36.sp
  18278. instruction.
  18279. 'Iu08'
  18280. Unsigned immediate 8-bit value.
  18281. 'Iu09'
  18282. Unsigned immediate 9-bit value.
  18283. 'Is10'
  18284. Signed immediate 10-bit value.
  18285. 'Is11'
  18286. Signed immediate 11-bit value.
  18287. 'Is15'
  18288. Signed immediate 15-bit value.
  18289. 'Iu15'
  18290. Unsigned immediate 15-bit value.
  18291. 'Ic15'
  18292. A constant which is not in the range of imm15u but ok for bclr
  18293. instruction.
  18294. 'Ie15'
  18295. A constant which is not in the range of imm15u but ok for bset
  18296. instruction.
  18297. 'It15'
  18298. A constant which is not in the range of imm15u but ok for btgl
  18299. instruction.
  18300. 'Ii15'
  18301. A constant whose compliment value is in the range of imm15u
  18302. and ok for bitci instruction.
  18303. 'Is16'
  18304. Signed immediate 16-bit value.
  18305. 'Is17'
  18306. Signed immediate 17-bit value.
  18307. 'Is19'
  18308. Signed immediate 19-bit value.
  18309. 'Is20'
  18310. Signed immediate 20-bit value.
  18311. 'Ihig'
  18312. The immediate value that can be simply set high 20-bit.
  18313. 'Izeb'
  18314. The immediate value 0xff.
  18315. 'Izeh'
  18316. The immediate value 0xffff.
  18317. 'Ixls'
  18318. The immediate value 0x01.
  18319. 'Ix11'
  18320. The immediate value 0x7ff.
  18321. 'Ibms'
  18322. The immediate value with power of 2.
  18323. 'Ifex'
  18324. The immediate value with power of 2 minus 1.
  18325. 'U33'
  18326. Memory constraint for 333 format.
  18327. 'U45'
  18328. Memory constraint for 45 format.
  18329. 'U37'
  18330. Memory constraint for 37 format.
  18331. _Nios II family--'config/nios2/constraints.md'_
  18332. 'I'
  18333. Integer that is valid as an immediate operand in an
  18334. instruction taking a signed 16-bit number. Range -32768 to
  18335. 32767.
  18336. 'J'
  18337. Integer that is valid as an immediate operand in an
  18338. instruction taking an unsigned 16-bit number. Range 0 to
  18339. 65535.
  18340. 'K'
  18341. Integer that is valid as an immediate operand in an
  18342. instruction taking only the upper 16-bits of a 32-bit number.
  18343. Range 32-bit numbers with the lower 16-bits being 0.
  18344. 'L'
  18345. Integer that is valid as an immediate operand for a shift
  18346. instruction. Range 0 to 31.
  18347. 'M'
  18348. Integer that is valid as an immediate operand for only the
  18349. value 0. Can be used in conjunction with the format modifier
  18350. 'z' to use 'r0' instead of '0' in the assembly output.
  18351. 'N'
  18352. Integer that is valid as an immediate operand for a custom
  18353. instruction opcode. Range 0 to 255.
  18354. 'P'
  18355. An immediate operand for R2 andchi/andci instructions.
  18356. 'S'
  18357. Matches immediates which are addresses in the small data
  18358. section and therefore can be added to 'gp' as a 16-bit
  18359. immediate to re-create their 32-bit value.
  18360. 'U'
  18361. Matches constants suitable as an operand for the rdprs and
  18362. cache instructions.
  18363. 'v'
  18364. A memory operand suitable for Nios II R2 load/store exclusive
  18365. instructions.
  18366. 'w'
  18367. A memory operand suitable for load/store IO and cache
  18368. instructions.
  18369. 'T'
  18370. A 'const' wrapped 'UNSPEC' expression, representing a
  18371. supported PIC or TLS relocation.
  18372. _PDP-11--'config/pdp11/constraints.md'_
  18373. 'a'
  18374. Floating point registers AC0 through AC3. These can be loaded
  18375. from/to memory with a single instruction.
  18376. 'd'
  18377. Odd numbered general registers (R1, R3, R5). These are used
  18378. for 16-bit multiply operations.
  18379. 'f'
  18380. Any of the floating point registers (AC0 through AC5).
  18381. 'G'
  18382. Floating point constant 0.
  18383. 'I'
  18384. An integer constant that fits in 16 bits.
  18385. 'J'
  18386. An integer constant whose low order 16 bits are zero.
  18387. 'K'
  18388. An integer constant that does not meet the constraints for
  18389. codes 'I' or 'J'.
  18390. 'L'
  18391. The integer constant 1.
  18392. 'M'
  18393. The integer constant -1.
  18394. 'N'
  18395. The integer constant 0.
  18396. 'O'
  18397. Integer constants -4 through -1 and 1 through 4; shifts by
  18398. these amounts are handled as multiple single-bit shifts rather
  18399. than a single variable-length shift.
  18400. 'Q'
  18401. A memory reference which requires an additional word (address
  18402. or offset) after the opcode.
  18403. 'R'
  18404. A memory reference that is encoded within the opcode.
  18405. _PowerPC and IBM RS6000--'config/rs6000/constraints.md'_
  18406. 'b'
  18407. Address base register
  18408. 'd'
  18409. Floating point register (containing 64-bit value)
  18410. 'f'
  18411. Floating point register (containing 32-bit value)
  18412. 'v'
  18413. Altivec vector register
  18414. 'wa'
  18415. Any VSX register if the '-mvsx' option was used or NO_REGS.
  18416. When using any of the register constraints ('wa', 'wd', 'wf',
  18417. 'wg', 'wh', 'wi', 'wj', 'wk', 'wl', 'wm', 'wo', 'wp', 'wq',
  18418. 'ws', 'wt', 'wu', 'wv', 'ww', or 'wy') that take VSX
  18419. registers, you must use '%x<n>' in the template so that the
  18420. correct register is used. Otherwise the register number
  18421. output in the assembly file will be incorrect if an Altivec
  18422. register is an operand of a VSX instruction that expects VSX
  18423. register numbering.
  18424. asm ("xvadddp %x0,%x1,%x2"
  18425. : "=wa" (v1)
  18426. : "wa" (v2), "wa" (v3));
  18427. is correct, but:
  18428. asm ("xvadddp %0,%1,%2"
  18429. : "=wa" (v1)
  18430. : "wa" (v2), "wa" (v3));
  18431. is not correct.
  18432. If an instruction only takes Altivec registers, you do not
  18433. want to use '%x<n>'.
  18434. asm ("xsaddqp %0,%1,%2"
  18435. : "=v" (v1)
  18436. : "v" (v2), "v" (v3));
  18437. is correct because the 'xsaddqp' instruction only takes
  18438. Altivec registers, while:
  18439. asm ("xsaddqp %x0,%x1,%x2"
  18440. : "=v" (v1)
  18441. : "v" (v2), "v" (v3));
  18442. is incorrect.
  18443. 'wb'
  18444. Altivec register if '-mcpu=power9' is used or NO_REGS.
  18445. 'wd'
  18446. VSX vector register to hold vector double data or NO_REGS.
  18447. 'we'
  18448. VSX register if the '-mcpu=power9' and '-m64' options were
  18449. used or NO_REGS.
  18450. 'wf'
  18451. VSX vector register to hold vector float data or NO_REGS.
  18452. 'wg'
  18453. If '-mmfpgpr' was used, a floating point register or NO_REGS.
  18454. 'wh'
  18455. Floating point register if direct moves are available, or
  18456. NO_REGS.
  18457. 'wi'
  18458. FP or VSX register to hold 64-bit integers for VSX insns or
  18459. NO_REGS.
  18460. 'wj'
  18461. FP or VSX register to hold 64-bit integers for direct moves or
  18462. NO_REGS.
  18463. 'wk'
  18464. FP or VSX register to hold 64-bit doubles for direct moves or
  18465. NO_REGS.
  18466. 'wl'
  18467. Floating point register if the LFIWAX instruction is enabled
  18468. or NO_REGS.
  18469. 'wm'
  18470. VSX register if direct move instructions are enabled, or
  18471. NO_REGS.
  18472. 'wn'
  18473. No register (NO_REGS).
  18474. 'wo'
  18475. VSX register to use for ISA 3.0 vector instructions, or
  18476. NO_REGS.
  18477. 'wp'
  18478. VSX register to use for IEEE 128-bit floating point TFmode, or
  18479. NO_REGS.
  18480. 'wq'
  18481. VSX register to use for IEEE 128-bit floating point, or
  18482. NO_REGS.
  18483. 'wr'
  18484. General purpose register if 64-bit instructions are enabled or
  18485. NO_REGS.
  18486. 'ws'
  18487. VSX vector register to hold scalar double values or NO_REGS.
  18488. 'wt'
  18489. VSX vector register to hold 128 bit integer or NO_REGS.
  18490. 'wu'
  18491. Altivec register to use for float/32-bit int loads/stores or
  18492. NO_REGS.
  18493. 'wv'
  18494. Altivec register to use for double loads/stores or NO_REGS.
  18495. 'ww'
  18496. FP or VSX register to perform float operations under '-mvsx'
  18497. or NO_REGS.
  18498. 'wx'
  18499. Floating point register if the STFIWX instruction is enabled
  18500. or NO_REGS.
  18501. 'wy'
  18502. FP or VSX register to perform ISA 2.07 float ops or NO_REGS.
  18503. 'wz'
  18504. Floating point register if the LFIWZX instruction is enabled
  18505. or NO_REGS.
  18506. 'wA'
  18507. Address base register if 64-bit instructions are enabled or
  18508. NO_REGS.
  18509. 'wB'
  18510. Signed 5-bit constant integer that can be loaded into an
  18511. altivec register.
  18512. 'wD'
  18513. Int constant that is the element number of the 64-bit scalar
  18514. in a vector.
  18515. 'wE'
  18516. Vector constant that can be loaded with the XXSPLTIB
  18517. instruction.
  18518. 'wF'
  18519. Memory operand suitable for power9 fusion load/stores.
  18520. 'wG'
  18521. Memory operand suitable for TOC fusion memory references.
  18522. 'wH'
  18523. Altivec register if '-mvsx-small-integer'.
  18524. 'wI'
  18525. Floating point register if '-mvsx-small-integer'.
  18526. 'wJ'
  18527. FP register if '-mvsx-small-integer' and '-mpower9-vector'.
  18528. 'wK'
  18529. Altivec register if '-mvsx-small-integer' and
  18530. '-mpower9-vector'.
  18531. 'wL'
  18532. Int constant that is the element number that the MFVSRLD
  18533. instruction. targets.
  18534. 'wM'
  18535. Match vector constant with all 1's if the XXLORC instruction
  18536. is available.
  18537. 'wO'
  18538. A memory operand suitable for the ISA 3.0 vector d-form
  18539. instructions.
  18540. 'wQ'
  18541. A memory address that will work with the 'lq' and 'stq'
  18542. instructions.
  18543. 'wS'
  18544. Vector constant that can be loaded with XXSPLTIB & sign
  18545. extension.
  18546. 'h'
  18547. 'MQ', 'CTR', or 'LINK' register
  18548. 'c'
  18549. 'CTR' register
  18550. 'l'
  18551. 'LINK' register
  18552. 'x'
  18553. 'CR' register (condition register) number 0
  18554. 'y'
  18555. 'CR' register (condition register)
  18556. 'z'
  18557. 'XER[CA]' carry bit (part of the XER register)
  18558. 'I'
  18559. Signed 16-bit constant
  18560. 'J'
  18561. Unsigned 16-bit constant shifted left 16 bits (use 'L' instead
  18562. for 'SImode' constants)
  18563. 'K'
  18564. Unsigned 16-bit constant
  18565. 'L'
  18566. Signed 16-bit constant shifted left 16 bits
  18567. 'M'
  18568. Constant larger than 31
  18569. 'N'
  18570. Exact power of 2
  18571. 'O'
  18572. Zero
  18573. 'P'
  18574. Constant whose negation is a signed 16-bit constant
  18575. 'G'
  18576. Floating point constant that can be loaded into a register
  18577. with one instruction per word
  18578. 'H'
  18579. Integer/Floating point constant that can be loaded into a
  18580. register using three instructions
  18581. 'm'
  18582. Memory operand. Normally, 'm' does not allow addresses that
  18583. update the base register. If '<' or '>' constraint is also
  18584. used, they are allowed and therefore on PowerPC targets in
  18585. that case it is only safe to use 'm<>' in an 'asm' statement
  18586. if that 'asm' statement accesses the operand exactly once.
  18587. The 'asm' statement must also use '%U<OPNO>' as a placeholder
  18588. for the "update" flag in the corresponding load or store
  18589. instruction. For example:
  18590. asm ("st%U0 %1,%0" : "=m<>" (mem) : "r" (val));
  18591. is correct but:
  18592. asm ("st %1,%0" : "=m<>" (mem) : "r" (val));
  18593. is not.
  18594. 'es'
  18595. A "stable" memory operand; that is, one which does not include
  18596. any automodification of the base register. This used to be
  18597. useful when 'm' allowed automodification of the base register,
  18598. but as those are now only allowed when '<' or '>' is used,
  18599. 'es' is basically the same as 'm' without '<' and '>'.
  18600. 'Q'
  18601. Memory operand that is an offset from a register (it is
  18602. usually better to use 'm' or 'es' in 'asm' statements)
  18603. 'Z'
  18604. Memory operand that is an indexed or indirect from a register
  18605. (it is usually better to use 'm' or 'es' in 'asm' statements)
  18606. 'R'
  18607. AIX TOC entry
  18608. 'a'
  18609. Address operand that is an indexed or indirect from a register
  18610. ('p' is preferable for 'asm' statements)
  18611. 'U'
  18612. System V Release 4 small data area reference
  18613. 'W'
  18614. Vector constant that does not require memory
  18615. 'j'
  18616. Vector constant that is all zeros.
  18617. _RL78--'config/rl78/constraints.md'_
  18618. 'Int3'
  18619. An integer constant in the range 1 ... 7.
  18620. 'Int8'
  18621. An integer constant in the range 0 ... 255.
  18622. 'J'
  18623. An integer constant in the range -255 ... 0
  18624. 'K'
  18625. The integer constant 1.
  18626. 'L'
  18627. The integer constant -1.
  18628. 'M'
  18629. The integer constant 0.
  18630. 'N'
  18631. The integer constant 2.
  18632. 'O'
  18633. The integer constant -2.
  18634. 'P'
  18635. An integer constant in the range 1 ... 15.
  18636. 'Qbi'
  18637. The built-in compare types-eq, ne, gtu, ltu, geu, and leu.
  18638. 'Qsc'
  18639. The synthetic compare types-gt, lt, ge, and le.
  18640. 'Wab'
  18641. A memory reference with an absolute address.
  18642. 'Wbc'
  18643. A memory reference using 'BC' as a base register, with an
  18644. optional offset.
  18645. 'Wca'
  18646. A memory reference using 'AX', 'BC', 'DE', or 'HL' for the
  18647. address, for calls.
  18648. 'Wcv'
  18649. A memory reference using any 16-bit register pair for the
  18650. address, for calls.
  18651. 'Wd2'
  18652. A memory reference using 'DE' as a base register, with an
  18653. optional offset.
  18654. 'Wde'
  18655. A memory reference using 'DE' as a base register, without any
  18656. offset.
  18657. 'Wfr'
  18658. Any memory reference to an address in the far address space.
  18659. 'Wh1'
  18660. A memory reference using 'HL' as a base register, with an
  18661. optional one-byte offset.
  18662. 'Whb'
  18663. A memory reference using 'HL' as a base register, with 'B' or
  18664. 'C' as the index register.
  18665. 'Whl'
  18666. A memory reference using 'HL' as a base register, without any
  18667. offset.
  18668. 'Ws1'
  18669. A memory reference using 'SP' as a base register, with an
  18670. optional one-byte offset.
  18671. 'Y'
  18672. Any memory reference to an address in the near address space.
  18673. 'A'
  18674. The 'AX' register.
  18675. 'B'
  18676. The 'BC' register.
  18677. 'D'
  18678. The 'DE' register.
  18679. 'R'
  18680. 'A' through 'L' registers.
  18681. 'S'
  18682. The 'SP' register.
  18683. 'T'
  18684. The 'HL' register.
  18685. 'Z08W'
  18686. The 16-bit 'R8' register.
  18687. 'Z10W'
  18688. The 16-bit 'R10' register.
  18689. 'Zint'
  18690. The registers reserved for interrupts ('R24' to 'R31').
  18691. 'a'
  18692. The 'A' register.
  18693. 'b'
  18694. The 'B' register.
  18695. 'c'
  18696. The 'C' register.
  18697. 'd'
  18698. The 'D' register.
  18699. 'e'
  18700. The 'E' register.
  18701. 'h'
  18702. The 'H' register.
  18703. 'l'
  18704. The 'L' register.
  18705. 'v'
  18706. The virtual registers.
  18707. 'w'
  18708. The 'PSW' register.
  18709. 'x'
  18710. The 'X' register.
  18711. _RISC-V--'config/riscv/constraints.md'_
  18712. 'f'
  18713. A floating-point register (if availiable).
  18714. 'I'
  18715. An I-type 12-bit signed immediate.
  18716. 'J'
  18717. Integer zero.
  18718. 'K'
  18719. A 5-bit unsigned immediate for CSR access instructions.
  18720. 'C'
  18721. A 12-bit unsigned immediate for CSR register address.
  18722. 'A'
  18723. An address that is held in a general-purpose register.
  18724. _RX--'config/rx/constraints.md'_
  18725. 'Q'
  18726. An address which does not involve register indirect addressing
  18727. or pre/post increment/decrement addressing.
  18728. 'Symbol'
  18729. A symbol reference.
  18730. 'Int08'
  18731. A constant in the range -256 to 255, inclusive.
  18732. 'Sint08'
  18733. A constant in the range -128 to 127, inclusive.
  18734. 'Sint16'
  18735. A constant in the range -32768 to 32767, inclusive.
  18736. 'Sint24'
  18737. A constant in the range -8388608 to 8388607, inclusive.
  18738. 'Uint04'
  18739. A constant in the range 0 to 15, inclusive.
  18740. _S/390 and zSeries--'config/s390/s390.h'_
  18741. 'a'
  18742. Address register (general purpose register except r0)
  18743. 'c'
  18744. Condition code register
  18745. 'd'
  18746. Data register (arbitrary general purpose register)
  18747. 'f'
  18748. Floating-point register
  18749. 'I'
  18750. Unsigned 8-bit constant (0-255)
  18751. 'J'
  18752. Unsigned 12-bit constant (0-4095)
  18753. 'K'
  18754. Signed 16-bit constant (-32768-32767)
  18755. 'L'
  18756. Value appropriate as displacement.
  18757. '(0..4095)'
  18758. for short displacement
  18759. '(-524288..524287)'
  18760. for long displacement
  18761. 'M'
  18762. Constant integer with a value of 0x7fffffff.
  18763. 'N'
  18764. Multiple letter constraint followed by 4 parameter letters.
  18765. '0..9:'
  18766. number of the part counting from most to least
  18767. significant
  18768. 'H,Q:'
  18769. mode of the part
  18770. 'D,S,H:'
  18771. mode of the containing operand
  18772. '0,F:'
  18773. value of the other parts (F--all bits set)
  18774. The constraint matches if the specified part of a constant has
  18775. a value different from its other parts.
  18776. 'Q'
  18777. Memory reference without index register and with short
  18778. displacement.
  18779. 'R'
  18780. Memory reference with index register and short displacement.
  18781. 'S'
  18782. Memory reference without index register but with long
  18783. displacement.
  18784. 'T'
  18785. Memory reference with index register and long displacement.
  18786. 'U'
  18787. Pointer with short displacement.
  18788. 'W'
  18789. Pointer with long displacement.
  18790. 'Y'
  18791. Shift count operand.
  18792. _SPARC--'config/sparc/sparc.h'_
  18793. 'f'
  18794. Floating-point register on the SPARC-V8 architecture and lower
  18795. floating-point register on the SPARC-V9 architecture.
  18796. 'e'
  18797. Floating-point register. It is equivalent to 'f' on the
  18798. SPARC-V8 architecture and contains both lower and upper
  18799. floating-point registers on the SPARC-V9 architecture.
  18800. 'c'
  18801. Floating-point condition code register.
  18802. 'd'
  18803. Lower floating-point register. It is only valid on the
  18804. SPARC-V9 architecture when the Visual Instruction Set is
  18805. available.
  18806. 'b'
  18807. Floating-point register. It is only valid on the SPARC-V9
  18808. architecture when the Visual Instruction Set is available.
  18809. 'h'
  18810. 64-bit global or out register for the SPARC-V8+ architecture.
  18811. 'C'
  18812. The constant all-ones, for floating-point.
  18813. 'A'
  18814. Signed 5-bit constant
  18815. 'D'
  18816. A vector constant
  18817. 'I'
  18818. Signed 13-bit constant
  18819. 'J'
  18820. Zero
  18821. 'K'
  18822. 32-bit constant with the low 12 bits clear (a constant that
  18823. can be loaded with the 'sethi' instruction)
  18824. 'L'
  18825. A constant in the range supported by 'movcc' instructions
  18826. (11-bit signed immediate)
  18827. 'M'
  18828. A constant in the range supported by 'movrcc' instructions
  18829. (10-bit signed immediate)
  18830. 'N'
  18831. Same as 'K', except that it verifies that bits that are not in
  18832. the lower 32-bit range are all zero. Must be used instead of
  18833. 'K' for modes wider than 'SImode'
  18834. 'O'
  18835. The constant 4096
  18836. 'G'
  18837. Floating-point zero
  18838. 'H'
  18839. Signed 13-bit constant, sign-extended to 32 or 64 bits
  18840. 'P'
  18841. The constant -1
  18842. 'Q'
  18843. Floating-point constant whose integral representation can be
  18844. moved into an integer register using a single sethi
  18845. instruction
  18846. 'R'
  18847. Floating-point constant whose integral representation can be
  18848. moved into an integer register using a single mov instruction
  18849. 'S'
  18850. Floating-point constant whose integral representation can be
  18851. moved into an integer register using a high/lo_sum instruction
  18852. sequence
  18853. 'T'
  18854. Memory address aligned to an 8-byte boundary
  18855. 'U'
  18856. Even register
  18857. 'W'
  18858. Memory address for 'e' constraint registers
  18859. 'w'
  18860. Memory address with only a base register
  18861. 'Y'
  18862. Vector zero
  18863. _SPU--'config/spu/spu.h'_
  18864. 'a'
  18865. An immediate which can be loaded with the il/ila/ilh/ilhu
  18866. instructions. const_int is treated as a 64 bit value.
  18867. 'c'
  18868. An immediate for and/xor/or instructions. const_int is
  18869. treated as a 64 bit value.
  18870. 'd'
  18871. An immediate for the 'iohl' instruction. const_int is treated
  18872. as a 64 bit value.
  18873. 'f'
  18874. An immediate which can be loaded with 'fsmbi'.
  18875. 'A'
  18876. An immediate which can be loaded with the il/ila/ilh/ilhu
  18877. instructions. const_int is treated as a 32 bit value.
  18878. 'B'
  18879. An immediate for most arithmetic instructions. const_int is
  18880. treated as a 32 bit value.
  18881. 'C'
  18882. An immediate for and/xor/or instructions. const_int is
  18883. treated as a 32 bit value.
  18884. 'D'
  18885. An immediate for the 'iohl' instruction. const_int is treated
  18886. as a 32 bit value.
  18887. 'I'
  18888. A constant in the range [-64, 63] for shift/rotate
  18889. instructions.
  18890. 'J'
  18891. An unsigned 7-bit constant for conversion/nop/channel
  18892. instructions.
  18893. 'K'
  18894. A signed 10-bit constant for most arithmetic instructions.
  18895. 'M'
  18896. A signed 16 bit immediate for 'stop'.
  18897. 'N'
  18898. An unsigned 16-bit constant for 'iohl' and 'fsmbi'.
  18899. 'O'
  18900. An unsigned 7-bit constant whose 3 least significant bits are
  18901. 0.
  18902. 'P'
  18903. An unsigned 3-bit constant for 16-byte rotates and shifts
  18904. 'R'
  18905. Call operand, reg, for indirect calls
  18906. 'S'
  18907. Call operand, symbol, for relative calls.
  18908. 'T'
  18909. Call operand, const_int, for absolute calls.
  18910. 'U'
  18911. An immediate which can be loaded with the il/ila/ilh/ilhu
  18912. instructions. const_int is sign extended to 128 bit.
  18913. 'W'
  18914. An immediate for shift and rotate instructions. const_int is
  18915. treated as a 32 bit value.
  18916. 'Y'
  18917. An immediate for and/xor/or instructions. const_int is sign
  18918. extended as a 128 bit.
  18919. 'Z'
  18920. An immediate for the 'iohl' instruction. const_int is sign
  18921. extended to 128 bit.
  18922. _TI C6X family--'config/c6x/constraints.md'_
  18923. 'a'
  18924. Register file A (A0-A31).
  18925. 'b'
  18926. Register file B (B0-B31).
  18927. 'A'
  18928. Predicate registers in register file A (A0-A2 on C64X and
  18929. higher, A1 and A2 otherwise).
  18930. 'B'
  18931. Predicate registers in register file B (B0-B2).
  18932. 'C'
  18933. A call-used register in register file B (B0-B9, B16-B31).
  18934. 'Da'
  18935. Register file A, excluding predicate registers (A3-A31, plus
  18936. A0 if not C64X or higher).
  18937. 'Db'
  18938. Register file B, excluding predicate registers (B3-B31).
  18939. 'Iu4'
  18940. Integer constant in the range 0 ... 15.
  18941. 'Iu5'
  18942. Integer constant in the range 0 ... 31.
  18943. 'In5'
  18944. Integer constant in the range -31 ... 0.
  18945. 'Is5'
  18946. Integer constant in the range -16 ... 15.
  18947. 'I5x'
  18948. Integer constant that can be the operand of an ADDA or a SUBA
  18949. insn.
  18950. 'IuB'
  18951. Integer constant in the range 0 ... 65535.
  18952. 'IsB'
  18953. Integer constant in the range -32768 ... 32767.
  18954. 'IsC'
  18955. Integer constant in the range -2^{20} ... 2^{20} - 1.
  18956. 'Jc'
  18957. Integer constant that is a valid mask for the clr instruction.
  18958. 'Js'
  18959. Integer constant that is a valid mask for the set instruction.
  18960. 'Q'
  18961. Memory location with A base register.
  18962. 'R'
  18963. Memory location with B base register.
  18964. 'S0'
  18965. On C64x+ targets, a GP-relative small data reference.
  18966. 'S1'
  18967. Any kind of 'SYMBOL_REF', for use in a call address.
  18968. 'Si'
  18969. Any kind of immediate operand, unless it matches the S0
  18970. constraint.
  18971. 'T'
  18972. Memory location with B base register, but not using a long
  18973. offset.
  18974. 'W'
  18975. A memory operand with an address that cannot be used in an
  18976. unaligned access.
  18977. 'Z'
  18978. Register B14 (aka DP).
  18979. _TILE-Gx--'config/tilegx/constraints.md'_
  18980. 'R00'
  18981. 'R01'
  18982. 'R02'
  18983. 'R03'
  18984. 'R04'
  18985. 'R05'
  18986. 'R06'
  18987. 'R07'
  18988. 'R08'
  18989. 'R09'
  18990. 'R10'
  18991. Each of these represents a register constraint for an
  18992. individual register, from r0 to r10.
  18993. 'I'
  18994. Signed 8-bit integer constant.
  18995. 'J'
  18996. Signed 16-bit integer constant.
  18997. 'K'
  18998. Unsigned 16-bit integer constant.
  18999. 'L'
  19000. Integer constant that fits in one signed byte when incremented
  19001. by one (-129 ... 126).
  19002. 'm'
  19003. Memory operand. If used together with '<' or '>', the operand
  19004. can have postincrement which requires printing with '%In' and
  19005. '%in' on TILE-Gx. For example:
  19006. asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val));
  19007. 'M'
  19008. A bit mask suitable for the BFINS instruction.
  19009. 'N'
  19010. Integer constant that is a byte tiled out eight times.
  19011. 'O'
  19012. The integer zero constant.
  19013. 'P'
  19014. Integer constant that is a sign-extended byte tiled out as
  19015. four shorts.
  19016. 'Q'
  19017. Integer constant that fits in one signed byte when incremented
  19018. (-129 ... 126), but excluding -1.
  19019. 'S'
  19020. Integer constant that has all 1 bits consecutive and starting
  19021. at bit 0.
  19022. 'T'
  19023. A 16-bit fragment of a got, tls, or pc-relative reference.
  19024. 'U'
  19025. Memory operand except postincrement. This is roughly the same
  19026. as 'm' when not used together with '<' or '>'.
  19027. 'W'
  19028. An 8-element vector constant with identical elements.
  19029. 'Y'
  19030. A 4-element vector constant with identical elements.
  19031. 'Z0'
  19032. The integer constant 0xffffffff.
  19033. 'Z1'
  19034. The integer constant 0xffffffff00000000.
  19035. _TILEPro--'config/tilepro/constraints.md'_
  19036. 'R00'
  19037. 'R01'
  19038. 'R02'
  19039. 'R03'
  19040. 'R04'
  19041. 'R05'
  19042. 'R06'
  19043. 'R07'
  19044. 'R08'
  19045. 'R09'
  19046. 'R10'
  19047. Each of these represents a register constraint for an
  19048. individual register, from r0 to r10.
  19049. 'I'
  19050. Signed 8-bit integer constant.
  19051. 'J'
  19052. Signed 16-bit integer constant.
  19053. 'K'
  19054. Nonzero integer constant with low 16 bits zero.
  19055. 'L'
  19056. Integer constant that fits in one signed byte when incremented
  19057. by one (-129 ... 126).
  19058. 'm'
  19059. Memory operand. If used together with '<' or '>', the operand
  19060. can have postincrement which requires printing with '%In' and
  19061. '%in' on TILEPro. For example:
  19062. asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val));
  19063. 'M'
  19064. A bit mask suitable for the MM instruction.
  19065. 'N'
  19066. Integer constant that is a byte tiled out four times.
  19067. 'O'
  19068. The integer zero constant.
  19069. 'P'
  19070. Integer constant that is a sign-extended byte tiled out as two
  19071. shorts.
  19072. 'Q'
  19073. Integer constant that fits in one signed byte when incremented
  19074. (-129 ... 126), but excluding -1.
  19075. 'T'
  19076. A symbolic operand, or a 16-bit fragment of a got, tls, or
  19077. pc-relative reference.
  19078. 'U'
  19079. Memory operand except postincrement. This is roughly the same
  19080. as 'm' when not used together with '<' or '>'.
  19081. 'W'
  19082. A 4-element vector constant with identical elements.
  19083. 'Y'
  19084. A 2-element vector constant with identical elements.
  19085. _Visium--'config/visium/constraints.md'_
  19086. 'b'
  19087. EAM register 'mdb'
  19088. 'c'
  19089. EAM register 'mdc'
  19090. 'f'
  19091. Floating point register
  19092. 'k'
  19093. Register for sibcall optimization
  19094. 'l'
  19095. General register, but not 'r29', 'r30' and 'r31'
  19096. 't'
  19097. Register 'r1'
  19098. 'u'
  19099. Register 'r2'
  19100. 'v'
  19101. Register 'r3'
  19102. 'G'
  19103. Floating-point constant 0.0
  19104. 'J'
  19105. Integer constant in the range 0 .. 65535 (16-bit immediate)
  19106. 'K'
  19107. Integer constant in the range 1 .. 31 (5-bit immediate)
  19108. 'L'
  19109. Integer constant in the range -65535 .. -1 (16-bit negative
  19110. immediate)
  19111. 'M'
  19112. Integer constant -1
  19113. 'O'
  19114. Integer constant 0
  19115. 'P'
  19116. Integer constant 32
  19117. _x86 family--'config/i386/constraints.md'_
  19118. 'R'
  19119. Legacy register--the eight integer registers available on all
  19120. i386 processors ('a', 'b', 'c', 'd', 'si', 'di', 'bp', 'sp').
  19121. 'q'
  19122. Any register accessible as 'Rl'. In 32-bit mode, 'a', 'b',
  19123. 'c', and 'd'; in 64-bit mode, any integer register.
  19124. 'Q'
  19125. Any register accessible as 'Rh': 'a', 'b', 'c', and 'd'.
  19126. 'l'
  19127. Any register that can be used as the index in a base+index
  19128. memory access: that is, any general register except the stack
  19129. pointer.
  19130. 'a'
  19131. The 'a' register.
  19132. 'b'
  19133. The 'b' register.
  19134. 'c'
  19135. The 'c' register.
  19136. 'd'
  19137. The 'd' register.
  19138. 'S'
  19139. The 'si' register.
  19140. 'D'
  19141. The 'di' register.
  19142. 'A'
  19143. The 'a' and 'd' registers. This class is used for
  19144. instructions that return double word results in the 'ax:dx'
  19145. register pair. Single word values will be allocated either in
  19146. 'ax' or 'dx'. For example on i386 the following implements
  19147. 'rdtsc':
  19148. unsigned long long rdtsc (void)
  19149. {
  19150. unsigned long long tick;
  19151. __asm__ __volatile__("rdtsc":"=A"(tick));
  19152. return tick;
  19153. }
  19154. This is not correct on x86-64 as it would allocate tick in
  19155. either 'ax' or 'dx'. You have to use the following variant
  19156. instead:
  19157. unsigned long long rdtsc (void)
  19158. {
  19159. unsigned int tickl, tickh;
  19160. __asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));
  19161. return ((unsigned long long)tickh << 32)|tickl;
  19162. }
  19163. 'U'
  19164. The call-clobbered integer registers.
  19165. 'f'
  19166. Any 80387 floating-point (stack) register.
  19167. 't'
  19168. Top of 80387 floating-point stack ('%st(0)').
  19169. 'u'
  19170. Second from top of 80387 floating-point stack ('%st(1)').
  19171. 'Yk'
  19172. Any mask register that can be used as a predicate, i.e.
  19173. 'k1-k7'.
  19174. 'k'
  19175. Any mask register.
  19176. 'y'
  19177. Any MMX register.
  19178. 'x'
  19179. Any SSE register.
  19180. 'v'
  19181. Any EVEX encodable SSE register ('%xmm0-%xmm31').
  19182. 'w'
  19183. Any bound register.
  19184. 'Yz'
  19185. First SSE register ('%xmm0').
  19186. 'Yi'
  19187. Any SSE register, when SSE2 and inter-unit moves are enabled.
  19188. 'Yj'
  19189. Any SSE register, when SSE2 and inter-unit moves from vector
  19190. registers are enabled.
  19191. 'Ym'
  19192. Any MMX register, when inter-unit moves are enabled.
  19193. 'Yn'
  19194. Any MMX register, when inter-unit moves from vector registers
  19195. are enabled.
  19196. 'Yp'
  19197. Any integer register when 'TARGET_PARTIAL_REG_STALL' is
  19198. disabled.
  19199. 'Ya'
  19200. Any integer register when zero extensions with 'AND' are
  19201. disabled.
  19202. 'Yb'
  19203. Any register that can be used as the GOT base when calling
  19204. '___tls_get_addr': that is, any general register except 'a'
  19205. and 'sp' registers, for '-fno-plt' if linker supports it.
  19206. Otherwise, 'b' register.
  19207. 'Yf'
  19208. Any x87 register when 80387 floating-point arithmetic is
  19209. enabled.
  19210. 'Yr'
  19211. Lower SSE register when avoiding REX prefix and all SSE
  19212. registers otherwise.
  19213. 'Yv'
  19214. For AVX512VL, any EVEX-encodable SSE register
  19215. ('%xmm0-%xmm31'), otherwise any SSE register.
  19216. 'Yh'
  19217. Any EVEX-encodable SSE register, that has number factor of
  19218. four.
  19219. 'Bf'
  19220. Flags register operand.
  19221. 'Bg'
  19222. GOT memory operand.
  19223. 'Bm'
  19224. Vector memory operand.
  19225. 'Bc'
  19226. Constant memory operand.
  19227. 'Bn'
  19228. Memory operand without REX prefix.
  19229. 'Bs'
  19230. Sibcall memory operand.
  19231. 'Bw'
  19232. Call memory operand.
  19233. 'Bz'
  19234. Constant call address operand.
  19235. 'BC'
  19236. SSE constant -1 operand.
  19237. 'I'
  19238. Integer constant in the range 0 ... 31, for 32-bit shifts.
  19239. 'J'
  19240. Integer constant in the range 0 ... 63, for 64-bit shifts.
  19241. 'K'
  19242. Signed 8-bit integer constant.
  19243. 'L'
  19244. '0xFF' or '0xFFFF', for andsi as a zero-extending move.
  19245. 'M'
  19246. 0, 1, 2, or 3 (shifts for the 'lea' instruction).
  19247. 'N'
  19248. Unsigned 8-bit integer constant (for 'in' and 'out'
  19249. instructions).
  19250. 'O'
  19251. Integer constant in the range 0 ... 127, for 128-bit shifts.
  19252. 'G'
  19253. Standard 80387 floating point constant.
  19254. 'C'
  19255. SSE constant zero operand.
  19256. 'e'
  19257. 32-bit signed integer constant, or a symbolic reference known
  19258. to fit that range (for immediate operands in sign-extending
  19259. x86-64 instructions).
  19260. 'We'
  19261. 32-bit signed integer constant, or a symbolic reference known
  19262. to fit that range (for sign-extending conversion operations
  19263. that require non-'VOIDmode' immediate operands).
  19264. 'Wz'
  19265. 32-bit unsigned integer constant, or a symbolic reference
  19266. known to fit that range (for zero-extending conversion
  19267. operations that require non-'VOIDmode' immediate operands).
  19268. 'Wd'
  19269. 128-bit integer constant where both the high and low 64-bit
  19270. word satisfy the 'e' constraint.
  19271. 'Z'
  19272. 32-bit unsigned integer constant, or a symbolic reference
  19273. known to fit that range (for immediate operands in
  19274. zero-extending x86-64 instructions).
  19275. 'Tv'
  19276. VSIB address operand.
  19277. 'Ts'
  19278. Address operand without segment register.
  19279. 'Ti'
  19280. MPX address operand without index.
  19281. 'Tb'
  19282. MPX address operand without base.
  19283. _Xstormy16--'config/stormy16/stormy16.h'_
  19284. 'a'
  19285. Register r0.
  19286. 'b'
  19287. Register r1.
  19288. 'c'
  19289. Register r2.
  19290. 'd'
  19291. Register r8.
  19292. 'e'
  19293. Registers r0 through r7.
  19294. 't'
  19295. Registers r0 and r1.
  19296. 'y'
  19297. The carry register.
  19298. 'z'
  19299. Registers r8 and r9.
  19300. 'I'
  19301. A constant between 0 and 3 inclusive.
  19302. 'J'
  19303. A constant that has exactly one bit set.
  19304. 'K'
  19305. A constant that has exactly one bit clear.
  19306. 'L'
  19307. A constant between 0 and 255 inclusive.
  19308. 'M'
  19309. A constant between -255 and 0 inclusive.
  19310. 'N'
  19311. A constant between -3 and 0 inclusive.
  19312. 'O'
  19313. A constant between 1 and 4 inclusive.
  19314. 'P'
  19315. A constant between -4 and -1 inclusive.
  19316. 'Q'
  19317. A memory reference that is a stack push.
  19318. 'R'
  19319. A memory reference that is a stack pop.
  19320. 'S'
  19321. A memory reference that refers to a constant address of known
  19322. value.
  19323. 'T'
  19324. The register indicated by Rx (not implemented yet).
  19325. 'U'
  19326. A constant that is not between 2 and 15 inclusive.
  19327. 'Z'
  19328. The constant 0.
  19329. _Xtensa--'config/xtensa/constraints.md'_
  19330. 'a'
  19331. General-purpose 32-bit register
  19332. 'b'
  19333. One-bit boolean register
  19334. 'A'
  19335. MAC16 40-bit accumulator register
  19336. 'I'
  19337. Signed 12-bit integer constant, for use in MOVI instructions
  19338. 'J'
  19339. Signed 8-bit integer constant, for use in ADDI instructions
  19340. 'K'
  19341. Integer constant valid for BccI instructions
  19342. 'L'
  19343. Unsigned constant valid for BccUI instructions
  19344. 
  19345. File: gccint.info, Node: Disable Insn Alternatives, Next: Define Constraints, Prev: Machine Constraints, Up: Constraints
  19346. 17.8.6 Disable insn alternatives using the 'enabled' attribute
  19347. --------------------------------------------------------------
  19348. There are three insn attributes that may be used to selectively disable
  19349. instruction alternatives:
  19350. 'enabled'
  19351. Says whether an alternative is available on the current subtarget.
  19352. 'preferred_for_size'
  19353. Says whether an enabled alternative should be used in code that is
  19354. optimized for size.
  19355. 'preferred_for_speed'
  19356. Says whether an enabled alternative should be used in code that is
  19357. optimized for speed.
  19358. All these attributes should use '(const_int 1)' to allow an alternative
  19359. or '(const_int 0)' to disallow it. The attributes must be a static
  19360. property of the subtarget; they cannot for example depend on the current
  19361. operands, on the current optimization level, on the location of the insn
  19362. within the body of a loop, on whether register allocation has finished,
  19363. or on the current compiler pass.
  19364. The 'enabled' attribute is a correctness property. It tells GCC to act
  19365. as though the disabled alternatives were never defined in the first
  19366. place. This is useful when adding new instructions to an existing
  19367. pattern in cases where the new instructions are only available for
  19368. certain cpu architecture levels (typically mapped to the '-march='
  19369. command-line option).
  19370. In contrast, the 'preferred_for_size' and 'preferred_for_speed'
  19371. attributes are strong optimization hints rather than correctness
  19372. properties. 'preferred_for_size' tells GCC which alternatives to
  19373. consider when adding or modifying an instruction that GCC wants to
  19374. optimize for size. 'preferred_for_speed' does the same thing for speed.
  19375. Note that things like code motion can lead to cases where code optimized
  19376. for size uses alternatives that are not preferred for size, and
  19377. similarly for speed.
  19378. Although 'define_insn's can in principle specify the 'enabled'
  19379. attribute directly, it is often clearer to have subsiduary attributes
  19380. for each architectural feature of interest. The 'define_insn's can then
  19381. use these subsiduary attributes to say which alternatives require which
  19382. features. The example below does this for 'cpu_facility'.
  19383. E.g. the following two patterns could easily be merged using the
  19384. 'enabled' attribute:
  19385. (define_insn "*movdi_old"
  19386. [(set (match_operand:DI 0 "register_operand" "=d")
  19387. (match_operand:DI 1 "register_operand" " d"))]
  19388. "!TARGET_NEW"
  19389. "lgr %0,%1")
  19390. (define_insn "*movdi_new"
  19391. [(set (match_operand:DI 0 "register_operand" "=d,f,d")
  19392. (match_operand:DI 1 "register_operand" " d,d,f"))]
  19393. "TARGET_NEW"
  19394. "@
  19395. lgr %0,%1
  19396. ldgr %0,%1
  19397. lgdr %0,%1")
  19398. to:
  19399. (define_insn "*movdi_combined"
  19400. [(set (match_operand:DI 0 "register_operand" "=d,f,d")
  19401. (match_operand:DI 1 "register_operand" " d,d,f"))]
  19402. ""
  19403. "@
  19404. lgr %0,%1
  19405. ldgr %0,%1
  19406. lgdr %0,%1"
  19407. [(set_attr "cpu_facility" "*,new,new")])
  19408. with the 'enabled' attribute defined like this:
  19409. (define_attr "cpu_facility" "standard,new" (const_string "standard"))
  19410. (define_attr "enabled" ""
  19411. (cond [(eq_attr "cpu_facility" "standard") (const_int 1)
  19412. (and (eq_attr "cpu_facility" "new")
  19413. (ne (symbol_ref "TARGET_NEW") (const_int 0)))
  19414. (const_int 1)]
  19415. (const_int 0)))
  19416. 
  19417. File: gccint.info, Node: Define Constraints, Next: C Constraint Interface, Prev: Disable Insn Alternatives, Up: Constraints
  19418. 17.8.7 Defining Machine-Specific Constraints
  19419. --------------------------------------------
  19420. Machine-specific constraints fall into two categories: register and
  19421. non-register constraints. Within the latter category, constraints which
  19422. allow subsets of all possible memory or address operands should be
  19423. specially marked, to give 'reload' more information.
  19424. Machine-specific constraints can be given names of arbitrary length,
  19425. but they must be entirely composed of letters, digits, underscores
  19426. ('_'), and angle brackets ('< >'). Like C identifiers, they must begin
  19427. with a letter or underscore.
  19428. In order to avoid ambiguity in operand constraint strings, no
  19429. constraint can have a name that begins with any other constraint's name.
  19430. For example, if 'x' is defined as a constraint name, 'xy' may not be,
  19431. and vice versa. As a consequence of this rule, no constraint may begin
  19432. with one of the generic constraint letters: 'E F V X g i m n o p r s'.
  19433. Register constraints correspond directly to register classes. *Note
  19434. Register Classes::. There is thus not much flexibility in their
  19435. definitions.
  19436. -- MD Expression: define_register_constraint name regclass docstring
  19437. All three arguments are string constants. NAME is the name of the
  19438. constraint, as it will appear in 'match_operand' expressions. If
  19439. NAME is a multi-letter constraint its length shall be the same for
  19440. all constraints starting with the same letter. REGCLASS can be
  19441. either the name of the corresponding register class (*note Register
  19442. Classes::), or a C expression which evaluates to the appropriate
  19443. register class. If it is an expression, it must have no side
  19444. effects, and it cannot look at the operand. The usual use of
  19445. expressions is to map some register constraints to 'NO_REGS' when
  19446. the register class is not available on a given subarchitecture.
  19447. DOCSTRING is a sentence documenting the meaning of the constraint.
  19448. Docstrings are explained further below.
  19449. Non-register constraints are more like predicates: the constraint
  19450. definition gives a boolean expression which indicates whether the
  19451. constraint matches.
  19452. -- MD Expression: define_constraint name docstring exp
  19453. The NAME and DOCSTRING arguments are the same as for
  19454. 'define_register_constraint', but note that the docstring comes
  19455. immediately after the name for these expressions. EXP is an RTL
  19456. expression, obeying the same rules as the RTL expressions in
  19457. predicate definitions. *Note Defining Predicates::, for details.
  19458. If it evaluates true, the constraint matches; if it evaluates
  19459. false, it doesn't. Constraint expressions should indicate which
  19460. RTL codes they might match, just like predicate expressions.
  19461. 'match_test' C expressions have access to the following variables:
  19462. OP
  19463. The RTL object defining the operand.
  19464. MODE
  19465. The machine mode of OP.
  19466. IVAL
  19467. 'INTVAL (OP)', if OP is a 'const_int'.
  19468. HVAL
  19469. 'CONST_DOUBLE_HIGH (OP)', if OP is an integer 'const_double'.
  19470. LVAL
  19471. 'CONST_DOUBLE_LOW (OP)', if OP is an integer 'const_double'.
  19472. RVAL
  19473. 'CONST_DOUBLE_REAL_VALUE (OP)', if OP is a floating-point
  19474. 'const_double'.
  19475. The *VAL variables should only be used once another piece of the
  19476. expression has verified that OP is the appropriate kind of RTL
  19477. object.
  19478. Most non-register constraints should be defined with
  19479. 'define_constraint'. The remaining two definition expressions are only
  19480. appropriate for constraints that should be handled specially by 'reload'
  19481. if they fail to match.
  19482. -- MD Expression: define_memory_constraint name docstring exp
  19483. Use this expression for constraints that match a subset of all
  19484. memory operands: that is, 'reload' can make them match by
  19485. converting the operand to the form '(mem (reg X))', where X is a
  19486. base register (from the register class specified by
  19487. 'BASE_REG_CLASS', *note Register Classes::).
  19488. For example, on the S/390, some instructions do not accept
  19489. arbitrary memory references, but only those that do not make use of
  19490. an index register. The constraint letter 'Q' is defined to
  19491. represent a memory address of this type. If 'Q' is defined with
  19492. 'define_memory_constraint', a 'Q' constraint can handle any memory
  19493. operand, because 'reload' knows it can simply copy the memory
  19494. address into a base register if required. This is analogous to the
  19495. way an 'o' constraint can handle any memory operand.
  19496. The syntax and semantics are otherwise identical to
  19497. 'define_constraint'.
  19498. -- MD Expression: define_special_memory_constraint name docstring exp
  19499. Use this expression for constraints that match a subset of all
  19500. memory operands: that is, 'reload' can not make them match by
  19501. reloading the address as it is described for
  19502. 'define_memory_constraint' or such address reload is undesirable
  19503. with the performance point of view.
  19504. For example, 'define_special_memory_constraint' can be useful if
  19505. specifically aligned memory is necessary or desirable for some insn
  19506. operand.
  19507. The syntax and semantics are otherwise identical to
  19508. 'define_constraint'.
  19509. -- MD Expression: define_address_constraint name docstring exp
  19510. Use this expression for constraints that match a subset of all
  19511. address operands: that is, 'reload' can make the constraint match
  19512. by converting the operand to the form '(reg X)', again with X a
  19513. base register.
  19514. Constraints defined with 'define_address_constraint' can only be
  19515. used with the 'address_operand' predicate, or machine-specific
  19516. predicates that work the same way. They are treated analogously to
  19517. the generic 'p' constraint.
  19518. The syntax and semantics are otherwise identical to
  19519. 'define_constraint'.
  19520. For historical reasons, names beginning with the letters 'G H' are
  19521. reserved for constraints that match only 'const_double's, and names
  19522. beginning with the letters 'I J K L M N O P' are reserved for
  19523. constraints that match only 'const_int's. This may change in the
  19524. future. For the time being, constraints with these names must be
  19525. written in a stylized form, so that 'genpreds' can tell you did it
  19526. correctly:
  19527. (define_constraint "[GHIJKLMNOP]..."
  19528. "DOC..."
  19529. (and (match_code "const_int") ; 'const_double' for G/H
  19530. CONDITION...)) ; usually a 'match_test'
  19531. It is fine to use names beginning with other letters for constraints
  19532. that match 'const_double's or 'const_int's.
  19533. Each docstring in a constraint definition should be one or more
  19534. complete sentences, marked up in Texinfo format. _They are currently
  19535. unused._ In the future they will be copied into the GCC manual, in
  19536. *note Machine Constraints::, replacing the hand-maintained tables
  19537. currently found in that section. Also, in the future the compiler may
  19538. use this to give more helpful diagnostics when poor choice of 'asm'
  19539. constraints causes a reload failure.
  19540. If you put the pseudo-Texinfo directive '@internal' at the beginning of
  19541. a docstring, then (in the future) it will appear only in the internals
  19542. manual's version of the machine-specific constraint tables. Use this
  19543. for constraints that should not appear in 'asm' statements.
  19544. 
  19545. File: gccint.info, Node: C Constraint Interface, Prev: Define Constraints, Up: Constraints
  19546. 17.8.8 Testing constraints from C
  19547. ---------------------------------
  19548. It is occasionally useful to test a constraint from C code rather than
  19549. implicitly via the constraint string in a 'match_operand'. The
  19550. generated file 'tm_p.h' declares a few interfaces for working with
  19551. constraints. At present these are defined for all constraints except
  19552. 'g' (which is equivalent to 'general_operand').
  19553. Some valid constraint names are not valid C identifiers, so there is a
  19554. mangling scheme for referring to them from C. Constraint names that do
  19555. not contain angle brackets or underscores are left unchanged.
  19556. Underscores are doubled, each '<' is replaced with '_l', and each '>'
  19557. with '_g'. Here are some examples:
  19558. *Original* *Mangled*
  19559. x x
  19560. P42x P42x
  19561. P4_x P4__x
  19562. P4>x P4_gx
  19563. P4>> P4_g_g
  19564. P4_g> P4__g_g
  19565. Throughout this section, the variable C is either a constraint in the
  19566. abstract sense, or a constant from 'enum constraint_num'; the variable M
  19567. is a mangled constraint name (usually as part of a larger identifier).
  19568. -- Enum: constraint_num
  19569. For each constraint except 'g', there is a corresponding
  19570. enumeration constant: 'CONSTRAINT_' plus the mangled name of the
  19571. constraint. Functions that take an 'enum constraint_num' as an
  19572. argument expect one of these constants.
  19573. -- Function: inline bool satisfies_constraint_M (rtx EXP)
  19574. For each non-register constraint M except 'g', there is one of
  19575. these functions; it returns 'true' if EXP satisfies the constraint.
  19576. These functions are only visible if 'rtl.h' was included before
  19577. 'tm_p.h'.
  19578. -- Function: bool constraint_satisfied_p (rtx EXP, enum constraint_num
  19579. C)
  19580. Like the 'satisfies_constraint_M' functions, but the constraint to
  19581. test is given as an argument, C. If C specifies a register
  19582. constraint, this function will always return 'false'.
  19583. -- Function: enum reg_class reg_class_for_constraint (enum
  19584. constraint_num C)
  19585. Returns the register class associated with C. If C is not a
  19586. register constraint, or those registers are not available for the
  19587. currently selected subtarget, returns 'NO_REGS'.
  19588. Here is an example use of 'satisfies_constraint_M'. In peephole
  19589. optimizations (*note Peephole Definitions::), operand constraint strings
  19590. are ignored, so if there are relevant constraints, they must be tested
  19591. in the C condition. In the example, the optimization is applied if
  19592. operand 2 does _not_ satisfy the 'K' constraint. (This is a simplified
  19593. version of a peephole definition from the i386 machine description.)
  19594. (define_peephole2
  19595. [(match_scratch:SI 3 "r")
  19596. (set (match_operand:SI 0 "register_operand" "")
  19597. (mult:SI (match_operand:SI 1 "memory_operand" "")
  19598. (match_operand:SI 2 "immediate_operand" "")))]
  19599. "!satisfies_constraint_K (operands[2])"
  19600. [(set (match_dup 3) (match_dup 1))
  19601. (set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]
  19602. "")
  19603. 
  19604. File: gccint.info, Node: Standard Names, Next: Pattern Ordering, Prev: Constraints, Up: Machine Desc
  19605. 17.9 Standard Pattern Names For Generation
  19606. ==========================================
  19607. Here is a table of the instruction names that are meaningful in the RTL
  19608. generation pass of the compiler. Giving one of these names to an
  19609. instruction pattern tells the RTL generation pass that it can use the
  19610. pattern to accomplish a certain task.
  19611. 'movM'
  19612. Here M stands for a two-letter machine mode name, in lowercase.
  19613. This instruction pattern moves data with that machine mode from
  19614. operand 1 to operand 0. For example, 'movsi' moves full-word data.
  19615. If operand 0 is a 'subreg' with mode M of a register whose own mode
  19616. is wider than M, the effect of this instruction is to store the
  19617. specified value in the part of the register that corresponds to
  19618. mode M. Bits outside of M, but which are within the same target
  19619. word as the 'subreg' are undefined. Bits which are outside the
  19620. target word are left unchanged.
  19621. This class of patterns is special in several ways. First of all,
  19622. each of these names up to and including full word size _must_ be
  19623. defined, because there is no other way to copy a datum from one
  19624. place to another. If there are patterns accepting operands in
  19625. larger modes, 'movM' must be defined for integer modes of those
  19626. sizes.
  19627. Second, these patterns are not used solely in the RTL generation
  19628. pass. Even the reload pass can generate move insns to copy values
  19629. from stack slots into temporary registers. When it does so, one of
  19630. the operands is a hard register and the other is an operand that
  19631. can need to be reloaded into a register.
  19632. Therefore, when given such a pair of operands, the pattern must
  19633. generate RTL which needs no reloading and needs no temporary
  19634. registers--no registers other than the operands. For example, if
  19635. you support the pattern with a 'define_expand', then in such a case
  19636. the 'define_expand' mustn't call 'force_reg' or any other such
  19637. function which might generate new pseudo registers.
  19638. This requirement exists even for subword modes on a RISC machine
  19639. where fetching those modes from memory normally requires several
  19640. insns and some temporary registers.
  19641. During reload a memory reference with an invalid address may be
  19642. passed as an operand. Such an address will be replaced with a
  19643. valid address later in the reload pass. In this case, nothing may
  19644. be done with the address except to use it as it stands. If it is
  19645. copied, it will not be replaced with a valid address. No attempt
  19646. should be made to make such an address into a valid address and no
  19647. routine (such as 'change_address') that will do so may be called.
  19648. Note that 'general_operand' will fail when applied to such an
  19649. address.
  19650. The global variable 'reload_in_progress' (which must be explicitly
  19651. declared if required) can be used to determine whether such special
  19652. handling is required.
  19653. The variety of operands that have reloads depends on the rest of
  19654. the machine description, but typically on a RISC machine these can
  19655. only be pseudo registers that did not get hard registers, while on
  19656. other machines explicit memory references will get optional
  19657. reloads.
  19658. If a scratch register is required to move an object to or from
  19659. memory, it can be allocated using 'gen_reg_rtx' prior to life
  19660. analysis.
  19661. If there are cases which need scratch registers during or after
  19662. reload, you must provide an appropriate secondary_reload target
  19663. hook.
  19664. The macro 'can_create_pseudo_p' can be used to determine if it is
  19665. unsafe to create new pseudo registers. If this variable is
  19666. nonzero, then it is unsafe to call 'gen_reg_rtx' to allocate a new
  19667. pseudo.
  19668. The constraints on a 'movM' must permit moving any hard register to
  19669. any other hard register provided that 'TARGET_HARD_REGNO_MODE_OK'
  19670. permits mode M in both registers and 'TARGET_REGISTER_MOVE_COST'
  19671. applied to their classes returns a value of 2.
  19672. It is obligatory to support floating point 'movM' instructions into
  19673. and out of any registers that can hold fixed point values, because
  19674. unions and structures (which have modes 'SImode' or 'DImode') can
  19675. be in those registers and they may have floating point members.
  19676. There may also be a need to support fixed point 'movM' instructions
  19677. in and out of floating point registers. Unfortunately, I have
  19678. forgotten why this was so, and I don't know whether it is still
  19679. true. If 'TARGET_HARD_REGNO_MODE_OK' rejects fixed point values in
  19680. floating point registers, then the constraints of the fixed point
  19681. 'movM' instructions must be designed to avoid ever trying to reload
  19682. into a floating point register.
  19683. 'reload_inM'
  19684. 'reload_outM'
  19685. These named patterns have been obsoleted by the target hook
  19686. 'secondary_reload'.
  19687. Like 'movM', but used when a scratch register is required to move
  19688. between operand 0 and operand 1. Operand 2 describes the scratch
  19689. register. See the discussion of the 'SECONDARY_RELOAD_CLASS' macro
  19690. in *note Register Classes::.
  19691. There are special restrictions on the form of the 'match_operand's
  19692. used in these patterns. First, only the predicate for the reload
  19693. operand is examined, i.e., 'reload_in' examines operand 1, but not
  19694. the predicates for operand 0 or 2. Second, there may be only one
  19695. alternative in the constraints. Third, only a single register
  19696. class letter may be used for the constraint; subsequent constraint
  19697. letters are ignored. As a special exception, an empty constraint
  19698. string matches the 'ALL_REGS' register class. This may relieve
  19699. ports of the burden of defining an 'ALL_REGS' constraint letter
  19700. just for these patterns.
  19701. 'movstrictM'
  19702. Like 'movM' except that if operand 0 is a 'subreg' with mode M of a
  19703. register whose natural mode is wider, the 'movstrictM' instruction
  19704. is guaranteed not to alter any of the register except the part
  19705. which belongs to mode M.
  19706. 'movmisalignM'
  19707. This variant of a move pattern is designed to load or store a value
  19708. from a memory address that is not naturally aligned for its mode.
  19709. For a store, the memory will be in operand 0; for a load, the
  19710. memory will be in operand 1. The other operand is guaranteed not
  19711. to be a memory, so that it's easy to tell whether this is a load or
  19712. store.
  19713. This pattern is used by the autovectorizer, and when expanding a
  19714. 'MISALIGNED_INDIRECT_REF' expression.
  19715. 'load_multiple'
  19716. Load several consecutive memory locations into consecutive
  19717. registers. Operand 0 is the first of the consecutive registers,
  19718. operand 1 is the first memory location, and operand 2 is a
  19719. constant: the number of consecutive registers.
  19720. Define this only if the target machine really has such an
  19721. instruction; do not define this if the most efficient way of
  19722. loading consecutive registers from memory is to do them one at a
  19723. time.
  19724. On some machines, there are restrictions as to which consecutive
  19725. registers can be stored into memory, such as particular starting or
  19726. ending register numbers or only a range of valid counts. For those
  19727. machines, use a 'define_expand' (*note Expander Definitions::) and
  19728. make the pattern fail if the restrictions are not met.
  19729. Write the generated insn as a 'parallel' with elements being a
  19730. 'set' of one register from the appropriate memory location (you may
  19731. also need 'use' or 'clobber' elements). Use a 'match_parallel'
  19732. (*note RTL Template::) to recognize the insn. See 'rs6000.md' for
  19733. examples of the use of this insn pattern.
  19734. 'store_multiple'
  19735. Similar to 'load_multiple', but store several consecutive registers
  19736. into consecutive memory locations. Operand 0 is the first of the
  19737. consecutive memory locations, operand 1 is the first register, and
  19738. operand 2 is a constant: the number of consecutive registers.
  19739. 'vec_load_lanesMN'
  19740. Perform an interleaved load of several vectors from memory operand
  19741. 1 into register operand 0. Both operands have mode M. The
  19742. register operand is viewed as holding consecutive vectors of mode
  19743. N, while the memory operand is a flat array that contains the same
  19744. number of elements. The operation is equivalent to:
  19745. int c = GET_MODE_SIZE (M) / GET_MODE_SIZE (N);
  19746. for (j = 0; j < GET_MODE_NUNITS (N); j++)
  19747. for (i = 0; i < c; i++)
  19748. operand0[i][j] = operand1[j * c + i];
  19749. For example, 'vec_load_lanestiv4hi' loads 8 16-bit values from
  19750. memory into a register of mode 'TI'. The register contains two
  19751. consecutive vectors of mode 'V4HI'.
  19752. This pattern can only be used if:
  19753. TARGET_ARRAY_MODE_SUPPORTED_P (N, C)
  19754. is true. GCC assumes that, if a target supports this kind of
  19755. instruction for some mode N, it also supports unaligned loads for
  19756. vectors of mode N.
  19757. This pattern is not allowed to 'FAIL'.
  19758. 'vec_mask_load_lanesMN'
  19759. Like 'vec_load_lanesMN', but takes an additional mask operand
  19760. (operand 2) that specifies which elements of the destination
  19761. vectors should be loaded. Other elements of the destination
  19762. vectors are set to zero. The operation is equivalent to:
  19763. int c = GET_MODE_SIZE (M) / GET_MODE_SIZE (N);
  19764. for (j = 0; j < GET_MODE_NUNITS (N); j++)
  19765. if (operand2[j])
  19766. for (i = 0; i < c; i++)
  19767. operand0[i][j] = operand1[j * c + i];
  19768. else
  19769. for (i = 0; i < c; i++)
  19770. operand0[i][j] = 0;
  19771. This pattern is not allowed to 'FAIL'.
  19772. 'vec_store_lanesMN'
  19773. Equivalent to 'vec_load_lanesMN', with the memory and register
  19774. operands reversed. That is, the instruction is equivalent to:
  19775. int c = GET_MODE_SIZE (M) / GET_MODE_SIZE (N);
  19776. for (j = 0; j < GET_MODE_NUNITS (N); j++)
  19777. for (i = 0; i < c; i++)
  19778. operand0[j * c + i] = operand1[i][j];
  19779. for a memory operand 0 and register operand 1.
  19780. This pattern is not allowed to 'FAIL'.
  19781. 'vec_mask_store_lanesMN'
  19782. Like 'vec_store_lanesMN', but takes an additional mask operand
  19783. (operand 2) that specifies which elements of the source vectors
  19784. should be stored. The operation is equivalent to:
  19785. int c = GET_MODE_SIZE (M) / GET_MODE_SIZE (N);
  19786. for (j = 0; j < GET_MODE_NUNITS (N); j++)
  19787. if (operand2[j])
  19788. for (i = 0; i < c; i++)
  19789. operand0[j * c + i] = operand1[i][j];
  19790. This pattern is not allowed to 'FAIL'.
  19791. 'gather_loadM'
  19792. Load several separate memory locations into a vector of mode M.
  19793. Operand 1 is a scalar base address and operand 2 is a vector of
  19794. offsets from that base. Operand 0 is a destination vector with the
  19795. same number of elements as the offset. For each element index I:
  19796. * extend the offset element I to address width, using zero
  19797. extension if operand 3 is 1 and sign extension if operand 3 is
  19798. zero;
  19799. * multiply the extended offset by operand 4;
  19800. * add the result to the base; and
  19801. * load the value at that address into element I of operand 0.
  19802. The value of operand 3 does not matter if the offsets are already
  19803. address width.
  19804. 'mask_gather_loadM'
  19805. Like 'gather_loadM', but takes an extra mask operand as operand 5.
  19806. Bit I of the mask is set if element I of the result should be
  19807. loaded from memory and clear if element I of the result should be
  19808. set to zero.
  19809. 'scatter_storeM'
  19810. Store a vector of mode M into several distinct memory locations.
  19811. Operand 0 is a scalar base address and operand 1 is a vector of
  19812. offsets from that base. Operand 4 is the vector of values that
  19813. should be stored, which has the same number of elements as the
  19814. offset. For each element index I:
  19815. * extend the offset element I to address width, using zero
  19816. extension if operand 2 is 1 and sign extension if operand 2 is
  19817. zero;
  19818. * multiply the extended offset by operand 3;
  19819. * add the result to the base; and
  19820. * store element I of operand 4 to that address.
  19821. The value of operand 2 does not matter if the offsets are already
  19822. address width.
  19823. 'mask_scatter_storeM'
  19824. Like 'scatter_storeM', but takes an extra mask operand as operand
  19825. 5. Bit I of the mask is set if element I of the result should be
  19826. stored to memory.
  19827. 'vec_setM'
  19828. Set given field in the vector value. Operand 0 is the vector to
  19829. modify, operand 1 is new value of field and operand 2 specify the
  19830. field index.
  19831. 'vec_extractMN'
  19832. Extract given field from the vector value. Operand 1 is the
  19833. vector, operand 2 specify field index and operand 0 place to store
  19834. value into. The N mode is the mode of the field or vector of
  19835. fields that should be extracted, should be either element mode of
  19836. the vector mode M, or a vector mode with the same element mode and
  19837. smaller number of elements. If N is a vector mode, the index is
  19838. counted in units of that mode.
  19839. 'vec_initMN'
  19840. Initialize the vector to given values. Operand 0 is the vector to
  19841. initialize and operand 1 is parallel containing values for
  19842. individual fields. The N mode is the mode of the elements, should
  19843. be either element mode of the vector mode M, or a vector mode with
  19844. the same element mode and smaller number of elements.
  19845. 'vec_duplicateM'
  19846. Initialize vector output operand 0 so that each element has the
  19847. value given by scalar input operand 1. The vector has mode M and
  19848. the scalar has the mode appropriate for one element of M.
  19849. This pattern only handles duplicates of non-constant inputs.
  19850. Constant vectors go through the 'movM' pattern instead.
  19851. This pattern is not allowed to 'FAIL'.
  19852. 'vec_seriesM'
  19853. Initialize vector output operand 0 so that element I is equal to
  19854. operand 1 plus I times operand 2. In other words, create a linear
  19855. series whose base value is operand 1 and whose step is operand 2.
  19856. The vector output has mode M and the scalar inputs have the mode
  19857. appropriate for one element of M. This pattern is not used for
  19858. floating-point vectors, in order to avoid having to specify the
  19859. rounding behavior for I > 1.
  19860. This pattern is not allowed to 'FAIL'.
  19861. 'while_ultMN'
  19862. Set operand 0 to a mask that is true while incrementing operand 1
  19863. gives a value that is less than operand 2. Operand 0 has mode N
  19864. and operands 1 and 2 are scalar integers of mode M. The operation
  19865. is equivalent to:
  19866. operand0[0] = operand1 < operand2;
  19867. for (i = 1; i < GET_MODE_NUNITS (N); i++)
  19868. operand0[i] = operand0[i - 1] && (operand1 + i < operand2);
  19869. 'vec_cmpMN'
  19870. Output a vector comparison. Operand 0 of mode N is the destination
  19871. for predicate in operand 1 which is a signed vector comparison with
  19872. operands of mode M in operands 2 and 3. Predicate is computed by
  19873. element-wise evaluation of the vector comparison with a truth value
  19874. of all-ones and a false value of all-zeros.
  19875. 'vec_cmpuMN'
  19876. Similar to 'vec_cmpMN' but perform unsigned vector comparison.
  19877. 'vec_cmpeqMN'
  19878. Similar to 'vec_cmpMN' but perform equality or non-equality vector
  19879. comparison only. If 'vec_cmpMN' or 'vec_cmpuMN' instruction
  19880. pattern is supported, it will be preferred over 'vec_cmpeqMN', so
  19881. there is no need to define this instruction pattern if the others
  19882. are supported.
  19883. 'vcondMN'
  19884. Output a conditional vector move. Operand 0 is the destination to
  19885. receive a combination of operand 1 and operand 2, which are of mode
  19886. M, dependent on the outcome of the predicate in operand 3 which is
  19887. a signed vector comparison with operands of mode N in operands 4
  19888. and 5. The modes M and N should have the same size. Operand 0
  19889. will be set to the value OP1 & MSK | OP2 & ~MSK where MSK is
  19890. computed by element-wise evaluation of the vector comparison with a
  19891. truth value of all-ones and a false value of all-zeros.
  19892. 'vconduMN'
  19893. Similar to 'vcondMN' but performs unsigned vector comparison.
  19894. 'vcondeqMN'
  19895. Similar to 'vcondMN' but performs equality or non-equality vector
  19896. comparison only. If 'vcondMN' or 'vconduMN' instruction pattern is
  19897. supported, it will be preferred over 'vcondeqMN', so there is no
  19898. need to define this instruction pattern if the others are
  19899. supported.
  19900. 'vcond_mask_MN'
  19901. Similar to 'vcondMN' but operand 3 holds a pre-computed result of
  19902. vector comparison.
  19903. 'maskloadMN'
  19904. Perform a masked load of vector from memory operand 1 of mode M
  19905. into register operand 0. Mask is provided in register operand 2 of
  19906. mode N.
  19907. This pattern is not allowed to 'FAIL'.
  19908. 'maskstoreMN'
  19909. Perform a masked store of vector from register operand 1 of mode M
  19910. into memory operand 0. Mask is provided in register operand 2 of
  19911. mode N.
  19912. This pattern is not allowed to 'FAIL'.
  19913. 'vec_permM'
  19914. Output a (variable) vector permutation. Operand 0 is the
  19915. destination to receive elements from operand 1 and operand 2, which
  19916. are of mode M. Operand 3 is the "selector". It is an integral
  19917. mode vector of the same width and number of elements as mode M.
  19918. The input elements are numbered from 0 in operand 1 through 2*N-1
  19919. in operand 2. The elements of the selector must be computed modulo
  19920. 2*N. Note that if 'rtx_equal_p(operand1, operand2)', this can be
  19921. implemented with just operand 1 and selector elements modulo N.
  19922. In order to make things easy for a number of targets, if there is
  19923. no 'vec_perm' pattern for mode M, but there is for mode Q where Q
  19924. is a vector of 'QImode' of the same width as M, the middle-end will
  19925. lower the mode M 'VEC_PERM_EXPR' to mode Q.
  19926. See also 'TARGET_VECTORIZER_VEC_PERM_CONST', which performs the
  19927. analogous operation for constant selectors.
  19928. 'pushM1'
  19929. Output a push instruction. Operand 0 is value to push. Used only
  19930. when 'PUSH_ROUNDING' is defined. For historical reason, this
  19931. pattern may be missing and in such case an 'mov' expander is used
  19932. instead, with a 'MEM' expression forming the push operation. The
  19933. 'mov' expander method is deprecated.
  19934. 'addM3'
  19935. Add operand 2 and operand 1, storing the result in operand 0. All
  19936. operands must have mode M. This can be used even on two-address
  19937. machines, by means of constraints requiring operands 1 and 0 to be
  19938. the same location.
  19939. 'ssaddM3', 'usaddM3'
  19940. 'subM3', 'sssubM3', 'ussubM3'
  19941. 'mulM3', 'ssmulM3', 'usmulM3'
  19942. 'divM3', 'ssdivM3'
  19943. 'udivM3', 'usdivM3'
  19944. 'modM3', 'umodM3'
  19945. 'uminM3', 'umaxM3'
  19946. 'andM3', 'iorM3', 'xorM3'
  19947. Similar, for other arithmetic operations.
  19948. 'addvM4'
  19949. Like 'addM3' but takes a 'code_label' as operand 3 and emits code
  19950. to jump to it if signed overflow occurs during the addition. This
  19951. pattern is used to implement the built-in functions performing
  19952. signed integer addition with overflow checking.
  19953. 'subvM4', 'mulvM4'
  19954. Similar, for other signed arithmetic operations.
  19955. 'uaddvM4'
  19956. Like 'addvM4' but for unsigned addition. That is to say, the
  19957. operation is the same as signed addition but the jump is taken only
  19958. on unsigned overflow.
  19959. 'usubvM4', 'umulvM4'
  19960. Similar, for other unsigned arithmetic operations.
  19961. 'addptrM3'
  19962. Like 'addM3' but is guaranteed to only be used for address
  19963. calculations. The expanded code is not allowed to clobber the
  19964. condition code. It only needs to be defined if 'addM3' sets the
  19965. condition code. If adds used for address calculations and normal
  19966. adds are not compatible it is required to expand a distinct pattern
  19967. (e.g. using an unspec). The pattern is used by LRA to emit
  19968. address calculations. 'addM3' is used if 'addptrM3' is not
  19969. defined.
  19970. 'fmaM4'
  19971. Multiply operand 2 and operand 1, then add operand 3, storing the
  19972. result in operand 0 without doing an intermediate rounding step.
  19973. All operands must have mode M. This pattern is used to implement
  19974. the 'fma', 'fmaf', and 'fmal' builtin functions from the ISO C99
  19975. standard.
  19976. 'fmsM4'
  19977. Like 'fmaM4', except operand 3 subtracted from the product instead
  19978. of added to the product. This is represented in the rtl as
  19979. (fma:M OP1 OP2 (neg:M OP3))
  19980. 'fnmaM4'
  19981. Like 'fmaM4' except that the intermediate product is negated before
  19982. being added to operand 3. This is represented in the rtl as
  19983. (fma:M (neg:M OP1) OP2 OP3)
  19984. 'fnmsM4'
  19985. Like 'fmsM4' except that the intermediate product is negated before
  19986. subtracting operand 3. This is represented in the rtl as
  19987. (fma:M (neg:M OP1) OP2 (neg:M OP3))
  19988. 'sminM3', 'smaxM3'
  19989. Signed minimum and maximum operations. When used with floating
  19990. point, if both operands are zeros, or if either operand is 'NaN',
  19991. then it is unspecified which of the two operands is returned as the
  19992. result.
  19993. 'fminM3', 'fmaxM3'
  19994. IEEE-conformant minimum and maximum operations. If one operand is
  19995. a quiet 'NaN', then the other operand is returned. If both
  19996. operands are quiet 'NaN', then a quiet 'NaN' is returned. In the
  19997. case when gcc supports signaling 'NaN' (-fsignaling-nans) an
  19998. invalid floating point exception is raised and a quiet 'NaN' is
  19999. returned.
  20000. All operands have mode M, which is a scalar or vector
  20001. floating-point mode. These patterns are not allowed to 'FAIL'.
  20002. 'reduc_smin_scal_M', 'reduc_smax_scal_M'
  20003. Find the signed minimum/maximum of the elements of a vector. The
  20004. vector is operand 1, and operand 0 is the scalar result, with mode
  20005. equal to the mode of the elements of the input vector.
  20006. 'reduc_umin_scal_M', 'reduc_umax_scal_M'
  20007. Find the unsigned minimum/maximum of the elements of a vector. The
  20008. vector is operand 1, and operand 0 is the scalar result, with mode
  20009. equal to the mode of the elements of the input vector.
  20010. 'reduc_plus_scal_M'
  20011. Compute the sum of the elements of a vector. The vector is operand
  20012. 1, and operand 0 is the scalar result, with mode equal to the mode
  20013. of the elements of the input vector.
  20014. 'reduc_and_scal_M'
  20015. 'reduc_ior_scal_M'
  20016. 'reduc_xor_scal_M'
  20017. Compute the bitwise 'AND'/'IOR'/'XOR' reduction of the elements of
  20018. a vector of mode M. Operand 1 is the vector input and operand 0 is
  20019. the scalar result. The mode of the scalar result is the same as
  20020. one element of M.
  20021. 'extract_last_M'
  20022. Find the last set bit in mask operand 1 and extract the associated
  20023. element of vector operand 2. Store the result in scalar operand 0.
  20024. Operand 2 has vector mode M while operand 0 has the mode
  20025. appropriate for one element of M. Operand 1 has the usual mask
  20026. mode for vectors of mode M; see 'TARGET_VECTORIZE_GET_MASK_MODE'.
  20027. 'fold_extract_last_M'
  20028. If any bits of mask operand 2 are set, find the last set bit,
  20029. extract the associated element from vector operand 3, and store the
  20030. result in operand 0. Store operand 1 in operand 0 otherwise.
  20031. Operand 3 has mode M and operands 0 and 1 have the mode appropriate
  20032. for one element of M. Operand 2 has the usual mask mode for
  20033. vectors of mode M; see 'TARGET_VECTORIZE_GET_MASK_MODE'.
  20034. 'fold_left_plus_M'
  20035. Take scalar operand 1 and successively add each element from vector
  20036. operand 2. Store the result in scalar operand 0. The vector has
  20037. mode M and the scalars have the mode appropriate for one element of
  20038. M. The operation is strictly in-order: there is no reassociation.
  20039. 'sdot_prodM'
  20040. 'udot_prodM'
  20041. Compute the sum of the products of two signed/unsigned elements.
  20042. Operand 1 and operand 2 are of the same mode. Their product, which
  20043. is of a wider mode, is computed and added to operand 3. Operand 3
  20044. is of a mode equal or wider than the mode of the product. The
  20045. result is placed in operand 0, which is of the same mode as operand
  20046. 3.
  20047. 'ssadM'
  20048. 'usadM'
  20049. Compute the sum of absolute differences of two signed/unsigned
  20050. elements. Operand 1 and operand 2 are of the same mode. Their
  20051. absolute difference, which is of a wider mode, is computed and
  20052. added to operand 3. Operand 3 is of a mode equal or wider than the
  20053. mode of the absolute difference. The result is placed in operand
  20054. 0, which is of the same mode as operand 3.
  20055. 'widen_ssumM3'
  20056. 'widen_usumM3'
  20057. Operands 0 and 2 are of the same mode, which is wider than the mode
  20058. of operand 1. Add operand 1 to operand 2 and place the widened
  20059. result in operand 0. (This is used express accumulation of
  20060. elements into an accumulator of a wider mode.)
  20061. 'vec_shl_insert_M'
  20062. Shift the elements in vector input operand 1 left one element (i.e.
  20063. away from element 0) and fill the vacated element 0 with the scalar
  20064. in operand 2. Store the result in vector output operand 0.
  20065. Operands 0 and 1 have mode M and operand 2 has the mode appropriate
  20066. for one element of M.
  20067. 'vec_shr_M'
  20068. Whole vector right shift in bits, i.e. towards element 0. Operand
  20069. 1 is a vector to be shifted. Operand 2 is an integer shift amount
  20070. in bits. Operand 0 is where the resulting shifted vector is
  20071. stored. The output and input vectors should have the same modes.
  20072. 'vec_pack_trunc_M'
  20073. Narrow (demote) and merge the elements of two vectors. Operands 1
  20074. and 2 are vectors of the same mode having N integral or floating
  20075. point elements of size S. Operand 0 is the resulting vector in
  20076. which 2*N elements of size N/2 are concatenated after narrowing
  20077. them down using truncation.
  20078. 'vec_pack_ssat_M', 'vec_pack_usat_M'
  20079. Narrow (demote) and merge the elements of two vectors. Operands 1
  20080. and 2 are vectors of the same mode having N integral elements of
  20081. size S. Operand 0 is the resulting vector in which the elements of
  20082. the two input vectors are concatenated after narrowing them down
  20083. using signed/unsigned saturating arithmetic.
  20084. 'vec_pack_sfix_trunc_M', 'vec_pack_ufix_trunc_M'
  20085. Narrow, convert to signed/unsigned integral type and merge the
  20086. elements of two vectors. Operands 1 and 2 are vectors of the same
  20087. mode having N floating point elements of size S. Operand 0 is the
  20088. resulting vector in which 2*N elements of size N/2 are
  20089. concatenated.
  20090. 'vec_unpacks_hi_M', 'vec_unpacks_lo_M'
  20091. Extract and widen (promote) the high/low part of a vector of signed
  20092. integral or floating point elements. The input vector (operand 1)
  20093. has N elements of size S. Widen (promote) the high/low elements of
  20094. the vector using signed or floating point extension and place the
  20095. resulting N/2 values of size 2*S in the output vector (operand 0).
  20096. 'vec_unpacku_hi_M', 'vec_unpacku_lo_M'
  20097. Extract and widen (promote) the high/low part of a vector of
  20098. unsigned integral elements. The input vector (operand 1) has N
  20099. elements of size S. Widen (promote) the high/low elements of the
  20100. vector using zero extension and place the resulting N/2 values of
  20101. size 2*S in the output vector (operand 0).
  20102. 'vec_unpacks_float_hi_M', 'vec_unpacks_float_lo_M'
  20103. 'vec_unpacku_float_hi_M', 'vec_unpacku_float_lo_M'
  20104. Extract, convert to floating point type and widen the high/low part
  20105. of a vector of signed/unsigned integral elements. The input vector
  20106. (operand 1) has N elements of size S. Convert the high/low
  20107. elements of the vector using floating point conversion and place
  20108. the resulting N/2 values of size 2*S in the output vector (operand
  20109. 0).
  20110. 'vec_widen_umult_hi_M', 'vec_widen_umult_lo_M'
  20111. 'vec_widen_smult_hi_M', 'vec_widen_smult_lo_M'
  20112. 'vec_widen_umult_even_M', 'vec_widen_umult_odd_M'
  20113. 'vec_widen_smult_even_M', 'vec_widen_smult_odd_M'
  20114. Signed/Unsigned widening multiplication. The two inputs (operands
  20115. 1 and 2) are vectors with N signed/unsigned elements of size S.
  20116. Multiply the high/low or even/odd elements of the two vectors, and
  20117. put the N/2 products of size 2*S in the output vector (operand 0).
  20118. A target shouldn't implement even/odd pattern pair if it is less
  20119. efficient than lo/hi one.
  20120. 'vec_widen_ushiftl_hi_M', 'vec_widen_ushiftl_lo_M'
  20121. 'vec_widen_sshiftl_hi_M', 'vec_widen_sshiftl_lo_M'
  20122. Signed/Unsigned widening shift left. The first input (operand 1)
  20123. is a vector with N signed/unsigned elements of size S. Operand 2
  20124. is a constant. Shift the high/low elements of operand 1, and put
  20125. the N/2 results of size 2*S in the output vector (operand 0).
  20126. 'mulhisi3'
  20127. Multiply operands 1 and 2, which have mode 'HImode', and store a
  20128. 'SImode' product in operand 0.
  20129. 'mulqihi3', 'mulsidi3'
  20130. Similar widening-multiplication instructions of other widths.
  20131. 'umulqihi3', 'umulhisi3', 'umulsidi3'
  20132. Similar widening-multiplication instructions that do unsigned
  20133. multiplication.
  20134. 'usmulqihi3', 'usmulhisi3', 'usmulsidi3'
  20135. Similar widening-multiplication instructions that interpret the
  20136. first operand as unsigned and the second operand as signed, then do
  20137. a signed multiplication.
  20138. 'smulM3_highpart'
  20139. Perform a signed multiplication of operands 1 and 2, which have
  20140. mode M, and store the most significant half of the product in
  20141. operand 0. The least significant half of the product is discarded.
  20142. 'umulM3_highpart'
  20143. Similar, but the multiplication is unsigned.
  20144. 'maddMN4'
  20145. Multiply operands 1 and 2, sign-extend them to mode N, add operand
  20146. 3, and store the result in operand 0. Operands 1 and 2 have mode M
  20147. and operands 0 and 3 have mode N. Both modes must be integer or
  20148. fixed-point modes and N must be twice the size of M.
  20149. In other words, 'maddMN4' is like 'mulMN3' except that it also adds
  20150. operand 3.
  20151. These instructions are not allowed to 'FAIL'.
  20152. 'umaddMN4'
  20153. Like 'maddMN4', but zero-extend the multiplication operands instead
  20154. of sign-extending them.
  20155. 'ssmaddMN4'
  20156. Like 'maddMN4', but all involved operations must be
  20157. signed-saturating.
  20158. 'usmaddMN4'
  20159. Like 'umaddMN4', but all involved operations must be
  20160. unsigned-saturating.
  20161. 'msubMN4'
  20162. Multiply operands 1 and 2, sign-extend them to mode N, subtract the
  20163. result from operand 3, and store the result in operand 0. Operands
  20164. 1 and 2 have mode M and operands 0 and 3 have mode N. Both modes
  20165. must be integer or fixed-point modes and N must be twice the size
  20166. of M.
  20167. In other words, 'msubMN4' is like 'mulMN3' except that it also
  20168. subtracts the result from operand 3.
  20169. These instructions are not allowed to 'FAIL'.
  20170. 'umsubMN4'
  20171. Like 'msubMN4', but zero-extend the multiplication operands instead
  20172. of sign-extending them.
  20173. 'ssmsubMN4'
  20174. Like 'msubMN4', but all involved operations must be
  20175. signed-saturating.
  20176. 'usmsubMN4'
  20177. Like 'umsubMN4', but all involved operations must be
  20178. unsigned-saturating.
  20179. 'divmodM4'
  20180. Signed division that produces both a quotient and a remainder.
  20181. Operand 1 is divided by operand 2 to produce a quotient stored in
  20182. operand 0 and a remainder stored in operand 3.
  20183. For machines with an instruction that produces both a quotient and
  20184. a remainder, provide a pattern for 'divmodM4' but do not provide
  20185. patterns for 'divM3' and 'modM3'. This allows optimization in the
  20186. relatively common case when both the quotient and remainder are
  20187. computed.
  20188. If an instruction that just produces a quotient or just a remainder
  20189. exists and is more efficient than the instruction that produces
  20190. both, write the output routine of 'divmodM4' to call
  20191. 'find_reg_note' and look for a 'REG_UNUSED' note on the quotient or
  20192. remainder and generate the appropriate instruction.
  20193. 'udivmodM4'
  20194. Similar, but does unsigned division.
  20195. 'ashlM3', 'ssashlM3', 'usashlM3'
  20196. Arithmetic-shift operand 1 left by a number of bits specified by
  20197. operand 2, and store the result in operand 0. Here M is the mode
  20198. of operand 0 and operand 1; operand 2's mode is specified by the
  20199. instruction pattern, and the compiler will convert the operand to
  20200. that mode before generating the instruction. The shift or rotate
  20201. expander or instruction pattern should explicitly specify the mode
  20202. of the operand 2, it should never be 'VOIDmode'. The meaning of
  20203. out-of-range shift counts can optionally be specified by
  20204. 'TARGET_SHIFT_TRUNCATION_MASK'. *Note
  20205. TARGET_SHIFT_TRUNCATION_MASK::. Operand 2 is always a scalar type.
  20206. 'ashrM3', 'lshrM3', 'rotlM3', 'rotrM3'
  20207. Other shift and rotate instructions, analogous to the 'ashlM3'
  20208. instructions. Operand 2 is always a scalar type.
  20209. 'vashlM3', 'vashrM3', 'vlshrM3', 'vrotlM3', 'vrotrM3'
  20210. Vector shift and rotate instructions that take vectors as operand 2
  20211. instead of a scalar type.
  20212. 'bswapM2'
  20213. Reverse the order of bytes of operand 1 and store the result in
  20214. operand 0.
  20215. 'negM2', 'ssnegM2', 'usnegM2'
  20216. Negate operand 1 and store the result in operand 0.
  20217. 'negvM3'
  20218. Like 'negM2' but takes a 'code_label' as operand 2 and emits code
  20219. to jump to it if signed overflow occurs during the negation.
  20220. 'absM2'
  20221. Store the absolute value of operand 1 into operand 0.
  20222. 'sqrtM2'
  20223. Store the square root of operand 1 into operand 0. Both operands
  20224. have mode M, which is a scalar or vector floating-point mode.
  20225. This pattern is not allowed to 'FAIL'.
  20226. 'rsqrtM2'
  20227. Store the reciprocal of the square root of operand 1 into operand
  20228. 0. Both operands have mode M, which is a scalar or vector
  20229. floating-point mode.
  20230. On most architectures this pattern is only approximate, so either
  20231. its C condition or the 'TARGET_OPTAB_SUPPORTED_P' hook should check
  20232. for the appropriate math flags. (Using the C condition is more
  20233. direct, but using 'TARGET_OPTAB_SUPPORTED_P' can be useful if a
  20234. target-specific built-in also uses the 'rsqrtM2' pattern.)
  20235. This pattern is not allowed to 'FAIL'.
  20236. 'fmodM3'
  20237. Store the remainder of dividing operand 1 by operand 2 into operand
  20238. 0, rounded towards zero to an integer. All operands have mode M,
  20239. which is a scalar or vector floating-point mode.
  20240. This pattern is not allowed to 'FAIL'.
  20241. 'remainderM3'
  20242. Store the remainder of dividing operand 1 by operand 2 into operand
  20243. 0, rounded to the nearest integer. All operands have mode M, which
  20244. is a scalar or vector floating-point mode.
  20245. This pattern is not allowed to 'FAIL'.
  20246. 'scalbM3'
  20247. Raise 'FLT_RADIX' to the power of operand 2, multiply it by operand
  20248. 1, and store the result in operand 0. All operands have mode M,
  20249. which is a scalar or vector floating-point mode.
  20250. This pattern is not allowed to 'FAIL'.
  20251. 'ldexpM3'
  20252. Raise 2 to the power of operand 2, multiply it by operand 1, and
  20253. store the result in operand 0. Operands 0 and 1 have mode M, which
  20254. is a scalar or vector floating-point mode. Operand 2's mode has
  20255. the same number of elements as M and each element is wide enough to
  20256. store an 'int'. The integers are signed.
  20257. This pattern is not allowed to 'FAIL'.
  20258. 'cosM2'
  20259. Store the cosine of operand 1 into operand 0. Both operands have
  20260. mode M, which is a scalar or vector floating-point mode.
  20261. This pattern is not allowed to 'FAIL'.
  20262. 'sinM2'
  20263. Store the sine of operand 1 into operand 0. Both operands have
  20264. mode M, which is a scalar or vector floating-point mode.
  20265. This pattern is not allowed to 'FAIL'.
  20266. 'sincosM3'
  20267. Store the cosine of operand 2 into operand 0 and the sine of
  20268. operand 2 into operand 1. All operands have mode M, which is a
  20269. scalar or vector floating-point mode.
  20270. Targets that can calculate the sine and cosine simultaneously can
  20271. implement this pattern as opposed to implementing individual
  20272. 'sinM2' and 'cosM2' patterns. The 'sin' and 'cos' built-in
  20273. functions will then be expanded to the 'sincosM3' pattern, with one
  20274. of the output values left unused.
  20275. 'tanM2'
  20276. Store the tangent of operand 1 into operand 0. Both operands have
  20277. mode M, which is a scalar or vector floating-point mode.
  20278. This pattern is not allowed to 'FAIL'.
  20279. 'asinM2'
  20280. Store the arc sine of operand 1 into operand 0. Both operands have
  20281. mode M, which is a scalar or vector floating-point mode.
  20282. This pattern is not allowed to 'FAIL'.
  20283. 'acosM2'
  20284. Store the arc cosine of operand 1 into operand 0. Both operands
  20285. have mode M, which is a scalar or vector floating-point mode.
  20286. This pattern is not allowed to 'FAIL'.
  20287. 'atanM2'
  20288. Store the arc tangent of operand 1 into operand 0. Both operands
  20289. have mode M, which is a scalar or vector floating-point mode.
  20290. This pattern is not allowed to 'FAIL'.
  20291. 'expM2'
  20292. Raise e (the base of natural logarithms) to the power of operand 1
  20293. and store the result in operand 0. Both operands have mode M,
  20294. which is a scalar or vector floating-point mode.
  20295. This pattern is not allowed to 'FAIL'.
  20296. 'expm1M2'
  20297. Raise e (the base of natural logarithms) to the power of operand 1,
  20298. subtract 1, and store the result in operand 0. Both operands have
  20299. mode M, which is a scalar or vector floating-point mode.
  20300. For inputs close to zero, the pattern is expected to be more
  20301. accurate than a separate 'expM2' and 'subM3' would be.
  20302. This pattern is not allowed to 'FAIL'.
  20303. 'exp10M2'
  20304. Raise 10 to the power of operand 1 and store the result in operand
  20305. 0. Both operands have mode M, which is a scalar or vector
  20306. floating-point mode.
  20307. This pattern is not allowed to 'FAIL'.
  20308. 'exp2M2'
  20309. Raise 2 to the power of operand 1 and store the result in operand
  20310. 0. Both operands have mode M, which is a scalar or vector
  20311. floating-point mode.
  20312. This pattern is not allowed to 'FAIL'.
  20313. 'logM2'
  20314. Store the natural logarithm of operand 1 into operand 0. Both
  20315. operands have mode M, which is a scalar or vector floating-point
  20316. mode.
  20317. This pattern is not allowed to 'FAIL'.
  20318. 'log1pM2'
  20319. Add 1 to operand 1, compute the natural logarithm, and store the
  20320. result in operand 0. Both operands have mode M, which is a scalar
  20321. or vector floating-point mode.
  20322. For inputs close to zero, the pattern is expected to be more
  20323. accurate than a separate 'addM3' and 'logM2' would be.
  20324. This pattern is not allowed to 'FAIL'.
  20325. 'log10M2'
  20326. Store the base-10 logarithm of operand 1 into operand 0. Both
  20327. operands have mode M, which is a scalar or vector floating-point
  20328. mode.
  20329. This pattern is not allowed to 'FAIL'.
  20330. 'log2M2'
  20331. Store the base-2 logarithm of operand 1 into operand 0. Both
  20332. operands have mode M, which is a scalar or vector floating-point
  20333. mode.
  20334. This pattern is not allowed to 'FAIL'.
  20335. 'logbM2'
  20336. Store the base-'FLT_RADIX' logarithm of operand 1 into operand 0.
  20337. Both operands have mode M, which is a scalar or vector
  20338. floating-point mode.
  20339. This pattern is not allowed to 'FAIL'.
  20340. 'significandM2'
  20341. Store the significand of floating-point operand 1 in operand 0.
  20342. Both operands have mode M, which is a scalar or vector
  20343. floating-point mode.
  20344. This pattern is not allowed to 'FAIL'.
  20345. 'powM3'
  20346. Store the value of operand 1 raised to the exponent operand 2 into
  20347. operand 0. All operands have mode M, which is a scalar or vector
  20348. floating-point mode.
  20349. This pattern is not allowed to 'FAIL'.
  20350. 'atan2M3'
  20351. Store the arc tangent (inverse tangent) of operand 1 divided by
  20352. operand 2 into operand 0, using the signs of both arguments to
  20353. determine the quadrant of the result. All operands have mode M,
  20354. which is a scalar or vector floating-point mode.
  20355. This pattern is not allowed to 'FAIL'.
  20356. 'floorM2'
  20357. Store the largest integral value not greater than operand 1 in
  20358. operand 0. Both operands have mode M, which is a scalar or vector
  20359. floating-point mode. If '-ffp-int-builtin-inexact' is in effect,
  20360. the "inexact" exception may be raised for noninteger operands;
  20361. otherwise, it may not.
  20362. This pattern is not allowed to 'FAIL'.
  20363. 'btruncM2'
  20364. Round operand 1 to an integer, towards zero, and store the result
  20365. in operand 0. Both operands have mode M, which is a scalar or
  20366. vector floating-point mode. If '-ffp-int-builtin-inexact' is in
  20367. effect, the "inexact" exception may be raised for noninteger
  20368. operands; otherwise, it may not.
  20369. This pattern is not allowed to 'FAIL'.
  20370. 'roundM2'
  20371. Round operand 1 to the nearest integer, rounding away from zero in
  20372. the event of a tie, and store the result in operand 0. Both
  20373. operands have mode M, which is a scalar or vector floating-point
  20374. mode. If '-ffp-int-builtin-inexact' is in effect, the "inexact"
  20375. exception may be raised for noninteger operands; otherwise, it may
  20376. not.
  20377. This pattern is not allowed to 'FAIL'.
  20378. 'ceilM2'
  20379. Store the smallest integral value not less than operand 1 in
  20380. operand 0. Both operands have mode M, which is a scalar or vector
  20381. floating-point mode. If '-ffp-int-builtin-inexact' is in effect,
  20382. the "inexact" exception may be raised for noninteger operands;
  20383. otherwise, it may not.
  20384. This pattern is not allowed to 'FAIL'.
  20385. 'nearbyintM2'
  20386. Round operand 1 to an integer, using the current rounding mode, and
  20387. store the result in operand 0. Do not raise an inexact condition
  20388. when the result is different from the argument. Both operands have
  20389. mode M, which is a scalar or vector floating-point mode.
  20390. This pattern is not allowed to 'FAIL'.
  20391. 'rintM2'
  20392. Round operand 1 to an integer, using the current rounding mode, and
  20393. store the result in operand 0. Raise an inexact condition when the
  20394. result is different from the argument. Both operands have mode M,
  20395. which is a scalar or vector floating-point mode.
  20396. This pattern is not allowed to 'FAIL'.
  20397. 'lrintMN2'
  20398. Convert operand 1 (valid for floating point mode M) to fixed point
  20399. mode N as a signed number according to the current rounding mode
  20400. and store in operand 0 (which has mode N).
  20401. 'lroundMN2'
  20402. Convert operand 1 (valid for floating point mode M) to fixed point
  20403. mode N as a signed number rounding to nearest and away from zero
  20404. and store in operand 0 (which has mode N).
  20405. 'lfloorMN2'
  20406. Convert operand 1 (valid for floating point mode M) to fixed point
  20407. mode N as a signed number rounding down and store in operand 0
  20408. (which has mode N).
  20409. 'lceilMN2'
  20410. Convert operand 1 (valid for floating point mode M) to fixed point
  20411. mode N as a signed number rounding up and store in operand 0 (which
  20412. has mode N).
  20413. 'copysignM3'
  20414. Store a value with the magnitude of operand 1 and the sign of
  20415. operand 2 into operand 0. All operands have mode M, which is a
  20416. scalar or vector floating-point mode.
  20417. This pattern is not allowed to 'FAIL'.
  20418. 'ffsM2'
  20419. Store into operand 0 one plus the index of the least significant
  20420. 1-bit of operand 1. If operand 1 is zero, store zero.
  20421. M is either a scalar or vector integer mode. When it is a scalar,
  20422. operand 1 has mode M but operand 0 can have whatever scalar integer
  20423. mode is suitable for the target. The compiler will insert
  20424. conversion instructions as necessary (typically to convert the
  20425. result to the same width as 'int'). When M is a vector, both
  20426. operands must have mode M.
  20427. This pattern is not allowed to 'FAIL'.
  20428. 'clrsbM2'
  20429. Count leading redundant sign bits. Store into operand 0 the number
  20430. of redundant sign bits in operand 1, starting at the most
  20431. significant bit position. A redundant sign bit is defined as any
  20432. sign bit after the first. As such, this count will be one less
  20433. than the count of leading sign bits.
  20434. M is either a scalar or vector integer mode. When it is a scalar,
  20435. operand 1 has mode M but operand 0 can have whatever scalar integer
  20436. mode is suitable for the target. The compiler will insert
  20437. conversion instructions as necessary (typically to convert the
  20438. result to the same width as 'int'). When M is a vector, both
  20439. operands must have mode M.
  20440. This pattern is not allowed to 'FAIL'.
  20441. 'clzM2'
  20442. Store into operand 0 the number of leading 0-bits in operand 1,
  20443. starting at the most significant bit position. If operand 1 is 0,
  20444. the 'CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the
  20445. result is undefined or has a useful value.
  20446. M is either a scalar or vector integer mode. When it is a scalar,
  20447. operand 1 has mode M but operand 0 can have whatever scalar integer
  20448. mode is suitable for the target. The compiler will insert
  20449. conversion instructions as necessary (typically to convert the
  20450. result to the same width as 'int'). When M is a vector, both
  20451. operands must have mode M.
  20452. This pattern is not allowed to 'FAIL'.
  20453. 'ctzM2'
  20454. Store into operand 0 the number of trailing 0-bits in operand 1,
  20455. starting at the least significant bit position. If operand 1 is 0,
  20456. the 'CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the
  20457. result is undefined or has a useful value.
  20458. M is either a scalar or vector integer mode. When it is a scalar,
  20459. operand 1 has mode M but operand 0 can have whatever scalar integer
  20460. mode is suitable for the target. The compiler will insert
  20461. conversion instructions as necessary (typically to convert the
  20462. result to the same width as 'int'). When M is a vector, both
  20463. operands must have mode M.
  20464. This pattern is not allowed to 'FAIL'.
  20465. 'popcountM2'
  20466. Store into operand 0 the number of 1-bits in operand 1.
  20467. M is either a scalar or vector integer mode. When it is a scalar,
  20468. operand 1 has mode M but operand 0 can have whatever scalar integer
  20469. mode is suitable for the target. The compiler will insert
  20470. conversion instructions as necessary (typically to convert the
  20471. result to the same width as 'int'). When M is a vector, both
  20472. operands must have mode M.
  20473. This pattern is not allowed to 'FAIL'.
  20474. 'parityM2'
  20475. Store into operand 0 the parity of operand 1, i.e. the number of
  20476. 1-bits in operand 1 modulo 2.
  20477. M is either a scalar or vector integer mode. When it is a scalar,
  20478. operand 1 has mode M but operand 0 can have whatever scalar integer
  20479. mode is suitable for the target. The compiler will insert
  20480. conversion instructions as necessary (typically to convert the
  20481. result to the same width as 'int'). When M is a vector, both
  20482. operands must have mode M.
  20483. This pattern is not allowed to 'FAIL'.
  20484. 'one_cmplM2'
  20485. Store the bitwise-complement of operand 1 into operand 0.
  20486. 'movmemM'
  20487. Block move instruction. The destination and source blocks of
  20488. memory are the first two operands, and both are 'mem:BLK's with an
  20489. address in mode 'Pmode'.
  20490. The number of bytes to move is the third operand, in mode M.
  20491. Usually, you specify 'Pmode' for M. However, if you can generate
  20492. better code knowing the range of valid lengths is smaller than
  20493. those representable in a full Pmode pointer, you should provide a
  20494. pattern with a mode corresponding to the range of values you can
  20495. handle efficiently (e.g., 'QImode' for values in the range 0-127;
  20496. note we avoid numbers that appear negative) and also a pattern with
  20497. 'Pmode'.
  20498. The fourth operand is the known shared alignment of the source and
  20499. destination, in the form of a 'const_int' rtx. Thus, if the
  20500. compiler knows that both source and destination are word-aligned,
  20501. it may provide the value 4 for this operand.
  20502. Optional operands 5 and 6 specify expected alignment and size of
  20503. block respectively. The expected alignment differs from alignment
  20504. in operand 4 in a way that the blocks are not required to be
  20505. aligned according to it in all cases. This expected alignment is
  20506. also in bytes, just like operand 4. Expected size, when unknown,
  20507. is set to '(const_int -1)'.
  20508. Descriptions of multiple 'movmemM' patterns can only be beneficial
  20509. if the patterns for smaller modes have fewer restrictions on their
  20510. first, second and fourth operands. Note that the mode M in
  20511. 'movmemM' does not impose any restriction on the mode of
  20512. individually moved data units in the block.
  20513. These patterns need not give special consideration to the
  20514. possibility that the source and destination strings might overlap.
  20515. 'movstr'
  20516. String copy instruction, with 'stpcpy' semantics. Operand 0 is an
  20517. output operand in mode 'Pmode'. The addresses of the destination
  20518. and source strings are operands 1 and 2, and both are 'mem:BLK's
  20519. with addresses in mode 'Pmode'. The execution of the expansion of
  20520. this pattern should store in operand 0 the address in which the
  20521. 'NUL' terminator was stored in the destination string.
  20522. This patern has also several optional operands that are same as in
  20523. 'setmem'.
  20524. 'setmemM'
  20525. Block set instruction. The destination string is the first
  20526. operand, given as a 'mem:BLK' whose address is in mode 'Pmode'.
  20527. The number of bytes to set is the second operand, in mode M. The
  20528. value to initialize the memory with is the third operand. Targets
  20529. that only support the clearing of memory should reject any value
  20530. that is not the constant 0. See 'movmemM' for a discussion of the
  20531. choice of mode.
  20532. The fourth operand is the known alignment of the destination, in
  20533. the form of a 'const_int' rtx. Thus, if the compiler knows that
  20534. the destination is word-aligned, it may provide the value 4 for
  20535. this operand.
  20536. Optional operands 5 and 6 specify expected alignment and size of
  20537. block respectively. The expected alignment differs from alignment
  20538. in operand 4 in a way that the blocks are not required to be
  20539. aligned according to it in all cases. This expected alignment is
  20540. also in bytes, just like operand 4. Expected size, when unknown,
  20541. is set to '(const_int -1)'. Operand 7 is the minimal size of the
  20542. block and operand 8 is the maximal size of the block (NULL if it
  20543. can not be represented as CONST_INT). Operand 9 is the probable
  20544. maximal size (i.e. we can not rely on it for correctness, but it
  20545. can be used for choosing proper code sequence for a given size).
  20546. The use for multiple 'setmemM' is as for 'movmemM'.
  20547. 'cmpstrnM'
  20548. String compare instruction, with five operands. Operand 0 is the
  20549. output; it has mode M. The remaining four operands are like the
  20550. operands of 'movmemM'. The two memory blocks specified are
  20551. compared byte by byte in lexicographic order starting at the
  20552. beginning of each string. The instruction is not allowed to
  20553. prefetch more than one byte at a time since either string may end
  20554. in the first byte and reading past that may access an invalid page
  20555. or segment and cause a fault. The comparison terminates early if
  20556. the fetched bytes are different or if they are equal to zero. The
  20557. effect of the instruction is to store a value in operand 0 whose
  20558. sign indicates the result of the comparison.
  20559. 'cmpstrM'
  20560. String compare instruction, without known maximum length. Operand
  20561. 0 is the output; it has mode M. The second and third operand are
  20562. the blocks of memory to be compared; both are 'mem:BLK' with an
  20563. address in mode 'Pmode'.
  20564. The fourth operand is the known shared alignment of the source and
  20565. destination, in the form of a 'const_int' rtx. Thus, if the
  20566. compiler knows that both source and destination are word-aligned,
  20567. it may provide the value 4 for this operand.
  20568. The two memory blocks specified are compared byte by byte in
  20569. lexicographic order starting at the beginning of each string. The
  20570. instruction is not allowed to prefetch more than one byte at a time
  20571. since either string may end in the first byte and reading past that
  20572. may access an invalid page or segment and cause a fault. The
  20573. comparison will terminate when the fetched bytes are different or
  20574. if they are equal to zero. The effect of the instruction is to
  20575. store a value in operand 0 whose sign indicates the result of the
  20576. comparison.
  20577. 'cmpmemM'
  20578. Block compare instruction, with five operands like the operands of
  20579. 'cmpstrM'. The two memory blocks specified are compared byte by
  20580. byte in lexicographic order starting at the beginning of each
  20581. block. Unlike 'cmpstrM' the instruction can prefetch any bytes in
  20582. the two memory blocks. Also unlike 'cmpstrM' the comparison will
  20583. not stop if both bytes are zero. The effect of the instruction is
  20584. to store a value in operand 0 whose sign indicates the result of
  20585. the comparison.
  20586. 'strlenM'
  20587. Compute the length of a string, with three operands. Operand 0 is
  20588. the result (of mode M), operand 1 is a 'mem' referring to the first
  20589. character of the string, operand 2 is the character to search for
  20590. (normally zero), and operand 3 is a constant describing the known
  20591. alignment of the beginning of the string.
  20592. 'floatMN2'
  20593. Convert signed integer operand 1 (valid for fixed point mode M) to
  20594. floating point mode N and store in operand 0 (which has mode N).
  20595. 'floatunsMN2'
  20596. Convert unsigned integer operand 1 (valid for fixed point mode M)
  20597. to floating point mode N and store in operand 0 (which has mode N).
  20598. 'fixMN2'
  20599. Convert operand 1 (valid for floating point mode M) to fixed point
  20600. mode N as a signed number and store in operand 0 (which has mode
  20601. N). This instruction's result is defined only when the value of
  20602. operand 1 is an integer.
  20603. If the machine description defines this pattern, it also needs to
  20604. define the 'ftrunc' pattern.
  20605. 'fixunsMN2'
  20606. Convert operand 1 (valid for floating point mode M) to fixed point
  20607. mode N as an unsigned number and store in operand 0 (which has mode
  20608. N). This instruction's result is defined only when the value of
  20609. operand 1 is an integer.
  20610. 'ftruncM2'
  20611. Convert operand 1 (valid for floating point mode M) to an integer
  20612. value, still represented in floating point mode M, and store it in
  20613. operand 0 (valid for floating point mode M).
  20614. 'fix_truncMN2'
  20615. Like 'fixMN2' but works for any floating point value of mode M by
  20616. converting the value to an integer.
  20617. 'fixuns_truncMN2'
  20618. Like 'fixunsMN2' but works for any floating point value of mode M
  20619. by converting the value to an integer.
  20620. 'truncMN2'
  20621. Truncate operand 1 (valid for mode M) to mode N and store in
  20622. operand 0 (which has mode N). Both modes must be fixed point or
  20623. both floating point.
  20624. 'extendMN2'
  20625. Sign-extend operand 1 (valid for mode M) to mode N and store in
  20626. operand 0 (which has mode N). Both modes must be fixed point or
  20627. both floating point.
  20628. 'zero_extendMN2'
  20629. Zero-extend operand 1 (valid for mode M) to mode N and store in
  20630. operand 0 (which has mode N). Both modes must be fixed point.
  20631. 'fractMN2'
  20632. Convert operand 1 of mode M to mode N and store in operand 0 (which
  20633. has mode N). Mode M and mode N could be fixed-point to
  20634. fixed-point, signed integer to fixed-point, fixed-point to signed
  20635. integer, floating-point to fixed-point, or fixed-point to
  20636. floating-point. When overflows or underflows happen, the results
  20637. are undefined.
  20638. 'satfractMN2'
  20639. Convert operand 1 of mode M to mode N and store in operand 0 (which
  20640. has mode N). Mode M and mode N could be fixed-point to
  20641. fixed-point, signed integer to fixed-point, or floating-point to
  20642. fixed-point. When overflows or underflows happen, the instruction
  20643. saturates the results to the maximum or the minimum.
  20644. 'fractunsMN2'
  20645. Convert operand 1 of mode M to mode N and store in operand 0 (which
  20646. has mode N). Mode M and mode N could be unsigned integer to
  20647. fixed-point, or fixed-point to unsigned integer. When overflows or
  20648. underflows happen, the results are undefined.
  20649. 'satfractunsMN2'
  20650. Convert unsigned integer operand 1 of mode M to fixed-point mode N
  20651. and store in operand 0 (which has mode N). When overflows or
  20652. underflows happen, the instruction saturates the results to the
  20653. maximum or the minimum.
  20654. 'extvM'
  20655. Extract a bit-field from register operand 1, sign-extend it, and
  20656. store it in operand 0. Operand 2 specifies the width of the field
  20657. in bits and operand 3 the starting bit, which counts from the most
  20658. significant bit if 'BITS_BIG_ENDIAN' is true and from the least
  20659. significant bit otherwise.
  20660. Operands 0 and 1 both have mode M. Operands 2 and 3 have a
  20661. target-specific mode.
  20662. 'extvmisalignM'
  20663. Extract a bit-field from memory operand 1, sign extend it, and
  20664. store it in operand 0. Operand 2 specifies the width in bits and
  20665. operand 3 the starting bit. The starting bit is always somewhere
  20666. in the first byte of operand 1; it counts from the most significant
  20667. bit if 'BITS_BIG_ENDIAN' is true and from the least significant bit
  20668. otherwise.
  20669. Operand 0 has mode M while operand 1 has 'BLK' mode. Operands 2
  20670. and 3 have a target-specific mode.
  20671. The instruction must not read beyond the last byte of the
  20672. bit-field.
  20673. 'extzvM'
  20674. Like 'extvM' except that the bit-field value is zero-extended.
  20675. 'extzvmisalignM'
  20676. Like 'extvmisalignM' except that the bit-field value is
  20677. zero-extended.
  20678. 'insvM'
  20679. Insert operand 3 into a bit-field of register operand 0. Operand 1
  20680. specifies the width of the field in bits and operand 2 the starting
  20681. bit, which counts from the most significant bit if
  20682. 'BITS_BIG_ENDIAN' is true and from the least significant bit
  20683. otherwise.
  20684. Operands 0 and 3 both have mode M. Operands 1 and 2 have a
  20685. target-specific mode.
  20686. 'insvmisalignM'
  20687. Insert operand 3 into a bit-field of memory operand 0. Operand 1
  20688. specifies the width of the field in bits and operand 2 the starting
  20689. bit. The starting bit is always somewhere in the first byte of
  20690. operand 0; it counts from the most significant bit if
  20691. 'BITS_BIG_ENDIAN' is true and from the least significant bit
  20692. otherwise.
  20693. Operand 3 has mode M while operand 0 has 'BLK' mode. Operands 1
  20694. and 2 have a target-specific mode.
  20695. The instruction must not read or write beyond the last byte of the
  20696. bit-field.
  20697. 'extv'
  20698. Extract a bit-field from operand 1 (a register or memory operand),
  20699. where operand 2 specifies the width in bits and operand 3 the
  20700. starting bit, and store it in operand 0. Operand 0 must have mode
  20701. 'word_mode'. Operand 1 may have mode 'byte_mode' or 'word_mode';
  20702. often 'word_mode' is allowed only for registers. Operands 2 and 3
  20703. must be valid for 'word_mode'.
  20704. The RTL generation pass generates this instruction only with
  20705. constants for operands 2 and 3 and the constant is never zero for
  20706. operand 2.
  20707. The bit-field value is sign-extended to a full word integer before
  20708. it is stored in operand 0.
  20709. This pattern is deprecated; please use 'extvM' and 'extvmisalignM'
  20710. instead.
  20711. 'extzv'
  20712. Like 'extv' except that the bit-field value is zero-extended.
  20713. This pattern is deprecated; please use 'extzvM' and
  20714. 'extzvmisalignM' instead.
  20715. 'insv'
  20716. Store operand 3 (which must be valid for 'word_mode') into a
  20717. bit-field in operand 0, where operand 1 specifies the width in bits
  20718. and operand 2 the starting bit. Operand 0 may have mode
  20719. 'byte_mode' or 'word_mode'; often 'word_mode' is allowed only for
  20720. registers. Operands 1 and 2 must be valid for 'word_mode'.
  20721. The RTL generation pass generates this instruction only with
  20722. constants for operands 1 and 2 and the constant is never zero for
  20723. operand 1.
  20724. This pattern is deprecated; please use 'insvM' and 'insvmisalignM'
  20725. instead.
  20726. 'movMODEcc'
  20727. Conditionally move operand 2 or operand 3 into operand 0 according
  20728. to the comparison in operand 1. If the comparison is true, operand
  20729. 2 is moved into operand 0, otherwise operand 3 is moved.
  20730. The mode of the operands being compared need not be the same as the
  20731. operands being moved. Some machines, sparc64 for example, have
  20732. instructions that conditionally move an integer value based on the
  20733. floating point condition codes and vice versa.
  20734. If the machine does not have conditional move instructions, do not
  20735. define these patterns.
  20736. 'addMODEcc'
  20737. Similar to 'movMODEcc' but for conditional addition. Conditionally
  20738. move operand 2 or (operands 2 + operand 3) into operand 0 according
  20739. to the comparison in operand 1. If the comparison is false,
  20740. operand 2 is moved into operand 0, otherwise (operand 2 + operand
  20741. 3) is moved.
  20742. 'cond_addMODE'
  20743. 'cond_subMODE'
  20744. 'cond_andMODE'
  20745. 'cond_iorMODE'
  20746. 'cond_xorMODE'
  20747. 'cond_sminMODE'
  20748. 'cond_smaxMODE'
  20749. 'cond_uminMODE'
  20750. 'cond_umaxMODE'
  20751. Perform an elementwise operation on vector operands 2 and 3, under
  20752. the control of the vector mask in operand 1, and store the result
  20753. in operand 0. This is equivalent to:
  20754. for (i = 0; i < GET_MODE_NUNITS (N); i++)
  20755. op0[i] = op1[i] ? op2[i] OP op3[i] : op2[i];
  20756. where, for example, OP is '+' for 'cond_addMODE'.
  20757. When defined for floating-point modes, the contents of 'op3[i]' are
  20758. not interpreted if OP1[I] is false, just like they would not be in
  20759. a normal C '?:' condition.
  20760. Operands 0, 2 and 3 all have mode M, while operand 1 has the mode
  20761. returned by 'TARGET_VECTORIZE_GET_MASK_MODE'.
  20762. 'negMODEcc'
  20763. Similar to 'movMODEcc' but for conditional negation. Conditionally
  20764. move the negation of operand 2 or the unchanged operand 3 into
  20765. operand 0 according to the comparison in operand 1. If the
  20766. comparison is true, the negation of operand 2 is moved into operand
  20767. 0, otherwise operand 3 is moved.
  20768. 'notMODEcc'
  20769. Similar to 'negMODEcc' but for conditional complement.
  20770. Conditionally move the bitwise complement of operand 2 or the
  20771. unchanged operand 3 into operand 0 according to the comparison in
  20772. operand 1. If the comparison is true, the complement of operand 2
  20773. is moved into operand 0, otherwise operand 3 is moved.
  20774. 'cstoreMODE4'
  20775. Store zero or nonzero in operand 0 according to whether a
  20776. comparison is true. Operand 1 is a comparison operator. Operand 2
  20777. and operand 3 are the first and second operand of the comparison,
  20778. respectively. You specify the mode that operand 0 must have when
  20779. you write the 'match_operand' expression. The compiler
  20780. automatically sees which mode you have used and supplies an operand
  20781. of that mode.
  20782. The value stored for a true condition must have 1 as its low bit,
  20783. or else must be negative. Otherwise the instruction is not
  20784. suitable and you should omit it from the machine description. You
  20785. describe to the compiler exactly which value is stored by defining
  20786. the macro 'STORE_FLAG_VALUE' (*note Misc::). If a description
  20787. cannot be found that can be used for all the possible comparison
  20788. operators, you should pick one and use a 'define_expand' to map all
  20789. results onto the one you chose.
  20790. These operations may 'FAIL', but should do so only in relatively
  20791. uncommon cases; if they would 'FAIL' for common cases involving
  20792. integer comparisons, it is best to restrict the predicates to not
  20793. allow these operands. Likewise if a given comparison operator will
  20794. always fail, independent of the operands (for floating-point modes,
  20795. the 'ordered_comparison_operator' predicate is often useful in this
  20796. case).
  20797. If this pattern is omitted, the compiler will generate a
  20798. conditional branch--for example, it may copy a constant one to the
  20799. target and branching around an assignment of zero to the target--or
  20800. a libcall. If the predicate for operand 1 only rejects some
  20801. operators, it will also try reordering the operands and/or
  20802. inverting the result value (e.g. by an exclusive OR). These
  20803. possibilities could be cheaper or equivalent to the instructions
  20804. used for the 'cstoreMODE4' pattern followed by those required to
  20805. convert a positive result from 'STORE_FLAG_VALUE' to 1; in this
  20806. case, you can and should make operand 1's predicate reject some
  20807. operators in the 'cstoreMODE4' pattern, or remove the pattern
  20808. altogether from the machine description.
  20809. 'cbranchMODE4'
  20810. Conditional branch instruction combined with a compare instruction.
  20811. Operand 0 is a comparison operator. Operand 1 and operand 2 are
  20812. the first and second operands of the comparison, respectively.
  20813. Operand 3 is the 'code_label' to jump to.
  20814. 'jump'
  20815. A jump inside a function; an unconditional branch. Operand 0 is
  20816. the 'code_label' to jump to. This pattern name is mandatory on all
  20817. machines.
  20818. 'call'
  20819. Subroutine call instruction returning no value. Operand 0 is the
  20820. function to call; operand 1 is the number of bytes of arguments
  20821. pushed as a 'const_int'; operand 2 is the number of registers used
  20822. as operands.
  20823. On most machines, operand 2 is not actually stored into the RTL
  20824. pattern. It is supplied for the sake of some RISC machines which
  20825. need to put this information into the assembler code; they can put
  20826. it in the RTL instead of operand 1.
  20827. Operand 0 should be a 'mem' RTX whose address is the address of the
  20828. function. Note, however, that this address can be a 'symbol_ref'
  20829. expression even if it would not be a legitimate memory address on
  20830. the target machine. If it is also not a valid argument for a call
  20831. instruction, the pattern for this operation should be a
  20832. 'define_expand' (*note Expander Definitions::) that places the
  20833. address into a register and uses that register in the call
  20834. instruction.
  20835. 'call_value'
  20836. Subroutine call instruction returning a value. Operand 0 is the
  20837. hard register in which the value is returned. There are three more
  20838. operands, the same as the three operands of the 'call' instruction
  20839. (but with numbers increased by one).
  20840. Subroutines that return 'BLKmode' objects use the 'call' insn.
  20841. 'call_pop', 'call_value_pop'
  20842. Similar to 'call' and 'call_value', except used if defined and if
  20843. 'RETURN_POPS_ARGS' is nonzero. They should emit a 'parallel' that
  20844. contains both the function call and a 'set' to indicate the
  20845. adjustment made to the frame pointer.
  20846. For machines where 'RETURN_POPS_ARGS' can be nonzero, the use of
  20847. these patterns increases the number of functions for which the
  20848. frame pointer can be eliminated, if desired.
  20849. 'untyped_call'
  20850. Subroutine call instruction returning a value of any type. Operand
  20851. 0 is the function to call; operand 1 is a memory location where the
  20852. result of calling the function is to be stored; operand 2 is a
  20853. 'parallel' expression where each element is a 'set' expression that
  20854. indicates the saving of a function return value into the result
  20855. block.
  20856. This instruction pattern should be defined to support
  20857. '__builtin_apply' on machines where special instructions are needed
  20858. to call a subroutine with arbitrary arguments or to save the value
  20859. returned. This instruction pattern is required on machines that
  20860. have multiple registers that can hold a return value (i.e.
  20861. 'FUNCTION_VALUE_REGNO_P' is true for more than one register).
  20862. 'return'
  20863. Subroutine return instruction. This instruction pattern name
  20864. should be defined only if a single instruction can do all the work
  20865. of returning from a function.
  20866. Like the 'movM' patterns, this pattern is also used after the RTL
  20867. generation phase. In this case it is to support machines where
  20868. multiple instructions are usually needed to return from a function,
  20869. but some class of functions only requires one instruction to
  20870. implement a return. Normally, the applicable functions are those
  20871. which do not need to save any registers or allocate stack space.
  20872. It is valid for this pattern to expand to an instruction using
  20873. 'simple_return' if no epilogue is required.
  20874. 'simple_return'
  20875. Subroutine return instruction. This instruction pattern name
  20876. should be defined only if a single instruction can do all the work
  20877. of returning from a function on a path where no epilogue is
  20878. required. This pattern is very similar to the 'return' instruction
  20879. pattern, but it is emitted only by the shrink-wrapping optimization
  20880. on paths where the function prologue has not been executed, and a
  20881. function return should occur without any of the effects of the
  20882. epilogue. Additional uses may be introduced on paths where both
  20883. the prologue and the epilogue have executed.
  20884. For such machines, the condition specified in this pattern should
  20885. only be true when 'reload_completed' is nonzero and the function's
  20886. epilogue would only be a single instruction. For machines with
  20887. register windows, the routine 'leaf_function_p' may be used to
  20888. determine if a register window push is required.
  20889. Machines that have conditional return instructions should define
  20890. patterns such as
  20891. (define_insn ""
  20892. [(set (pc)
  20893. (if_then_else (match_operator
  20894. 0 "comparison_operator"
  20895. [(cc0) (const_int 0)])
  20896. (return)
  20897. (pc)))]
  20898. "CONDITION"
  20899. "...")
  20900. where CONDITION would normally be the same condition specified on
  20901. the named 'return' pattern.
  20902. 'untyped_return'
  20903. Untyped subroutine return instruction. This instruction pattern
  20904. should be defined to support '__builtin_return' on machines where
  20905. special instructions are needed to return a value of any type.
  20906. Operand 0 is a memory location where the result of calling a
  20907. function with '__builtin_apply' is stored; operand 1 is a
  20908. 'parallel' expression where each element is a 'set' expression that
  20909. indicates the restoring of a function return value from the result
  20910. block.
  20911. 'nop'
  20912. No-op instruction. This instruction pattern name should always be
  20913. defined to output a no-op in assembler code. '(const_int 0)' will
  20914. do as an RTL pattern.
  20915. 'indirect_jump'
  20916. An instruction to jump to an address which is operand zero. This
  20917. pattern name is mandatory on all machines.
  20918. 'casesi'
  20919. Instruction to jump through a dispatch table, including bounds
  20920. checking. This instruction takes five operands:
  20921. 1. The index to dispatch on, which has mode 'SImode'.
  20922. 2. The lower bound for indices in the table, an integer constant.
  20923. 3. The total range of indices in the table--the largest index
  20924. minus the smallest one (both inclusive).
  20925. 4. A label that precedes the table itself.
  20926. 5. A label to jump to if the index has a value outside the
  20927. bounds.
  20928. The table is an 'addr_vec' or 'addr_diff_vec' inside of a
  20929. 'jump_table_data'. The number of elements in the table is one plus
  20930. the difference between the upper bound and the lower bound.
  20931. 'tablejump'
  20932. Instruction to jump to a variable address. This is a low-level
  20933. capability which can be used to implement a dispatch table when
  20934. there is no 'casesi' pattern.
  20935. This pattern requires two operands: the address or offset, and a
  20936. label which should immediately precede the jump table. If the
  20937. macro 'CASE_VECTOR_PC_RELATIVE' evaluates to a nonzero value then
  20938. the first operand is an offset which counts from the address of the
  20939. table; otherwise, it is an absolute address to jump to. In either
  20940. case, the first operand has mode 'Pmode'.
  20941. The 'tablejump' insn is always the last insn before the jump table
  20942. it uses. Its assembler code normally has no need to use the second
  20943. operand, but you should incorporate it in the RTL pattern so that
  20944. the jump optimizer will not delete the table as unreachable code.
  20945. 'decrement_and_branch_until_zero'
  20946. Conditional branch instruction that decrements a register and jumps
  20947. if the register is nonzero. Operand 0 is the register to decrement
  20948. and test; operand 1 is the label to jump to if the register is
  20949. nonzero. *Note Looping Patterns::.
  20950. This optional instruction pattern is only used by the combiner,
  20951. typically for loops reversed by the loop optimizer when strength
  20952. reduction is enabled.
  20953. 'doloop_end'
  20954. Conditional branch instruction that decrements a register and jumps
  20955. if the register is nonzero. Operand 0 is the register to decrement
  20956. and test; operand 1 is the label to jump to if the register is
  20957. nonzero. *Note Looping Patterns::.
  20958. This optional instruction pattern should be defined for machines
  20959. with low-overhead looping instructions as the loop optimizer will
  20960. try to modify suitable loops to utilize it. The target hook
  20961. 'TARGET_CAN_USE_DOLOOP_P' controls the conditions under which
  20962. low-overhead loops can be used.
  20963. 'doloop_begin'
  20964. Companion instruction to 'doloop_end' required for machines that
  20965. need to perform some initialization, such as loading a special
  20966. counter register. Operand 1 is the associated 'doloop_end' pattern
  20967. and operand 0 is the register that it decrements.
  20968. If initialization insns do not always need to be emitted, use a
  20969. 'define_expand' (*note Expander Definitions::) and make it fail.
  20970. 'canonicalize_funcptr_for_compare'
  20971. Canonicalize the function pointer in operand 1 and store the result
  20972. into operand 0.
  20973. Operand 0 is always a 'reg' and has mode 'Pmode'; operand 1 may be
  20974. a 'reg', 'mem', 'symbol_ref', 'const_int', etc and also has mode
  20975. 'Pmode'.
  20976. Canonicalization of a function pointer usually involves computing
  20977. the address of the function which would be called if the function
  20978. pointer were used in an indirect call.
  20979. Only define this pattern if function pointers on the target machine
  20980. can have different values but still call the same function when
  20981. used in an indirect call.
  20982. 'save_stack_block'
  20983. 'save_stack_function'
  20984. 'save_stack_nonlocal'
  20985. 'restore_stack_block'
  20986. 'restore_stack_function'
  20987. 'restore_stack_nonlocal'
  20988. Most machines save and restore the stack pointer by copying it to
  20989. or from an object of mode 'Pmode'. Do not define these patterns on
  20990. such machines.
  20991. Some machines require special handling for stack pointer saves and
  20992. restores. On those machines, define the patterns corresponding to
  20993. the non-standard cases by using a 'define_expand' (*note Expander
  20994. Definitions::) that produces the required insns. The three types
  20995. of saves and restores are:
  20996. 1. 'save_stack_block' saves the stack pointer at the start of a
  20997. block that allocates a variable-sized object, and
  20998. 'restore_stack_block' restores the stack pointer when the
  20999. block is exited.
  21000. 2. 'save_stack_function' and 'restore_stack_function' do a
  21001. similar job for the outermost block of a function and are used
  21002. when the function allocates variable-sized objects or calls
  21003. 'alloca'. Only the epilogue uses the restored stack pointer,
  21004. allowing a simpler save or restore sequence on some machines.
  21005. 3. 'save_stack_nonlocal' is used in functions that contain labels
  21006. branched to by nested functions. It saves the stack pointer
  21007. in such a way that the inner function can use
  21008. 'restore_stack_nonlocal' to restore the stack pointer. The
  21009. compiler generates code to restore the frame and argument
  21010. pointer registers, but some machines require saving and
  21011. restoring additional data such as register window information
  21012. or stack backchains. Place insns in these patterns to save
  21013. and restore any such required data.
  21014. When saving the stack pointer, operand 0 is the save area and
  21015. operand 1 is the stack pointer. The mode used to allocate the save
  21016. area defaults to 'Pmode' but you can override that choice by
  21017. defining the 'STACK_SAVEAREA_MODE' macro (*note Storage Layout::).
  21018. You must specify an integral mode, or 'VOIDmode' if no save area is
  21019. needed for a particular type of save (either because no save is
  21020. needed or because a machine-specific save area can be used).
  21021. Operand 0 is the stack pointer and operand 1 is the save area for
  21022. restore operations. If 'save_stack_block' is defined, operand 0
  21023. must not be 'VOIDmode' since these saves can be arbitrarily nested.
  21024. A save area is a 'mem' that is at a constant offset from
  21025. 'virtual_stack_vars_rtx' when the stack pointer is saved for use by
  21026. nonlocal gotos and a 'reg' in the other two cases.
  21027. 'allocate_stack'
  21028. Subtract (or add if 'STACK_GROWS_DOWNWARD' is undefined) operand 1
  21029. from the stack pointer to create space for dynamically allocated
  21030. data.
  21031. Store the resultant pointer to this space into operand 0. If you
  21032. are allocating space from the main stack, do this by emitting a
  21033. move insn to copy 'virtual_stack_dynamic_rtx' to operand 0. If you
  21034. are allocating the space elsewhere, generate code to copy the
  21035. location of the space to operand 0. In the latter case, you must
  21036. ensure this space gets freed when the corresponding space on the
  21037. main stack is free.
  21038. Do not define this pattern if all that must be done is the
  21039. subtraction. Some machines require other operations such as stack
  21040. probes or maintaining the back chain. Define this pattern to emit
  21041. those operations in addition to updating the stack pointer.
  21042. 'check_stack'
  21043. If stack checking (*note Stack Checking::) cannot be done on your
  21044. system by probing the stack, define this pattern to perform the
  21045. needed check and signal an error if the stack has overflowed. The
  21046. single operand is the address in the stack farthest from the
  21047. current stack pointer that you need to validate. Normally, on
  21048. platforms where this pattern is needed, you would obtain the stack
  21049. limit from a global or thread-specific variable or register.
  21050. 'probe_stack_address'
  21051. If stack checking (*note Stack Checking::) can be done on your
  21052. system by probing the stack but without the need to actually access
  21053. it, define this pattern and signal an error if the stack has
  21054. overflowed. The single operand is the memory address in the stack
  21055. that needs to be probed.
  21056. 'probe_stack'
  21057. If stack checking (*note Stack Checking::) can be done on your
  21058. system by probing the stack but doing it with a "store zero"
  21059. instruction is not valid or optimal, define this pattern to do the
  21060. probing differently and signal an error if the stack has
  21061. overflowed. The single operand is the memory reference in the
  21062. stack that needs to be probed.
  21063. 'nonlocal_goto'
  21064. Emit code to generate a non-local goto, e.g., a jump from one
  21065. function to a label in an outer function. This pattern has four
  21066. arguments, each representing a value to be used in the jump. The
  21067. first argument is to be loaded into the frame pointer, the second
  21068. is the address to branch to (code to dispatch to the actual label),
  21069. the third is the address of a location where the stack is saved,
  21070. and the last is the address of the label, to be placed in the
  21071. location for the incoming static chain.
  21072. On most machines you need not define this pattern, since GCC will
  21073. already generate the correct code, which is to load the frame
  21074. pointer and static chain, restore the stack (using the
  21075. 'restore_stack_nonlocal' pattern, if defined), and jump indirectly
  21076. to the dispatcher. You need only define this pattern if this code
  21077. will not work on your machine.
  21078. 'nonlocal_goto_receiver'
  21079. This pattern, if defined, contains code needed at the target of a
  21080. nonlocal goto after the code already generated by GCC. You will
  21081. not normally need to define this pattern. A typical reason why you
  21082. might need this pattern is if some value, such as a pointer to a
  21083. global table, must be restored when the frame pointer is restored.
  21084. Note that a nonlocal goto only occurs within a unit-of-translation,
  21085. so a global table pointer that is shared by all functions of a
  21086. given module need not be restored. There are no arguments.
  21087. 'exception_receiver'
  21088. This pattern, if defined, contains code needed at the site of an
  21089. exception handler that isn't needed at the site of a nonlocal goto.
  21090. You will not normally need to define this pattern. A typical
  21091. reason why you might need this pattern is if some value, such as a
  21092. pointer to a global table, must be restored after control flow is
  21093. branched to the handler of an exception. There are no arguments.
  21094. 'builtin_setjmp_setup'
  21095. This pattern, if defined, contains additional code needed to
  21096. initialize the 'jmp_buf'. You will not normally need to define
  21097. this pattern. A typical reason why you might need this pattern is
  21098. if some value, such as a pointer to a global table, must be
  21099. restored. Though it is preferred that the pointer value be
  21100. recalculated if possible (given the address of a label for
  21101. instance). The single argument is a pointer to the 'jmp_buf'.
  21102. Note that the buffer is five words long and that the first three
  21103. are normally used by the generic mechanism.
  21104. 'builtin_setjmp_receiver'
  21105. This pattern, if defined, contains code needed at the site of a
  21106. built-in setjmp that isn't needed at the site of a nonlocal goto.
  21107. You will not normally need to define this pattern. A typical
  21108. reason why you might need this pattern is if some value, such as a
  21109. pointer to a global table, must be restored. It takes one
  21110. argument, which is the label to which builtin_longjmp transferred
  21111. control; this pattern may be emitted at a small offset from that
  21112. label.
  21113. 'builtin_longjmp'
  21114. This pattern, if defined, performs the entire action of the
  21115. longjmp. You will not normally need to define this pattern unless
  21116. you also define 'builtin_setjmp_setup'. The single argument is a
  21117. pointer to the 'jmp_buf'.
  21118. 'eh_return'
  21119. This pattern, if defined, affects the way '__builtin_eh_return',
  21120. and thence the call frame exception handling library routines, are
  21121. built. It is intended to handle non-trivial actions needed along
  21122. the abnormal return path.
  21123. The address of the exception handler to which the function should
  21124. return is passed as operand to this pattern. It will normally need
  21125. to copied by the pattern to some special register or memory
  21126. location. If the pattern needs to determine the location of the
  21127. target call frame in order to do so, it may use
  21128. 'EH_RETURN_STACKADJ_RTX', if defined; it will have already been
  21129. assigned.
  21130. If this pattern is not defined, the default action will be to
  21131. simply copy the return address to 'EH_RETURN_HANDLER_RTX'. Either
  21132. that macro or this pattern needs to be defined if call frame
  21133. exception handling is to be used.
  21134. 'prologue'
  21135. This pattern, if defined, emits RTL for entry to a function. The
  21136. function entry is responsible for setting up the stack frame,
  21137. initializing the frame pointer register, saving callee saved
  21138. registers, etc.
  21139. Using a prologue pattern is generally preferred over defining
  21140. 'TARGET_ASM_FUNCTION_PROLOGUE' to emit assembly code for the
  21141. prologue.
  21142. The 'prologue' pattern is particularly useful for targets which
  21143. perform instruction scheduling.
  21144. 'window_save'
  21145. This pattern, if defined, emits RTL for a register window save. It
  21146. should be defined if the target machine has register windows but
  21147. the window events are decoupled from calls to subroutines. The
  21148. canonical example is the SPARC architecture.
  21149. 'epilogue'
  21150. This pattern emits RTL for exit from a function. The function exit
  21151. is responsible for deallocating the stack frame, restoring callee
  21152. saved registers and emitting the return instruction.
  21153. Using an epilogue pattern is generally preferred over defining
  21154. 'TARGET_ASM_FUNCTION_EPILOGUE' to emit assembly code for the
  21155. epilogue.
  21156. The 'epilogue' pattern is particularly useful for targets which
  21157. perform instruction scheduling or which have delay slots for their
  21158. return instruction.
  21159. 'sibcall_epilogue'
  21160. This pattern, if defined, emits RTL for exit from a function
  21161. without the final branch back to the calling function. This
  21162. pattern will be emitted before any sibling call (aka tail call)
  21163. sites.
  21164. The 'sibcall_epilogue' pattern must not clobber any arguments used
  21165. for parameter passing or any stack slots for arguments passed to
  21166. the current function.
  21167. 'trap'
  21168. This pattern, if defined, signals an error, typically by causing
  21169. some kind of signal to be raised.
  21170. 'ctrapMM4'
  21171. Conditional trap instruction. Operand 0 is a piece of RTL which
  21172. performs a comparison, and operands 1 and 2 are the arms of the
  21173. comparison. Operand 3 is the trap code, an integer.
  21174. A typical 'ctrap' pattern looks like
  21175. (define_insn "ctrapsi4"
  21176. [(trap_if (match_operator 0 "trap_operator"
  21177. [(match_operand 1 "register_operand")
  21178. (match_operand 2 "immediate_operand")])
  21179. (match_operand 3 "const_int_operand" "i"))]
  21180. ""
  21181. "...")
  21182. 'prefetch'
  21183. This pattern, if defined, emits code for a non-faulting data
  21184. prefetch instruction. Operand 0 is the address of the memory to
  21185. prefetch. Operand 1 is a constant 1 if the prefetch is preparing
  21186. for a write to the memory address, or a constant 0 otherwise.
  21187. Operand 2 is the expected degree of temporal locality of the data
  21188. and is a value between 0 and 3, inclusive; 0 means that the data
  21189. has no temporal locality, so it need not be left in the cache after
  21190. the access; 3 means that the data has a high degree of temporal
  21191. locality and should be left in all levels of cache possible; 1 and
  21192. 2 mean, respectively, a low or moderate degree of temporal
  21193. locality.
  21194. Targets that do not support write prefetches or locality hints can
  21195. ignore the values of operands 1 and 2.
  21196. 'blockage'
  21197. This pattern defines a pseudo insn that prevents the instruction
  21198. scheduler and other passes from moving instructions and using
  21199. register equivalences across the boundary defined by the blockage
  21200. insn. This needs to be an UNSPEC_VOLATILE pattern or a volatile
  21201. ASM.
  21202. 'memory_blockage'
  21203. This pattern, if defined, represents a compiler memory barrier, and
  21204. will be placed at points across which RTL passes may not propagate
  21205. memory accesses. This instruction needs to read and write volatile
  21206. BLKmode memory. It does not need to generate any machine
  21207. instruction. If this pattern is not defined, the compiler falls
  21208. back to emitting an instruction corresponding to 'asm volatile (""
  21209. ::: "memory")'.
  21210. 'memory_barrier'
  21211. If the target memory model is not fully synchronous, then this
  21212. pattern should be defined to an instruction that orders both loads
  21213. and stores before the instruction with respect to loads and stores
  21214. after the instruction. This pattern has no operands.
  21215. 'sync_compare_and_swapMODE'
  21216. This pattern, if defined, emits code for an atomic compare-and-swap
  21217. operation. Operand 1 is the memory on which the atomic operation
  21218. is performed. Operand 2 is the "old" value to be compared against
  21219. the current contents of the memory location. Operand 3 is the
  21220. "new" value to store in the memory if the compare succeeds.
  21221. Operand 0 is the result of the operation; it should contain the
  21222. contents of the memory before the operation. If the compare
  21223. succeeds, this should obviously be a copy of operand 2.
  21224. This pattern must show that both operand 0 and operand 1 are
  21225. modified.
  21226. This pattern must issue any memory barrier instructions such that
  21227. all memory operations before the atomic operation occur before the
  21228. atomic operation and all memory operations after the atomic
  21229. operation occur after the atomic operation.
  21230. For targets where the success or failure of the compare-and-swap
  21231. operation is available via the status flags, it is possible to
  21232. avoid a separate compare operation and issue the subsequent branch
  21233. or store-flag operation immediately after the compare-and-swap. To
  21234. this end, GCC will look for a 'MODE_CC' set in the output of
  21235. 'sync_compare_and_swapMODE'; if the machine description includes
  21236. such a set, the target should also define special 'cbranchcc4'
  21237. and/or 'cstorecc4' instructions. GCC will then be able to take the
  21238. destination of the 'MODE_CC' set and pass it to the 'cbranchcc4' or
  21239. 'cstorecc4' pattern as the first operand of the comparison (the
  21240. second will be '(const_int 0)').
  21241. For targets where the operating system may provide support for this
  21242. operation via library calls, the 'sync_compare_and_swap_optab' may
  21243. be initialized to a function with the same interface as the
  21244. '__sync_val_compare_and_swap_N' built-in. If the entire set of
  21245. __SYNC builtins are supported via library calls, the target can
  21246. initialize all of the optabs at once with 'init_sync_libfuncs'.
  21247. For the purposes of C++11 'std::atomic::is_lock_free', it is
  21248. assumed that these library calls do _not_ use any kind of
  21249. interruptable locking.
  21250. 'sync_addMODE', 'sync_subMODE'
  21251. 'sync_iorMODE', 'sync_andMODE'
  21252. 'sync_xorMODE', 'sync_nandMODE'
  21253. These patterns emit code for an atomic operation on memory.
  21254. Operand 0 is the memory on which the atomic operation is performed.
  21255. Operand 1 is the second operand to the binary operator.
  21256. This pattern must issue any memory barrier instructions such that
  21257. all memory operations before the atomic operation occur before the
  21258. atomic operation and all memory operations after the atomic
  21259. operation occur after the atomic operation.
  21260. If these patterns are not defined, the operation will be
  21261. constructed from a compare-and-swap operation, if defined.
  21262. 'sync_old_addMODE', 'sync_old_subMODE'
  21263. 'sync_old_iorMODE', 'sync_old_andMODE'
  21264. 'sync_old_xorMODE', 'sync_old_nandMODE'
  21265. These patterns emit code for an atomic operation on memory, and
  21266. return the value that the memory contained before the operation.
  21267. Operand 0 is the result value, operand 1 is the memory on which the
  21268. atomic operation is performed, and operand 2 is the second operand
  21269. to the binary operator.
  21270. This pattern must issue any memory barrier instructions such that
  21271. all memory operations before the atomic operation occur before the
  21272. atomic operation and all memory operations after the atomic
  21273. operation occur after the atomic operation.
  21274. If these patterns are not defined, the operation will be
  21275. constructed from a compare-and-swap operation, if defined.
  21276. 'sync_new_addMODE', 'sync_new_subMODE'
  21277. 'sync_new_iorMODE', 'sync_new_andMODE'
  21278. 'sync_new_xorMODE', 'sync_new_nandMODE'
  21279. These patterns are like their 'sync_old_OP' counterparts, except
  21280. that they return the value that exists in the memory location after
  21281. the operation, rather than before the operation.
  21282. 'sync_lock_test_and_setMODE'
  21283. This pattern takes two forms, based on the capabilities of the
  21284. target. In either case, operand 0 is the result of the operand,
  21285. operand 1 is the memory on which the atomic operation is performed,
  21286. and operand 2 is the value to set in the lock.
  21287. In the ideal case, this operation is an atomic exchange operation,
  21288. in which the previous value in memory operand is copied into the
  21289. result operand, and the value operand is stored in the memory
  21290. operand.
  21291. For less capable targets, any value operand that is not the
  21292. constant 1 should be rejected with 'FAIL'. In this case the target
  21293. may use an atomic test-and-set bit operation. The result operand
  21294. should contain 1 if the bit was previously set and 0 if the bit was
  21295. previously clear. The true contents of the memory operand are
  21296. implementation defined.
  21297. This pattern must issue any memory barrier instructions such that
  21298. the pattern as a whole acts as an acquire barrier, that is all
  21299. memory operations after the pattern do not occur until the lock is
  21300. acquired.
  21301. If this pattern is not defined, the operation will be constructed
  21302. from a compare-and-swap operation, if defined.
  21303. 'sync_lock_releaseMODE'
  21304. This pattern, if defined, releases a lock set by
  21305. 'sync_lock_test_and_setMODE'. Operand 0 is the memory that
  21306. contains the lock; operand 1 is the value to store in the lock.
  21307. If the target doesn't implement full semantics for
  21308. 'sync_lock_test_and_setMODE', any value operand which is not the
  21309. constant 0 should be rejected with 'FAIL', and the true contents of
  21310. the memory operand are implementation defined.
  21311. This pattern must issue any memory barrier instructions such that
  21312. the pattern as a whole acts as a release barrier, that is the lock
  21313. is released only after all previous memory operations have
  21314. completed.
  21315. If this pattern is not defined, then a 'memory_barrier' pattern
  21316. will be emitted, followed by a store of the value to the memory
  21317. operand.
  21318. 'atomic_compare_and_swapMODE'
  21319. This pattern, if defined, emits code for an atomic compare-and-swap
  21320. operation with memory model semantics. Operand 2 is the memory on
  21321. which the atomic operation is performed. Operand 0 is an output
  21322. operand which is set to true or false based on whether the
  21323. operation succeeded. Operand 1 is an output operand which is set
  21324. to the contents of the memory before the operation was attempted.
  21325. Operand 3 is the value that is expected to be in memory. Operand 4
  21326. is the value to put in memory if the expected value is found there.
  21327. Operand 5 is set to 1 if this compare and swap is to be treated as
  21328. a weak operation. Operand 6 is the memory model to be used if the
  21329. operation is a success. Operand 7 is the memory model to be used
  21330. if the operation fails.
  21331. If memory referred to in operand 2 contains the value in operand 3,
  21332. then operand 4 is stored in memory pointed to by operand 2 and
  21333. fencing based on the memory model in operand 6 is issued.
  21334. If memory referred to in operand 2 does not contain the value in
  21335. operand 3, then fencing based on the memory model in operand 7 is
  21336. issued.
  21337. If a target does not support weak compare-and-swap operations, or
  21338. the port elects not to implement weak operations, the argument in
  21339. operand 5 can be ignored. Note a strong implementation must be
  21340. provided.
  21341. If this pattern is not provided, the '__atomic_compare_exchange'
  21342. built-in functions will utilize the legacy 'sync_compare_and_swap'
  21343. pattern with an '__ATOMIC_SEQ_CST' memory model.
  21344. 'atomic_loadMODE'
  21345. This pattern implements an atomic load operation with memory model
  21346. semantics. Operand 1 is the memory address being loaded from.
  21347. Operand 0 is the result of the load. Operand 2 is the memory model
  21348. to be used for the load operation.
  21349. If not present, the '__atomic_load' built-in function will either
  21350. resort to a normal load with memory barriers, or a compare-and-swap
  21351. operation if a normal load would not be atomic.
  21352. 'atomic_storeMODE'
  21353. This pattern implements an atomic store operation with memory model
  21354. semantics. Operand 0 is the memory address being stored to.
  21355. Operand 1 is the value to be written. Operand 2 is the memory
  21356. model to be used for the operation.
  21357. If not present, the '__atomic_store' built-in function will attempt
  21358. to perform a normal store and surround it with any required memory
  21359. fences. If the store would not be atomic, then an
  21360. '__atomic_exchange' is attempted with the result being ignored.
  21361. 'atomic_exchangeMODE'
  21362. This pattern implements an atomic exchange operation with memory
  21363. model semantics. Operand 1 is the memory location the operation is
  21364. performed on. Operand 0 is an output operand which is set to the
  21365. original value contained in the memory pointed to by operand 1.
  21366. Operand 2 is the value to be stored. Operand 3 is the memory model
  21367. to be used.
  21368. If this pattern is not present, the built-in function
  21369. '__atomic_exchange' will attempt to preform the operation with a
  21370. compare and swap loop.
  21371. 'atomic_addMODE', 'atomic_subMODE'
  21372. 'atomic_orMODE', 'atomic_andMODE'
  21373. 'atomic_xorMODE', 'atomic_nandMODE'
  21374. These patterns emit code for an atomic operation on memory with
  21375. memory model semantics. Operand 0 is the memory on which the
  21376. atomic operation is performed. Operand 1 is the second operand to
  21377. the binary operator. Operand 2 is the memory model to be used by
  21378. the operation.
  21379. If these patterns are not defined, attempts will be made to use
  21380. legacy 'sync' patterns, or equivalent patterns which return a
  21381. result. If none of these are available a compare-and-swap loop
  21382. will be used.
  21383. 'atomic_fetch_addMODE', 'atomic_fetch_subMODE'
  21384. 'atomic_fetch_orMODE', 'atomic_fetch_andMODE'
  21385. 'atomic_fetch_xorMODE', 'atomic_fetch_nandMODE'
  21386. These patterns emit code for an atomic operation on memory with
  21387. memory model semantics, and return the original value. Operand 0
  21388. is an output operand which contains the value of the memory
  21389. location before the operation was performed. Operand 1 is the
  21390. memory on which the atomic operation is performed. Operand 2 is
  21391. the second operand to the binary operator. Operand 3 is the memory
  21392. model to be used by the operation.
  21393. If these patterns are not defined, attempts will be made to use
  21394. legacy 'sync' patterns. If none of these are available a
  21395. compare-and-swap loop will be used.
  21396. 'atomic_add_fetchMODE', 'atomic_sub_fetchMODE'
  21397. 'atomic_or_fetchMODE', 'atomic_and_fetchMODE'
  21398. 'atomic_xor_fetchMODE', 'atomic_nand_fetchMODE'
  21399. These patterns emit code for an atomic operation on memory with
  21400. memory model semantics and return the result after the operation is
  21401. performed. Operand 0 is an output operand which contains the value
  21402. after the operation. Operand 1 is the memory on which the atomic
  21403. operation is performed. Operand 2 is the second operand to the
  21404. binary operator. Operand 3 is the memory model to be used by the
  21405. operation.
  21406. If these patterns are not defined, attempts will be made to use
  21407. legacy 'sync' patterns, or equivalent patterns which return the
  21408. result before the operation followed by the arithmetic operation
  21409. required to produce the result. If none of these are available a
  21410. compare-and-swap loop will be used.
  21411. 'atomic_test_and_set'
  21412. This pattern emits code for '__builtin_atomic_test_and_set'.
  21413. Operand 0 is an output operand which is set to true if the previous
  21414. previous contents of the byte was "set", and false otherwise.
  21415. Operand 1 is the 'QImode' memory to be modified. Operand 2 is the
  21416. memory model to be used.
  21417. The specific value that defines "set" is implementation defined,
  21418. and is normally based on what is performed by the native atomic
  21419. test and set instruction.
  21420. 'atomic_bit_test_and_setMODE'
  21421. 'atomic_bit_test_and_complementMODE'
  21422. 'atomic_bit_test_and_resetMODE'
  21423. These patterns emit code for an atomic bitwise operation on memory
  21424. with memory model semantics, and return the original value of the
  21425. specified bit. Operand 0 is an output operand which contains the
  21426. value of the specified bit from the memory location before the
  21427. operation was performed. Operand 1 is the memory on which the
  21428. atomic operation is performed. Operand 2 is the bit within the
  21429. operand, starting with least significant bit. Operand 3 is the
  21430. memory model to be used by the operation. Operand 4 is a flag - it
  21431. is 'const1_rtx' if operand 0 should contain the original value of
  21432. the specified bit in the least significant bit of the operand, and
  21433. 'const0_rtx' if the bit should be in its original position in the
  21434. operand. 'atomic_bit_test_and_setMODE' atomically sets the
  21435. specified bit after remembering its original value,
  21436. 'atomic_bit_test_and_complementMODE' inverts the specified bit and
  21437. 'atomic_bit_test_and_resetMODE' clears the specified bit.
  21438. If these patterns are not defined, attempts will be made to use
  21439. 'atomic_fetch_orMODE', 'atomic_fetch_xorMODE' or
  21440. 'atomic_fetch_andMODE' instruction patterns, or their 'sync'
  21441. counterparts. If none of these are available a compare-and-swap
  21442. loop will be used.
  21443. 'mem_thread_fence'
  21444. This pattern emits code required to implement a thread fence with
  21445. memory model semantics. Operand 0 is the memory model to be used.
  21446. For the '__ATOMIC_RELAXED' model no instructions need to be issued
  21447. and this expansion is not invoked.
  21448. The compiler always emits a compiler memory barrier regardless of
  21449. what expanding this pattern produced.
  21450. If this pattern is not defined, the compiler falls back to
  21451. expanding the 'memory_barrier' pattern, then to emitting
  21452. '__sync_synchronize' library call, and finally to just placing a
  21453. compiler memory barrier.
  21454. 'get_thread_pointerMODE'
  21455. 'set_thread_pointerMODE'
  21456. These patterns emit code that reads/sets the TLS thread pointer.
  21457. Currently, these are only needed if the target needs to support the
  21458. '__builtin_thread_pointer' and '__builtin_set_thread_pointer'
  21459. builtins.
  21460. The get/set patterns have a single output/input operand
  21461. respectively, with MODE intended to be 'Pmode'.
  21462. 'stack_protect_set'
  21463. This pattern, if defined, moves a 'ptr_mode' value from the memory
  21464. in operand 1 to the memory in operand 0 without leaving the value
  21465. in a register afterward. This is to avoid leaking the value some
  21466. place that an attacker might use to rewrite the stack guard slot
  21467. after having clobbered it.
  21468. If this pattern is not defined, then a plain move pattern is
  21469. generated.
  21470. 'stack_protect_test'
  21471. This pattern, if defined, compares a 'ptr_mode' value from the
  21472. memory in operand 1 with the memory in operand 0 without leaving
  21473. the value in a register afterward and branches to operand 2 if the
  21474. values were equal.
  21475. If this pattern is not defined, then a plain compare pattern and
  21476. conditional branch pattern is used.
  21477. 'clear_cache'
  21478. This pattern, if defined, flushes the instruction cache for a
  21479. region of memory. The region is bounded to by the Pmode pointers
  21480. in operand 0 inclusive and operand 1 exclusive.
  21481. If this pattern is not defined, a call to the library function
  21482. '__clear_cache' is used.
  21483. 
  21484. File: gccint.info, Node: Pattern Ordering, Next: Dependent Patterns, Prev: Standard Names, Up: Machine Desc
  21485. 17.10 When the Order of Patterns Matters
  21486. ========================================
  21487. Sometimes an insn can match more than one instruction pattern. Then the
  21488. pattern that appears first in the machine description is the one used.
  21489. Therefore, more specific patterns (patterns that will match fewer
  21490. things) and faster instructions (those that will produce better code
  21491. when they do match) should usually go first in the description.
  21492. In some cases the effect of ordering the patterns can be used to hide a
  21493. pattern when it is not valid. For example, the 68000 has an instruction
  21494. for converting a fullword to floating point and another for converting a
  21495. byte to floating point. An instruction converting an integer to
  21496. floating point could match either one. We put the pattern to convert
  21497. the fullword first to make sure that one will be used rather than the
  21498. other. (Otherwise a large integer might be generated as a single-byte
  21499. immediate quantity, which would not work.) Instead of using this
  21500. pattern ordering it would be possible to make the pattern for
  21501. convert-a-byte smart enough to deal properly with any constant value.
  21502. 
  21503. File: gccint.info, Node: Dependent Patterns, Next: Jump Patterns, Prev: Pattern Ordering, Up: Machine Desc
  21504. 17.11 Interdependence of Patterns
  21505. =================================
  21506. In some cases machines support instructions identical except for the
  21507. machine mode of one or more operands. For example, there may be
  21508. "sign-extend halfword" and "sign-extend byte" instructions whose
  21509. patterns are
  21510. (set (match_operand:SI 0 ...)
  21511. (extend:SI (match_operand:HI 1 ...)))
  21512. (set (match_operand:SI 0 ...)
  21513. (extend:SI (match_operand:QI 1 ...)))
  21514. Constant integers do not specify a machine mode, so an instruction to
  21515. extend a constant value could match either pattern. The pattern it
  21516. actually will match is the one that appears first in the file. For
  21517. correct results, this must be the one for the widest possible mode
  21518. ('HImode', here). If the pattern matches the 'QImode' instruction, the
  21519. results will be incorrect if the constant value does not actually fit
  21520. that mode.
  21521. Such instructions to extend constants are rarely generated because they
  21522. are optimized away, but they do occasionally happen in nonoptimized
  21523. compilations.
  21524. If a constraint in a pattern allows a constant, the reload pass may
  21525. replace a register with a constant permitted by the constraint in some
  21526. cases. Similarly for memory references. Because of this substitution,
  21527. you should not provide separate patterns for increment and decrement
  21528. instructions. Instead, they should be generated from the same pattern
  21529. that supports register-register add insns by examining the operands and
  21530. generating the appropriate machine instruction.
  21531. 
  21532. File: gccint.info, Node: Jump Patterns, Next: Looping Patterns, Prev: Dependent Patterns, Up: Machine Desc
  21533. 17.12 Defining Jump Instruction Patterns
  21534. ========================================
  21535. GCC does not assume anything about how the machine realizes jumps. The
  21536. machine description should define a single pattern, usually a
  21537. 'define_expand', which expands to all the required insns.
  21538. Usually, this would be a comparison insn to set the condition code and
  21539. a separate branch insn testing the condition code and branching or not
  21540. according to its value. For many machines, however, separating compares
  21541. and branches is limiting, which is why the more flexible approach with
  21542. one 'define_expand' is used in GCC. The machine description becomes
  21543. clearer for architectures that have compare-and-branch instructions but
  21544. no condition code. It also works better when different sets of
  21545. comparison operators are supported by different kinds of conditional
  21546. branches (e.g. integer vs. floating-point), or by conditional branches
  21547. with respect to conditional stores.
  21548. Two separate insns are always used if the machine description
  21549. represents a condition code register using the legacy RTL expression
  21550. '(cc0)', and on most machines that use a separate condition code
  21551. register (*note Condition Code::). For machines that use '(cc0)', in
  21552. fact, the set and use of the condition code must be separate and
  21553. adjacent(1), thus allowing flags in 'cc_status' to be used (*note
  21554. Condition Code::) and so that the comparison and branch insns could be
  21555. located from each other by using the functions 'prev_cc0_setter' and
  21556. 'next_cc0_user'.
  21557. Even in this case having a single entry point for conditional branches
  21558. is advantageous, because it handles equally well the case where a single
  21559. comparison instruction records the results of both signed and unsigned
  21560. comparison of the given operands (with the branch insns coming in
  21561. distinct signed and unsigned flavors) as in the x86 or SPARC, and the
  21562. case where there are distinct signed and unsigned compare instructions
  21563. and only one set of conditional branch instructions as in the PowerPC.
  21564. ---------- Footnotes ----------
  21565. (1) 'note' insns can separate them, though.
  21566. 
  21567. File: gccint.info, Node: Looping Patterns, Next: Insn Canonicalizations, Prev: Jump Patterns, Up: Machine Desc
  21568. 17.13 Defining Looping Instruction Patterns
  21569. ===========================================
  21570. Some machines have special jump instructions that can be utilized to
  21571. make loops more efficient. A common example is the 68000 'dbra'
  21572. instruction which performs a decrement of a register and a branch if the
  21573. result was greater than zero. Other machines, in particular digital
  21574. signal processors (DSPs), have special block repeat instructions to
  21575. provide low-overhead loop support. For example, the TI TMS320C3x/C4x
  21576. DSPs have a block repeat instruction that loads special registers to
  21577. mark the top and end of a loop and to count the number of loop
  21578. iterations. This avoids the need for fetching and executing a
  21579. 'dbra'-like instruction and avoids pipeline stalls associated with the
  21580. jump.
  21581. GCC has three special named patterns to support low overhead looping.
  21582. They are 'decrement_and_branch_until_zero', 'doloop_begin', and
  21583. 'doloop_end'. The first pattern, 'decrement_and_branch_until_zero', is
  21584. not emitted during RTL generation but may be emitted during the
  21585. instruction combination phase. This requires the assistance of the loop
  21586. optimizer, using information collected during strength reduction, to
  21587. reverse a loop to count down to zero. Some targets also require the
  21588. loop optimizer to add a 'REG_NONNEG' note to indicate that the iteration
  21589. count is always positive. This is needed if the target performs a
  21590. signed loop termination test. For example, the 68000 uses a pattern
  21591. similar to the following for its 'dbra' instruction:
  21592. (define_insn "decrement_and_branch_until_zero"
  21593. [(set (pc)
  21594. (if_then_else
  21595. (ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")
  21596. (const_int -1))
  21597. (const_int 0))
  21598. (label_ref (match_operand 1 "" ""))
  21599. (pc)))
  21600. (set (match_dup 0)
  21601. (plus:SI (match_dup 0)
  21602. (const_int -1)))]
  21603. "find_reg_note (insn, REG_NONNEG, 0)"
  21604. "...")
  21605. Note that since the insn is both a jump insn and has an output, it must
  21606. deal with its own reloads, hence the 'm' constraints. Also note that
  21607. since this insn is generated by the instruction combination phase
  21608. combining two sequential insns together into an implicit parallel insn,
  21609. the iteration counter needs to be biased by the same amount as the
  21610. decrement operation, in this case -1. Note that the following similar
  21611. pattern will not be matched by the combiner.
  21612. (define_insn "decrement_and_branch_until_zero"
  21613. [(set (pc)
  21614. (if_then_else
  21615. (ge (match_operand:SI 0 "general_operand" "+d*am")
  21616. (const_int 1))
  21617. (label_ref (match_operand 1 "" ""))
  21618. (pc)))
  21619. (set (match_dup 0)
  21620. (plus:SI (match_dup 0)
  21621. (const_int -1)))]
  21622. "find_reg_note (insn, REG_NONNEG, 0)"
  21623. "...")
  21624. The other two special looping patterns, 'doloop_begin' and
  21625. 'doloop_end', are emitted by the loop optimizer for certain well-behaved
  21626. loops with a finite number of loop iterations using information
  21627. collected during strength reduction.
  21628. The 'doloop_end' pattern describes the actual looping instruction (or
  21629. the implicit looping operation) and the 'doloop_begin' pattern is an
  21630. optional companion pattern that can be used for initialization needed
  21631. for some low-overhead looping instructions.
  21632. Note that some machines require the actual looping instruction to be
  21633. emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting
  21634. the true RTL for a looping instruction at the top of the loop can cause
  21635. problems with flow analysis. So instead, a dummy 'doloop' insn is
  21636. emitted at the end of the loop. The machine dependent reorg pass checks
  21637. for the presence of this 'doloop' insn and then searches back to the top
  21638. of the loop, where it inserts the true looping insn (provided there are
  21639. no instructions in the loop which would cause problems). Any additional
  21640. labels can be emitted at this point. In addition, if the desired
  21641. special iteration counter register was not allocated, this machine
  21642. dependent reorg pass could emit a traditional compare and jump
  21643. instruction pair.
  21644. The essential difference between the 'decrement_and_branch_until_zero'
  21645. and the 'doloop_end' patterns is that the loop optimizer allocates an
  21646. additional pseudo register for the latter as an iteration counter. This
  21647. pseudo register cannot be used within the loop (i.e., general induction
  21648. variables cannot be derived from it), however, in many cases the loop
  21649. induction variable may become redundant and removed by the flow pass.
  21650. 
  21651. File: gccint.info, Node: Insn Canonicalizations, Next: Expander Definitions, Prev: Looping Patterns, Up: Machine Desc
  21652. 17.14 Canonicalization of Instructions
  21653. ======================================
  21654. There are often cases where multiple RTL expressions could represent an
  21655. operation performed by a single machine instruction. This situation is
  21656. most commonly encountered with logical, branch, and multiply-accumulate
  21657. instructions. In such cases, the compiler attempts to convert these
  21658. multiple RTL expressions into a single canonical form to reduce the
  21659. number of insn patterns required.
  21660. In addition to algebraic simplifications, following canonicalizations
  21661. are performed:
  21662. * For commutative and comparison operators, a constant is always made
  21663. the second operand. If a machine only supports a constant as the
  21664. second operand, only patterns that match a constant in the second
  21665. operand need be supplied.
  21666. * For associative operators, a sequence of operators will always
  21667. chain to the left; for instance, only the left operand of an
  21668. integer 'plus' can itself be a 'plus'. 'and', 'ior', 'xor',
  21669. 'plus', 'mult', 'smin', 'smax', 'umin', and 'umax' are associative
  21670. when applied to integers, and sometimes to floating-point.
  21671. * For these operators, if only one operand is a 'neg', 'not', 'mult',
  21672. 'plus', or 'minus' expression, it will be the first operand.
  21673. * In combinations of 'neg', 'mult', 'plus', and 'minus', the 'neg'
  21674. operations (if any) will be moved inside the operations as far as
  21675. possible. For instance, '(neg (mult A B))' is canonicalized as
  21676. '(mult (neg A) B)', but '(plus (mult (neg B) C) A)' is
  21677. canonicalized as '(minus A (mult B C))'.
  21678. * For the 'compare' operator, a constant is always the second operand
  21679. if the first argument is a condition code register or '(cc0)'.
  21680. * For instructions that inherently set a condition code register, the
  21681. 'compare' operator is always written as the first RTL expression of
  21682. the 'parallel' instruction pattern. For example,
  21683. (define_insn ""
  21684. [(set (reg:CCZ FLAGS_REG)
  21685. (compare:CCZ
  21686. (plus:SI
  21687. (match_operand:SI 1 "register_operand" "%r")
  21688. (match_operand:SI 2 "register_operand" "r"))
  21689. (const_int 0)))
  21690. (set (match_operand:SI 0 "register_operand" "=r")
  21691. (plus:SI (match_dup 1) (match_dup 2)))]
  21692. ""
  21693. "addl %0, %1, %2")
  21694. * An operand of 'neg', 'not', 'mult', 'plus', or 'minus' is made the
  21695. first operand under the same conditions as above.
  21696. * '(ltu (plus A B) B)' is converted to '(ltu (plus A B) A)'.
  21697. Likewise with 'geu' instead of 'ltu'.
  21698. * '(minus X (const_int N))' is converted to '(plus X (const_int
  21699. -N))'.
  21700. * Within address computations (i.e., inside 'mem'), a left shift is
  21701. converted into the appropriate multiplication by a power of two.
  21702. * De Morgan's Law is used to move bitwise negation inside a bitwise
  21703. logical-and or logical-or operation. If this results in only one
  21704. operand being a 'not' expression, it will be the first one.
  21705. A machine that has an instruction that performs a bitwise
  21706. logical-and of one operand with the bitwise negation of the other
  21707. should specify the pattern for that instruction as
  21708. (define_insn ""
  21709. [(set (match_operand:M 0 ...)
  21710. (and:M (not:M (match_operand:M 1 ...))
  21711. (match_operand:M 2 ...)))]
  21712. "..."
  21713. "...")
  21714. Similarly, a pattern for a "NAND" instruction should be written
  21715. (define_insn ""
  21716. [(set (match_operand:M 0 ...)
  21717. (ior:M (not:M (match_operand:M 1 ...))
  21718. (not:M (match_operand:M 2 ...))))]
  21719. "..."
  21720. "...")
  21721. In both cases, it is not necessary to include patterns for the many
  21722. logically equivalent RTL expressions.
  21723. * The only possible RTL expressions involving both bitwise
  21724. exclusive-or and bitwise negation are '(xor:M X Y)' and '(not:M
  21725. (xor:M X Y))'.
  21726. * The sum of three items, one of which is a constant, will only
  21727. appear in the form
  21728. (plus:M (plus:M X Y) CONSTANT)
  21729. * Equality comparisons of a group of bits (usually a single bit) with
  21730. zero will be written using 'zero_extract' rather than the
  21731. equivalent 'and' or 'sign_extract' operations.
  21732. * '(sign_extend:M1 (mult:M2 (sign_extend:M2 X) (sign_extend:M2 Y)))'
  21733. is converted to '(mult:M1 (sign_extend:M1 X) (sign_extend:M1 Y))',
  21734. and likewise for 'zero_extend'.
  21735. * '(sign_extend:M1 (mult:M2 (ashiftrt:M2 X S) (sign_extend:M2 Y)))'
  21736. is converted to '(mult:M1 (sign_extend:M1 (ashiftrt:M2 X S))
  21737. (sign_extend:M1 Y))', and likewise for patterns using 'zero_extend'
  21738. and 'lshiftrt'. If the second operand of 'mult' is also a shift,
  21739. then that is extended also. This transformation is only applied
  21740. when it can be proven that the original operation had sufficient
  21741. precision to prevent overflow.
  21742. Further canonicalization rules are defined in the function
  21743. 'commutative_operand_precedence' in 'gcc/rtlanal.c'.
  21744. 
  21745. File: gccint.info, Node: Expander Definitions, Next: Insn Splitting, Prev: Insn Canonicalizations, Up: Machine Desc
  21746. 17.15 Defining RTL Sequences for Code Generation
  21747. ================================================
  21748. On some target machines, some standard pattern names for RTL generation
  21749. cannot be handled with single insn, but a sequence of RTL insns can
  21750. represent them. For these target machines, you can write a
  21751. 'define_expand' to specify how to generate the sequence of RTL.
  21752. A 'define_expand' is an RTL expression that looks almost like a
  21753. 'define_insn'; but, unlike the latter, a 'define_expand' is used only
  21754. for RTL generation and it can produce more than one RTL insn.
  21755. A 'define_expand' RTX has four operands:
  21756. * The name. Each 'define_expand' must have a name, since the only
  21757. use for it is to refer to it by name.
  21758. * The RTL template. This is a vector of RTL expressions representing
  21759. a sequence of separate instructions. Unlike 'define_insn', there
  21760. is no implicit surrounding 'PARALLEL'.
  21761. * The condition, a string containing a C expression. This expression
  21762. is used to express how the availability of this pattern depends on
  21763. subclasses of target machine, selected by command-line options when
  21764. GCC is run. This is just like the condition of a 'define_insn'
  21765. that has a standard name. Therefore, the condition (if present)
  21766. may not depend on the data in the insn being matched, but only the
  21767. target-machine-type flags. The compiler needs to test these
  21768. conditions during initialization in order to learn exactly which
  21769. named instructions are available in a particular run.
  21770. * The preparation statements, a string containing zero or more C
  21771. statements which are to be executed before RTL code is generated
  21772. from the RTL template.
  21773. Usually these statements prepare temporary registers for use as
  21774. internal operands in the RTL template, but they can also generate
  21775. RTL insns directly by calling routines such as 'emit_insn', etc.
  21776. Any such insns precede the ones that come from the RTL template.
  21777. * Optionally, a vector containing the values of attributes. *Note
  21778. Insn Attributes::.
  21779. Every RTL insn emitted by a 'define_expand' must match some
  21780. 'define_insn' in the machine description. Otherwise, the compiler will
  21781. crash when trying to generate code for the insn or trying to optimize
  21782. it.
  21783. The RTL template, in addition to controlling generation of RTL insns,
  21784. also describes the operands that need to be specified when this pattern
  21785. is used. In particular, it gives a predicate for each operand.
  21786. A true operand, which needs to be specified in order to generate RTL
  21787. from the pattern, should be described with a 'match_operand' in its
  21788. first occurrence in the RTL template. This enters information on the
  21789. operand's predicate into the tables that record such things. GCC uses
  21790. the information to preload the operand into a register if that is
  21791. required for valid RTL code. If the operand is referred to more than
  21792. once, subsequent references should use 'match_dup'.
  21793. The RTL template may also refer to internal "operands" which are
  21794. temporary registers or labels used only within the sequence made by the
  21795. 'define_expand'. Internal operands are substituted into the RTL
  21796. template with 'match_dup', never with 'match_operand'. The values of
  21797. the internal operands are not passed in as arguments by the compiler
  21798. when it requests use of this pattern. Instead, they are computed within
  21799. the pattern, in the preparation statements. These statements compute
  21800. the values and store them into the appropriate elements of 'operands' so
  21801. that 'match_dup' can find them.
  21802. There are two special macros defined for use in the preparation
  21803. statements: 'DONE' and 'FAIL'. Use them with a following semicolon, as
  21804. a statement.
  21805. 'DONE'
  21806. Use the 'DONE' macro to end RTL generation for the pattern. The
  21807. only RTL insns resulting from the pattern on this occasion will be
  21808. those already emitted by explicit calls to 'emit_insn' within the
  21809. preparation statements; the RTL template will not be generated.
  21810. 'FAIL'
  21811. Make the pattern fail on this occasion. When a pattern fails, it
  21812. means that the pattern was not truly available. The calling
  21813. routines in the compiler will try other strategies for code
  21814. generation using other patterns.
  21815. Failure is currently supported only for binary (addition,
  21816. multiplication, shifting, etc.) and bit-field ('extv', 'extzv',
  21817. and 'insv') operations.
  21818. If the preparation falls through (invokes neither 'DONE' nor 'FAIL'),
  21819. then the 'define_expand' acts like a 'define_insn' in that the RTL
  21820. template is used to generate the insn.
  21821. The RTL template is not used for matching, only for generating the
  21822. initial insn list. If the preparation statement always invokes 'DONE'
  21823. or 'FAIL', the RTL template may be reduced to a simple list of operands,
  21824. such as this example:
  21825. (define_expand "addsi3"
  21826. [(match_operand:SI 0 "register_operand" "")
  21827. (match_operand:SI 1 "register_operand" "")
  21828. (match_operand:SI 2 "register_operand" "")]
  21829. ""
  21830. "
  21831. {
  21832. handle_add (operands[0], operands[1], operands[2]);
  21833. DONE;
  21834. }")
  21835. Here is an example, the definition of left-shift for the SPUR chip:
  21836. (define_expand "ashlsi3"
  21837. [(set (match_operand:SI 0 "register_operand" "")
  21838. (ashift:SI
  21839. (match_operand:SI 1 "register_operand" "")
  21840. (match_operand:SI 2 "nonmemory_operand" "")))]
  21841. ""
  21842. "
  21843. {
  21844. if (GET_CODE (operands[2]) != CONST_INT
  21845. || (unsigned) INTVAL (operands[2]) > 3)
  21846. FAIL;
  21847. }")
  21848. This example uses 'define_expand' so that it can generate an RTL insn
  21849. for shifting when the shift-count is in the supported range of 0 to 3
  21850. but fail in other cases where machine insns aren't available. When it
  21851. fails, the compiler tries another strategy using different patterns
  21852. (such as, a library call).
  21853. If the compiler were able to handle nontrivial condition-strings in
  21854. patterns with names, then it would be possible to use a 'define_insn' in
  21855. that case. Here is another case (zero-extension on the 68000) which
  21856. makes more use of the power of 'define_expand':
  21857. (define_expand "zero_extendhisi2"
  21858. [(set (match_operand:SI 0 "general_operand" "")
  21859. (const_int 0))
  21860. (set (strict_low_part
  21861. (subreg:HI
  21862. (match_dup 0)
  21863. 0))
  21864. (match_operand:HI 1 "general_operand" ""))]
  21865. ""
  21866. "operands[1] = make_safe_from (operands[1], operands[0]);")
  21867. Here two RTL insns are generated, one to clear the entire output operand
  21868. and the other to copy the input operand into its low half. This
  21869. sequence is incorrect if the input operand refers to [the old value of]
  21870. the output operand, so the preparation statement makes sure this isn't
  21871. so. The function 'make_safe_from' copies the 'operands[1]' into a
  21872. temporary register if it refers to 'operands[0]'. It does this by
  21873. emitting another RTL insn.
  21874. Finally, a third example shows the use of an internal operand.
  21875. Zero-extension on the SPUR chip is done by 'and'-ing the result against
  21876. a halfword mask. But this mask cannot be represented by a 'const_int'
  21877. because the constant value is too large to be legitimate on this
  21878. machine. So it must be copied into a register with 'force_reg' and then
  21879. the register used in the 'and'.
  21880. (define_expand "zero_extendhisi2"
  21881. [(set (match_operand:SI 0 "register_operand" "")
  21882. (and:SI (subreg:SI
  21883. (match_operand:HI 1 "register_operand" "")
  21884. 0)
  21885. (match_dup 2)))]
  21886. ""
  21887. "operands[2]
  21888. = force_reg (SImode, GEN_INT (65535)); ")
  21889. _Note:_ If the 'define_expand' is used to serve a standard binary or
  21890. unary arithmetic operation or a bit-field operation, then the last insn
  21891. it generates must not be a 'code_label', 'barrier' or 'note'. It must
  21892. be an 'insn', 'jump_insn' or 'call_insn'. If you don't need a real insn
  21893. at the end, emit an insn to copy the result of the operation into
  21894. itself. Such an insn will generate no code, but it can avoid problems
  21895. in the compiler.
  21896. 
  21897. File: gccint.info, Node: Insn Splitting, Next: Including Patterns, Prev: Expander Definitions, Up: Machine Desc
  21898. 17.16 Defining How to Split Instructions
  21899. ========================================
  21900. There are two cases where you should specify how to split a pattern into
  21901. multiple insns. On machines that have instructions requiring delay
  21902. slots (*note Delay Slots::) or that have instructions whose output is
  21903. not available for multiple cycles (*note Processor pipeline
  21904. description::), the compiler phases that optimize these cases need to be
  21905. able to move insns into one-instruction delay slots. However, some
  21906. insns may generate more than one machine instruction. These insns
  21907. cannot be placed into a delay slot.
  21908. Often you can rewrite the single insn as a list of individual insns,
  21909. each corresponding to one machine instruction. The disadvantage of
  21910. doing so is that it will cause the compilation to be slower and require
  21911. more space. If the resulting insns are too complex, it may also
  21912. suppress some optimizations. The compiler splits the insn if there is a
  21913. reason to believe that it might improve instruction or delay slot
  21914. scheduling.
  21915. The insn combiner phase also splits putative insns. If three insns are
  21916. merged into one insn with a complex expression that cannot be matched by
  21917. some 'define_insn' pattern, the combiner phase attempts to split the
  21918. complex pattern into two insns that are recognized. Usually it can
  21919. break the complex pattern into two patterns by splitting out some
  21920. subexpression. However, in some other cases, such as performing an
  21921. addition of a large constant in two insns on a RISC machine, the way to
  21922. split the addition into two insns is machine-dependent.
  21923. The 'define_split' definition tells the compiler how to split a complex
  21924. insn into several simpler insns. It looks like this:
  21925. (define_split
  21926. [INSN-PATTERN]
  21927. "CONDITION"
  21928. [NEW-INSN-PATTERN-1
  21929. NEW-INSN-PATTERN-2
  21930. ...]
  21931. "PREPARATION-STATEMENTS")
  21932. INSN-PATTERN is a pattern that needs to be split and CONDITION is the
  21933. final condition to be tested, as in a 'define_insn'. When an insn
  21934. matching INSN-PATTERN and satisfying CONDITION is found, it is replaced
  21935. in the insn list with the insns given by NEW-INSN-PATTERN-1,
  21936. NEW-INSN-PATTERN-2, etc.
  21937. The PREPARATION-STATEMENTS are similar to those statements that are
  21938. specified for 'define_expand' (*note Expander Definitions::) and are
  21939. executed before the new RTL is generated to prepare for the generated
  21940. code or emit some insns whose pattern is not fixed. Unlike those in
  21941. 'define_expand', however, these statements must not generate any new
  21942. pseudo-registers. Once reload has completed, they also must not
  21943. allocate any space in the stack frame.
  21944. Patterns are matched against INSN-PATTERN in two different
  21945. circumstances. If an insn needs to be split for delay slot scheduling
  21946. or insn scheduling, the insn is already known to be valid, which means
  21947. that it must have been matched by some 'define_insn' and, if
  21948. 'reload_completed' is nonzero, is known to satisfy the constraints of
  21949. that 'define_insn'. In that case, the new insn patterns must also be
  21950. insns that are matched by some 'define_insn' and, if 'reload_completed'
  21951. is nonzero, must also satisfy the constraints of those definitions.
  21952. As an example of this usage of 'define_split', consider the following
  21953. example from 'a29k.md', which splits a 'sign_extend' from 'HImode' to
  21954. 'SImode' into a pair of shift insns:
  21955. (define_split
  21956. [(set (match_operand:SI 0 "gen_reg_operand" "")
  21957. (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
  21958. ""
  21959. [(set (match_dup 0)
  21960. (ashift:SI (match_dup 1)
  21961. (const_int 16)))
  21962. (set (match_dup 0)
  21963. (ashiftrt:SI (match_dup 0)
  21964. (const_int 16)))]
  21965. "
  21966. { operands[1] = gen_lowpart (SImode, operands[1]); }")
  21967. When the combiner phase tries to split an insn pattern, it is always
  21968. the case that the pattern is _not_ matched by any 'define_insn'. The
  21969. combiner pass first tries to split a single 'set' expression and then
  21970. the same 'set' expression inside a 'parallel', but followed by a
  21971. 'clobber' of a pseudo-reg to use as a scratch register. In these cases,
  21972. the combiner expects exactly two new insn patterns to be generated. It
  21973. will verify that these patterns match some 'define_insn' definitions, so
  21974. you need not do this test in the 'define_split' (of course, there is no
  21975. point in writing a 'define_split' that will never produce insns that
  21976. match).
  21977. Here is an example of this use of 'define_split', taken from
  21978. 'rs6000.md':
  21979. (define_split
  21980. [(set (match_operand:SI 0 "gen_reg_operand" "")
  21981. (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
  21982. (match_operand:SI 2 "non_add_cint_operand" "")))]
  21983. ""
  21984. [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
  21985. (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
  21986. "
  21987. {
  21988. int low = INTVAL (operands[2]) & 0xffff;
  21989. int high = (unsigned) INTVAL (operands[2]) >> 16;
  21990. if (low & 0x8000)
  21991. high++, low |= 0xffff0000;
  21992. operands[3] = GEN_INT (high << 16);
  21993. operands[4] = GEN_INT (low);
  21994. }")
  21995. Here the predicate 'non_add_cint_operand' matches any 'const_int' that
  21996. is _not_ a valid operand of a single add insn. The add with the smaller
  21997. displacement is written so that it can be substituted into the address
  21998. of a subsequent operation.
  21999. An example that uses a scratch register, from the same file, generates
  22000. an equality comparison of a register and a large constant:
  22001. (define_split
  22002. [(set (match_operand:CC 0 "cc_reg_operand" "")
  22003. (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
  22004. (match_operand:SI 2 "non_short_cint_operand" "")))
  22005. (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
  22006. "find_single_use (operands[0], insn, 0)
  22007. && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
  22008. || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
  22009. [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
  22010. (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
  22011. "
  22012. {
  22013. /* Get the constant we are comparing against, C, and see what it
  22014. looks like sign-extended to 16 bits. Then see what constant
  22015. could be XOR'ed with C to get the sign-extended value. */
  22016. int c = INTVAL (operands[2]);
  22017. int sextc = (c << 16) >> 16;
  22018. int xorv = c ^ sextc;
  22019. operands[4] = GEN_INT (xorv);
  22020. operands[5] = GEN_INT (sextc);
  22021. }")
  22022. To avoid confusion, don't write a single 'define_split' that accepts
  22023. some insns that match some 'define_insn' as well as some insns that
  22024. don't. Instead, write two separate 'define_split' definitions, one for
  22025. the insns that are valid and one for the insns that are not valid.
  22026. The splitter is allowed to split jump instructions into sequence of
  22027. jumps or create new jumps in while splitting non-jump instructions. As
  22028. the control flow graph and branch prediction information needs to be
  22029. updated, several restriction apply.
  22030. Splitting of jump instruction into sequence that over by another jump
  22031. instruction is always valid, as compiler expect identical behavior of
  22032. new jump. When new sequence contains multiple jump instructions or new
  22033. labels, more assistance is needed. Splitter is required to create only
  22034. unconditional jumps, or simple conditional jump instructions.
  22035. Additionally it must attach a 'REG_BR_PROB' note to each conditional
  22036. jump. A global variable 'split_branch_probability' holds the
  22037. probability of the original branch in case it was a simple conditional
  22038. jump, -1 otherwise. To simplify recomputing of edge frequencies, the
  22039. new sequence is required to have only forward jumps to the newly created
  22040. labels.
  22041. For the common case where the pattern of a define_split exactly matches
  22042. the pattern of a define_insn, use 'define_insn_and_split'. It looks
  22043. like this:
  22044. (define_insn_and_split
  22045. [INSN-PATTERN]
  22046. "CONDITION"
  22047. "OUTPUT-TEMPLATE"
  22048. "SPLIT-CONDITION"
  22049. [NEW-INSN-PATTERN-1
  22050. NEW-INSN-PATTERN-2
  22051. ...]
  22052. "PREPARATION-STATEMENTS"
  22053. [INSN-ATTRIBUTES])
  22054. INSN-PATTERN, CONDITION, OUTPUT-TEMPLATE, and INSN-ATTRIBUTES are used
  22055. as in 'define_insn'. The NEW-INSN-PATTERN vector and the
  22056. PREPARATION-STATEMENTS are used as in a 'define_split'. The
  22057. SPLIT-CONDITION is also used as in 'define_split', with the additional
  22058. behavior that if the condition starts with '&&', the condition used for
  22059. the split will be the constructed as a logical "and" of the split
  22060. condition with the insn condition. For example, from i386.md:
  22061. (define_insn_and_split "zero_extendhisi2_and"
  22062. [(set (match_operand:SI 0 "register_operand" "=r")
  22063. (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
  22064. (clobber (reg:CC 17))]
  22065. "TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
  22066. "#"
  22067. "&& reload_completed"
  22068. [(parallel [(set (match_dup 0)
  22069. (and:SI (match_dup 0) (const_int 65535)))
  22070. (clobber (reg:CC 17))])]
  22071. ""
  22072. [(set_attr "type" "alu1")])
  22073. In this case, the actual split condition will be
  22074. 'TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed'.
  22075. The 'define_insn_and_split' construction provides exactly the same
  22076. functionality as two separate 'define_insn' and 'define_split' patterns.
  22077. It exists for compactness, and as a maintenance tool to prevent having
  22078. to ensure the two patterns' templates match.
  22079. 
  22080. File: gccint.info, Node: Including Patterns, Next: Peephole Definitions, Prev: Insn Splitting, Up: Machine Desc
  22081. 17.17 Including Patterns in Machine Descriptions.
  22082. =================================================
  22083. The 'include' pattern tells the compiler tools where to look for
  22084. patterns that are in files other than in the file '.md'. This is used
  22085. only at build time and there is no preprocessing allowed.
  22086. It looks like:
  22087. (include
  22088. PATHNAME)
  22089. For example:
  22090. (include "filestuff")
  22091. Where PATHNAME is a string that specifies the location of the file,
  22092. specifies the include file to be in 'gcc/config/target/filestuff'. The
  22093. directory 'gcc/config/target' is regarded as the default directory.
  22094. Machine descriptions may be split up into smaller more manageable
  22095. subsections and placed into subdirectories.
  22096. By specifying:
  22097. (include "BOGUS/filestuff")
  22098. the include file is specified to be in
  22099. 'gcc/config/TARGET/BOGUS/filestuff'.
  22100. Specifying an absolute path for the include file such as;
  22101. (include "/u2/BOGUS/filestuff")
  22102. is permitted but is not encouraged.
  22103. 17.17.1 RTL Generation Tool Options for Directory Search
  22104. --------------------------------------------------------
  22105. The '-IDIR' option specifies directories to search for machine
  22106. descriptions. For example:
  22107. genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
  22108. Add the directory DIR to the head of the list of directories to be
  22109. searched for header files. This can be used to override a system
  22110. machine definition file, substituting your own version, since these
  22111. directories are searched before the default machine description file
  22112. directories. If you use more than one '-I' option, the directories are
  22113. scanned in left-to-right order; the standard default directory come
  22114. after.
  22115. 
  22116. File: gccint.info, Node: Peephole Definitions, Next: Insn Attributes, Prev: Including Patterns, Up: Machine Desc
  22117. 17.18 Machine-Specific Peephole Optimizers
  22118. ==========================================
  22119. In addition to instruction patterns the 'md' file may contain
  22120. definitions of machine-specific peephole optimizations.
  22121. The combiner does not notice certain peephole optimizations when the
  22122. data flow in the program does not suggest that it should try them. For
  22123. example, sometimes two consecutive insns related in purpose can be
  22124. combined even though the second one does not appear to use a register
  22125. computed in the first one. A machine-specific peephole optimizer can
  22126. detect such opportunities.
  22127. There are two forms of peephole definitions that may be used. The
  22128. original 'define_peephole' is run at assembly output time to match insns
  22129. and substitute assembly text. Use of 'define_peephole' is deprecated.
  22130. A newer 'define_peephole2' matches insns and substitutes new insns.
  22131. The 'peephole2' pass is run after register allocation but before
  22132. scheduling, which may result in much better code for targets that do
  22133. scheduling.
  22134. * Menu:
  22135. * define_peephole:: RTL to Text Peephole Optimizers
  22136. * define_peephole2:: RTL to RTL Peephole Optimizers
  22137. 
  22138. File: gccint.info, Node: define_peephole, Next: define_peephole2, Up: Peephole Definitions
  22139. 17.18.1 RTL to Text Peephole Optimizers
  22140. ---------------------------------------
  22141. A definition looks like this:
  22142. (define_peephole
  22143. [INSN-PATTERN-1
  22144. INSN-PATTERN-2
  22145. ...]
  22146. "CONDITION"
  22147. "TEMPLATE"
  22148. "OPTIONAL-INSN-ATTRIBUTES")
  22149. The last string operand may be omitted if you are not using any
  22150. machine-specific information in this machine description. If present,
  22151. it must obey the same rules as in a 'define_insn'.
  22152. In this skeleton, INSN-PATTERN-1 and so on are patterns to match
  22153. consecutive insns. The optimization applies to a sequence of insns when
  22154. INSN-PATTERN-1 matches the first one, INSN-PATTERN-2 matches the next,
  22155. and so on.
  22156. Each of the insns matched by a peephole must also match a
  22157. 'define_insn'. Peepholes are checked only at the last stage just before
  22158. code generation, and only optionally. Therefore, any insn which would
  22159. match a peephole but no 'define_insn' will cause a crash in code
  22160. generation in an unoptimized compilation, or at various optimization
  22161. stages.
  22162. The operands of the insns are matched with 'match_operands',
  22163. 'match_operator', and 'match_dup', as usual. What is not usual is that
  22164. the operand numbers apply to all the insn patterns in the definition.
  22165. So, you can check for identical operands in two insns by using
  22166. 'match_operand' in one insn and 'match_dup' in the other.
  22167. The operand constraints used in 'match_operand' patterns do not have
  22168. any direct effect on the applicability of the peephole, but they will be
  22169. validated afterward, so make sure your constraints are general enough to
  22170. apply whenever the peephole matches. If the peephole matches but the
  22171. constraints are not satisfied, the compiler will crash.
  22172. It is safe to omit constraints in all the operands of the peephole; or
  22173. you can write constraints which serve as a double-check on the criteria
  22174. previously tested.
  22175. Once a sequence of insns matches the patterns, the CONDITION is
  22176. checked. This is a C expression which makes the final decision whether
  22177. to perform the optimization (we do so if the expression is nonzero). If
  22178. CONDITION is omitted (in other words, the string is empty) then the
  22179. optimization is applied to every sequence of insns that matches the
  22180. patterns.
  22181. The defined peephole optimizations are applied after register
  22182. allocation is complete. Therefore, the peephole definition can check
  22183. which operands have ended up in which kinds of registers, just by
  22184. looking at the operands.
  22185. The way to refer to the operands in CONDITION is to write 'operands[I]'
  22186. for operand number I (as matched by '(match_operand I ...)'). Use the
  22187. variable 'insn' to refer to the last of the insns being matched; use
  22188. 'prev_active_insn' to find the preceding insns.
  22189. When optimizing computations with intermediate results, you can use
  22190. CONDITION to match only when the intermediate results are not used
  22191. elsewhere. Use the C expression 'dead_or_set_p (INSN, OP)', where INSN
  22192. is the insn in which you expect the value to be used for the last time
  22193. (from the value of 'insn', together with use of 'prev_nonnote_insn'),
  22194. and OP is the intermediate value (from 'operands[I]').
  22195. Applying the optimization means replacing the sequence of insns with
  22196. one new insn. The TEMPLATE controls ultimate output of assembler code
  22197. for this combined insn. It works exactly like the template of a
  22198. 'define_insn'. Operand numbers in this template are the same ones used
  22199. in matching the original sequence of insns.
  22200. The result of a defined peephole optimizer does not need to match any
  22201. of the insn patterns in the machine description; it does not even have
  22202. an opportunity to match them. The peephole optimizer definition itself
  22203. serves as the insn pattern to control how the insn is output.
  22204. Defined peephole optimizers are run as assembler code is being output,
  22205. so the insns they produce are never combined or rearranged in any way.
  22206. Here is an example, taken from the 68000 machine description:
  22207. (define_peephole
  22208. [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
  22209. (set (match_operand:DF 0 "register_operand" "=f")
  22210. (match_operand:DF 1 "register_operand" "ad"))]
  22211. "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
  22212. {
  22213. rtx xoperands[2];
  22214. xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
  22215. #ifdef MOTOROLA
  22216. output_asm_insn ("move.l %1,(sp)", xoperands);
  22217. output_asm_insn ("move.l %1,-(sp)", operands);
  22218. return "fmove.d (sp)+,%0";
  22219. #else
  22220. output_asm_insn ("movel %1,sp@", xoperands);
  22221. output_asm_insn ("movel %1,sp@-", operands);
  22222. return "fmoved sp@+,%0";
  22223. #endif
  22224. })
  22225. The effect of this optimization is to change
  22226. jbsr _foobar
  22227. addql #4,sp
  22228. movel d1,sp@-
  22229. movel d0,sp@-
  22230. fmoved sp@+,fp0
  22231. into
  22232. jbsr _foobar
  22233. movel d1,sp@
  22234. movel d0,sp@-
  22235. fmoved sp@+,fp0
  22236. INSN-PATTERN-1 and so on look _almost_ like the second operand of
  22237. 'define_insn'. There is one important difference: the second operand of
  22238. 'define_insn' consists of one or more RTX's enclosed in square brackets.
  22239. Usually, there is only one: then the same action can be written as an
  22240. element of a 'define_peephole'. But when there are multiple actions in
  22241. a 'define_insn', they are implicitly enclosed in a 'parallel'. Then you
  22242. must explicitly write the 'parallel', and the square brackets within it,
  22243. in the 'define_peephole'. Thus, if an insn pattern looks like this,
  22244. (define_insn "divmodsi4"
  22245. [(set (match_operand:SI 0 "general_operand" "=d")
  22246. (div:SI (match_operand:SI 1 "general_operand" "0")
  22247. (match_operand:SI 2 "general_operand" "dmsK")))
  22248. (set (match_operand:SI 3 "general_operand" "=d")
  22249. (mod:SI (match_dup 1) (match_dup 2)))]
  22250. "TARGET_68020"
  22251. "divsl%.l %2,%3:%0")
  22252. then the way to mention this insn in a peephole is as follows:
  22253. (define_peephole
  22254. [...
  22255. (parallel
  22256. [(set (match_operand:SI 0 "general_operand" "=d")
  22257. (div:SI (match_operand:SI 1 "general_operand" "0")
  22258. (match_operand:SI 2 "general_operand" "dmsK")))
  22259. (set (match_operand:SI 3 "general_operand" "=d")
  22260. (mod:SI (match_dup 1) (match_dup 2)))])
  22261. ...]
  22262. ...)
  22263. 
  22264. File: gccint.info, Node: define_peephole2, Prev: define_peephole, Up: Peephole Definitions
  22265. 17.18.2 RTL to RTL Peephole Optimizers
  22266. --------------------------------------
  22267. The 'define_peephole2' definition tells the compiler how to substitute
  22268. one sequence of instructions for another sequence, what additional
  22269. scratch registers may be needed and what their lifetimes must be.
  22270. (define_peephole2
  22271. [INSN-PATTERN-1
  22272. INSN-PATTERN-2
  22273. ...]
  22274. "CONDITION"
  22275. [NEW-INSN-PATTERN-1
  22276. NEW-INSN-PATTERN-2
  22277. ...]
  22278. "PREPARATION-STATEMENTS")
  22279. The definition is almost identical to 'define_split' (*note Insn
  22280. Splitting::) except that the pattern to match is not a single
  22281. instruction, but a sequence of instructions.
  22282. It is possible to request additional scratch registers for use in the
  22283. output template. If appropriate registers are not free, the pattern
  22284. will simply not match.
  22285. Scratch registers are requested with a 'match_scratch' pattern at the
  22286. top level of the input pattern. The allocated register (initially) will
  22287. be dead at the point requested within the original sequence. If the
  22288. scratch is used at more than a single point, a 'match_dup' pattern at
  22289. the top level of the input pattern marks the last position in the input
  22290. sequence at which the register must be available.
  22291. Here is an example from the IA-32 machine description:
  22292. (define_peephole2
  22293. [(match_scratch:SI 2 "r")
  22294. (parallel [(set (match_operand:SI 0 "register_operand" "")
  22295. (match_operator:SI 3 "arith_or_logical_operator"
  22296. [(match_dup 0)
  22297. (match_operand:SI 1 "memory_operand" "")]))
  22298. (clobber (reg:CC 17))])]
  22299. "! optimize_size && ! TARGET_READ_MODIFY"
  22300. [(set (match_dup 2) (match_dup 1))
  22301. (parallel [(set (match_dup 0)
  22302. (match_op_dup 3 [(match_dup 0) (match_dup 2)]))
  22303. (clobber (reg:CC 17))])]
  22304. "")
  22305. This pattern tries to split a load from its use in the hopes that we'll
  22306. be able to schedule around the memory load latency. It allocates a
  22307. single 'SImode' register of class 'GENERAL_REGS' ('"r"') that needs to
  22308. be live only at the point just before the arithmetic.
  22309. A real example requiring extended scratch lifetimes is harder to come
  22310. by, so here's a silly made-up example:
  22311. (define_peephole2
  22312. [(match_scratch:SI 4 "r")
  22313. (set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
  22314. (set (match_operand:SI 2 "" "") (match_dup 1))
  22315. (match_dup 4)
  22316. (set (match_operand:SI 3 "" "") (match_dup 1))]
  22317. "/* determine 1 does not overlap 0 and 2 */"
  22318. [(set (match_dup 4) (match_dup 1))
  22319. (set (match_dup 0) (match_dup 4))
  22320. (set (match_dup 2) (match_dup 4))
  22321. (set (match_dup 3) (match_dup 4))]
  22322. "")
  22323. If we had not added the '(match_dup 4)' in the middle of the input
  22324. sequence, it might have been the case that the register we chose at the
  22325. beginning of the sequence is killed by the first or second 'set'.
  22326. 
  22327. File: gccint.info, Node: Insn Attributes, Next: Conditional Execution, Prev: Peephole Definitions, Up: Machine Desc
  22328. 17.19 Instruction Attributes
  22329. ============================
  22330. In addition to describing the instruction supported by the target
  22331. machine, the 'md' file also defines a group of "attributes" and a set of
  22332. values for each. Every generated insn is assigned a value for each
  22333. attribute. One possible attribute would be the effect that the insn has
  22334. on the machine's condition code. This attribute can then be used by
  22335. 'NOTICE_UPDATE_CC' to track the condition codes.
  22336. * Menu:
  22337. * Defining Attributes:: Specifying attributes and their values.
  22338. * Expressions:: Valid expressions for attribute values.
  22339. * Tagging Insns:: Assigning attribute values to insns.
  22340. * Attr Example:: An example of assigning attributes.
  22341. * Insn Lengths:: Computing the length of insns.
  22342. * Constant Attributes:: Defining attributes that are constant.
  22343. * Mnemonic Attribute:: Obtain the instruction mnemonic as attribute value.
  22344. * Delay Slots:: Defining delay slots required for a machine.
  22345. * Processor pipeline description:: Specifying information for insn scheduling.
  22346. 
  22347. File: gccint.info, Node: Defining Attributes, Next: Expressions, Up: Insn Attributes
  22348. 17.19.1 Defining Attributes and their Values
  22349. --------------------------------------------
  22350. The 'define_attr' expression is used to define each attribute required
  22351. by the target machine. It looks like:
  22352. (define_attr NAME LIST-OF-VALUES DEFAULT)
  22353. NAME is a string specifying the name of the attribute being defined.
  22354. Some attributes are used in a special way by the rest of the compiler.
  22355. The 'enabled' attribute can be used to conditionally enable or disable
  22356. insn alternatives (*note Disable Insn Alternatives::). The 'predicable'
  22357. attribute, together with a suitable 'define_cond_exec' (*note
  22358. Conditional Execution::), can be used to automatically generate
  22359. conditional variants of instruction patterns. The 'mnemonic' attribute
  22360. can be used to check for the instruction mnemonic (*note Mnemonic
  22361. Attribute::). The compiler internally uses the names 'ce_enabled' and
  22362. 'nonce_enabled', so they should not be used elsewhere as alternative
  22363. names.
  22364. LIST-OF-VALUES is either a string that specifies a comma-separated list
  22365. of values that can be assigned to the attribute, or a null string to
  22366. indicate that the attribute takes numeric values.
  22367. DEFAULT is an attribute expression that gives the value of this
  22368. attribute for insns that match patterns whose definition does not
  22369. include an explicit value for this attribute. *Note Attr Example::, for
  22370. more information on the handling of defaults. *Note Constant
  22371. Attributes::, for information on attributes that do not depend on any
  22372. particular insn.
  22373. For each defined attribute, a number of definitions are written to the
  22374. 'insn-attr.h' file. For cases where an explicit set of values is
  22375. specified for an attribute, the following are defined:
  22376. * A '#define' is written for the symbol 'HAVE_ATTR_NAME'.
  22377. * An enumerated class is defined for 'attr_NAME' with elements of the
  22378. form 'UPPER-NAME_UPPER-VALUE' where the attribute name and value
  22379. are first converted to uppercase.
  22380. * A function 'get_attr_NAME' is defined that is passed an insn and
  22381. returns the attribute value for that insn.
  22382. For example, if the following is present in the 'md' file:
  22383. (define_attr "type" "branch,fp,load,store,arith" ...)
  22384. the following lines will be written to the file 'insn-attr.h'.
  22385. #define HAVE_ATTR_type 1
  22386. enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
  22387. TYPE_STORE, TYPE_ARITH};
  22388. extern enum attr_type get_attr_type ();
  22389. If the attribute takes numeric values, no 'enum' type will be defined
  22390. and the function to obtain the attribute's value will return 'int'.
  22391. There are attributes which are tied to a specific meaning. These
  22392. attributes are not free to use for other purposes:
  22393. 'length'
  22394. The 'length' attribute is used to calculate the length of emitted
  22395. code chunks. This is especially important when verifying branch
  22396. distances. *Note Insn Lengths::.
  22397. 'enabled'
  22398. The 'enabled' attribute can be defined to prevent certain
  22399. alternatives of an insn definition from being used during code
  22400. generation. *Note Disable Insn Alternatives::.
  22401. 'mnemonic'
  22402. The 'mnemonic' attribute can be defined to implement instruction
  22403. specific checks in e.g. the pipeline description. *Note Mnemonic
  22404. Attribute::.
  22405. For each of these special attributes, the corresponding
  22406. 'HAVE_ATTR_NAME' '#define' is also written when the attribute is not
  22407. defined; in that case, it is defined as '0'.
  22408. Another way of defining an attribute is to use:
  22409. (define_enum_attr "ATTR" "ENUM" DEFAULT)
  22410. This works in just the same way as 'define_attr', except that the list
  22411. of values is taken from a separate enumeration called ENUM (*note
  22412. define_enum::). This form allows you to use the same list of values for
  22413. several attributes without having to repeat the list each time. For
  22414. example:
  22415. (define_enum "processor" [
  22416. model_a
  22417. model_b
  22418. ...
  22419. ])
  22420. (define_enum_attr "arch" "processor"
  22421. (const (symbol_ref "target_arch")))
  22422. (define_enum_attr "tune" "processor"
  22423. (const (symbol_ref "target_tune")))
  22424. defines the same attributes as:
  22425. (define_attr "arch" "model_a,model_b,..."
  22426. (const (symbol_ref "target_arch")))
  22427. (define_attr "tune" "model_a,model_b,..."
  22428. (const (symbol_ref "target_tune")))
  22429. but without duplicating the processor list. The second example defines
  22430. two separate C enums ('attr_arch' and 'attr_tune') whereas the first
  22431. defines a single C enum ('processor').
  22432. 
  22433. File: gccint.info, Node: Expressions, Next: Tagging Insns, Prev: Defining Attributes, Up: Insn Attributes
  22434. 17.19.2 Attribute Expressions
  22435. -----------------------------
  22436. RTL expressions used to define attributes use the codes described above
  22437. plus a few specific to attribute definitions, to be discussed below.
  22438. Attribute value expressions must have one of the following forms:
  22439. '(const_int I)'
  22440. The integer I specifies the value of a numeric attribute. I must
  22441. be non-negative.
  22442. The value of a numeric attribute can be specified either with a
  22443. 'const_int', or as an integer represented as a string in
  22444. 'const_string', 'eq_attr' (see below), 'attr', 'symbol_ref', simple
  22445. arithmetic expressions, and 'set_attr' overrides on specific
  22446. instructions (*note Tagging Insns::).
  22447. '(const_string VALUE)'
  22448. The string VALUE specifies a constant attribute value. If VALUE is
  22449. specified as '"*"', it means that the default value of the
  22450. attribute is to be used for the insn containing this expression.
  22451. '"*"' obviously cannot be used in the DEFAULT expression of a
  22452. 'define_attr'.
  22453. If the attribute whose value is being specified is numeric, VALUE
  22454. must be a string containing a non-negative integer (normally
  22455. 'const_int' would be used in this case). Otherwise, it must
  22456. contain one of the valid values for the attribute.
  22457. '(if_then_else TEST TRUE-VALUE FALSE-VALUE)'
  22458. TEST specifies an attribute test, whose format is defined below.
  22459. The value of this expression is TRUE-VALUE if TEST is true,
  22460. otherwise it is FALSE-VALUE.
  22461. '(cond [TEST1 VALUE1 ...] DEFAULT)'
  22462. The first operand of this expression is a vector containing an even
  22463. number of expressions and consisting of pairs of TEST and VALUE
  22464. expressions. The value of the 'cond' expression is that of the
  22465. VALUE corresponding to the first true TEST expression. If none of
  22466. the TEST expressions are true, the value of the 'cond' expression
  22467. is that of the DEFAULT expression.
  22468. TEST expressions can have one of the following forms:
  22469. '(const_int I)'
  22470. This test is true if I is nonzero and false otherwise.
  22471. '(not TEST)'
  22472. '(ior TEST1 TEST2)'
  22473. '(and TEST1 TEST2)'
  22474. These tests are true if the indicated logical function is true.
  22475. '(match_operand:M N PRED CONSTRAINTS)'
  22476. This test is true if operand N of the insn whose attribute value is
  22477. being determined has mode M (this part of the test is ignored if M
  22478. is 'VOIDmode') and the function specified by the string PRED
  22479. returns a nonzero value when passed operand N and mode M (this part
  22480. of the test is ignored if PRED is the null string).
  22481. The CONSTRAINTS operand is ignored and should be the null string.
  22482. '(match_test C-EXPR)'
  22483. The test is true if C expression C-EXPR is true. In non-constant
  22484. attributes, C-EXPR has access to the following variables:
  22485. INSN
  22486. The rtl instruction under test.
  22487. WHICH_ALTERNATIVE
  22488. The 'define_insn' alternative that INSN matches. *Note Output
  22489. Statement::.
  22490. OPERANDS
  22491. An array of INSN's rtl operands.
  22492. C-EXPR behaves like the condition in a C 'if' statement, so there
  22493. is no need to explicitly convert the expression into a boolean 0 or
  22494. 1 value. For example, the following two tests are equivalent:
  22495. (match_test "x & 2")
  22496. (match_test "(x & 2) != 0")
  22497. '(le ARITH1 ARITH2)'
  22498. '(leu ARITH1 ARITH2)'
  22499. '(lt ARITH1 ARITH2)'
  22500. '(ltu ARITH1 ARITH2)'
  22501. '(gt ARITH1 ARITH2)'
  22502. '(gtu ARITH1 ARITH2)'
  22503. '(ge ARITH1 ARITH2)'
  22504. '(geu ARITH1 ARITH2)'
  22505. '(ne ARITH1 ARITH2)'
  22506. '(eq ARITH1 ARITH2)'
  22507. These tests are true if the indicated comparison of the two
  22508. arithmetic expressions is true. Arithmetic expressions are formed
  22509. with 'plus', 'minus', 'mult', 'div', 'mod', 'abs', 'neg', 'and',
  22510. 'ior', 'xor', 'not', 'ashift', 'lshiftrt', and 'ashiftrt'
  22511. expressions.
  22512. 'const_int' and 'symbol_ref' are always valid terms (*note Insn
  22513. Lengths::,for additional forms). 'symbol_ref' is a string denoting
  22514. a C expression that yields an 'int' when evaluated by the
  22515. 'get_attr_...' routine. It should normally be a global variable.
  22516. '(eq_attr NAME VALUE)'
  22517. NAME is a string specifying the name of an attribute.
  22518. VALUE is a string that is either a valid value for attribute NAME,
  22519. a comma-separated list of values, or '!' followed by a value or
  22520. list. If VALUE does not begin with a '!', this test is true if the
  22521. value of the NAME attribute of the current insn is in the list
  22522. specified by VALUE. If VALUE begins with a '!', this test is true
  22523. if the attribute's value is _not_ in the specified list.
  22524. For example,
  22525. (eq_attr "type" "load,store")
  22526. is equivalent to
  22527. (ior (eq_attr "type" "load") (eq_attr "type" "store"))
  22528. If NAME specifies an attribute of 'alternative', it refers to the
  22529. value of the compiler variable 'which_alternative' (*note Output
  22530. Statement::) and the values must be small integers. For example,
  22531. (eq_attr "alternative" "2,3")
  22532. is equivalent to
  22533. (ior (eq (symbol_ref "which_alternative") (const_int 2))
  22534. (eq (symbol_ref "which_alternative") (const_int 3)))
  22535. Note that, for most attributes, an 'eq_attr' test is simplified in
  22536. cases where the value of the attribute being tested is known for
  22537. all insns matching a particular pattern. This is by far the most
  22538. common case.
  22539. '(attr_flag NAME)'
  22540. The value of an 'attr_flag' expression is true if the flag
  22541. specified by NAME is true for the 'insn' currently being scheduled.
  22542. NAME is a string specifying one of a fixed set of flags to test.
  22543. Test the flags 'forward' and 'backward' to determine the direction
  22544. of a conditional branch.
  22545. This example describes a conditional branch delay slot which can be
  22546. nullified for forward branches that are taken (annul-true) or for
  22547. backward branches which are not taken (annul-false).
  22548. (define_delay (eq_attr "type" "cbranch")
  22549. [(eq_attr "in_branch_delay" "true")
  22550. (and (eq_attr "in_branch_delay" "true")
  22551. (attr_flag "forward"))
  22552. (and (eq_attr "in_branch_delay" "true")
  22553. (attr_flag "backward"))])
  22554. The 'forward' and 'backward' flags are false if the current 'insn'
  22555. being scheduled is not a conditional branch.
  22556. 'attr_flag' is only used during delay slot scheduling and has no
  22557. meaning to other passes of the compiler.
  22558. '(attr NAME)'
  22559. The value of another attribute is returned. This is most useful
  22560. for numeric attributes, as 'eq_attr' and 'attr_flag' produce more
  22561. efficient code for non-numeric attributes.
  22562. 
  22563. File: gccint.info, Node: Tagging Insns, Next: Attr Example, Prev: Expressions, Up: Insn Attributes
  22564. 17.19.3 Assigning Attribute Values to Insns
  22565. -------------------------------------------
  22566. The value assigned to an attribute of an insn is primarily determined by
  22567. which pattern is matched by that insn (or which 'define_peephole'
  22568. generated it). Every 'define_insn' and 'define_peephole' can have an
  22569. optional last argument to specify the values of attributes for matching
  22570. insns. The value of any attribute not specified in a particular insn is
  22571. set to the default value for that attribute, as specified in its
  22572. 'define_attr'. Extensive use of default values for attributes permits
  22573. the specification of the values for only one or two attributes in the
  22574. definition of most insn patterns, as seen in the example in the next
  22575. section.
  22576. The optional last argument of 'define_insn' and 'define_peephole' is a
  22577. vector of expressions, each of which defines the value for a single
  22578. attribute. The most general way of assigning an attribute's value is to
  22579. use a 'set' expression whose first operand is an 'attr' expression
  22580. giving the name of the attribute being set. The second operand of the
  22581. 'set' is an attribute expression (*note Expressions::) giving the value
  22582. of the attribute.
  22583. When the attribute value depends on the 'alternative' attribute (i.e.,
  22584. which is the applicable alternative in the constraint of the insn), the
  22585. 'set_attr_alternative' expression can be used. It allows the
  22586. specification of a vector of attribute expressions, one for each
  22587. alternative.
  22588. When the generality of arbitrary attribute expressions is not required,
  22589. the simpler 'set_attr' expression can be used, which allows specifying a
  22590. string giving either a single attribute value or a list of attribute
  22591. values, one for each alternative.
  22592. The form of each of the above specifications is shown below. In each
  22593. case, NAME is a string specifying the attribute to be set.
  22594. '(set_attr NAME VALUE-STRING)'
  22595. VALUE-STRING is either a string giving the desired attribute value,
  22596. or a string containing a comma-separated list giving the values for
  22597. succeeding alternatives. The number of elements must match the
  22598. number of alternatives in the constraint of the insn pattern.
  22599. Note that it may be useful to specify '*' for some alternative, in
  22600. which case the attribute will assume its default value for insns
  22601. matching that alternative.
  22602. '(set_attr_alternative NAME [VALUE1 VALUE2 ...])'
  22603. Depending on the alternative of the insn, the value will be one of
  22604. the specified values. This is a shorthand for using a 'cond' with
  22605. tests on the 'alternative' attribute.
  22606. '(set (attr NAME) VALUE)'
  22607. The first operand of this 'set' must be the special RTL expression
  22608. 'attr', whose sole operand is a string giving the name of the
  22609. attribute being set. VALUE is the value of the attribute.
  22610. The following shows three different ways of representing the same
  22611. attribute value specification:
  22612. (set_attr "type" "load,store,arith")
  22613. (set_attr_alternative "type"
  22614. [(const_string "load") (const_string "store")
  22615. (const_string "arith")])
  22616. (set (attr "type")
  22617. (cond [(eq_attr "alternative" "1") (const_string "load")
  22618. (eq_attr "alternative" "2") (const_string "store")]
  22619. (const_string "arith")))
  22620. The 'define_asm_attributes' expression provides a mechanism to specify
  22621. the attributes assigned to insns produced from an 'asm' statement. It
  22622. has the form:
  22623. (define_asm_attributes [ATTR-SETS])
  22624. where ATTR-SETS is specified the same as for both the 'define_insn' and
  22625. the 'define_peephole' expressions.
  22626. These values will typically be the "worst case" attribute values. For
  22627. example, they might indicate that the condition code will be clobbered.
  22628. A specification for a 'length' attribute is handled specially. The way
  22629. to compute the length of an 'asm' insn is to multiply the length
  22630. specified in the expression 'define_asm_attributes' by the number of
  22631. machine instructions specified in the 'asm' statement, determined by
  22632. counting the number of semicolons and newlines in the string.
  22633. Therefore, the value of the 'length' attribute specified in a
  22634. 'define_asm_attributes' should be the maximum possible length of a
  22635. single machine instruction.
  22636. 
  22637. File: gccint.info, Node: Attr Example, Next: Insn Lengths, Prev: Tagging Insns, Up: Insn Attributes
  22638. 17.19.4 Example of Attribute Specifications
  22639. -------------------------------------------
  22640. The judicious use of defaulting is important in the efficient use of
  22641. insn attributes. Typically, insns are divided into "types" and an
  22642. attribute, customarily called 'type', is used to represent this value.
  22643. This attribute is normally used only to define the default value for
  22644. other attributes. An example will clarify this usage.
  22645. Assume we have a RISC machine with a condition code and in which only
  22646. full-word operations are performed in registers. Let us assume that we
  22647. can divide all insns into loads, stores, (integer) arithmetic
  22648. operations, floating point operations, and branches.
  22649. Here we will concern ourselves with determining the effect of an insn
  22650. on the condition code and will limit ourselves to the following possible
  22651. effects: The condition code can be set unpredictably (clobbered), not be
  22652. changed, be set to agree with the results of the operation, or only
  22653. changed if the item previously set into the condition code has been
  22654. modified.
  22655. Here is part of a sample 'md' file for such a machine:
  22656. (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
  22657. (define_attr "cc" "clobber,unchanged,set,change0"
  22658. (cond [(eq_attr "type" "load")
  22659. (const_string "change0")
  22660. (eq_attr "type" "store,branch")
  22661. (const_string "unchanged")
  22662. (eq_attr "type" "arith")
  22663. (if_then_else (match_operand:SI 0 "" "")
  22664. (const_string "set")
  22665. (const_string "clobber"))]
  22666. (const_string "clobber")))
  22667. (define_insn ""
  22668. [(set (match_operand:SI 0 "general_operand" "=r,r,m")
  22669. (match_operand:SI 1 "general_operand" "r,m,r"))]
  22670. ""
  22671. "@
  22672. move %0,%1
  22673. load %0,%1
  22674. store %0,%1"
  22675. [(set_attr "type" "arith,load,store")])
  22676. Note that we assume in the above example that arithmetic operations
  22677. performed on quantities smaller than a machine word clobber the
  22678. condition code since they will set the condition code to a value
  22679. corresponding to the full-word result.
  22680. 
  22681. File: gccint.info, Node: Insn Lengths, Next: Constant Attributes, Prev: Attr Example, Up: Insn Attributes
  22682. 17.19.5 Computing the Length of an Insn
  22683. ---------------------------------------
  22684. For many machines, multiple types of branch instructions are provided,
  22685. each for different length branch displacements. In most cases, the
  22686. assembler will choose the correct instruction to use. However, when the
  22687. assembler cannot do so, GCC can when a special attribute, the 'length'
  22688. attribute, is defined. This attribute must be defined to have numeric
  22689. values by specifying a null string in its 'define_attr'.
  22690. In the case of the 'length' attribute, two additional forms of
  22691. arithmetic terms are allowed in test expressions:
  22692. '(match_dup N)'
  22693. This refers to the address of operand N of the current insn, which
  22694. must be a 'label_ref'.
  22695. '(pc)'
  22696. For non-branch instructions and backward branch instructions, this
  22697. refers to the address of the current insn. But for forward branch
  22698. instructions, this refers to the address of the next insn, because
  22699. the length of the current insn is to be computed.
  22700. For normal insns, the length will be determined by value of the
  22701. 'length' attribute. In the case of 'addr_vec' and 'addr_diff_vec' insn
  22702. patterns, the length is computed as the number of vectors multiplied by
  22703. the size of each vector.
  22704. Lengths are measured in addressable storage units (bytes).
  22705. Note that it is possible to call functions via the 'symbol_ref'
  22706. mechanism to compute the length of an insn. However, if you use this
  22707. mechanism you must provide dummy clauses to express the maximum length
  22708. without using the function call. You can an example of this in the 'pa'
  22709. machine description for the 'call_symref' pattern.
  22710. The following macros can be used to refine the length computation:
  22711. 'ADJUST_INSN_LENGTH (INSN, LENGTH)'
  22712. If defined, modifies the length assigned to instruction INSN as a
  22713. function of the context in which it is used. LENGTH is an lvalue
  22714. that contains the initially computed length of the insn and should
  22715. be updated with the correct length of the insn.
  22716. This macro will normally not be required. A case in which it is
  22717. required is the ROMP. On this machine, the size of an 'addr_vec'
  22718. insn must be increased by two to compensate for the fact that
  22719. alignment may be required.
  22720. The routine that returns 'get_attr_length' (the value of the 'length'
  22721. attribute) can be used by the output routine to determine the form of
  22722. the branch instruction to be written, as the example below illustrates.
  22723. As an example of the specification of variable-length branches,
  22724. consider the IBM 360. If we adopt the convention that a register will
  22725. be set to the starting address of a function, we can jump to labels
  22726. within 4k of the start using a four-byte instruction. Otherwise, we
  22727. need a six-byte sequence to load the address from memory and then branch
  22728. to it.
  22729. On such a machine, a pattern for a branch instruction might be
  22730. specified as follows:
  22731. (define_insn "jump"
  22732. [(set (pc)
  22733. (label_ref (match_operand 0 "" "")))]
  22734. ""
  22735. {
  22736. return (get_attr_length (insn) == 4
  22737. ? "b %l0" : "l r15,=a(%l0); br r15");
  22738. }
  22739. [(set (attr "length")
  22740. (if_then_else (lt (match_dup 0) (const_int 4096))
  22741. (const_int 4)
  22742. (const_int 6)))])
  22743. 
  22744. File: gccint.info, Node: Constant Attributes, Next: Mnemonic Attribute, Prev: Insn Lengths, Up: Insn Attributes
  22745. 17.19.6 Constant Attributes
  22746. ---------------------------
  22747. A special form of 'define_attr', where the expression for the default
  22748. value is a 'const' expression, indicates an attribute that is constant
  22749. for a given run of the compiler. Constant attributes may be used to
  22750. specify which variety of processor is used. For example,
  22751. (define_attr "cpu" "m88100,m88110,m88000"
  22752. (const
  22753. (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
  22754. (symbol_ref "TARGET_88110") (const_string "m88110")]
  22755. (const_string "m88000"))))
  22756. (define_attr "memory" "fast,slow"
  22757. (const
  22758. (if_then_else (symbol_ref "TARGET_FAST_MEM")
  22759. (const_string "fast")
  22760. (const_string "slow"))))
  22761. The routine generated for constant attributes has no parameters as it
  22762. does not depend on any particular insn. RTL expressions used to define
  22763. the value of a constant attribute may use the 'symbol_ref' form, but may
  22764. not use either the 'match_operand' form or 'eq_attr' forms involving
  22765. insn attributes.
  22766. 
  22767. File: gccint.info, Node: Mnemonic Attribute, Next: Delay Slots, Prev: Constant Attributes, Up: Insn Attributes
  22768. 17.19.7 Mnemonic Attribute
  22769. --------------------------
  22770. The 'mnemonic' attribute is a string type attribute holding the
  22771. instruction mnemonic for an insn alternative. The attribute values will
  22772. automatically be generated by the machine description parser if there is
  22773. an attribute definition in the md file:
  22774. (define_attr "mnemonic" "unknown" (const_string "unknown"))
  22775. The default value can be freely chosen as long as it does not collide
  22776. with any of the instruction mnemonics. This value will be used whenever
  22777. the machine description parser is not able to determine the mnemonic
  22778. string. This might be the case for output templates containing more
  22779. than a single instruction as in '"mvcle\t%0,%1,0\;jo\t.-4"'.
  22780. The 'mnemonic' attribute set is not generated automatically if the
  22781. instruction string is generated via C code.
  22782. An existing 'mnemonic' attribute set in an insn definition will not be
  22783. overriden by the md file parser. That way it is possible to manually
  22784. set the instruction mnemonics for the cases where the md file parser
  22785. fails to determine it automatically.
  22786. The 'mnemonic' attribute is useful for dealing with instruction
  22787. specific properties in the pipeline description without defining
  22788. additional insn attributes.
  22789. (define_attr "ooo_expanded" ""
  22790. (cond [(eq_attr "mnemonic" "dlr,dsgr,d,dsgf,stam,dsgfr,dlgr")
  22791. (const_int 1)]
  22792. (const_int 0)))
  22793. 
  22794. File: gccint.info, Node: Delay Slots, Next: Processor pipeline description, Prev: Mnemonic Attribute, Up: Insn Attributes
  22795. 17.19.8 Delay Slot Scheduling
  22796. -----------------------------
  22797. The insn attribute mechanism can be used to specify the requirements for
  22798. delay slots, if any, on a target machine. An instruction is said to
  22799. require a "delay slot" if some instructions that are physically after
  22800. the instruction are executed as if they were located before it. Classic
  22801. examples are branch and call instructions, which often execute the
  22802. following instruction before the branch or call is performed.
  22803. On some machines, conditional branch instructions can optionally
  22804. "annul" instructions in the delay slot. This means that the instruction
  22805. will not be executed for certain branch outcomes. Both instructions
  22806. that annul if the branch is true and instructions that annul if the
  22807. branch is false are supported.
  22808. Delay slot scheduling differs from instruction scheduling in that
  22809. determining whether an instruction needs a delay slot is dependent only
  22810. on the type of instruction being generated, not on data flow between the
  22811. instructions. See the next section for a discussion of data-dependent
  22812. instruction scheduling.
  22813. The requirement of an insn needing one or more delay slots is indicated
  22814. via the 'define_delay' expression. It has the following form:
  22815. (define_delay TEST
  22816. [DELAY-1 ANNUL-TRUE-1 ANNUL-FALSE-1
  22817. DELAY-2 ANNUL-TRUE-2 ANNUL-FALSE-2
  22818. ...])
  22819. TEST is an attribute test that indicates whether this 'define_delay'
  22820. applies to a particular insn. If so, the number of required delay slots
  22821. is determined by the length of the vector specified as the second
  22822. argument. An insn placed in delay slot N must satisfy attribute test
  22823. DELAY-N. ANNUL-TRUE-N is an attribute test that specifies which insns
  22824. may be annulled if the branch is true. Similarly, ANNUL-FALSE-N
  22825. specifies which insns in the delay slot may be annulled if the branch is
  22826. false. If annulling is not supported for that delay slot, '(nil)'
  22827. should be coded.
  22828. For example, in the common case where branch and call insns require a
  22829. single delay slot, which may contain any insn other than a branch or
  22830. call, the following would be placed in the 'md' file:
  22831. (define_delay (eq_attr "type" "branch,call")
  22832. [(eq_attr "type" "!branch,call") (nil) (nil)])
  22833. Multiple 'define_delay' expressions may be specified. In this case,
  22834. each such expression specifies different delay slot requirements and
  22835. there must be no insn for which tests in two 'define_delay' expressions
  22836. are both true.
  22837. For example, if we have a machine that requires one delay slot for
  22838. branches but two for calls, no delay slot can contain a branch or call
  22839. insn, and any valid insn in the delay slot for the branch can be
  22840. annulled if the branch is true, we might represent this as follows:
  22841. (define_delay (eq_attr "type" "branch")
  22842. [(eq_attr "type" "!branch,call")
  22843. (eq_attr "type" "!branch,call")
  22844. (nil)])
  22845. (define_delay (eq_attr "type" "call")
  22846. [(eq_attr "type" "!branch,call") (nil) (nil)
  22847. (eq_attr "type" "!branch,call") (nil) (nil)])
  22848. 
  22849. File: gccint.info, Node: Processor pipeline description, Prev: Delay Slots, Up: Insn Attributes
  22850. 17.19.9 Specifying processor pipeline description
  22851. -------------------------------------------------
  22852. To achieve better performance, most modern processors (super-pipelined,
  22853. superscalar RISC, and VLIW processors) have many "functional units" on
  22854. which several instructions can be executed simultaneously. An
  22855. instruction starts execution if its issue conditions are satisfied. If
  22856. not, the instruction is stalled until its conditions are satisfied.
  22857. Such "interlock (pipeline) delay" causes interruption of the fetching of
  22858. successor instructions (or demands nop instructions, e.g. for some MIPS
  22859. processors).
  22860. There are two major kinds of interlock delays in modern processors.
  22861. The first one is a data dependence delay determining "instruction
  22862. latency time". The instruction execution is not started until all
  22863. source data have been evaluated by prior instructions (there are more
  22864. complex cases when the instruction execution starts even when the data
  22865. are not available but will be ready in given time after the instruction
  22866. execution start). Taking the data dependence delays into account is
  22867. simple. The data dependence (true, output, and anti-dependence) delay
  22868. between two instructions is given by a constant. In most cases this
  22869. approach is adequate. The second kind of interlock delays is a
  22870. reservation delay. The reservation delay means that two instructions
  22871. under execution will be in need of shared processors resources, i.e.
  22872. buses, internal registers, and/or functional units, which are reserved
  22873. for some time. Taking this kind of delay into account is complex
  22874. especially for modern RISC processors.
  22875. The task of exploiting more processor parallelism is solved by an
  22876. instruction scheduler. For a better solution to this problem, the
  22877. instruction scheduler has to have an adequate description of the
  22878. processor parallelism (or "pipeline description"). GCC machine
  22879. descriptions describe processor parallelism and functional unit
  22880. reservations for groups of instructions with the aid of "regular
  22881. expressions".
  22882. The GCC instruction scheduler uses a "pipeline hazard recognizer" to
  22883. figure out the possibility of the instruction issue by the processor on
  22884. a given simulated processor cycle. The pipeline hazard recognizer is
  22885. automatically generated from the processor pipeline description. The
  22886. pipeline hazard recognizer generated from the machine description is
  22887. based on a deterministic finite state automaton (DFA): the instruction
  22888. issue is possible if there is a transition from one automaton state to
  22889. another one. This algorithm is very fast, and furthermore, its speed is
  22890. not dependent on processor complexity(1).
  22891. The rest of this section describes the directives that constitute an
  22892. automaton-based processor pipeline description. The order of these
  22893. constructions within the machine description file is not important.
  22894. The following optional construction describes names of automata
  22895. generated and used for the pipeline hazards recognition. Sometimes the
  22896. generated finite state automaton used by the pipeline hazard recognizer
  22897. is large. If we use more than one automaton and bind functional units
  22898. to the automata, the total size of the automata is usually less than the
  22899. size of the single automaton. If there is no one such construction,
  22900. only one finite state automaton is generated.
  22901. (define_automaton AUTOMATA-NAMES)
  22902. AUTOMATA-NAMES is a string giving names of the automata. The names are
  22903. separated by commas. All the automata should have unique names. The
  22904. automaton name is used in the constructions 'define_cpu_unit' and
  22905. 'define_query_cpu_unit'.
  22906. Each processor functional unit used in the description of instruction
  22907. reservations should be described by the following construction.
  22908. (define_cpu_unit UNIT-NAMES [AUTOMATON-NAME])
  22909. UNIT-NAMES is a string giving the names of the functional units
  22910. separated by commas. Don't use name 'nothing', it is reserved for other
  22911. goals.
  22912. AUTOMATON-NAME is a string giving the name of the automaton with which
  22913. the unit is bound. The automaton should be described in construction
  22914. 'define_automaton'. You should give "automaton-name", if there is a
  22915. defined automaton.
  22916. The assignment of units to automata are constrained by the uses of the
  22917. units in insn reservations. The most important constraint is: if a unit
  22918. reservation is present on a particular cycle of an alternative for an
  22919. insn reservation, then some unit from the same automaton must be present
  22920. on the same cycle for the other alternatives of the insn reservation.
  22921. The rest of the constraints are mentioned in the description of the
  22922. subsequent constructions.
  22923. The following construction describes CPU functional units analogously
  22924. to 'define_cpu_unit'. The reservation of such units can be queried for
  22925. an automaton state. The instruction scheduler never queries reservation
  22926. of functional units for given automaton state. So as a rule, you don't
  22927. need this construction. This construction could be used for future code
  22928. generation goals (e.g. to generate VLIW insn templates).
  22929. (define_query_cpu_unit UNIT-NAMES [AUTOMATON-NAME])
  22930. UNIT-NAMES is a string giving names of the functional units separated
  22931. by commas.
  22932. AUTOMATON-NAME is a string giving the name of the automaton with which
  22933. the unit is bound.
  22934. The following construction is the major one to describe pipeline
  22935. characteristics of an instruction.
  22936. (define_insn_reservation INSN-NAME DEFAULT_LATENCY
  22937. CONDITION REGEXP)
  22938. DEFAULT_LATENCY is a number giving latency time of the instruction.
  22939. There is an important difference between the old description and the
  22940. automaton based pipeline description. The latency time is used for all
  22941. dependencies when we use the old description. In the automaton based
  22942. pipeline description, the given latency time is only used for true
  22943. dependencies. The cost of anti-dependencies is always zero and the cost
  22944. of output dependencies is the difference between latency times of the
  22945. producing and consuming insns (if the difference is negative, the cost
  22946. is considered to be zero). You can always change the default costs for
  22947. any description by using the target hook 'TARGET_SCHED_ADJUST_COST'
  22948. (*note Scheduling::).
  22949. INSN-NAME is a string giving the internal name of the insn. The
  22950. internal names are used in constructions 'define_bypass' and in the
  22951. automaton description file generated for debugging. The internal name
  22952. has nothing in common with the names in 'define_insn'. It is a good
  22953. practice to use insn classes described in the processor manual.
  22954. CONDITION defines what RTL insns are described by this construction.
  22955. You should remember that you will be in trouble if CONDITION for two or
  22956. more different 'define_insn_reservation' constructions is TRUE for an
  22957. insn. In this case what reservation will be used for the insn is not
  22958. defined. Such cases are not checked during generation of the pipeline
  22959. hazards recognizer because in general recognizing that two conditions
  22960. may have the same value is quite difficult (especially if the conditions
  22961. contain 'symbol_ref'). It is also not checked during the pipeline
  22962. hazard recognizer work because it would slow down the recognizer
  22963. considerably.
  22964. REGEXP is a string describing the reservation of the cpu's functional
  22965. units by the instruction. The reservations are described by a regular
  22966. expression according to the following syntax:
  22967. regexp = regexp "," oneof
  22968. | oneof
  22969. oneof = oneof "|" allof
  22970. | allof
  22971. allof = allof "+" repeat
  22972. | repeat
  22973. repeat = element "*" number
  22974. | element
  22975. element = cpu_function_unit_name
  22976. | reservation_name
  22977. | result_name
  22978. | "nothing"
  22979. | "(" regexp ")"
  22980. * ',' is used for describing the start of the next cycle in the
  22981. reservation.
  22982. * '|' is used for describing a reservation described by the first
  22983. regular expression *or* a reservation described by the second
  22984. regular expression *or* etc.
  22985. * '+' is used for describing a reservation described by the first
  22986. regular expression *and* a reservation described by the second
  22987. regular expression *and* etc.
  22988. * '*' is used for convenience and simply means a sequence in which
  22989. the regular expression are repeated NUMBER times with cycle
  22990. advancing (see ',').
  22991. * 'cpu_function_unit_name' denotes reservation of the named
  22992. functional unit.
  22993. * 'reservation_name' -- see description of construction
  22994. 'define_reservation'.
  22995. * 'nothing' denotes no unit reservations.
  22996. Sometimes unit reservations for different insns contain common parts.
  22997. In such case, you can simplify the pipeline description by describing
  22998. the common part by the following construction
  22999. (define_reservation RESERVATION-NAME REGEXP)
  23000. RESERVATION-NAME is a string giving name of REGEXP. Functional unit
  23001. names and reservation names are in the same name space. So the
  23002. reservation names should be different from the functional unit names and
  23003. can not be the reserved name 'nothing'.
  23004. The following construction is used to describe exceptions in the
  23005. latency time for given instruction pair. This is so called bypasses.
  23006. (define_bypass NUMBER OUT_INSN_NAMES IN_INSN_NAMES
  23007. [GUARD])
  23008. NUMBER defines when the result generated by the instructions given in
  23009. string OUT_INSN_NAMES will be ready for the instructions given in string
  23010. IN_INSN_NAMES. Each of these strings is a comma-separated list of
  23011. filename-style globs and they refer to the names of
  23012. 'define_insn_reservation's. For example:
  23013. (define_bypass 1 "cpu1_load_*, cpu1_store_*" "cpu1_load_*")
  23014. defines a bypass between instructions that start with 'cpu1_load_' or
  23015. 'cpu1_store_' and those that start with 'cpu1_load_'.
  23016. GUARD is an optional string giving the name of a C function which
  23017. defines an additional guard for the bypass. The function will get the
  23018. two insns as parameters. If the function returns zero the bypass will
  23019. be ignored for this case. The additional guard is necessary to
  23020. recognize complicated bypasses, e.g. when the consumer is only an
  23021. address of insn 'store' (not a stored value).
  23022. If there are more one bypass with the same output and input insns, the
  23023. chosen bypass is the first bypass with a guard in description whose
  23024. guard function returns nonzero. If there is no such bypass, then bypass
  23025. without the guard function is chosen.
  23026. The following five constructions are usually used to describe VLIW
  23027. processors, or more precisely, to describe a placement of small
  23028. instructions into VLIW instruction slots. They can be used for RISC
  23029. processors, too.
  23030. (exclusion_set UNIT-NAMES UNIT-NAMES)
  23031. (presence_set UNIT-NAMES PATTERNS)
  23032. (final_presence_set UNIT-NAMES PATTERNS)
  23033. (absence_set UNIT-NAMES PATTERNS)
  23034. (final_absence_set UNIT-NAMES PATTERNS)
  23035. UNIT-NAMES is a string giving names of functional units separated by
  23036. commas.
  23037. PATTERNS is a string giving patterns of functional units separated by
  23038. comma. Currently pattern is one unit or units separated by
  23039. white-spaces.
  23040. The first construction ('exclusion_set') means that each functional
  23041. unit in the first string can not be reserved simultaneously with a unit
  23042. whose name is in the second string and vice versa. For example, the
  23043. construction is useful for describing processors (e.g. some SPARC
  23044. processors) with a fully pipelined floating point functional unit which
  23045. can execute simultaneously only single floating point insns or only
  23046. double floating point insns.
  23047. The second construction ('presence_set') means that each functional
  23048. unit in the first string can not be reserved unless at least one of
  23049. pattern of units whose names are in the second string is reserved. This
  23050. is an asymmetric relation. For example, it is useful for description
  23051. that VLIW 'slot1' is reserved after 'slot0' reservation. We could
  23052. describe it by the following construction
  23053. (presence_set "slot1" "slot0")
  23054. Or 'slot1' is reserved only after 'slot0' and unit 'b0' reservation.
  23055. In this case we could write
  23056. (presence_set "slot1" "slot0 b0")
  23057. The third construction ('final_presence_set') is analogous to
  23058. 'presence_set'. The difference between them is when checking is done.
  23059. When an instruction is issued in given automaton state reflecting all
  23060. current and planned unit reservations, the automaton state is changed.
  23061. The first state is a source state, the second one is a result state.
  23062. Checking for 'presence_set' is done on the source state reservation,
  23063. checking for 'final_presence_set' is done on the result reservation.
  23064. This construction is useful to describe a reservation which is actually
  23065. two subsequent reservations. For example, if we use
  23066. (presence_set "slot1" "slot0")
  23067. the following insn will be never issued (because 'slot1' requires
  23068. 'slot0' which is absent in the source state).
  23069. (define_reservation "insn_and_nop" "slot0 + slot1")
  23070. but it can be issued if we use analogous 'final_presence_set'.
  23071. The forth construction ('absence_set') means that each functional unit
  23072. in the first string can be reserved only if each pattern of units whose
  23073. names are in the second string is not reserved. This is an asymmetric
  23074. relation (actually 'exclusion_set' is analogous to this one but it is
  23075. symmetric). For example it might be useful in a VLIW description to say
  23076. that 'slot0' cannot be reserved after either 'slot1' or 'slot2' have
  23077. been reserved. This can be described as:
  23078. (absence_set "slot0" "slot1, slot2")
  23079. Or 'slot2' can not be reserved if 'slot0' and unit 'b0' are reserved or
  23080. 'slot1' and unit 'b1' are reserved. In this case we could write
  23081. (absence_set "slot2" "slot0 b0, slot1 b1")
  23082. All functional units mentioned in a set should belong to the same
  23083. automaton.
  23084. The last construction ('final_absence_set') is analogous to
  23085. 'absence_set' but checking is done on the result (state) reservation.
  23086. See comments for 'final_presence_set'.
  23087. You can control the generator of the pipeline hazard recognizer with
  23088. the following construction.
  23089. (automata_option OPTIONS)
  23090. OPTIONS is a string giving options which affect the generated code.
  23091. Currently there are the following options:
  23092. * "no-minimization" makes no minimization of the automaton. This is
  23093. only worth to do when we are debugging the description and need to
  23094. look more accurately at reservations of states.
  23095. * "time" means printing time statistics about the generation of
  23096. automata.
  23097. * "stats" means printing statistics about the generated automata such
  23098. as the number of DFA states, NDFA states and arcs.
  23099. * "v" means a generation of the file describing the result automata.
  23100. The file has suffix '.dfa' and can be used for the description
  23101. verification and debugging.
  23102. * "w" means a generation of warning instead of error for non-critical
  23103. errors.
  23104. * "no-comb-vect" prevents the automaton generator from generating two
  23105. data structures and comparing them for space efficiency. Using a
  23106. comb vector to represent transitions may be better, but it can be
  23107. very expensive to construct. This option is useful if the build
  23108. process spends an unacceptably long time in genautomata.
  23109. * "ndfa" makes nondeterministic finite state automata. This affects
  23110. the treatment of operator '|' in the regular expressions. The
  23111. usual treatment of the operator is to try the first alternative
  23112. and, if the reservation is not possible, the second alternative.
  23113. The nondeterministic treatment means trying all alternatives, some
  23114. of them may be rejected by reservations in the subsequent insns.
  23115. * "collapse-ndfa" modifies the behavior of the generator when
  23116. producing an automaton. An additional state transition to collapse
  23117. a nondeterministic NDFA state to a deterministic DFA state is
  23118. generated. It can be triggered by passing 'const0_rtx' to
  23119. state_transition. In such an automaton, cycle advance transitions
  23120. are available only for these collapsed states. This option is
  23121. useful for ports that want to use the 'ndfa' option, but also want
  23122. to use 'define_query_cpu_unit' to assign units to insns issued in a
  23123. cycle.
  23124. * "progress" means output of a progress bar showing how many states
  23125. were generated so far for automaton being processed. This is
  23126. useful during debugging a DFA description. If you see too many
  23127. generated states, you could interrupt the generator of the pipeline
  23128. hazard recognizer and try to figure out a reason for generation of
  23129. the huge automaton.
  23130. As an example, consider a superscalar RISC machine which can issue
  23131. three insns (two integer insns and one floating point insn) on the cycle
  23132. but can finish only two insns. To describe this, we define the
  23133. following functional units.
  23134. (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
  23135. (define_cpu_unit "port0, port1")
  23136. All simple integer insns can be executed in any integer pipeline and
  23137. their result is ready in two cycles. The simple integer insns are
  23138. issued into the first pipeline unless it is reserved, otherwise they are
  23139. issued into the second pipeline. Integer division and multiplication
  23140. insns can be executed only in the second integer pipeline and their
  23141. results are ready correspondingly in 9 and 4 cycles. The integer
  23142. division is not pipelined, i.e. the subsequent integer division insn can
  23143. not be issued until the current division insn finished. Floating point
  23144. insns are fully pipelined and their results are ready in 3 cycles.
  23145. Where the result of a floating point insn is used by an integer insn, an
  23146. additional delay of one cycle is incurred. To describe all of this we
  23147. could specify
  23148. (define_cpu_unit "div")
  23149. (define_insn_reservation "simple" 2 (eq_attr "type" "int")
  23150. "(i0_pipeline | i1_pipeline), (port0 | port1)")
  23151. (define_insn_reservation "mult" 4 (eq_attr "type" "mult")
  23152. "i1_pipeline, nothing*2, (port0 | port1)")
  23153. (define_insn_reservation "div" 9 (eq_attr "type" "div")
  23154. "i1_pipeline, div*7, div + (port0 | port1)")
  23155. (define_insn_reservation "float" 3 (eq_attr "type" "float")
  23156. "f_pipeline, nothing, (port0 | port1))
  23157. (define_bypass 4 "float" "simple,mult,div")
  23158. To simplify the description we could describe the following reservation
  23159. (define_reservation "finish" "port0|port1")
  23160. and use it in all 'define_insn_reservation' as in the following
  23161. construction
  23162. (define_insn_reservation "simple" 2 (eq_attr "type" "int")
  23163. "(i0_pipeline | i1_pipeline), finish")
  23164. ---------- Footnotes ----------
  23165. (1) However, the size of the automaton depends on processor
  23166. complexity. To limit this effect, machine descriptions can split
  23167. orthogonal parts of the machine description among several automata: but
  23168. then, since each of these must be stepped independently, this does cause
  23169. a small decrease in the algorithm's performance.
  23170. 
  23171. File: gccint.info, Node: Conditional Execution, Next: Define Subst, Prev: Insn Attributes, Up: Machine Desc
  23172. 17.20 Conditional Execution
  23173. ===========================
  23174. A number of architectures provide for some form of conditional
  23175. execution, or predication. The hallmark of this feature is the ability
  23176. to nullify most of the instructions in the instruction set. When the
  23177. instruction set is large and not entirely symmetric, it can be quite
  23178. tedious to describe these forms directly in the '.md' file. An
  23179. alternative is the 'define_cond_exec' template.
  23180. (define_cond_exec
  23181. [PREDICATE-PATTERN]
  23182. "CONDITION"
  23183. "OUTPUT-TEMPLATE"
  23184. "OPTIONAL-INSN-ATTRIBUES")
  23185. PREDICATE-PATTERN is the condition that must be true for the insn to be
  23186. executed at runtime and should match a relational operator. One can use
  23187. 'match_operator' to match several relational operators at once. Any
  23188. 'match_operand' operands must have no more than one alternative.
  23189. CONDITION is a C expression that must be true for the generated pattern
  23190. to match.
  23191. OUTPUT-TEMPLATE is a string similar to the 'define_insn' output
  23192. template (*note Output Template::), except that the '*' and '@' special
  23193. cases do not apply. This is only useful if the assembly text for the
  23194. predicate is a simple prefix to the main insn. In order to handle the
  23195. general case, there is a global variable 'current_insn_predicate' that
  23196. will contain the entire predicate if the current insn is predicated, and
  23197. will otherwise be 'NULL'.
  23198. OPTIONAL-INSN-ATTRIBUTES is an optional vector of attributes that gets
  23199. appended to the insn attributes of the produced cond_exec rtx. It can
  23200. be used to add some distinguishing attribute to cond_exec rtxs produced
  23201. that way. An example usage would be to use this attribute in
  23202. conjunction with attributes on the main pattern to disable particular
  23203. alternatives under certain conditions.
  23204. When 'define_cond_exec' is used, an implicit reference to the
  23205. 'predicable' instruction attribute is made. *Note Insn Attributes::.
  23206. This attribute must be a boolean (i.e. have exactly two elements in its
  23207. LIST-OF-VALUES), with the possible values being 'no' and 'yes'. The
  23208. default and all uses in the insns must be a simple constant, not a
  23209. complex expressions. It may, however, depend on the alternative, by
  23210. using a comma-separated list of values. If that is the case, the port
  23211. should also define an 'enabled' attribute (*note Disable Insn
  23212. Alternatives::), which should also allow only 'no' and 'yes' as its
  23213. values.
  23214. For each 'define_insn' for which the 'predicable' attribute is true, a
  23215. new 'define_insn' pattern will be generated that matches a predicated
  23216. version of the instruction. For example,
  23217. (define_insn "addsi"
  23218. [(set (match_operand:SI 0 "register_operand" "r")
  23219. (plus:SI (match_operand:SI 1 "register_operand" "r")
  23220. (match_operand:SI 2 "register_operand" "r")))]
  23221. "TEST1"
  23222. "add %2,%1,%0")
  23223. (define_cond_exec
  23224. [(ne (match_operand:CC 0 "register_operand" "c")
  23225. (const_int 0))]
  23226. "TEST2"
  23227. "(%0)")
  23228. generates a new pattern
  23229. (define_insn ""
  23230. [(cond_exec
  23231. (ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
  23232. (set (match_operand:SI 0 "register_operand" "r")
  23233. (plus:SI (match_operand:SI 1 "register_operand" "r")
  23234. (match_operand:SI 2 "register_operand" "r"))))]
  23235. "(TEST2) && (TEST1)"
  23236. "(%3) add %2,%1,%0")
  23237. 
  23238. File: gccint.info, Node: Define Subst, Next: Constant Definitions, Prev: Conditional Execution, Up: Machine Desc
  23239. 17.21 RTL Templates Transformations
  23240. ===================================
  23241. For some hardware architectures there are common cases when the RTL
  23242. templates for the instructions can be derived from the other RTL
  23243. templates using simple transformations. E.g., 'i386.md' contains an RTL
  23244. template for the ordinary 'sub' instruction-- '*subsi_1', and for the
  23245. 'sub' instruction with subsequent zero-extension--'*subsi_1_zext'. Such
  23246. cases can be easily implemented by a single meta-template capable of
  23247. generating a modified case based on the initial one:
  23248. (define_subst "NAME"
  23249. [INPUT-TEMPLATE]
  23250. "CONDITION"
  23251. [OUTPUT-TEMPLATE])
  23252. INPUT-TEMPLATE is a pattern describing the source RTL template, which
  23253. will be transformed.
  23254. CONDITION is a C expression that is conjunct with the condition from
  23255. the input-template to generate a condition to be used in the
  23256. output-template.
  23257. OUTPUT-TEMPLATE is a pattern that will be used in the resulting
  23258. template.
  23259. 'define_subst' mechanism is tightly coupled with the notion of the
  23260. subst attribute (*note Subst Iterators::). The use of 'define_subst' is
  23261. triggered by a reference to a subst attribute in the transforming RTL
  23262. template. This reference initiates duplication of the source RTL
  23263. template and substitution of the attributes with their values. The
  23264. source RTL template is left unchanged, while the copy is transformed by
  23265. 'define_subst'. This transformation can fail in the case when the
  23266. source RTL template is not matched against the input-template of the
  23267. 'define_subst'. In such case the copy is deleted.
  23268. 'define_subst' can be used only in 'define_insn' and 'define_expand',
  23269. it cannot be used in other expressions (e.g. in
  23270. 'define_insn_and_split').
  23271. * Menu:
  23272. * Define Subst Example:: Example of 'define_subst' work.
  23273. * Define Subst Pattern Matching:: Process of template comparison.
  23274. * Define Subst Output Template:: Generation of output template.
  23275. 
  23276. File: gccint.info, Node: Define Subst Example, Next: Define Subst Pattern Matching, Up: Define Subst
  23277. 17.21.1 'define_subst' Example
  23278. ------------------------------
  23279. To illustrate how 'define_subst' works, let us examine a simple template
  23280. transformation.
  23281. Suppose there are two kinds of instructions: one that touches flags and
  23282. the other that does not. The instructions of the second type could be
  23283. generated with the following 'define_subst':
  23284. (define_subst "add_clobber_subst"
  23285. [(set (match_operand:SI 0 "" "")
  23286. (match_operand:SI 1 "" ""))]
  23287. ""
  23288. [(set (match_dup 0)
  23289. (match_dup 1))
  23290. (clobber (reg:CC FLAGS_REG))]
  23291. This 'define_subst' can be applied to any RTL pattern containing 'set'
  23292. of mode SI and generates a copy with clobber when it is applied.
  23293. Assume there is an RTL template for a 'max' instruction to be used in
  23294. 'define_subst' mentioned above:
  23295. (define_insn "maxsi"
  23296. [(set (match_operand:SI 0 "register_operand" "=r")
  23297. (max:SI
  23298. (match_operand:SI 1 "register_operand" "r")
  23299. (match_operand:SI 2 "register_operand" "r")))]
  23300. ""
  23301. "max\t{%2, %1, %0|%0, %1, %2}"
  23302. [...])
  23303. To mark the RTL template for 'define_subst' application,
  23304. subst-attributes are used. They should be declared in advance:
  23305. (define_subst_attr "add_clobber_name" "add_clobber_subst" "_noclobber" "_clobber")
  23306. Here 'add_clobber_name' is the attribute name, 'add_clobber_subst' is
  23307. the name of the corresponding 'define_subst', the third argument
  23308. ('_noclobber') is the attribute value that would be substituted into the
  23309. unchanged version of the source RTL template, and the last argument
  23310. ('_clobber') is the value that would be substituted into the second,
  23311. transformed, version of the RTL template.
  23312. Once the subst-attribute has been defined, it should be used in RTL
  23313. templates which need to be processed by the 'define_subst'. So, the
  23314. original RTL template should be changed:
  23315. (define_insn "maxsi<add_clobber_name>"
  23316. [(set (match_operand:SI 0 "register_operand" "=r")
  23317. (max:SI
  23318. (match_operand:SI 1 "register_operand" "r")
  23319. (match_operand:SI 2 "register_operand" "r")))]
  23320. ""
  23321. "max\t{%2, %1, %0|%0, %1, %2}"
  23322. [...])
  23323. The result of the 'define_subst' usage would look like the following:
  23324. (define_insn "maxsi_noclobber"
  23325. [(set (match_operand:SI 0 "register_operand" "=r")
  23326. (max:SI
  23327. (match_operand:SI 1 "register_operand" "r")
  23328. (match_operand:SI 2 "register_operand" "r")))]
  23329. ""
  23330. "max\t{%2, %1, %0|%0, %1, %2}"
  23331. [...])
  23332. (define_insn "maxsi_clobber"
  23333. [(set (match_operand:SI 0 "register_operand" "=r")
  23334. (max:SI
  23335. (match_operand:SI 1 "register_operand" "r")
  23336. (match_operand:SI 2 "register_operand" "r")))
  23337. (clobber (reg:CC FLAGS_REG))]
  23338. ""
  23339. "max\t{%2, %1, %0|%0, %1, %2}"
  23340. [...])
  23341. 
  23342. File: gccint.info, Node: Define Subst Pattern Matching, Next: Define Subst Output Template, Prev: Define Subst Example, Up: Define Subst
  23343. 17.21.2 Pattern Matching in 'define_subst'
  23344. ------------------------------------------
  23345. All expressions, allowed in 'define_insn' or 'define_expand', are
  23346. allowed in the input-template of 'define_subst', except 'match_par_dup',
  23347. 'match_scratch', 'match_parallel'. The meanings of expressions in the
  23348. input-template were changed:
  23349. 'match_operand' matches any expression (possibly, a subtree in
  23350. RTL-template), if modes of the 'match_operand' and this expression are
  23351. the same, or mode of the 'match_operand' is 'VOIDmode', or this
  23352. expression is 'match_dup', 'match_op_dup'. If the expression is
  23353. 'match_operand' too, and predicate of 'match_operand' from the input
  23354. pattern is not empty, then the predicates are compared. That can be
  23355. used for more accurate filtering of accepted RTL-templates.
  23356. 'match_operator' matches common operators (like 'plus', 'minus'),
  23357. 'unspec', 'unspec_volatile' operators and 'match_operator's from the
  23358. original pattern if the modes match and 'match_operator' from the input
  23359. pattern has the same number of operands as the operator from the
  23360. original pattern.
  23361. 
  23362. File: gccint.info, Node: Define Subst Output Template, Prev: Define Subst Pattern Matching, Up: Define Subst
  23363. 17.21.3 Generation of output template in 'define_subst'
  23364. -------------------------------------------------------
  23365. If all necessary checks for 'define_subst' application pass, a new
  23366. RTL-pattern, based on the output-template, is created to replace the old
  23367. template. Like in input-patterns, meanings of some RTL expressions are
  23368. changed when they are used in output-patterns of a 'define_subst'.
  23369. Thus, 'match_dup' is used for copying the whole expression from the
  23370. original pattern, which matched corresponding 'match_operand' from the
  23371. input pattern.
  23372. 'match_dup N' is used in the output template to be replaced with the
  23373. expression from the original pattern, which matched 'match_operand N'
  23374. from the input pattern. As a consequence, 'match_dup' cannot be used to
  23375. point to 'match_operand's from the output pattern, it should always
  23376. refer to a 'match_operand' from the input pattern.
  23377. In the output template one can refer to the expressions from the
  23378. original pattern and create new ones. For instance, some operands could
  23379. be added by means of standard 'match_operand'.
  23380. After replacing 'match_dup' with some RTL-subtree from the original
  23381. pattern, it could happen that several 'match_operand's in the output
  23382. pattern have the same indexes. It is unknown, how many and what indexes
  23383. would be used in the expression which would replace 'match_dup', so such
  23384. conflicts in indexes are inevitable. To overcome this issue,
  23385. 'match_operands' and 'match_operators', which were introduced into the
  23386. output pattern, are renumerated when all 'match_dup's are replaced.
  23387. Number of alternatives in 'match_operand's introduced into the output
  23388. template 'M' could differ from the number of alternatives in the
  23389. original pattern 'N', so in the resultant pattern there would be 'N*M'
  23390. alternatives. Thus, constraints from the original pattern would be
  23391. duplicated 'N' times, constraints from the output pattern would be
  23392. duplicated 'M' times, producing all possible combinations.
  23393. 
  23394. File: gccint.info, Node: Constant Definitions, Next: Iterators, Prev: Define Subst, Up: Machine Desc
  23395. 17.22 Constant Definitions
  23396. ==========================
  23397. Using literal constants inside instruction patterns reduces legibility
  23398. and can be a maintenance problem.
  23399. To overcome this problem, you may use the 'define_constants'
  23400. expression. It contains a vector of name-value pairs. From that point
  23401. on, wherever any of the names appears in the MD file, it is as if the
  23402. corresponding value had been written instead. You may use
  23403. 'define_constants' multiple times; each appearance adds more constants
  23404. to the table. It is an error to redefine a constant with a different
  23405. value.
  23406. To come back to the a29k load multiple example, instead of
  23407. (define_insn ""
  23408. [(match_parallel 0 "load_multiple_operation"
  23409. [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
  23410. (match_operand:SI 2 "memory_operand" "m"))
  23411. (use (reg:SI 179))
  23412. (clobber (reg:SI 179))])]
  23413. ""
  23414. "loadm 0,0,%1,%2")
  23415. You could write:
  23416. (define_constants [
  23417. (R_BP 177)
  23418. (R_FC 178)
  23419. (R_CR 179)
  23420. (R_Q 180)
  23421. ])
  23422. (define_insn ""
  23423. [(match_parallel 0 "load_multiple_operation"
  23424. [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
  23425. (match_operand:SI 2 "memory_operand" "m"))
  23426. (use (reg:SI R_CR))
  23427. (clobber (reg:SI R_CR))])]
  23428. ""
  23429. "loadm 0,0,%1,%2")
  23430. The constants that are defined with a define_constant are also output
  23431. in the insn-codes.h header file as #defines.
  23432. You can also use the machine description file to define enumerations.
  23433. Like the constants defined by 'define_constant', these enumerations are
  23434. visible to both the machine description file and the main C code.
  23435. The syntax is as follows:
  23436. (define_c_enum "NAME" [
  23437. VALUE0
  23438. VALUE1
  23439. ...
  23440. VALUEN
  23441. ])
  23442. This definition causes the equivalent of the following C code to appear
  23443. in 'insn-constants.h':
  23444. enum NAME {
  23445. VALUE0 = 0,
  23446. VALUE1 = 1,
  23447. ...
  23448. VALUEN = N
  23449. };
  23450. #define NUM_CNAME_VALUES (N + 1)
  23451. where CNAME is the capitalized form of NAME. It also makes each VALUEI
  23452. available in the machine description file, just as if it had been
  23453. declared with:
  23454. (define_constants [(VALUEI I)])
  23455. Each VALUEI is usually an upper-case identifier and usually begins with
  23456. CNAME.
  23457. You can split the enumeration definition into as many statements as you
  23458. like. The above example is directly equivalent to:
  23459. (define_c_enum "NAME" [VALUE0])
  23460. (define_c_enum "NAME" [VALUE1])
  23461. ...
  23462. (define_c_enum "NAME" [VALUEN])
  23463. Splitting the enumeration helps to improve the modularity of each
  23464. individual '.md' file. For example, if a port defines its
  23465. synchronization instructions in a separate 'sync.md' file, it is
  23466. convenient to define all synchronization-specific enumeration values in
  23467. 'sync.md' rather than in the main '.md' file.
  23468. Some enumeration names have special significance to GCC:
  23469. 'unspecv'
  23470. If an enumeration called 'unspecv' is defined, GCC will use it when
  23471. printing out 'unspec_volatile' expressions. For example:
  23472. (define_c_enum "unspecv" [
  23473. UNSPECV_BLOCKAGE
  23474. ])
  23475. causes GCC to print '(unspec_volatile ... 0)' as:
  23476. (unspec_volatile ... UNSPECV_BLOCKAGE)
  23477. 'unspec'
  23478. If an enumeration called 'unspec' is defined, GCC will use it when
  23479. printing out 'unspec' expressions. GCC will also use it when
  23480. printing out 'unspec_volatile' expressions unless an 'unspecv'
  23481. enumeration is also defined. You can therefore decide whether to
  23482. keep separate enumerations for volatile and non-volatile
  23483. expressions or whether to use the same enumeration for both.
  23484. Another way of defining an enumeration is to use 'define_enum':
  23485. (define_enum "NAME" [
  23486. VALUE0
  23487. VALUE1
  23488. ...
  23489. VALUEN
  23490. ])
  23491. This directive implies:
  23492. (define_c_enum "NAME" [
  23493. CNAME_CVALUE0
  23494. CNAME_CVALUE1
  23495. ...
  23496. CNAME_CVALUEN
  23497. ])
  23498. where CVALUEI is the capitalized form of VALUEI. However, unlike
  23499. 'define_c_enum', the enumerations defined by 'define_enum' can be used
  23500. in attribute specifications (*note define_enum_attr::).
  23501. 
  23502. File: gccint.info, Node: Iterators, Prev: Constant Definitions, Up: Machine Desc
  23503. 17.23 Iterators
  23504. ===============
  23505. Ports often need to define similar patterns for more than one machine
  23506. mode or for more than one rtx code. GCC provides some simple iterator
  23507. facilities to make this process easier.
  23508. * Menu:
  23509. * Mode Iterators:: Generating variations of patterns for different modes.
  23510. * Code Iterators:: Doing the same for codes.
  23511. * Int Iterators:: Doing the same for integers.
  23512. * Subst Iterators:: Generating variations of patterns for define_subst.
  23513. 
  23514. File: gccint.info, Node: Mode Iterators, Next: Code Iterators, Up: Iterators
  23515. 17.23.1 Mode Iterators
  23516. ----------------------
  23517. Ports often need to define similar patterns for two or more different
  23518. modes. For example:
  23519. * If a processor has hardware support for both single and double
  23520. floating-point arithmetic, the 'SFmode' patterns tend to be very
  23521. similar to the 'DFmode' ones.
  23522. * If a port uses 'SImode' pointers in one configuration and 'DImode'
  23523. pointers in another, it will usually have very similar 'SImode' and
  23524. 'DImode' patterns for manipulating pointers.
  23525. Mode iterators allow several patterns to be instantiated from one '.md'
  23526. file template. They can be used with any type of rtx-based construct,
  23527. such as a 'define_insn', 'define_split', or 'define_peephole2'.
  23528. * Menu:
  23529. * Defining Mode Iterators:: Defining a new mode iterator.
  23530. * Substitutions:: Combining mode iterators with substitutions
  23531. * Examples:: Examples
  23532. 
  23533. File: gccint.info, Node: Defining Mode Iterators, Next: Substitutions, Up: Mode Iterators
  23534. 17.23.1.1 Defining Mode Iterators
  23535. .................................
  23536. The syntax for defining a mode iterator is:
  23537. (define_mode_iterator NAME [(MODE1 "COND1") ... (MODEN "CONDN")])
  23538. This allows subsequent '.md' file constructs to use the mode suffix
  23539. ':NAME'. Every construct that does so will be expanded N times, once
  23540. with every use of ':NAME' replaced by ':MODE1', once with every use
  23541. replaced by ':MODE2', and so on. In the expansion for a particular
  23542. MODEI, every C condition will also require that CONDI be true.
  23543. For example:
  23544. (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
  23545. defines a new mode suffix ':P'. Every construct that uses ':P' will be
  23546. expanded twice, once with every ':P' replaced by ':SI' and once with
  23547. every ':P' replaced by ':DI'. The ':SI' version will only apply if
  23548. 'Pmode == SImode' and the ':DI' version will only apply if 'Pmode ==
  23549. DImode'.
  23550. As with other '.md' conditions, an empty string is treated as "always
  23551. true". '(MODE "")' can also be abbreviated to 'MODE'. For example:
  23552. (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
  23553. means that the ':DI' expansion only applies if 'TARGET_64BIT' but that
  23554. the ':SI' expansion has no such constraint.
  23555. Iterators are applied in the order they are defined. This can be
  23556. significant if two iterators are used in a construct that requires
  23557. substitutions. *Note Substitutions::.
  23558. 
  23559. File: gccint.info, Node: Substitutions, Next: Examples, Prev: Defining Mode Iterators, Up: Mode Iterators
  23560. 17.23.1.2 Substitution in Mode Iterators
  23561. ........................................
  23562. If an '.md' file construct uses mode iterators, each version of the
  23563. construct will often need slightly different strings or modes. For
  23564. example:
  23565. * When a 'define_expand' defines several 'addM3' patterns (*note
  23566. Standard Names::), each expander will need to use the appropriate
  23567. mode name for M.
  23568. * When a 'define_insn' defines several instruction patterns, each
  23569. instruction will often use a different assembler mnemonic.
  23570. * When a 'define_insn' requires operands with different modes, using
  23571. an iterator for one of the operand modes usually requires a
  23572. specific mode for the other operand(s).
  23573. GCC supports such variations through a system of "mode attributes".
  23574. There are two standard attributes: 'mode', which is the name of the mode
  23575. in lower case, and 'MODE', which is the same thing in upper case. You
  23576. can define other attributes using:
  23577. (define_mode_attr NAME [(MODE1 "VALUE1") ... (MODEN "VALUEN")])
  23578. where NAME is the name of the attribute and VALUEI is the value
  23579. associated with MODEI.
  23580. When GCC replaces some :ITERATOR with :MODE, it will scan each string
  23581. and mode in the pattern for sequences of the form '<ITERATOR:ATTR>',
  23582. where ATTR is the name of a mode attribute. If the attribute is defined
  23583. for MODE, the whole '<...>' sequence will be replaced by the appropriate
  23584. attribute value.
  23585. For example, suppose an '.md' file has:
  23586. (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
  23587. (define_mode_attr load [(SI "lw") (DI "ld")])
  23588. If one of the patterns that uses ':P' contains the string
  23589. '"<P:load>\t%0,%1"', the 'SI' version of that pattern will use
  23590. '"lw\t%0,%1"' and the 'DI' version will use '"ld\t%0,%1"'.
  23591. Here is an example of using an attribute for a mode:
  23592. (define_mode_iterator LONG [SI DI])
  23593. (define_mode_attr SHORT [(SI "HI") (DI "SI")])
  23594. (define_insn ...
  23595. (sign_extend:LONG (match_operand:<LONG:SHORT> ...)) ...)
  23596. The 'ITERATOR:' prefix may be omitted, in which case the substitution
  23597. will be attempted for every iterator expansion.
  23598. 
  23599. File: gccint.info, Node: Examples, Prev: Substitutions, Up: Mode Iterators
  23600. 17.23.1.3 Mode Iterator Examples
  23601. ................................
  23602. Here is an example from the MIPS port. It defines the following modes
  23603. and attributes (among others):
  23604. (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
  23605. (define_mode_attr d [(SI "") (DI "d")])
  23606. and uses the following template to define both 'subsi3' and 'subdi3':
  23607. (define_insn "sub<mode>3"
  23608. [(set (match_operand:GPR 0 "register_operand" "=d")
  23609. (minus:GPR (match_operand:GPR 1 "register_operand" "d")
  23610. (match_operand:GPR 2 "register_operand" "d")))]
  23611. ""
  23612. "<d>subu\t%0,%1,%2"
  23613. [(set_attr "type" "arith")
  23614. (set_attr "mode" "<MODE>")])
  23615. This is exactly equivalent to:
  23616. (define_insn "subsi3"
  23617. [(set (match_operand:SI 0 "register_operand" "=d")
  23618. (minus:SI (match_operand:SI 1 "register_operand" "d")
  23619. (match_operand:SI 2 "register_operand" "d")))]
  23620. ""
  23621. "subu\t%0,%1,%2"
  23622. [(set_attr "type" "arith")
  23623. (set_attr "mode" "SI")])
  23624. (define_insn "subdi3"
  23625. [(set (match_operand:DI 0 "register_operand" "=d")
  23626. (minus:DI (match_operand:DI 1 "register_operand" "d")
  23627. (match_operand:DI 2 "register_operand" "d")))]
  23628. ""
  23629. "dsubu\t%0,%1,%2"
  23630. [(set_attr "type" "arith")
  23631. (set_attr "mode" "DI")])
  23632. 
  23633. File: gccint.info, Node: Code Iterators, Next: Int Iterators, Prev: Mode Iterators, Up: Iterators
  23634. 17.23.2 Code Iterators
  23635. ----------------------
  23636. Code iterators operate in a similar way to mode iterators. *Note Mode
  23637. Iterators::.
  23638. The construct:
  23639. (define_code_iterator NAME [(CODE1 "COND1") ... (CODEN "CONDN")])
  23640. defines a pseudo rtx code NAME that can be instantiated as CODEI if
  23641. condition CONDI is true. Each CODEI must have the same rtx format.
  23642. *Note RTL Classes::.
  23643. As with mode iterators, each pattern that uses NAME will be expanded N
  23644. times, once with all uses of NAME replaced by CODE1, once with all uses
  23645. replaced by CODE2, and so on. *Note Defining Mode Iterators::.
  23646. It is possible to define attributes for codes as well as for modes.
  23647. There are two standard code attributes: 'code', the name of the code in
  23648. lower case, and 'CODE', the name of the code in upper case. Other
  23649. attributes are defined using:
  23650. (define_code_attr NAME [(CODE1 "VALUE1") ... (CODEN "VALUEN")])
  23651. Here's an example of code iterators in action, taken from the MIPS
  23652. port:
  23653. (define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt
  23654. eq ne gt ge lt le gtu geu ltu leu])
  23655. (define_expand "b<code>"
  23656. [(set (pc)
  23657. (if_then_else (any_cond:CC (cc0)
  23658. (const_int 0))
  23659. (label_ref (match_operand 0 ""))
  23660. (pc)))]
  23661. ""
  23662. {
  23663. gen_conditional_branch (operands, <CODE>);
  23664. DONE;
  23665. })
  23666. This is equivalent to:
  23667. (define_expand "bunordered"
  23668. [(set (pc)
  23669. (if_then_else (unordered:CC (cc0)
  23670. (const_int 0))
  23671. (label_ref (match_operand 0 ""))
  23672. (pc)))]
  23673. ""
  23674. {
  23675. gen_conditional_branch (operands, UNORDERED);
  23676. DONE;
  23677. })
  23678. (define_expand "bordered"
  23679. [(set (pc)
  23680. (if_then_else (ordered:CC (cc0)
  23681. (const_int 0))
  23682. (label_ref (match_operand 0 ""))
  23683. (pc)))]
  23684. ""
  23685. {
  23686. gen_conditional_branch (operands, ORDERED);
  23687. DONE;
  23688. })
  23689. ...
  23690. 
  23691. File: gccint.info, Node: Int Iterators, Next: Subst Iterators, Prev: Code Iterators, Up: Iterators
  23692. 17.23.3 Int Iterators
  23693. ---------------------
  23694. Int iterators operate in a similar way to code iterators. *Note Code
  23695. Iterators::.
  23696. The construct:
  23697. (define_int_iterator NAME [(INT1 "COND1") ... (INTN "CONDN")])
  23698. defines a pseudo integer constant NAME that can be instantiated as INTI
  23699. if condition CONDI is true. Each INT must have the same rtx format.
  23700. *Note RTL Classes::. Int iterators can appear in only those rtx fields
  23701. that have 'i' as the specifier. This means that each INT has to be a
  23702. constant defined using define_constant or define_c_enum.
  23703. As with mode and code iterators, each pattern that uses NAME will be
  23704. expanded N times, once with all uses of NAME replaced by INT1, once with
  23705. all uses replaced by INT2, and so on. *Note Defining Mode Iterators::.
  23706. It is possible to define attributes for ints as well as for codes and
  23707. modes. Attributes are defined using:
  23708. (define_int_attr NAME [(INT1 "VALUE1") ... (INTN "VALUEN")])
  23709. Here's an example of int iterators in action, taken from the ARM port:
  23710. (define_int_iterator QABSNEG [UNSPEC_VQABS UNSPEC_VQNEG])
  23711. (define_int_attr absneg [(UNSPEC_VQABS "abs") (UNSPEC_VQNEG "neg")])
  23712. (define_insn "neon_vq<absneg><mode>"
  23713. [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
  23714. (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
  23715. (match_operand:SI 2 "immediate_operand" "i")]
  23716. QABSNEG))]
  23717. "TARGET_NEON"
  23718. "vq<absneg>.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
  23719. [(set_attr "type" "neon_vqneg_vqabs")]
  23720. )
  23721. This is equivalent to:
  23722. (define_insn "neon_vqabs<mode>"
  23723. [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
  23724. (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
  23725. (match_operand:SI 2 "immediate_operand" "i")]
  23726. UNSPEC_VQABS))]
  23727. "TARGET_NEON"
  23728. "vqabs.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
  23729. [(set_attr "type" "neon_vqneg_vqabs")]
  23730. )
  23731. (define_insn "neon_vqneg<mode>"
  23732. [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
  23733. (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
  23734. (match_operand:SI 2 "immediate_operand" "i")]
  23735. UNSPEC_VQNEG))]
  23736. "TARGET_NEON"
  23737. "vqneg.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
  23738. [(set_attr "type" "neon_vqneg_vqabs")]
  23739. )
  23740. 
  23741. File: gccint.info, Node: Subst Iterators, Prev: Int Iterators, Up: Iterators
  23742. 17.23.4 Subst Iterators
  23743. -----------------------
  23744. Subst iterators are special type of iterators with the following
  23745. restrictions: they could not be declared explicitly, they always have
  23746. only two values, and they do not have explicit dedicated name.
  23747. Subst-iterators are triggered only when corresponding subst-attribute is
  23748. used in RTL-pattern.
  23749. Subst iterators transform templates in the following way: the templates
  23750. are duplicated, the subst-attributes in these templates are replaced
  23751. with the corresponding values, and a new attribute is implicitly added
  23752. to the given 'define_insn'/'define_expand'. The name of the added
  23753. attribute matches the name of 'define_subst'. Such attributes are
  23754. declared implicitly, and it is not allowed to have a 'define_attr' named
  23755. as a 'define_subst'.
  23756. Each subst iterator is linked to a 'define_subst'. It is declared
  23757. implicitly by the first appearance of the corresponding
  23758. 'define_subst_attr', and it is not allowed to define it explicitly.
  23759. Declarations of subst-attributes have the following syntax:
  23760. (define_subst_attr "NAME"
  23761. "SUBST-NAME"
  23762. "NO-SUBST-VALUE"
  23763. "SUBST-APPLIED-VALUE")
  23764. NAME is a string with which the given subst-attribute could be referred
  23765. to.
  23766. SUBST-NAME shows which 'define_subst' should be applied to an
  23767. RTL-template if the given subst-attribute is present in the
  23768. RTL-template.
  23769. NO-SUBST-VALUE is a value with which subst-attribute would be replaced
  23770. in the first copy of the original RTL-template.
  23771. SUBST-APPLIED-VALUE is a value with which subst-attribute would be
  23772. replaced in the second copy of the original RTL-template.
  23773. 
  23774. File: gccint.info, Node: Target Macros, Next: Host Config, Prev: Machine Desc, Up: Top
  23775. 18 Target Description Macros and Functions
  23776. ******************************************
  23777. In addition to the file 'MACHINE.md', a machine description includes a C
  23778. header file conventionally given the name 'MACHINE.h' and a C source
  23779. file named 'MACHINE.c'. The header file defines numerous macros that
  23780. convey the information about the target machine that does not fit into
  23781. the scheme of the '.md' file. The file 'tm.h' should be a link to
  23782. 'MACHINE.h'. The header file 'config.h' includes 'tm.h' and most
  23783. compiler source files include 'config.h'. The source file defines a
  23784. variable 'targetm', which is a structure containing pointers to
  23785. functions and data relating to the target machine. 'MACHINE.c' should
  23786. also contain their definitions, if they are not defined elsewhere in
  23787. GCC, and other functions called through the macros defined in the '.h'
  23788. file.
  23789. * Menu:
  23790. * Target Structure:: The 'targetm' variable.
  23791. * Driver:: Controlling how the driver runs the compilation passes.
  23792. * Run-time Target:: Defining '-m' options like '-m68000' and '-m68020'.
  23793. * Per-Function Data:: Defining data structures for per-function information.
  23794. * Storage Layout:: Defining sizes and alignments of data.
  23795. * Type Layout:: Defining sizes and properties of basic user data types.
  23796. * Registers:: Naming and describing the hardware registers.
  23797. * Register Classes:: Defining the classes of hardware registers.
  23798. * Stack and Calling:: Defining which way the stack grows and by how much.
  23799. * Varargs:: Defining the varargs macros.
  23800. * Trampolines:: Code set up at run time to enter a nested function.
  23801. * Library Calls:: Controlling how library routines are implicitly called.
  23802. * Addressing Modes:: Defining addressing modes valid for memory operands.
  23803. * Anchored Addresses:: Defining how '-fsection-anchors' should work.
  23804. * Condition Code:: Defining how insns update the condition code.
  23805. * Costs:: Defining relative costs of different operations.
  23806. * Scheduling:: Adjusting the behavior of the instruction scheduler.
  23807. * Sections:: Dividing storage into text, data, and other sections.
  23808. * PIC:: Macros for position independent code.
  23809. * Assembler Format:: Defining how to write insns and pseudo-ops to output.
  23810. * Debugging Info:: Defining the format of debugging output.
  23811. * Floating Point:: Handling floating point for cross-compilers.
  23812. * Mode Switching:: Insertion of mode-switching instructions.
  23813. * Target Attributes:: Defining target-specific uses of '__attribute__'.
  23814. * Emulated TLS:: Emulated TLS support.
  23815. * MIPS Coprocessors:: MIPS coprocessor support and how to customize it.
  23816. * PCH Target:: Validity checking for precompiled headers.
  23817. * C++ ABI:: Controlling C++ ABI changes.
  23818. * Named Address Spaces:: Adding support for named address spaces
  23819. * Misc:: Everything else.
  23820. 
  23821. File: gccint.info, Node: Target Structure, Next: Driver, Up: Target Macros
  23822. 18.1 The Global 'targetm' Variable
  23823. ==================================
  23824. -- Variable: struct gcc_target targetm
  23825. The target '.c' file must define the global 'targetm' variable
  23826. which contains pointers to functions and data relating to the
  23827. target machine. The variable is declared in 'target.h';
  23828. 'target-def.h' defines the macro 'TARGET_INITIALIZER' which is used
  23829. to initialize the variable, and macros for the default initializers
  23830. for elements of the structure. The '.c' file should override those
  23831. macros for which the default definition is inappropriate. For
  23832. example:
  23833. #include "target.h"
  23834. #include "target-def.h"
  23835. /* Initialize the GCC target structure. */
  23836. #undef TARGET_COMP_TYPE_ATTRIBUTES
  23837. #define TARGET_COMP_TYPE_ATTRIBUTES MACHINE_comp_type_attributes
  23838. struct gcc_target targetm = TARGET_INITIALIZER;
  23839. Where a macro should be defined in the '.c' file in this manner to form
  23840. part of the 'targetm' structure, it is documented below as a "Target
  23841. Hook" with a prototype. Many macros will change in future from being
  23842. defined in the '.h' file to being part of the 'targetm' structure.
  23843. Similarly, there is a 'targetcm' variable for hooks that are specific
  23844. to front ends for C-family languages, documented as "C Target Hook".
  23845. This is declared in 'c-family/c-target.h', the initializer
  23846. 'TARGETCM_INITIALIZER' in 'c-family/c-target-def.h'. If targets
  23847. initialize 'targetcm' themselves, they should set
  23848. 'target_has_targetcm=yes' in 'config.gcc'; otherwise a default
  23849. definition is used.
  23850. Similarly, there is a 'targetm_common' variable for hooks that are
  23851. shared between the compiler driver and the compilers proper, documented
  23852. as "Common Target Hook". This is declared in 'common/common-target.h',
  23853. the initializer 'TARGETM_COMMON_INITIALIZER' in
  23854. 'common/common-target-def.h'. If targets initialize 'targetm_common'
  23855. themselves, they should set 'target_has_targetm_common=yes' in
  23856. 'config.gcc'; otherwise a default definition is used.
  23857. 
  23858. File: gccint.info, Node: Driver, Next: Run-time Target, Prev: Target Structure, Up: Target Macros
  23859. 18.2 Controlling the Compilation Driver, 'gcc'
  23860. ==============================================
  23861. You can control the compilation driver.
  23862. -- Macro: DRIVER_SELF_SPECS
  23863. A list of specs for the driver itself. It should be a suitable
  23864. initializer for an array of strings, with no surrounding braces.
  23865. The driver applies these specs to its own command line between
  23866. loading default 'specs' files (but not command-line specified ones)
  23867. and choosing the multilib directory or running any subcommands. It
  23868. applies them in the order given, so each spec can depend on the
  23869. options added by earlier ones. It is also possible to remove
  23870. options using '%<OPTION' in the usual way.
  23871. This macro can be useful when a port has several interdependent
  23872. target options. It provides a way of standardizing the command
  23873. line so that the other specs are easier to write.
  23874. Do not define this macro if it does not need to do anything.
  23875. -- Macro: OPTION_DEFAULT_SPECS
  23876. A list of specs used to support configure-time default options
  23877. (i.e. '--with' options) in the driver. It should be a suitable
  23878. initializer for an array of structures, each containing two
  23879. strings, without the outermost pair of surrounding braces.
  23880. The first item in the pair is the name of the default. This must
  23881. match the code in 'config.gcc' for the target. The second item is
  23882. a spec to apply if a default with this name was specified. The
  23883. string '%(VALUE)' in the spec will be replaced by the value of the
  23884. default everywhere it occurs.
  23885. The driver will apply these specs to its own command line between
  23886. loading default 'specs' files and processing 'DRIVER_SELF_SPECS',
  23887. using the same mechanism as 'DRIVER_SELF_SPECS'.
  23888. Do not define this macro if it does not need to do anything.
  23889. -- Macro: CPP_SPEC
  23890. A C string constant that tells the GCC driver program options to
  23891. pass to CPP. It can also specify how to translate options you give
  23892. to GCC into options for GCC to pass to the CPP.
  23893. Do not define this macro if it does not need to do anything.
  23894. -- Macro: CPLUSPLUS_CPP_SPEC
  23895. This macro is just like 'CPP_SPEC', but is used for C++, rather
  23896. than C. If you do not define this macro, then the value of
  23897. 'CPP_SPEC' (if any) will be used instead.
  23898. -- Macro: CC1_SPEC
  23899. A C string constant that tells the GCC driver program options to
  23900. pass to 'cc1', 'cc1plus', 'f771', and the other language front
  23901. ends. It can also specify how to translate options you give to GCC
  23902. into options for GCC to pass to front ends.
  23903. Do not define this macro if it does not need to do anything.
  23904. -- Macro: CC1PLUS_SPEC
  23905. A C string constant that tells the GCC driver program options to
  23906. pass to 'cc1plus'. It can also specify how to translate options
  23907. you give to GCC into options for GCC to pass to the 'cc1plus'.
  23908. Do not define this macro if it does not need to do anything. Note
  23909. that everything defined in CC1_SPEC is already passed to 'cc1plus'
  23910. so there is no need to duplicate the contents of CC1_SPEC in
  23911. CC1PLUS_SPEC.
  23912. -- Macro: ASM_SPEC
  23913. A C string constant that tells the GCC driver program options to
  23914. pass to the assembler. It can also specify how to translate
  23915. options you give to GCC into options for GCC to pass to the
  23916. assembler. See the file 'sun3.h' for an example of this.
  23917. Do not define this macro if it does not need to do anything.
  23918. -- Macro: ASM_FINAL_SPEC
  23919. A C string constant that tells the GCC driver program how to run
  23920. any programs which cleanup after the normal assembler. Normally,
  23921. this is not needed. See the file 'mips.h' for an example of this.
  23922. Do not define this macro if it does not need to do anything.
  23923. -- Macro: AS_NEEDS_DASH_FOR_PIPED_INPUT
  23924. Define this macro, with no value, if the driver should give the
  23925. assembler an argument consisting of a single dash, '-', to instruct
  23926. it to read from its standard input (which will be a pipe connected
  23927. to the output of the compiler proper). This argument is given
  23928. after any '-o' option specifying the name of the output file.
  23929. If you do not define this macro, the assembler is assumed to read
  23930. its standard input if given no non-option arguments. If your
  23931. assembler cannot read standard input at all, use a '%{pipe:%e}'
  23932. construct; see 'mips.h' for instance.
  23933. -- Macro: LINK_SPEC
  23934. A C string constant that tells the GCC driver program options to
  23935. pass to the linker. It can also specify how to translate options
  23936. you give to GCC into options for GCC to pass to the linker.
  23937. Do not define this macro if it does not need to do anything.
  23938. -- Macro: LIB_SPEC
  23939. Another C string constant used much like 'LINK_SPEC'. The
  23940. difference between the two is that 'LIB_SPEC' is used at the end of
  23941. the command given to the linker.
  23942. If this macro is not defined, a default is provided that loads the
  23943. standard C library from the usual place. See 'gcc.c'.
  23944. -- Macro: LIBGCC_SPEC
  23945. Another C string constant that tells the GCC driver program how and
  23946. when to place a reference to 'libgcc.a' into the linker command
  23947. line. This constant is placed both before and after the value of
  23948. 'LIB_SPEC'.
  23949. If this macro is not defined, the GCC driver provides a default
  23950. that passes the string '-lgcc' to the linker.
  23951. -- Macro: REAL_LIBGCC_SPEC
  23952. By default, if 'ENABLE_SHARED_LIBGCC' is defined, the 'LIBGCC_SPEC'
  23953. is not directly used by the driver program but is instead modified
  23954. to refer to different versions of 'libgcc.a' depending on the
  23955. values of the command line flags '-static', '-shared',
  23956. '-static-libgcc', and '-shared-libgcc'. On targets where these
  23957. modifications are inappropriate, define 'REAL_LIBGCC_SPEC' instead.
  23958. 'REAL_LIBGCC_SPEC' tells the driver how to place a reference to
  23959. 'libgcc' on the link command line, but, unlike 'LIBGCC_SPEC', it is
  23960. used unmodified.
  23961. -- Macro: USE_LD_AS_NEEDED
  23962. A macro that controls the modifications to 'LIBGCC_SPEC' mentioned
  23963. in 'REAL_LIBGCC_SPEC'. If nonzero, a spec will be generated that
  23964. uses '--as-needed' or equivalent options and the shared 'libgcc' in
  23965. place of the static exception handler library, when linking without
  23966. any of '-static', '-static-libgcc', or '-shared-libgcc'.
  23967. -- Macro: LINK_EH_SPEC
  23968. If defined, this C string constant is added to 'LINK_SPEC'. When
  23969. 'USE_LD_AS_NEEDED' is zero or undefined, it also affects the
  23970. modifications to 'LIBGCC_SPEC' mentioned in 'REAL_LIBGCC_SPEC'.
  23971. -- Macro: STARTFILE_SPEC
  23972. Another C string constant used much like 'LINK_SPEC'. The
  23973. difference between the two is that 'STARTFILE_SPEC' is used at the
  23974. very beginning of the command given to the linker.
  23975. If this macro is not defined, a default is provided that loads the
  23976. standard C startup file from the usual place. See 'gcc.c'.
  23977. -- Macro: ENDFILE_SPEC
  23978. Another C string constant used much like 'LINK_SPEC'. The
  23979. difference between the two is that 'ENDFILE_SPEC' is used at the
  23980. very end of the command given to the linker.
  23981. Do not define this macro if it does not need to do anything.
  23982. -- Macro: THREAD_MODEL_SPEC
  23983. GCC '-v' will print the thread model GCC was configured to use.
  23984. However, this doesn't work on platforms that are multilibbed on
  23985. thread models, such as AIX 4.3. On such platforms, define
  23986. 'THREAD_MODEL_SPEC' such that it evaluates to a string without
  23987. blanks that names one of the recognized thread models. '%*', the
  23988. default value of this macro, will expand to the value of
  23989. 'thread_file' set in 'config.gcc'.
  23990. -- Macro: SYSROOT_SUFFIX_SPEC
  23991. Define this macro to add a suffix to the target sysroot when GCC is
  23992. configured with a sysroot. This will cause GCC to search for
  23993. usr/lib, et al, within sysroot+suffix.
  23994. -- Macro: SYSROOT_HEADERS_SUFFIX_SPEC
  23995. Define this macro to add a headers_suffix to the target sysroot
  23996. when GCC is configured with a sysroot. This will cause GCC to pass
  23997. the updated sysroot+headers_suffix to CPP, causing it to search for
  23998. usr/include, et al, within sysroot+headers_suffix.
  23999. -- Macro: EXTRA_SPECS
  24000. Define this macro to provide additional specifications to put in
  24001. the 'specs' file that can be used in various specifications like
  24002. 'CC1_SPEC'.
  24003. The definition should be an initializer for an array of structures,
  24004. containing a string constant, that defines the specification name,
  24005. and a string constant that provides the specification.
  24006. Do not define this macro if it does not need to do anything.
  24007. 'EXTRA_SPECS' is useful when an architecture contains several
  24008. related targets, which have various '..._SPECS' which are similar
  24009. to each other, and the maintainer would like one central place to
  24010. keep these definitions.
  24011. For example, the PowerPC System V.4 targets use 'EXTRA_SPECS' to
  24012. define either '_CALL_SYSV' when the System V calling sequence is
  24013. used or '_CALL_AIX' when the older AIX-based calling sequence is
  24014. used.
  24015. The 'config/rs6000/rs6000.h' target file defines:
  24016. #define EXTRA_SPECS \
  24017. { "cpp_sysv_default", CPP_SYSV_DEFAULT },
  24018. #define CPP_SYS_DEFAULT ""
  24019. The 'config/rs6000/sysv.h' target file defines:
  24020. #undef CPP_SPEC
  24021. #define CPP_SPEC \
  24022. "%{posix: -D_POSIX_SOURCE } \
  24023. %{mcall-sysv: -D_CALL_SYSV } \
  24024. %{!mcall-sysv: %(cpp_sysv_default) } \
  24025. %{msoft-float: -D_SOFT_FLOAT} %{mcpu=403: -D_SOFT_FLOAT}"
  24026. #undef CPP_SYSV_DEFAULT
  24027. #define CPP_SYSV_DEFAULT "-D_CALL_SYSV"
  24028. while the 'config/rs6000/eabiaix.h' target file defines
  24029. 'CPP_SYSV_DEFAULT' as:
  24030. #undef CPP_SYSV_DEFAULT
  24031. #define CPP_SYSV_DEFAULT "-D_CALL_AIX"
  24032. -- Macro: LINK_LIBGCC_SPECIAL_1
  24033. Define this macro if the driver program should find the library
  24034. 'libgcc.a'. If you do not define this macro, the driver program
  24035. will pass the argument '-lgcc' to tell the linker to do the search.
  24036. -- Macro: LINK_GCC_C_SEQUENCE_SPEC
  24037. The sequence in which libgcc and libc are specified to the linker.
  24038. By default this is '%G %L %G'.
  24039. -- Macro: POST_LINK_SPEC
  24040. Define this macro to add additional steps to be executed after
  24041. linker. The default value of this macro is empty string.
  24042. -- Macro: LINK_COMMAND_SPEC
  24043. A C string constant giving the complete command line need to
  24044. execute the linker. When you do this, you will need to update your
  24045. port each time a change is made to the link command line within
  24046. 'gcc.c'. Therefore, define this macro only if you need to
  24047. completely redefine the command line for invoking the linker and
  24048. there is no other way to accomplish the effect you need.
  24049. Overriding this macro may be avoidable by overriding
  24050. 'LINK_GCC_C_SEQUENCE_SPEC' instead.
  24051. -- Common Target Hook: bool TARGET_ALWAYS_STRIP_DOTDOT
  24052. True if '..' components should always be removed from directory
  24053. names computed relative to GCC's internal directories, false
  24054. (default) if such components should be preserved and directory
  24055. names containing them passed to other tools such as the linker.
  24056. -- Macro: MULTILIB_DEFAULTS
  24057. Define this macro as a C expression for the initializer of an array
  24058. of string to tell the driver program which options are defaults for
  24059. this target and thus do not need to be handled specially when using
  24060. 'MULTILIB_OPTIONS'.
  24061. Do not define this macro if 'MULTILIB_OPTIONS' is not defined in
  24062. the target makefile fragment or if none of the options listed in
  24063. 'MULTILIB_OPTIONS' are set by default. *Note Target Fragment::.
  24064. -- Macro: RELATIVE_PREFIX_NOT_LINKDIR
  24065. Define this macro to tell 'gcc' that it should only translate a
  24066. '-B' prefix into a '-L' linker option if the prefix indicates an
  24067. absolute file name.
  24068. -- Macro: MD_EXEC_PREFIX
  24069. If defined, this macro is an additional prefix to try after
  24070. 'STANDARD_EXEC_PREFIX'. 'MD_EXEC_PREFIX' is not searched when the
  24071. compiler is built as a cross compiler. If you define
  24072. 'MD_EXEC_PREFIX', then be sure to add it to the list of directories
  24073. used to find the assembler in 'configure.ac'.
  24074. -- Macro: STANDARD_STARTFILE_PREFIX
  24075. Define this macro as a C string constant if you wish to override
  24076. the standard choice of 'libdir' as the default prefix to try when
  24077. searching for startup files such as 'crt0.o'.
  24078. 'STANDARD_STARTFILE_PREFIX' is not searched when the compiler is
  24079. built as a cross compiler.
  24080. -- Macro: STANDARD_STARTFILE_PREFIX_1
  24081. Define this macro as a C string constant if you wish to override
  24082. the standard choice of '/lib' as a prefix to try after the default
  24083. prefix when searching for startup files such as 'crt0.o'.
  24084. 'STANDARD_STARTFILE_PREFIX_1' is not searched when the compiler is
  24085. built as a cross compiler.
  24086. -- Macro: STANDARD_STARTFILE_PREFIX_2
  24087. Define this macro as a C string constant if you wish to override
  24088. the standard choice of '/lib' as yet another prefix to try after
  24089. the default prefix when searching for startup files such as
  24090. 'crt0.o'. 'STANDARD_STARTFILE_PREFIX_2' is not searched when the
  24091. compiler is built as a cross compiler.
  24092. -- Macro: MD_STARTFILE_PREFIX
  24093. If defined, this macro supplies an additional prefix to try after
  24094. the standard prefixes. 'MD_EXEC_PREFIX' is not searched when the
  24095. compiler is built as a cross compiler.
  24096. -- Macro: MD_STARTFILE_PREFIX_1
  24097. If defined, this macro supplies yet another prefix to try after the
  24098. standard prefixes. It is not searched when the compiler is built
  24099. as a cross compiler.
  24100. -- Macro: INIT_ENVIRONMENT
  24101. Define this macro as a C string constant if you wish to set
  24102. environment variables for programs called by the driver, such as
  24103. the assembler and loader. The driver passes the value of this
  24104. macro to 'putenv' to initialize the necessary environment
  24105. variables.
  24106. -- Macro: LOCAL_INCLUDE_DIR
  24107. Define this macro as a C string constant if you wish to override
  24108. the standard choice of '/usr/local/include' as the default prefix
  24109. to try when searching for local header files. 'LOCAL_INCLUDE_DIR'
  24110. comes before 'NATIVE_SYSTEM_HEADER_DIR' (set in 'config.gcc',
  24111. normally '/usr/include') in the search order.
  24112. Cross compilers do not search either '/usr/local/include' or its
  24113. replacement.
  24114. -- Macro: NATIVE_SYSTEM_HEADER_COMPONENT
  24115. The "component" corresponding to 'NATIVE_SYSTEM_HEADER_DIR'. See
  24116. 'INCLUDE_DEFAULTS', below, for the description of components. If
  24117. you do not define this macro, no component is used.
  24118. -- Macro: INCLUDE_DEFAULTS
  24119. Define this macro if you wish to override the entire default search
  24120. path for include files. For a native compiler, the default search
  24121. path usually consists of 'GCC_INCLUDE_DIR', 'LOCAL_INCLUDE_DIR',
  24122. 'GPLUSPLUS_INCLUDE_DIR', and 'NATIVE_SYSTEM_HEADER_DIR'. In
  24123. addition, 'GPLUSPLUS_INCLUDE_DIR' and 'GCC_INCLUDE_DIR' are defined
  24124. automatically by 'Makefile', and specify private search areas for
  24125. GCC. The directory 'GPLUSPLUS_INCLUDE_DIR' is used only for C++
  24126. programs.
  24127. The definition should be an initializer for an array of structures.
  24128. Each array element should have four elements: the directory name (a
  24129. string constant), the component name (also a string constant), a
  24130. flag for C++-only directories, and a flag showing that the includes
  24131. in the directory don't need to be wrapped in 'extern 'C'' when
  24132. compiling C++. Mark the end of the array with a null element.
  24133. The component name denotes what GNU package the include file is
  24134. part of, if any, in all uppercase letters. For example, it might
  24135. be 'GCC' or 'BINUTILS'. If the package is part of a
  24136. vendor-supplied operating system, code the component name as '0'.
  24137. For example, here is the definition used for VAX/VMS:
  24138. #define INCLUDE_DEFAULTS \
  24139. { \
  24140. { "GNU_GXX_INCLUDE:", "G++", 1, 1}, \
  24141. { "GNU_CC_INCLUDE:", "GCC", 0, 0}, \
  24142. { "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0}, \
  24143. { ".", 0, 0, 0}, \
  24144. { 0, 0, 0, 0} \
  24145. }
  24146. Here is the order of prefixes tried for exec files:
  24147. 1. Any prefixes specified by the user with '-B'.
  24148. 2. The environment variable 'GCC_EXEC_PREFIX' or, if 'GCC_EXEC_PREFIX'
  24149. is not set and the compiler has not been installed in the
  24150. configure-time PREFIX, the location in which the compiler has
  24151. actually been installed.
  24152. 3. The directories specified by the environment variable
  24153. 'COMPILER_PATH'.
  24154. 4. The macro 'STANDARD_EXEC_PREFIX', if the compiler has been
  24155. installed in the configured-time PREFIX.
  24156. 5. The location '/usr/libexec/gcc/', but only if this is a native
  24157. compiler.
  24158. 6. The location '/usr/lib/gcc/', but only if this is a native
  24159. compiler.
  24160. 7. The macro 'MD_EXEC_PREFIX', if defined, but only if this is a
  24161. native compiler.
  24162. Here is the order of prefixes tried for startfiles:
  24163. 1. Any prefixes specified by the user with '-B'.
  24164. 2. The environment variable 'GCC_EXEC_PREFIX' or its automatically
  24165. determined value based on the installed toolchain location.
  24166. 3. The directories specified by the environment variable
  24167. 'LIBRARY_PATH' (or port-specific name; native only, cross compilers
  24168. do not use this).
  24169. 4. The macro 'STANDARD_EXEC_PREFIX', but only if the toolchain is
  24170. installed in the configured PREFIX or this is a native compiler.
  24171. 5. The location '/usr/lib/gcc/', but only if this is a native
  24172. compiler.
  24173. 6. The macro 'MD_EXEC_PREFIX', if defined, but only if this is a
  24174. native compiler.
  24175. 7. The macro 'MD_STARTFILE_PREFIX', if defined, but only if this is a
  24176. native compiler, or we have a target system root.
  24177. 8. The macro 'MD_STARTFILE_PREFIX_1', if defined, but only if this is
  24178. a native compiler, or we have a target system root.
  24179. 9. The macro 'STANDARD_STARTFILE_PREFIX', with any sysroot
  24180. modifications. If this path is relative it will be prefixed by
  24181. 'GCC_EXEC_PREFIX' and the machine suffix or 'STANDARD_EXEC_PREFIX'
  24182. and the machine suffix.
  24183. 10. The macro 'STANDARD_STARTFILE_PREFIX_1', but only if this is a
  24184. native compiler, or we have a target system root. The default for
  24185. this macro is '/lib/'.
  24186. 11. The macro 'STANDARD_STARTFILE_PREFIX_2', but only if this is a
  24187. native compiler, or we have a target system root. The default for
  24188. this macro is '/usr/lib/'.
  24189. 
  24190. File: gccint.info, Node: Run-time Target, Next: Per-Function Data, Prev: Driver, Up: Target Macros
  24191. 18.3 Run-time Target Specification
  24192. ==================================
  24193. Here are run-time target specifications.
  24194. -- Macro: TARGET_CPU_CPP_BUILTINS ()
  24195. This function-like macro expands to a block of code that defines
  24196. built-in preprocessor macros and assertions for the target CPU,
  24197. using the functions 'builtin_define', 'builtin_define_std' and
  24198. 'builtin_assert'. When the front end calls this macro it provides
  24199. a trailing semicolon, and since it has finished command line option
  24200. processing your code can use those results freely.
  24201. 'builtin_assert' takes a string in the form you pass to the
  24202. command-line option '-A', such as 'cpu=mips', and creates the
  24203. assertion. 'builtin_define' takes a string in the form accepted by
  24204. option '-D' and unconditionally defines the macro.
  24205. 'builtin_define_std' takes a string representing the name of an
  24206. object-like macro. If it doesn't lie in the user's namespace,
  24207. 'builtin_define_std' defines it unconditionally. Otherwise, it
  24208. defines a version with two leading underscores, and another version
  24209. with two leading and trailing underscores, and defines the original
  24210. only if an ISO standard was not requested on the command line. For
  24211. example, passing 'unix' defines '__unix', '__unix__' and possibly
  24212. 'unix'; passing '_mips' defines '__mips', '__mips__' and possibly
  24213. '_mips', and passing '_ABI64' defines only '_ABI64'.
  24214. You can also test for the C dialect being compiled. The variable
  24215. 'c_language' is set to one of 'clk_c', 'clk_cplusplus' or
  24216. 'clk_objective_c'. Note that if we are preprocessing assembler,
  24217. this variable will be 'clk_c' but the function-like macro
  24218. 'preprocessing_asm_p()' will return true, so you might want to
  24219. check for that first. If you need to check for strict ANSI, the
  24220. variable 'flag_iso' can be used. The function-like macro
  24221. 'preprocessing_trad_p()' can be used to check for traditional
  24222. preprocessing.
  24223. -- Macro: TARGET_OS_CPP_BUILTINS ()
  24224. Similarly to 'TARGET_CPU_CPP_BUILTINS' but this macro is optional
  24225. and is used for the target operating system instead.
  24226. -- Macro: TARGET_OBJFMT_CPP_BUILTINS ()
  24227. Similarly to 'TARGET_CPU_CPP_BUILTINS' but this macro is optional
  24228. and is used for the target object format. 'elfos.h' uses this
  24229. macro to define '__ELF__', so you probably do not need to define it
  24230. yourself.
  24231. -- Variable: extern int target_flags
  24232. This variable is declared in 'options.h', which is included before
  24233. any target-specific headers.
  24234. -- Common Target Hook: int TARGET_DEFAULT_TARGET_FLAGS
  24235. This variable specifies the initial value of 'target_flags'. Its
  24236. default setting is 0.
  24237. -- Common Target Hook: bool TARGET_HANDLE_OPTION (struct gcc_options
  24238. *OPTS, struct gcc_options *OPTS_SET, const struct
  24239. cl_decoded_option *DECODED, location_t LOC)
  24240. This hook is called whenever the user specifies one of the
  24241. target-specific options described by the '.opt' definition files
  24242. (*note Options::). It has the opportunity to do some
  24243. option-specific processing and should return true if the option is
  24244. valid. The default definition does nothing but return true.
  24245. DECODED specifies the option and its arguments. OPTS and OPTS_SET
  24246. are the 'gcc_options' structures to be used for storing option
  24247. state, and LOC is the location at which the option was passed
  24248. ('UNKNOWN_LOCATION' except for options passed via attributes).
  24249. -- C Target Hook: bool TARGET_HANDLE_C_OPTION (size_t CODE, const char
  24250. *ARG, int VALUE)
  24251. This target hook is called whenever the user specifies one of the
  24252. target-specific C language family options described by the '.opt'
  24253. definition files(*note Options::). It has the opportunity to do
  24254. some option-specific processing and should return true if the
  24255. option is valid. The arguments are like for
  24256. 'TARGET_HANDLE_OPTION'. The default definition does nothing but
  24257. return false.
  24258. In general, you should use 'TARGET_HANDLE_OPTION' to handle
  24259. options. However, if processing an option requires routines that
  24260. are only available in the C (and related language) front ends, then
  24261. you should use 'TARGET_HANDLE_C_OPTION' instead.
  24262. -- C Target Hook: tree TARGET_OBJC_CONSTRUCT_STRING_OBJECT (tree
  24263. STRING)
  24264. Targets may provide a string object type that can be used within
  24265. and between C, C++ and their respective Objective-C dialects. A
  24266. string object might, for example, embed encoding and length
  24267. information. These objects are considered opaque to the compiler
  24268. and handled as references. An ideal implementation makes the
  24269. composition of the string object match that of the Objective-C
  24270. 'NSString' ('NXString' for GNUStep), allowing efficient
  24271. interworking between C-only and Objective-C code. If a target
  24272. implements string objects then this hook should return a reference
  24273. to such an object constructed from the normal 'C' string
  24274. representation provided in STRING. At present, the hook is used by
  24275. Objective-C only, to obtain a common-format string object when the
  24276. target provides one.
  24277. -- C Target Hook: void TARGET_OBJC_DECLARE_UNRESOLVED_CLASS_REFERENCE
  24278. (const char *CLASSNAME)
  24279. Declare that Objective C class CLASSNAME is referenced by the
  24280. current TU.
  24281. -- C Target Hook: void TARGET_OBJC_DECLARE_CLASS_DEFINITION (const char
  24282. *CLASSNAME)
  24283. Declare that Objective C class CLASSNAME is defined by the current
  24284. TU.
  24285. -- C Target Hook: bool TARGET_STRING_OBJECT_REF_TYPE_P (const_tree
  24286. STRINGREF)
  24287. If a target implements string objects then this hook should return
  24288. 'true' if STRINGREF is a valid reference to such an object.
  24289. -- C Target Hook: void TARGET_CHECK_STRING_OBJECT_FORMAT_ARG (tree
  24290. FORMAT_ARG, tree ARGS_LIST)
  24291. If a target implements string objects then this hook should should
  24292. provide a facility to check the function arguments in ARGS_LIST
  24293. against the format specifiers in FORMAT_ARG where the type of
  24294. FORMAT_ARG is one recognized as a valid string reference type.
  24295. -- Target Hook: void TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE (void)
  24296. This target function is similar to the hook
  24297. 'TARGET_OPTION_OVERRIDE' but is called when the optimize level is
  24298. changed via an attribute or pragma or when it is reset at the end
  24299. of the code affected by the attribute or pragma. It is not called
  24300. at the beginning of compilation when 'TARGET_OPTION_OVERRIDE' is
  24301. called so if you want to perform these actions then, you should
  24302. have 'TARGET_OPTION_OVERRIDE' call
  24303. 'TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE'.
  24304. -- Macro: C_COMMON_OVERRIDE_OPTIONS
  24305. This is similar to the 'TARGET_OPTION_OVERRIDE' hook but is only
  24306. used in the C language frontends (C, Objective-C, C++,
  24307. Objective-C++) and so can be used to alter option flag variables
  24308. which only exist in those frontends.
  24309. -- Common Target Hook: const struct default_options *
  24310. TARGET_OPTION_OPTIMIZATION_TABLE
  24311. Some machines may desire to change what optimizations are performed
  24312. for various optimization levels. This variable, if defined,
  24313. describes options to enable at particular sets of optimization
  24314. levels. These options are processed once just after the
  24315. optimization level is determined and before the remainder of the
  24316. command options have been parsed, so may be overridden by other
  24317. options passed explicitly.
  24318. This processing is run once at program startup and when the
  24319. optimization options are changed via '#pragma GCC optimize' or by
  24320. using the 'optimize' attribute.
  24321. -- Common Target Hook: void TARGET_OPTION_INIT_STRUCT (struct
  24322. gcc_options *OPTS)
  24323. Set target-dependent initial values of fields in OPTS.
  24324. -- Common Target Hook: void TARGET_OPTION_DEFAULT_PARAMS (void)
  24325. Set target-dependent default values for '--param' settings, using
  24326. calls to 'set_default_param_value'.
  24327. -- Macro: SWITCHABLE_TARGET
  24328. Some targets need to switch between substantially different
  24329. subtargets during compilation. For example, the MIPS target has
  24330. one subtarget for the traditional MIPS architecture and another for
  24331. MIPS16. Source code can switch between these two subarchitectures
  24332. using the 'mips16' and 'nomips16' attributes.
  24333. Such subtargets can differ in things like the set of available
  24334. registers, the set of available instructions, the costs of various
  24335. operations, and so on. GCC caches a lot of this type of
  24336. information in global variables, and recomputing them for each
  24337. subtarget takes a significant amount of time. The compiler
  24338. therefore provides a facility for maintaining several versions of
  24339. the global variables and quickly switching between them; see
  24340. 'target-globals.h' for details.
  24341. Define this macro to 1 if your target needs this facility. The
  24342. default is 0.
  24343. -- Target Hook: bool TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P
  24344. (void)
  24345. Returns true if the target supports IEEE 754 floating-point
  24346. exceptions and rounding modes, false otherwise. This is intended
  24347. to relate to the 'float' and 'double' types, but not necessarily
  24348. 'long double'. By default, returns true if the 'adddf3'
  24349. instruction pattern is available and false otherwise, on the
  24350. assumption that hardware floating point supports exceptions and
  24351. rounding modes but software floating point does not.
  24352. 
  24353. File: gccint.info, Node: Per-Function Data, Next: Storage Layout, Prev: Run-time Target, Up: Target Macros
  24354. 18.4 Defining data structures for per-function information.
  24355. ===========================================================
  24356. If the target needs to store information on a per-function basis, GCC
  24357. provides a macro and a couple of variables to allow this. Note, just
  24358. using statics to store the information is a bad idea, since GCC supports
  24359. nested functions, so you can be halfway through encoding one function
  24360. when another one comes along.
  24361. GCC defines a data structure called 'struct function' which contains
  24362. all of the data specific to an individual function. This structure
  24363. contains a field called 'machine' whose type is 'struct machine_function
  24364. *', which can be used by targets to point to their own specific data.
  24365. If a target needs per-function specific data it should define the type
  24366. 'struct machine_function' and also the macro 'INIT_EXPANDERS'. This
  24367. macro should be used to initialize the function pointer
  24368. 'init_machine_status'. This pointer is explained below.
  24369. One typical use of per-function, target specific data is to create an
  24370. RTX to hold the register containing the function's return address. This
  24371. RTX can then be used to implement the '__builtin_return_address'
  24372. function, for level 0.
  24373. Note--earlier implementations of GCC used a single data area to hold
  24374. all of the per-function information. Thus when processing of a nested
  24375. function began the old per-function data had to be pushed onto a stack,
  24376. and when the processing was finished, it had to be popped off the stack.
  24377. GCC used to provide function pointers called 'save_machine_status' and
  24378. 'restore_machine_status' to handle the saving and restoring of the
  24379. target specific information. Since the single data area approach is no
  24380. longer used, these pointers are no longer supported.
  24381. -- Macro: INIT_EXPANDERS
  24382. Macro called to initialize any target specific information. This
  24383. macro is called once per function, before generation of any RTL has
  24384. begun. The intention of this macro is to allow the initialization
  24385. of the function pointer 'init_machine_status'.
  24386. -- Variable: void (*)(struct function *) init_machine_status
  24387. If this function pointer is non-'NULL' it will be called once per
  24388. function, before function compilation starts, in order to allow the
  24389. target to perform any target specific initialization of the 'struct
  24390. function' structure. It is intended that this would be used to
  24391. initialize the 'machine' of that structure.
  24392. 'struct machine_function' structures are expected to be freed by
  24393. GC. Generally, any memory that they reference must be allocated by
  24394. using GC allocation, including the structure itself.
  24395. 
  24396. File: gccint.info, Node: Storage Layout, Next: Type Layout, Prev: Per-Function Data, Up: Target Macros
  24397. 18.5 Storage Layout
  24398. ===================
  24399. Note that the definitions of the macros in this table which are sizes or
  24400. alignments measured in bits do not need to be constant. They can be C
  24401. expressions that refer to static variables, such as the 'target_flags'.
  24402. *Note Run-time Target::.
  24403. -- Macro: BITS_BIG_ENDIAN
  24404. Define this macro to have the value 1 if the most significant bit
  24405. in a byte has the lowest number; otherwise define it to have the
  24406. value zero. This means that bit-field instructions count from the
  24407. most significant bit. If the machine has no bit-field
  24408. instructions, then this must still be defined, but it doesn't
  24409. matter which value it is defined to. This macro need not be a
  24410. constant.
  24411. This macro does not affect the way structure fields are packed into
  24412. bytes or words; that is controlled by 'BYTES_BIG_ENDIAN'.
  24413. -- Macro: BYTES_BIG_ENDIAN
  24414. Define this macro to have the value 1 if the most significant byte
  24415. in a word has the lowest number. This macro need not be a
  24416. constant.
  24417. -- Macro: WORDS_BIG_ENDIAN
  24418. Define this macro to have the value 1 if, in a multiword object,
  24419. the most significant word has the lowest number. This applies to
  24420. both memory locations and registers; see 'REG_WORDS_BIG_ENDIAN' if
  24421. the order of words in memory is not the same as the order in
  24422. registers. This macro need not be a constant.
  24423. -- Macro: REG_WORDS_BIG_ENDIAN
  24424. On some machines, the order of words in a multiword object differs
  24425. between registers in memory. In such a situation, define this
  24426. macro to describe the order of words in a register. The macro
  24427. 'WORDS_BIG_ENDIAN' controls the order of words in memory.
  24428. -- Macro: FLOAT_WORDS_BIG_ENDIAN
  24429. Define this macro to have the value 1 if 'DFmode', 'XFmode' or
  24430. 'TFmode' floating point numbers are stored in memory with the word
  24431. containing the sign bit at the lowest address; otherwise define it
  24432. to have the value 0. This macro need not be a constant.
  24433. You need not define this macro if the ordering is the same as for
  24434. multi-word integers.
  24435. -- Macro: BITS_PER_WORD
  24436. Number of bits in a word. If you do not define this macro, the
  24437. default is 'BITS_PER_UNIT * UNITS_PER_WORD'.
  24438. -- Macro: MAX_BITS_PER_WORD
  24439. Maximum number of bits in a word. If this is undefined, the
  24440. default is 'BITS_PER_WORD'. Otherwise, it is the constant value
  24441. that is the largest value that 'BITS_PER_WORD' can have at
  24442. run-time.
  24443. -- Macro: UNITS_PER_WORD
  24444. Number of storage units in a word; normally the size of a
  24445. general-purpose register, a power of two from 1 or 8.
  24446. -- Macro: MIN_UNITS_PER_WORD
  24447. Minimum number of units in a word. If this is undefined, the
  24448. default is 'UNITS_PER_WORD'. Otherwise, it is the constant value
  24449. that is the smallest value that 'UNITS_PER_WORD' can have at
  24450. run-time.
  24451. -- Macro: POINTER_SIZE
  24452. Width of a pointer, in bits. You must specify a value no wider
  24453. than the width of 'Pmode'. If it is not equal to the width of
  24454. 'Pmode', you must define 'POINTERS_EXTEND_UNSIGNED'. If you do not
  24455. specify a value the default is 'BITS_PER_WORD'.
  24456. -- Macro: POINTERS_EXTEND_UNSIGNED
  24457. A C expression that determines how pointers should be extended from
  24458. 'ptr_mode' to either 'Pmode' or 'word_mode'. It is greater than
  24459. zero if pointers should be zero-extended, zero if they should be
  24460. sign-extended, and negative if some other sort of conversion is
  24461. needed. In the last case, the extension is done by the target's
  24462. 'ptr_extend' instruction.
  24463. You need not define this macro if the 'ptr_mode', 'Pmode' and
  24464. 'word_mode' are all the same width.
  24465. -- Macro: PROMOTE_MODE (M, UNSIGNEDP, TYPE)
  24466. A macro to update M and UNSIGNEDP when an object whose type is TYPE
  24467. and which has the specified mode and signedness is to be stored in
  24468. a register. This macro is only called when TYPE is a scalar type.
  24469. On most RISC machines, which only have operations that operate on a
  24470. full register, define this macro to set M to 'word_mode' if M is an
  24471. integer mode narrower than 'BITS_PER_WORD'. In most cases, only
  24472. integer modes should be widened because wider-precision
  24473. floating-point operations are usually more expensive than their
  24474. narrower counterparts.
  24475. For most machines, the macro definition does not change UNSIGNEDP.
  24476. However, some machines, have instructions that preferentially
  24477. handle either signed or unsigned quantities of certain modes. For
  24478. example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
  24479. instructions sign-extend the result to 64 bits. On such machines,
  24480. set UNSIGNEDP according to which kind of extension is more
  24481. efficient.
  24482. Do not define this macro if it would never modify M.
  24483. -- Target Hook: enum flt_eval_method TARGET_C_EXCESS_PRECISION (enum
  24484. excess_precision_type TYPE)
  24485. Return a value, with the same meaning as the C99 macro
  24486. 'FLT_EVAL_METHOD' that describes which excess precision should be
  24487. applied. TYPE is either 'EXCESS_PRECISION_TYPE_IMPLICIT',
  24488. 'EXCESS_PRECISION_TYPE_FAST', or 'EXCESS_PRECISION_TYPE_STANDARD'.
  24489. For 'EXCESS_PRECISION_TYPE_IMPLICIT', the target should return
  24490. which precision and range operations will be implictly evaluated in
  24491. regardless of the excess precision explicitly added. For
  24492. 'EXCESS_PRECISION_TYPE_STANDARD' and 'EXCESS_PRECISION_TYPE_FAST',
  24493. the target should return the explicit excess precision that should
  24494. be added depending on the value set for
  24495. '-fexcess-precision=[standard|fast]'. Note that unpredictable
  24496. explicit excess precision does not make sense, so a target should
  24497. never return 'FLT_EVAL_METHOD_UNPREDICTABLE' when TYPE is
  24498. 'EXCESS_PRECISION_TYPE_STANDARD' or 'EXCESS_PRECISION_TYPE_FAST'.
  24499. -- Target Hook: machine_mode TARGET_PROMOTE_FUNCTION_MODE (const_tree
  24500. TYPE, machine_mode MODE, int *PUNSIGNEDP, const_tree FUNTYPE,
  24501. int FOR_RETURN)
  24502. Like 'PROMOTE_MODE', but it is applied to outgoing function
  24503. arguments or function return values. The target hook should return
  24504. the new mode and possibly change '*PUNSIGNEDP' if the promotion
  24505. should change signedness. This function is called only for scalar
  24506. _or pointer_ types.
  24507. FOR_RETURN allows to distinguish the promotion of arguments and
  24508. return values. If it is '1', a return value is being promoted and
  24509. 'TARGET_FUNCTION_VALUE' must perform the same promotions done here.
  24510. If it is '2', the returned mode should be that of the register in
  24511. which an incoming parameter is copied, or the outgoing result is
  24512. computed; then the hook should return the same mode as
  24513. 'promote_mode', though the signedness may be different.
  24514. TYPE can be NULL when promoting function arguments of libcalls.
  24515. The default is to not promote arguments and return values. You can
  24516. also define the hook to
  24517. 'default_promote_function_mode_always_promote' if you would like to
  24518. apply the same rules given by 'PROMOTE_MODE'.
  24519. -- Macro: PARM_BOUNDARY
  24520. Normal alignment required for function parameters on the stack, in
  24521. bits. All stack parameters receive at least this much alignment
  24522. regardless of data type. On most machines, this is the same as the
  24523. size of an integer.
  24524. -- Macro: STACK_BOUNDARY
  24525. Define this macro to the minimum alignment enforced by hardware for
  24526. the stack pointer on this machine. The definition is a C
  24527. expression for the desired alignment (measured in bits). This
  24528. value is used as a default if 'PREFERRED_STACK_BOUNDARY' is not
  24529. defined. On most machines, this should be the same as
  24530. 'PARM_BOUNDARY'.
  24531. -- Macro: PREFERRED_STACK_BOUNDARY
  24532. Define this macro if you wish to preserve a certain alignment for
  24533. the stack pointer, greater than what the hardware enforces. The
  24534. definition is a C expression for the desired alignment (measured in
  24535. bits). This macro must evaluate to a value equal to or larger than
  24536. 'STACK_BOUNDARY'.
  24537. -- Macro: INCOMING_STACK_BOUNDARY
  24538. Define this macro if the incoming stack boundary may be different
  24539. from 'PREFERRED_STACK_BOUNDARY'. This macro must evaluate to a
  24540. value equal to or larger than 'STACK_BOUNDARY'.
  24541. -- Macro: FUNCTION_BOUNDARY
  24542. Alignment required for a function entry point, in bits.
  24543. -- Macro: BIGGEST_ALIGNMENT
  24544. Biggest alignment that any data type can require on this machine,
  24545. in bits. Note that this is not the biggest alignment that is
  24546. supported, just the biggest alignment that, when violated, may
  24547. cause a fault.
  24548. -- Target Hook: HOST_WIDE_INT TARGET_ABSOLUTE_BIGGEST_ALIGNMENT
  24549. If defined, this target hook specifies the absolute biggest
  24550. alignment that a type or variable can have on this machine,
  24551. otherwise, 'BIGGEST_ALIGNMENT' is used.
  24552. -- Macro: MALLOC_ABI_ALIGNMENT
  24553. Alignment, in bits, a C conformant malloc implementation has to
  24554. provide. If not defined, the default value is 'BITS_PER_WORD'.
  24555. -- Macro: ATTRIBUTE_ALIGNED_VALUE
  24556. Alignment used by the '__attribute__ ((aligned))' construct. If
  24557. not defined, the default value is 'BIGGEST_ALIGNMENT'.
  24558. -- Macro: MINIMUM_ATOMIC_ALIGNMENT
  24559. If defined, the smallest alignment, in bits, that can be given to
  24560. an object that can be referenced in one operation, without
  24561. disturbing any nearby object. Normally, this is 'BITS_PER_UNIT',
  24562. but may be larger on machines that don't have byte or half-word
  24563. store operations.
  24564. -- Macro: BIGGEST_FIELD_ALIGNMENT
  24565. Biggest alignment that any structure or union field can require on
  24566. this machine, in bits. If defined, this overrides
  24567. 'BIGGEST_ALIGNMENT' for structure and union fields only, unless the
  24568. field alignment has been set by the '__attribute__ ((aligned (N)))'
  24569. construct.
  24570. -- Macro: ADJUST_FIELD_ALIGN (FIELD, TYPE, COMPUTED)
  24571. An expression for the alignment of a structure field FIELD of type
  24572. TYPE if the alignment computed in the usual way (including applying
  24573. of 'BIGGEST_ALIGNMENT' and 'BIGGEST_FIELD_ALIGNMENT' to the
  24574. alignment) is COMPUTED. It overrides alignment only if the field
  24575. alignment has not been set by the '__attribute__ ((aligned (N)))'
  24576. construct. Note that FIELD may be 'NULL_TREE' in case we just
  24577. query for the minimum alignment of a field of type TYPE in
  24578. structure context.
  24579. -- Macro: MAX_STACK_ALIGNMENT
  24580. Biggest stack alignment guaranteed by the backend. Use this macro
  24581. to specify the maximum alignment of a variable on stack.
  24582. If not defined, the default value is 'STACK_BOUNDARY'.
  24583. -- Macro: MAX_OFILE_ALIGNMENT
  24584. Biggest alignment supported by the object file format of this
  24585. machine. Use this macro to limit the alignment which can be
  24586. specified using the '__attribute__ ((aligned (N)))' construct. If
  24587. not defined, the default value is 'BIGGEST_ALIGNMENT'.
  24588. On systems that use ELF, the default (in 'config/elfos.h') is the
  24589. largest supported 32-bit ELF section alignment representable on a
  24590. 32-bit host e.g. '(((uint64_t) 1 << 28) * 8)'. On 32-bit ELF the
  24591. largest supported section alignment in bits is '(0x80000000 * 8)',
  24592. but this is not representable on 32-bit hosts.
  24593. -- Target Hook: HOST_WIDE_INT TARGET_STATIC_RTX_ALIGNMENT (machine_mode
  24594. MODE)
  24595. This hook returns the preferred alignment in bits for a
  24596. statically-allocated rtx, such as a constant pool entry. MODE is
  24597. the mode of the rtx. The default implementation returns
  24598. 'GET_MODE_ALIGNMENT (MODE)'.
  24599. -- Macro: DATA_ALIGNMENT (TYPE, BASIC-ALIGN)
  24600. If defined, a C expression to compute the alignment for a variable
  24601. in the static store. TYPE is the data type, and BASIC-ALIGN is the
  24602. alignment that the object would ordinarily have. The value of this
  24603. macro is used instead of that alignment to align the object.
  24604. If this macro is not defined, then BASIC-ALIGN is used.
  24605. One use of this macro is to increase alignment of medium-size data
  24606. to make it all fit in fewer cache lines. Another is to cause
  24607. character arrays to be word-aligned so that 'strcpy' calls that
  24608. copy constants to character arrays can be done inline.
  24609. -- Macro: DATA_ABI_ALIGNMENT (TYPE, BASIC-ALIGN)
  24610. Similar to 'DATA_ALIGNMENT', but for the cases where the ABI
  24611. mandates some alignment increase, instead of optimization only
  24612. purposes. E.g. AMD x86-64 psABI says that variables with array
  24613. type larger than 15 bytes must be aligned to 16 byte boundaries.
  24614. If this macro is not defined, then BASIC-ALIGN is used.
  24615. -- Target Hook: HOST_WIDE_INT TARGET_CONSTANT_ALIGNMENT (const_tree
  24616. CONSTANT, HOST_WIDE_INT BASIC_ALIGN)
  24617. This hook returns the alignment in bits of a constant that is being
  24618. placed in memory. CONSTANT is the constant and BASIC_ALIGN is the
  24619. alignment that the object would ordinarily have.
  24620. The default definition just returns BASIC_ALIGN.
  24621. The typical use of this hook is to increase alignment for string
  24622. constants to be word aligned so that 'strcpy' calls that copy
  24623. constants can be done inline. The function
  24624. 'constant_alignment_word_strings' provides such a definition.
  24625. -- Macro: LOCAL_ALIGNMENT (TYPE, BASIC-ALIGN)
  24626. If defined, a C expression to compute the alignment for a variable
  24627. in the local store. TYPE is the data type, and BASIC-ALIGN is the
  24628. alignment that the object would ordinarily have. The value of this
  24629. macro is used instead of that alignment to align the object.
  24630. If this macro is not defined, then BASIC-ALIGN is used.
  24631. One use of this macro is to increase alignment of medium-size data
  24632. to make it all fit in fewer cache lines.
  24633. If the value of this macro has a type, it should be an unsigned
  24634. type.
  24635. -- Target Hook: HOST_WIDE_INT TARGET_VECTOR_ALIGNMENT (const_tree TYPE)
  24636. This hook can be used to define the alignment for a vector of type
  24637. TYPE, in order to comply with a platform ABI. The default is to
  24638. require natural alignment for vector types. The alignment returned
  24639. by this hook must be a power-of-two multiple of the default
  24640. alignment of the vector element type.
  24641. -- Macro: STACK_SLOT_ALIGNMENT (TYPE, MODE, BASIC-ALIGN)
  24642. If defined, a C expression to compute the alignment for stack slot.
  24643. TYPE is the data type, MODE is the widest mode available, and
  24644. BASIC-ALIGN is the alignment that the slot would ordinarily have.
  24645. The value of this macro is used instead of that alignment to align
  24646. the slot.
  24647. If this macro is not defined, then BASIC-ALIGN is used when TYPE is
  24648. 'NULL'. Otherwise, 'LOCAL_ALIGNMENT' will be used.
  24649. This macro is to set alignment of stack slot to the maximum
  24650. alignment of all possible modes which the slot may have.
  24651. If the value of this macro has a type, it should be an unsigned
  24652. type.
  24653. -- Macro: LOCAL_DECL_ALIGNMENT (DECL)
  24654. If defined, a C expression to compute the alignment for a local
  24655. variable DECL.
  24656. If this macro is not defined, then 'LOCAL_ALIGNMENT (TREE_TYPE
  24657. (DECL), DECL_ALIGN (DECL))' is used.
  24658. One use of this macro is to increase alignment of medium-size data
  24659. to make it all fit in fewer cache lines.
  24660. If the value of this macro has a type, it should be an unsigned
  24661. type.
  24662. -- Macro: MINIMUM_ALIGNMENT (EXP, MODE, ALIGN)
  24663. If defined, a C expression to compute the minimum required
  24664. alignment for dynamic stack realignment purposes for EXP (a type or
  24665. decl), MODE, assuming normal alignment ALIGN.
  24666. If this macro is not defined, then ALIGN will be used.
  24667. -- Macro: EMPTY_FIELD_BOUNDARY
  24668. Alignment in bits to be given to a structure bit-field that follows
  24669. an empty field such as 'int : 0;'.
  24670. If 'PCC_BITFIELD_TYPE_MATTERS' is true, it overrides this macro.
  24671. -- Macro: STRUCTURE_SIZE_BOUNDARY
  24672. Number of bits which any structure or union's size must be a
  24673. multiple of. Each structure or union's size is rounded up to a
  24674. multiple of this.
  24675. If you do not define this macro, the default is the same as
  24676. 'BITS_PER_UNIT'.
  24677. -- Macro: STRICT_ALIGNMENT
  24678. Define this macro to be the value 1 if instructions will fail to
  24679. work if given data not on the nominal alignment. If instructions
  24680. will merely go slower in that case, define this macro as 0.
  24681. -- Macro: PCC_BITFIELD_TYPE_MATTERS
  24682. Define this if you wish to imitate the way many other C compilers
  24683. handle alignment of bit-fields and the structures that contain
  24684. them.
  24685. The behavior is that the type written for a named bit-field ('int',
  24686. 'short', or other integer type) imposes an alignment for the entire
  24687. structure, as if the structure really did contain an ordinary field
  24688. of that type. In addition, the bit-field is placed within the
  24689. structure so that it would fit within such a field, not crossing a
  24690. boundary for it.
  24691. Thus, on most machines, a named bit-field whose type is written as
  24692. 'int' would not cross a four-byte boundary, and would force
  24693. four-byte alignment for the whole structure. (The alignment used
  24694. may not be four bytes; it is controlled by the other alignment
  24695. parameters.)
  24696. An unnamed bit-field will not affect the alignment of the
  24697. containing structure.
  24698. If the macro is defined, its definition should be a C expression; a
  24699. nonzero value for the expression enables this behavior.
  24700. Note that if this macro is not defined, or its value is zero, some
  24701. bit-fields may cross more than one alignment boundary. The
  24702. compiler can support such references if there are 'insv', 'extv',
  24703. and 'extzv' insns that can directly reference memory.
  24704. The other known way of making bit-fields work is to define
  24705. 'STRUCTURE_SIZE_BOUNDARY' as large as 'BIGGEST_ALIGNMENT'. Then
  24706. every structure can be accessed with fullwords.
  24707. Unless the machine has bit-field instructions or you define
  24708. 'STRUCTURE_SIZE_BOUNDARY' that way, you must define
  24709. 'PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
  24710. If your aim is to make GCC use the same conventions for laying out
  24711. bit-fields as are used by another compiler, here is how to
  24712. investigate what the other compiler does. Compile and run this
  24713. program:
  24714. struct foo1
  24715. {
  24716. char x;
  24717. char :0;
  24718. char y;
  24719. };
  24720. struct foo2
  24721. {
  24722. char x;
  24723. int :0;
  24724. char y;
  24725. };
  24726. main ()
  24727. {
  24728. printf ("Size of foo1 is %d\n",
  24729. sizeof (struct foo1));
  24730. printf ("Size of foo2 is %d\n",
  24731. sizeof (struct foo2));
  24732. exit (0);
  24733. }
  24734. If this prints 2 and 5, then the compiler's behavior is what you
  24735. would get from 'PCC_BITFIELD_TYPE_MATTERS'.
  24736. -- Macro: BITFIELD_NBYTES_LIMITED
  24737. Like 'PCC_BITFIELD_TYPE_MATTERS' except that its effect is limited
  24738. to aligning a bit-field within the structure.
  24739. -- Target Hook: bool TARGET_ALIGN_ANON_BITFIELD (void)
  24740. When 'PCC_BITFIELD_TYPE_MATTERS' is true this hook will determine
  24741. whether unnamed bitfields affect the alignment of the containing
  24742. structure. The hook should return true if the structure should
  24743. inherit the alignment requirements of an unnamed bitfield's type.
  24744. -- Target Hook: bool TARGET_NARROW_VOLATILE_BITFIELD (void)
  24745. This target hook should return 'true' if accesses to volatile
  24746. bitfields should use the narrowest mode possible. It should return
  24747. 'false' if these accesses should use the bitfield container type.
  24748. The default is 'false'.
  24749. -- Target Hook: bool TARGET_MEMBER_TYPE_FORCES_BLK (const_tree FIELD,
  24750. machine_mode MODE)
  24751. Return true if a structure, union or array containing FIELD should
  24752. be accessed using 'BLKMODE'.
  24753. If FIELD is the only field in the structure, MODE is its mode,
  24754. otherwise MODE is VOIDmode. MODE is provided in the case where
  24755. structures of one field would require the structure's mode to
  24756. retain the field's mode.
  24757. Normally, this is not needed.
  24758. -- Macro: ROUND_TYPE_ALIGN (TYPE, COMPUTED, SPECIFIED)
  24759. Define this macro as an expression for the alignment of a type
  24760. (given by TYPE as a tree node) if the alignment computed in the
  24761. usual way is COMPUTED and the alignment explicitly specified was
  24762. SPECIFIED.
  24763. The default is to use SPECIFIED if it is larger; otherwise, use the
  24764. smaller of COMPUTED and 'BIGGEST_ALIGNMENT'
  24765. -- Macro: MAX_FIXED_MODE_SIZE
  24766. An integer expression for the size in bits of the largest integer
  24767. machine mode that should actually be used. All integer machine
  24768. modes of this size or smaller can be used for structures and unions
  24769. with the appropriate sizes. If this macro is undefined,
  24770. 'GET_MODE_BITSIZE (DImode)' is assumed.
  24771. -- Macro: STACK_SAVEAREA_MODE (SAVE_LEVEL)
  24772. If defined, an expression of type 'machine_mode' that specifies the
  24773. mode of the save area operand of a 'save_stack_LEVEL' named pattern
  24774. (*note Standard Names::). SAVE_LEVEL is one of 'SAVE_BLOCK',
  24775. 'SAVE_FUNCTION', or 'SAVE_NONLOCAL' and selects which of the three
  24776. named patterns is having its mode specified.
  24777. You need not define this macro if it always returns 'Pmode'. You
  24778. would most commonly define this macro if the 'save_stack_LEVEL'
  24779. patterns need to support both a 32- and a 64-bit mode.
  24780. -- Macro: STACK_SIZE_MODE
  24781. If defined, an expression of type 'machine_mode' that specifies the
  24782. mode of the size increment operand of an 'allocate_stack' named
  24783. pattern (*note Standard Names::).
  24784. You need not define this macro if it always returns 'word_mode'.
  24785. You would most commonly define this macro if the 'allocate_stack'
  24786. pattern needs to support both a 32- and a 64-bit mode.
  24787. -- Target Hook: scalar_int_mode TARGET_LIBGCC_CMP_RETURN_MODE (void)
  24788. This target hook should return the mode to be used for the return
  24789. value of compare instructions expanded to libgcc calls. If not
  24790. defined 'word_mode' is returned which is the right choice for a
  24791. majority of targets.
  24792. -- Target Hook: scalar_int_mode TARGET_LIBGCC_SHIFT_COUNT_MODE (void)
  24793. This target hook should return the mode to be used for the shift
  24794. count operand of shift instructions expanded to libgcc calls. If
  24795. not defined 'word_mode' is returned which is the right choice for a
  24796. majority of targets.
  24797. -- Target Hook: scalar_int_mode TARGET_UNWIND_WORD_MODE (void)
  24798. Return machine mode to be used for '_Unwind_Word' type. The
  24799. default is to use 'word_mode'.
  24800. -- Target Hook: bool TARGET_MS_BITFIELD_LAYOUT_P (const_tree
  24801. RECORD_TYPE)
  24802. This target hook returns 'true' if bit-fields in the given
  24803. RECORD_TYPE are to be laid out following the rules of Microsoft
  24804. Visual C/C++, namely: (i) a bit-field won't share the same storage
  24805. unit with the previous bit-field if their underlying types have
  24806. different sizes, and the bit-field will be aligned to the highest
  24807. alignment of the underlying types of itself and of the previous
  24808. bit-field; (ii) a zero-sized bit-field will affect the alignment of
  24809. the whole enclosing structure, even if it is unnamed; except that
  24810. (iii) a zero-sized bit-field will be disregarded unless it follows
  24811. another bit-field of nonzero size. If this hook returns 'true',
  24812. other macros that control bit-field layout are ignored.
  24813. When a bit-field is inserted into a packed record, the whole size
  24814. of the underlying type is used by one or more same-size adjacent
  24815. bit-fields (that is, if its long:3, 32 bits is used in the record,
  24816. and any additional adjacent long bit-fields are packed into the
  24817. same chunk of 32 bits. However, if the size changes, a new field
  24818. of that size is allocated). In an unpacked record, this is the
  24819. same as using alignment, but not equivalent when packing.
  24820. If both MS bit-fields and '__attribute__((packed))' are used, the
  24821. latter will take precedence. If '__attribute__((packed))' is used
  24822. on a single field when MS bit-fields are in use, it will take
  24823. precedence for that field, but the alignment of the rest of the
  24824. structure may affect its placement.
  24825. -- Target Hook: bool TARGET_DECIMAL_FLOAT_SUPPORTED_P (void)
  24826. Returns true if the target supports decimal floating point.
  24827. -- Target Hook: bool TARGET_FIXED_POINT_SUPPORTED_P (void)
  24828. Returns true if the target supports fixed-point arithmetic.
  24829. -- Target Hook: void TARGET_EXPAND_TO_RTL_HOOK (void)
  24830. This hook is called just before expansion into rtl, allowing the
  24831. target to perform additional initializations or analysis before the
  24832. expansion. For example, the rs6000 port uses it to allocate a
  24833. scratch stack slot for use in copying SDmode values between memory
  24834. and floating point registers whenever the function being expanded
  24835. has any SDmode usage.
  24836. -- Target Hook: void TARGET_INSTANTIATE_DECLS (void)
  24837. This hook allows the backend to perform additional instantiations
  24838. on rtl that are not actually in any insns yet, but will be later.
  24839. -- Target Hook: const char * TARGET_MANGLE_TYPE (const_tree TYPE)
  24840. If your target defines any fundamental types, or any types your
  24841. target uses should be mangled differently from the default, define
  24842. this hook to return the appropriate encoding for these types as
  24843. part of a C++ mangled name. The TYPE argument is the tree
  24844. structure representing the type to be mangled. The hook may be
  24845. applied to trees which are not target-specific fundamental types;
  24846. it should return 'NULL' for all such types, as well as arguments it
  24847. does not recognize. If the return value is not 'NULL', it must
  24848. point to a statically-allocated string constant.
  24849. Target-specific fundamental types might be new fundamental types or
  24850. qualified versions of ordinary fundamental types. Encode new
  24851. fundamental types as 'u N NAME', where NAME is the name used for
  24852. the type in source code, and N is the length of NAME in decimal.
  24853. Encode qualified versions of ordinary types as 'U N NAME CODE',
  24854. where NAME is the name used for the type qualifier in source code,
  24855. N is the length of NAME as above, and CODE is the code used to
  24856. represent the unqualified version of this type. (See
  24857. 'write_builtin_type' in 'cp/mangle.c' for the list of codes.) In
  24858. both cases the spaces are for clarity; do not include any spaces in
  24859. your string.
  24860. This hook is applied to types prior to typedef resolution. If the
  24861. mangled name for a particular type depends only on that type's main
  24862. variant, you can perform typedef resolution yourself using
  24863. 'TYPE_MAIN_VARIANT' before mangling.
  24864. The default version of this hook always returns 'NULL', which is
  24865. appropriate for a target that does not define any new fundamental
  24866. types.
  24867. 
  24868. File: gccint.info, Node: Type Layout, Next: Registers, Prev: Storage Layout, Up: Target Macros
  24869. 18.6 Layout of Source Language Data Types
  24870. =========================================
  24871. These macros define the sizes and other characteristics of the standard
  24872. basic data types used in programs being compiled. Unlike the macros in
  24873. the previous section, these apply to specific features of C and related
  24874. languages, rather than to fundamental aspects of storage layout.
  24875. -- Macro: INT_TYPE_SIZE
  24876. A C expression for the size in bits of the type 'int' on the target
  24877. machine. If you don't define this, the default is one word.
  24878. -- Macro: SHORT_TYPE_SIZE
  24879. A C expression for the size in bits of the type 'short' on the
  24880. target machine. If you don't define this, the default is half a
  24881. word. (If this would be less than one storage unit, it is rounded
  24882. up to one unit.)
  24883. -- Macro: LONG_TYPE_SIZE
  24884. A C expression for the size in bits of the type 'long' on the
  24885. target machine. If you don't define this, the default is one word.
  24886. -- Macro: ADA_LONG_TYPE_SIZE
  24887. On some machines, the size used for the Ada equivalent of the type
  24888. 'long' by a native Ada compiler differs from that used by C. In
  24889. that situation, define this macro to be a C expression to be used
  24890. for the size of that type. If you don't define this, the default
  24891. is the value of 'LONG_TYPE_SIZE'.
  24892. -- Macro: LONG_LONG_TYPE_SIZE
  24893. A C expression for the size in bits of the type 'long long' on the
  24894. target machine. If you don't define this, the default is two
  24895. words. If you want to support GNU Ada on your machine, the value
  24896. of this macro must be at least 64.
  24897. -- Macro: CHAR_TYPE_SIZE
  24898. A C expression for the size in bits of the type 'char' on the
  24899. target machine. If you don't define this, the default is
  24900. 'BITS_PER_UNIT'.
  24901. -- Macro: BOOL_TYPE_SIZE
  24902. A C expression for the size in bits of the C++ type 'bool' and C99
  24903. type '_Bool' on the target machine. If you don't define this, and
  24904. you probably shouldn't, the default is 'CHAR_TYPE_SIZE'.
  24905. -- Macro: FLOAT_TYPE_SIZE
  24906. A C expression for the size in bits of the type 'float' on the
  24907. target machine. If you don't define this, the default is one word.
  24908. -- Macro: DOUBLE_TYPE_SIZE
  24909. A C expression for the size in bits of the type 'double' on the
  24910. target machine. If you don't define this, the default is two
  24911. words.
  24912. -- Macro: LONG_DOUBLE_TYPE_SIZE
  24913. A C expression for the size in bits of the type 'long double' on
  24914. the target machine. If you don't define this, the default is two
  24915. words.
  24916. -- Macro: SHORT_FRACT_TYPE_SIZE
  24917. A C expression for the size in bits of the type 'short _Fract' on
  24918. the target machine. If you don't define this, the default is
  24919. 'BITS_PER_UNIT'.
  24920. -- Macro: FRACT_TYPE_SIZE
  24921. A C expression for the size in bits of the type '_Fract' on the
  24922. target machine. If you don't define this, the default is
  24923. 'BITS_PER_UNIT * 2'.
  24924. -- Macro: LONG_FRACT_TYPE_SIZE
  24925. A C expression for the size in bits of the type 'long _Fract' on
  24926. the target machine. If you don't define this, the default is
  24927. 'BITS_PER_UNIT * 4'.
  24928. -- Macro: LONG_LONG_FRACT_TYPE_SIZE
  24929. A C expression for the size in bits of the type 'long long _Fract'
  24930. on the target machine. If you don't define this, the default is
  24931. 'BITS_PER_UNIT * 8'.
  24932. -- Macro: SHORT_ACCUM_TYPE_SIZE
  24933. A C expression for the size in bits of the type 'short _Accum' on
  24934. the target machine. If you don't define this, the default is
  24935. 'BITS_PER_UNIT * 2'.
  24936. -- Macro: ACCUM_TYPE_SIZE
  24937. A C expression for the size in bits of the type '_Accum' on the
  24938. target machine. If you don't define this, the default is
  24939. 'BITS_PER_UNIT * 4'.
  24940. -- Macro: LONG_ACCUM_TYPE_SIZE
  24941. A C expression for the size in bits of the type 'long _Accum' on
  24942. the target machine. If you don't define this, the default is
  24943. 'BITS_PER_UNIT * 8'.
  24944. -- Macro: LONG_LONG_ACCUM_TYPE_SIZE
  24945. A C expression for the size in bits of the type 'long long _Accum'
  24946. on the target machine. If you don't define this, the default is
  24947. 'BITS_PER_UNIT * 16'.
  24948. -- Macro: LIBGCC2_GNU_PREFIX
  24949. This macro corresponds to the 'TARGET_LIBFUNC_GNU_PREFIX' target
  24950. hook and should be defined if that hook is overriden to be true.
  24951. It causes function names in libgcc to be changed to use a '__gnu_'
  24952. prefix for their name rather than the default '__'. A port which
  24953. uses this macro should also arrange to use 't-gnu-prefix' in the
  24954. libgcc 'config.host'.
  24955. -- Macro: WIDEST_HARDWARE_FP_SIZE
  24956. A C expression for the size in bits of the widest floating-point
  24957. format supported by the hardware. If you define this macro, you
  24958. must specify a value less than or equal to the value of
  24959. 'LONG_DOUBLE_TYPE_SIZE'. If you do not define this macro, the
  24960. value of 'LONG_DOUBLE_TYPE_SIZE' is the default.
  24961. -- Macro: DEFAULT_SIGNED_CHAR
  24962. An expression whose value is 1 or 0, according to whether the type
  24963. 'char' should be signed or unsigned by default. The user can
  24964. always override this default with the options '-fsigned-char' and
  24965. '-funsigned-char'.
  24966. -- Target Hook: bool TARGET_DEFAULT_SHORT_ENUMS (void)
  24967. This target hook should return true if the compiler should give an
  24968. 'enum' type only as many bytes as it takes to represent the range
  24969. of possible values of that type. It should return false if all
  24970. 'enum' types should be allocated like 'int'.
  24971. The default is to return false.
  24972. -- Macro: SIZE_TYPE
  24973. A C expression for a string describing the name of the data type to
  24974. use for size values. The typedef name 'size_t' is defined using
  24975. the contents of the string.
  24976. The string can contain more than one keyword. If so, separate them
  24977. with spaces, and write first any length keyword, then 'unsigned' if
  24978. appropriate, and finally 'int'. The string must exactly match one
  24979. of the data type names defined in the function
  24980. 'c_common_nodes_and_builtins' in the file 'c-family/c-common.c'.
  24981. You may not omit 'int' or change the order--that would cause the
  24982. compiler to crash on startup.
  24983. If you don't define this macro, the default is '"long unsigned
  24984. int"'.
  24985. -- Macro: SIZETYPE
  24986. GCC defines internal types ('sizetype', 'ssizetype', 'bitsizetype'
  24987. and 'sbitsizetype') for expressions dealing with size. This macro
  24988. is a C expression for a string describing the name of the data type
  24989. from which the precision of 'sizetype' is extracted.
  24990. The string has the same restrictions as 'SIZE_TYPE' string.
  24991. If you don't define this macro, the default is 'SIZE_TYPE'.
  24992. -- Macro: PTRDIFF_TYPE
  24993. A C expression for a string describing the name of the data type to
  24994. use for the result of subtracting two pointers. The typedef name
  24995. 'ptrdiff_t' is defined using the contents of the string. See
  24996. 'SIZE_TYPE' above for more information.
  24997. If you don't define this macro, the default is '"long int"'.
  24998. -- Macro: WCHAR_TYPE
  24999. A C expression for a string describing the name of the data type to
  25000. use for wide characters. The typedef name 'wchar_t' is defined
  25001. using the contents of the string. See 'SIZE_TYPE' above for more
  25002. information.
  25003. If you don't define this macro, the default is '"int"'.
  25004. -- Macro: WCHAR_TYPE_SIZE
  25005. A C expression for the size in bits of the data type for wide
  25006. characters. This is used in 'cpp', which cannot make use of
  25007. 'WCHAR_TYPE'.
  25008. -- Macro: WINT_TYPE
  25009. A C expression for a string describing the name of the data type to
  25010. use for wide characters passed to 'printf' and returned from
  25011. 'getwc'. The typedef name 'wint_t' is defined using the contents
  25012. of the string. See 'SIZE_TYPE' above for more information.
  25013. If you don't define this macro, the default is '"unsigned int"'.
  25014. -- Macro: INTMAX_TYPE
  25015. A C expression for a string describing the name of the data type
  25016. that can represent any value of any standard or extended signed
  25017. integer type. The typedef name 'intmax_t' is defined using the
  25018. contents of the string. See 'SIZE_TYPE' above for more
  25019. information.
  25020. If you don't define this macro, the default is the first of
  25021. '"int"', '"long int"', or '"long long int"' that has as much
  25022. precision as 'long long int'.
  25023. -- Macro: UINTMAX_TYPE
  25024. A C expression for a string describing the name of the data type
  25025. that can represent any value of any standard or extended unsigned
  25026. integer type. The typedef name 'uintmax_t' is defined using the
  25027. contents of the string. See 'SIZE_TYPE' above for more
  25028. information.
  25029. If you don't define this macro, the default is the first of
  25030. '"unsigned int"', '"long unsigned int"', or '"long long unsigned
  25031. int"' that has as much precision as 'long long unsigned int'.
  25032. -- Macro: SIG_ATOMIC_TYPE
  25033. -- Macro: INT8_TYPE
  25034. -- Macro: INT16_TYPE
  25035. -- Macro: INT32_TYPE
  25036. -- Macro: INT64_TYPE
  25037. -- Macro: UINT8_TYPE
  25038. -- Macro: UINT16_TYPE
  25039. -- Macro: UINT32_TYPE
  25040. -- Macro: UINT64_TYPE
  25041. -- Macro: INT_LEAST8_TYPE
  25042. -- Macro: INT_LEAST16_TYPE
  25043. -- Macro: INT_LEAST32_TYPE
  25044. -- Macro: INT_LEAST64_TYPE
  25045. -- Macro: UINT_LEAST8_TYPE
  25046. -- Macro: UINT_LEAST16_TYPE
  25047. -- Macro: UINT_LEAST32_TYPE
  25048. -- Macro: UINT_LEAST64_TYPE
  25049. -- Macro: INT_FAST8_TYPE
  25050. -- Macro: INT_FAST16_TYPE
  25051. -- Macro: INT_FAST32_TYPE
  25052. -- Macro: INT_FAST64_TYPE
  25053. -- Macro: UINT_FAST8_TYPE
  25054. -- Macro: UINT_FAST16_TYPE
  25055. -- Macro: UINT_FAST32_TYPE
  25056. -- Macro: UINT_FAST64_TYPE
  25057. -- Macro: INTPTR_TYPE
  25058. -- Macro: UINTPTR_TYPE
  25059. C expressions for the standard types 'sig_atomic_t', 'int8_t',
  25060. 'int16_t', 'int32_t', 'int64_t', 'uint8_t', 'uint16_t', 'uint32_t',
  25061. 'uint64_t', 'int_least8_t', 'int_least16_t', 'int_least32_t',
  25062. 'int_least64_t', 'uint_least8_t', 'uint_least16_t',
  25063. 'uint_least32_t', 'uint_least64_t', 'int_fast8_t', 'int_fast16_t',
  25064. 'int_fast32_t', 'int_fast64_t', 'uint_fast8_t', 'uint_fast16_t',
  25065. 'uint_fast32_t', 'uint_fast64_t', 'intptr_t', and 'uintptr_t'. See
  25066. 'SIZE_TYPE' above for more information.
  25067. If any of these macros evaluates to a null pointer, the
  25068. corresponding type is not supported; if GCC is configured to
  25069. provide '<stdint.h>' in such a case, the header provided may not
  25070. conform to C99, depending on the type in question. The defaults
  25071. for all of these macros are null pointers.
  25072. -- Macro: TARGET_PTRMEMFUNC_VBIT_LOCATION
  25073. The C++ compiler represents a pointer-to-member-function with a
  25074. struct that looks like:
  25075. struct {
  25076. union {
  25077. void (*fn)();
  25078. ptrdiff_t vtable_index;
  25079. };
  25080. ptrdiff_t delta;
  25081. };
  25082. The C++ compiler must use one bit to indicate whether the function
  25083. that will be called through a pointer-to-member-function is
  25084. virtual. Normally, we assume that the low-order bit of a function
  25085. pointer must always be zero. Then, by ensuring that the
  25086. vtable_index is odd, we can distinguish which variant of the union
  25087. is in use. But, on some platforms function pointers can be odd,
  25088. and so this doesn't work. In that case, we use the low-order bit
  25089. of the 'delta' field, and shift the remainder of the 'delta' field
  25090. to the left.
  25091. GCC will automatically make the right selection about where to
  25092. store this bit using the 'FUNCTION_BOUNDARY' setting for your
  25093. platform. However, some platforms such as ARM/Thumb have
  25094. 'FUNCTION_BOUNDARY' set such that functions always start at even
  25095. addresses, but the lowest bit of pointers to functions indicate
  25096. whether the function at that address is in ARM or Thumb mode. If
  25097. this is the case of your architecture, you should define this macro
  25098. to 'ptrmemfunc_vbit_in_delta'.
  25099. In general, you should not have to define this macro. On
  25100. architectures in which function addresses are always even,
  25101. according to 'FUNCTION_BOUNDARY', GCC will automatically define
  25102. this macro to 'ptrmemfunc_vbit_in_pfn'.
  25103. -- Macro: TARGET_VTABLE_USES_DESCRIPTORS
  25104. Normally, the C++ compiler uses function pointers in vtables. This
  25105. macro allows the target to change to use "function descriptors"
  25106. instead. Function descriptors are found on targets for whom a
  25107. function pointer is actually a small data structure. Normally the
  25108. data structure consists of the actual code address plus a data
  25109. pointer to which the function's data is relative.
  25110. If vtables are used, the value of this macro should be the number
  25111. of words that the function descriptor occupies.
  25112. -- Macro: TARGET_VTABLE_ENTRY_ALIGN
  25113. By default, the vtable entries are void pointers, the so the
  25114. alignment is the same as pointer alignment. The value of this
  25115. macro specifies the alignment of the vtable entry in bits. It
  25116. should be defined only when special alignment is necessary. */
  25117. -- Macro: TARGET_VTABLE_DATA_ENTRY_DISTANCE
  25118. There are a few non-descriptor entries in the vtable at offsets
  25119. below zero. If these entries must be padded (say, to preserve the
  25120. alignment specified by 'TARGET_VTABLE_ENTRY_ALIGN'), set this to
  25121. the number of words in each data entry.
  25122. 
  25123. File: gccint.info, Node: Registers, Next: Register Classes, Prev: Type Layout, Up: Target Macros
  25124. 18.7 Register Usage
  25125. ===================
  25126. This section explains how to describe what registers the target machine
  25127. has, and how (in general) they can be used.
  25128. The description of which registers a specific instruction can use is
  25129. done with register classes; see *note Register Classes::. For
  25130. information on using registers to access a stack frame, see *note Frame
  25131. Registers::. For passing values in registers, see *note Register
  25132. Arguments::. For returning values in registers, see *note Scalar
  25133. Return::.
  25134. * Menu:
  25135. * Register Basics:: Number and kinds of registers.
  25136. * Allocation Order:: Order in which registers are allocated.
  25137. * Values in Registers:: What kinds of values each reg can hold.
  25138. * Leaf Functions:: Renumbering registers for leaf functions.
  25139. * Stack Registers:: Handling a register stack such as 80387.
  25140. 
  25141. File: gccint.info, Node: Register Basics, Next: Allocation Order, Up: Registers
  25142. 18.7.1 Basic Characteristics of Registers
  25143. -----------------------------------------
  25144. Registers have various characteristics.
  25145. -- Macro: FIRST_PSEUDO_REGISTER
  25146. Number of hardware registers known to the compiler. They receive
  25147. numbers 0 through 'FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo
  25148. register's number really is assigned the number
  25149. 'FIRST_PSEUDO_REGISTER'.
  25150. -- Macro: FIXED_REGISTERS
  25151. An initializer that says which registers are used for fixed
  25152. purposes all throughout the compiled code and are therefore not
  25153. available for general allocation. These would include the stack
  25154. pointer, the frame pointer (except on machines where that can be
  25155. used as a general register when no frame pointer is needed), the
  25156. program counter on machines where that is considered one of the
  25157. addressable registers, and any other numbered register with a
  25158. standard use.
  25159. This information is expressed as a sequence of numbers, separated
  25160. by commas and surrounded by braces. The Nth number is 1 if
  25161. register N is fixed, 0 otherwise.
  25162. The table initialized from this macro, and the table initialized by
  25163. the following one, may be overridden at run time either
  25164. automatically, by the actions of the macro
  25165. 'CONDITIONAL_REGISTER_USAGE', or by the user with the command
  25166. options '-ffixed-REG', '-fcall-used-REG' and '-fcall-saved-REG'.
  25167. -- Macro: CALL_USED_REGISTERS
  25168. Like 'FIXED_REGISTERS' but has 1 for each register that is
  25169. clobbered (in general) by function calls as well as for fixed
  25170. registers. This macro therefore identifies the registers that are
  25171. not available for general allocation of values that must live
  25172. across function calls.
  25173. If a register has 0 in 'CALL_USED_REGISTERS', the compiler
  25174. automatically saves it on function entry and restores it on
  25175. function exit, if the register is used within the function.
  25176. -- Macro: CALL_REALLY_USED_REGISTERS
  25177. Like 'CALL_USED_REGISTERS' except this macro doesn't require that
  25178. the entire set of 'FIXED_REGISTERS' be included.
  25179. ('CALL_USED_REGISTERS' must be a superset of 'FIXED_REGISTERS').
  25180. This macro is optional. If not specified, it defaults to the value
  25181. of 'CALL_USED_REGISTERS'.
  25182. -- Target Hook: bool TARGET_HARD_REGNO_CALL_PART_CLOBBERED (unsigned
  25183. int REGNO, machine_mode MODE)
  25184. This hook should return true if REGNO is partly call-saved and
  25185. partly call-clobbered, and if a value of mode MODE would be partly
  25186. clobbered by a call. For example, if the low 32 bits of REGNO are
  25187. preserved across a call but higher bits are clobbered, this hook
  25188. should return true for a 64-bit mode but false for a 32-bit mode.
  25189. The default implementation returns false, which is correct for
  25190. targets that don't have partly call-clobbered registers.
  25191. -- Target Hook: void TARGET_CONDITIONAL_REGISTER_USAGE (void)
  25192. This hook may conditionally modify five variables 'fixed_regs',
  25193. 'call_used_regs', 'global_regs', 'reg_names', and
  25194. 'reg_class_contents', to take into account any dependence of these
  25195. register sets on target flags. The first three of these are of
  25196. type 'char []' (interpreted as boolean vectors). 'global_regs' is
  25197. a 'const char *[]', and 'reg_class_contents' is a 'HARD_REG_SET'.
  25198. Before the macro is called, 'fixed_regs', 'call_used_regs',
  25199. 'reg_class_contents', and 'reg_names' have been initialized from
  25200. 'FIXED_REGISTERS', 'CALL_USED_REGISTERS', 'REG_CLASS_CONTENTS', and
  25201. 'REGISTER_NAMES', respectively. 'global_regs' has been cleared,
  25202. and any '-ffixed-REG', '-fcall-used-REG' and '-fcall-saved-REG'
  25203. command options have been applied.
  25204. If the usage of an entire class of registers depends on the target
  25205. flags, you may indicate this to GCC by using this macro to modify
  25206. 'fixed_regs' and 'call_used_regs' to 1 for each of the registers in
  25207. the classes which should not be used by GCC. Also make
  25208. 'define_register_constraint's return 'NO_REGS' for constraints that
  25209. shouldn't be used.
  25210. (However, if this class is not included in 'GENERAL_REGS' and all
  25211. of the insn patterns whose constraints permit this class are
  25212. controlled by target switches, then GCC will automatically avoid
  25213. using these registers when the target switches are opposed to
  25214. them.)
  25215. -- Macro: INCOMING_REGNO (OUT)
  25216. Define this macro if the target machine has register windows. This
  25217. C expression returns the register number as seen by the called
  25218. function corresponding to the register number OUT as seen by the
  25219. calling function. Return OUT if register number OUT is not an
  25220. outbound register.
  25221. -- Macro: OUTGOING_REGNO (IN)
  25222. Define this macro if the target machine has register windows. This
  25223. C expression returns the register number as seen by the calling
  25224. function corresponding to the register number IN as seen by the
  25225. called function. Return IN if register number IN is not an inbound
  25226. register.
  25227. -- Macro: LOCAL_REGNO (REGNO)
  25228. Define this macro if the target machine has register windows. This
  25229. C expression returns true if the register is call-saved but is in
  25230. the register window. Unlike most call-saved registers, such
  25231. registers need not be explicitly restored on function exit or
  25232. during non-local gotos.
  25233. -- Macro: PC_REGNUM
  25234. If the program counter has a register number, define this as that
  25235. register number. Otherwise, do not define it.
  25236. 
  25237. File: gccint.info, Node: Allocation Order, Next: Values in Registers, Prev: Register Basics, Up: Registers
  25238. 18.7.2 Order of Allocation of Registers
  25239. ---------------------------------------
  25240. Registers are allocated in order.
  25241. -- Macro: REG_ALLOC_ORDER
  25242. If defined, an initializer for a vector of integers, containing the
  25243. numbers of hard registers in the order in which GCC should prefer
  25244. to use them (from most preferred to least).
  25245. If this macro is not defined, registers are used lowest numbered
  25246. first (all else being equal).
  25247. One use of this macro is on machines where the highest numbered
  25248. registers must always be saved and the save-multiple-registers
  25249. instruction supports only sequences of consecutive registers. On
  25250. such machines, define 'REG_ALLOC_ORDER' to be an initializer that
  25251. lists the highest numbered allocable register first.
  25252. -- Macro: ADJUST_REG_ALLOC_ORDER
  25253. A C statement (sans semicolon) to choose the order in which to
  25254. allocate hard registers for pseudo-registers local to a basic
  25255. block.
  25256. Store the desired register order in the array 'reg_alloc_order'.
  25257. Element 0 should be the register to allocate first; element 1, the
  25258. next register; and so on.
  25259. The macro body should not assume anything about the contents of
  25260. 'reg_alloc_order' before execution of the macro.
  25261. On most machines, it is not necessary to define this macro.
  25262. -- Macro: HONOR_REG_ALLOC_ORDER
  25263. Normally, IRA tries to estimate the costs for saving a register in
  25264. the prologue and restoring it in the epilogue. This discourages it
  25265. from using call-saved registers. If a machine wants to ensure that
  25266. IRA allocates registers in the order given by REG_ALLOC_ORDER even
  25267. if some call-saved registers appear earlier than call-used ones,
  25268. then define this macro as a C expression to nonzero. Default is 0.
  25269. -- Macro: IRA_HARD_REGNO_ADD_COST_MULTIPLIER (REGNO)
  25270. In some case register allocation order is not enough for the
  25271. Integrated Register Allocator (IRA) to generate a good code. If
  25272. this macro is defined, it should return a floating point value
  25273. based on REGNO. The cost of using REGNO for a pseudo will be
  25274. increased by approximately the pseudo's usage frequency times the
  25275. value returned by this macro. Not defining this macro is
  25276. equivalent to having it always return '0.0'.
  25277. On most machines, it is not necessary to define this macro.
  25278. 
  25279. File: gccint.info, Node: Values in Registers, Next: Leaf Functions, Prev: Allocation Order, Up: Registers
  25280. 18.7.3 How Values Fit in Registers
  25281. ----------------------------------
  25282. This section discusses the macros that describe which kinds of values
  25283. (specifically, which machine modes) each register can hold, and how many
  25284. consecutive registers are needed for a given mode.
  25285. -- Target Hook: unsigned int TARGET_HARD_REGNO_NREGS (unsigned int
  25286. REGNO, machine_mode MODE)
  25287. This hook returns the number of consecutive hard registers,
  25288. starting at register number REGNO, required to hold a value of mode
  25289. MODE. This hook must never return zero, even if a register cannot
  25290. hold the requested mode - indicate that with
  25291. 'TARGET_HARD_REGNO_MODE_OK' and/or 'TARGET_CAN_CHANGE_MODE_CLASS'
  25292. instead.
  25293. The default definition returns the number of words in MODE.
  25294. -- Macro: HARD_REGNO_NREGS_HAS_PADDING (REGNO, MODE)
  25295. A C expression that is nonzero if a value of mode MODE, stored in
  25296. memory, ends with padding that causes it to take up more space than
  25297. in registers starting at register number REGNO (as determined by
  25298. multiplying GCC's notion of the size of the register when
  25299. containing this mode by the number of registers returned by
  25300. 'TARGET_HARD_REGNO_NREGS'). By default this is zero.
  25301. For example, if a floating-point value is stored in three 32-bit
  25302. registers but takes up 128 bits in memory, then this would be
  25303. nonzero.
  25304. This macros only needs to be defined if there are cases where
  25305. 'subreg_get_info' would otherwise wrongly determine that a 'subreg'
  25306. can be represented by an offset to the register number, when in
  25307. fact such a 'subreg' would contain some of the padding not stored
  25308. in registers and so not be representable.
  25309. -- Macro: HARD_REGNO_NREGS_WITH_PADDING (REGNO, MODE)
  25310. For values of REGNO and MODE for which
  25311. 'HARD_REGNO_NREGS_HAS_PADDING' returns nonzero, a C expression
  25312. returning the greater number of registers required to hold the
  25313. value including any padding. In the example above, the value would
  25314. be four.
  25315. -- Macro: REGMODE_NATURAL_SIZE (MODE)
  25316. Define this macro if the natural size of registers that hold values
  25317. of mode MODE is not the word size. It is a C expression that
  25318. should give the natural size in bytes for the specified mode. It
  25319. is used by the register allocator to try to optimize its results.
  25320. This happens for example on SPARC 64-bit where the natural size of
  25321. floating-point registers is still 32-bit.
  25322. -- Target Hook: bool TARGET_HARD_REGNO_MODE_OK (unsigned int REGNO,
  25323. machine_mode MODE)
  25324. This hook returns true if it is permissible to store a value of
  25325. mode MODE in hard register number REGNO (or in several registers
  25326. starting with that one). The default definition returns true
  25327. unconditionally.
  25328. You need not include code to check for the numbers of fixed
  25329. registers, because the allocation mechanism considers them to be
  25330. always occupied.
  25331. On some machines, double-precision values must be kept in even/odd
  25332. register pairs. You can implement that by defining this hook to
  25333. reject odd register numbers for such modes.
  25334. The minimum requirement for a mode to be OK in a register is that
  25335. the 'movMODE' instruction pattern support moves between the
  25336. register and other hard register in the same class and that moving
  25337. a value into the register and back out not alter it.
  25338. Since the same instruction used to move 'word_mode' will work for
  25339. all narrower integer modes, it is not necessary on any machine for
  25340. this hook to distinguish between these modes, provided you define
  25341. patterns 'movhi', etc., to take advantage of this. This is useful
  25342. because of the interaction between 'TARGET_HARD_REGNO_MODE_OK' and
  25343. 'TARGET_MODES_TIEABLE_P'; it is very desirable for all integer
  25344. modes to be tieable.
  25345. Many machines have special registers for floating point arithmetic.
  25346. Often people assume that floating point machine modes are allowed
  25347. only in floating point registers. This is not true. Any registers
  25348. that can hold integers can safely _hold_ a floating point machine
  25349. mode, whether or not floating arithmetic can be done on it in those
  25350. registers. Integer move instructions can be used to move the
  25351. values.
  25352. On some machines, though, the converse is true: fixed-point machine
  25353. modes may not go in floating registers. This is true if the
  25354. floating registers normalize any value stored in them, because
  25355. storing a non-floating value there would garble it. In this case,
  25356. 'TARGET_HARD_REGNO_MODE_OK' should reject fixed-point machine modes
  25357. in floating registers. But if the floating registers do not
  25358. automatically normalize, if you can store any bit pattern in one
  25359. and retrieve it unchanged without a trap, then any machine mode may
  25360. go in a floating register, so you can define this hook to say so.
  25361. The primary significance of special floating registers is rather
  25362. that they are the registers acceptable in floating point arithmetic
  25363. instructions. However, this is of no concern to
  25364. 'TARGET_HARD_REGNO_MODE_OK'. You handle it by writing the proper
  25365. constraints for those instructions.
  25366. On some machines, the floating registers are especially slow to
  25367. access, so that it is better to store a value in a stack frame than
  25368. in such a register if floating point arithmetic is not being done.
  25369. As long as the floating registers are not in class 'GENERAL_REGS',
  25370. they will not be used unless some pattern's constraint asks for
  25371. one.
  25372. -- Macro: HARD_REGNO_RENAME_OK (FROM, TO)
  25373. A C expression that is nonzero if it is OK to rename a hard
  25374. register FROM to another hard register TO.
  25375. One common use of this macro is to prevent renaming of a register
  25376. to another register that is not saved by a prologue in an interrupt
  25377. handler.
  25378. The default is always nonzero.
  25379. -- Target Hook: bool TARGET_MODES_TIEABLE_P (machine_mode MODE1,
  25380. machine_mode MODE2)
  25381. This hook returns true if a value of mode MODE1 is accessible in
  25382. mode MODE2 without copying.
  25383. If 'TARGET_HARD_REGNO_MODE_OK (R, MODE1)' and
  25384. 'TARGET_HARD_REGNO_MODE_OK (R, MODE2)' are always the same for any
  25385. R, then 'TARGET_MODES_TIEABLE_P (MODE1, MODE2)' should be true. If
  25386. they differ for any R, you should define this hook to return false
  25387. unless some other mechanism ensures the accessibility of the value
  25388. in a narrower mode.
  25389. You should define this hook to return true in as many cases as
  25390. possible since doing so will allow GCC to perform better register
  25391. allocation. The default definition returns true unconditionally.
  25392. -- Target Hook: bool TARGET_HARD_REGNO_SCRATCH_OK (unsigned int REGNO)
  25393. This target hook should return 'true' if it is OK to use a hard
  25394. register REGNO as scratch reg in peephole2.
  25395. One common use of this macro is to prevent using of a register that
  25396. is not saved by a prologue in an interrupt handler.
  25397. The default version of this hook always returns 'true'.
  25398. -- Macro: AVOID_CCMODE_COPIES
  25399. Define this macro if the compiler should avoid copies to/from
  25400. 'CCmode' registers. You should only define this macro if support
  25401. for copying to/from 'CCmode' is incomplete.
  25402. 
  25403. File: gccint.info, Node: Leaf Functions, Next: Stack Registers, Prev: Values in Registers, Up: Registers
  25404. 18.7.4 Handling Leaf Functions
  25405. ------------------------------
  25406. On some machines, a leaf function (i.e., one which makes no calls) can
  25407. run more efficiently if it does not make its own register window. Often
  25408. this means it is required to receive its arguments in the registers
  25409. where they are passed by the caller, instead of the registers where they
  25410. would normally arrive.
  25411. The special treatment for leaf functions generally applies only when
  25412. other conditions are met; for example, often they may use only those
  25413. registers for its own variables and temporaries. We use the term "leaf
  25414. function" to mean a function that is suitable for this special handling,
  25415. so that functions with no calls are not necessarily "leaf functions".
  25416. GCC assigns register numbers before it knows whether the function is
  25417. suitable for leaf function treatment. So it needs to renumber the
  25418. registers in order to output a leaf function. The following macros
  25419. accomplish this.
  25420. -- Macro: LEAF_REGISTERS
  25421. Name of a char vector, indexed by hard register number, which
  25422. contains 1 for a register that is allowable in a candidate for leaf
  25423. function treatment.
  25424. If leaf function treatment involves renumbering the registers, then
  25425. the registers marked here should be the ones before
  25426. renumbering--those that GCC would ordinarily allocate. The
  25427. registers which will actually be used in the assembler code, after
  25428. renumbering, should not be marked with 1 in this vector.
  25429. Define this macro only if the target machine offers a way to
  25430. optimize the treatment of leaf functions.
  25431. -- Macro: LEAF_REG_REMAP (REGNO)
  25432. A C expression whose value is the register number to which REGNO
  25433. should be renumbered, when a function is treated as a leaf
  25434. function.
  25435. If REGNO is a register number which should not appear in a leaf
  25436. function before renumbering, then the expression should yield -1,
  25437. which will cause the compiler to abort.
  25438. Define this macro only if the target machine offers a way to
  25439. optimize the treatment of leaf functions, and registers need to be
  25440. renumbered to do this.
  25441. 'TARGET_ASM_FUNCTION_PROLOGUE' and 'TARGET_ASM_FUNCTION_EPILOGUE' must
  25442. usually treat leaf functions specially. They can test the C variable
  25443. 'current_function_is_leaf' which is nonzero for leaf functions.
  25444. 'current_function_is_leaf' is set prior to local register allocation and
  25445. is valid for the remaining compiler passes. They can also test the C
  25446. variable 'current_function_uses_only_leaf_regs' which is nonzero for
  25447. leaf functions which only use leaf registers.
  25448. 'current_function_uses_only_leaf_regs' is valid after all passes that
  25449. modify the instructions have been run and is only useful if
  25450. 'LEAF_REGISTERS' is defined.
  25451. 
  25452. File: gccint.info, Node: Stack Registers, Prev: Leaf Functions, Up: Registers
  25453. 18.7.5 Registers That Form a Stack
  25454. ----------------------------------
  25455. There are special features to handle computers where some of the
  25456. "registers" form a stack. Stack registers are normally written by
  25457. pushing onto the stack, and are numbered relative to the top of the
  25458. stack.
  25459. Currently, GCC can only handle one group of stack-like registers, and
  25460. they must be consecutively numbered. Furthermore, the existing support
  25461. for stack-like registers is specific to the 80387 floating point
  25462. coprocessor. If you have a new architecture that uses stack-like
  25463. registers, you will need to do substantial work on 'reg-stack.c' and
  25464. write your machine description to cooperate with it, as well as defining
  25465. these macros.
  25466. -- Macro: STACK_REGS
  25467. Define this if the machine has any stack-like registers.
  25468. -- Macro: STACK_REG_COVER_CLASS
  25469. This is a cover class containing the stack registers. Define this
  25470. if the machine has any stack-like registers.
  25471. -- Macro: FIRST_STACK_REG
  25472. The number of the first stack-like register. This one is the top
  25473. of the stack.
  25474. -- Macro: LAST_STACK_REG
  25475. The number of the last stack-like register. This one is the bottom
  25476. of the stack.
  25477. 
  25478. File: gccint.info, Node: Register Classes, Next: Stack and Calling, Prev: Registers, Up: Target Macros
  25479. 18.8 Register Classes
  25480. =====================
  25481. On many machines, the numbered registers are not all equivalent. For
  25482. example, certain registers may not be allowed for indexed addressing;
  25483. certain registers may not be allowed in some instructions. These
  25484. machine restrictions are described to the compiler using "register
  25485. classes".
  25486. You define a number of register classes, giving each one a name and
  25487. saying which of the registers belong to it. Then you can specify
  25488. register classes that are allowed as operands to particular instruction
  25489. patterns.
  25490. In general, each register will belong to several classes. In fact, one
  25491. class must be named 'ALL_REGS' and contain all the registers. Another
  25492. class must be named 'NO_REGS' and contain no registers. Often the union
  25493. of two classes will be another class; however, this is not required.
  25494. One of the classes must be named 'GENERAL_REGS'. There is nothing
  25495. terribly special about the name, but the operand constraint letters 'r'
  25496. and 'g' specify this class. If 'GENERAL_REGS' is the same as
  25497. 'ALL_REGS', just define it as a macro which expands to 'ALL_REGS'.
  25498. Order the classes so that if class X is contained in class Y then X has
  25499. a lower class number than Y.
  25500. The way classes other than 'GENERAL_REGS' are specified in operand
  25501. constraints is through machine-dependent operand constraint letters.
  25502. You can define such letters to correspond to various classes, then use
  25503. them in operand constraints.
  25504. You must define the narrowest register classes for allocatable
  25505. registers, so that each class either has no subclasses, or that for some
  25506. mode, the move cost between registers within the class is cheaper than
  25507. moving a register in the class to or from memory (*note Costs::).
  25508. You should define a class for the union of two classes whenever some
  25509. instruction allows both classes. For example, if an instruction allows
  25510. either a floating point (coprocessor) register or a general register for
  25511. a certain operand, you should define a class 'FLOAT_OR_GENERAL_REGS'
  25512. which includes both of them. Otherwise you will get suboptimal code, or
  25513. even internal compiler errors when reload cannot find a register in the
  25514. class computed via 'reg_class_subunion'.
  25515. You must also specify certain redundant information about the register
  25516. classes: for each class, which classes contain it and which ones are
  25517. contained in it; for each pair of classes, the largest class contained
  25518. in their union.
  25519. When a value occupying several consecutive registers is expected in a
  25520. certain class, all the registers used must belong to that class.
  25521. Therefore, register classes cannot be used to enforce a requirement for
  25522. a register pair to start with an even-numbered register. The way to
  25523. specify this requirement is with 'TARGET_HARD_REGNO_MODE_OK'.
  25524. Register classes used for input-operands of bitwise-and or shift
  25525. instructions have a special requirement: each such class must have, for
  25526. each fixed-point machine mode, a subclass whose registers can transfer
  25527. that mode to or from memory. For example, on some machines, the
  25528. operations for single-byte values ('QImode') are limited to certain
  25529. registers. When this is so, each register class that is used in a
  25530. bitwise-and or shift instruction must have a subclass consisting of
  25531. registers from which single-byte values can be loaded or stored. This
  25532. is so that 'PREFERRED_RELOAD_CLASS' can always have a possible value to
  25533. return.
  25534. -- Data type: enum reg_class
  25535. An enumerated type that must be defined with all the register class
  25536. names as enumerated values. 'NO_REGS' must be first. 'ALL_REGS'
  25537. must be the last register class, followed by one more enumerated
  25538. value, 'LIM_REG_CLASSES', which is not a register class but rather
  25539. tells how many classes there are.
  25540. Each register class has a number, which is the value of casting the
  25541. class name to type 'int'. The number serves as an index in many of
  25542. the tables described below.
  25543. -- Macro: N_REG_CLASSES
  25544. The number of distinct register classes, defined as follows:
  25545. #define N_REG_CLASSES (int) LIM_REG_CLASSES
  25546. -- Macro: REG_CLASS_NAMES
  25547. An initializer containing the names of the register classes as C
  25548. string constants. These names are used in writing some of the
  25549. debugging dumps.
  25550. -- Macro: REG_CLASS_CONTENTS
  25551. An initializer containing the contents of the register classes, as
  25552. integers which are bit masks. The Nth integer specifies the
  25553. contents of class N. The way the integer MASK is interpreted is
  25554. that register R is in the class if 'MASK & (1 << R)' is 1.
  25555. When the machine has more than 32 registers, an integer does not
  25556. suffice. Then the integers are replaced by sub-initializers,
  25557. braced groupings containing several integers. Each sub-initializer
  25558. must be suitable as an initializer for the type 'HARD_REG_SET'
  25559. which is defined in 'hard-reg-set.h'. In this situation, the first
  25560. integer in each sub-initializer corresponds to registers 0 through
  25561. 31, the second integer to registers 32 through 63, and so on.
  25562. -- Macro: REGNO_REG_CLASS (REGNO)
  25563. A C expression whose value is a register class containing hard
  25564. register REGNO. In general there is more than one such class;
  25565. choose a class which is "minimal", meaning that no smaller class
  25566. also contains the register.
  25567. -- Macro: BASE_REG_CLASS
  25568. A macro whose definition is the name of the class to which a valid
  25569. base register must belong. A base register is one used in an
  25570. address which is the register value plus a displacement.
  25571. -- Macro: MODE_BASE_REG_CLASS (MODE)
  25572. This is a variation of the 'BASE_REG_CLASS' macro which allows the
  25573. selection of a base register in a mode dependent manner. If MODE
  25574. is VOIDmode then it should return the same value as
  25575. 'BASE_REG_CLASS'.
  25576. -- Macro: MODE_BASE_REG_REG_CLASS (MODE)
  25577. A C expression whose value is the register class to which a valid
  25578. base register must belong in order to be used in a base plus index
  25579. register address. You should define this macro if base plus index
  25580. addresses have different requirements than other base register
  25581. uses.
  25582. -- Macro: MODE_CODE_BASE_REG_CLASS (MODE, ADDRESS_SPACE, OUTER_CODE,
  25583. INDEX_CODE)
  25584. A C expression whose value is the register class to which a valid
  25585. base register for a memory reference in mode MODE to address space
  25586. ADDRESS_SPACE must belong. OUTER_CODE and INDEX_CODE define the
  25587. context in which the base register occurs. OUTER_CODE is the code
  25588. of the immediately enclosing expression ('MEM' for the top level of
  25589. an address, 'ADDRESS' for something that occurs in an
  25590. 'address_operand'). INDEX_CODE is the code of the corresponding
  25591. index expression if OUTER_CODE is 'PLUS'; 'SCRATCH' otherwise.
  25592. -- Macro: INDEX_REG_CLASS
  25593. A macro whose definition is the name of the class to which a valid
  25594. index register must belong. An index register is one used in an
  25595. address where its value is either multiplied by a scale factor or
  25596. added to another register (as well as added to a displacement).
  25597. -- Macro: REGNO_OK_FOR_BASE_P (NUM)
  25598. A C expression which is nonzero if register number NUM is suitable
  25599. for use as a base register in operand addresses.
  25600. -- Macro: REGNO_MODE_OK_FOR_BASE_P (NUM, MODE)
  25601. A C expression that is just like 'REGNO_OK_FOR_BASE_P', except that
  25602. that expression may examine the mode of the memory reference in
  25603. MODE. You should define this macro if the mode of the memory
  25604. reference affects whether a register may be used as a base
  25605. register. If you define this macro, the compiler will use it
  25606. instead of 'REGNO_OK_FOR_BASE_P'. The mode may be 'VOIDmode' for
  25607. addresses that appear outside a 'MEM', i.e., as an
  25608. 'address_operand'.
  25609. -- Macro: REGNO_MODE_OK_FOR_REG_BASE_P (NUM, MODE)
  25610. A C expression which is nonzero if register number NUM is suitable
  25611. for use as a base register in base plus index operand addresses,
  25612. accessing memory in mode MODE. It may be either a suitable hard
  25613. register or a pseudo register that has been allocated such a hard
  25614. register. You should define this macro if base plus index
  25615. addresses have different requirements than other base register
  25616. uses.
  25617. Use of this macro is deprecated; please use the more general
  25618. 'REGNO_MODE_CODE_OK_FOR_BASE_P'.
  25619. -- Macro: REGNO_MODE_CODE_OK_FOR_BASE_P (NUM, MODE, ADDRESS_SPACE,
  25620. OUTER_CODE, INDEX_CODE)
  25621. A C expression which is nonzero if register number NUM is suitable
  25622. for use as a base register in operand addresses, accessing memory
  25623. in mode MODE in address space ADDRESS_SPACE. This is similar to
  25624. 'REGNO_MODE_OK_FOR_BASE_P', except that that expression may examine
  25625. the context in which the register appears in the memory reference.
  25626. OUTER_CODE is the code of the immediately enclosing expression
  25627. ('MEM' if at the top level of the address, 'ADDRESS' for something
  25628. that occurs in an 'address_operand'). INDEX_CODE is the code of
  25629. the corresponding index expression if OUTER_CODE is 'PLUS';
  25630. 'SCRATCH' otherwise. The mode may be 'VOIDmode' for addresses that
  25631. appear outside a 'MEM', i.e., as an 'address_operand'.
  25632. -- Macro: REGNO_OK_FOR_INDEX_P (NUM)
  25633. A C expression which is nonzero if register number NUM is suitable
  25634. for use as an index register in operand addresses. It may be
  25635. either a suitable hard register or a pseudo register that has been
  25636. allocated such a hard register.
  25637. The difference between an index register and a base register is
  25638. that the index register may be scaled. If an address involves the
  25639. sum of two registers, neither one of them scaled, then either one
  25640. may be labeled the "base" and the other the "index"; but whichever
  25641. labeling is used must fit the machine's constraints of which
  25642. registers may serve in each capacity. The compiler will try both
  25643. labelings, looking for one that is valid, and will reload one or
  25644. both registers only if neither labeling works.
  25645. -- Target Hook: reg_class_t TARGET_PREFERRED_RENAME_CLASS (reg_class_t
  25646. RCLASS)
  25647. A target hook that places additional preference on the register
  25648. class to use when it is necessary to rename a register in class
  25649. RCLASS to another class, or perhaps NO_REGS, if no preferred
  25650. register class is found or hook 'preferred_rename_class' is not
  25651. implemented. Sometimes returning a more restrictive class makes
  25652. better code. For example, on ARM, thumb-2 instructions using
  25653. 'LO_REGS' may be smaller than instructions using 'GENERIC_REGS'.
  25654. By returning 'LO_REGS' from 'preferred_rename_class', code size can
  25655. be reduced.
  25656. -- Target Hook: reg_class_t TARGET_PREFERRED_RELOAD_CLASS (rtx X,
  25657. reg_class_t RCLASS)
  25658. A target hook that places additional restrictions on the register
  25659. class to use when it is necessary to copy value X into a register
  25660. in class RCLASS. The value is a register class; perhaps RCLASS, or
  25661. perhaps another, smaller class.
  25662. The default version of this hook always returns value of 'rclass'
  25663. argument.
  25664. Sometimes returning a more restrictive class makes better code.
  25665. For example, on the 68000, when X is an integer constant that is in
  25666. range for a 'moveq' instruction, the value of this macro is always
  25667. 'DATA_REGS' as long as RCLASS includes the data registers.
  25668. Requiring a data register guarantees that a 'moveq' will be used.
  25669. One case where 'TARGET_PREFERRED_RELOAD_CLASS' must not return
  25670. RCLASS is if X is a legitimate constant which cannot be loaded into
  25671. some register class. By returning 'NO_REGS' you can force X into a
  25672. memory location. For example, rs6000 can load immediate values
  25673. into general-purpose registers, but does not have an instruction
  25674. for loading an immediate value into a floating-point register, so
  25675. 'TARGET_PREFERRED_RELOAD_CLASS' returns 'NO_REGS' when X is a
  25676. floating-point constant. If the constant can't be loaded into any
  25677. kind of register, code generation will be better if
  25678. 'TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate
  25679. instead of using 'TARGET_PREFERRED_RELOAD_CLASS'.
  25680. If an insn has pseudos in it after register allocation, reload will
  25681. go through the alternatives and call repeatedly
  25682. 'TARGET_PREFERRED_RELOAD_CLASS' to find the best one. Returning
  25683. 'NO_REGS', in this case, makes reload add a '!' in front of the
  25684. constraint: the x86 back-end uses this feature to discourage usage
  25685. of 387 registers when math is done in the SSE registers (and vice
  25686. versa).
  25687. -- Macro: PREFERRED_RELOAD_CLASS (X, CLASS)
  25688. A C expression that places additional restrictions on the register
  25689. class to use when it is necessary to copy value X into a register
  25690. in class CLASS. The value is a register class; perhaps CLASS, or
  25691. perhaps another, smaller class. On many machines, the following
  25692. definition is safe:
  25693. #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
  25694. Sometimes returning a more restrictive class makes better code.
  25695. For example, on the 68000, when X is an integer constant that is in
  25696. range for a 'moveq' instruction, the value of this macro is always
  25697. 'DATA_REGS' as long as CLASS includes the data registers.
  25698. Requiring a data register guarantees that a 'moveq' will be used.
  25699. One case where 'PREFERRED_RELOAD_CLASS' must not return CLASS is if
  25700. X is a legitimate constant which cannot be loaded into some
  25701. register class. By returning 'NO_REGS' you can force X into a
  25702. memory location. For example, rs6000 can load immediate values
  25703. into general-purpose registers, but does not have an instruction
  25704. for loading an immediate value into a floating-point register, so
  25705. 'PREFERRED_RELOAD_CLASS' returns 'NO_REGS' when X is a
  25706. floating-point constant. If the constant cannot be loaded into any
  25707. kind of register, code generation will be better if
  25708. 'TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate
  25709. instead of using 'TARGET_PREFERRED_RELOAD_CLASS'.
  25710. If an insn has pseudos in it after register allocation, reload will
  25711. go through the alternatives and call repeatedly
  25712. 'PREFERRED_RELOAD_CLASS' to find the best one. Returning
  25713. 'NO_REGS', in this case, makes reload add a '!' in front of the
  25714. constraint: the x86 back-end uses this feature to discourage usage
  25715. of 387 registers when math is done in the SSE registers (and vice
  25716. versa).
  25717. -- Target Hook: reg_class_t TARGET_PREFERRED_OUTPUT_RELOAD_CLASS (rtx
  25718. X, reg_class_t RCLASS)
  25719. Like 'TARGET_PREFERRED_RELOAD_CLASS', but for output reloads
  25720. instead of input reloads.
  25721. The default version of this hook always returns value of 'rclass'
  25722. argument.
  25723. You can also use 'TARGET_PREFERRED_OUTPUT_RELOAD_CLASS' to
  25724. discourage reload from using some alternatives, like
  25725. 'TARGET_PREFERRED_RELOAD_CLASS'.
  25726. -- Macro: LIMIT_RELOAD_CLASS (MODE, CLASS)
  25727. A C expression that places additional restrictions on the register
  25728. class to use when it is necessary to be able to hold a value of
  25729. mode MODE in a reload register for which class CLASS would
  25730. ordinarily be used.
  25731. Unlike 'PREFERRED_RELOAD_CLASS', this macro should be used when
  25732. there are certain modes that simply cannot go in certain reload
  25733. classes.
  25734. The value is a register class; perhaps CLASS, or perhaps another,
  25735. smaller class.
  25736. Don't define this macro unless the target machine has limitations
  25737. which require the macro to do something nontrivial.
  25738. -- Target Hook: reg_class_t TARGET_SECONDARY_RELOAD (bool IN_P, rtx X,
  25739. reg_class_t RELOAD_CLASS, machine_mode RELOAD_MODE,
  25740. secondary_reload_info *SRI)
  25741. Many machines have some registers that cannot be copied directly to
  25742. or from memory or even from other types of registers. An example
  25743. is the 'MQ' register, which on most machines, can only be copied to
  25744. or from general registers, but not memory. Below, we shall be
  25745. using the term 'intermediate register' when a move operation cannot
  25746. be performed directly, but has to be done by copying the source
  25747. into the intermediate register first, and then copying the
  25748. intermediate register to the destination. An intermediate register
  25749. always has the same mode as source and destination. Since it holds
  25750. the actual value being copied, reload might apply optimizations to
  25751. re-use an intermediate register and eliding the copy from the
  25752. source when it can determine that the intermediate register still
  25753. holds the required value.
  25754. Another kind of secondary reload is required on some machines which
  25755. allow copying all registers to and from memory, but require a
  25756. scratch register for stores to some memory locations (e.g., those
  25757. with symbolic address on the RT, and those with certain symbolic
  25758. address on the SPARC when compiling PIC). Scratch registers need
  25759. not have the same mode as the value being copied, and usually hold
  25760. a different value than that being copied. Special patterns in the
  25761. md file are needed to describe how the copy is performed with the
  25762. help of the scratch register; these patterns also describe the
  25763. number, register class(es) and mode(s) of the scratch register(s).
  25764. In some cases, both an intermediate and a scratch register are
  25765. required.
  25766. For input reloads, this target hook is called with nonzero IN_P,
  25767. and X is an rtx that needs to be copied to a register of class
  25768. RELOAD_CLASS in RELOAD_MODE. For output reloads, this target hook
  25769. is called with zero IN_P, and a register of class RELOAD_CLASS
  25770. needs to be copied to rtx X in RELOAD_MODE.
  25771. If copying a register of RELOAD_CLASS from/to X requires an
  25772. intermediate register, the hook 'secondary_reload' should return
  25773. the register class required for this intermediate register. If no
  25774. intermediate register is required, it should return NO_REGS. If
  25775. more than one intermediate register is required, describe the one
  25776. that is closest in the copy chain to the reload register.
  25777. If scratch registers are needed, you also have to describe how to
  25778. perform the copy from/to the reload register to/from this closest
  25779. intermediate register. Or if no intermediate register is required,
  25780. but still a scratch register is needed, describe the copy from/to
  25781. the reload register to/from the reload operand X.
  25782. You do this by setting 'sri->icode' to the instruction code of a
  25783. pattern in the md file which performs the move. Operands 0 and 1
  25784. are the output and input of this copy, respectively. Operands from
  25785. operand 2 onward are for scratch operands. These scratch operands
  25786. must have a mode, and a single-register-class output constraint.
  25787. When an intermediate register is used, the 'secondary_reload' hook
  25788. will be called again to determine how to copy the intermediate
  25789. register to/from the reload operand X, so your hook must also have
  25790. code to handle the register class of the intermediate operand.
  25791. X might be a pseudo-register or a 'subreg' of a pseudo-register,
  25792. which could either be in a hard register or in memory. Use
  25793. 'true_regnum' to find out; it will return -1 if the pseudo is in
  25794. memory and the hard register number if it is in a register.
  25795. Scratch operands in memory (constraint '"=m"' / '"=&m"') are
  25796. currently not supported. For the time being, you will have to
  25797. continue to use 'TARGET_SECONDARY_MEMORY_NEEDED' for that purpose.
  25798. 'copy_cost' also uses this target hook to find out how values are
  25799. copied. If you want it to include some extra cost for the need to
  25800. allocate (a) scratch register(s), set 'sri->extra_cost' to the
  25801. additional cost. Or if two dependent moves are supposed to have a
  25802. lower cost than the sum of the individual moves due to expected
  25803. fortuitous scheduling and/or special forwarding logic, you can set
  25804. 'sri->extra_cost' to a negative amount.
  25805. -- Macro: SECONDARY_RELOAD_CLASS (CLASS, MODE, X)
  25806. -- Macro: SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)
  25807. -- Macro: SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X)
  25808. These macros are obsolete, new ports should use the target hook
  25809. 'TARGET_SECONDARY_RELOAD' instead.
  25810. These are obsolete macros, replaced by the
  25811. 'TARGET_SECONDARY_RELOAD' target hook. Older ports still define
  25812. these macros to indicate to the reload phase that it may need to
  25813. allocate at least one register for a reload in addition to the
  25814. register to contain the data. Specifically, if copying X to a
  25815. register CLASS in MODE requires an intermediate register, you were
  25816. supposed to define 'SECONDARY_INPUT_RELOAD_CLASS' to return the
  25817. largest register class all of whose registers can be used as
  25818. intermediate registers or scratch registers.
  25819. If copying a register CLASS in MODE to X requires an intermediate
  25820. or scratch register, 'SECONDARY_OUTPUT_RELOAD_CLASS' was supposed
  25821. to be defined be defined to return the largest register class
  25822. required. If the requirements for input and output reloads were
  25823. the same, the macro 'SECONDARY_RELOAD_CLASS' should have been used
  25824. instead of defining both macros identically.
  25825. The values returned by these macros are often 'GENERAL_REGS'.
  25826. Return 'NO_REGS' if no spare register is needed; i.e., if X can be
  25827. directly copied to or from a register of CLASS in MODE without
  25828. requiring a scratch register. Do not define this macro if it would
  25829. always return 'NO_REGS'.
  25830. If a scratch register is required (either with or without an
  25831. intermediate register), you were supposed to define patterns for
  25832. 'reload_inM' or 'reload_outM', as required (*note Standard Names::.
  25833. These patterns, which were normally implemented with a
  25834. 'define_expand', should be similar to the 'movM' patterns, except
  25835. that operand 2 is the scratch register.
  25836. These patterns need constraints for the reload register and scratch
  25837. register that contain a single register class. If the original
  25838. reload register (whose class is CLASS) can meet the constraint
  25839. given in the pattern, the value returned by these macros is used
  25840. for the class of the scratch register. Otherwise, two additional
  25841. reload registers are required. Their classes are obtained from the
  25842. constraints in the insn pattern.
  25843. X might be a pseudo-register or a 'subreg' of a pseudo-register,
  25844. which could either be in a hard register or in memory. Use
  25845. 'true_regnum' to find out; it will return -1 if the pseudo is in
  25846. memory and the hard register number if it is in a register.
  25847. These macros should not be used in the case where a particular
  25848. class of registers can only be copied to memory and not to another
  25849. class of registers. In that case, secondary reload registers are
  25850. not needed and would not be helpful. Instead, a stack location
  25851. must be used to perform the copy and the 'movM' pattern should use
  25852. memory as an intermediate storage. This case often occurs between
  25853. floating-point and general registers.
  25854. -- Target Hook: bool TARGET_SECONDARY_MEMORY_NEEDED (machine_mode MODE,
  25855. reg_class_t CLASS1, reg_class_t CLASS2)
  25856. Certain machines have the property that some registers cannot be
  25857. copied to some other registers without using memory. Define this
  25858. hook on those machines to return true if objects of mode M in
  25859. registers of CLASS1 can only be copied to registers of class CLASS2
  25860. by storing a register of CLASS1 into memory and loading that memory
  25861. location into a register of CLASS2. The default definition returns
  25862. false for all inputs.
  25863. -- Macro: SECONDARY_MEMORY_NEEDED_RTX (MODE)
  25864. Normally when 'TARGET_SECONDARY_MEMORY_NEEDED' is defined, the
  25865. compiler allocates a stack slot for a memory location needed for
  25866. register copies. If this macro is defined, the compiler instead
  25867. uses the memory location defined by this macro.
  25868. Do not define this macro if you do not define
  25869. 'TARGET_SECONDARY_MEMORY_NEEDED'.
  25870. -- Target Hook: machine_mode TARGET_SECONDARY_MEMORY_NEEDED_MODE
  25871. (machine_mode MODE)
  25872. If 'TARGET_SECONDARY_MEMORY_NEEDED' tells the compiler to use
  25873. memory when moving between two particular registers of mode MODE,
  25874. this hook specifies the mode that the memory should have.
  25875. The default depends on 'TARGET_LRA_P'. Without LRA, the default is
  25876. to use a word-sized mode for integral modes that are smaller than a
  25877. a word. This is right thing to do on most machines because it
  25878. ensures that all bits of the register are copied and prevents
  25879. accesses to the registers in a narrower mode, which some machines
  25880. prohibit for floating-point registers.
  25881. However, this default behavior is not correct on some machines,
  25882. such as the DEC Alpha, that store short integers in floating-point
  25883. registers differently than in integer registers. On those
  25884. machines, the default widening will not work correctly and you must
  25885. define this hook to suppress that widening in some cases. See the
  25886. file 'alpha.c' for details.
  25887. With LRA, the default is to use MODE unmodified.
  25888. -- Target Hook: void TARGET_SELECT_EARLY_REMAT_MODES (sbitmap MODES)
  25889. On some targets, certain modes cannot be held in registers around a
  25890. standard ABI call and are relatively expensive to spill to the
  25891. stack. The early rematerialization pass can help in such cases by
  25892. aggressively recomputing values after calls, so that they don't
  25893. need to be spilled.
  25894. This hook returns the set of such modes by setting the associated
  25895. bits in MODES. The default implementation selects no modes, which
  25896. has the effect of disabling the early rematerialization pass.
  25897. -- Target Hook: bool TARGET_CLASS_LIKELY_SPILLED_P (reg_class_t RCLASS)
  25898. A target hook which returns 'true' if pseudos that have been
  25899. assigned to registers of class RCLASS would likely be spilled
  25900. because registers of RCLASS are needed for spill registers.
  25901. The default version of this target hook returns 'true' if RCLASS
  25902. has exactly one register and 'false' otherwise. On most machines,
  25903. this default should be used. For generally register-starved
  25904. machines, such as i386, or machines with right register
  25905. constraints, such as SH, this hook can be used to avoid excessive
  25906. spilling.
  25907. This hook is also used by some of the global intra-procedural code
  25908. transformations to throtle code motion, to avoid increasing
  25909. register pressure.
  25910. -- Target Hook: unsigned char TARGET_CLASS_MAX_NREGS (reg_class_t
  25911. RCLASS, machine_mode MODE)
  25912. A target hook returns the maximum number of consecutive registers
  25913. of class RCLASS needed to hold a value of mode MODE.
  25914. This is closely related to the macro 'TARGET_HARD_REGNO_NREGS'. In
  25915. fact, the value returned by 'TARGET_CLASS_MAX_NREGS (RCLASS, MODE)'
  25916. target hook should be the maximum value of 'TARGET_HARD_REGNO_NREGS
  25917. (REGNO, MODE)' for all REGNO values in the class RCLASS.
  25918. This target hook helps control the handling of multiple-word values
  25919. in the reload pass.
  25920. The default version of this target hook returns the size of MODE in
  25921. words.
  25922. -- Macro: CLASS_MAX_NREGS (CLASS, MODE)
  25923. A C expression for the maximum number of consecutive registers of
  25924. class CLASS needed to hold a value of mode MODE.
  25925. This is closely related to the macro 'TARGET_HARD_REGNO_NREGS'. In
  25926. fact, the value of the macro 'CLASS_MAX_NREGS (CLASS, MODE)' should
  25927. be the maximum value of 'TARGET_HARD_REGNO_NREGS (REGNO, MODE)' for
  25928. all REGNO values in the class CLASS.
  25929. This macro helps control the handling of multiple-word values in
  25930. the reload pass.
  25931. -- Target Hook: bool TARGET_CAN_CHANGE_MODE_CLASS (machine_mode FROM,
  25932. machine_mode TO, reg_class_t RCLASS)
  25933. This hook returns true if it is possible to bitcast values held in
  25934. registers of class RCLASS from mode FROM to mode TO and if doing so
  25935. preserves the low-order bits that are common to both modes. The
  25936. result is only meaningful if RCLASS has registers that can hold
  25937. both 'from' and 'to'. The default implementation returns true.
  25938. As an example of when such bitcasting is invalid, loading 32-bit
  25939. integer or floating-point objects into floating-point registers on
  25940. Alpha extends them to 64 bits. Therefore loading a 64-bit object
  25941. and then storing it as a 32-bit object does not store the low-order
  25942. 32 bits, as would be the case for a normal register. Therefore,
  25943. 'alpha.h' defines 'TARGET_CAN_CHANGE_MODE_CLASS' to return:
  25944. (GET_MODE_SIZE (from) == GET_MODE_SIZE (to)
  25945. || !reg_classes_intersect_p (FLOAT_REGS, rclass))
  25946. Even if storing from a register in mode TO would be valid, if both
  25947. FROM and 'raw_reg_mode' for RCLASS are wider than 'word_mode', then
  25948. we must prevent TO narrowing the mode. This happens when the
  25949. middle-end assumes that it can load or store pieces of an N-word
  25950. pseudo, and that the pseudo will eventually be allocated to N
  25951. 'word_mode' hard registers. Failure to prevent this kind of mode
  25952. change will result in the entire 'raw_reg_mode' being modified
  25953. instead of the partial value that the middle-end intended.
  25954. -- Target Hook: reg_class_t TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS
  25955. (int, REG_CLASS_T, REG_CLASS_T)
  25956. A target hook which can change allocno class for given pseudo from
  25957. allocno and best class calculated by IRA.
  25958. The default version of this target hook always returns given class.
  25959. -- Target Hook: bool TARGET_LRA_P (void)
  25960. A target hook which returns true if we use LRA instead of reload
  25961. pass. The default version of this target hook returns true. New
  25962. ports should use LRA, and existing ports are encouraged to convert.
  25963. -- Target Hook: int TARGET_REGISTER_PRIORITY (int)
  25964. A target hook which returns the register priority number to which
  25965. the register HARD_REGNO belongs to. The bigger the number, the
  25966. more preferable the hard register usage (when all other conditions
  25967. are the same). This hook can be used to prefer some hard register
  25968. over others in LRA. For example, some x86-64 register usage needs
  25969. additional prefix which makes instructions longer. The hook can
  25970. return lower priority number for such registers make them less
  25971. favorable and as result making the generated code smaller. The
  25972. default version of this target hook returns always zero.
  25973. -- Target Hook: bool TARGET_REGISTER_USAGE_LEVELING_P (void)
  25974. A target hook which returns true if we need register usage
  25975. leveling. That means if a few hard registers are equally good for
  25976. the assignment, we choose the least used hard register. The
  25977. register usage leveling may be profitable for some targets. Don't
  25978. use the usage leveling for targets with conditional execution or
  25979. targets with big register files as it hurts if-conversion and
  25980. cross-jumping optimizations. The default version of this target
  25981. hook returns always false.
  25982. -- Target Hook: bool TARGET_DIFFERENT_ADDR_DISPLACEMENT_P (void)
  25983. A target hook which returns true if an address with the same
  25984. structure can have different maximal legitimate displacement. For
  25985. example, the displacement can depend on memory mode or on operand
  25986. combinations in the insn. The default version of this target hook
  25987. returns always false.
  25988. -- Target Hook: bool TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P (rtx SUBST)
  25989. A target hook which returns 'true' if SUBST can't substitute safely
  25990. pseudos with equivalent memory values during register allocation.
  25991. The default version of this target hook returns 'false'. On most
  25992. machines, this default should be used. For generally machines with
  25993. non orthogonal register usage for addressing, such as SH, this hook
  25994. can be used to avoid excessive spilling.
  25995. -- Target Hook: bool TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT (rtx
  25996. *OFFSET1, rtx *OFFSET2, poly_int64 ORIG_OFFSET, machine_mode
  25997. MODE)
  25998. This hook tries to split address offset ORIG_OFFSET into two parts:
  25999. one that should be added to the base address to create a local
  26000. anchor point, and an additional offset that can be applied to the
  26001. anchor to address a value of mode MODE. The idea is that the local
  26002. anchor could be shared by other accesses to nearby locations.
  26003. The hook returns true if it succeeds, storing the offset of the
  26004. anchor from the base in OFFSET1 and the offset of the final address
  26005. from the anchor in OFFSET2. The default implementation returns
  26006. false.
  26007. -- Target Hook: reg_class_t TARGET_SPILL_CLASS (reg_class_t,
  26008. MACHINE_MODE)
  26009. This hook defines a class of registers which could be used for
  26010. spilling pseudos of the given mode and class, or 'NO_REGS' if only
  26011. memory should be used. Not defining this hook is equivalent to
  26012. returning 'NO_REGS' for all inputs.
  26013. -- Target Hook: bool TARGET_ADDITIONAL_ALLOCNO_CLASS_P (reg_class_t)
  26014. This hook should return 'true' if given class of registers should
  26015. be an allocno class in any way. Usually RA uses only one register
  26016. class from all classes containing the same register set. In some
  26017. complicated cases, you need to have two or more such classes as
  26018. allocno ones for RA correct work. Not defining this hook is
  26019. equivalent to returning 'false' for all inputs.
  26020. -- Target Hook: scalar_int_mode TARGET_CSTORE_MODE (enum insn_code
  26021. ICODE)
  26022. This hook defines the machine mode to use for the boolean result of
  26023. conditional store patterns. The ICODE argument is the instruction
  26024. code for the cstore being performed. Not definiting this hook is
  26025. the same as accepting the mode encoded into operand 0 of the cstore
  26026. expander patterns.
  26027. -- Target Hook: int TARGET_COMPUTE_PRESSURE_CLASSES (enum reg_class
  26028. *PRESSURE_CLASSES)
  26029. A target hook which lets a backend compute the set of pressure
  26030. classes to be used by those optimization passes which take register
  26031. pressure into account, as opposed to letting IRA compute them. It
  26032. returns the number of register classes stored in the array
  26033. PRESSURE_CLASSES.
  26034. 
  26035. File: gccint.info, Node: Stack and Calling, Next: Varargs, Prev: Register Classes, Up: Target Macros
  26036. 18.9 Stack Layout and Calling Conventions
  26037. =========================================
  26038. This describes the stack layout and calling conventions.
  26039. * Menu:
  26040. * Frame Layout::
  26041. * Exception Handling::
  26042. * Stack Checking::
  26043. * Frame Registers::
  26044. * Elimination::
  26045. * Stack Arguments::
  26046. * Register Arguments::
  26047. * Scalar Return::
  26048. * Aggregate Return::
  26049. * Caller Saves::
  26050. * Function Entry::
  26051. * Profiling::
  26052. * Tail Calls::
  26053. * Shrink-wrapping separate components::
  26054. * Stack Smashing Protection::
  26055. * Miscellaneous Register Hooks::
  26056. 
  26057. File: gccint.info, Node: Frame Layout, Next: Exception Handling, Up: Stack and Calling
  26058. 18.9.1 Basic Stack Layout
  26059. -------------------------
  26060. Here is the basic stack layout.
  26061. -- Macro: STACK_GROWS_DOWNWARD
  26062. Define this macro to be true if pushing a word onto the stack moves
  26063. the stack pointer to a smaller address, and false otherwise.
  26064. -- Macro: STACK_PUSH_CODE
  26065. This macro defines the operation used when something is pushed on
  26066. the stack. In RTL, a push operation will be '(set (mem
  26067. (STACK_PUSH_CODE (reg sp))) ...)'
  26068. The choices are 'PRE_DEC', 'POST_DEC', 'PRE_INC', and 'POST_INC'.
  26069. Which of these is correct depends on the stack direction and on
  26070. whether the stack pointer points to the last item on the stack or
  26071. whether it points to the space for the next item on the stack.
  26072. The default is 'PRE_DEC' when 'STACK_GROWS_DOWNWARD' is true, which
  26073. is almost always right, and 'PRE_INC' otherwise, which is often
  26074. wrong.
  26075. -- Macro: FRAME_GROWS_DOWNWARD
  26076. Define this macro to nonzero value if the addresses of local
  26077. variable slots are at negative offsets from the frame pointer.
  26078. -- Macro: ARGS_GROW_DOWNWARD
  26079. Define this macro if successive arguments to a function occupy
  26080. decreasing addresses on the stack.
  26081. -- Target Hook: HOST_WIDE_INT TARGET_STARTING_FRAME_OFFSET (void)
  26082. This hook returns the offset from the frame pointer to the first
  26083. local variable slot to be allocated. If 'FRAME_GROWS_DOWNWARD', it
  26084. is the offset to _end_ of the first slot allocated, otherwise it is
  26085. the offset to _beginning_ of the first slot allocated. The default
  26086. implementation returns 0.
  26087. -- Macro: STACK_ALIGNMENT_NEEDED
  26088. Define to zero to disable final alignment of the stack during
  26089. reload. The nonzero default for this macro is suitable for most
  26090. ports.
  26091. On ports where 'TARGET_STARTING_FRAME_OFFSET' is nonzero or where
  26092. there is a register save block following the local block that
  26093. doesn't require alignment to 'STACK_BOUNDARY', it may be beneficial
  26094. to disable stack alignment and do it in the backend.
  26095. -- Macro: STACK_POINTER_OFFSET
  26096. Offset from the stack pointer register to the first location at
  26097. which outgoing arguments are placed. If not specified, the default
  26098. value of zero is used. This is the proper value for most machines.
  26099. If 'ARGS_GROW_DOWNWARD', this is the offset to the location above
  26100. the first location at which outgoing arguments are placed.
  26101. -- Macro: FIRST_PARM_OFFSET (FUNDECL)
  26102. Offset from the argument pointer register to the first argument's
  26103. address. On some machines it may depend on the data type of the
  26104. function.
  26105. If 'ARGS_GROW_DOWNWARD', this is the offset to the location above
  26106. the first argument's address.
  26107. -- Macro: STACK_DYNAMIC_OFFSET (FUNDECL)
  26108. Offset from the stack pointer register to an item dynamically
  26109. allocated on the stack, e.g., by 'alloca'.
  26110. The default value for this macro is 'STACK_POINTER_OFFSET' plus the
  26111. length of the outgoing arguments. The default is correct for most
  26112. machines. See 'function.c' for details.
  26113. -- Macro: INITIAL_FRAME_ADDRESS_RTX
  26114. A C expression whose value is RTL representing the address of the
  26115. initial stack frame. This address is passed to 'RETURN_ADDR_RTX'
  26116. and 'DYNAMIC_CHAIN_ADDRESS'. If you don't define this macro, a
  26117. reasonable default value will be used. Define this macro in order
  26118. to make frame pointer elimination work in the presence of
  26119. '__builtin_frame_address (count)' and '__builtin_return_address
  26120. (count)' for 'count' not equal to zero.
  26121. -- Macro: DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)
  26122. A C expression whose value is RTL representing the address in a
  26123. stack frame where the pointer to the caller's frame is stored.
  26124. Assume that FRAMEADDR is an RTL expression for the address of the
  26125. stack frame itself.
  26126. If you don't define this macro, the default is to return the value
  26127. of FRAMEADDR--that is, the stack frame address is also the address
  26128. of the stack word that points to the previous frame.
  26129. -- Macro: SETUP_FRAME_ADDRESSES
  26130. A C expression that produces the machine-specific code to setup the
  26131. stack so that arbitrary frames can be accessed. For example, on
  26132. the SPARC, we must flush all of the register windows to the stack
  26133. before we can access arbitrary stack frames. You will seldom need
  26134. to define this macro. The default is to do nothing.
  26135. -- Target Hook: rtx TARGET_BUILTIN_SETJMP_FRAME_VALUE (void)
  26136. This target hook should return an rtx that is used to store the
  26137. address of the current frame into the built in 'setjmp' buffer.
  26138. The default value, 'virtual_stack_vars_rtx', is correct for most
  26139. machines. One reason you may need to define this target hook is if
  26140. 'hard_frame_pointer_rtx' is the appropriate value on your machine.
  26141. -- Macro: FRAME_ADDR_RTX (FRAMEADDR)
  26142. A C expression whose value is RTL representing the value of the
  26143. frame address for the current frame. FRAMEADDR is the frame
  26144. pointer of the current frame. This is used for
  26145. __builtin_frame_address. You need only define this macro if the
  26146. frame address is not the same as the frame pointer. Most machines
  26147. do not need to define it.
  26148. -- Macro: RETURN_ADDR_RTX (COUNT, FRAMEADDR)
  26149. A C expression whose value is RTL representing the value of the
  26150. return address for the frame COUNT steps up from the current frame,
  26151. after the prologue. FRAMEADDR is the frame pointer of the COUNT
  26152. frame, or the frame pointer of the COUNT - 1 frame if
  26153. 'RETURN_ADDR_IN_PREVIOUS_FRAME' is nonzero.
  26154. The value of the expression must always be the correct address when
  26155. COUNT is zero, but may be 'NULL_RTX' if there is no way to
  26156. determine the return address of other frames.
  26157. -- Macro: RETURN_ADDR_IN_PREVIOUS_FRAME
  26158. Define this macro to nonzero value if the return address of a
  26159. particular stack frame is accessed from the frame pointer of the
  26160. previous stack frame. The zero default for this macro is suitable
  26161. for most ports.
  26162. -- Macro: INCOMING_RETURN_ADDR_RTX
  26163. A C expression whose value is RTL representing the location of the
  26164. incoming return address at the beginning of any function, before
  26165. the prologue. This RTL is either a 'REG', indicating that the
  26166. return value is saved in 'REG', or a 'MEM' representing a location
  26167. in the stack.
  26168. You only need to define this macro if you want to support call
  26169. frame debugging information like that provided by DWARF 2.
  26170. If this RTL is a 'REG', you should also define
  26171. 'DWARF_FRAME_RETURN_COLUMN' to 'DWARF_FRAME_REGNUM (REGNO)'.
  26172. -- Macro: DWARF_ALT_FRAME_RETURN_COLUMN
  26173. A C expression whose value is an integer giving a DWARF 2 column
  26174. number that may be used as an alternative return column. The
  26175. column must not correspond to any gcc hard register (that is, it
  26176. must not be in the range of 'DWARF_FRAME_REGNUM').
  26177. This macro can be useful if 'DWARF_FRAME_RETURN_COLUMN' is set to a
  26178. general register, but an alternative column needs to be used for
  26179. signal frames. Some targets have also used different frame return
  26180. columns over time.
  26181. -- Macro: DWARF_ZERO_REG
  26182. A C expression whose value is an integer giving a DWARF 2 register
  26183. number that is considered to always have the value zero. This
  26184. should only be defined if the target has an architected zero
  26185. register, and someone decided it was a good idea to use that
  26186. register number to terminate the stack backtrace. New ports should
  26187. avoid this.
  26188. -- Target Hook: void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char
  26189. *LABEL, rtx PATTERN, int INDEX)
  26190. This target hook allows the backend to emit frame-related insns
  26191. that contain UNSPECs or UNSPEC_VOLATILEs. The DWARF 2 call frame
  26192. debugging info engine will invoke it on insns of the form
  26193. (set (reg) (unspec [...] UNSPEC_INDEX))
  26194. and
  26195. (set (reg) (unspec_volatile [...] UNSPECV_INDEX)).
  26196. to let the backend emit the call frame instructions. LABEL is the
  26197. CFI label attached to the insn, PATTERN is the pattern of the insn
  26198. and INDEX is 'UNSPEC_INDEX' or 'UNSPECV_INDEX'.
  26199. -- Target Hook: unsigned int TARGET_DWARF_POLY_INDETERMINATE_VALUE
  26200. (unsigned int I, unsigned int *FACTOR, int *OFFSET)
  26201. Express the value of 'poly_int' indeterminate I as a DWARF
  26202. expression, with I counting from 1. Return the number of a DWARF
  26203. register R and set '*FACTOR' and '*OFFSET' such that the value of
  26204. the indeterminate is:
  26205. value_of(R) / FACTOR - OFFSET
  26206. A target only needs to define this hook if it sets
  26207. 'NUM_POLY_INT_COEFFS' to a value greater than 1.
  26208. -- Macro: INCOMING_FRAME_SP_OFFSET
  26209. A C expression whose value is an integer giving the offset, in
  26210. bytes, from the value of the stack pointer register to the top of
  26211. the stack frame at the beginning of any function, before the
  26212. prologue. The top of the frame is defined to be the value of the
  26213. stack pointer in the previous frame, just before the call
  26214. instruction.
  26215. You only need to define this macro if you want to support call
  26216. frame debugging information like that provided by DWARF 2.
  26217. -- Macro: DEFAULT_INCOMING_FRAME_SP_OFFSET
  26218. Like 'INCOMING_FRAME_SP_OFFSET', but must be the same for all
  26219. functions of the same ABI, and when using GAS '.cfi_*' directives
  26220. must also agree with the default CFI GAS emits. Define this macro
  26221. only if 'INCOMING_FRAME_SP_OFFSET' can have different values
  26222. between different functions of the same ABI or when
  26223. 'INCOMING_FRAME_SP_OFFSET' does not agree with GAS default CFI.
  26224. -- Macro: ARG_POINTER_CFA_OFFSET (FUNDECL)
  26225. A C expression whose value is an integer giving the offset, in
  26226. bytes, from the argument pointer to the canonical frame address
  26227. (cfa). The final value should coincide with that calculated by
  26228. 'INCOMING_FRAME_SP_OFFSET'. Which is unfortunately not usable
  26229. during virtual register instantiation.
  26230. The default value for this macro is 'FIRST_PARM_OFFSET (fundecl) +
  26231. crtl->args.pretend_args_size', which is correct for most machines;
  26232. in general, the arguments are found immediately before the stack
  26233. frame. Note that this is not the case on some targets that save
  26234. registers into the caller's frame, such as SPARC and rs6000, and so
  26235. such targets need to define this macro.
  26236. You only need to define this macro if the default is incorrect, and
  26237. you want to support call frame debugging information like that
  26238. provided by DWARF 2.
  26239. -- Macro: FRAME_POINTER_CFA_OFFSET (FUNDECL)
  26240. If defined, a C expression whose value is an integer giving the
  26241. offset in bytes from the frame pointer to the canonical frame
  26242. address (cfa). The final value should coincide with that
  26243. calculated by 'INCOMING_FRAME_SP_OFFSET'.
  26244. Normally the CFA is calculated as an offset from the argument
  26245. pointer, via 'ARG_POINTER_CFA_OFFSET', but if the argument pointer
  26246. is variable due to the ABI, this may not be possible. If this
  26247. macro is defined, it implies that the virtual register
  26248. instantiation should be based on the frame pointer instead of the
  26249. argument pointer. Only one of 'FRAME_POINTER_CFA_OFFSET' and
  26250. 'ARG_POINTER_CFA_OFFSET' should be defined.
  26251. -- Macro: CFA_FRAME_BASE_OFFSET (FUNDECL)
  26252. If defined, a C expression whose value is an integer giving the
  26253. offset in bytes from the canonical frame address (cfa) to the frame
  26254. base used in DWARF 2 debug information. The default is zero. A
  26255. different value may reduce the size of debug information on some
  26256. ports.
  26257. 
  26258. File: gccint.info, Node: Exception Handling, Next: Stack Checking, Prev: Frame Layout, Up: Stack and Calling
  26259. 18.9.2 Exception Handling Support
  26260. ---------------------------------
  26261. -- Macro: EH_RETURN_DATA_REGNO (N)
  26262. A C expression whose value is the Nth register number used for data
  26263. by exception handlers, or 'INVALID_REGNUM' if fewer than N
  26264. registers are usable.
  26265. The exception handling library routines communicate with the
  26266. exception handlers via a set of agreed upon registers. Ideally
  26267. these registers should be call-clobbered; it is possible to use
  26268. call-saved registers, but may negatively impact code size. The
  26269. target must support at least 2 data registers, but should define 4
  26270. if there are enough free registers.
  26271. You must define this macro if you want to support call frame
  26272. exception handling like that provided by DWARF 2.
  26273. -- Macro: EH_RETURN_STACKADJ_RTX
  26274. A C expression whose value is RTL representing a location in which
  26275. to store a stack adjustment to be applied before function return.
  26276. This is used to unwind the stack to an exception handler's call
  26277. frame. It will be assigned zero on code paths that return
  26278. normally.
  26279. Typically this is a call-clobbered hard register that is otherwise
  26280. untouched by the epilogue, but could also be a stack slot.
  26281. Do not define this macro if the stack pointer is saved and restored
  26282. by the regular prolog and epilog code in the call frame itself; in
  26283. this case, the exception handling library routines will update the
  26284. stack location to be restored in place. Otherwise, you must define
  26285. this macro if you want to support call frame exception handling
  26286. like that provided by DWARF 2.
  26287. -- Macro: EH_RETURN_HANDLER_RTX
  26288. A C expression whose value is RTL representing a location in which
  26289. to store the address of an exception handler to which we should
  26290. return. It will not be assigned on code paths that return
  26291. normally.
  26292. Typically this is the location in the call frame at which the
  26293. normal return address is stored. For targets that return by
  26294. popping an address off the stack, this might be a memory address
  26295. just below the _target_ call frame rather than inside the current
  26296. call frame. If defined, 'EH_RETURN_STACKADJ_RTX' will have already
  26297. been assigned, so it may be used to calculate the location of the
  26298. target call frame.
  26299. Some targets have more complex requirements than storing to an
  26300. address calculable during initial code generation. In that case
  26301. the 'eh_return' instruction pattern should be used instead.
  26302. If you want to support call frame exception handling, you must
  26303. define either this macro or the 'eh_return' instruction pattern.
  26304. -- Macro: RETURN_ADDR_OFFSET
  26305. If defined, an integer-valued C expression for which rtl will be
  26306. generated to add it to the exception handler address before it is
  26307. searched in the exception handling tables, and to subtract it again
  26308. from the address before using it to return to the exception
  26309. handler.
  26310. -- Macro: ASM_PREFERRED_EH_DATA_FORMAT (CODE, GLOBAL)
  26311. This macro chooses the encoding of pointers embedded in the
  26312. exception handling sections. If at all possible, this should be
  26313. defined such that the exception handling section will not require
  26314. dynamic relocations, and so may be read-only.
  26315. CODE is 0 for data, 1 for code labels, 2 for function pointers.
  26316. GLOBAL is true if the symbol may be affected by dynamic
  26317. relocations. The macro should return a combination of the
  26318. 'DW_EH_PE_*' defines as found in 'dwarf2.h'.
  26319. If this macro is not defined, pointers will not be encoded but
  26320. represented directly.
  26321. -- Macro: ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX (FILE, ENCODING, SIZE,
  26322. ADDR, DONE)
  26323. This macro allows the target to emit whatever special magic is
  26324. required to represent the encoding chosen by
  26325. 'ASM_PREFERRED_EH_DATA_FORMAT'. Generic code takes care of
  26326. pc-relative and indirect encodings; this must be defined if the
  26327. target uses text-relative or data-relative encodings.
  26328. This is a C statement that branches to DONE if the format was
  26329. handled. ENCODING is the format chosen, SIZE is the number of
  26330. bytes that the format occupies, ADDR is the 'SYMBOL_REF' to be
  26331. emitted.
  26332. -- Macro: MD_FALLBACK_FRAME_STATE_FOR (CONTEXT, FS)
  26333. This macro allows the target to add CPU and operating system
  26334. specific code to the call-frame unwinder for use when there is no
  26335. unwind data available. The most common reason to implement this
  26336. macro is to unwind through signal frames.
  26337. This macro is called from 'uw_frame_state_for' in 'unwind-dw2.c',
  26338. 'unwind-dw2-xtensa.c' and 'unwind-ia64.c'. CONTEXT is an
  26339. '_Unwind_Context'; FS is an '_Unwind_FrameState'. Examine
  26340. 'context->ra' for the address of the code being executed and
  26341. 'context->cfa' for the stack pointer value. If the frame can be
  26342. decoded, the register save addresses should be updated in FS and
  26343. the macro should evaluate to '_URC_NO_REASON'. If the frame cannot
  26344. be decoded, the macro should evaluate to '_URC_END_OF_STACK'.
  26345. For proper signal handling in Java this macro is accompanied by
  26346. 'MAKE_THROW_FRAME', defined in 'libjava/include/*-signal.h'
  26347. headers.
  26348. -- Macro: MD_HANDLE_UNWABI (CONTEXT, FS)
  26349. This macro allows the target to add operating system specific code
  26350. to the call-frame unwinder to handle the IA-64 '.unwabi' unwinding
  26351. directive, usually used for signal or interrupt frames.
  26352. This macro is called from 'uw_update_context' in libgcc's
  26353. 'unwind-ia64.c'. CONTEXT is an '_Unwind_Context'; FS is an
  26354. '_Unwind_FrameState'. Examine 'fs->unwabi' for the abi and context
  26355. in the '.unwabi' directive. If the '.unwabi' directive can be
  26356. handled, the register save addresses should be updated in FS.
  26357. -- Macro: TARGET_USES_WEAK_UNWIND_INFO
  26358. A C expression that evaluates to true if the target requires unwind
  26359. info to be given comdat linkage. Define it to be '1' if comdat
  26360. linkage is necessary. The default is '0'.
  26361. 
  26362. File: gccint.info, Node: Stack Checking, Next: Frame Registers, Prev: Exception Handling, Up: Stack and Calling
  26363. 18.9.3 Specifying How Stack Checking is Done
  26364. --------------------------------------------
  26365. GCC will check that stack references are within the boundaries of the
  26366. stack, if the option '-fstack-check' is specified, in one of three ways:
  26367. 1. If the value of the 'STACK_CHECK_BUILTIN' macro is nonzero, GCC
  26368. will assume that you have arranged for full stack checking to be
  26369. done at appropriate places in the configuration files. GCC will
  26370. not do other special processing.
  26371. 2. If 'STACK_CHECK_BUILTIN' is zero and the value of the
  26372. 'STACK_CHECK_STATIC_BUILTIN' macro is nonzero, GCC will assume that
  26373. you have arranged for static stack checking (checking of the static
  26374. stack frame of functions) to be done at appropriate places in the
  26375. configuration files. GCC will only emit code to do dynamic stack
  26376. checking (checking on dynamic stack allocations) using the third
  26377. approach below.
  26378. 3. If neither of the above are true, GCC will generate code to
  26379. periodically "probe" the stack pointer using the values of the
  26380. macros defined below.
  26381. If neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is
  26382. defined, GCC will change its allocation strategy for large objects if
  26383. the option '-fstack-check' is specified: they will always be allocated
  26384. dynamically if their size exceeds 'STACK_CHECK_MAX_VAR_SIZE' bytes.
  26385. -- Macro: STACK_CHECK_BUILTIN
  26386. A nonzero value if stack checking is done by the configuration
  26387. files in a machine-dependent manner. You should define this macro
  26388. if stack checking is required by the ABI of your machine or if you
  26389. would like to do stack checking in some more efficient way than the
  26390. generic approach. The default value of this macro is zero.
  26391. -- Macro: STACK_CHECK_STATIC_BUILTIN
  26392. A nonzero value if static stack checking is done by the
  26393. configuration files in a machine-dependent manner. You should
  26394. define this macro if you would like to do static stack checking in
  26395. some more efficient way than the generic approach. The default
  26396. value of this macro is zero.
  26397. -- Macro: STACK_CHECK_PROBE_INTERVAL_EXP
  26398. An integer specifying the interval at which GCC must generate stack
  26399. probe instructions, defined as 2 raised to this integer. You will
  26400. normally define this macro so that the interval be no larger than
  26401. the size of the "guard pages" at the end of a stack area. The
  26402. default value of 12 (4096-byte interval) is suitable for most
  26403. systems.
  26404. -- Macro: STACK_CHECK_MOVING_SP
  26405. An integer which is nonzero if GCC should move the stack pointer
  26406. page by page when doing probes. This can be necessary on systems
  26407. where the stack pointer contains the bottom address of the memory
  26408. area accessible to the executing thread at any point in time. In
  26409. this situation an alternate signal stack is required in order to be
  26410. able to recover from a stack overflow. The default value of this
  26411. macro is zero.
  26412. -- Macro: STACK_CHECK_PROTECT
  26413. The number of bytes of stack needed to recover from a stack
  26414. overflow, for languages where such a recovery is supported. The
  26415. default value of 4KB/8KB with the 'setjmp'/'longjmp'-based
  26416. exception handling mechanism and 8KB/12KB with other exception
  26417. handling mechanisms should be adequate for most architectures and
  26418. operating systems.
  26419. The following macros are relevant only if neither STACK_CHECK_BUILTIN
  26420. nor STACK_CHECK_STATIC_BUILTIN is defined; you can omit them altogether
  26421. in the opposite case.
  26422. -- Macro: STACK_CHECK_MAX_FRAME_SIZE
  26423. The maximum size of a stack frame, in bytes. GCC will generate
  26424. probe instructions in non-leaf functions to ensure at least this
  26425. many bytes of stack are available. If a stack frame is larger than
  26426. this size, stack checking will not be reliable and GCC will issue a
  26427. warning. The default is chosen so that GCC only generates one
  26428. instruction on most systems. You should normally not change the
  26429. default value of this macro.
  26430. -- Macro: STACK_CHECK_FIXED_FRAME_SIZE
  26431. GCC uses this value to generate the above warning message. It
  26432. represents the amount of fixed frame used by a function, not
  26433. including space for any callee-saved registers, temporaries and
  26434. user variables. You need only specify an upper bound for this
  26435. amount and will normally use the default of four words.
  26436. -- Macro: STACK_CHECK_MAX_VAR_SIZE
  26437. The maximum size, in bytes, of an object that GCC will place in the
  26438. fixed area of the stack frame when the user specifies
  26439. '-fstack-check'. GCC computed the default from the values of the
  26440. above macros and you will normally not need to override that
  26441. default.
  26442. -- Target Hook: bool TARGET_STACK_CLASH_PROTECTION_FINAL_DYNAMIC_PROBE
  26443. (rtx RESIDUAL)
  26444. Some targets make optimistic assumptions about the state of stack
  26445. probing when they emit their prologues. On such targets a probe
  26446. into the end of any dynamically allocated space is likely required
  26447. for safety against stack clash style attacks. Define this variable
  26448. to return nonzero if such a probe is required or zero otherwise.
  26449. You need not define this macro if it would always have the value
  26450. zero.
  26451. 
  26452. File: gccint.info, Node: Frame Registers, Next: Elimination, Prev: Stack Checking, Up: Stack and Calling
  26453. 18.9.4 Registers That Address the Stack Frame
  26454. ---------------------------------------------
  26455. This discusses registers that address the stack frame.
  26456. -- Macro: STACK_POINTER_REGNUM
  26457. The register number of the stack pointer register, which must also
  26458. be a fixed register according to 'FIXED_REGISTERS'. On most
  26459. machines, the hardware determines which register this is.
  26460. -- Macro: FRAME_POINTER_REGNUM
  26461. The register number of the frame pointer register, which is used to
  26462. access automatic variables in the stack frame. On some machines,
  26463. the hardware determines which register this is. On other machines,
  26464. you can choose any register you wish for this purpose.
  26465. -- Macro: HARD_FRAME_POINTER_REGNUM
  26466. On some machines the offset between the frame pointer and starting
  26467. offset of the automatic variables is not known until after register
  26468. allocation has been done (for example, because the saved registers
  26469. are between these two locations). On those machines, define
  26470. 'FRAME_POINTER_REGNUM' the number of a special, fixed register to
  26471. be used internally until the offset is known, and define
  26472. 'HARD_FRAME_POINTER_REGNUM' to be the actual hard register number
  26473. used for the frame pointer.
  26474. You should define this macro only in the very rare circumstances
  26475. when it is not possible to calculate the offset between the frame
  26476. pointer and the automatic variables until after register allocation
  26477. has been completed. When this macro is defined, you must also
  26478. indicate in your definition of 'ELIMINABLE_REGS' how to eliminate
  26479. 'FRAME_POINTER_REGNUM' into either 'HARD_FRAME_POINTER_REGNUM' or
  26480. 'STACK_POINTER_REGNUM'.
  26481. Do not define this macro if it would be the same as
  26482. 'FRAME_POINTER_REGNUM'.
  26483. -- Macro: ARG_POINTER_REGNUM
  26484. The register number of the arg pointer register, which is used to
  26485. access the function's argument list. On some machines, this is the
  26486. same as the frame pointer register. On some machines, the hardware
  26487. determines which register this is. On other machines, you can
  26488. choose any register you wish for this purpose. If this is not the
  26489. same register as the frame pointer register, then you must mark it
  26490. as a fixed register according to 'FIXED_REGISTERS', or arrange to
  26491. be able to eliminate it (*note Elimination::).
  26492. -- Macro: HARD_FRAME_POINTER_IS_FRAME_POINTER
  26493. Define this to a preprocessor constant that is nonzero if
  26494. 'hard_frame_pointer_rtx' and 'frame_pointer_rtx' should be the
  26495. same. The default definition is '(HARD_FRAME_POINTER_REGNUM ==
  26496. FRAME_POINTER_REGNUM)'; you only need to define this macro if that
  26497. definition is not suitable for use in preprocessor conditionals.
  26498. -- Macro: HARD_FRAME_POINTER_IS_ARG_POINTER
  26499. Define this to a preprocessor constant that is nonzero if
  26500. 'hard_frame_pointer_rtx' and 'arg_pointer_rtx' should be the same.
  26501. The default definition is '(HARD_FRAME_POINTER_REGNUM ==
  26502. ARG_POINTER_REGNUM)'; you only need to define this macro if that
  26503. definition is not suitable for use in preprocessor conditionals.
  26504. -- Macro: RETURN_ADDRESS_POINTER_REGNUM
  26505. The register number of the return address pointer register, which
  26506. is used to access the current function's return address from the
  26507. stack. On some machines, the return address is not at a fixed
  26508. offset from the frame pointer or stack pointer or argument pointer.
  26509. This register can be defined to point to the return address on the
  26510. stack, and then be converted by 'ELIMINABLE_REGS' into either the
  26511. frame pointer or stack pointer.
  26512. Do not define this macro unless there is no other way to get the
  26513. return address from the stack.
  26514. -- Macro: STATIC_CHAIN_REGNUM
  26515. -- Macro: STATIC_CHAIN_INCOMING_REGNUM
  26516. Register numbers used for passing a function's static chain
  26517. pointer. If register windows are used, the register number as seen
  26518. by the called function is 'STATIC_CHAIN_INCOMING_REGNUM', while the
  26519. register number as seen by the calling function is
  26520. 'STATIC_CHAIN_REGNUM'. If these registers are the same,
  26521. 'STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
  26522. The static chain register need not be a fixed register.
  26523. If the static chain is passed in memory, these macros should not be
  26524. defined; instead, the 'TARGET_STATIC_CHAIN' hook should be used.
  26525. -- Target Hook: rtx TARGET_STATIC_CHAIN (const_tree FNDECL_OR_TYPE,
  26526. bool INCOMING_P)
  26527. This hook replaces the use of 'STATIC_CHAIN_REGNUM' et al for
  26528. targets that may use different static chain locations for different
  26529. nested functions. This may be required if the target has function
  26530. attributes that affect the calling conventions of the function and
  26531. those calling conventions use different static chain locations.
  26532. The default version of this hook uses 'STATIC_CHAIN_REGNUM' et al.
  26533. If the static chain is passed in memory, this hook should be used
  26534. to provide rtx giving 'mem' expressions that denote where they are
  26535. stored. Often the 'mem' expression as seen by the caller will be
  26536. at an offset from the stack pointer and the 'mem' expression as
  26537. seen by the callee will be at an offset from the frame pointer.
  26538. The variables 'stack_pointer_rtx', 'frame_pointer_rtx', and
  26539. 'arg_pointer_rtx' will have been initialized and should be used to
  26540. refer to those items.
  26541. -- Macro: DWARF_FRAME_REGISTERS
  26542. This macro specifies the maximum number of hard registers that can
  26543. be saved in a call frame. This is used to size data structures
  26544. used in DWARF2 exception handling.
  26545. Prior to GCC 3.0, this macro was needed in order to establish a
  26546. stable exception handling ABI in the face of adding new hard
  26547. registers for ISA extensions. In GCC 3.0 and later, the EH ABI is
  26548. insulated from changes in the number of hard registers.
  26549. Nevertheless, this macro can still be used to reduce the runtime
  26550. memory requirements of the exception handling routines, which can
  26551. be substantial if the ISA contains a lot of registers that are not
  26552. call-saved.
  26553. If this macro is not defined, it defaults to
  26554. 'FIRST_PSEUDO_REGISTER'.
  26555. -- Macro: PRE_GCC3_DWARF_FRAME_REGISTERS
  26556. This macro is similar to 'DWARF_FRAME_REGISTERS', but is provided
  26557. for backward compatibility in pre GCC 3.0 compiled code.
  26558. If this macro is not defined, it defaults to
  26559. 'DWARF_FRAME_REGISTERS'.
  26560. -- Macro: DWARF_REG_TO_UNWIND_COLUMN (REGNO)
  26561. Define this macro if the target's representation for dwarf
  26562. registers is different than the internal representation for unwind
  26563. column. Given a dwarf register, this macro should return the
  26564. internal unwind column number to use instead.
  26565. -- Macro: DWARF_FRAME_REGNUM (REGNO)
  26566. Define this macro if the target's representation for dwarf
  26567. registers used in .eh_frame or .debug_frame is different from that
  26568. used in other debug info sections. Given a GCC hard register
  26569. number, this macro should return the .eh_frame register number.
  26570. The default is 'DBX_REGISTER_NUMBER (REGNO)'.
  26571. -- Macro: DWARF2_FRAME_REG_OUT (REGNO, FOR_EH)
  26572. Define this macro to map register numbers held in the call frame
  26573. info that GCC has collected using 'DWARF_FRAME_REGNUM' to those
  26574. that should be output in .debug_frame ('FOR_EH' is zero) and
  26575. .eh_frame ('FOR_EH' is nonzero). The default is to return 'REGNO'.
  26576. -- Macro: REG_VALUE_IN_UNWIND_CONTEXT
  26577. Define this macro if the target stores register values as
  26578. '_Unwind_Word' type in unwind context. It should be defined if
  26579. target register size is larger than the size of 'void *'. The
  26580. default is to store register values as 'void *' type.
  26581. -- Macro: ASSUME_EXTENDED_UNWIND_CONTEXT
  26582. Define this macro to be 1 if the target always uses extended unwind
  26583. context with version, args_size and by_value fields. If it is
  26584. undefined, it will be defined to 1 when
  26585. 'REG_VALUE_IN_UNWIND_CONTEXT' is defined and 0 otherwise.
  26586. -- Macro: DWARF_LAZY_REGISTER_VALUE (REGNO, VALUE)
  26587. Define this macro if the target has pseudo DWARF registers whose
  26588. values need to be computed lazily on demand by the unwinder (such
  26589. as when referenced in a CFA expression). The macro returns true if
  26590. REGNO is such a register and stores its value in '*VALUE' if so.
  26591. 
  26592. File: gccint.info, Node: Elimination, Next: Stack Arguments, Prev: Frame Registers, Up: Stack and Calling
  26593. 18.9.5 Eliminating Frame Pointer and Arg Pointer
  26594. ------------------------------------------------
  26595. This is about eliminating the frame pointer and arg pointer.
  26596. -- Target Hook: bool TARGET_FRAME_POINTER_REQUIRED (void)
  26597. This target hook should return 'true' if a function must have and
  26598. use a frame pointer. This target hook is called in the reload
  26599. pass. If its return value is 'true' the function will have a frame
  26600. pointer.
  26601. This target hook can in principle examine the current function and
  26602. decide according to the facts, but on most machines the constant
  26603. 'false' or the constant 'true' suffices. Use 'false' when the
  26604. machine allows code to be generated with no frame pointer, and
  26605. doing so saves some time or space. Use 'true' when there is no
  26606. possible advantage to avoiding a frame pointer.
  26607. In certain cases, the compiler does not know how to produce valid
  26608. code without a frame pointer. The compiler recognizes those cases
  26609. and automatically gives the function a frame pointer regardless of
  26610. what 'targetm.frame_pointer_required' returns. You don't need to
  26611. worry about them.
  26612. In a function that does not require a frame pointer, the frame
  26613. pointer register can be allocated for ordinary usage, unless you
  26614. mark it as a fixed register. See 'FIXED_REGISTERS' for more
  26615. information.
  26616. Default return value is 'false'.
  26617. -- Macro: ELIMINABLE_REGS
  26618. This macro specifies a table of register pairs used to eliminate
  26619. unneeded registers that point into the stack frame.
  26620. The definition of this macro is a list of structure
  26621. initializations, each of which specifies an original and
  26622. replacement register.
  26623. On some machines, the position of the argument pointer is not known
  26624. until the compilation is completed. In such a case, a separate
  26625. hard register must be used for the argument pointer. This register
  26626. can be eliminated by replacing it with either the frame pointer or
  26627. the argument pointer, depending on whether or not the frame pointer
  26628. has been eliminated.
  26629. In this case, you might specify:
  26630. #define ELIMINABLE_REGS \
  26631. {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
  26632. {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
  26633. {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
  26634. Note that the elimination of the argument pointer with the stack
  26635. pointer is specified first since that is the preferred elimination.
  26636. -- Target Hook: bool TARGET_CAN_ELIMINATE (const int FROM_REG, const
  26637. int TO_REG)
  26638. This target hook should return 'true' if the compiler is allowed to
  26639. try to replace register number FROM_REG with register number
  26640. TO_REG. This target hook will usually be 'true', since most of the
  26641. cases preventing register elimination are things that the compiler
  26642. already knows about.
  26643. Default return value is 'true'.
  26644. -- Macro: INITIAL_ELIMINATION_OFFSET (FROM-REG, TO-REG, OFFSET-VAR)
  26645. This macro returns the initial difference between the specified
  26646. pair of registers. The value would be computed from information
  26647. such as the result of 'get_frame_size ()' and the tables of
  26648. registers 'df_regs_ever_live_p' and 'call_used_regs'.
  26649. -- Target Hook: void TARGET_COMPUTE_FRAME_LAYOUT (void)
  26650. This target hook is called once each time the frame layout needs to
  26651. be recalculated. The calculations can be cached by the target and
  26652. can then be used by 'INITIAL_ELIMINATION_OFFSET' instead of
  26653. re-computing the layout on every invocation of that hook. This is
  26654. particularly useful for targets that have an expensive frame layout
  26655. function. Implementing this callback is optional.
  26656. 
  26657. File: gccint.info, Node: Stack Arguments, Next: Register Arguments, Prev: Elimination, Up: Stack and Calling
  26658. 18.9.6 Passing Function Arguments on the Stack
  26659. ----------------------------------------------
  26660. The macros in this section control how arguments are passed on the
  26661. stack. See the following section for other macros that control passing
  26662. certain arguments in registers.
  26663. -- Target Hook: bool TARGET_PROMOTE_PROTOTYPES (const_tree FNTYPE)
  26664. This target hook returns 'true' if an argument declared in a
  26665. prototype as an integral type smaller than 'int' should actually be
  26666. passed as an 'int'. In addition to avoiding errors in certain
  26667. cases of mismatch, it also makes for better code on certain
  26668. machines. The default is to not promote prototypes.
  26669. -- Macro: PUSH_ARGS
  26670. A C expression. If nonzero, push insns will be used to pass
  26671. outgoing arguments. If the target machine does not have a push
  26672. instruction, set it to zero. That directs GCC to use an alternate
  26673. strategy: to allocate the entire argument block and then store the
  26674. arguments into it. When 'PUSH_ARGS' is nonzero, 'PUSH_ROUNDING'
  26675. must be defined too.
  26676. -- Macro: PUSH_ARGS_REVERSED
  26677. A C expression. If nonzero, function arguments will be evaluated
  26678. from last to first, rather than from first to last. If this macro
  26679. is not defined, it defaults to 'PUSH_ARGS' on targets where the
  26680. stack and args grow in opposite directions, and 0 otherwise.
  26681. -- Macro: PUSH_ROUNDING (NPUSHED)
  26682. A C expression that is the number of bytes actually pushed onto the
  26683. stack when an instruction attempts to push NPUSHED bytes.
  26684. On some machines, the definition
  26685. #define PUSH_ROUNDING(BYTES) (BYTES)
  26686. will suffice. But on other machines, instructions that appear to
  26687. push one byte actually push two bytes in an attempt to maintain
  26688. alignment. Then the definition should be
  26689. #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
  26690. If the value of this macro has a type, it should be an unsigned
  26691. type.
  26692. -- Macro: ACCUMULATE_OUTGOING_ARGS
  26693. A C expression. If nonzero, the maximum amount of space required
  26694. for outgoing arguments will be computed and placed into
  26695. 'crtl->outgoing_args_size'. No space will be pushed onto the stack
  26696. for each call; instead, the function prologue should increase the
  26697. stack frame size by this amount.
  26698. Setting both 'PUSH_ARGS' and 'ACCUMULATE_OUTGOING_ARGS' is not
  26699. proper.
  26700. -- Macro: REG_PARM_STACK_SPACE (FNDECL)
  26701. Define this macro if functions should assume that stack space has
  26702. been allocated for arguments even when their values are passed in
  26703. registers.
  26704. The value of this macro is the size, in bytes, of the area reserved
  26705. for arguments passed in registers for the function represented by
  26706. FNDECL, which can be zero if GCC is calling a library function.
  26707. The argument FNDECL can be the FUNCTION_DECL, or the type itself of
  26708. the function.
  26709. This space can be allocated by the caller, or be a part of the
  26710. machine-dependent stack frame: 'OUTGOING_REG_PARM_STACK_SPACE' says
  26711. which.
  26712. -- Macro: INCOMING_REG_PARM_STACK_SPACE (FNDECL)
  26713. Like 'REG_PARM_STACK_SPACE', but for incoming register arguments.
  26714. Define this macro if space guaranteed when compiling a function
  26715. body is different to space required when making a call, a situation
  26716. that can arise with K&R style function definitions.
  26717. -- Macro: OUTGOING_REG_PARM_STACK_SPACE (FNTYPE)
  26718. Define this to a nonzero value if it is the responsibility of the
  26719. caller to allocate the area reserved for arguments passed in
  26720. registers when calling a function of FNTYPE. FNTYPE may be NULL if
  26721. the function called is a library function.
  26722. If 'ACCUMULATE_OUTGOING_ARGS' is defined, this macro controls
  26723. whether the space for these arguments counts in the value of
  26724. 'crtl->outgoing_args_size'.
  26725. -- Macro: STACK_PARMS_IN_REG_PARM_AREA
  26726. Define this macro if 'REG_PARM_STACK_SPACE' is defined, but the
  26727. stack parameters don't skip the area specified by it.
  26728. Normally, when a parameter is not passed in registers, it is placed
  26729. on the stack beyond the 'REG_PARM_STACK_SPACE' area. Defining this
  26730. macro suppresses this behavior and causes the parameter to be
  26731. passed on the stack in its natural location.
  26732. -- Target Hook: poly_int64 TARGET_RETURN_POPS_ARGS (tree FUNDECL, tree
  26733. FUNTYPE, poly_int64 SIZE)
  26734. This target hook returns the number of bytes of its own arguments
  26735. that a function pops on returning, or 0 if the function pops no
  26736. arguments and the caller must therefore pop them all after the
  26737. function returns.
  26738. FUNDECL is a C variable whose value is a tree node that describes
  26739. the function in question. Normally it is a node of type
  26740. 'FUNCTION_DECL' that describes the declaration of the function.
  26741. From this you can obtain the 'DECL_ATTRIBUTES' of the function.
  26742. FUNTYPE is a C variable whose value is a tree node that describes
  26743. the function in question. Normally it is a node of type
  26744. 'FUNCTION_TYPE' that describes the data type of the function. From
  26745. this it is possible to obtain the data types of the value and
  26746. arguments (if known).
  26747. When a call to a library function is being considered, FUNDECL will
  26748. contain an identifier node for the library function. Thus, if you
  26749. need to distinguish among various library functions, you can do so
  26750. by their names. Note that "library function" in this context means
  26751. a function used to perform arithmetic, whose name is known
  26752. specially in the compiler and was not mentioned in the C code being
  26753. compiled.
  26754. SIZE is the number of bytes of arguments passed on the stack. If a
  26755. variable number of bytes is passed, it is zero, and argument
  26756. popping will always be the responsibility of the calling function.
  26757. On the VAX, all functions always pop their arguments, so the
  26758. definition of this macro is SIZE. On the 68000, using the standard
  26759. calling convention, no functions pop their arguments, so the value
  26760. of the macro is always 0 in this case. But an alternative calling
  26761. convention is available in which functions that take a fixed number
  26762. of arguments pop them but other functions (such as 'printf') pop
  26763. nothing (the caller pops all). When this convention is in use,
  26764. FUNTYPE is examined to determine whether a function takes a fixed
  26765. number of arguments.
  26766. -- Macro: CALL_POPS_ARGS (CUM)
  26767. A C expression that should indicate the number of bytes a call
  26768. sequence pops off the stack. It is added to the value of
  26769. 'RETURN_POPS_ARGS' when compiling a function call.
  26770. CUM is the variable in which all arguments to the called function
  26771. have been accumulated.
  26772. On certain architectures, such as the SH5, a call trampoline is
  26773. used that pops certain registers off the stack, depending on the
  26774. arguments that have been passed to the function. Since this is a
  26775. property of the call site, not of the called function,
  26776. 'RETURN_POPS_ARGS' is not appropriate.
  26777. 
  26778. File: gccint.info, Node: Register Arguments, Next: Scalar Return, Prev: Stack Arguments, Up: Stack and Calling
  26779. 18.9.7 Passing Arguments in Registers
  26780. -------------------------------------
  26781. This section describes the macros which let you control how various
  26782. types of arguments are passed in registers or how they are arranged in
  26783. the stack.
  26784. -- Target Hook: rtx TARGET_FUNCTION_ARG (cumulative_args_t CA,
  26785. machine_mode MODE, const_tree TYPE, bool NAMED)
  26786. Return an RTX indicating whether a function argument is passed in a
  26787. register and if so, which register.
  26788. The arguments are CA, which summarizes all the previous arguments;
  26789. MODE, the machine mode of the argument; TYPE, the data type of the
  26790. argument as a tree node or 0 if that is not known (which happens
  26791. for C support library functions); and NAMED, which is 'true' for an
  26792. ordinary argument and 'false' for nameless arguments that
  26793. correspond to '...' in the called function's prototype. TYPE can
  26794. be an incomplete type if a syntax error has previously occurred.
  26795. The return value is usually either a 'reg' RTX for the hard
  26796. register in which to pass the argument, or zero to pass the
  26797. argument on the stack.
  26798. The return value can be a 'const_int' which means argument is
  26799. passed in a target specific slot with specified number. Target
  26800. hooks should be used to store or load argument in such case. See
  26801. 'TARGET_STORE_BOUNDS_FOR_ARG' and 'TARGET_LOAD_BOUNDS_FOR_ARG' for
  26802. more information.
  26803. The value of the expression can also be a 'parallel' RTX. This is
  26804. used when an argument is passed in multiple locations. The mode of
  26805. the 'parallel' should be the mode of the entire argument. The
  26806. 'parallel' holds any number of 'expr_list' pairs; each one
  26807. describes where part of the argument is passed. In each
  26808. 'expr_list' the first operand must be a 'reg' RTX for the hard
  26809. register in which to pass this part of the argument, and the mode
  26810. of the register RTX indicates how large this part of the argument
  26811. is. The second operand of the 'expr_list' is a 'const_int' which
  26812. gives the offset in bytes into the entire argument of where this
  26813. part starts. As a special exception the first 'expr_list' in the
  26814. 'parallel' RTX may have a first operand of zero. This indicates
  26815. that the entire argument is also stored on the stack.
  26816. The last time this hook is called, it is called with 'MODE ==
  26817. VOIDmode', and its result is passed to the 'call' or 'call_value'
  26818. pattern as operands 2 and 3 respectively.
  26819. The usual way to make the ISO library 'stdarg.h' work on a machine
  26820. where some arguments are usually passed in registers, is to cause
  26821. nameless arguments to be passed on the stack instead. This is done
  26822. by making 'TARGET_FUNCTION_ARG' return 0 whenever NAMED is 'false'.
  26823. You may use the hook 'targetm.calls.must_pass_in_stack' in the
  26824. definition of this macro to determine if this argument is of a type
  26825. that must be passed in the stack. If 'REG_PARM_STACK_SPACE' is not
  26826. defined and 'TARGET_FUNCTION_ARG' returns nonzero for such an
  26827. argument, the compiler will abort. If 'REG_PARM_STACK_SPACE' is
  26828. defined, the argument will be computed in the stack and then loaded
  26829. into a register.
  26830. -- Target Hook: bool TARGET_MUST_PASS_IN_STACK (machine_mode MODE,
  26831. const_tree TYPE)
  26832. This target hook should return 'true' if we should not pass TYPE
  26833. solely in registers. The file 'expr.h' defines a definition that
  26834. is usually appropriate, refer to 'expr.h' for additional
  26835. documentation.
  26836. -- Target Hook: rtx TARGET_FUNCTION_INCOMING_ARG (cumulative_args_t CA,
  26837. machine_mode MODE, const_tree TYPE, bool NAMED)
  26838. Define this hook if the caller and callee on the target have
  26839. different views of where arguments are passed. Also define this
  26840. hook if there are functions that are never directly called, but are
  26841. invoked by the hardware and which have nonstandard calling
  26842. conventions.
  26843. In this case 'TARGET_FUNCTION_ARG' computes the register in which
  26844. the caller passes the value, and 'TARGET_FUNCTION_INCOMING_ARG'
  26845. should be defined in a similar fashion to tell the function being
  26846. called where the arguments will arrive.
  26847. 'TARGET_FUNCTION_INCOMING_ARG' can also return arbitrary address
  26848. computation using hard register, which can be forced into a
  26849. register, so that it can be used to pass special arguments.
  26850. If 'TARGET_FUNCTION_INCOMING_ARG' is not defined,
  26851. 'TARGET_FUNCTION_ARG' serves both purposes.
  26852. -- Target Hook: bool TARGET_USE_PSEUDO_PIC_REG (void)
  26853. This hook should return 1 in case pseudo register should be created
  26854. for pic_offset_table_rtx during function expand.
  26855. -- Target Hook: void TARGET_INIT_PIC_REG (void)
  26856. Perform a target dependent initialization of pic_offset_table_rtx.
  26857. This hook is called at the start of register allocation.
  26858. -- Target Hook: int TARGET_ARG_PARTIAL_BYTES (cumulative_args_t CUM,
  26859. machine_mode MODE, tree TYPE, bool NAMED)
  26860. This target hook returns the number of bytes at the beginning of an
  26861. argument that must be put in registers. The value must be zero for
  26862. arguments that are passed entirely in registers or that are
  26863. entirely pushed on the stack.
  26864. On some machines, certain arguments must be passed partially in
  26865. registers and partially in memory. On these machines, typically
  26866. the first few words of arguments are passed in registers, and the
  26867. rest on the stack. If a multi-word argument (a 'double' or a
  26868. structure) crosses that boundary, its first few words must be
  26869. passed in registers and the rest must be pushed. This macro tells
  26870. the compiler when this occurs, and how many bytes should go in
  26871. registers.
  26872. 'TARGET_FUNCTION_ARG' for these arguments should return the first
  26873. register to be used by the caller for this argument; likewise
  26874. 'TARGET_FUNCTION_INCOMING_ARG', for the called function.
  26875. -- Target Hook: bool TARGET_PASS_BY_REFERENCE (cumulative_args_t CUM,
  26876. machine_mode MODE, const_tree TYPE, bool NAMED)
  26877. This target hook should return 'true' if an argument at the
  26878. position indicated by CUM should be passed by reference. This
  26879. predicate is queried after target independent reasons for being
  26880. passed by reference, such as 'TREE_ADDRESSABLE (type)'.
  26881. If the hook returns true, a copy of that argument is made in memory
  26882. and a pointer to the argument is passed instead of the argument
  26883. itself. The pointer is passed in whatever way is appropriate for
  26884. passing a pointer to that type.
  26885. -- Target Hook: bool TARGET_CALLEE_COPIES (cumulative_args_t CUM,
  26886. machine_mode MODE, const_tree TYPE, bool NAMED)
  26887. The function argument described by the parameters to this hook is
  26888. known to be passed by reference. The hook should return true if
  26889. the function argument should be copied by the callee instead of
  26890. copied by the caller.
  26891. For any argument for which the hook returns true, if it can be
  26892. determined that the argument is not modified, then a copy need not
  26893. be generated.
  26894. The default version of this hook always returns false.
  26895. -- Macro: CUMULATIVE_ARGS
  26896. A C type for declaring a variable that is used as the first
  26897. argument of 'TARGET_FUNCTION_ARG' and other related values. For
  26898. some target machines, the type 'int' suffices and can hold the
  26899. number of bytes of argument so far.
  26900. There is no need to record in 'CUMULATIVE_ARGS' anything about the
  26901. arguments that have been passed on the stack. The compiler has
  26902. other variables to keep track of that. For target machines on
  26903. which all arguments are passed on the stack, there is no need to
  26904. store anything in 'CUMULATIVE_ARGS'; however, the data structure
  26905. must exist and should not be empty, so use 'int'.
  26906. -- Macro: OVERRIDE_ABI_FORMAT (FNDECL)
  26907. If defined, this macro is called before generating any code for a
  26908. function, but after the CFUN descriptor for the function has been
  26909. created. The back end may use this macro to update CFUN to reflect
  26910. an ABI other than that which would normally be used by default. If
  26911. the compiler is generating code for a compiler-generated function,
  26912. FNDECL may be 'NULL'.
  26913. -- Macro: INIT_CUMULATIVE_ARGS (CUM, FNTYPE, LIBNAME, FNDECL,
  26914. N_NAMED_ARGS)
  26915. A C statement (sans semicolon) for initializing the variable CUM
  26916. for the state at the beginning of the argument list. The variable
  26917. has type 'CUMULATIVE_ARGS'. The value of FNTYPE is the tree node
  26918. for the data type of the function which will receive the args, or 0
  26919. if the args are to a compiler support library function. For direct
  26920. calls that are not libcalls, FNDECL contain the declaration node of
  26921. the function. FNDECL is also set when 'INIT_CUMULATIVE_ARGS' is
  26922. used to find arguments for the function being compiled.
  26923. N_NAMED_ARGS is set to the number of named arguments, including a
  26924. structure return address if it is passed as a parameter, when
  26925. making a call. When processing incoming arguments, N_NAMED_ARGS is
  26926. set to -1.
  26927. When processing a call to a compiler support library function,
  26928. LIBNAME identifies which one. It is a 'symbol_ref' rtx which
  26929. contains the name of the function, as a string. LIBNAME is 0 when
  26930. an ordinary C function call is being processed. Thus, each time
  26931. this macro is called, either LIBNAME or FNTYPE is nonzero, but
  26932. never both of them at once.
  26933. -- Macro: INIT_CUMULATIVE_LIBCALL_ARGS (CUM, MODE, LIBNAME)
  26934. Like 'INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls, it
  26935. gets a 'MODE' argument instead of FNTYPE, that would be 'NULL'.
  26936. INDIRECT would always be zero, too. If this macro is not defined,
  26937. 'INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, 0)' is used instead.
  26938. -- Macro: INIT_CUMULATIVE_INCOMING_ARGS (CUM, FNTYPE, LIBNAME)
  26939. Like 'INIT_CUMULATIVE_ARGS' but overrides it for the purposes of
  26940. finding the arguments for the function being compiled. If this
  26941. macro is undefined, 'INIT_CUMULATIVE_ARGS' is used instead.
  26942. The value passed for LIBNAME is always 0, since library routines
  26943. with special calling conventions are never compiled with GCC. The
  26944. argument LIBNAME exists for symmetry with 'INIT_CUMULATIVE_ARGS'.
  26945. -- Target Hook: void TARGET_FUNCTION_ARG_ADVANCE (cumulative_args_t CA,
  26946. machine_mode MODE, const_tree TYPE, bool NAMED)
  26947. This hook updates the summarizer variable pointed to by CA to
  26948. advance past an argument in the argument list. The values MODE,
  26949. TYPE and NAMED describe that argument. Once this is done, the
  26950. variable CUM is suitable for analyzing the _following_ argument
  26951. with 'TARGET_FUNCTION_ARG', etc.
  26952. This hook need not do anything if the argument in question was
  26953. passed on the stack. The compiler knows how to track the amount of
  26954. stack space used for arguments without any special help.
  26955. -- Target Hook: HOST_WIDE_INT TARGET_FUNCTION_ARG_OFFSET (machine_mode
  26956. MODE, const_tree TYPE)
  26957. This hook returns the number of bytes to add to the offset of an
  26958. argument of type TYPE and mode MODE when passed in memory. This is
  26959. needed for the SPU, which passes 'char' and 'short' arguments in
  26960. the preferred slot that is in the middle of the quad word instead
  26961. of starting at the top. The default implementation returns 0.
  26962. -- Target Hook: pad_direction TARGET_FUNCTION_ARG_PADDING (machine_mode
  26963. MODE, const_tree TYPE)
  26964. This hook determines whether, and in which direction, to pad out an
  26965. argument of mode MODE and type TYPE. It returns 'PAD_UPWARD' to
  26966. insert padding above the argument, 'PAD_DOWNWARD' to insert padding
  26967. below the argument, or 'PAD_NONE' to inhibit padding.
  26968. The _amount_ of padding is not controlled by this hook, but by
  26969. 'TARGET_FUNCTION_ARG_ROUND_BOUNDARY'. It is always just enough to
  26970. reach the next multiple of that boundary.
  26971. This hook has a default definition that is right for most systems.
  26972. For little-endian machines, the default is to pad upward. For
  26973. big-endian machines, the default is to pad downward for an argument
  26974. of constant size shorter than an 'int', and upward otherwise.
  26975. -- Macro: PAD_VARARGS_DOWN
  26976. If defined, a C expression which determines whether the default
  26977. implementation of va_arg will attempt to pad down before reading
  26978. the next argument, if that argument is smaller than its aligned
  26979. space as controlled by 'PARM_BOUNDARY'. If this macro is not
  26980. defined, all such arguments are padded down if 'BYTES_BIG_ENDIAN'
  26981. is true.
  26982. -- Macro: BLOCK_REG_PADDING (MODE, TYPE, FIRST)
  26983. Specify padding for the last element of a block move between
  26984. registers and memory. FIRST is nonzero if this is the only
  26985. element. Defining this macro allows better control of register
  26986. function parameters on big-endian machines, without using
  26987. 'PARALLEL' rtl. In particular, 'MUST_PASS_IN_STACK' need not test
  26988. padding and mode of types in registers, as there is no longer a
  26989. "wrong" part of a register; For example, a three byte aggregate may
  26990. be passed in the high part of a register if so required.
  26991. -- Target Hook: unsigned int TARGET_FUNCTION_ARG_BOUNDARY (machine_mode
  26992. MODE, const_tree TYPE)
  26993. This hook returns the alignment boundary, in bits, of an argument
  26994. with the specified mode and type. The default hook returns
  26995. 'PARM_BOUNDARY' for all arguments.
  26996. -- Target Hook: unsigned int TARGET_FUNCTION_ARG_ROUND_BOUNDARY
  26997. (machine_mode MODE, const_tree TYPE)
  26998. Normally, the size of an argument is rounded up to 'PARM_BOUNDARY',
  26999. which is the default value for this hook. You can define this hook
  27000. to return a different value if an argument size must be rounded to
  27001. a larger value.
  27002. -- Macro: FUNCTION_ARG_REGNO_P (REGNO)
  27003. A C expression that is nonzero if REGNO is the number of a hard
  27004. register in which function arguments are sometimes passed. This
  27005. does _not_ include implicit arguments such as the static chain and
  27006. the structure-value address. On many machines, no registers can be
  27007. used for this purpose since all function arguments are pushed on
  27008. the stack.
  27009. -- Target Hook: bool TARGET_SPLIT_COMPLEX_ARG (const_tree TYPE)
  27010. This hook should return true if parameter of type TYPE are passed
  27011. as two scalar parameters. By default, GCC will attempt to pack
  27012. complex arguments into the target's word size. Some ABIs require
  27013. complex arguments to be split and treated as their individual
  27014. components. For example, on AIX64, complex floats should be passed
  27015. in a pair of floating point registers, even though a complex float
  27016. would fit in one 64-bit floating point register.
  27017. The default value of this hook is 'NULL', which is treated as
  27018. always false.
  27019. -- Target Hook: tree TARGET_BUILD_BUILTIN_VA_LIST (void)
  27020. This hook returns a type node for 'va_list' for the target. The
  27021. default version of the hook returns 'void*'.
  27022. -- Target Hook: int TARGET_ENUM_VA_LIST_P (int IDX, const char **PNAME,
  27023. tree *PTREE)
  27024. This target hook is used in function 'c_common_nodes_and_builtins'
  27025. to iterate through the target specific builtin types for va_list.
  27026. The variable IDX is used as iterator. PNAME has to be a pointer to
  27027. a 'const char *' and PTREE a pointer to a 'tree' typed variable.
  27028. The arguments PNAME and PTREE are used to store the result of this
  27029. macro and are set to the name of the va_list builtin type and its
  27030. internal type. If the return value of this macro is zero, then
  27031. there is no more element. Otherwise the IDX should be increased
  27032. for the next call of this macro to iterate through all types.
  27033. -- Target Hook: tree TARGET_FN_ABI_VA_LIST (tree FNDECL)
  27034. This hook returns the va_list type of the calling convention
  27035. specified by FNDECL. The default version of this hook returns
  27036. 'va_list_type_node'.
  27037. -- Target Hook: tree TARGET_CANONICAL_VA_LIST_TYPE (tree TYPE)
  27038. This hook returns the va_list type of the calling convention
  27039. specified by the type of TYPE. If TYPE is not a valid va_list
  27040. type, it returns 'NULL_TREE'.
  27041. -- Target Hook: tree TARGET_GIMPLIFY_VA_ARG_EXPR (tree VALIST, tree
  27042. TYPE, gimple_seq *PRE_P, gimple_seq *POST_P)
  27043. This hook performs target-specific gimplification of 'VA_ARG_EXPR'.
  27044. The first two parameters correspond to the arguments to 'va_arg';
  27045. the latter two are as in 'gimplify.c:gimplify_expr'.
  27046. -- Target Hook: bool TARGET_VALID_POINTER_MODE (scalar_int_mode MODE)
  27047. Define this to return nonzero if the port can handle pointers with
  27048. machine mode MODE. The default version of this hook returns true
  27049. for both 'ptr_mode' and 'Pmode'.
  27050. -- Target Hook: bool TARGET_REF_MAY_ALIAS_ERRNO (struct ao_ref *REF)
  27051. Define this to return nonzero if the memory reference REF may alias
  27052. with the system C library errno location. The default version of
  27053. this hook assumes the system C library errno location is either a
  27054. declaration of type int or accessed by dereferencing a pointer to
  27055. int.
  27056. -- Target Hook: bool TARGET_SCALAR_MODE_SUPPORTED_P (scalar_mode MODE)
  27057. Define this to return nonzero if the port is prepared to handle
  27058. insns involving scalar mode MODE. For a scalar mode to be
  27059. considered supported, all the basic arithmetic and comparisons must
  27060. work.
  27061. The default version of this hook returns true for any mode required
  27062. to handle the basic C types (as defined by the port). Included
  27063. here are the double-word arithmetic supported by the code in
  27064. 'optabs.c'.
  27065. -- Target Hook: bool TARGET_VECTOR_MODE_SUPPORTED_P (machine_mode MODE)
  27066. Define this to return nonzero if the port is prepared to handle
  27067. insns involving vector mode MODE. At the very least, it must have
  27068. move patterns for this mode.
  27069. -- Target Hook: opt_machine_mode TARGET_ARRAY_MODE (machine_mode MODE,
  27070. unsigned HOST_WIDE_INT NELEMS)
  27071. Return the mode that GCC should use for an array that has NELEMS
  27072. elements, with each element having mode MODE. Return no mode if
  27073. the target has no special requirements. In the latter case, GCC
  27074. looks for an integer mode of the appropriate size if available and
  27075. uses BLKmode otherwise. Usually the search for the integer mode is
  27076. limited to 'MAX_FIXED_MODE_SIZE', but the
  27077. 'TARGET_ARRAY_MODE_SUPPORTED_P' hook allows a larger mode to be
  27078. used in specific cases.
  27079. The main use of this hook is to specify that an array of vectors
  27080. should also have a vector mode. The default implementation returns
  27081. no mode.
  27082. -- Target Hook: bool TARGET_ARRAY_MODE_SUPPORTED_P (machine_mode MODE,
  27083. unsigned HOST_WIDE_INT NELEMS)
  27084. Return true if GCC should try to use a scalar mode to store an
  27085. array of NELEMS elements, given that each element has mode MODE.
  27086. Returning true here overrides the usual 'MAX_FIXED_MODE' limit and
  27087. allows GCC to use any defined integer mode.
  27088. One use of this hook is to support vector load and store operations
  27089. that operate on several homogeneous vectors. For example, ARM NEON
  27090. has operations like:
  27091. int8x8x3_t vld3_s8 (const int8_t *)
  27092. where the return type is defined as:
  27093. typedef struct int8x8x3_t
  27094. {
  27095. int8x8_t val[3];
  27096. } int8x8x3_t;
  27097. If this hook allows 'val' to have a scalar mode, then 'int8x8x3_t'
  27098. can have the same mode. GCC can then store 'int8x8x3_t's in
  27099. registers rather than forcing them onto the stack.
  27100. -- Target Hook: bool TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P
  27101. (scalar_float_mode MODE)
  27102. Define this to return nonzero if libgcc provides support for the
  27103. floating-point mode MODE, which is known to pass
  27104. 'TARGET_SCALAR_MODE_SUPPORTED_P'. The default version of this hook
  27105. returns true for all of 'SFmode', 'DFmode', 'XFmode' and 'TFmode',
  27106. if such modes exist.
  27107. -- Target Hook: opt_scalar_float_mode TARGET_FLOATN_MODE (int N, bool
  27108. EXTENDED)
  27109. Define this to return the machine mode to use for the type
  27110. '_FloatN', if EXTENDED is false, or the type '_FloatNx', if
  27111. EXTENDED is true. If such a type is not supported, return
  27112. 'opt_scalar_float_mode ()'. The default version of this hook
  27113. returns 'SFmode' for '_Float32', 'DFmode' for '_Float64' and
  27114. '_Float32x' and 'TFmode' for '_Float128', if those modes exist and
  27115. satisfy the requirements for those types and pass
  27116. 'TARGET_SCALAR_MODE_SUPPORTED_P' and
  27117. 'TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P'; for '_Float64x', it
  27118. returns the first of 'XFmode' and 'TFmode' that exists and
  27119. satisfies the same requirements; for other types, it returns
  27120. 'opt_scalar_float_mode ()'. The hook is only called for values of
  27121. N and EXTENDED that are valid according to ISO/IEC TS 18661-3:2015;
  27122. that is, N is one of 32, 64, 128, or, if EXTENDED is false, 16 or
  27123. greater than 128 and a multiple of 32.
  27124. -- Target Hook: bool TARGET_FLOATN_BUILTIN_P (int FUNC)
  27125. Define this to return true if the '_FloatN' and '_FloatNx' built-in
  27126. functions should implicitly enable the built-in function without
  27127. the '__builtin_' prefix in addition to the normal built-in function
  27128. with the '__builtin_' prefix. The default is to only enable
  27129. built-in functions without the '__builtin_' prefix for the GNU C
  27130. langauge. In strict ANSI/ISO mode, the built-in function without
  27131. the '__builtin_' prefix is not enabled. The argument 'FUNC' is the
  27132. 'enum built_in_function' id of the function to be enabled.
  27133. -- Target Hook: bool TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P
  27134. (machine_mode MODE)
  27135. Define this to return nonzero for machine modes for which the port
  27136. has small register classes. If this target hook returns nonzero
  27137. for a given MODE, the compiler will try to minimize the lifetime of
  27138. registers in MODE. The hook may be called with 'VOIDmode' as
  27139. argument. In this case, the hook is expected to return nonzero if
  27140. it returns nonzero for any mode.
  27141. On some machines, it is risky to let hard registers live across
  27142. arbitrary insns. Typically, these machines have instructions that
  27143. require values to be in specific registers (like an accumulator),
  27144. and reload will fail if the required hard register is used for
  27145. another purpose across such an insn.
  27146. Passes before reload do not know which hard registers will be used
  27147. in an instruction, but the machine modes of the registers set or
  27148. used in the instruction are already known. And for some machines,
  27149. register classes are small for, say, integer registers but not for
  27150. floating point registers. For example, the AMD x86-64 architecture
  27151. requires specific registers for the legacy x86 integer
  27152. instructions, but there are many SSE registers for floating point
  27153. operations. On such targets, a good strategy may be to return
  27154. nonzero from this hook for 'INTEGRAL_MODE_P' machine modes but zero
  27155. for the SSE register classes.
  27156. The default version of this hook returns false for any mode. It is
  27157. always safe to redefine this hook to return with a nonzero value.
  27158. But if you unnecessarily define it, you will reduce the amount of
  27159. optimizations that can be performed in some cases. If you do not
  27160. define this hook to return a nonzero value when it is required, the
  27161. compiler will run out of spill registers and print a fatal error
  27162. message.
  27163. 
  27164. File: gccint.info, Node: Scalar Return, Next: Aggregate Return, Prev: Register Arguments, Up: Stack and Calling
  27165. 18.9.8 How Scalar Function Values Are Returned
  27166. ----------------------------------------------
  27167. This section discusses the macros that control returning scalars as
  27168. values--values that can fit in registers.
  27169. -- Target Hook: rtx TARGET_FUNCTION_VALUE (const_tree RET_TYPE,
  27170. const_tree FN_DECL_OR_TYPE, bool OUTGOING)
  27171. Define this to return an RTX representing the place where a
  27172. function returns or receives a value of data type RET_TYPE, a tree
  27173. node representing a data type. FN_DECL_OR_TYPE is a tree node
  27174. representing 'FUNCTION_DECL' or 'FUNCTION_TYPE' of a function being
  27175. called. If OUTGOING is false, the hook should compute the register
  27176. in which the caller will see the return value. Otherwise, the hook
  27177. should return an RTX representing the place where a function
  27178. returns a value.
  27179. On many machines, only 'TYPE_MODE (RET_TYPE)' is relevant.
  27180. (Actually, on most machines, scalar values are returned in the same
  27181. place regardless of mode.) The value of the expression is usually
  27182. a 'reg' RTX for the hard register where the return value is stored.
  27183. The value can also be a 'parallel' RTX, if the return value is in
  27184. multiple places. See 'TARGET_FUNCTION_ARG' for an explanation of
  27185. the 'parallel' form. Note that the callee will populate every
  27186. location specified in the 'parallel', but if the first element of
  27187. the 'parallel' contains the whole return value, callers will use
  27188. that element as the canonical location and ignore the others. The
  27189. m68k port uses this type of 'parallel' to return pointers in both
  27190. '%a0' (the canonical location) and '%d0'.
  27191. If 'TARGET_PROMOTE_FUNCTION_RETURN' returns true, you must apply
  27192. the same promotion rules specified in 'PROMOTE_MODE' if VALTYPE is
  27193. a scalar type.
  27194. If the precise function being called is known, FUNC is a tree node
  27195. ('FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This
  27196. makes it possible to use a different value-returning convention for
  27197. specific functions when all their calls are known.
  27198. Some target machines have "register windows" so that the register
  27199. in which a function returns its value is not the same as the one in
  27200. which the caller sees the value. For such machines, you should
  27201. return different RTX depending on OUTGOING.
  27202. 'TARGET_FUNCTION_VALUE' is not used for return values with
  27203. aggregate data types, because these are returned in another way.
  27204. See 'TARGET_STRUCT_VALUE_RTX' and related macros, below.
  27205. -- Macro: FUNCTION_VALUE (VALTYPE, FUNC)
  27206. This macro has been deprecated. Use 'TARGET_FUNCTION_VALUE' for a
  27207. new target instead.
  27208. -- Macro: LIBCALL_VALUE (MODE)
  27209. A C expression to create an RTX representing the place where a
  27210. library function returns a value of mode MODE.
  27211. Note that "library function" in this context means a compiler
  27212. support routine, used to perform arithmetic, whose name is known
  27213. specially by the compiler and was not mentioned in the C code being
  27214. compiled.
  27215. -- Target Hook: rtx TARGET_LIBCALL_VALUE (machine_mode MODE, const_rtx
  27216. FUN)
  27217. Define this hook if the back-end needs to know the name of the
  27218. libcall function in order to determine where the result should be
  27219. returned.
  27220. The mode of the result is given by MODE and the name of the called
  27221. library function is given by FUN. The hook should return an RTX
  27222. representing the place where the library function result will be
  27223. returned.
  27224. If this hook is not defined, then LIBCALL_VALUE will be used.
  27225. -- Macro: FUNCTION_VALUE_REGNO_P (REGNO)
  27226. A C expression that is nonzero if REGNO is the number of a hard
  27227. register in which the values of called function may come back.
  27228. A register whose use for returning values is limited to serving as
  27229. the second of a pair (for a value of type 'double', say) need not
  27230. be recognized by this macro. So for most machines, this definition
  27231. suffices:
  27232. #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
  27233. If the machine has register windows, so that the caller and the
  27234. called function use different registers for the return value, this
  27235. macro should recognize only the caller's register numbers.
  27236. This macro has been deprecated. Use
  27237. 'TARGET_FUNCTION_VALUE_REGNO_P' for a new target instead.
  27238. -- Target Hook: bool TARGET_FUNCTION_VALUE_REGNO_P (const unsigned int
  27239. REGNO)
  27240. A target hook that return 'true' if REGNO is the number of a hard
  27241. register in which the values of called function may come back.
  27242. A register whose use for returning values is limited to serving as
  27243. the second of a pair (for a value of type 'double', say) need not
  27244. be recognized by this target hook.
  27245. If the machine has register windows, so that the caller and the
  27246. called function use different registers for the return value, this
  27247. target hook should recognize only the caller's register numbers.
  27248. If this hook is not defined, then FUNCTION_VALUE_REGNO_P will be
  27249. used.
  27250. -- Macro: APPLY_RESULT_SIZE
  27251. Define this macro if 'untyped_call' and 'untyped_return' need more
  27252. space than is implied by 'FUNCTION_VALUE_REGNO_P' for saving and
  27253. restoring an arbitrary return value.
  27254. -- Target Hook: bool TARGET_OMIT_STRUCT_RETURN_REG
  27255. Normally, when a function returns a structure by memory, the
  27256. address is passed as an invisible pointer argument, but the
  27257. compiler also arranges to return the address from the function like
  27258. it would a normal pointer return value. Define this to true if
  27259. that behavior is undesirable on your target.
  27260. -- Target Hook: bool TARGET_RETURN_IN_MSB (const_tree TYPE)
  27261. This hook should return true if values of type TYPE are returned at
  27262. the most significant end of a register (in other words, if they are
  27263. padded at the least significant end). You can assume that TYPE is
  27264. returned in a register; the caller is required to check this.
  27265. Note that the register provided by 'TARGET_FUNCTION_VALUE' must be
  27266. able to hold the complete return value. For example, if a 1-, 2-
  27267. or 3-byte structure is returned at the most significant end of a
  27268. 4-byte register, 'TARGET_FUNCTION_VALUE' should provide an 'SImode'
  27269. rtx.
  27270. 
  27271. File: gccint.info, Node: Aggregate Return, Next: Caller Saves, Prev: Scalar Return, Up: Stack and Calling
  27272. 18.9.9 How Large Values Are Returned
  27273. ------------------------------------
  27274. When a function value's mode is 'BLKmode' (and in some other cases), the
  27275. value is not returned according to 'TARGET_FUNCTION_VALUE' (*note Scalar
  27276. Return::). Instead, the caller passes the address of a block of memory
  27277. in which the value should be stored. This address is called the
  27278. "structure value address".
  27279. This section describes how to control returning structure values in
  27280. memory.
  27281. -- Target Hook: bool TARGET_RETURN_IN_MEMORY (const_tree TYPE,
  27282. const_tree FNTYPE)
  27283. This target hook should return a nonzero value to say to return the
  27284. function value in memory, just as large structures are always
  27285. returned. Here TYPE will be the data type of the value, and FNTYPE
  27286. will be the type of the function doing the returning, or 'NULL' for
  27287. libcalls.
  27288. Note that values of mode 'BLKmode' must be explicitly handled by
  27289. this function. Also, the option '-fpcc-struct-return' takes effect
  27290. regardless of this macro. On most systems, it is possible to leave
  27291. the hook undefined; this causes a default definition to be used,
  27292. whose value is the constant 1 for 'BLKmode' values, and 0
  27293. otherwise.
  27294. Do not use this hook to indicate that structures and unions should
  27295. always be returned in memory. You should instead use
  27296. 'DEFAULT_PCC_STRUCT_RETURN' to indicate this.
  27297. -- Macro: DEFAULT_PCC_STRUCT_RETURN
  27298. Define this macro to be 1 if all structure and union return values
  27299. must be in memory. Since this results in slower code, this should
  27300. be defined only if needed for compatibility with other compilers or
  27301. with an ABI. If you define this macro to be 0, then the
  27302. conventions used for structure and union return values are decided
  27303. by the 'TARGET_RETURN_IN_MEMORY' target hook.
  27304. If not defined, this defaults to the value 1.
  27305. -- Target Hook: rtx TARGET_STRUCT_VALUE_RTX (tree FNDECL, int INCOMING)
  27306. This target hook should return the location of the structure value
  27307. address (normally a 'mem' or 'reg'), or 0 if the address is passed
  27308. as an "invisible" first argument. Note that FNDECL may be 'NULL',
  27309. for libcalls. You do not need to define this target hook if the
  27310. address is always passed as an "invisible" first argument.
  27311. On some architectures the place where the structure value address
  27312. is found by the called function is not the same place that the
  27313. caller put it. This can be due to register windows, or it could be
  27314. because the function prologue moves it to a different place.
  27315. INCOMING is '1' or '2' when the location is needed in the context
  27316. of the called function, and '0' in the context of the caller.
  27317. If INCOMING is nonzero and the address is to be found on the stack,
  27318. return a 'mem' which refers to the frame pointer. If INCOMING is
  27319. '2', the result is being used to fetch the structure value address
  27320. at the beginning of a function. If you need to emit adjusting
  27321. code, you should do it at this point.
  27322. -- Macro: PCC_STATIC_STRUCT_RETURN
  27323. Define this macro if the usual system convention on the target
  27324. machine for returning structures and unions is for the called
  27325. function to return the address of a static variable containing the
  27326. value.
  27327. Do not define this if the usual system convention is for the caller
  27328. to pass an address to the subroutine.
  27329. This macro has effect in '-fpcc-struct-return' mode, but it does
  27330. nothing when you use '-freg-struct-return' mode.
  27331. -- Target Hook: fixed_size_mode TARGET_GET_RAW_RESULT_MODE (int REGNO)
  27332. This target hook returns the mode to be used when accessing raw
  27333. return registers in '__builtin_return'. Define this macro if the
  27334. value in REG_RAW_MODE is not correct.
  27335. -- Target Hook: fixed_size_mode TARGET_GET_RAW_ARG_MODE (int REGNO)
  27336. This target hook returns the mode to be used when accessing raw
  27337. argument registers in '__builtin_apply_args'. Define this macro if
  27338. the value in REG_RAW_MODE is not correct.
  27339. -- Target Hook: bool TARGET_EMPTY_RECORD_P (const_tree TYPE)
  27340. This target hook returns true if the type is an empty record. The
  27341. default is to return 'false'.
  27342. -- Target Hook: void TARGET_WARN_PARAMETER_PASSING_ABI
  27343. (cumulative_args_t CA, tree TYPE)
  27344. This target hook warns about the change in empty class parameter
  27345. passing ABI.
  27346. 
  27347. File: gccint.info, Node: Caller Saves, Next: Function Entry, Prev: Aggregate Return, Up: Stack and Calling
  27348. 18.9.10 Caller-Saves Register Allocation
  27349. ----------------------------------------
  27350. If you enable it, GCC can save registers around function calls. This
  27351. makes it possible to use call-clobbered registers to hold variables that
  27352. must live across calls.
  27353. -- Macro: HARD_REGNO_CALLER_SAVE_MODE (REGNO, NREGS)
  27354. A C expression specifying which mode is required for saving NREGS
  27355. of a pseudo-register in call-clobbered hard register REGNO. If
  27356. REGNO is unsuitable for caller save, 'VOIDmode' should be returned.
  27357. For most machines this macro need not be defined since GCC will
  27358. select the smallest suitable mode.
  27359. 
  27360. File: gccint.info, Node: Function Entry, Next: Profiling, Prev: Caller Saves, Up: Stack and Calling
  27361. 18.9.11 Function Entry and Exit
  27362. -------------------------------
  27363. This section describes the macros that output function entry
  27364. ("prologue") and exit ("epilogue") code.
  27365. -- Target Hook: void TARGET_ASM_PRINT_PATCHABLE_FUNCTION_ENTRY (FILE
  27366. *FILE, unsigned HOST_WIDE_INT PATCH_AREA_SIZE, bool RECORD_P)
  27367. Generate a patchable area at the function start, consisting of
  27368. PATCH_AREA_SIZE NOP instructions. If the target supports named
  27369. sections and if RECORD_P is true, insert a pointer to the current
  27370. location in the table of patchable functions. The default
  27371. implementation of the hook places the table of pointers in the
  27372. special section named '__patchable_function_entries'.
  27373. -- Target Hook: void TARGET_ASM_FUNCTION_PROLOGUE (FILE *FILE)
  27374. If defined, a function that outputs the assembler code for entry to
  27375. a function. The prologue is responsible for setting up the stack
  27376. frame, initializing the frame pointer register, saving registers
  27377. that must be saved, and allocating SIZE additional bytes of storage
  27378. for the local variables. FILE is a stdio stream to which the
  27379. assembler code should be output.
  27380. The label for the beginning of the function need not be output by
  27381. this macro. That has already been done when the macro is run.
  27382. To determine which registers to save, the macro can refer to the
  27383. array 'regs_ever_live': element R is nonzero if hard register R is
  27384. used anywhere within the function. This implies the function
  27385. prologue should save register R, provided it is not one of the
  27386. call-used registers. ('TARGET_ASM_FUNCTION_EPILOGUE' must likewise
  27387. use 'regs_ever_live'.)
  27388. On machines that have "register windows", the function entry code
  27389. does not save on the stack the registers that are in the windows,
  27390. even if they are supposed to be preserved by function calls;
  27391. instead it takes appropriate steps to "push" the register stack, if
  27392. any non-call-used registers are used in the function.
  27393. On machines where functions may or may not have frame-pointers, the
  27394. function entry code must vary accordingly; it must set up the frame
  27395. pointer if one is wanted, and not otherwise. To determine whether
  27396. a frame pointer is in wanted, the macro can refer to the variable
  27397. 'frame_pointer_needed'. The variable's value will be 1 at run time
  27398. in a function that needs a frame pointer. *Note Elimination::.
  27399. The function entry code is responsible for allocating any stack
  27400. space required for the function. This stack space consists of the
  27401. regions listed below. In most cases, these regions are allocated
  27402. in the order listed, with the last listed region closest to the top
  27403. of the stack (the lowest address if 'STACK_GROWS_DOWNWARD' is
  27404. defined, and the highest address if it is not defined). You can
  27405. use a different order for a machine if doing so is more convenient
  27406. or required for compatibility reasons. Except in cases where
  27407. required by standard or by a debugger, there is no reason why the
  27408. stack layout used by GCC need agree with that used by other
  27409. compilers for a machine.
  27410. -- Target Hook: void TARGET_ASM_FUNCTION_END_PROLOGUE (FILE *FILE)
  27411. If defined, a function that outputs assembler code at the end of a
  27412. prologue. This should be used when the function prologue is being
  27413. emitted as RTL, and you have some extra assembler that needs to be
  27414. emitted. *Note prologue instruction pattern::.
  27415. -- Target Hook: void TARGET_ASM_FUNCTION_BEGIN_EPILOGUE (FILE *FILE)
  27416. If defined, a function that outputs assembler code at the start of
  27417. an epilogue. This should be used when the function epilogue is
  27418. being emitted as RTL, and you have some extra assembler that needs
  27419. to be emitted. *Note epilogue instruction pattern::.
  27420. -- Target Hook: void TARGET_ASM_FUNCTION_EPILOGUE (FILE *FILE)
  27421. If defined, a function that outputs the assembler code for exit
  27422. from a function. The epilogue is responsible for restoring the
  27423. saved registers and stack pointer to their values when the function
  27424. was called, and returning control to the caller. This macro takes
  27425. the same argument as the macro 'TARGET_ASM_FUNCTION_PROLOGUE', and
  27426. the registers to restore are determined from 'regs_ever_live' and
  27427. 'CALL_USED_REGISTERS' in the same way.
  27428. On some machines, there is a single instruction that does all the
  27429. work of returning from the function. On these machines, give that
  27430. instruction the name 'return' and do not define the macro
  27431. 'TARGET_ASM_FUNCTION_EPILOGUE' at all.
  27432. Do not define a pattern named 'return' if you want the
  27433. 'TARGET_ASM_FUNCTION_EPILOGUE' to be used. If you want the target
  27434. switches to control whether return instructions or epilogues are
  27435. used, define a 'return' pattern with a validity condition that
  27436. tests the target switches appropriately. If the 'return' pattern's
  27437. validity condition is false, epilogues will be used.
  27438. On machines where functions may or may not have frame-pointers, the
  27439. function exit code must vary accordingly. Sometimes the code for
  27440. these two cases is completely different. To determine whether a
  27441. frame pointer is wanted, the macro can refer to the variable
  27442. 'frame_pointer_needed'. The variable's value will be 1 when
  27443. compiling a function that needs a frame pointer.
  27444. Normally, 'TARGET_ASM_FUNCTION_PROLOGUE' and
  27445. 'TARGET_ASM_FUNCTION_EPILOGUE' must treat leaf functions specially.
  27446. The C variable 'current_function_is_leaf' is nonzero for such a
  27447. function. *Note Leaf Functions::.
  27448. On some machines, some functions pop their arguments on exit while
  27449. others leave that for the caller to do. For example, the 68020
  27450. when given '-mrtd' pops arguments in functions that take a fixed
  27451. number of arguments.
  27452. Your definition of the macro 'RETURN_POPS_ARGS' decides which
  27453. functions pop their own arguments. 'TARGET_ASM_FUNCTION_EPILOGUE'
  27454. needs to know what was decided. The number of bytes of the current
  27455. function's arguments that this function should pop is available in
  27456. 'crtl->args.pops_args'. *Note Scalar Return::.
  27457. * A region of 'crtl->args.pretend_args_size' bytes of uninitialized
  27458. space just underneath the first argument arriving on the stack.
  27459. (This may not be at the very start of the allocated stack region if
  27460. the calling sequence has pushed anything else since pushing the
  27461. stack arguments. But usually, on such machines, nothing else has
  27462. been pushed yet, because the function prologue itself does all the
  27463. pushing.) This region is used on machines where an argument may be
  27464. passed partly in registers and partly in memory, and, in some cases
  27465. to support the features in '<stdarg.h>'.
  27466. * An area of memory used to save certain registers used by the
  27467. function. The size of this area, which may also include space for
  27468. such things as the return address and pointers to previous stack
  27469. frames, is machine-specific and usually depends on which registers
  27470. have been used in the function. Machines with register windows
  27471. often do not require a save area.
  27472. * A region of at least SIZE bytes, possibly rounded up to an
  27473. allocation boundary, to contain the local variables of the
  27474. function. On some machines, this region and the save area may
  27475. occur in the opposite order, with the save area closer to the top
  27476. of the stack.
  27477. * Optionally, when 'ACCUMULATE_OUTGOING_ARGS' is defined, a region of
  27478. 'crtl->outgoing_args_size' bytes to be used for outgoing argument
  27479. lists of the function. *Note Stack Arguments::.
  27480. -- Macro: EXIT_IGNORE_STACK
  27481. Define this macro as a C expression that is nonzero if the return
  27482. instruction or the function epilogue ignores the value of the stack
  27483. pointer; in other words, if it is safe to delete an instruction to
  27484. adjust the stack pointer before a return from the function. The
  27485. default is 0.
  27486. Note that this macro's value is relevant only for functions for
  27487. which frame pointers are maintained. It is never safe to delete a
  27488. final stack adjustment in a function that has no frame pointer, and
  27489. the compiler knows this regardless of 'EXIT_IGNORE_STACK'.
  27490. -- Macro: EPILOGUE_USES (REGNO)
  27491. Define this macro as a C expression that is nonzero for registers
  27492. that are used by the epilogue or the 'return' pattern. The stack
  27493. and frame pointer registers are already assumed to be used as
  27494. needed.
  27495. -- Macro: EH_USES (REGNO)
  27496. Define this macro as a C expression that is nonzero for registers
  27497. that are used by the exception handling mechanism, and so should be
  27498. considered live on entry to an exception edge.
  27499. -- Target Hook: void TARGET_ASM_OUTPUT_MI_THUNK (FILE *FILE, tree
  27500. THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT VCALL_OFFSET,
  27501. tree FUNCTION)
  27502. A function that outputs the assembler code for a thunk function,
  27503. used to implement C++ virtual function calls with multiple
  27504. inheritance. The thunk acts as a wrapper around a virtual
  27505. function, adjusting the implicit object parameter before handing
  27506. control off to the real function.
  27507. First, emit code to add the integer DELTA to the location that
  27508. contains the incoming first argument. Assume that this argument
  27509. contains a pointer, and is the one used to pass the 'this' pointer
  27510. in C++. This is the incoming argument _before_ the function
  27511. prologue, e.g. '%o0' on a sparc. The addition must preserve the
  27512. values of all other incoming arguments.
  27513. Then, if VCALL_OFFSET is nonzero, an additional adjustment should
  27514. be made after adding 'delta'. In particular, if P is the adjusted
  27515. pointer, the following adjustment should be made:
  27516. p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)]
  27517. After the additions, emit code to jump to FUNCTION, which is a
  27518. 'FUNCTION_DECL'. This is a direct pure jump, not a call, and does
  27519. not touch the return address. Hence returning from FUNCTION will
  27520. return to whoever called the current 'thunk'.
  27521. The effect must be as if FUNCTION had been called directly with the
  27522. adjusted first argument. This macro is responsible for emitting
  27523. all of the code for a thunk function;
  27524. 'TARGET_ASM_FUNCTION_PROLOGUE' and 'TARGET_ASM_FUNCTION_EPILOGUE'
  27525. are not invoked.
  27526. The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already
  27527. been extracted from it.) It might possibly be useful on some
  27528. targets, but probably not.
  27529. If you do not define this macro, the target-independent code in the
  27530. C++ front end will generate a less efficient heavyweight thunk that
  27531. calls FUNCTION instead of jumping to it. The generic approach does
  27532. not support varargs.
  27533. -- Target Hook: bool TARGET_ASM_CAN_OUTPUT_MI_THUNK (const_tree
  27534. THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT VCALL_OFFSET,
  27535. const_tree FUNCTION)
  27536. A function that returns true if TARGET_ASM_OUTPUT_MI_THUNK would be
  27537. able to output the assembler code for the thunk function specified
  27538. by the arguments it is passed, and false otherwise. In the latter
  27539. case, the generic approach will be used by the C++ front end, with
  27540. the limitations previously exposed.
  27541. 
  27542. File: gccint.info, Node: Profiling, Next: Tail Calls, Prev: Function Entry, Up: Stack and Calling
  27543. 18.9.12 Generating Code for Profiling
  27544. -------------------------------------
  27545. These macros will help you generate code for profiling.
  27546. -- Macro: FUNCTION_PROFILER (FILE, LABELNO)
  27547. A C statement or compound statement to output to FILE some
  27548. assembler code to call the profiling subroutine 'mcount'.
  27549. The details of how 'mcount' expects to be called are determined by
  27550. your operating system environment, not by GCC. To figure them out,
  27551. compile a small program for profiling using the system's installed
  27552. C compiler and look at the assembler code that results.
  27553. Older implementations of 'mcount' expect the address of a counter
  27554. variable to be loaded into some register. The name of this
  27555. variable is 'LP' followed by the number LABELNO, so you would
  27556. generate the name using 'LP%d' in a 'fprintf'.
  27557. -- Macro: PROFILE_HOOK
  27558. A C statement or compound statement to output to FILE some assembly
  27559. code to call the profiling subroutine 'mcount' even the target does
  27560. not support profiling.
  27561. -- Macro: NO_PROFILE_COUNTERS
  27562. Define this macro to be an expression with a nonzero value if the
  27563. 'mcount' subroutine on your system does not need a counter variable
  27564. allocated for each function. This is true for almost all modern
  27565. implementations. If you define this macro, you must not use the
  27566. LABELNO argument to 'FUNCTION_PROFILER'.
  27567. -- Macro: PROFILE_BEFORE_PROLOGUE
  27568. Define this macro if the code for function profiling should come
  27569. before the function prologue. Normally, the profiling code comes
  27570. after.
  27571. -- Target Hook: bool TARGET_KEEP_LEAF_WHEN_PROFILED (void)
  27572. This target hook returns true if the target wants the leaf flag for
  27573. the current function to stay true even if it calls mcount. This
  27574. might make sense for targets using the leaf flag only to determine
  27575. whether a stack frame needs to be generated or not and for which
  27576. the call to mcount is generated before the function prologue.
  27577. 
  27578. File: gccint.info, Node: Tail Calls, Next: Shrink-wrapping separate components, Prev: Profiling, Up: Stack and Calling
  27579. 18.9.13 Permitting tail calls
  27580. -----------------------------
  27581. -- Target Hook: bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree DECL, tree
  27582. EXP)
  27583. True if it is OK to do sibling call optimization for the specified
  27584. call expression EXP. DECL will be the called function, or 'NULL'
  27585. if this is an indirect call.
  27586. It is not uncommon for limitations of calling conventions to
  27587. prevent tail calls to functions outside the current unit of
  27588. translation, or during PIC compilation. The hook is used to
  27589. enforce these restrictions, as the 'sibcall' md pattern can not
  27590. fail, or fall over to a "normal" call. The criteria for successful
  27591. sibling call optimization may vary greatly between different
  27592. architectures.
  27593. -- Target Hook: void TARGET_EXTRA_LIVE_ON_ENTRY (bitmap REGS)
  27594. Add any hard registers to REGS that are live on entry to the
  27595. function. This hook only needs to be defined to provide registers
  27596. that cannot be found by examination of FUNCTION_ARG_REGNO_P, the
  27597. callee saved registers, STATIC_CHAIN_INCOMING_REGNUM,
  27598. STATIC_CHAIN_REGNUM, TARGET_STRUCT_VALUE_RTX, FRAME_POINTER_REGNUM,
  27599. EH_USES, FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, and the
  27600. PIC_OFFSET_TABLE_REGNUM.
  27601. -- Target Hook: void TARGET_SET_UP_BY_PROLOGUE (struct
  27602. hard_reg_set_container *)
  27603. This hook should add additional registers that are computed by the
  27604. prologue to the hard regset for shrink-wrapping optimization
  27605. purposes.
  27606. -- Target Hook: bool TARGET_WARN_FUNC_RETURN (tree)
  27607. True if a function's return statements should be checked for
  27608. matching the function's return type. This includes checking for
  27609. falling off the end of a non-void function. Return false if no
  27610. such check should be made.
  27611. 
  27612. File: gccint.info, Node: Shrink-wrapping separate components, Next: Stack Smashing Protection, Prev: Tail Calls, Up: Stack and Calling
  27613. 18.9.14 Shrink-wrapping separate components
  27614. -------------------------------------------
  27615. The prologue may perform a variety of target dependent tasks such as
  27616. saving callee-saved registers, saving the return address, aligning the
  27617. stack, creating a stack frame, initializing the PIC register, setting up
  27618. the static chain, etc.
  27619. On some targets some of these tasks may be independent of others and
  27620. thus may be shrink-wrapped separately. These independent tasks are
  27621. referred to as components and are handled generically by the target
  27622. independent parts of GCC.
  27623. Using the following hooks those prologue or epilogue components can be
  27624. shrink-wrapped separately, so that the initialization (and possibly
  27625. teardown) those components do is not done as frequently on execution
  27626. paths where this would unnecessary.
  27627. What exactly those components are is up to the target code; the generic
  27628. code treats them abstractly, as a bit in an 'sbitmap'. These 'sbitmap's
  27629. are allocated by the 'shrink_wrap.get_separate_components' and
  27630. 'shrink_wrap.components_for_bb' hooks, and deallocated by the generic
  27631. code.
  27632. -- Target Hook: sbitmap TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS
  27633. (void)
  27634. This hook should return an 'sbitmap' with the bits set for those
  27635. components that can be separately shrink-wrapped in the current
  27636. function. Return 'NULL' if the current function should not get any
  27637. separate shrink-wrapping. Don't define this hook if it would
  27638. always return 'NULL'. If it is defined, the other hooks in this
  27639. group have to be defined as well.
  27640. -- Target Hook: sbitmap TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB
  27641. (basic_block)
  27642. This hook should return an 'sbitmap' with the bits set for those
  27643. components where either the prologue component has to be executed
  27644. before the 'basic_block', or the epilogue component after it, or
  27645. both.
  27646. -- Target Hook: void TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS (sbitmap
  27647. COMPONENTS, edge E, sbitmap EDGE_COMPONENTS, bool IS_PROLOGUE)
  27648. This hook should clear the bits in the COMPONENTS bitmap for those
  27649. components in EDGE_COMPONENTS that the target cannot handle on edge
  27650. E, where IS_PROLOGUE says if this is for a prologue or an epilogue
  27651. instead.
  27652. -- Target Hook: void TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS
  27653. (sbitmap)
  27654. Emit prologue insns for the components indicated by the parameter.
  27655. -- Target Hook: void TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS
  27656. (sbitmap)
  27657. Emit epilogue insns for the components indicated by the parameter.
  27658. -- Target Hook: void TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS
  27659. (sbitmap)
  27660. Mark the components in the parameter as handled, so that the
  27661. 'prologue' and 'epilogue' named patterns know to ignore those
  27662. components. The target code should not hang on to the 'sbitmap',
  27663. it will be deleted after this call.
  27664. 
  27665. File: gccint.info, Node: Stack Smashing Protection, Next: Miscellaneous Register Hooks, Prev: Shrink-wrapping separate components, Up: Stack and Calling
  27666. 18.9.15 Stack smashing protection
  27667. ---------------------------------
  27668. -- Target Hook: tree TARGET_STACK_PROTECT_GUARD (void)
  27669. This hook returns a 'DECL' node for the external variable to use
  27670. for the stack protection guard. This variable is initialized by
  27671. the runtime to some random value and is used to initialize the
  27672. guard value that is placed at the top of the local stack frame.
  27673. The type of this variable must be 'ptr_type_node'.
  27674. The default version of this hook creates a variable called
  27675. '__stack_chk_guard', which is normally defined in 'libgcc2.c'.
  27676. -- Target Hook: tree TARGET_STACK_PROTECT_FAIL (void)
  27677. This hook returns a 'CALL_EXPR' that alerts the runtime that the
  27678. stack protect guard variable has been modified. This expression
  27679. should involve a call to a 'noreturn' function.
  27680. The default version of this hook invokes a function called
  27681. '__stack_chk_fail', taking no arguments. This function is normally
  27682. defined in 'libgcc2.c'.
  27683. -- Target Hook: bool TARGET_STACK_PROTECT_RUNTIME_ENABLED_P (void)
  27684. Returns true if the target wants GCC's default stack protect
  27685. runtime support, otherwise return false. The default
  27686. implementation always returns true.
  27687. -- Common Target Hook: bool TARGET_SUPPORTS_SPLIT_STACK (bool REPORT,
  27688. struct gcc_options *OPTS)
  27689. Whether this target supports splitting the stack when the options
  27690. described in OPTS have been passed. This is called after options
  27691. have been parsed, so the target may reject splitting the stack in
  27692. some configurations. The default version of this hook returns
  27693. false. If REPORT is true, this function may issue a warning or
  27694. error; if REPORT is false, it must simply return a value
  27695. 
  27696. File: gccint.info, Node: Miscellaneous Register Hooks, Prev: Stack Smashing Protection, Up: Stack and Calling
  27697. 18.9.16 Miscellaneous register hooks
  27698. ------------------------------------
  27699. -- Target Hook: bool TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
  27700. Set to true if each call that binds to a local definition
  27701. explicitly clobbers or sets all non-fixed registers modified by
  27702. performing the call. That is, by the call pattern itself, or by
  27703. code that might be inserted by the linker (e.g. stubs, veneers,
  27704. branch islands), but not including those modifiable by the callee.
  27705. The affected registers may be mentioned explicitly in the call
  27706. pattern, or included as clobbers in CALL_INSN_FUNCTION_USAGE. The
  27707. default version of this hook is set to false. The purpose of this
  27708. hook is to enable the fipa-ra optimization.
  27709. 
  27710. File: gccint.info, Node: Varargs, Next: Trampolines, Prev: Stack and Calling, Up: Target Macros
  27711. 18.10 Implementing the Varargs Macros
  27712. =====================================
  27713. GCC comes with an implementation of '<varargs.h>' and '<stdarg.h>' that
  27714. work without change on machines that pass arguments on the stack. Other
  27715. machines require their own implementations of varargs, and the two
  27716. machine independent header files must have conditionals to include it.
  27717. ISO '<stdarg.h>' differs from traditional '<varargs.h>' mainly in the
  27718. calling convention for 'va_start'. The traditional implementation takes
  27719. just one argument, which is the variable in which to store the argument
  27720. pointer. The ISO implementation of 'va_start' takes an additional
  27721. second argument. The user is supposed to write the last named argument
  27722. of the function here.
  27723. However, 'va_start' should not use this argument. The way to find the
  27724. end of the named arguments is with the built-in functions described
  27725. below.
  27726. -- Macro: __builtin_saveregs ()
  27727. Use this built-in function to save the argument registers in memory
  27728. so that the varargs mechanism can access them. Both ISO and
  27729. traditional versions of 'va_start' must use '__builtin_saveregs',
  27730. unless you use 'TARGET_SETUP_INCOMING_VARARGS' (see below) instead.
  27731. On some machines, '__builtin_saveregs' is open-coded under the
  27732. control of the target hook 'TARGET_EXPAND_BUILTIN_SAVEREGS'. On
  27733. other machines, it calls a routine written in assembler language,
  27734. found in 'libgcc2.c'.
  27735. Code generated for the call to '__builtin_saveregs' appears at the
  27736. beginning of the function, as opposed to where the call to
  27737. '__builtin_saveregs' is written, regardless of what the code is.
  27738. This is because the registers must be saved before the function
  27739. starts to use them for its own purposes.
  27740. -- Macro: __builtin_next_arg (LASTARG)
  27741. This builtin returns the address of the first anonymous stack
  27742. argument, as type 'void *'. If 'ARGS_GROW_DOWNWARD', it returns
  27743. the address of the location above the first anonymous stack
  27744. argument. Use it in 'va_start' to initialize the pointer for
  27745. fetching arguments from the stack. Also use it in 'va_start' to
  27746. verify that the second parameter LASTARG is the last named argument
  27747. of the current function.
  27748. -- Macro: __builtin_classify_type (OBJECT)
  27749. Since each machine has its own conventions for which data types are
  27750. passed in which kind of register, your implementation of 'va_arg'
  27751. has to embody these conventions. The easiest way to categorize the
  27752. specified data type is to use '__builtin_classify_type' together
  27753. with 'sizeof' and '__alignof__'.
  27754. '__builtin_classify_type' ignores the value of OBJECT, considering
  27755. only its data type. It returns an integer describing what kind of
  27756. type that is--integer, floating, pointer, structure, and so on.
  27757. The file 'typeclass.h' defines an enumeration that you can use to
  27758. interpret the values of '__builtin_classify_type'.
  27759. These machine description macros help implement varargs:
  27760. -- Target Hook: rtx TARGET_EXPAND_BUILTIN_SAVEREGS (void)
  27761. If defined, this hook produces the machine-specific code for a call
  27762. to '__builtin_saveregs'. This code will be moved to the very
  27763. beginning of the function, before any parameter access are made.
  27764. The return value of this function should be an RTX that contains
  27765. the value to use as the return of '__builtin_saveregs'.
  27766. -- Target Hook: void TARGET_SETUP_INCOMING_VARARGS (cumulative_args_t
  27767. ARGS_SO_FAR, machine_mode MODE, tree TYPE, int
  27768. *PRETEND_ARGS_SIZE, int SECOND_TIME)
  27769. This target hook offers an alternative to using
  27770. '__builtin_saveregs' and defining the hook
  27771. 'TARGET_EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous
  27772. register arguments into the stack so that all the arguments appear
  27773. to have been passed consecutively on the stack. Once this is done,
  27774. you can use the standard implementation of varargs that works for
  27775. machines that pass all their arguments on the stack.
  27776. The argument ARGS_SO_FAR points to the 'CUMULATIVE_ARGS' data
  27777. structure, containing the values that are obtained after processing
  27778. the named arguments. The arguments MODE and TYPE describe the last
  27779. named argument--its machine mode and its data type as a tree node.
  27780. The target hook should do two things: first, push onto the stack
  27781. all the argument registers _not_ used for the named arguments, and
  27782. second, store the size of the data thus pushed into the
  27783. 'int'-valued variable pointed to by PRETEND_ARGS_SIZE. The value
  27784. that you store here will serve as additional offset for setting up
  27785. the stack frame.
  27786. Because you must generate code to push the anonymous arguments at
  27787. compile time without knowing their data types,
  27788. 'TARGET_SETUP_INCOMING_VARARGS' is only useful on machines that
  27789. have just a single category of argument register and use it
  27790. uniformly for all data types.
  27791. If the argument SECOND_TIME is nonzero, it means that the arguments
  27792. of the function are being analyzed for the second time. This
  27793. happens for an inline function, which is not actually compiled
  27794. until the end of the source file. The hook
  27795. 'TARGET_SETUP_INCOMING_VARARGS' should not generate any
  27796. instructions in this case.
  27797. -- Target Hook: bool TARGET_STRICT_ARGUMENT_NAMING (cumulative_args_t
  27798. CA)
  27799. Define this hook to return 'true' if the location where a function
  27800. argument is passed depends on whether or not it is a named
  27801. argument.
  27802. This hook controls how the NAMED argument to 'TARGET_FUNCTION_ARG'
  27803. is set for varargs and stdarg functions. If this hook returns
  27804. 'true', the NAMED argument is always true for named arguments, and
  27805. false for unnamed arguments. If it returns 'false', but
  27806. 'TARGET_PRETEND_OUTGOING_VARARGS_NAMED' returns 'true', then all
  27807. arguments are treated as named. Otherwise, all named arguments
  27808. except the last are treated as named.
  27809. You need not define this hook if it always returns 'false'.
  27810. -- Target Hook: void TARGET_CALL_ARGS (rtx, TREE)
  27811. While generating RTL for a function call, this target hook is
  27812. invoked once for each argument passed to the function, either a
  27813. register returned by 'TARGET_FUNCTION_ARG' or a memory location.
  27814. It is called just before the point where argument registers are
  27815. stored. The type of the function to be called is also passed as
  27816. the second argument; it is 'NULL_TREE' for libcalls. The
  27817. 'TARGET_END_CALL_ARGS' hook is invoked just after the code to copy
  27818. the return reg has been emitted. This functionality can be used to
  27819. perform special setup of call argument registers if a target needs
  27820. it. For functions without arguments, the hook is called once with
  27821. 'pc_rtx' passed instead of an argument register. Most ports do not
  27822. need to implement anything for this hook.
  27823. -- Target Hook: void TARGET_END_CALL_ARGS (void)
  27824. This target hook is invoked while generating RTL for a function
  27825. call, just after the point where the return reg is copied into a
  27826. pseudo. It signals that all the call argument and return registers
  27827. for the just emitted call are now no longer in use. Most ports do
  27828. not need to implement anything for this hook.
  27829. -- Target Hook: bool TARGET_PRETEND_OUTGOING_VARARGS_NAMED
  27830. (cumulative_args_t CA)
  27831. If you need to conditionally change ABIs so that one works with
  27832. 'TARGET_SETUP_INCOMING_VARARGS', but the other works like neither
  27833. 'TARGET_SETUP_INCOMING_VARARGS' nor 'TARGET_STRICT_ARGUMENT_NAMING'
  27834. was defined, then define this hook to return 'true' if
  27835. 'TARGET_SETUP_INCOMING_VARARGS' is used, 'false' otherwise.
  27836. Otherwise, you should not define this hook.
  27837. -- Target Hook: rtx TARGET_LOAD_BOUNDS_FOR_ARG (rtx SLOT, rtx ARG, rtx
  27838. SLOT_NO)
  27839. This hook is used by expand pass to emit insn to load bounds of ARG
  27840. passed in SLOT. Expand pass uses this hook in case bounds of ARG
  27841. are not passed in register. If SLOT is a memory, then bounds are
  27842. loaded as for regular pointer loaded from memory. If SLOT is not a
  27843. memory then SLOT_NO is an integer constant holding number of the
  27844. target dependent special slot which should be used to obtain
  27845. bounds. Hook returns RTX holding loaded bounds.
  27846. -- Target Hook: void TARGET_STORE_BOUNDS_FOR_ARG (rtx ARG, rtx SLOT,
  27847. rtx BOUNDS, rtx SLOT_NO)
  27848. This hook is used by expand pass to emit insns to store BOUNDS of
  27849. ARG passed in SLOT. Expand pass uses this hook in case BOUNDS of
  27850. ARG are not passed in register. If SLOT is a memory, then BOUNDS
  27851. are stored as for regular pointer stored in memory. If SLOT is not
  27852. a memory then SLOT_NO is an integer constant holding number of the
  27853. target dependent special slot which should be used to store BOUNDS.
  27854. -- Target Hook: rtx TARGET_LOAD_RETURNED_BOUNDS (rtx SLOT)
  27855. This hook is used by expand pass to emit insn to load bounds
  27856. returned by function call in SLOT. Hook returns RTX holding loaded
  27857. bounds.
  27858. -- Target Hook: void TARGET_STORE_RETURNED_BOUNDS (rtx SLOT, rtx
  27859. BOUNDS)
  27860. This hook is used by expand pass to emit insn to store BOUNDS
  27861. returned by function call into SLOT.
  27862. -- Target Hook: rtx TARGET_CHKP_FUNCTION_VALUE_BOUNDS (const_tree
  27863. RET_TYPE, const_tree FN_DECL_OR_TYPE, bool OUTGOING)
  27864. Define this to return an RTX representing the place where a
  27865. function returns bounds for returned pointers. Arguments meaning
  27866. is similar to 'TARGET_FUNCTION_VALUE'.
  27867. -- Target Hook: void TARGET_SETUP_INCOMING_VARARG_BOUNDS
  27868. (cumulative_args_t ARGS_SO_FAR, machine_mode MODE, tree TYPE,
  27869. int *PRETEND_ARGS_SIZE, int SECOND_TIME)
  27870. Use it to store bounds for anonymous register arguments stored into
  27871. the stack. Arguments meaning is similar to
  27872. 'TARGET_SETUP_INCOMING_VARARGS'.
  27873. 
  27874. File: gccint.info, Node: Trampolines, Next: Library Calls, Prev: Varargs, Up: Target Macros
  27875. 18.11 Trampolines for Nested Functions
  27876. ======================================
  27877. A "trampoline" is a small piece of code that is created at run time when
  27878. the address of a nested function is taken. It normally resides on the
  27879. stack, in the stack frame of the containing function. These macros tell
  27880. GCC how to generate code to allocate and initialize a trampoline.
  27881. The instructions in the trampoline must do two things: load a constant
  27882. address into the static chain register, and jump to the real address of
  27883. the nested function. On CISC machines such as the m68k, this requires
  27884. two instructions, a move immediate and a jump. Then the two addresses
  27885. exist in the trampoline as word-long immediate operands. On RISC
  27886. machines, it is often necessary to load each address into a register in
  27887. two parts. Then pieces of each address form separate immediate
  27888. operands.
  27889. The code generated to initialize the trampoline must store the variable
  27890. parts--the static chain value and the function address--into the
  27891. immediate operands of the instructions. On a CISC machine, this is
  27892. simply a matter of copying each address to a memory reference at the
  27893. proper offset from the start of the trampoline. On a RISC machine, it
  27894. may be necessary to take out pieces of the address and store them
  27895. separately.
  27896. -- Target Hook: void TARGET_ASM_TRAMPOLINE_TEMPLATE (FILE *F)
  27897. This hook is called by 'assemble_trampoline_template' to output, on
  27898. the stream F, assembler code for a block of data that contains the
  27899. constant parts of a trampoline. This code should not include a
  27900. label--the label is taken care of automatically.
  27901. If you do not define this hook, it means no template is needed for
  27902. the target. Do not define this hook on systems where the block
  27903. move code to copy the trampoline into place would be larger than
  27904. the code to generate it on the spot.
  27905. -- Macro: TRAMPOLINE_SECTION
  27906. Return the section into which the trampoline template is to be
  27907. placed (*note Sections::). The default value is
  27908. 'readonly_data_section'.
  27909. -- Macro: TRAMPOLINE_SIZE
  27910. A C expression for the size in bytes of the trampoline, as an
  27911. integer.
  27912. -- Macro: TRAMPOLINE_ALIGNMENT
  27913. Alignment required for trampolines, in bits.
  27914. If you don't define this macro, the value of 'FUNCTION_ALIGNMENT'
  27915. is used for aligning trampolines.
  27916. -- Target Hook: void TARGET_TRAMPOLINE_INIT (rtx M_TRAMP, tree FNDECL,
  27917. rtx STATIC_CHAIN)
  27918. This hook is called to initialize a trampoline. M_TRAMP is an RTX
  27919. for the memory block for the trampoline; FNDECL is the
  27920. 'FUNCTION_DECL' for the nested function; STATIC_CHAIN is an RTX for
  27921. the static chain value that should be passed to the function when
  27922. it is called.
  27923. If the target defines 'TARGET_ASM_TRAMPOLINE_TEMPLATE', then the
  27924. first thing this hook should do is emit a block move into M_TRAMP
  27925. from the memory block returned by 'assemble_trampoline_template'.
  27926. Note that the block move need only cover the constant parts of the
  27927. trampoline. If the target isolates the variable parts of the
  27928. trampoline to the end, not all 'TRAMPOLINE_SIZE' bytes need be
  27929. copied.
  27930. If the target requires any other actions, such as flushing caches
  27931. or enabling stack execution, these actions should be performed
  27932. after initializing the trampoline proper.
  27933. -- Target Hook: rtx TARGET_TRAMPOLINE_ADJUST_ADDRESS (rtx ADDR)
  27934. This hook should perform any machine-specific adjustment in the
  27935. address of the trampoline. Its argument contains the address of
  27936. the memory block that was passed to 'TARGET_TRAMPOLINE_INIT'. In
  27937. case the address to be used for a function call should be different
  27938. from the address at which the template was stored, the different
  27939. address should be returned; otherwise ADDR should be returned
  27940. unchanged. If this hook is not defined, ADDR will be used for
  27941. function calls.
  27942. -- Target Hook: int TARGET_CUSTOM_FUNCTION_DESCRIPTORS
  27943. This hook should be defined to a power of 2 if the target will
  27944. benefit from the use of custom descriptors for nested functions
  27945. instead of the standard trampolines. Such descriptors are created
  27946. at run time on the stack and made up of data only, but they are
  27947. non-standard so the generated code must be prepared to deal with
  27948. them. This hook should be defined to 0 if the target uses function
  27949. descriptors for its standard calling sequence, like for example
  27950. HP-PA or IA-64. Using descriptors for nested functions eliminates
  27951. the need for trampolines that reside on the stack and require it to
  27952. be made executable.
  27953. The value of the macro is used to parameterize the run-time
  27954. identification scheme implemented to distinguish descriptors from
  27955. function addresses: it gives the number of bytes by which their
  27956. address is misaligned compared with function addresses. The value
  27957. of 1 will generally work, unless it is already reserved by the
  27958. target for another purpose, like for example on ARM.
  27959. Implementing trampolines is difficult on many machines because they
  27960. have separate instruction and data caches. Writing into a stack
  27961. location fails to clear the memory in the instruction cache, so when the
  27962. program jumps to that location, it executes the old contents.
  27963. Here are two possible solutions. One is to clear the relevant parts of
  27964. the instruction cache whenever a trampoline is set up. The other is to
  27965. make all trampolines identical, by having them jump to a standard
  27966. subroutine. The former technique makes trampoline execution faster; the
  27967. latter makes initialization faster.
  27968. To clear the instruction cache when a trampoline is initialized, define
  27969. the following macro.
  27970. -- Macro: CLEAR_INSN_CACHE (BEG, END)
  27971. If defined, expands to a C expression clearing the _instruction
  27972. cache_ in the specified interval. The definition of this macro
  27973. would typically be a series of 'asm' statements. Both BEG and END
  27974. are both pointer expressions.
  27975. To use a standard subroutine, define the following macro. In addition,
  27976. you must make sure that the instructions in a trampoline fill an entire
  27977. cache line with identical instructions, or else ensure that the
  27978. beginning of the trampoline code is always aligned at the same point in
  27979. its cache line. Look in 'm68k.h' as a guide.
  27980. -- Macro: TRANSFER_FROM_TRAMPOLINE
  27981. Define this macro if trampolines need a special subroutine to do
  27982. their work. The macro should expand to a series of 'asm'
  27983. statements which will be compiled with GCC. They go in a library
  27984. function named '__transfer_from_trampoline'.
  27985. If you need to avoid executing the ordinary prologue code of a
  27986. compiled C function when you jump to the subroutine, you can do so
  27987. by placing a special label of your own in the assembler code. Use
  27988. one 'asm' statement to generate an assembler label, and another to
  27989. make the label global. Then trampolines can use that label to jump
  27990. directly to your special assembler code.
  27991. 
  27992. File: gccint.info, Node: Library Calls, Next: Addressing Modes, Prev: Trampolines, Up: Target Macros
  27993. 18.12 Implicit Calls to Library Routines
  27994. ========================================
  27995. Here is an explanation of implicit calls to library routines.
  27996. -- Macro: DECLARE_LIBRARY_RENAMES
  27997. This macro, if defined, should expand to a piece of C code that
  27998. will get expanded when compiling functions for libgcc.a. It can be
  27999. used to provide alternate names for GCC's internal library
  28000. functions if there are ABI-mandated names that the compiler should
  28001. provide.
  28002. -- Target Hook: void TARGET_INIT_LIBFUNCS (void)
  28003. This hook should declare additional library routines or rename
  28004. existing ones, using the functions 'set_optab_libfunc' and
  28005. 'init_one_libfunc' defined in 'optabs.c'. 'init_optabs' calls this
  28006. macro after initializing all the normal library routines.
  28007. The default is to do nothing. Most ports don't need to define this
  28008. hook.
  28009. -- Target Hook: bool TARGET_LIBFUNC_GNU_PREFIX
  28010. If false (the default), internal library routines start with two
  28011. underscores. If set to true, these routines start with '__gnu_'
  28012. instead. E.g., '__muldi3' changes to '__gnu_muldi3'. This
  28013. currently only affects functions defined in 'libgcc2.c'. If this
  28014. is set to true, the 'tm.h' file must also '#define
  28015. LIBGCC2_GNU_PREFIX'.
  28016. -- Macro: FLOAT_LIB_COMPARE_RETURNS_BOOL (MODE, COMPARISON)
  28017. This macro should return 'true' if the library routine that
  28018. implements the floating point comparison operator COMPARISON in
  28019. mode MODE will return a boolean, and FALSE if it will return a
  28020. tristate.
  28021. GCC's own floating point libraries return tristates from the
  28022. comparison operators, so the default returns false always. Most
  28023. ports don't need to define this macro.
  28024. -- Macro: TARGET_LIB_INT_CMP_BIASED
  28025. This macro should evaluate to 'true' if the integer comparison
  28026. functions (like '__cmpdi2') return 0 to indicate that the first
  28027. operand is smaller than the second, 1 to indicate that they are
  28028. equal, and 2 to indicate that the first operand is greater than the
  28029. second. If this macro evaluates to 'false' the comparison
  28030. functions return -1, 0, and 1 instead of 0, 1, and 2. If the
  28031. target uses the routines in 'libgcc.a', you do not need to define
  28032. this macro.
  28033. -- Macro: TARGET_HAS_NO_HW_DIVIDE
  28034. This macro should be defined if the target has no hardware divide
  28035. instructions. If this macro is defined, GCC will use an algorithm
  28036. which make use of simple logical and arithmetic operations for
  28037. 64-bit division. If the macro is not defined, GCC will use an
  28038. algorithm which make use of a 64-bit by 32-bit divide primitive.
  28039. -- Macro: TARGET_EDOM
  28040. The value of 'EDOM' on the target machine, as a C integer constant
  28041. expression. If you don't define this macro, GCC does not attempt
  28042. to deposit the value of 'EDOM' into 'errno' directly. Look in
  28043. '/usr/include/errno.h' to find the value of 'EDOM' on your system.
  28044. If you do not define 'TARGET_EDOM', then compiled code reports
  28045. domain errors by calling the library function and letting it report
  28046. the error. If mathematical functions on your system use 'matherr'
  28047. when there is an error, then you should leave 'TARGET_EDOM'
  28048. undefined so that 'matherr' is used normally.
  28049. -- Macro: GEN_ERRNO_RTX
  28050. Define this macro as a C expression to create an rtl expression
  28051. that refers to the global "variable" 'errno'. (On certain systems,
  28052. 'errno' may not actually be a variable.) If you don't define this
  28053. macro, a reasonable default is used.
  28054. -- Target Hook: bool TARGET_LIBC_HAS_FUNCTION (enum function_class
  28055. FN_CLASS)
  28056. This hook determines whether a function from a class of functions
  28057. FN_CLASS is present at the runtime.
  28058. -- Macro: NEXT_OBJC_RUNTIME
  28059. Set this macro to 1 to use the "NeXT" Objective-C message sending
  28060. conventions by default. This calling convention involves passing
  28061. the object, the selector and the method arguments all at once to
  28062. the method-lookup library function. This is the usual setting when
  28063. targeting Darwin/Mac OS X systems, which have the NeXT runtime
  28064. installed.
  28065. If the macro is set to 0, the "GNU" Objective-C message sending
  28066. convention will be used by default. This convention passes just
  28067. the object and the selector to the method-lookup function, which
  28068. returns a pointer to the method.
  28069. In either case, it remains possible to select code-generation for
  28070. the alternate scheme, by means of compiler command line switches.
  28071. 
  28072. File: gccint.info, Node: Addressing Modes, Next: Anchored Addresses, Prev: Library Calls, Up: Target Macros
  28073. 18.13 Addressing Modes
  28074. ======================
  28075. This is about addressing modes.
  28076. -- Macro: HAVE_PRE_INCREMENT
  28077. -- Macro: HAVE_PRE_DECREMENT
  28078. -- Macro: HAVE_POST_INCREMENT
  28079. -- Macro: HAVE_POST_DECREMENT
  28080. A C expression that is nonzero if the machine supports
  28081. pre-increment, pre-decrement, post-increment, or post-decrement
  28082. addressing respectively.
  28083. -- Macro: HAVE_PRE_MODIFY_DISP
  28084. -- Macro: HAVE_POST_MODIFY_DISP
  28085. A C expression that is nonzero if the machine supports pre- or
  28086. post-address side-effect generation involving constants other than
  28087. the size of the memory operand.
  28088. -- Macro: HAVE_PRE_MODIFY_REG
  28089. -- Macro: HAVE_POST_MODIFY_REG
  28090. A C expression that is nonzero if the machine supports pre- or
  28091. post-address side-effect generation involving a register
  28092. displacement.
  28093. -- Macro: CONSTANT_ADDRESS_P (X)
  28094. A C expression that is 1 if the RTX X is a constant which is a
  28095. valid address. On most machines the default definition of
  28096. '(CONSTANT_P (X) && GET_CODE (X) != CONST_DOUBLE)' is acceptable,
  28097. but a few machines are more restrictive as to which constant
  28098. addresses are supported.
  28099. -- Macro: CONSTANT_P (X)
  28100. 'CONSTANT_P', which is defined by target-independent code, accepts
  28101. integer-values expressions whose values are not explicitly known,
  28102. such as 'symbol_ref', 'label_ref', and 'high' expressions and
  28103. 'const' arithmetic expressions, in addition to 'const_int' and
  28104. 'const_double' expressions.
  28105. -- Macro: MAX_REGS_PER_ADDRESS
  28106. A number, the maximum number of registers that can appear in a
  28107. valid memory address. Note that it is up to you to specify a value
  28108. equal to the maximum number that 'TARGET_LEGITIMATE_ADDRESS_P'
  28109. would ever accept.
  28110. -- Target Hook: bool TARGET_LEGITIMATE_ADDRESS_P (machine_mode MODE,
  28111. rtx X, bool STRICT)
  28112. A function that returns whether X (an RTX) is a legitimate memory
  28113. address on the target machine for a memory operand of mode MODE.
  28114. Legitimate addresses are defined in two variants: a strict variant
  28115. and a non-strict one. The STRICT parameter chooses which variant
  28116. is desired by the caller.
  28117. The strict variant is used in the reload pass. It must be defined
  28118. so that any pseudo-register that has not been allocated a hard
  28119. register is considered a memory reference. This is because in
  28120. contexts where some kind of register is required, a pseudo-register
  28121. with no hard register must be rejected. For non-hard registers,
  28122. the strict variant should look up the 'reg_renumber' array; it
  28123. should then proceed using the hard register number in the array, or
  28124. treat the pseudo as a memory reference if the array holds '-1'.
  28125. The non-strict variant is used in other passes. It must be defined
  28126. to accept all pseudo-registers in every context where some kind of
  28127. register is required.
  28128. Normally, constant addresses which are the sum of a 'symbol_ref'
  28129. and an integer are stored inside a 'const' RTX to mark them as
  28130. constant. Therefore, there is no need to recognize such sums
  28131. specifically as legitimate addresses. Normally you would simply
  28132. recognize any 'const' as legitimate.
  28133. Usually 'PRINT_OPERAND_ADDRESS' is not prepared to handle constant
  28134. sums that are not marked with 'const'. It assumes that a naked
  28135. 'plus' indicates indexing. If so, then you _must_ reject such
  28136. naked constant sums as illegitimate addresses, so that none of them
  28137. will be given to 'PRINT_OPERAND_ADDRESS'.
  28138. On some machines, whether a symbolic address is legitimate depends
  28139. on the section that the address refers to. On these machines,
  28140. define the target hook 'TARGET_ENCODE_SECTION_INFO' to store the
  28141. information into the 'symbol_ref', and then check for it here.
  28142. When you see a 'const', you will have to look inside it to find the
  28143. 'symbol_ref' in order to determine the section. *Note Assembler
  28144. Format::.
  28145. Some ports are still using a deprecated legacy substitute for this
  28146. hook, the 'GO_IF_LEGITIMATE_ADDRESS' macro. This macro has this
  28147. syntax:
  28148. #define GO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL)
  28149. and should 'goto LABEL' if the address X is a valid address on the
  28150. target machine for a memory operand of mode MODE.
  28151. Compiler source files that want to use the strict variant of this
  28152. macro define the macro 'REG_OK_STRICT'. You should use an '#ifdef
  28153. REG_OK_STRICT' conditional to define the strict variant in that
  28154. case and the non-strict variant otherwise.
  28155. Using the hook is usually simpler because it limits the number of
  28156. files that are recompiled when changes are made.
  28157. -- Macro: TARGET_MEM_CONSTRAINT
  28158. A single character to be used instead of the default ''m''
  28159. character for general memory addresses. This defines the
  28160. constraint letter which matches the memory addresses accepted by
  28161. 'TARGET_LEGITIMATE_ADDRESS_P'. Define this macro if you want to
  28162. support new address formats in your back end without changing the
  28163. semantics of the ''m'' constraint. This is necessary in order to
  28164. preserve functionality of inline assembly constructs using the
  28165. ''m'' constraint.
  28166. -- Macro: FIND_BASE_TERM (X)
  28167. A C expression to determine the base term of address X, or to
  28168. provide a simplified version of X from which 'alias.c' can easily
  28169. find the base term. This macro is used in only two places:
  28170. 'find_base_value' and 'find_base_term' in 'alias.c'.
  28171. It is always safe for this macro to not be defined. It exists so
  28172. that alias analysis can understand machine-dependent addresses.
  28173. The typical use of this macro is to handle addresses containing a
  28174. label_ref or symbol_ref within an UNSPEC.
  28175. -- Target Hook: rtx TARGET_LEGITIMIZE_ADDRESS (rtx X, rtx OLDX,
  28176. machine_mode MODE)
  28177. This hook is given an invalid memory address X for an operand of
  28178. mode MODE and should try to return a valid memory address.
  28179. X will always be the result of a call to 'break_out_memory_refs',
  28180. and OLDX will be the operand that was given to that function to
  28181. produce X.
  28182. The code of the hook should not alter the substructure of X. If it
  28183. transforms X into a more legitimate form, it should return the new
  28184. X.
  28185. It is not necessary for this hook to come up with a legitimate
  28186. address, with the exception of native TLS addresses (*note Emulated
  28187. TLS::). The compiler has standard ways of doing so in all cases.
  28188. In fact, if the target supports only emulated TLS, it is safe to
  28189. omit this hook or make it return X if it cannot find a valid way to
  28190. legitimize the address. But often a machine-dependent strategy can
  28191. generate better code.
  28192. -- Macro: LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS,
  28193. WIN)
  28194. A C compound statement that attempts to replace X, which is an
  28195. address that needs reloading, with a valid memory address for an
  28196. operand of mode MODE. WIN will be a C statement label elsewhere in
  28197. the code. It is not necessary to define this macro, but it might
  28198. be useful for performance reasons.
  28199. For example, on the i386, it is sometimes possible to use a single
  28200. reload register instead of two by reloading a sum of two pseudo
  28201. registers into a register. On the other hand, for number of RISC
  28202. processors offsets are limited so that often an intermediate
  28203. address needs to be generated in order to address a stack slot. By
  28204. defining 'LEGITIMIZE_RELOAD_ADDRESS' appropriately, the
  28205. intermediate addresses generated for adjacent some stack slots can
  28206. be made identical, and thus be shared.
  28207. _Note_: This macro should be used with caution. It is necessary to
  28208. know something of how reload works in order to effectively use
  28209. this, and it is quite easy to produce macros that build in too much
  28210. knowledge of reload internals.
  28211. _Note_: This macro must be able to reload an address created by a
  28212. previous invocation of this macro. If it fails to handle such
  28213. addresses then the compiler may generate incorrect code or abort.
  28214. The macro definition should use 'push_reload' to indicate parts
  28215. that need reloading; OPNUM, TYPE and IND_LEVELS are usually
  28216. suitable to be passed unaltered to 'push_reload'.
  28217. The code generated by this macro must not alter the substructure of
  28218. X. If it transforms X into a more legitimate form, it should
  28219. assign X (which will always be a C variable) a new value. This
  28220. also applies to parts that you change indirectly by calling
  28221. 'push_reload'.
  28222. The macro definition may use 'strict_memory_address_p' to test if
  28223. the address has become legitimate.
  28224. If you want to change only a part of X, one standard way of doing
  28225. this is to use 'copy_rtx'. Note, however, that it unshares only a
  28226. single level of rtl. Thus, if the part to be changed is not at the
  28227. top level, you'll need to replace first the top level. It is not
  28228. necessary for this macro to come up with a legitimate address; but
  28229. often a machine-dependent strategy can generate better code.
  28230. -- Target Hook: bool TARGET_MODE_DEPENDENT_ADDRESS_P (const_rtx ADDR,
  28231. addr_space_t ADDRSPACE)
  28232. This hook returns 'true' if memory address ADDR in address space
  28233. ADDRSPACE can have different meanings depending on the machine mode
  28234. of the memory reference it is used for or if the address is valid
  28235. for some modes but not others.
  28236. Autoincrement and autodecrement addresses typically have
  28237. mode-dependent effects because the amount of the increment or
  28238. decrement is the size of the operand being addressed. Some
  28239. machines have other mode-dependent addresses. Many RISC machines
  28240. have no mode-dependent addresses.
  28241. You may assume that ADDR is a valid address for the machine.
  28242. The default version of this hook returns 'false'.
  28243. -- Target Hook: bool TARGET_LEGITIMATE_CONSTANT_P (machine_mode MODE,
  28244. rtx X)
  28245. This hook returns true if X is a legitimate constant for a
  28246. MODE-mode immediate operand on the target machine. You can assume
  28247. that X satisfies 'CONSTANT_P', so you need not check this.
  28248. The default definition returns true.
  28249. -- Target Hook: rtx TARGET_DELEGITIMIZE_ADDRESS (rtx X)
  28250. This hook is used to undo the possibly obfuscating effects of the
  28251. 'LEGITIMIZE_ADDRESS' and 'LEGITIMIZE_RELOAD_ADDRESS' target macros.
  28252. Some backend implementations of these macros wrap symbol references
  28253. inside an 'UNSPEC' rtx to represent PIC or similar addressing
  28254. modes. This target hook allows GCC's optimizers to understand the
  28255. semantics of these opaque 'UNSPEC's by converting them back into
  28256. their original form.
  28257. -- Target Hook: bool TARGET_CONST_NOT_OK_FOR_DEBUG_P (rtx X)
  28258. This hook should return true if X should not be emitted into debug
  28259. sections.
  28260. -- Target Hook: bool TARGET_CANNOT_FORCE_CONST_MEM (machine_mode MODE,
  28261. rtx X)
  28262. This hook should return true if X is of a form that cannot (or
  28263. should not) be spilled to the constant pool. MODE is the mode of
  28264. X.
  28265. The default version of this hook returns false.
  28266. The primary reason to define this hook is to prevent reload from
  28267. deciding that a non-legitimate constant would be better reloaded
  28268. from the constant pool instead of spilling and reloading a register
  28269. holding the constant. This restriction is often true of addresses
  28270. of TLS symbols for various targets.
  28271. -- Target Hook: bool TARGET_USE_BLOCKS_FOR_CONSTANT_P (machine_mode
  28272. MODE, const_rtx X)
  28273. This hook should return true if pool entries for constant X can be
  28274. placed in an 'object_block' structure. MODE is the mode of X.
  28275. The default version returns false for all constants.
  28276. -- Target Hook: bool TARGET_USE_BLOCKS_FOR_DECL_P (const_tree DECL)
  28277. This hook should return true if pool entries for DECL should be
  28278. placed in an 'object_block' structure.
  28279. The default version returns true for all decls.
  28280. -- Target Hook: tree TARGET_BUILTIN_RECIPROCAL (tree FNDECL)
  28281. This hook should return the DECL of a function that implements the
  28282. reciprocal of the machine-specific builtin function FNDECL, or
  28283. 'NULL_TREE' if such a function is not available.
  28284. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD (void)
  28285. This hook should return the DECL of a function F that given an
  28286. address ADDR as an argument returns a mask M that can be used to
  28287. extract from two vectors the relevant data that resides in ADDR in
  28288. case ADDR is not properly aligned.
  28289. The autovectorizer, when vectorizing a load operation from an
  28290. address ADDR that may be unaligned, will generate two vector loads
  28291. from the two aligned addresses around ADDR. It then generates a
  28292. 'REALIGN_LOAD' operation to extract the relevant data from the two
  28293. loaded vectors. The first two arguments to 'REALIGN_LOAD', V1 and
  28294. V2, are the two vectors, each of size VS, and the third argument,
  28295. OFF, defines how the data will be extracted from these two vectors:
  28296. if OFF is 0, then the returned vector is V2; otherwise, the
  28297. returned vector is composed from the last VS-OFF elements of V1
  28298. concatenated to the first OFF elements of V2.
  28299. If this hook is defined, the autovectorizer will generate a call to
  28300. F (using the DECL tree that this hook returns) and will use the
  28301. return value of F as the argument OFF to 'REALIGN_LOAD'.
  28302. Therefore, the mask M returned by F should comply with the
  28303. semantics expected by 'REALIGN_LOAD' described above. If this hook
  28304. is not defined, then ADDR will be used as the argument OFF to
  28305. 'REALIGN_LOAD', in which case the low log2(VS) - 1 bits of ADDR
  28306. will be considered.
  28307. -- Target Hook: int TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST (enum
  28308. vect_cost_for_stmt TYPE_OF_COST, tree VECTYPE, int MISALIGN)
  28309. Returns cost of different scalar or vector statements for
  28310. vectorization cost model. For vector memory operations the cost
  28311. may depend on type (VECTYPE) and misalignment value (MISALIGN).
  28312. -- Target Hook: HOST_WIDE_INT
  28313. TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT (const_tree TYPE)
  28314. This hook returns the preferred alignment in bits for accesses to
  28315. vectors of type TYPE in vectorized code. This might be less than
  28316. or greater than the ABI-defined value returned by
  28317. 'TARGET_VECTOR_ALIGNMENT'. It can be equal to the alignment of a
  28318. single element, in which case the vectorizer will not try to
  28319. optimize for alignment.
  28320. The default hook returns 'TYPE_ALIGN (TYPE)', which is correct for
  28321. most targets.
  28322. -- Target Hook: bool TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
  28323. (const_tree TYPE, bool IS_PACKED)
  28324. Return true if vector alignment is reachable (by peeling N
  28325. iterations) for the given scalar type TYPE. IS_PACKED is false if
  28326. the scalar access using TYPE is known to be naturally aligned.
  28327. -- Target Hook: bool TARGET_VECTORIZE_VEC_PERM_CONST (machine_mode
  28328. MODE, rtx OUTPUT, rtx IN0, rtx IN1, const vec_perm_indices
  28329. &SEL)
  28330. This hook is used to test whether the target can permute up to two
  28331. vectors of mode MODE using the permutation vector 'sel', and also
  28332. to emit such a permutation. In the former case IN0, IN1 and OUT
  28333. are all null. In the latter case IN0 and IN1 are the source
  28334. vectors and OUT is the destination vector; all three are registers
  28335. of mode MODE. IN1 is the same as IN0 if SEL describes a
  28336. permutation on one vector instead of two.
  28337. Return true if the operation is possible, emitting instructions for
  28338. it if rtxes are provided.
  28339. If the hook returns false for a mode with multibyte elements, GCC
  28340. will try the equivalent byte operation. If that also fails, it
  28341. will try forcing the selector into a register and using the
  28342. VEC_PERMMODE instruction pattern. There is no need for the hook to
  28343. handle these two implementation approaches itself.
  28344. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_CONVERSION (unsigned
  28345. CODE, tree DEST_TYPE, tree SRC_TYPE)
  28346. This hook should return the DECL of a function that implements
  28347. conversion of the input vector of type SRC_TYPE to type DEST_TYPE.
  28348. The value of CODE is one of the enumerators in 'enum tree_code' and
  28349. specifies how the conversion is to be applied (truncation,
  28350. rounding, etc.).
  28351. If this hook is defined, the autovectorizer will use the
  28352. 'TARGET_VECTORIZE_BUILTIN_CONVERSION' target hook when vectorizing
  28353. conversion. Otherwise, it will return 'NULL_TREE'.
  28354. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
  28355. (unsigned CODE, tree VEC_TYPE_OUT, tree VEC_TYPE_IN)
  28356. This hook should return the decl of a function that implements the
  28357. vectorized variant of the function with the 'combined_fn' code CODE
  28358. or 'NULL_TREE' if such a function is not available. The return
  28359. type of the vectorized function shall be of vector type
  28360. VEC_TYPE_OUT and the argument types should be VEC_TYPE_IN.
  28361. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION
  28362. (tree FNDECL, tree VEC_TYPE_OUT, tree VEC_TYPE_IN)
  28363. This hook should return the decl of a function that implements the
  28364. vectorized variant of target built-in function 'fndecl'. The
  28365. return type of the vectorized function shall be of vector type
  28366. VEC_TYPE_OUT and the argument types should be VEC_TYPE_IN.
  28367. -- Target Hook: bool TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
  28368. (machine_mode MODE, const_tree TYPE, int MISALIGNMENT, bool
  28369. IS_PACKED)
  28370. This hook should return true if the target supports misaligned
  28371. vector store/load of a specific factor denoted in the MISALIGNMENT
  28372. parameter. The vector store/load should be of machine mode MODE
  28373. and the elements in the vectors should be of type TYPE. IS_PACKED
  28374. parameter is true if the memory access is defined in a packed
  28375. struct.
  28376. -- Target Hook: machine_mode TARGET_VECTORIZE_PREFERRED_SIMD_MODE
  28377. (scalar_mode MODE)
  28378. This hook should return the preferred mode for vectorizing scalar
  28379. mode MODE. The default is equal to 'word_mode', because the
  28380. vectorizer can do some transformations even in absence of
  28381. specialized SIMD hardware.
  28382. -- Target Hook: machine_mode TARGET_VECTORIZE_SPLIT_REDUCTION
  28383. (machine_mode)
  28384. This hook should return the preferred mode to split the final
  28385. reduction step on MODE to. The reduction is then carried out
  28386. reducing upper against lower halves of vectors recursively until
  28387. the specified mode is reached. The default is MODE which means no
  28388. splitting.
  28389. -- Target Hook: void TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES
  28390. (vector_sizes *SIZES)
  28391. If the mode returned by 'TARGET_VECTORIZE_PREFERRED_SIMD_MODE' is
  28392. not the only one that is worth considering, this hook should add
  28393. all suitable vector sizes to SIZES, in order of decreasing
  28394. preference. The first one should be the size of
  28395. 'TARGET_VECTORIZE_PREFERRED_SIMD_MODE'.
  28396. The hook does not need to do anything if the vector returned by
  28397. 'TARGET_VECTORIZE_PREFERRED_SIMD_MODE' is the only one relevant for
  28398. autovectorization. The default implementation does nothing.
  28399. -- Target Hook: opt_machine_mode TARGET_VECTORIZE_GET_MASK_MODE
  28400. (poly_uint64 NUNITS, poly_uint64 LENGTH)
  28401. A vector mask is a value that holds one boolean result for every
  28402. element in a vector. This hook returns the machine mode that
  28403. should be used to represent such a mask when the vector in question
  28404. is LENGTH bytes long and contains NUNITS elements. The hook
  28405. returns an empty 'opt_machine_mode' if no such mode exists.
  28406. The default implementation returns the mode of an integer vector
  28407. that is LENGTH bytes long and that contains NUNITS elements, if
  28408. such a mode exists.
  28409. -- Target Hook: bool TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE (unsigned
  28410. IFN)
  28411. This hook returns true if masked internal function IFN (really of
  28412. type 'internal_fn') should be considered expensive when the mask is
  28413. all zeros. GCC can then try to branch around the instruction
  28414. instead.
  28415. -- Target Hook: void * TARGET_VECTORIZE_INIT_COST (struct loop
  28416. *LOOP_INFO)
  28417. This hook should initialize target-specific data structures in
  28418. preparation for modeling the costs of vectorizing a loop or basic
  28419. block. The default allocates three unsigned integers for
  28420. accumulating costs for the prologue, body, and epilogue of the loop
  28421. or basic block. If LOOP_INFO is non-NULL, it identifies the loop
  28422. being vectorized; otherwise a single block is being vectorized.
  28423. -- Target Hook: unsigned TARGET_VECTORIZE_ADD_STMT_COST (void *DATA,
  28424. int COUNT, enum vect_cost_for_stmt KIND, struct _stmt_vec_info
  28425. *STMT_INFO, int MISALIGN, enum vect_cost_model_location WHERE)
  28426. This hook should update the target-specific DATA in response to
  28427. adding COUNT copies of the given KIND of statement to a loop or
  28428. basic block. The default adds the builtin vectorizer cost for the
  28429. copies of the statement to the accumulator specified by WHERE, (the
  28430. prologue, body, or epilogue) and returns the amount added. The
  28431. return value should be viewed as a tentative cost that may later be
  28432. revised.
  28433. -- Target Hook: void TARGET_VECTORIZE_FINISH_COST (void *DATA, unsigned
  28434. *PROLOGUE_COST, unsigned *BODY_COST, unsigned *EPILOGUE_COST)
  28435. This hook should complete calculations of the cost of vectorizing a
  28436. loop or basic block based on DATA, and return the prologue, body,
  28437. and epilogue costs as unsigned integers. The default returns the
  28438. value of the three accumulators.
  28439. -- Target Hook: void TARGET_VECTORIZE_DESTROY_COST_DATA (void *DATA)
  28440. This hook should release DATA and any related data structures
  28441. allocated by TARGET_VECTORIZE_INIT_COST. The default releases the
  28442. accumulator.
  28443. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_GATHER (const_tree
  28444. MEM_VECTYPE, const_tree INDEX_TYPE, int SCALE)
  28445. Target builtin that implements vector gather operation.
  28446. MEM_VECTYPE is the vector type of the load and INDEX_TYPE is scalar
  28447. type of the index, scaled by SCALE. The default is 'NULL_TREE'
  28448. which means to not vectorize gather loads.
  28449. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_SCATTER (const_tree
  28450. VECTYPE, const_tree INDEX_TYPE, int SCALE)
  28451. Target builtin that implements vector scatter operation. VECTYPE
  28452. is the vector type of the store and INDEX_TYPE is scalar type of
  28453. the index, scaled by SCALE. The default is 'NULL_TREE' which means
  28454. to not vectorize scatter stores.
  28455. -- Target Hook: int TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN
  28456. (struct cgraph_node *, struct cgraph_simd_clone *, TREE, INT)
  28457. This hook should set VECSIZE_MANGLE, VECSIZE_INT, VECSIZE_FLOAT
  28458. fields in SIMD_CLONE structure pointed by CLONE_INFO argument and
  28459. also SIMDLEN field if it was previously 0. The hook should return
  28460. 0 if SIMD clones shouldn't be emitted, or number of VECSIZE_MANGLE
  28461. variants that should be emitted.
  28462. -- Target Hook: void TARGET_SIMD_CLONE_ADJUST (struct cgraph_node *)
  28463. This hook should add implicit 'attribute(target("..."))' attribute
  28464. to SIMD clone NODE if needed.
  28465. -- Target Hook: int TARGET_SIMD_CLONE_USABLE (struct cgraph_node *)
  28466. This hook should return -1 if SIMD clone NODE shouldn't be used in
  28467. vectorized loops in current function, or non-negative number if it
  28468. is usable. In that case, the smaller the number is, the more
  28469. desirable it is to use it.
  28470. -- Target Hook: int TARGET_SIMT_VF (void)
  28471. Return number of threads in SIMT thread group on the target.
  28472. -- Target Hook: bool TARGET_GOACC_VALIDATE_DIMS (tree DECL, int *DIMS,
  28473. int FN_LEVEL)
  28474. This hook should check the launch dimensions provided for an
  28475. OpenACC compute region, or routine. Defaulted values are
  28476. represented as -1 and non-constant values as 0. The FN_LEVEL is
  28477. negative for the function corresponding to the compute region. For
  28478. a routine is is the outermost level at which partitioned execution
  28479. may be spawned. The hook should verify non-default values. If
  28480. DECL is NULL, global defaults are being validated and unspecified
  28481. defaults should be filled in. Diagnostics should be issued as
  28482. appropriate. Return true, if changes have been made. You must
  28483. override this hook to provide dimensions larger than 1.
  28484. -- Target Hook: int TARGET_GOACC_DIM_LIMIT (int AXIS)
  28485. This hook should return the maximum size of a particular dimension,
  28486. or zero if unbounded.
  28487. -- Target Hook: bool TARGET_GOACC_FORK_JOIN (gcall *CALL, const int
  28488. *DIMS, bool IS_FORK)
  28489. This hook can be used to convert IFN_GOACC_FORK and IFN_GOACC_JOIN
  28490. function calls to target-specific gimple, or indicate whether they
  28491. should be retained. It is executed during the oacc_device_lower
  28492. pass. It should return true, if the call should be retained. It
  28493. should return false, if it is to be deleted (either because
  28494. target-specific gimple has been inserted before it, or there is no
  28495. need for it). The default hook returns false, if there are no RTL
  28496. expanders for them.
  28497. -- Target Hook: void TARGET_GOACC_REDUCTION (gcall *CALL)
  28498. This hook is used by the oacc_transform pass to expand calls to the
  28499. GOACC_REDUCTION internal function, into a sequence of gimple
  28500. instructions. CALL is gimple statement containing the call to the
  28501. function. This hook removes statement CALL after the expanded
  28502. sequence has been inserted. This hook is also responsible for
  28503. allocating any storage for reductions when necessary.
  28504. 
  28505. File: gccint.info, Node: Anchored Addresses, Next: Condition Code, Prev: Addressing Modes, Up: Target Macros
  28506. 18.14 Anchored Addresses
  28507. ========================
  28508. GCC usually addresses every static object as a separate entity. For
  28509. example, if we have:
  28510. static int a, b, c;
  28511. int foo (void) { return a + b + c; }
  28512. the code for 'foo' will usually calculate three separate symbolic
  28513. addresses: those of 'a', 'b' and 'c'. On some targets, it would be
  28514. better to calculate just one symbolic address and access the three
  28515. variables relative to it. The equivalent pseudocode would be something
  28516. like:
  28517. int foo (void)
  28518. {
  28519. register int *xr = &x;
  28520. return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
  28521. }
  28522. (which isn't valid C). We refer to shared addresses like 'x' as
  28523. "section anchors". Their use is controlled by '-fsection-anchors'.
  28524. The hooks below describe the target properties that GCC needs to know
  28525. in order to make effective use of section anchors. It won't use section
  28526. anchors at all unless either 'TARGET_MIN_ANCHOR_OFFSET' or
  28527. 'TARGET_MAX_ANCHOR_OFFSET' is set to a nonzero value.
  28528. -- Target Hook: HOST_WIDE_INT TARGET_MIN_ANCHOR_OFFSET
  28529. The minimum offset that should be applied to a section anchor. On
  28530. most targets, it should be the smallest offset that can be applied
  28531. to a base register while still giving a legitimate address for
  28532. every mode. The default value is 0.
  28533. -- Target Hook: HOST_WIDE_INT TARGET_MAX_ANCHOR_OFFSET
  28534. Like 'TARGET_MIN_ANCHOR_OFFSET', but the maximum (inclusive) offset
  28535. that should be applied to section anchors. The default value is 0.
  28536. -- Target Hook: void TARGET_ASM_OUTPUT_ANCHOR (rtx X)
  28537. Write the assembly code to define section anchor X, which is a
  28538. 'SYMBOL_REF' for which 'SYMBOL_REF_ANCHOR_P (X)' is true. The hook
  28539. is called with the assembly output position set to the beginning of
  28540. 'SYMBOL_REF_BLOCK (X)'.
  28541. If 'ASM_OUTPUT_DEF' is available, the hook's default definition
  28542. uses it to define the symbol as '. + SYMBOL_REF_BLOCK_OFFSET (X)'.
  28543. If 'ASM_OUTPUT_DEF' is not available, the hook's default definition
  28544. is 'NULL', which disables the use of section anchors altogether.
  28545. -- Target Hook: bool TARGET_USE_ANCHORS_FOR_SYMBOL_P (const_rtx X)
  28546. Return true if GCC should attempt to use anchors to access
  28547. 'SYMBOL_REF' X. You can assume 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)'
  28548. and '!SYMBOL_REF_ANCHOR_P (X)'.
  28549. The default version is correct for most targets, but you might need
  28550. to intercept this hook to handle things like target-specific
  28551. attributes or target-specific sections.
  28552. 
  28553. File: gccint.info, Node: Condition Code, Next: Costs, Prev: Anchored Addresses, Up: Target Macros
  28554. 18.15 Condition Code Status
  28555. ===========================
  28556. The macros in this section can be split in two families, according to
  28557. the two ways of representing condition codes in GCC.
  28558. The first representation is the so called '(cc0)' representation (*note
  28559. Jump Patterns::), where all instructions can have an implicit clobber of
  28560. the condition codes. The second is the condition code register
  28561. representation, which provides better schedulability for architectures
  28562. that do have a condition code register, but on which most instructions
  28563. do not affect it. The latter category includes most RISC machines.
  28564. The implicit clobbering poses a strong restriction on the placement of
  28565. the definition and use of the condition code. In the past the
  28566. definition and use were always adjacent. However, recent changes to
  28567. support trapping arithmatic may result in the definition and user being
  28568. in different blocks. Thus, there may be a 'NOTE_INSN_BASIC_BLOCK'
  28569. between them. Additionally, the definition may be the source of
  28570. exception handling edges.
  28571. These restrictions can prevent important optimizations on some
  28572. machines. For example, on the IBM RS/6000, there is a delay for taken
  28573. branches unless the condition code register is set three instructions
  28574. earlier than the conditional branch. The instruction scheduler cannot
  28575. perform this optimization if it is not permitted to separate the
  28576. definition and use of the condition code register.
  28577. For this reason, it is possible and suggested to use a register to
  28578. represent the condition code for new ports. If there is a specific
  28579. condition code register in the machine, use a hard register. If the
  28580. condition code or comparison result can be placed in any general
  28581. register, or if there are multiple condition registers, use a pseudo
  28582. register. Registers used to store the condition code value will usually
  28583. have a mode that is in class 'MODE_CC'.
  28584. Alternatively, you can use 'BImode' if the comparison operator is
  28585. specified already in the compare instruction. In this case, you are not
  28586. interested in most macros in this section.
  28587. * Menu:
  28588. * CC0 Condition Codes:: Old style representation of condition codes.
  28589. * MODE_CC Condition Codes:: Modern representation of condition codes.
  28590. 
  28591. File: gccint.info, Node: CC0 Condition Codes, Next: MODE_CC Condition Codes, Up: Condition Code
  28592. 18.15.1 Representation of condition codes using '(cc0)'
  28593. -------------------------------------------------------
  28594. The file 'conditions.h' defines a variable 'cc_status' to describe how
  28595. the condition code was computed (in case the interpretation of the
  28596. condition code depends on the instruction that it was set by). This
  28597. variable contains the RTL expressions on which the condition code is
  28598. currently based, and several standard flags.
  28599. Sometimes additional machine-specific flags must be defined in the
  28600. machine description header file. It can also add additional
  28601. machine-specific information by defining 'CC_STATUS_MDEP'.
  28602. -- Macro: CC_STATUS_MDEP
  28603. C code for a data type which is used for declaring the 'mdep'
  28604. component of 'cc_status'. It defaults to 'int'.
  28605. This macro is not used on machines that do not use 'cc0'.
  28606. -- Macro: CC_STATUS_MDEP_INIT
  28607. A C expression to initialize the 'mdep' field to "empty". The
  28608. default definition does nothing, since most machines don't use the
  28609. field anyway. If you want to use the field, you should probably
  28610. define this macro to initialize it.
  28611. This macro is not used on machines that do not use 'cc0'.
  28612. -- Macro: NOTICE_UPDATE_CC (EXP, INSN)
  28613. A C compound statement to set the components of 'cc_status'
  28614. appropriately for an insn INSN whose body is EXP. It is this
  28615. macro's responsibility to recognize insns that set the condition
  28616. code as a byproduct of other activity as well as those that
  28617. explicitly set '(cc0)'.
  28618. This macro is not used on machines that do not use 'cc0'.
  28619. If there are insns that do not set the condition code but do alter
  28620. other machine registers, this macro must check to see whether they
  28621. invalidate the expressions that the condition code is recorded as
  28622. reflecting. For example, on the 68000, insns that store in address
  28623. registers do not set the condition code, which means that usually
  28624. 'NOTICE_UPDATE_CC' can leave 'cc_status' unaltered for such insns.
  28625. But suppose that the previous insn set the condition code based on
  28626. location 'a4@(102)' and the current insn stores a new value in
  28627. 'a4'. Although the condition code is not changed by this, it will
  28628. no longer be true that it reflects the contents of 'a4@(102)'.
  28629. Therefore, 'NOTICE_UPDATE_CC' must alter 'cc_status' in this case
  28630. to say that nothing is known about the condition code value.
  28631. The definition of 'NOTICE_UPDATE_CC' must be prepared to deal with
  28632. the results of peephole optimization: insns whose patterns are
  28633. 'parallel' RTXs containing various 'reg', 'mem' or constants which
  28634. are just the operands. The RTL structure of these insns is not
  28635. sufficient to indicate what the insns actually do. What
  28636. 'NOTICE_UPDATE_CC' should do when it sees one is just to run
  28637. 'CC_STATUS_INIT'.
  28638. A possible definition of 'NOTICE_UPDATE_CC' is to call a function
  28639. that looks at an attribute (*note Insn Attributes::) named, for
  28640. example, 'cc'. This avoids having detailed information about
  28641. patterns in two places, the 'md' file and in 'NOTICE_UPDATE_CC'.
  28642. 
  28643. File: gccint.info, Node: MODE_CC Condition Codes, Prev: CC0 Condition Codes, Up: Condition Code
  28644. 18.15.2 Representation of condition codes using registers
  28645. ---------------------------------------------------------
  28646. -- Macro: SELECT_CC_MODE (OP, X, Y)
  28647. On many machines, the condition code may be produced by other
  28648. instructions than compares, for example the branch can use directly
  28649. the condition code set by a subtract instruction. However, on some
  28650. machines when the condition code is set this way some bits (such as
  28651. the overflow bit) are not set in the same way as a test
  28652. instruction, so that a different branch instruction must be used
  28653. for some conditional branches. When this happens, use the machine
  28654. mode of the condition code register to record different formats of
  28655. the condition code register. Modes can also be used to record
  28656. which compare instruction (e.g. a signed or an unsigned
  28657. comparison) produced the condition codes.
  28658. If other modes than 'CCmode' are required, add them to
  28659. 'MACHINE-modes.def' and define 'SELECT_CC_MODE' to choose a mode
  28660. given an operand of a compare. This is needed because the modes
  28661. have to be chosen not only during RTL generation but also, for
  28662. example, by instruction combination. The result of
  28663. 'SELECT_CC_MODE' should be consistent with the mode used in the
  28664. patterns; for example to support the case of the add on the SPARC
  28665. discussed above, we have the pattern
  28666. (define_insn ""
  28667. [(set (reg:CCNZ 0)
  28668. (compare:CCNZ
  28669. (plus:SI (match_operand:SI 0 "register_operand" "%r")
  28670. (match_operand:SI 1 "arith_operand" "rI"))
  28671. (const_int 0)))]
  28672. ""
  28673. "...")
  28674. together with a 'SELECT_CC_MODE' that returns 'CCNZmode' for
  28675. comparisons whose argument is a 'plus':
  28676. #define SELECT_CC_MODE(OP,X,Y) \
  28677. (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
  28678. ? ((OP == LT || OP == LE || OP == GT || OP == GE) \
  28679. ? CCFPEmode : CCFPmode) \
  28680. : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
  28681. || GET_CODE (X) == NEG || GET_CODE (x) == ASHIFT) \
  28682. ? CCNZmode : CCmode))
  28683. Another reason to use modes is to retain information on which
  28684. operands were used by the comparison; see 'REVERSIBLE_CC_MODE'
  28685. later in this section.
  28686. You should define this macro if and only if you define extra CC
  28687. modes in 'MACHINE-modes.def'.
  28688. -- Target Hook: void TARGET_CANONICALIZE_COMPARISON (int *CODE, rtx
  28689. *OP0, rtx *OP1, bool OP0_PRESERVE_VALUE)
  28690. On some machines not all possible comparisons are defined, but you
  28691. can convert an invalid comparison into a valid one. For example,
  28692. the Alpha does not have a 'GT' comparison, but you can use an 'LT'
  28693. comparison instead and swap the order of the operands.
  28694. On such machines, implement this hook to do any required
  28695. conversions. CODE is the initial comparison code and OP0 and OP1
  28696. are the left and right operands of the comparison, respectively.
  28697. If OP0_PRESERVE_VALUE is 'true' the implementation is not allowed
  28698. to change the value of OP0 since the value might be used in RTXs
  28699. which aren't comparisons. E.g. the implementation is not allowed
  28700. to swap operands in that case.
  28701. GCC will not assume that the comparison resulting from this macro
  28702. is valid but will see if the resulting insn matches a pattern in
  28703. the 'md' file.
  28704. You need not to implement this hook if it would never change the
  28705. comparison code or operands.
  28706. -- Macro: REVERSIBLE_CC_MODE (MODE)
  28707. A C expression whose value is one if it is always safe to reverse a
  28708. comparison whose mode is MODE. If 'SELECT_CC_MODE' can ever return
  28709. MODE for a floating-point inequality comparison, then
  28710. 'REVERSIBLE_CC_MODE (MODE)' must be zero.
  28711. You need not define this macro if it would always returns zero or
  28712. if the floating-point format is anything other than
  28713. 'IEEE_FLOAT_FORMAT'. For example, here is the definition used on
  28714. the SPARC, where floating-point inequality comparisons are given
  28715. either 'CCFPEmode' or 'CCFPmode':
  28716. #define REVERSIBLE_CC_MODE(MODE) \
  28717. ((MODE) != CCFPEmode && (MODE) != CCFPmode)
  28718. -- Macro: REVERSE_CONDITION (CODE, MODE)
  28719. A C expression whose value is reversed condition code of the CODE
  28720. for comparison done in CC_MODE MODE. The macro is used only in
  28721. case 'REVERSIBLE_CC_MODE (MODE)' is nonzero. Define this macro in
  28722. case machine has some non-standard way how to reverse certain
  28723. conditionals. For instance in case all floating point conditions
  28724. are non-trapping, compiler may freely convert unordered compares to
  28725. ordered ones. Then definition may look like:
  28726. #define REVERSE_CONDITION(CODE, MODE) \
  28727. ((MODE) != CCFPmode ? reverse_condition (CODE) \
  28728. : reverse_condition_maybe_unordered (CODE))
  28729. -- Target Hook: bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int
  28730. *P1, unsigned int *P2)
  28731. On targets which do not use '(cc0)', and which use a hard register
  28732. rather than a pseudo-register to hold condition codes, the regular
  28733. CSE passes are often not able to identify cases in which the hard
  28734. register is set to a common value. Use this hook to enable a small
  28735. pass which optimizes such cases. This hook should return true to
  28736. enable this pass, and it should set the integers to which its
  28737. arguments point to the hard register numbers used for condition
  28738. codes. When there is only one such register, as is true on most
  28739. systems, the integer pointed to by P2 should be set to
  28740. 'INVALID_REGNUM'.
  28741. The default version of this hook returns false.
  28742. -- Target Hook: machine_mode TARGET_CC_MODES_COMPATIBLE (machine_mode
  28743. M1, machine_mode M2)
  28744. On targets which use multiple condition code modes in class
  28745. 'MODE_CC', it is sometimes the case that a comparison can be
  28746. validly done in more than one mode. On such a system, define this
  28747. target hook to take two mode arguments and to return a mode in
  28748. which both comparisons may be validly done. If there is no such
  28749. mode, return 'VOIDmode'.
  28750. The default version of this hook checks whether the modes are the
  28751. same. If they are, it returns that mode. If they are different,
  28752. it returns 'VOIDmode'.
  28753. -- Target Hook: unsigned int TARGET_FLAGS_REGNUM
  28754. If the target has a dedicated flags register, and it needs to use
  28755. the post-reload comparison elimination pass, then this value should
  28756. be set appropriately.
  28757. 
  28758. File: gccint.info, Node: Costs, Next: Scheduling, Prev: Condition Code, Up: Target Macros
  28759. 18.16 Describing Relative Costs of Operations
  28760. =============================================
  28761. These macros let you describe the relative speed of various operations
  28762. on the target machine.
  28763. -- Macro: REGISTER_MOVE_COST (MODE, FROM, TO)
  28764. A C expression for the cost of moving data of mode MODE from a
  28765. register in class FROM to one in class TO. The classes are
  28766. expressed using the enumeration values such as 'GENERAL_REGS'. A
  28767. value of 2 is the default; other values are interpreted relative to
  28768. that.
  28769. It is not required that the cost always equal 2 when FROM is the
  28770. same as TO; on some machines it is expensive to move between
  28771. registers if they are not general registers.
  28772. If reload sees an insn consisting of a single 'set' between two
  28773. hard registers, and if 'REGISTER_MOVE_COST' applied to their
  28774. classes returns a value of 2, reload does not check to ensure that
  28775. the constraints of the insn are met. Setting a cost of other than
  28776. 2 will allow reload to verify that the constraints are met. You
  28777. should do this if the 'movM' pattern's constraints do not allow
  28778. such copying.
  28779. These macros are obsolete, new ports should use the target hook
  28780. 'TARGET_REGISTER_MOVE_COST' instead.
  28781. -- Target Hook: int TARGET_REGISTER_MOVE_COST (machine_mode MODE,
  28782. reg_class_t FROM, reg_class_t TO)
  28783. This target hook should return the cost of moving data of mode MODE
  28784. from a register in class FROM to one in class TO. The classes are
  28785. expressed using the enumeration values such as 'GENERAL_REGS'. A
  28786. value of 2 is the default; other values are interpreted relative to
  28787. that.
  28788. It is not required that the cost always equal 2 when FROM is the
  28789. same as TO; on some machines it is expensive to move between
  28790. registers if they are not general registers.
  28791. If reload sees an insn consisting of a single 'set' between two
  28792. hard registers, and if 'TARGET_REGISTER_MOVE_COST' applied to their
  28793. classes returns a value of 2, reload does not check to ensure that
  28794. the constraints of the insn are met. Setting a cost of other than
  28795. 2 will allow reload to verify that the constraints are met. You
  28796. should do this if the 'movM' pattern's constraints do not allow
  28797. such copying.
  28798. The default version of this function returns 2.
  28799. -- Macro: MEMORY_MOVE_COST (MODE, CLASS, IN)
  28800. A C expression for the cost of moving data of mode MODE between a
  28801. register of class CLASS and memory; IN is zero if the value is to
  28802. be written to memory, nonzero if it is to be read in. This cost is
  28803. relative to those in 'REGISTER_MOVE_COST'. If moving between
  28804. registers and memory is more expensive than between two registers,
  28805. you should define this macro to express the relative cost.
  28806. If you do not define this macro, GCC uses a default cost of 4 plus
  28807. the cost of copying via a secondary reload register, if one is
  28808. needed. If your machine requires a secondary reload register to
  28809. copy between memory and a register of CLASS but the reload
  28810. mechanism is more complex than copying via an intermediate, define
  28811. this macro to reflect the actual cost of the move.
  28812. GCC defines the function 'memory_move_secondary_cost' if secondary
  28813. reloads are needed. It computes the costs due to copying via a
  28814. secondary register. If your machine copies from memory using a
  28815. secondary register in the conventional way but the default base
  28816. value of 4 is not correct for your machine, define this macro to
  28817. add some other value to the result of that function. The arguments
  28818. to that function are the same as to this macro.
  28819. These macros are obsolete, new ports should use the target hook
  28820. 'TARGET_MEMORY_MOVE_COST' instead.
  28821. -- Target Hook: int TARGET_MEMORY_MOVE_COST (machine_mode MODE,
  28822. reg_class_t RCLASS, bool IN)
  28823. This target hook should return the cost of moving data of mode MODE
  28824. between a register of class RCLASS and memory; IN is 'false' if the
  28825. value is to be written to memory, 'true' if it is to be read in.
  28826. This cost is relative to those in 'TARGET_REGISTER_MOVE_COST'. If
  28827. moving between registers and memory is more expensive than between
  28828. two registers, you should add this target hook to express the
  28829. relative cost.
  28830. If you do not add this target hook, GCC uses a default cost of 4
  28831. plus the cost of copying via a secondary reload register, if one is
  28832. needed. If your machine requires a secondary reload register to
  28833. copy between memory and a register of RCLASS but the reload
  28834. mechanism is more complex than copying via an intermediate, use
  28835. this target hook to reflect the actual cost of the move.
  28836. GCC defines the function 'memory_move_secondary_cost' if secondary
  28837. reloads are needed. It computes the costs due to copying via a
  28838. secondary register. If your machine copies from memory using a
  28839. secondary register in the conventional way but the default base
  28840. value of 4 is not correct for your machine, use this target hook to
  28841. add some other value to the result of that function. The arguments
  28842. to that function are the same as to this target hook.
  28843. -- Macro: BRANCH_COST (SPEED_P, PREDICTABLE_P)
  28844. A C expression for the cost of a branch instruction. A value of 1
  28845. is the default; other values are interpreted relative to that.
  28846. Parameter SPEED_P is true when the branch in question should be
  28847. optimized for speed. When it is false, 'BRANCH_COST' should return
  28848. a value optimal for code size rather than performance.
  28849. PREDICTABLE_P is true for well-predicted branches. On many
  28850. architectures the 'BRANCH_COST' can be reduced then.
  28851. Here are additional macros which do not specify precise relative costs,
  28852. but only that certain actions are more expensive than GCC would
  28853. ordinarily expect.
  28854. -- Macro: SLOW_BYTE_ACCESS
  28855. Define this macro as a C expression which is nonzero if accessing
  28856. less than a word of memory (i.e. a 'char' or a 'short') is no
  28857. faster than accessing a word of memory, i.e., if such access
  28858. require more than one instruction or if there is no difference in
  28859. cost between byte and (aligned) word loads.
  28860. When this macro is not defined, the compiler will access a field by
  28861. finding the smallest containing object; when it is defined, a
  28862. fullword load will be used if alignment permits. Unless bytes
  28863. accesses are faster than word accesses, using word accesses is
  28864. preferable since it may eliminate subsequent memory access if
  28865. subsequent accesses occur to other fields in the same word of the
  28866. structure, but to different bytes.
  28867. -- Target Hook: bool TARGET_SLOW_UNALIGNED_ACCESS (machine_mode MODE,
  28868. unsigned int ALIGN)
  28869. This hook returns true if memory accesses described by the MODE and
  28870. ALIGNMENT parameters have a cost many times greater than aligned
  28871. accesses, for example if they are emulated in a trap handler. This
  28872. hook is invoked only for unaligned accesses, i.e. when 'ALIGNMENT
  28873. < GET_MODE_ALIGNMENT (MODE)'.
  28874. When this hook returns true, the compiler will act as if
  28875. 'STRICT_ALIGNMENT' were true when generating code for block moves.
  28876. This can cause significantly more instructions to be produced.
  28877. Therefore, do not make this hook return true if unaligned accesses
  28878. only add a cycle or two to the time for a memory access.
  28879. The hook must return true whenever 'STRICT_ALIGNMENT' is true. The
  28880. default implementation returns 'STRICT_ALIGNMENT'.
  28881. -- Macro: MOVE_RATIO (SPEED)
  28882. The threshold of number of scalar memory-to-memory move insns,
  28883. _below_ which a sequence of insns should be generated instead of a
  28884. string move insn or a library call. Increasing the value will
  28885. always make code faster, but eventually incurs high cost in
  28886. increased code size.
  28887. Note that on machines where the corresponding move insn is a
  28888. 'define_expand' that emits a sequence of insns, this macro counts
  28889. the number of such sequences.
  28890. The parameter SPEED is true if the code is currently being
  28891. optimized for speed rather than size.
  28892. If you don't define this, a reasonable default is used.
  28893. -- Target Hook: bool TARGET_USE_BY_PIECES_INFRASTRUCTURE_P (unsigned
  28894. HOST_WIDE_INT SIZE, unsigned int ALIGNMENT, enum
  28895. by_pieces_operation OP, bool SPEED_P)
  28896. GCC will attempt several strategies when asked to copy between two
  28897. areas of memory, or to set, clear or store to memory, for example
  28898. when copying a 'struct'. The 'by_pieces' infrastructure implements
  28899. such memory operations as a sequence of load, store or move insns.
  28900. Alternate strategies are to expand the 'movmem' or 'setmem' optabs,
  28901. to emit a library call, or to emit unit-by-unit, loop-based
  28902. operations.
  28903. This target hook should return true if, for a memory operation with
  28904. a given SIZE and ALIGNMENT, using the 'by_pieces' infrastructure is
  28905. expected to result in better code generation. Both SIZE and
  28906. ALIGNMENT are measured in terms of storage units.
  28907. The parameter OP is one of: 'CLEAR_BY_PIECES', 'MOVE_BY_PIECES',
  28908. 'SET_BY_PIECES', 'STORE_BY_PIECES' or 'COMPARE_BY_PIECES'. These
  28909. describe the type of memory operation under consideration.
  28910. The parameter SPEED_P is true if the code is currently being
  28911. optimized for speed rather than size.
  28912. Returning true for higher values of SIZE can improve code
  28913. generation for speed if the target does not provide an
  28914. implementation of the 'movmem' or 'setmem' standard names, if the
  28915. 'movmem' or 'setmem' implementation would be more expensive than a
  28916. sequence of insns, or if the overhead of a library call would
  28917. dominate that of the body of the memory operation.
  28918. Returning true for higher values of 'size' may also cause an
  28919. increase in code size, for example where the number of insns
  28920. emitted to perform a move would be greater than that of a library
  28921. call.
  28922. -- Target Hook: int TARGET_COMPARE_BY_PIECES_BRANCH_RATIO (machine_mode
  28923. MODE)
  28924. When expanding a block comparison in MODE, gcc can try to reduce
  28925. the number of branches at the expense of more memory operations.
  28926. This hook allows the target to override the default choice. It
  28927. should return the factor by which branches should be reduced over
  28928. the plain expansion with one comparison per MODE-sized piece. A
  28929. port can also prevent a particular mode from being used for block
  28930. comparisons by returning a negative number from this hook.
  28931. -- Macro: MOVE_MAX_PIECES
  28932. A C expression used by 'move_by_pieces' to determine the largest
  28933. unit a load or store used to copy memory is. Defaults to
  28934. 'MOVE_MAX'.
  28935. -- Macro: STORE_MAX_PIECES
  28936. A C expression used by 'store_by_pieces' to determine the largest
  28937. unit a store used to memory is. Defaults to 'MOVE_MAX_PIECES', or
  28938. two times the size of 'HOST_WIDE_INT', whichever is smaller.
  28939. -- Macro: COMPARE_MAX_PIECES
  28940. A C expression used by 'compare_by_pieces' to determine the largest
  28941. unit a load or store used to compare memory is. Defaults to
  28942. 'MOVE_MAX_PIECES'.
  28943. -- Macro: CLEAR_RATIO (SPEED)
  28944. The threshold of number of scalar move insns, _below_ which a
  28945. sequence of insns should be generated to clear memory instead of a
  28946. string clear insn or a library call. Increasing the value will
  28947. always make code faster, but eventually incurs high cost in
  28948. increased code size.
  28949. The parameter SPEED is true if the code is currently being
  28950. optimized for speed rather than size.
  28951. If you don't define this, a reasonable default is used.
  28952. -- Macro: SET_RATIO (SPEED)
  28953. The threshold of number of scalar move insns, _below_ which a
  28954. sequence of insns should be generated to set memory to a constant
  28955. value, instead of a block set insn or a library call. Increasing
  28956. the value will always make code faster, but eventually incurs high
  28957. cost in increased code size.
  28958. The parameter SPEED is true if the code is currently being
  28959. optimized for speed rather than size.
  28960. If you don't define this, it defaults to the value of 'MOVE_RATIO'.
  28961. -- Macro: USE_LOAD_POST_INCREMENT (MODE)
  28962. A C expression used to determine whether a load postincrement is a
  28963. good thing to use for a given mode. Defaults to the value of
  28964. 'HAVE_POST_INCREMENT'.
  28965. -- Macro: USE_LOAD_POST_DECREMENT (MODE)
  28966. A C expression used to determine whether a load postdecrement is a
  28967. good thing to use for a given mode. Defaults to the value of
  28968. 'HAVE_POST_DECREMENT'.
  28969. -- Macro: USE_LOAD_PRE_INCREMENT (MODE)
  28970. A C expression used to determine whether a load preincrement is a
  28971. good thing to use for a given mode. Defaults to the value of
  28972. 'HAVE_PRE_INCREMENT'.
  28973. -- Macro: USE_LOAD_PRE_DECREMENT (MODE)
  28974. A C expression used to determine whether a load predecrement is a
  28975. good thing to use for a given mode. Defaults to the value of
  28976. 'HAVE_PRE_DECREMENT'.
  28977. -- Macro: USE_STORE_POST_INCREMENT (MODE)
  28978. A C expression used to determine whether a store postincrement is a
  28979. good thing to use for a given mode. Defaults to the value of
  28980. 'HAVE_POST_INCREMENT'.
  28981. -- Macro: USE_STORE_POST_DECREMENT (MODE)
  28982. A C expression used to determine whether a store postdecrement is a
  28983. good thing to use for a given mode. Defaults to the value of
  28984. 'HAVE_POST_DECREMENT'.
  28985. -- Macro: USE_STORE_PRE_INCREMENT (MODE)
  28986. This macro is used to determine whether a store preincrement is a
  28987. good thing to use for a given mode. Defaults to the value of
  28988. 'HAVE_PRE_INCREMENT'.
  28989. -- Macro: USE_STORE_PRE_DECREMENT (MODE)
  28990. This macro is used to determine whether a store predecrement is a
  28991. good thing to use for a given mode. Defaults to the value of
  28992. 'HAVE_PRE_DECREMENT'.
  28993. -- Macro: NO_FUNCTION_CSE
  28994. Define this macro to be true if it is as good or better to call a
  28995. constant function address than to call an address kept in a
  28996. register.
  28997. -- Macro: LOGICAL_OP_NON_SHORT_CIRCUIT
  28998. Define this macro if a non-short-circuit operation produced by
  28999. 'fold_range_test ()' is optimal. This macro defaults to true if
  29000. 'BRANCH_COST' is greater than or equal to the value 2.
  29001. -- Target Hook: bool TARGET_OPTAB_SUPPORTED_P (int OP, machine_mode
  29002. MODE1, machine_mode MODE2, optimization_type OPT_TYPE)
  29003. Return true if the optimizers should use optab OP with modes MODE1
  29004. and MODE2 for optimization type OPT_TYPE. The optab is known to
  29005. have an associated '.md' instruction whose C condition is true.
  29006. MODE2 is only meaningful for conversion optabs; for direct optabs
  29007. it is a copy of MODE1.
  29008. For example, when called with OP equal to 'rint_optab' and MODE1
  29009. equal to 'DFmode', the hook should say whether the optimizers
  29010. should use optab 'rintdf2'.
  29011. The default hook returns true for all inputs.
  29012. -- Target Hook: bool TARGET_RTX_COSTS (rtx X, machine_mode MODE, int
  29013. OUTER_CODE, int OPNO, int *TOTAL, bool SPEED)
  29014. This target hook describes the relative costs of RTL expressions.
  29015. The cost may depend on the precise form of the expression, which is
  29016. available for examination in X, and the fact that X appears as
  29017. operand OPNO of an expression with rtx code OUTER_CODE. That is,
  29018. the hook can assume that there is some rtx Y such that 'GET_CODE
  29019. (Y) == OUTER_CODE' and such that either (a) 'XEXP (Y, OPNO) == X'
  29020. or (b) 'XVEC (Y, OPNO)' contains X.
  29021. MODE is X's machine mode, or for cases like 'const_int' that do not
  29022. have a mode, the mode in which X is used.
  29023. In implementing this hook, you can use the construct 'COSTS_N_INSNS
  29024. (N)' to specify a cost equal to N fast instructions.
  29025. On entry to the hook, '*TOTAL' contains a default estimate for the
  29026. cost of the expression. The hook should modify this value as
  29027. necessary. Traditionally, the default costs are 'COSTS_N_INSNS
  29028. (5)' for multiplications, 'COSTS_N_INSNS (7)' for division and
  29029. modulus operations, and 'COSTS_N_INSNS (1)' for all other
  29030. operations.
  29031. When optimizing for code size, i.e. when 'speed' is false, this
  29032. target hook should be used to estimate the relative size cost of an
  29033. expression, again relative to 'COSTS_N_INSNS'.
  29034. The hook returns true when all subexpressions of X have been
  29035. processed, and false when 'rtx_cost' should recurse.
  29036. -- Target Hook: int TARGET_ADDRESS_COST (rtx ADDRESS, machine_mode
  29037. MODE, addr_space_t AS, bool SPEED)
  29038. This hook computes the cost of an addressing mode that contains
  29039. ADDRESS. If not defined, the cost is computed from the ADDRESS
  29040. expression and the 'TARGET_RTX_COST' hook.
  29041. For most CISC machines, the default cost is a good approximation of
  29042. the true cost of the addressing mode. However, on RISC machines,
  29043. all instructions normally have the same length and execution time.
  29044. Hence all addresses will have equal costs.
  29045. In cases where more than one form of an address is known, the form
  29046. with the lowest cost will be used. If multiple forms have the
  29047. same, lowest, cost, the one that is the most complex will be used.
  29048. For example, suppose an address that is equal to the sum of a
  29049. register and a constant is used twice in the same basic block.
  29050. When this macro is not defined, the address will be computed in a
  29051. register and memory references will be indirect through that
  29052. register. On machines where the cost of the addressing mode
  29053. containing the sum is no higher than that of a simple indirect
  29054. reference, this will produce an additional instruction and possibly
  29055. require an additional register. Proper specification of this macro
  29056. eliminates this overhead for such machines.
  29057. This hook is never called with an invalid address.
  29058. On machines where an address involving more than one register is as
  29059. cheap as an address computation involving only one register,
  29060. defining 'TARGET_ADDRESS_COST' to reflect this can cause two
  29061. registers to be live over a region of code where only one would
  29062. have been if 'TARGET_ADDRESS_COST' were not defined in that manner.
  29063. This effect should be considered in the definition of this macro.
  29064. Equivalent costs should probably only be given to addresses with
  29065. different numbers of registers on machines with lots of registers.
  29066. -- Target Hook: int TARGET_INSN_COST (rtx_insn *INSN, bool SPEED)
  29067. This target hook describes the relative costs of RTL instructions.
  29068. In implementing this hook, you can use the construct 'COSTS_N_INSNS
  29069. (N)' to specify a cost equal to N fast instructions.
  29070. When optimizing for code size, i.e. when 'speed' is false, this
  29071. target hook should be used to estimate the relative size cost of an
  29072. expression, again relative to 'COSTS_N_INSNS'.
  29073. -- Target Hook: unsigned int TARGET_MAX_NOCE_IFCVT_SEQ_COST (edge E)
  29074. This hook returns a value in the same units as 'TARGET_RTX_COSTS',
  29075. giving the maximum acceptable cost for a sequence generated by the
  29076. RTL if-conversion pass when conditional execution is not available.
  29077. The RTL if-conversion pass attempts to convert conditional
  29078. operations that would require a branch to a series of unconditional
  29079. operations and 'movMODEcc' insns. This hook returns the maximum
  29080. cost of the unconditional instructions and the 'movMODEcc' insns.
  29081. RTL if-conversion is cancelled if the cost of the converted
  29082. sequence is greater than the value returned by this hook.
  29083. 'e' is the edge between the basic block containing the conditional
  29084. branch to the basic block which would be executed if the condition
  29085. were true.
  29086. The default implementation of this hook uses the
  29087. 'max-rtl-if-conversion-[un]predictable' parameters if they are set,
  29088. and uses a multiple of 'BRANCH_COST' otherwise.
  29089. -- Target Hook: bool TARGET_NOCE_CONVERSION_PROFITABLE_P (rtx_insn
  29090. *SEQ, struct noce_if_info *IF_INFO)
  29091. This hook returns true if the instruction sequence 'seq' is a good
  29092. candidate as a replacement for the if-convertible sequence
  29093. described in 'if_info'.
  29094. -- Target Hook: bool TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P (void)
  29095. This predicate controls the use of the eager delay slot filler to
  29096. disallow speculatively executed instructions being placed in delay
  29097. slots. Targets such as certain MIPS architectures possess both
  29098. branches with and without delay slots. As the eager delay slot
  29099. filler can decrease performance, disabling it is beneficial when
  29100. ordinary branches are available. Use of delay slot branches filled
  29101. using the basic filler is often still desirable as the delay slot
  29102. can hide a pipeline bubble.
  29103. -- Target Hook: HOST_WIDE_INT TARGET_ESTIMATED_POLY_VALUE (poly_int64
  29104. VAL)
  29105. Return an estimate of the runtime value of VAL, for use in things
  29106. like cost calculations or profiling frequencies. The default
  29107. implementation returns the lowest possible value of VAL.
  29108. 
  29109. File: gccint.info, Node: Scheduling, Next: Sections, Prev: Costs, Up: Target Macros
  29110. 18.17 Adjusting the Instruction Scheduler
  29111. =========================================
  29112. The instruction scheduler may need a fair amount of machine-specific
  29113. adjustment in order to produce good code. GCC provides several target
  29114. hooks for this purpose. It is usually enough to define just a few of
  29115. them: try the first ones in this list first.
  29116. -- Target Hook: int TARGET_SCHED_ISSUE_RATE (void)
  29117. This hook returns the maximum number of instructions that can ever
  29118. issue at the same time on the target machine. The default is one.
  29119. Although the insn scheduler can define itself the possibility of
  29120. issue an insn on the same cycle, the value can serve as an
  29121. additional constraint to issue insns on the same simulated
  29122. processor cycle (see hooks 'TARGET_SCHED_REORDER' and
  29123. 'TARGET_SCHED_REORDER2'). This value must be constant over the
  29124. entire compilation. If you need it to vary depending on what the
  29125. instructions are, you must use 'TARGET_SCHED_VARIABLE_ISSUE'.
  29126. -- Target Hook: int TARGET_SCHED_VARIABLE_ISSUE (FILE *FILE, int
  29127. VERBOSE, rtx_insn *INSN, int MORE)
  29128. This hook is executed by the scheduler after it has scheduled an
  29129. insn from the ready list. It should return the number of insns
  29130. which can still be issued in the current cycle. The default is
  29131. 'MORE - 1' for insns other than 'CLOBBER' and 'USE', which normally
  29132. are not counted against the issue rate. You should define this
  29133. hook if some insns take more machine resources than others, so that
  29134. fewer insns can follow them in the same cycle. FILE is either a
  29135. null pointer, or a stdio stream to write any debug output to.
  29136. VERBOSE is the verbose level provided by '-fsched-verbose-N'. INSN
  29137. is the instruction that was scheduled.
  29138. -- Target Hook: int TARGET_SCHED_ADJUST_COST (rtx_insn *INSN, int
  29139. DEP_TYPE1, rtx_insn *DEP_INSN, int COST, unsigned int DW)
  29140. This function corrects the value of COST based on the relationship
  29141. between INSN and DEP_INSN through a dependence of type dep_type,
  29142. and strength DW. It should return the new value. The default is
  29143. to make no adjustment to COST. This can be used for example to
  29144. specify to the scheduler using the traditional pipeline description
  29145. that an output- or anti-dependence does not incur the same cost as
  29146. a data-dependence. If the scheduler using the automaton based
  29147. pipeline description, the cost of anti-dependence is zero and the
  29148. cost of output-dependence is maximum of one and the difference of
  29149. latency times of the first and the second insns. If these values
  29150. are not acceptable, you could use the hook to modify them too. See
  29151. also *note Processor pipeline description::.
  29152. -- Target Hook: int TARGET_SCHED_ADJUST_PRIORITY (rtx_insn *INSN, int
  29153. PRIORITY)
  29154. This hook adjusts the integer scheduling priority PRIORITY of INSN.
  29155. It should return the new priority. Increase the priority to
  29156. execute INSN earlier, reduce the priority to execute INSN later.
  29157. Do not define this hook if you do not need to adjust the scheduling
  29158. priorities of insns.
  29159. -- Target Hook: int TARGET_SCHED_REORDER (FILE *FILE, int VERBOSE,
  29160. rtx_insn **READY, int *N_READYP, int CLOCK)
  29161. This hook is executed by the scheduler after it has scheduled the
  29162. ready list, to allow the machine description to reorder it (for
  29163. example to combine two small instructions together on 'VLIW'
  29164. machines). FILE is either a null pointer, or a stdio stream to
  29165. write any debug output to. VERBOSE is the verbose level provided
  29166. by '-fsched-verbose-N'. READY is a pointer to the ready list of
  29167. instructions that are ready to be scheduled. N_READYP is a pointer
  29168. to the number of elements in the ready list. The scheduler reads
  29169. the ready list in reverse order, starting with READY[*N_READYP - 1]
  29170. and going to READY[0]. CLOCK is the timer tick of the scheduler.
  29171. You may modify the ready list and the number of ready insns. The
  29172. return value is the number of insns that can issue this cycle;
  29173. normally this is just 'issue_rate'. See also
  29174. 'TARGET_SCHED_REORDER2'.
  29175. -- Target Hook: int TARGET_SCHED_REORDER2 (FILE *FILE, int VERBOSE,
  29176. rtx_insn **READY, int *N_READYP, int CLOCK)
  29177. Like 'TARGET_SCHED_REORDER', but called at a different time. That
  29178. function is called whenever the scheduler starts a new cycle. This
  29179. one is called once per iteration over a cycle, immediately after
  29180. 'TARGET_SCHED_VARIABLE_ISSUE'; it can reorder the ready list and
  29181. return the number of insns to be scheduled in the same cycle.
  29182. Defining this hook can be useful if there are frequent situations
  29183. where scheduling one insn causes other insns to become ready in the
  29184. same cycle. These other insns can then be taken into account
  29185. properly.
  29186. -- Target Hook: bool TARGET_SCHED_MACRO_FUSION_P (void)
  29187. This hook is used to check whether target platform supports macro
  29188. fusion.
  29189. -- Target Hook: bool TARGET_SCHED_MACRO_FUSION_PAIR_P (rtx_insn *PREV,
  29190. rtx_insn *CURR)
  29191. This hook is used to check whether two insns should be macro fused
  29192. for a target microarchitecture. If this hook returns true for the
  29193. given insn pair (PREV and CURR), the scheduler will put them into a
  29194. sched group, and they will not be scheduled apart. The two insns
  29195. will be either two SET insns or a compare and a conditional jump
  29196. and this hook should validate any dependencies needed to fuse the
  29197. two insns together.
  29198. -- Target Hook: void TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
  29199. (rtx_insn *HEAD, rtx_insn *TAIL)
  29200. This hook is called after evaluation forward dependencies of insns
  29201. in chain given by two parameter values (HEAD and TAIL
  29202. correspondingly) but before insns scheduling of the insn chain.
  29203. For example, it can be used for better insn classification if it
  29204. requires analysis of dependencies. This hook can use backward and
  29205. forward dependencies of the insn scheduler because they are already
  29206. calculated.
  29207. -- Target Hook: void TARGET_SCHED_INIT (FILE *FILE, int VERBOSE, int
  29208. MAX_READY)
  29209. This hook is executed by the scheduler at the beginning of each
  29210. block of instructions that are to be scheduled. FILE is either a
  29211. null pointer, or a stdio stream to write any debug output to.
  29212. VERBOSE is the verbose level provided by '-fsched-verbose-N'.
  29213. MAX_READY is the maximum number of insns in the current scheduling
  29214. region that can be live at the same time. This can be used to
  29215. allocate scratch space if it is needed, e.g. by
  29216. 'TARGET_SCHED_REORDER'.
  29217. -- Target Hook: void TARGET_SCHED_FINISH (FILE *FILE, int VERBOSE)
  29218. This hook is executed by the scheduler at the end of each block of
  29219. instructions that are to be scheduled. It can be used to perform
  29220. cleanup of any actions done by the other scheduling hooks. FILE is
  29221. either a null pointer, or a stdio stream to write any debug output
  29222. to. VERBOSE is the verbose level provided by '-fsched-verbose-N'.
  29223. -- Target Hook: void TARGET_SCHED_INIT_GLOBAL (FILE *FILE, int VERBOSE,
  29224. int OLD_MAX_UID)
  29225. This hook is executed by the scheduler after function level
  29226. initializations. FILE is either a null pointer, or a stdio stream
  29227. to write any debug output to. VERBOSE is the verbose level
  29228. provided by '-fsched-verbose-N'. OLD_MAX_UID is the maximum insn
  29229. uid when scheduling begins.
  29230. -- Target Hook: void TARGET_SCHED_FINISH_GLOBAL (FILE *FILE, int
  29231. VERBOSE)
  29232. This is the cleanup hook corresponding to
  29233. 'TARGET_SCHED_INIT_GLOBAL'. FILE is either a null pointer, or a
  29234. stdio stream to write any debug output to. VERBOSE is the verbose
  29235. level provided by '-fsched-verbose-N'.
  29236. -- Target Hook: rtx TARGET_SCHED_DFA_PRE_CYCLE_INSN (void)
  29237. The hook returns an RTL insn. The automaton state used in the
  29238. pipeline hazard recognizer is changed as if the insn were scheduled
  29239. when the new simulated processor cycle starts. Usage of the hook
  29240. may simplify the automaton pipeline description for some VLIW
  29241. processors. If the hook is defined, it is used only for the
  29242. automaton based pipeline description. The default is not to change
  29243. the state when the new simulated processor cycle starts.
  29244. -- Target Hook: void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void)
  29245. The hook can be used to initialize data used by the previous hook.
  29246. -- Target Hook: rtx_insn * TARGET_SCHED_DFA_POST_CYCLE_INSN (void)
  29247. The hook is analogous to 'TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used
  29248. to changed the state as if the insn were scheduled when the new
  29249. simulated processor cycle finishes.
  29250. -- Target Hook: void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void)
  29251. The hook is analogous to 'TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN' but
  29252. used to initialize data used by the previous hook.
  29253. -- Target Hook: void TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE (void)
  29254. The hook to notify target that the current simulated cycle is about
  29255. to finish. The hook is analogous to
  29256. 'TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to change the state in
  29257. more complicated situations - e.g., when advancing state on a
  29258. single insn is not enough.
  29259. -- Target Hook: void TARGET_SCHED_DFA_POST_ADVANCE_CYCLE (void)
  29260. The hook to notify target that new simulated cycle has just
  29261. started. The hook is analogous to
  29262. 'TARGET_SCHED_DFA_POST_CYCLE_INSN' but used to change the state in
  29263. more complicated situations - e.g., when advancing state on a
  29264. single insn is not enough.
  29265. -- Target Hook: int TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
  29266. (void)
  29267. This hook controls better choosing an insn from the ready insn
  29268. queue for the DFA-based insn scheduler. Usually the scheduler
  29269. chooses the first insn from the queue. If the hook returns a
  29270. positive value, an additional scheduler code tries all permutations
  29271. of 'TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()' subsequent
  29272. ready insns to choose an insn whose issue will result in maximal
  29273. number of issued insns on the same cycle. For the VLIW processor,
  29274. the code could actually solve the problem of packing simple insns
  29275. into the VLIW insn. Of course, if the rules of VLIW packing are
  29276. described in the automaton.
  29277. This code also could be used for superscalar RISC processors. Let
  29278. us consider a superscalar RISC processor with 3 pipelines. Some
  29279. insns can be executed in pipelines A or B, some insns can be
  29280. executed only in pipelines B or C, and one insn can be executed in
  29281. pipeline B. The processor may issue the 1st insn into A and the
  29282. 2nd one into B. In this case, the 3rd insn will wait for freeing B
  29283. until the next cycle. If the scheduler issues the 3rd insn the
  29284. first, the processor could issue all 3 insns per cycle.
  29285. Actually this code demonstrates advantages of the automaton based
  29286. pipeline hazard recognizer. We try quickly and easy many insn
  29287. schedules to choose the best one.
  29288. The default is no multipass scheduling.
  29289. -- Target Hook: int
  29290. TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
  29291. (rtx_insn *INSN, int READY_INDEX)
  29292. This hook controls what insns from the ready insn queue will be
  29293. considered for the multipass insn scheduling. If the hook returns
  29294. zero for INSN, the insn will be considered in multipass scheduling.
  29295. Positive return values will remove INSN from consideration on the
  29296. current round of multipass scheduling. Negative return values will
  29297. remove INSN from consideration for given number of cycles.
  29298. Backends should be careful about returning non-zero for highest
  29299. priority instruction at position 0 in the ready list. READY_INDEX
  29300. is passed to allow backends make correct judgements.
  29301. The default is that any ready insns can be chosen to be issued.
  29302. -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN (void
  29303. *DATA, signed char *READY_TRY, int N_READY, bool
  29304. FIRST_CYCLE_INSN_P)
  29305. This hook prepares the target backend for a new round of multipass
  29306. scheduling.
  29307. -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE (void
  29308. *DATA, signed char *READY_TRY, int N_READY, rtx_insn *INSN,
  29309. const void *PREV_DATA)
  29310. This hook is called when multipass scheduling evaluates instruction
  29311. INSN.
  29312. -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK
  29313. (const void *DATA, signed char *READY_TRY, int N_READY)
  29314. This is called when multipass scheduling backtracks from evaluation
  29315. of an instruction.
  29316. -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END (const void
  29317. *DATA)
  29318. This hook notifies the target about the result of the concluded
  29319. current round of multipass scheduling.
  29320. -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT (void
  29321. *DATA)
  29322. This hook initializes target-specific data used in multipass
  29323. scheduling.
  29324. -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI (void
  29325. *DATA)
  29326. This hook finalizes target-specific data used in multipass
  29327. scheduling.
  29328. -- Target Hook: int TARGET_SCHED_DFA_NEW_CYCLE (FILE *DUMP, int
  29329. VERBOSE, rtx_insn *INSN, int LAST_CLOCK, int CLOCK, int
  29330. *SORT_P)
  29331. This hook is called by the insn scheduler before issuing INSN on
  29332. cycle CLOCK. If the hook returns nonzero, INSN is not issued on
  29333. this processor cycle. Instead, the processor cycle is advanced.
  29334. If *SORT_P is zero, the insn ready queue is not sorted on the new
  29335. cycle start as usually. DUMP and VERBOSE specify the file and
  29336. verbosity level to use for debugging output. LAST_CLOCK and CLOCK
  29337. are, respectively, the processor cycle on which the previous insn
  29338. has been issued, and the current processor cycle.
  29339. -- Target Hook: bool TARGET_SCHED_IS_COSTLY_DEPENDENCE (struct _dep
  29340. *_DEP, int COST, int DISTANCE)
  29341. This hook is used to define which dependences are considered costly
  29342. by the target, so costly that it is not advisable to schedule the
  29343. insns that are involved in the dependence too close to one another.
  29344. The parameters to this hook are as follows: The first parameter
  29345. _DEP is the dependence being evaluated. The second parameter COST
  29346. is the cost of the dependence as estimated by the scheduler, and
  29347. the third parameter DISTANCE is the distance in cycles between the
  29348. two insns. The hook returns 'true' if considering the distance
  29349. between the two insns the dependence between them is considered
  29350. costly by the target, and 'false' otherwise.
  29351. Defining this hook can be useful in multiple-issue out-of-order
  29352. machines, where (a) it's practically hopeless to predict the actual
  29353. data/resource delays, however: (b) there's a better chance to
  29354. predict the actual grouping that will be formed, and (c) correctly
  29355. emulating the grouping can be very important. In such targets one
  29356. may want to allow issuing dependent insns closer to one
  29357. another--i.e., closer than the dependence distance; however, not in
  29358. cases of "costly dependences", which this hooks allows to define.
  29359. -- Target Hook: void TARGET_SCHED_H_I_D_EXTENDED (void)
  29360. This hook is called by the insn scheduler after emitting a new
  29361. instruction to the instruction stream. The hook notifies a target
  29362. backend to extend its per instruction data structures.
  29363. -- Target Hook: void * TARGET_SCHED_ALLOC_SCHED_CONTEXT (void)
  29364. Return a pointer to a store large enough to hold target scheduling
  29365. context.
  29366. -- Target Hook: void TARGET_SCHED_INIT_SCHED_CONTEXT (void *TC, bool
  29367. CLEAN_P)
  29368. Initialize store pointed to by TC to hold target scheduling
  29369. context. It CLEAN_P is true then initialize TC as if scheduler is
  29370. at the beginning of the block. Otherwise, copy the current context
  29371. into TC.
  29372. -- Target Hook: void TARGET_SCHED_SET_SCHED_CONTEXT (void *TC)
  29373. Copy target scheduling context pointed to by TC to the current
  29374. context.
  29375. -- Target Hook: void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *TC)
  29376. Deallocate internal data in target scheduling context pointed to by
  29377. TC.
  29378. -- Target Hook: void TARGET_SCHED_FREE_SCHED_CONTEXT (void *TC)
  29379. Deallocate a store for target scheduling context pointed to by TC.
  29380. -- Target Hook: int TARGET_SCHED_SPECULATE_INSN (rtx_insn *INSN,
  29381. unsigned int DEP_STATUS, rtx *NEW_PAT)
  29382. This hook is called by the insn scheduler when INSN has only
  29383. speculative dependencies and therefore can be scheduled
  29384. speculatively. The hook is used to check if the pattern of INSN
  29385. has a speculative version and, in case of successful check, to
  29386. generate that speculative pattern. The hook should return 1, if
  29387. the instruction has a speculative form, or -1, if it doesn't.
  29388. REQUEST describes the type of requested speculation. If the return
  29389. value equals 1 then NEW_PAT is assigned the generated speculative
  29390. pattern.
  29391. -- Target Hook: bool TARGET_SCHED_NEEDS_BLOCK_P (unsigned int
  29392. DEP_STATUS)
  29393. This hook is called by the insn scheduler during generation of
  29394. recovery code for INSN. It should return 'true', if the
  29395. corresponding check instruction should branch to recovery code, or
  29396. 'false' otherwise.
  29397. -- Target Hook: rtx TARGET_SCHED_GEN_SPEC_CHECK (rtx_insn *INSN,
  29398. rtx_insn *LABEL, unsigned int DS)
  29399. This hook is called by the insn scheduler to generate a pattern for
  29400. recovery check instruction. If MUTATE_P is zero, then INSN is a
  29401. speculative instruction for which the check should be generated.
  29402. LABEL is either a label of a basic block, where recovery code
  29403. should be emitted, or a null pointer, when requested check doesn't
  29404. branch to recovery code (a simple check). If MUTATE_P is nonzero,
  29405. then a pattern for a branchy check corresponding to a simple check
  29406. denoted by INSN should be generated. In this case LABEL can't be
  29407. null.
  29408. -- Target Hook: void TARGET_SCHED_SET_SCHED_FLAGS (struct spec_info_def
  29409. *SPEC_INFO)
  29410. This hook is used by the insn scheduler to find out what features
  29411. should be enabled/used. The structure *SPEC_INFO should be filled
  29412. in by the target. The structure describes speculation types that
  29413. can be used in the scheduler.
  29414. -- Target Hook: bool TARGET_SCHED_CAN_SPECULATE_INSN (rtx_insn *INSN)
  29415. Some instructions should never be speculated by the schedulers,
  29416. usually because the instruction is too expensive to get this wrong.
  29417. Often such instructions have long latency, and often they are not
  29418. fully modeled in the pipeline descriptions. This hook should
  29419. return 'false' if INSN should not be speculated.
  29420. -- Target Hook: int TARGET_SCHED_SMS_RES_MII (struct ddg *G)
  29421. This hook is called by the swing modulo scheduler to calculate a
  29422. resource-based lower bound which is based on the resources
  29423. available in the machine and the resources required by each
  29424. instruction. The target backend can use G to calculate such bound.
  29425. A very simple lower bound will be used in case this hook is not
  29426. implemented: the total number of instructions divided by the issue
  29427. rate.
  29428. -- Target Hook: bool TARGET_SCHED_DISPATCH (rtx_insn *INSN, int X)
  29429. This hook is called by Haifa Scheduler. It returns true if
  29430. dispatch scheduling is supported in hardware and the condition
  29431. specified in the parameter is true.
  29432. -- Target Hook: void TARGET_SCHED_DISPATCH_DO (rtx_insn *INSN, int X)
  29433. This hook is called by Haifa Scheduler. It performs the operation
  29434. specified in its second parameter.
  29435. -- Target Hook: bool TARGET_SCHED_EXPOSED_PIPELINE
  29436. True if the processor has an exposed pipeline, which means that not
  29437. just the order of instructions is important for correctness when
  29438. scheduling, but also the latencies of operations.
  29439. -- Target Hook: int TARGET_SCHED_REASSOCIATION_WIDTH (unsigned int OPC,
  29440. machine_mode MODE)
  29441. This hook is called by tree reassociator to determine a level of
  29442. parallelism required in output calculations chain.
  29443. -- Target Hook: void TARGET_SCHED_FUSION_PRIORITY (rtx_insn *INSN, int
  29444. MAX_PRI, int *FUSION_PRI, int *PRI)
  29445. This hook is called by scheduling fusion pass. It calculates
  29446. fusion priorities for each instruction passed in by parameter. The
  29447. priorities are returned via pointer parameters.
  29448. INSN is the instruction whose priorities need to be calculated.
  29449. MAX_PRI is the maximum priority can be returned in any cases.
  29450. FUSION_PRI is the pointer parameter through which INSN's fusion
  29451. priority should be calculated and returned. PRI is the pointer
  29452. parameter through which INSN's priority should be calculated and
  29453. returned.
  29454. Same FUSION_PRI should be returned for instructions which should be
  29455. scheduled together. Different PRI should be returned for
  29456. instructions with same FUSION_PRI. FUSION_PRI is the major sort
  29457. key, PRI is the minor sort key. All instructions will be scheduled
  29458. according to the two priorities. All priorities calculated should
  29459. be between 0 (exclusive) and MAX_PRI (inclusive). To avoid false
  29460. dependencies, FUSION_PRI of instructions which need to be scheduled
  29461. together should be smaller than FUSION_PRI of irrelevant
  29462. instructions.
  29463. Given below example:
  29464. ldr r10, [r1, 4]
  29465. add r4, r4, r10
  29466. ldr r15, [r2, 8]
  29467. sub r5, r5, r15
  29468. ldr r11, [r1, 0]
  29469. add r4, r4, r11
  29470. ldr r16, [r2, 12]
  29471. sub r5, r5, r16
  29472. On targets like ARM/AArch64, the two pairs of consecutive loads
  29473. should be merged. Since peephole2 pass can't help in this case
  29474. unless consecutive loads are actually next to each other in
  29475. instruction flow. That's where this scheduling fusion pass works.
  29476. This hook calculates priority for each instruction based on its
  29477. fustion type, like:
  29478. ldr r10, [r1, 4] ; fusion_pri=99, pri=96
  29479. add r4, r4, r10 ; fusion_pri=100, pri=100
  29480. ldr r15, [r2, 8] ; fusion_pri=98, pri=92
  29481. sub r5, r5, r15 ; fusion_pri=100, pri=100
  29482. ldr r11, [r1, 0] ; fusion_pri=99, pri=100
  29483. add r4, r4, r11 ; fusion_pri=100, pri=100
  29484. ldr r16, [r2, 12] ; fusion_pri=98, pri=88
  29485. sub r5, r5, r16 ; fusion_pri=100, pri=100
  29486. Scheduling fusion pass then sorts all ready to issue instructions
  29487. according to the priorities. As a result, instructions of same
  29488. fusion type will be pushed together in instruction flow, like:
  29489. ldr r11, [r1, 0]
  29490. ldr r10, [r1, 4]
  29491. ldr r15, [r2, 8]
  29492. ldr r16, [r2, 12]
  29493. add r4, r4, r10
  29494. sub r5, r5, r15
  29495. add r4, r4, r11
  29496. sub r5, r5, r16
  29497. Now peephole2 pass can simply merge the two pairs of loads.
  29498. Since scheduling fusion pass relies on peephole2 to do real fusion
  29499. work, it is only enabled by default when peephole2 is in effect.
  29500. This is firstly introduced on ARM/AArch64 targets, please refer to
  29501. the hook implementation for how different fusion types are
  29502. supported.
  29503. -- Target Hook: void TARGET_EXPAND_DIVMOD_LIBFUNC (rtx LIBFUNC,
  29504. machine_mode MODE, rtx OP0, rtx OP1, rtx *QUOT, rtx *REM)
  29505. Define this hook for enabling divmod transform if the port does not
  29506. have hardware divmod insn but defines target-specific divmod
  29507. libfuncs.
  29508. 
  29509. File: gccint.info, Node: Sections, Next: PIC, Prev: Scheduling, Up: Target Macros
  29510. 18.18 Dividing the Output into Sections (Texts, Data, ...)
  29511. ==========================================================
  29512. An object file is divided into sections containing different types of
  29513. data. In the most common case, there are three sections: the "text
  29514. section", which holds instructions and read-only data; the "data
  29515. section", which holds initialized writable data; and the "bss section",
  29516. which holds uninitialized data. Some systems have other kinds of
  29517. sections.
  29518. 'varasm.c' provides several well-known sections, such as
  29519. 'text_section', 'data_section' and 'bss_section'. The normal way of
  29520. controlling a 'FOO_section' variable is to define the associated
  29521. 'FOO_SECTION_ASM_OP' macro, as described below. The macros are only
  29522. read once, when 'varasm.c' initializes itself, so their values must be
  29523. run-time constants. They may however depend on command-line flags.
  29524. _Note:_ Some run-time files, such 'crtstuff.c', also make use of the
  29525. 'FOO_SECTION_ASM_OP' macros, and expect them to be string literals.
  29526. Some assemblers require a different string to be written every time a
  29527. section is selected. If your assembler falls into this category, you
  29528. should define the 'TARGET_ASM_INIT_SECTIONS' hook and use
  29529. 'get_unnamed_section' to set up the sections.
  29530. You must always create a 'text_section', either by defining
  29531. 'TEXT_SECTION_ASM_OP' or by initializing 'text_section' in
  29532. 'TARGET_ASM_INIT_SECTIONS'. The same is true of 'data_section' and
  29533. 'DATA_SECTION_ASM_OP'. If you do not create a distinct
  29534. 'readonly_data_section', the default is to reuse 'text_section'.
  29535. All the other 'varasm.c' sections are optional, and are null if the
  29536. target does not provide them.
  29537. -- Macro: TEXT_SECTION_ASM_OP
  29538. A C expression whose value is a string, including spacing,
  29539. containing the assembler operation that should precede instructions
  29540. and read-only data. Normally '"\t.text"' is right.
  29541. -- Macro: HOT_TEXT_SECTION_NAME
  29542. If defined, a C string constant for the name of the section
  29543. containing most frequently executed functions of the program. If
  29544. not defined, GCC will provide a default definition if the target
  29545. supports named sections.
  29546. -- Macro: UNLIKELY_EXECUTED_TEXT_SECTION_NAME
  29547. If defined, a C string constant for the name of the section
  29548. containing unlikely executed functions in the program.
  29549. -- Macro: DATA_SECTION_ASM_OP
  29550. A C expression whose value is a string, including spacing,
  29551. containing the assembler operation to identify the following data
  29552. as writable initialized data. Normally '"\t.data"' is right.
  29553. -- Macro: SDATA_SECTION_ASM_OP
  29554. If defined, a C expression whose value is a string, including
  29555. spacing, containing the assembler operation to identify the
  29556. following data as initialized, writable small data.
  29557. -- Macro: READONLY_DATA_SECTION_ASM_OP
  29558. A C expression whose value is a string, including spacing,
  29559. containing the assembler operation to identify the following data
  29560. as read-only initialized data.
  29561. -- Macro: BSS_SECTION_ASM_OP
  29562. If defined, a C expression whose value is a string, including
  29563. spacing, containing the assembler operation to identify the
  29564. following data as uninitialized global data. If not defined, and
  29565. 'ASM_OUTPUT_ALIGNED_BSS' not defined, uninitialized global data
  29566. will be output in the data section if '-fno-common' is passed,
  29567. otherwise 'ASM_OUTPUT_COMMON' will be used.
  29568. -- Macro: SBSS_SECTION_ASM_OP
  29569. If defined, a C expression whose value is a string, including
  29570. spacing, containing the assembler operation to identify the
  29571. following data as uninitialized, writable small data.
  29572. -- Macro: TLS_COMMON_ASM_OP
  29573. If defined, a C expression whose value is a string containing the
  29574. assembler operation to identify the following data as thread-local
  29575. common data. The default is '".tls_common"'.
  29576. -- Macro: TLS_SECTION_ASM_FLAG
  29577. If defined, a C expression whose value is a character constant
  29578. containing the flag used to mark a section as a TLS section. The
  29579. default is ''T''.
  29580. -- Macro: INIT_SECTION_ASM_OP
  29581. If defined, a C expression whose value is a string, including
  29582. spacing, containing the assembler operation to identify the
  29583. following data as initialization code. If not defined, GCC will
  29584. assume such a section does not exist. This section has no
  29585. corresponding 'init_section' variable; it is used entirely in
  29586. runtime code.
  29587. -- Macro: FINI_SECTION_ASM_OP
  29588. If defined, a C expression whose value is a string, including
  29589. spacing, containing the assembler operation to identify the
  29590. following data as finalization code. If not defined, GCC will
  29591. assume such a section does not exist. This section has no
  29592. corresponding 'fini_section' variable; it is used entirely in
  29593. runtime code.
  29594. -- Macro: INIT_ARRAY_SECTION_ASM_OP
  29595. If defined, a C expression whose value is a string, including
  29596. spacing, containing the assembler operation to identify the
  29597. following data as part of the '.init_array' (or equivalent)
  29598. section. If not defined, GCC will assume such a section does not
  29599. exist. Do not define both this macro and 'INIT_SECTION_ASM_OP'.
  29600. -- Macro: FINI_ARRAY_SECTION_ASM_OP
  29601. If defined, a C expression whose value is a string, including
  29602. spacing, containing the assembler operation to identify the
  29603. following data as part of the '.fini_array' (or equivalent)
  29604. section. If not defined, GCC will assume such a section does not
  29605. exist. Do not define both this macro and 'FINI_SECTION_ASM_OP'.
  29606. -- Macro: MACH_DEP_SECTION_ASM_FLAG
  29607. If defined, a C expression whose value is a character constant
  29608. containing the flag used to mark a machine-dependent section. This
  29609. corresponds to the 'SECTION_MACH_DEP' section flag.
  29610. -- Macro: CRT_CALL_STATIC_FUNCTION (SECTION_OP, FUNCTION)
  29611. If defined, an ASM statement that switches to a different section
  29612. via SECTION_OP, calls FUNCTION, and switches back to the text
  29613. section. This is used in 'crtstuff.c' if 'INIT_SECTION_ASM_OP' or
  29614. 'FINI_SECTION_ASM_OP' to calls to initialization and finalization
  29615. functions from the init and fini sections. By default, this macro
  29616. uses a simple function call. Some ports need hand-crafted assembly
  29617. code to avoid dependencies on registers initialized in the function
  29618. prologue or to ensure that constant pools don't end up too far way
  29619. in the text section.
  29620. -- Macro: TARGET_LIBGCC_SDATA_SECTION
  29621. If defined, a string which names the section into which small
  29622. variables defined in crtstuff and libgcc should go. This is useful
  29623. when the target has options for optimizing access to small data,
  29624. and you want the crtstuff and libgcc routines to be conservative in
  29625. what they expect of your application yet liberal in what your
  29626. application expects. For example, for targets with a '.sdata'
  29627. section (like MIPS), you could compile crtstuff with '-G 0' so that
  29628. it doesn't require small data support from your application, but
  29629. use this macro to put small data into '.sdata' so that your
  29630. application can access these variables whether it uses small data
  29631. or not.
  29632. -- Macro: FORCE_CODE_SECTION_ALIGN
  29633. If defined, an ASM statement that aligns a code section to some
  29634. arbitrary boundary. This is used to force all fragments of the
  29635. '.init' and '.fini' sections to have to same alignment and thus
  29636. prevent the linker from having to add any padding.
  29637. -- Macro: JUMP_TABLES_IN_TEXT_SECTION
  29638. Define this macro to be an expression with a nonzero value if jump
  29639. tables (for 'tablejump' insns) should be output in the text
  29640. section, along with the assembler instructions. Otherwise, the
  29641. readonly data section is used.
  29642. This macro is irrelevant if there is no separate readonly data
  29643. section.
  29644. -- Target Hook: void TARGET_ASM_INIT_SECTIONS (void)
  29645. Define this hook if you need to do something special to set up the
  29646. 'varasm.c' sections, or if your target has some special sections of
  29647. its own that you need to create.
  29648. GCC calls this hook after processing the command line, but before
  29649. writing any assembly code, and before calling any of the
  29650. section-returning hooks described below.
  29651. -- Target Hook: int TARGET_ASM_RELOC_RW_MASK (void)
  29652. Return a mask describing how relocations should be treated when
  29653. selecting sections. Bit 1 should be set if global relocations
  29654. should be placed in a read-write section; bit 0 should be set if
  29655. local relocations should be placed in a read-write section.
  29656. The default version of this function returns 3 when '-fpic' is in
  29657. effect, and 0 otherwise. The hook is typically redefined when the
  29658. target cannot support (some kinds of) dynamic relocations in
  29659. read-only sections even in executables.
  29660. -- Target Hook: section * TARGET_ASM_SELECT_SECTION (tree EXP, int
  29661. RELOC, unsigned HOST_WIDE_INT ALIGN)
  29662. Return the section into which EXP should be placed. You can assume
  29663. that EXP is either a 'VAR_DECL' node or a constant of some sort.
  29664. RELOC indicates whether the initial value of EXP requires link-time
  29665. relocations. Bit 0 is set when variable contains local relocations
  29666. only, while bit 1 is set for global relocations. ALIGN is the
  29667. constant alignment in bits.
  29668. The default version of this function takes care of putting
  29669. read-only variables in 'readonly_data_section'.
  29670. See also USE_SELECT_SECTION_FOR_FUNCTIONS.
  29671. -- Macro: USE_SELECT_SECTION_FOR_FUNCTIONS
  29672. Define this macro if you wish TARGET_ASM_SELECT_SECTION to be
  29673. called for 'FUNCTION_DECL's as well as for variables and constants.
  29674. In the case of a 'FUNCTION_DECL', RELOC will be zero if the
  29675. function has been determined to be likely to be called, and nonzero
  29676. if it is unlikely to be called.
  29677. -- Target Hook: void TARGET_ASM_UNIQUE_SECTION (tree DECL, int RELOC)
  29678. Build up a unique section name, expressed as a 'STRING_CST' node,
  29679. and assign it to 'DECL_SECTION_NAME (DECL)'. As with
  29680. 'TARGET_ASM_SELECT_SECTION', RELOC indicates whether the initial
  29681. value of EXP requires link-time relocations.
  29682. The default version of this function appends the symbol name to the
  29683. ELF section name that would normally be used for the symbol. For
  29684. example, the function 'foo' would be placed in '.text.foo'.
  29685. Whatever the actual target object format, this is often good
  29686. enough.
  29687. -- Target Hook: section * TARGET_ASM_FUNCTION_RODATA_SECTION (tree
  29688. DECL)
  29689. Return the readonly data section associated with 'DECL_SECTION_NAME
  29690. (DECL)'. The default version of this function selects
  29691. '.gnu.linkonce.r.name' if the function's section is
  29692. '.gnu.linkonce.t.name', '.rodata.name' if function is in
  29693. '.text.name', and the normal readonly-data section otherwise.
  29694. -- Target Hook: const char * TARGET_ASM_MERGEABLE_RODATA_PREFIX
  29695. Usually, the compiler uses the prefix '".rodata"' to construct
  29696. section names for mergeable constant data. Define this macro to
  29697. override the string if a different section name should be used.
  29698. -- Target Hook: section * TARGET_ASM_TM_CLONE_TABLE_SECTION (void)
  29699. Return the section that should be used for transactional memory
  29700. clone tables.
  29701. -- Target Hook: section * TARGET_ASM_SELECT_RTX_SECTION (machine_mode
  29702. MODE, rtx X, unsigned HOST_WIDE_INT ALIGN)
  29703. Return the section into which a constant X, of mode MODE, should be
  29704. placed. You can assume that X is some kind of constant in RTL.
  29705. The argument MODE is redundant except in the case of a 'const_int'
  29706. rtx. ALIGN is the constant alignment in bits.
  29707. The default version of this function takes care of putting symbolic
  29708. constants in 'flag_pic' mode in 'data_section' and everything else
  29709. in 'readonly_data_section'.
  29710. -- Target Hook: tree TARGET_MANGLE_DECL_ASSEMBLER_NAME (tree DECL, tree
  29711. ID)
  29712. Define this hook if you need to postprocess the assembler name
  29713. generated by target-independent code. The ID provided to this hook
  29714. will be the computed name (e.g., the macro 'DECL_NAME' of the DECL
  29715. in C, or the mangled name of the DECL in C++). The return value of
  29716. the hook is an 'IDENTIFIER_NODE' for the appropriate mangled name
  29717. on your target system. The default implementation of this hook
  29718. just returns the ID provided.
  29719. -- Target Hook: void TARGET_ENCODE_SECTION_INFO (tree DECL, rtx RTL,
  29720. int NEW_DECL_P)
  29721. Define this hook if references to a symbol or a constant must be
  29722. treated differently depending on something about the variable or
  29723. function named by the symbol (such as what section it is in).
  29724. The hook is executed immediately after rtl has been created for
  29725. DECL, which may be a variable or function declaration or an entry
  29726. in the constant pool. In either case, RTL is the rtl in question.
  29727. Do _not_ use 'DECL_RTL (DECL)' in this hook; that field may not
  29728. have been initialized yet.
  29729. In the case of a constant, it is safe to assume that the rtl is a
  29730. 'mem' whose address is a 'symbol_ref'. Most decls will also have
  29731. this form, but that is not guaranteed. Global register variables,
  29732. for instance, will have a 'reg' for their rtl. (Normally the right
  29733. thing to do with such unusual rtl is leave it alone.)
  29734. The NEW_DECL_P argument will be true if this is the first time that
  29735. 'TARGET_ENCODE_SECTION_INFO' has been invoked on this decl. It
  29736. will be false for subsequent invocations, which will happen for
  29737. duplicate declarations. Whether or not anything must be done for
  29738. the duplicate declaration depends on whether the hook examines
  29739. 'DECL_ATTRIBUTES'. NEW_DECL_P is always true when the hook is
  29740. called for a constant.
  29741. The usual thing for this hook to do is to record flags in the
  29742. 'symbol_ref', using 'SYMBOL_REF_FLAG' or 'SYMBOL_REF_FLAGS'.
  29743. Historically, the name string was modified if it was necessary to
  29744. encode more than one bit of information, but this practice is now
  29745. discouraged; use 'SYMBOL_REF_FLAGS'.
  29746. The default definition of this hook, 'default_encode_section_info'
  29747. in 'varasm.c', sets a number of commonly-useful bits in
  29748. 'SYMBOL_REF_FLAGS'. Check whether the default does what you need
  29749. before overriding it.
  29750. -- Target Hook: const char * TARGET_STRIP_NAME_ENCODING (const char
  29751. *NAME)
  29752. Decode NAME and return the real name part, sans the characters that
  29753. 'TARGET_ENCODE_SECTION_INFO' may have added.
  29754. -- Target Hook: bool TARGET_IN_SMALL_DATA_P (const_tree EXP)
  29755. Returns true if EXP should be placed into a "small data" section.
  29756. The default version of this hook always returns false.
  29757. -- Target Hook: bool TARGET_HAVE_SRODATA_SECTION
  29758. Contains the value true if the target places read-only "small data"
  29759. into a separate section. The default value is false.
  29760. -- Target Hook: bool TARGET_PROFILE_BEFORE_PROLOGUE (void)
  29761. It returns true if target wants profile code emitted before
  29762. prologue.
  29763. The default version of this hook use the target macro
  29764. 'PROFILE_BEFORE_PROLOGUE'.
  29765. -- Target Hook: bool TARGET_BINDS_LOCAL_P (const_tree EXP)
  29766. Returns true if EXP names an object for which name resolution rules
  29767. must resolve to the current "module" (dynamic shared library or
  29768. executable image).
  29769. The default version of this hook implements the name resolution
  29770. rules for ELF, which has a looser model of global name binding than
  29771. other currently supported object file formats.
  29772. -- Target Hook: bool TARGET_HAVE_TLS
  29773. Contains the value true if the target supports thread-local
  29774. storage. The default value is false.
  29775. 
  29776. File: gccint.info, Node: PIC, Next: Assembler Format, Prev: Sections, Up: Target Macros
  29777. 18.19 Position Independent Code
  29778. ===============================
  29779. This section describes macros that help implement generation of position
  29780. independent code. Simply defining these macros is not enough to
  29781. generate valid PIC; you must also add support to the hook
  29782. 'TARGET_LEGITIMATE_ADDRESS_P' and to the macro 'PRINT_OPERAND_ADDRESS',
  29783. as well as 'LEGITIMIZE_ADDRESS'. You must modify the definition of
  29784. 'movsi' to do something appropriate when the source operand contains a
  29785. symbolic address. You may also need to alter the handling of switch
  29786. statements so that they use relative addresses.
  29787. -- Macro: PIC_OFFSET_TABLE_REGNUM
  29788. The register number of the register used to address a table of
  29789. static data addresses in memory. In some cases this register is
  29790. defined by a processor's "application binary interface" (ABI).
  29791. When this macro is defined, RTL is generated for this register
  29792. once, as with the stack pointer and frame pointer registers. If
  29793. this macro is not defined, it is up to the machine-dependent files
  29794. to allocate such a register (if necessary). Note that this
  29795. register must be fixed when in use (e.g. when 'flag_pic' is true).
  29796. -- Macro: PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
  29797. A C expression that is nonzero if the register defined by
  29798. 'PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. If not defined,
  29799. the default is zero. Do not define this macro if
  29800. 'PIC_OFFSET_TABLE_REGNUM' is not defined.
  29801. -- Macro: LEGITIMATE_PIC_OPERAND_P (X)
  29802. A C expression that is nonzero if X is a legitimate immediate
  29803. operand on the target machine when generating position independent
  29804. code. You can assume that X satisfies 'CONSTANT_P', so you need
  29805. not check this. You can also assume FLAG_PIC is true, so you need
  29806. not check it either. You need not define this macro if all
  29807. constants (including 'SYMBOL_REF') can be immediate operands when
  29808. generating position independent code.
  29809. 
  29810. File: gccint.info, Node: Assembler Format, Next: Debugging Info, Prev: PIC, Up: Target Macros
  29811. 18.20 Defining the Output Assembler Language
  29812. ============================================
  29813. This section describes macros whose principal purpose is to describe how
  29814. to write instructions in assembler language--rather than what the
  29815. instructions do.
  29816. * Menu:
  29817. * File Framework:: Structural information for the assembler file.
  29818. * Data Output:: Output of constants (numbers, strings, addresses).
  29819. * Uninitialized Data:: Output of uninitialized variables.
  29820. * Label Output:: Output and generation of labels.
  29821. * Initialization:: General principles of initialization
  29822. and termination routines.
  29823. * Macros for Initialization::
  29824. Specific macros that control the handling of
  29825. initialization and termination routines.
  29826. * Instruction Output:: Output of actual instructions.
  29827. * Dispatch Tables:: Output of jump tables.
  29828. * Exception Region Output:: Output of exception region code.
  29829. * Alignment Output:: Pseudo ops for alignment and skipping data.
  29830. 
  29831. File: gccint.info, Node: File Framework, Next: Data Output, Up: Assembler Format
  29832. 18.20.1 The Overall Framework of an Assembler File
  29833. --------------------------------------------------
  29834. This describes the overall framework of an assembly file.
  29835. -- Target Hook: void TARGET_ASM_FILE_START (void)
  29836. Output to 'asm_out_file' any text which the assembler expects to
  29837. find at the beginning of a file. The default behavior is
  29838. controlled by two flags, documented below. Unless your target's
  29839. assembler is quite unusual, if you override the default, you should
  29840. call 'default_file_start' at some point in your target hook. This
  29841. lets other target files rely on these variables.
  29842. -- Target Hook: bool TARGET_ASM_FILE_START_APP_OFF
  29843. If this flag is true, the text of the macro 'ASM_APP_OFF' will be
  29844. printed as the very first line in the assembly file, unless
  29845. '-fverbose-asm' is in effect. (If that macro has been defined to
  29846. the empty string, this variable has no effect.) With the normal
  29847. definition of 'ASM_APP_OFF', the effect is to notify the GNU
  29848. assembler that it need not bother stripping comments or extra
  29849. whitespace from its input. This allows it to work a bit faster.
  29850. The default is false. You should not set it to true unless you
  29851. have verified that your port does not generate any extra whitespace
  29852. or comments that will cause GAS to issue errors in NO_APP mode.
  29853. -- Target Hook: bool TARGET_ASM_FILE_START_FILE_DIRECTIVE
  29854. If this flag is true, 'output_file_directive' will be called for
  29855. the primary source file, immediately after printing 'ASM_APP_OFF'
  29856. (if that is enabled). Most ELF assemblers expect this to be done.
  29857. The default is false.
  29858. -- Target Hook: void TARGET_ASM_FILE_END (void)
  29859. Output to 'asm_out_file' any text which the assembler expects to
  29860. find at the end of a file. The default is to output nothing.
  29861. -- Function: void file_end_indicate_exec_stack ()
  29862. Some systems use a common convention, the '.note.GNU-stack' special
  29863. section, to indicate whether or not an object file relies on the
  29864. stack being executable. If your system uses this convention, you
  29865. should define 'TARGET_ASM_FILE_END' to this function. If you need
  29866. to do other things in that hook, have your hook function call this
  29867. function.
  29868. -- Target Hook: void TARGET_ASM_LTO_START (void)
  29869. Output to 'asm_out_file' any text which the assembler expects to
  29870. find at the start of an LTO section. The default is to output
  29871. nothing.
  29872. -- Target Hook: void TARGET_ASM_LTO_END (void)
  29873. Output to 'asm_out_file' any text which the assembler expects to
  29874. find at the end of an LTO section. The default is to output
  29875. nothing.
  29876. -- Target Hook: void TARGET_ASM_CODE_END (void)
  29877. Output to 'asm_out_file' any text which is needed before emitting
  29878. unwind info and debug info at the end of a file. Some targets emit
  29879. here PIC setup thunks that cannot be emitted at the end of file,
  29880. because they couldn't have unwind info then. The default is to
  29881. output nothing.
  29882. -- Macro: ASM_COMMENT_START
  29883. A C string constant describing how to begin a comment in the target
  29884. assembler language. The compiler assumes that the comment will end
  29885. at the end of the line.
  29886. -- Macro: ASM_APP_ON
  29887. A C string constant for text to be output before each 'asm'
  29888. statement or group of consecutive ones. Normally this is '"#APP"',
  29889. which is a comment that has no effect on most assemblers but tells
  29890. the GNU assembler that it must check the lines that follow for all
  29891. valid assembler constructs.
  29892. -- Macro: ASM_APP_OFF
  29893. A C string constant for text to be output after each 'asm'
  29894. statement or group of consecutive ones. Normally this is
  29895. '"#NO_APP"', which tells the GNU assembler to resume making the
  29896. time-saving assumptions that are valid for ordinary compiler
  29897. output.
  29898. -- Macro: ASM_OUTPUT_SOURCE_FILENAME (STREAM, NAME)
  29899. A C statement to output COFF information or DWARF debugging
  29900. information which indicates that filename NAME is the current
  29901. source file to the stdio stream STREAM.
  29902. This macro need not be defined if the standard form of output for
  29903. the file format in use is appropriate.
  29904. -- Target Hook: void TARGET_ASM_OUTPUT_SOURCE_FILENAME (FILE *FILE,
  29905. const char *NAME)
  29906. Output DWARF debugging information which indicates that filename
  29907. NAME is the current source file to the stdio stream FILE.
  29908. This target hook need not be defined if the standard form of output
  29909. for the file format in use is appropriate.
  29910. -- Target Hook: void TARGET_ASM_OUTPUT_IDENT (const char *NAME)
  29911. Output a string based on NAME, suitable for the '#ident' directive,
  29912. or the equivalent directive or pragma in non-C-family languages.
  29913. If this hook is not defined, nothing is output for the '#ident'
  29914. directive.
  29915. -- Macro: OUTPUT_QUOTED_STRING (STREAM, STRING)
  29916. A C statement to output the string STRING to the stdio stream
  29917. STREAM. If you do not call the function 'output_quoted_string' in
  29918. your config files, GCC will only call it to output filenames to the
  29919. assembler source. So you can use it to canonicalize the format of
  29920. the filename using this macro.
  29921. -- Target Hook: void TARGET_ASM_NAMED_SECTION (const char *NAME,
  29922. unsigned int FLAGS, tree DECL)
  29923. Output assembly directives to switch to section NAME. The section
  29924. should have attributes as specified by FLAGS, which is a bit mask
  29925. of the 'SECTION_*' flags defined in 'output.h'. If DECL is
  29926. non-NULL, it is the 'VAR_DECL' or 'FUNCTION_DECL' with which this
  29927. section is associated.
  29928. -- Target Hook: bool TARGET_ASM_ELF_FLAGS_NUMERIC (unsigned int FLAGS,
  29929. unsigned int *NUM)
  29930. This hook can be used to encode ELF section flags for which no
  29931. letter code has been defined in the assembler. It is called by
  29932. 'default_asm_named_section' whenever the section flags need to be
  29933. emitted in the assembler output. If the hook returns true, then
  29934. the numerical value for ELF section flags should be calculated from
  29935. FLAGS and saved in *NUM; the value is printed out instead of the
  29936. normal sequence of letter codes. If the hook is not defined, or if
  29937. it returns false, then NUM is ignored and the traditional letter
  29938. sequence is emitted.
  29939. -- Target Hook: section * TARGET_ASM_FUNCTION_SECTION (tree DECL, enum
  29940. node_frequency FREQ, bool STARTUP, bool EXIT)
  29941. Return preferred text (sub)section for function DECL. Main purpose
  29942. of this function is to separate cold, normal and hot functions.
  29943. STARTUP is true when function is known to be used only at startup
  29944. (from static constructors or it is 'main()'). EXIT is true when
  29945. function is known to be used only at exit (from static
  29946. destructors). Return NULL if function should go to default text
  29947. section.
  29948. -- Target Hook: void TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS (FILE
  29949. *FILE, tree DECL, bool NEW_IS_COLD)
  29950. Used by the target to emit any assembler directives or additional
  29951. labels needed when a function is partitioned between different
  29952. sections. Output should be written to FILE. The function decl is
  29953. available as DECL and the new section is 'cold' if NEW_IS_COLD is
  29954. 'true'.
  29955. -- Common Target Hook: bool TARGET_HAVE_NAMED_SECTIONS
  29956. This flag is true if the target supports
  29957. 'TARGET_ASM_NAMED_SECTION'. It must not be modified by
  29958. command-line option processing.
  29959. -- Target Hook: bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
  29960. This flag is true if we can create zeroed data by switching to a
  29961. BSS section and then using 'ASM_OUTPUT_SKIP' to allocate the space.
  29962. This is true on most ELF targets.
  29963. -- Target Hook: unsigned int TARGET_SECTION_TYPE_FLAGS (tree DECL,
  29964. const char *NAME, int RELOC)
  29965. Choose a set of section attributes for use by
  29966. 'TARGET_ASM_NAMED_SECTION' based on a variable or function decl, a
  29967. section name, and whether or not the declaration's initializer may
  29968. contain runtime relocations. DECL may be null, in which case
  29969. read-write data should be assumed.
  29970. The default version of this function handles choosing code vs data,
  29971. read-only vs read-write data, and 'flag_pic'. You should only need
  29972. to override this if your target has special flags that might be set
  29973. via '__attribute__'.
  29974. -- Target Hook: int TARGET_ASM_RECORD_GCC_SWITCHES (print_switch_type
  29975. TYPE, const char *TEXT)
  29976. Provides the target with the ability to record the gcc command line
  29977. switches that have been passed to the compiler, and options that
  29978. are enabled. The TYPE argument specifies what is being recorded.
  29979. It can take the following values:
  29980. 'SWITCH_TYPE_PASSED'
  29981. TEXT is a command line switch that has been set by the user.
  29982. 'SWITCH_TYPE_ENABLED'
  29983. TEXT is an option which has been enabled. This might be as a
  29984. direct result of a command line switch, or because it is
  29985. enabled by default or because it has been enabled as a side
  29986. effect of a different command line switch. For example, the
  29987. '-O2' switch enables various different individual optimization
  29988. passes.
  29989. 'SWITCH_TYPE_DESCRIPTIVE'
  29990. TEXT is either NULL or some descriptive text which should be
  29991. ignored. If TEXT is NULL then it is being used to warn the
  29992. target hook that either recording is starting or ending. The
  29993. first time TYPE is SWITCH_TYPE_DESCRIPTIVE and TEXT is NULL,
  29994. the warning is for start up and the second time the warning is
  29995. for wind down. This feature is to allow the target hook to
  29996. make any necessary preparations before it starts to record
  29997. switches and to perform any necessary tidying up after it has
  29998. finished recording switches.
  29999. 'SWITCH_TYPE_LINE_START'
  30000. This option can be ignored by this target hook.
  30001. 'SWITCH_TYPE_LINE_END'
  30002. This option can be ignored by this target hook.
  30003. The hook's return value must be zero. Other return values may be
  30004. supported in the future.
  30005. By default this hook is set to NULL, but an example implementation
  30006. is provided for ELF based targets. Called ELF_RECORD_GCC_SWITCHES,
  30007. it records the switches as ASCII text inside a new, string
  30008. mergeable section in the assembler output file. The name of the
  30009. new section is provided by the
  30010. 'TARGET_ASM_RECORD_GCC_SWITCHES_SECTION' target hook.
  30011. -- Target Hook: const char * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION
  30012. This is the name of the section that will be created by the example
  30013. ELF implementation of the 'TARGET_ASM_RECORD_GCC_SWITCHES' target
  30014. hook.
  30015. 
  30016. File: gccint.info, Node: Data Output, Next: Uninitialized Data, Prev: File Framework, Up: Assembler Format
  30017. 18.20.2 Output of Data
  30018. ----------------------
  30019. -- Target Hook: const char * TARGET_ASM_BYTE_OP
  30020. -- Target Hook: const char * TARGET_ASM_ALIGNED_HI_OP
  30021. -- Target Hook: const char * TARGET_ASM_ALIGNED_SI_OP
  30022. -- Target Hook: const char * TARGET_ASM_ALIGNED_DI_OP
  30023. -- Target Hook: const char * TARGET_ASM_ALIGNED_TI_OP
  30024. -- Target Hook: const char * TARGET_ASM_UNALIGNED_HI_OP
  30025. -- Target Hook: const char * TARGET_ASM_UNALIGNED_SI_OP
  30026. -- Target Hook: const char * TARGET_ASM_UNALIGNED_DI_OP
  30027. -- Target Hook: const char * TARGET_ASM_UNALIGNED_TI_OP
  30028. These hooks specify assembly directives for creating certain kinds
  30029. of integer object. The 'TARGET_ASM_BYTE_OP' directive creates a
  30030. byte-sized object, the 'TARGET_ASM_ALIGNED_HI_OP' one creates an
  30031. aligned two-byte object, and so on. Any of the hooks may be
  30032. 'NULL', indicating that no suitable directive is available.
  30033. The compiler will print these strings at the start of a new line,
  30034. followed immediately by the object's initial value. In most cases,
  30035. the string should contain a tab, a pseudo-op, and then another tab.
  30036. -- Target Hook: bool TARGET_ASM_INTEGER (rtx X, unsigned int SIZE, int
  30037. ALIGNED_P)
  30038. The 'assemble_integer' function uses this hook to output an integer
  30039. object. X is the object's value, SIZE is its size in bytes and
  30040. ALIGNED_P indicates whether it is aligned. The function should
  30041. return 'true' if it was able to output the object. If it returns
  30042. false, 'assemble_integer' will try to split the object into smaller
  30043. parts.
  30044. The default implementation of this hook will use the
  30045. 'TARGET_ASM_BYTE_OP' family of strings, returning 'false' when the
  30046. relevant string is 'NULL'.
  30047. -- Target Hook: void TARGET_ASM_DECL_END (void)
  30048. Define this hook if the target assembler requires a special marker
  30049. to terminate an initialized variable declaration.
  30050. -- Target Hook: bool TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA (FILE *FILE,
  30051. rtx X)
  30052. A target hook to recognize RTX patterns that 'output_addr_const'
  30053. can't deal with, and output assembly code to FILE corresponding to
  30054. the pattern X. This may be used to allow machine-dependent
  30055. 'UNSPEC's to appear within constants.
  30056. If target hook fails to recognize a pattern, it must return
  30057. 'false', so that a standard error message is printed. If it prints
  30058. an error message itself, by calling, for example,
  30059. 'output_operand_lossage', it may just return 'true'.
  30060. -- Macro: ASM_OUTPUT_ASCII (STREAM, PTR, LEN)
  30061. A C statement to output to the stdio stream STREAM an assembler
  30062. instruction to assemble a string constant containing the LEN bytes
  30063. at PTR. PTR will be a C expression of type 'char *' and LEN a C
  30064. expression of type 'int'.
  30065. If the assembler has a '.ascii' pseudo-op as found in the Berkeley
  30066. Unix assembler, do not define the macro 'ASM_OUTPUT_ASCII'.
  30067. -- Macro: ASM_OUTPUT_FDESC (STREAM, DECL, N)
  30068. A C statement to output word N of a function descriptor for DECL.
  30069. This must be defined if 'TARGET_VTABLE_USES_DESCRIPTORS' is
  30070. defined, and is otherwise unused.
  30071. -- Macro: CONSTANT_POOL_BEFORE_FUNCTION
  30072. You may define this macro as a C expression. You should define the
  30073. expression to have a nonzero value if GCC should output the
  30074. constant pool for a function before the code for the function, or a
  30075. zero value if GCC should output the constant pool after the
  30076. function. If you do not define this macro, the usual case, GCC
  30077. will output the constant pool before the function.
  30078. -- Macro: ASM_OUTPUT_POOL_PROLOGUE (FILE, FUNNAME, FUNDECL, SIZE)
  30079. A C statement to output assembler commands to define the start of
  30080. the constant pool for a function. FUNNAME is a string giving the
  30081. name of the function. Should the return type of the function be
  30082. required, it can be obtained via FUNDECL. SIZE is the size, in
  30083. bytes, of the constant pool that will be written immediately after
  30084. this call.
  30085. If no constant-pool prefix is required, the usual case, this macro
  30086. need not be defined.
  30087. -- Macro: ASM_OUTPUT_SPECIAL_POOL_ENTRY (FILE, X, MODE, ALIGN, LABELNO,
  30088. JUMPTO)
  30089. A C statement (with or without semicolon) to output a constant in
  30090. the constant pool, if it needs special treatment. (This macro need
  30091. not do anything for RTL expressions that can be output normally.)
  30092. The argument FILE is the standard I/O stream to output the
  30093. assembler code on. X is the RTL expression for the constant to
  30094. output, and MODE is the machine mode (in case X is a 'const_int').
  30095. ALIGN is the required alignment for the value X; you should output
  30096. an assembler directive to force this much alignment.
  30097. The argument LABELNO is a number to use in an internal label for
  30098. the address of this pool entry. The definition of this macro is
  30099. responsible for outputting the label definition at the proper
  30100. place. Here is how to do this:
  30101. (*targetm.asm_out.internal_label) (FILE, "LC", LABELNO);
  30102. When you output a pool entry specially, you should end with a
  30103. 'goto' to the label JUMPTO. This will prevent the same pool entry
  30104. from being output a second time in the usual manner.
  30105. You need not define this macro if it would do nothing.
  30106. -- Macro: ASM_OUTPUT_POOL_EPILOGUE (FILE FUNNAME FUNDECL SIZE)
  30107. A C statement to output assembler commands to at the end of the
  30108. constant pool for a function. FUNNAME is a string giving the name
  30109. of the function. Should the return type of the function be
  30110. required, you can obtain it via FUNDECL. SIZE is the size, in
  30111. bytes, of the constant pool that GCC wrote immediately before this
  30112. call.
  30113. If no constant-pool epilogue is required, the usual case, you need
  30114. not define this macro.
  30115. -- Macro: IS_ASM_LOGICAL_LINE_SEPARATOR (C, STR)
  30116. Define this macro as a C expression which is nonzero if C is used
  30117. as a logical line separator by the assembler. STR points to the
  30118. position in the string where C was found; this can be used if a
  30119. line separator uses multiple characters.
  30120. If you do not define this macro, the default is that only the
  30121. character ';' is treated as a logical line separator.
  30122. -- Target Hook: const char * TARGET_ASM_OPEN_PAREN
  30123. -- Target Hook: const char * TARGET_ASM_CLOSE_PAREN
  30124. These target hooks are C string constants, describing the syntax in
  30125. the assembler for grouping arithmetic expressions. If not
  30126. overridden, they default to normal parentheses, which is correct
  30127. for most assemblers.
  30128. These macros are provided by 'real.h' for writing the definitions of
  30129. 'ASM_OUTPUT_DOUBLE' and the like:
  30130. -- Macro: REAL_VALUE_TO_TARGET_SINGLE (X, L)
  30131. -- Macro: REAL_VALUE_TO_TARGET_DOUBLE (X, L)
  30132. -- Macro: REAL_VALUE_TO_TARGET_LONG_DOUBLE (X, L)
  30133. -- Macro: REAL_VALUE_TO_TARGET_DECIMAL32 (X, L)
  30134. -- Macro: REAL_VALUE_TO_TARGET_DECIMAL64 (X, L)
  30135. -- Macro: REAL_VALUE_TO_TARGET_DECIMAL128 (X, L)
  30136. These translate X, of type 'REAL_VALUE_TYPE', to the target's
  30137. floating point representation, and store its bit pattern in the
  30138. variable L. For 'REAL_VALUE_TO_TARGET_SINGLE' and
  30139. 'REAL_VALUE_TO_TARGET_DECIMAL32', this variable should be a simple
  30140. 'long int'. For the others, it should be an array of 'long int'.
  30141. The number of elements in this array is determined by the size of
  30142. the desired target floating point data type: 32 bits of it go in
  30143. each 'long int' array element. Each array element holds 32 bits of
  30144. the result, even if 'long int' is wider than 32 bits on the host
  30145. machine.
  30146. The array element values are designed so that you can print them
  30147. out using 'fprintf' in the order they should appear in the target
  30148. machine's memory.
  30149. 
  30150. File: gccint.info, Node: Uninitialized Data, Next: Label Output, Prev: Data Output, Up: Assembler Format
  30151. 18.20.3 Output of Uninitialized Variables
  30152. -----------------------------------------
  30153. Each of the macros in this section is used to do the whole job of
  30154. outputting a single uninitialized variable.
  30155. -- Macro: ASM_OUTPUT_COMMON (STREAM, NAME, SIZE, ROUNDED)
  30156. A C statement (sans semicolon) to output to the stdio stream STREAM
  30157. the assembler definition of a common-label named NAME whose size is
  30158. SIZE bytes. The variable ROUNDED is the size rounded up to
  30159. whatever alignment the caller wants. It is possible that SIZE may
  30160. be zero, for instance if a struct with no other member than a
  30161. zero-length array is defined. In this case, the backend must
  30162. output a symbol definition that allocates at least one byte, both
  30163. so that the address of the resulting object does not compare equal
  30164. to any other, and because some object formats cannot even express
  30165. the concept of a zero-sized common symbol, as that is how they
  30166. represent an ordinary undefined external.
  30167. Use the expression 'assemble_name (STREAM, NAME)' to output the
  30168. name itself; before and after that, output the additional assembler
  30169. syntax for defining the name, and a newline.
  30170. This macro controls how the assembler definitions of uninitialized
  30171. common global variables are output.
  30172. -- Macro: ASM_OUTPUT_ALIGNED_COMMON (STREAM, NAME, SIZE, ALIGNMENT)
  30173. Like 'ASM_OUTPUT_COMMON' except takes the required alignment as a
  30174. separate, explicit argument. If you define this macro, it is used
  30175. in place of 'ASM_OUTPUT_COMMON', and gives you more flexibility in
  30176. handling the required alignment of the variable. The alignment is
  30177. specified as the number of bits.
  30178. -- Macro: ASM_OUTPUT_ALIGNED_DECL_COMMON (STREAM, DECL, NAME, SIZE,
  30179. ALIGNMENT)
  30180. Like 'ASM_OUTPUT_ALIGNED_COMMON' except that DECL of the variable
  30181. to be output, if there is one, or 'NULL_TREE' if there is no
  30182. corresponding variable. If you define this macro, GCC will use it
  30183. in place of both 'ASM_OUTPUT_COMMON' and
  30184. 'ASM_OUTPUT_ALIGNED_COMMON'. Define this macro when you need to
  30185. see the variable's decl in order to chose what to output.
  30186. -- Macro: ASM_OUTPUT_ALIGNED_BSS (STREAM, DECL, NAME, SIZE, ALIGNMENT)
  30187. A C statement (sans semicolon) to output to the stdio stream STREAM
  30188. the assembler definition of uninitialized global DECL named NAME
  30189. whose size is SIZE bytes. The variable ALIGNMENT is the alignment
  30190. specified as the number of bits.
  30191. Try to use function 'asm_output_aligned_bss' defined in file
  30192. 'varasm.c' when defining this macro. If unable, use the expression
  30193. 'assemble_name (STREAM, NAME)' to output the name itself; before
  30194. and after that, output the additional assembler syntax for defining
  30195. the name, and a newline.
  30196. There are two ways of handling global BSS. One is to define this
  30197. macro. The other is to have 'TARGET_ASM_SELECT_SECTION' return a
  30198. switchable BSS section (*note
  30199. TARGET_HAVE_SWITCHABLE_BSS_SECTIONS::). You do not need to do
  30200. both.
  30201. Some languages do not have 'common' data, and require a non-common
  30202. form of global BSS in order to handle uninitialized globals
  30203. efficiently. C++ is one example of this. However, if the target
  30204. does not support global BSS, the front end may choose to make
  30205. globals common in order to save space in the object file.
  30206. -- Macro: ASM_OUTPUT_LOCAL (STREAM, NAME, SIZE, ROUNDED)
  30207. A C statement (sans semicolon) to output to the stdio stream STREAM
  30208. the assembler definition of a local-common-label named NAME whose
  30209. size is SIZE bytes. The variable ROUNDED is the size rounded up to
  30210. whatever alignment the caller wants.
  30211. Use the expression 'assemble_name (STREAM, NAME)' to output the
  30212. name itself; before and after that, output the additional assembler
  30213. syntax for defining the name, and a newline.
  30214. This macro controls how the assembler definitions of uninitialized
  30215. static variables are output.
  30216. -- Macro: ASM_OUTPUT_ALIGNED_LOCAL (STREAM, NAME, SIZE, ALIGNMENT)
  30217. Like 'ASM_OUTPUT_LOCAL' except takes the required alignment as a
  30218. separate, explicit argument. If you define this macro, it is used
  30219. in place of 'ASM_OUTPUT_LOCAL', and gives you more flexibility in
  30220. handling the required alignment of the variable. The alignment is
  30221. specified as the number of bits.
  30222. -- Macro: ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE,
  30223. ALIGNMENT)
  30224. Like 'ASM_OUTPUT_ALIGNED_DECL' except that DECL of the variable to
  30225. be output, if there is one, or 'NULL_TREE' if there is no
  30226. corresponding variable. If you define this macro, GCC will use it
  30227. in place of both 'ASM_OUTPUT_DECL' and 'ASM_OUTPUT_ALIGNED_DECL'.
  30228. Define this macro when you need to see the variable's decl in order
  30229. to chose what to output.
  30230. 
  30231. File: gccint.info, Node: Label Output, Next: Initialization, Prev: Uninitialized Data, Up: Assembler Format
  30232. 18.20.4 Output and Generation of Labels
  30233. ---------------------------------------
  30234. This is about outputting labels.
  30235. -- Macro: ASM_OUTPUT_LABEL (STREAM, NAME)
  30236. A C statement (sans semicolon) to output to the stdio stream STREAM
  30237. the assembler definition of a label named NAME. Use the expression
  30238. 'assemble_name (STREAM, NAME)' to output the name itself; before
  30239. and after that, output the additional assembler syntax for defining
  30240. the name, and a newline. A default definition of this macro is
  30241. provided which is correct for most systems.
  30242. -- Macro: ASM_OUTPUT_FUNCTION_LABEL (STREAM, NAME, DECL)
  30243. A C statement (sans semicolon) to output to the stdio stream STREAM
  30244. the assembler definition of a label named NAME of a function. Use
  30245. the expression 'assemble_name (STREAM, NAME)' to output the name
  30246. itself; before and after that, output the additional assembler
  30247. syntax for defining the name, and a newline. A default definition
  30248. of this macro is provided which is correct for most systems.
  30249. If this macro is not defined, then the function name is defined in
  30250. the usual manner as a label (by means of 'ASM_OUTPUT_LABEL').
  30251. -- Macro: ASM_OUTPUT_INTERNAL_LABEL (STREAM, NAME)
  30252. Identical to 'ASM_OUTPUT_LABEL', except that NAME is known to refer
  30253. to a compiler-generated label. The default definition uses
  30254. 'assemble_name_raw', which is like 'assemble_name' except that it
  30255. is more efficient.
  30256. -- Macro: SIZE_ASM_OP
  30257. A C string containing the appropriate assembler directive to
  30258. specify the size of a symbol, without any arguments. On systems
  30259. that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"';
  30260. on other systems, the default is not to define this macro.
  30261. Define this macro only if it is correct to use the default
  30262. definitions of 'ASM_OUTPUT_SIZE_DIRECTIVE' and
  30263. 'ASM_OUTPUT_MEASURED_SIZE' for your system. If you need your own
  30264. custom definitions of those macros, or if you do not need explicit
  30265. symbol sizes at all, do not define this macro.
  30266. -- Macro: ASM_OUTPUT_SIZE_DIRECTIVE (STREAM, NAME, SIZE)
  30267. A C statement (sans semicolon) to output to the stdio stream STREAM
  30268. a directive telling the assembler that the size of the symbol NAME
  30269. is SIZE. SIZE is a 'HOST_WIDE_INT'. If you define 'SIZE_ASM_OP',
  30270. a default definition of this macro is provided.
  30271. -- Macro: ASM_OUTPUT_MEASURED_SIZE (STREAM, NAME)
  30272. A C statement (sans semicolon) to output to the stdio stream STREAM
  30273. a directive telling the assembler to calculate the size of the
  30274. symbol NAME by subtracting its address from the current address.
  30275. If you define 'SIZE_ASM_OP', a default definition of this macro is
  30276. provided. The default assumes that the assembler recognizes a
  30277. special '.' symbol as referring to the current address, and can
  30278. calculate the difference between this and another symbol. If your
  30279. assembler does not recognize '.' or cannot do calculations with it,
  30280. you will need to redefine 'ASM_OUTPUT_MEASURED_SIZE' to use some
  30281. other technique.
  30282. -- Macro: NO_DOLLAR_IN_LABEL
  30283. Define this macro if the assembler does not accept the character
  30284. '$' in label names. By default constructors and destructors in G++
  30285. have '$' in the identifiers. If this macro is defined, '.' is used
  30286. instead.
  30287. -- Macro: NO_DOT_IN_LABEL
  30288. Define this macro if the assembler does not accept the character
  30289. '.' in label names. By default constructors and destructors in G++
  30290. have names that use '.'. If this macro is defined, these names are
  30291. rewritten to avoid '.'.
  30292. -- Macro: TYPE_ASM_OP
  30293. A C string containing the appropriate assembler directive to
  30294. specify the type of a symbol, without any arguments. On systems
  30295. that use ELF, the default (in 'config/elfos.h') is '"\t.type\t"';
  30296. on other systems, the default is not to define this macro.
  30297. Define this macro only if it is correct to use the default
  30298. definition of 'ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you
  30299. need your own custom definition of this macro, or if you do not
  30300. need explicit symbol types at all, do not define this macro.
  30301. -- Macro: TYPE_OPERAND_FMT
  30302. A C string which specifies (using 'printf' syntax) the format of
  30303. the second operand to 'TYPE_ASM_OP'. On systems that use ELF, the
  30304. default (in 'config/elfos.h') is '"@%s"'; on other systems, the
  30305. default is not to define this macro.
  30306. Define this macro only if it is correct to use the default
  30307. definition of 'ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you
  30308. need your own custom definition of this macro, or if you do not
  30309. need explicit symbol types at all, do not define this macro.
  30310. -- Macro: ASM_OUTPUT_TYPE_DIRECTIVE (STREAM, TYPE)
  30311. A C statement (sans semicolon) to output to the stdio stream STREAM
  30312. a directive telling the assembler that the type of the symbol NAME
  30313. is TYPE. TYPE is a C string; currently, that string is always
  30314. either '"function"' or '"object"', but you should not count on
  30315. this.
  30316. If you define 'TYPE_ASM_OP' and 'TYPE_OPERAND_FMT', a default
  30317. definition of this macro is provided.
  30318. -- Macro: ASM_DECLARE_FUNCTION_NAME (STREAM, NAME, DECL)
  30319. A C statement (sans semicolon) to output to the stdio stream STREAM
  30320. any text necessary for declaring the name NAME of a function which
  30321. is being defined. This macro is responsible for outputting the
  30322. label definition (perhaps using 'ASM_OUTPUT_FUNCTION_LABEL'). The
  30323. argument DECL is the 'FUNCTION_DECL' tree node representing the
  30324. function.
  30325. If this macro is not defined, then the function name is defined in
  30326. the usual manner as a label (by means of
  30327. 'ASM_OUTPUT_FUNCTION_LABEL').
  30328. You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' in the definition
  30329. of this macro.
  30330. -- Macro: ASM_DECLARE_FUNCTION_SIZE (STREAM, NAME, DECL)
  30331. A C statement (sans semicolon) to output to the stdio stream STREAM
  30332. any text necessary for declaring the size of a function which is
  30333. being defined. The argument NAME is the name of the function. The
  30334. argument DECL is the 'FUNCTION_DECL' tree node representing the
  30335. function.
  30336. If this macro is not defined, then the function size is not
  30337. defined.
  30338. You may wish to use 'ASM_OUTPUT_MEASURED_SIZE' in the definition of
  30339. this macro.
  30340. -- Macro: ASM_DECLARE_COLD_FUNCTION_NAME (STREAM, NAME, DECL)
  30341. A C statement (sans semicolon) to output to the stdio stream STREAM
  30342. any text necessary for declaring the name NAME of a cold function
  30343. partition which is being defined. This macro is responsible for
  30344. outputting the label definition (perhaps using
  30345. 'ASM_OUTPUT_FUNCTION_LABEL'). The argument DECL is the
  30346. 'FUNCTION_DECL' tree node representing the function.
  30347. If this macro is not defined, then the cold partition name is
  30348. defined in the usual manner as a label (by means of
  30349. 'ASM_OUTPUT_LABEL').
  30350. You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' in the definition
  30351. of this macro.
  30352. -- Macro: ASM_DECLARE_COLD_FUNCTION_SIZE (STREAM, NAME, DECL)
  30353. A C statement (sans semicolon) to output to the stdio stream STREAM
  30354. any text necessary for declaring the size of a cold function
  30355. partition which is being defined. The argument NAME is the name of
  30356. the cold partition of the function. The argument DECL is the
  30357. 'FUNCTION_DECL' tree node representing the function.
  30358. If this macro is not defined, then the partition size is not
  30359. defined.
  30360. You may wish to use 'ASM_OUTPUT_MEASURED_SIZE' in the definition of
  30361. this macro.
  30362. -- Macro: ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL)
  30363. A C statement (sans semicolon) to output to the stdio stream STREAM
  30364. any text necessary for declaring the name NAME of an initialized
  30365. variable which is being defined. This macro must output the label
  30366. definition (perhaps using 'ASM_OUTPUT_LABEL'). The argument DECL
  30367. is the 'VAR_DECL' tree node representing the variable.
  30368. If this macro is not defined, then the variable name is defined in
  30369. the usual manner as a label (by means of 'ASM_OUTPUT_LABEL').
  30370. You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' and/or
  30371. 'ASM_OUTPUT_SIZE_DIRECTIVE' in the definition of this macro.
  30372. -- Target Hook: void TARGET_ASM_DECLARE_CONSTANT_NAME (FILE *FILE,
  30373. const char *NAME, const_tree EXPR, HOST_WIDE_INT SIZE)
  30374. A target hook to output to the stdio stream FILE any text necessary
  30375. for declaring the name NAME of a constant which is being defined.
  30376. This target hook is responsible for outputting the label definition
  30377. (perhaps using 'assemble_label'). The argument EXP is the value of
  30378. the constant, and SIZE is the size of the constant in bytes. The
  30379. NAME will be an internal label.
  30380. The default version of this target hook, define the NAME in the
  30381. usual manner as a label (by means of 'assemble_label').
  30382. You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' in this target
  30383. hook.
  30384. -- Macro: ASM_DECLARE_REGISTER_GLOBAL (STREAM, DECL, REGNO, NAME)
  30385. A C statement (sans semicolon) to output to the stdio stream STREAM
  30386. any text necessary for claiming a register REGNO for a global
  30387. variable DECL with name NAME.
  30388. If you don't define this macro, that is equivalent to defining it
  30389. to do nothing.
  30390. -- Macro: ASM_FINISH_DECLARE_OBJECT (STREAM, DECL, TOPLEVEL, ATEND)
  30391. A C statement (sans semicolon) to finish up declaring a variable
  30392. name once the compiler has processed its initializer fully and thus
  30393. has had a chance to determine the size of an array when controlled
  30394. by an initializer. This is used on systems where it's necessary to
  30395. declare something about the size of the object.
  30396. If you don't define this macro, that is equivalent to defining it
  30397. to do nothing.
  30398. You may wish to use 'ASM_OUTPUT_SIZE_DIRECTIVE' and/or
  30399. 'ASM_OUTPUT_MEASURED_SIZE' in the definition of this macro.
  30400. -- Target Hook: void TARGET_ASM_GLOBALIZE_LABEL (FILE *STREAM, const
  30401. char *NAME)
  30402. This target hook is a function to output to the stdio stream STREAM
  30403. some commands that will make the label NAME global; that is,
  30404. available for reference from other files.
  30405. The default implementation relies on a proper definition of
  30406. 'GLOBAL_ASM_OP'.
  30407. -- Target Hook: void TARGET_ASM_GLOBALIZE_DECL_NAME (FILE *STREAM, tree
  30408. DECL)
  30409. This target hook is a function to output to the stdio stream STREAM
  30410. some commands that will make the name associated with DECL global;
  30411. that is, available for reference from other files.
  30412. The default implementation uses the TARGET_ASM_GLOBALIZE_LABEL
  30413. target hook.
  30414. -- Target Hook: void TARGET_ASM_ASSEMBLE_UNDEFINED_DECL (FILE *STREAM,
  30415. const char *NAME, const_tree DECL)
  30416. This target hook is a function to output to the stdio stream STREAM
  30417. some commands that will declare the name associated with DECL which
  30418. is not defined in the current translation unit. Most assemblers do
  30419. not require anything to be output in this case.
  30420. -- Macro: ASM_WEAKEN_LABEL (STREAM, NAME)
  30421. A C statement (sans semicolon) to output to the stdio stream STREAM
  30422. some commands that will make the label NAME weak; that is,
  30423. available for reference from other files but only used if no other
  30424. definition is available. Use the expression 'assemble_name
  30425. (STREAM, NAME)' to output the name itself; before and after that,
  30426. output the additional assembler syntax for making that name weak,
  30427. and a newline.
  30428. If you don't define this macro or 'ASM_WEAKEN_DECL', GCC will not
  30429. support weak symbols and you should not define the 'SUPPORTS_WEAK'
  30430. macro.
  30431. -- Macro: ASM_WEAKEN_DECL (STREAM, DECL, NAME, VALUE)
  30432. Combines (and replaces) the function of 'ASM_WEAKEN_LABEL' and
  30433. 'ASM_OUTPUT_WEAK_ALIAS', allowing access to the associated function
  30434. or variable decl. If VALUE is not 'NULL', this C statement should
  30435. output to the stdio stream STREAM assembler code which defines
  30436. (equates) the weak symbol NAME to have the value VALUE. If VALUE
  30437. is 'NULL', it should output commands to make NAME weak.
  30438. -- Macro: ASM_OUTPUT_WEAKREF (STREAM, DECL, NAME, VALUE)
  30439. Outputs a directive that enables NAME to be used to refer to symbol
  30440. VALUE with weak-symbol semantics. 'decl' is the declaration of
  30441. 'name'.
  30442. -- Macro: SUPPORTS_WEAK
  30443. A preprocessor constant expression which evaluates to true if the
  30444. target supports weak symbols.
  30445. If you don't define this macro, 'defaults.h' provides a default
  30446. definition. If either 'ASM_WEAKEN_LABEL' or 'ASM_WEAKEN_DECL' is
  30447. defined, the default definition is '1'; otherwise, it is '0'.
  30448. -- Macro: TARGET_SUPPORTS_WEAK
  30449. A C expression which evaluates to true if the target supports weak
  30450. symbols.
  30451. If you don't define this macro, 'defaults.h' provides a default
  30452. definition. The default definition is '(SUPPORTS_WEAK)'. Define
  30453. this macro if you want to control weak symbol support with a
  30454. compiler flag such as '-melf'.
  30455. -- Macro: MAKE_DECL_ONE_ONLY (DECL)
  30456. A C statement (sans semicolon) to mark DECL to be emitted as a
  30457. public symbol such that extra copies in multiple translation units
  30458. will be discarded by the linker. Define this macro if your object
  30459. file format provides support for this concept, such as the 'COMDAT'
  30460. section flags in the Microsoft Windows PE/COFF format, and this
  30461. support requires changes to DECL, such as putting it in a separate
  30462. section.
  30463. -- Macro: SUPPORTS_ONE_ONLY
  30464. A C expression which evaluates to true if the target supports
  30465. one-only semantics.
  30466. If you don't define this macro, 'varasm.c' provides a default
  30467. definition. If 'MAKE_DECL_ONE_ONLY' is defined, the default
  30468. definition is '1'; otherwise, it is '0'. Define this macro if you
  30469. want to control one-only symbol support with a compiler flag, or if
  30470. setting the 'DECL_ONE_ONLY' flag is enough to mark a declaration to
  30471. be emitted as one-only.
  30472. -- Target Hook: void TARGET_ASM_ASSEMBLE_VISIBILITY (tree DECL, int
  30473. VISIBILITY)
  30474. This target hook is a function to output to ASM_OUT_FILE some
  30475. commands that will make the symbol(s) associated with DECL have
  30476. hidden, protected or internal visibility as specified by
  30477. VISIBILITY.
  30478. -- Macro: TARGET_WEAK_NOT_IN_ARCHIVE_TOC
  30479. A C expression that evaluates to true if the target's linker
  30480. expects that weak symbols do not appear in a static archive's table
  30481. of contents. The default is '0'.
  30482. Leaving weak symbols out of an archive's table of contents means
  30483. that, if a symbol will only have a definition in one translation
  30484. unit and will have undefined references from other translation
  30485. units, that symbol should not be weak. Defining this macro to be
  30486. nonzero will thus have the effect that certain symbols that would
  30487. normally be weak (explicit template instantiations, and vtables for
  30488. polymorphic classes with noninline key methods) will instead be
  30489. nonweak.
  30490. The C++ ABI requires this macro to be zero. Define this macro for
  30491. targets where full C++ ABI compliance is impossible and where
  30492. linker restrictions require weak symbols to be left out of a static
  30493. archive's table of contents.
  30494. -- Macro: ASM_OUTPUT_EXTERNAL (STREAM, DECL, NAME)
  30495. A C statement (sans semicolon) to output to the stdio stream STREAM
  30496. any text necessary for declaring the name of an external symbol
  30497. named NAME which is referenced in this compilation but not defined.
  30498. The value of DECL is the tree node for the declaration.
  30499. This macro need not be defined if it does not need to output
  30500. anything. The GNU assembler and most Unix assemblers don't require
  30501. anything.
  30502. -- Target Hook: void TARGET_ASM_EXTERNAL_LIBCALL (rtx SYMREF)
  30503. This target hook is a function to output to ASM_OUT_FILE an
  30504. assembler pseudo-op to declare a library function name external.
  30505. The name of the library function is given by SYMREF, which is a
  30506. 'symbol_ref'.
  30507. -- Target Hook: void TARGET_ASM_MARK_DECL_PRESERVED (const char
  30508. *SYMBOL)
  30509. This target hook is a function to output to ASM_OUT_FILE an
  30510. assembler directive to annotate SYMBOL as used. The Darwin target
  30511. uses the .no_dead_code_strip directive.
  30512. -- Macro: ASM_OUTPUT_LABELREF (STREAM, NAME)
  30513. A C statement (sans semicolon) to output to the stdio stream STREAM
  30514. a reference in assembler syntax to a label named NAME. This should
  30515. add '_' to the front of the name, if that is customary on your
  30516. operating system, as it is in most Berkeley Unix systems. This
  30517. macro is used in 'assemble_name'.
  30518. -- Target Hook: tree TARGET_MANGLE_ASSEMBLER_NAME (const char *NAME)
  30519. Given a symbol NAME, perform same mangling as 'varasm.c''s
  30520. 'assemble_name', but in memory rather than to a file stream,
  30521. returning result as an 'IDENTIFIER_NODE'. Required for correct LTO
  30522. symtabs. The default implementation calls the
  30523. 'TARGET_STRIP_NAME_ENCODING' hook and then prepends the
  30524. 'USER_LABEL_PREFIX', if any.
  30525. -- Macro: ASM_OUTPUT_SYMBOL_REF (STREAM, SYM)
  30526. A C statement (sans semicolon) to output a reference to
  30527. 'SYMBOL_REF' SYM. If not defined, 'assemble_name' will be used to
  30528. output the name of the symbol. This macro may be used to modify
  30529. the way a symbol is referenced depending on information encoded by
  30530. 'TARGET_ENCODE_SECTION_INFO'.
  30531. -- Macro: ASM_OUTPUT_LABEL_REF (STREAM, BUF)
  30532. A C statement (sans semicolon) to output a reference to BUF, the
  30533. result of 'ASM_GENERATE_INTERNAL_LABEL'. If not defined,
  30534. 'assemble_name' will be used to output the name of the symbol.
  30535. This macro is not used by 'output_asm_label', or the '%l' specifier
  30536. that calls it; the intention is that this macro should be set when
  30537. it is necessary to output a label differently when its address is
  30538. being taken.
  30539. -- Target Hook: void TARGET_ASM_INTERNAL_LABEL (FILE *STREAM, const
  30540. char *PREFIX, unsigned long LABELNO)
  30541. A function to output to the stdio stream STREAM a label whose name
  30542. is made from the string PREFIX and the number LABELNO.
  30543. It is absolutely essential that these labels be distinct from the
  30544. labels used for user-level functions and variables. Otherwise,
  30545. certain programs will have name conflicts with internal labels.
  30546. It is desirable to exclude internal labels from the symbol table of
  30547. the object file. Most assemblers have a naming convention for
  30548. labels that should be excluded; on many systems, the letter 'L' at
  30549. the beginning of a label has this effect. You should find out what
  30550. convention your system uses, and follow it.
  30551. The default version of this function utilizes
  30552. 'ASM_GENERATE_INTERNAL_LABEL'.
  30553. -- Macro: ASM_OUTPUT_DEBUG_LABEL (STREAM, PREFIX, NUM)
  30554. A C statement to output to the stdio stream STREAM a debug info
  30555. label whose name is made from the string PREFIX and the number NUM.
  30556. This is useful for VLIW targets, where debug info labels may need
  30557. to be treated differently than branch target labels. On some
  30558. systems, branch target labels must be at the beginning of
  30559. instruction bundles, but debug info labels can occur in the middle
  30560. of instruction bundles.
  30561. If this macro is not defined, then
  30562. '(*targetm.asm_out.internal_label)' will be used.
  30563. -- Macro: ASM_GENERATE_INTERNAL_LABEL (STRING, PREFIX, NUM)
  30564. A C statement to store into the string STRING a label whose name is
  30565. made from the string PREFIX and the number NUM.
  30566. This string, when output subsequently by 'assemble_name', should
  30567. produce the output that '(*targetm.asm_out.internal_label)' would
  30568. produce with the same PREFIX and NUM.
  30569. If the string begins with '*', then 'assemble_name' will output the
  30570. rest of the string unchanged. It is often convenient for
  30571. 'ASM_GENERATE_INTERNAL_LABEL' to use '*' in this way. If the
  30572. string doesn't start with '*', then 'ASM_OUTPUT_LABELREF' gets to
  30573. output the string, and may change it. (Of course,
  30574. 'ASM_OUTPUT_LABELREF' is also part of your machine description, so
  30575. you should know what it does on your machine.)
  30576. -- Macro: ASM_FORMAT_PRIVATE_NAME (OUTVAR, NAME, NUMBER)
  30577. A C expression to assign to OUTVAR (which is a variable of type
  30578. 'char *') a newly allocated string made from the string NAME and
  30579. the number NUMBER, with some suitable punctuation added. Use
  30580. 'alloca' to get space for the string.
  30581. The string will be used as an argument to 'ASM_OUTPUT_LABELREF' to
  30582. produce an assembler label for an internal static variable whose
  30583. name is NAME. Therefore, the string must be such as to result in
  30584. valid assembler code. The argument NUMBER is different each time
  30585. this macro is executed; it prevents conflicts between
  30586. similarly-named internal static variables in different scopes.
  30587. Ideally this string should not be a valid C identifier, to prevent
  30588. any conflict with the user's own symbols. Most assemblers allow
  30589. periods or percent signs in assembler symbols; putting at least one
  30590. of these between the name and the number will suffice.
  30591. If this macro is not defined, a default definition will be provided
  30592. which is correct for most systems.
  30593. -- Macro: ASM_OUTPUT_DEF (STREAM, NAME, VALUE)
  30594. A C statement to output to the stdio stream STREAM assembler code
  30595. which defines (equates) the symbol NAME to have the value VALUE.
  30596. If 'SET_ASM_OP' is defined, a default definition is provided which
  30597. is correct for most systems.
  30598. -- Macro: ASM_OUTPUT_DEF_FROM_DECLS (STREAM, DECL_OF_NAME,
  30599. DECL_OF_VALUE)
  30600. A C statement to output to the stdio stream STREAM assembler code
  30601. which defines (equates) the symbol whose tree node is DECL_OF_NAME
  30602. to have the value of the tree node DECL_OF_VALUE. This macro will
  30603. be used in preference to 'ASM_OUTPUT_DEF' if it is defined and if
  30604. the tree nodes are available.
  30605. If 'SET_ASM_OP' is defined, a default definition is provided which
  30606. is correct for most systems.
  30607. -- Macro: TARGET_DEFERRED_OUTPUT_DEFS (DECL_OF_NAME, DECL_OF_VALUE)
  30608. A C statement that evaluates to true if the assembler code which
  30609. defines (equates) the symbol whose tree node is DECL_OF_NAME to
  30610. have the value of the tree node DECL_OF_VALUE should be emitted
  30611. near the end of the current compilation unit. The default is to
  30612. not defer output of defines. This macro affects defines output by
  30613. 'ASM_OUTPUT_DEF' and 'ASM_OUTPUT_DEF_FROM_DECLS'.
  30614. -- Macro: ASM_OUTPUT_WEAK_ALIAS (STREAM, NAME, VALUE)
  30615. A C statement to output to the stdio stream STREAM assembler code
  30616. which defines (equates) the weak symbol NAME to have the value
  30617. VALUE. If VALUE is 'NULL', it defines NAME as an undefined weak
  30618. symbol.
  30619. Define this macro if the target only supports weak aliases; define
  30620. 'ASM_OUTPUT_DEF' instead if possible.
  30621. -- Macro: OBJC_GEN_METHOD_LABEL (BUF, IS_INST, CLASS_NAME, CAT_NAME,
  30622. SEL_NAME)
  30623. Define this macro to override the default assembler names used for
  30624. Objective-C methods.
  30625. The default name is a unique method number followed by the name of
  30626. the class (e.g. '_1_Foo'). For methods in categories, the name of
  30627. the category is also included in the assembler name (e.g.
  30628. '_1_Foo_Bar').
  30629. These names are safe on most systems, but make debugging difficult
  30630. since the method's selector is not present in the name. Therefore,
  30631. particular systems define other ways of computing names.
  30632. BUF is an expression of type 'char *' which gives you a buffer in
  30633. which to store the name; its length is as long as CLASS_NAME,
  30634. CAT_NAME and SEL_NAME put together, plus 50 characters extra.
  30635. The argument IS_INST specifies whether the method is an instance
  30636. method or a class method; CLASS_NAME is the name of the class;
  30637. CAT_NAME is the name of the category (or 'NULL' if the method is
  30638. not in a category); and SEL_NAME is the name of the selector.
  30639. On systems where the assembler can handle quoted names, you can use
  30640. this macro to provide more human-readable names.
  30641. 
  30642. File: gccint.info, Node: Initialization, Next: Macros for Initialization, Prev: Label Output, Up: Assembler Format
  30643. 18.20.5 How Initialization Functions Are Handled
  30644. ------------------------------------------------
  30645. The compiled code for certain languages includes "constructors" (also
  30646. called "initialization routines")--functions to initialize data in the
  30647. program when the program is started. These functions need to be called
  30648. before the program is "started"--that is to say, before 'main' is
  30649. called.
  30650. Compiling some languages generates "destructors" (also called
  30651. "termination routines") that should be called when the program
  30652. terminates.
  30653. To make the initialization and termination functions work, the compiler
  30654. must output something in the assembler code to cause those functions to
  30655. be called at the appropriate time. When you port the compiler to a new
  30656. system, you need to specify how to do this.
  30657. There are two major ways that GCC currently supports the execution of
  30658. initialization and termination functions. Each way has two variants.
  30659. Much of the structure is common to all four variations.
  30660. The linker must build two lists of these functions--a list of
  30661. initialization functions, called '__CTOR_LIST__', and a list of
  30662. termination functions, called '__DTOR_LIST__'.
  30663. Each list always begins with an ignored function pointer (which may
  30664. hold 0, -1, or a count of the function pointers after it, depending on
  30665. the environment). This is followed by a series of zero or more function
  30666. pointers to constructors (or destructors), followed by a function
  30667. pointer containing zero.
  30668. Depending on the operating system and its executable file format,
  30669. either 'crtstuff.c' or 'libgcc2.c' traverses these lists at startup time
  30670. and exit time. Constructors are called in reverse order of the list;
  30671. destructors in forward order.
  30672. The best way to handle static constructors works only for object file
  30673. formats which provide arbitrarily-named sections. A section is set
  30674. aside for a list of constructors, and another for a list of destructors.
  30675. Traditionally these are called '.ctors' and '.dtors'. Each object file
  30676. that defines an initialization function also puts a word in the
  30677. constructor section to point to that function. The linker accumulates
  30678. all these words into one contiguous '.ctors' section. Termination
  30679. functions are handled similarly.
  30680. This method will be chosen as the default by 'target-def.h' if
  30681. 'TARGET_ASM_NAMED_SECTION' is defined. A target that does not support
  30682. arbitrary sections, but does support special designated constructor and
  30683. destructor sections may define 'CTORS_SECTION_ASM_OP' and
  30684. 'DTORS_SECTION_ASM_OP' to achieve the same effect.
  30685. When arbitrary sections are available, there are two variants,
  30686. depending upon how the code in 'crtstuff.c' is called. On systems that
  30687. support a ".init" section which is executed at program startup, parts of
  30688. 'crtstuff.c' are compiled into that section. The program is linked by
  30689. the 'gcc' driver like this:
  30690. ld -o OUTPUT_FILE crti.o crtbegin.o ... -lgcc crtend.o crtn.o
  30691. The prologue of a function ('__init') appears in the '.init' section of
  30692. 'crti.o'; the epilogue appears in 'crtn.o'. Likewise for the function
  30693. '__fini' in the ".fini" section. Normally these files are provided by
  30694. the operating system or by the GNU C library, but are provided by GCC
  30695. for a few targets.
  30696. The objects 'crtbegin.o' and 'crtend.o' are (for most targets) compiled
  30697. from 'crtstuff.c'. They contain, among other things, code fragments
  30698. within the '.init' and '.fini' sections that branch to routines in the
  30699. '.text' section. The linker will pull all parts of a section together,
  30700. which results in a complete '__init' function that invokes the routines
  30701. we need at startup.
  30702. To use this variant, you must define the 'INIT_SECTION_ASM_OP' macro
  30703. properly.
  30704. If no init section is available, when GCC compiles any function called
  30705. 'main' (or more accurately, any function designated as a program entry
  30706. point by the language front end calling 'expand_main_function'), it
  30707. inserts a procedure call to '__main' as the first executable code after
  30708. the function prologue. The '__main' function is defined in 'libgcc2.c'
  30709. and runs the global constructors.
  30710. In file formats that don't support arbitrary sections, there are again
  30711. two variants. In the simplest variant, the GNU linker (GNU 'ld') and an
  30712. 'a.out' format must be used. In this case, 'TARGET_ASM_CONSTRUCTOR' is
  30713. defined to produce a '.stabs' entry of type 'N_SETT', referencing the
  30714. name '__CTOR_LIST__', and with the address of the void function
  30715. containing the initialization code as its value. The GNU linker
  30716. recognizes this as a request to add the value to a "set"; the values are
  30717. accumulated, and are eventually placed in the executable as a vector in
  30718. the format described above, with a leading (ignored) count and a
  30719. trailing zero element. 'TARGET_ASM_DESTRUCTOR' is handled similarly.
  30720. Since no init section is available, the absence of 'INIT_SECTION_ASM_OP'
  30721. causes the compilation of 'main' to call '__main' as above, starting the
  30722. initialization process.
  30723. The last variant uses neither arbitrary sections nor the GNU linker.
  30724. This is preferable when you want to do dynamic linking and when using
  30725. file formats which the GNU linker does not support, such as 'ECOFF'. In
  30726. this case, 'TARGET_HAVE_CTORS_DTORS' is false, initialization and
  30727. termination functions are recognized simply by their names. This
  30728. requires an extra program in the linkage step, called 'collect2'. This
  30729. program pretends to be the linker, for use with GCC; it does its job by
  30730. running the ordinary linker, but also arranges to include the vectors of
  30731. initialization and termination functions. These functions are called
  30732. via '__main' as described above. In order to use this method,
  30733. 'use_collect2' must be defined in the target in 'config.gcc'.
  30734. The following section describes the specific macros that control and
  30735. customize the handling of initialization and termination functions.
  30736. 
  30737. File: gccint.info, Node: Macros for Initialization, Next: Instruction Output, Prev: Initialization, Up: Assembler Format
  30738. 18.20.6 Macros Controlling Initialization Routines
  30739. --------------------------------------------------
  30740. Here are the macros that control how the compiler handles initialization
  30741. and termination functions:
  30742. -- Macro: INIT_SECTION_ASM_OP
  30743. If defined, a C string constant, including spacing, for the
  30744. assembler operation to identify the following data as
  30745. initialization code. If not defined, GCC will assume such a
  30746. section does not exist. When you are using special sections for
  30747. initialization and termination functions, this macro also controls
  30748. how 'crtstuff.c' and 'libgcc2.c' arrange to run the initialization
  30749. functions.
  30750. -- Macro: HAS_INIT_SECTION
  30751. If defined, 'main' will not call '__main' as described above. This
  30752. macro should be defined for systems that control start-up code on a
  30753. symbol-by-symbol basis, such as OSF/1, and should not be defined
  30754. explicitly for systems that support 'INIT_SECTION_ASM_OP'.
  30755. -- Macro: LD_INIT_SWITCH
  30756. If defined, a C string constant for a switch that tells the linker
  30757. that the following symbol is an initialization routine.
  30758. -- Macro: LD_FINI_SWITCH
  30759. If defined, a C string constant for a switch that tells the linker
  30760. that the following symbol is a finalization routine.
  30761. -- Macro: COLLECT_SHARED_INIT_FUNC (STREAM, FUNC)
  30762. If defined, a C statement that will write a function that can be
  30763. automatically called when a shared library is loaded. The function
  30764. should call FUNC, which takes no arguments. If not defined, and
  30765. the object format requires an explicit initialization function,
  30766. then a function called '_GLOBAL__DI' will be generated.
  30767. This function and the following one are used by collect2 when
  30768. linking a shared library that needs constructors or destructors, or
  30769. has DWARF2 exception tables embedded in the code.
  30770. -- Macro: COLLECT_SHARED_FINI_FUNC (STREAM, FUNC)
  30771. If defined, a C statement that will write a function that can be
  30772. automatically called when a shared library is unloaded. The
  30773. function should call FUNC, which takes no arguments. If not
  30774. defined, and the object format requires an explicit finalization
  30775. function, then a function called '_GLOBAL__DD' will be generated.
  30776. -- Macro: INVOKE__main
  30777. If defined, 'main' will call '__main' despite the presence of
  30778. 'INIT_SECTION_ASM_OP'. This macro should be defined for systems
  30779. where the init section is not actually run automatically, but is
  30780. still useful for collecting the lists of constructors and
  30781. destructors.
  30782. -- Macro: SUPPORTS_INIT_PRIORITY
  30783. If nonzero, the C++ 'init_priority' attribute is supported and the
  30784. compiler should emit instructions to control the order of
  30785. initialization of objects. If zero, the compiler will issue an
  30786. error message upon encountering an 'init_priority' attribute.
  30787. -- Target Hook: bool TARGET_HAVE_CTORS_DTORS
  30788. This value is true if the target supports some "native" method of
  30789. collecting constructors and destructors to be run at startup and
  30790. exit. It is false if we must use 'collect2'.
  30791. -- Target Hook: void TARGET_ASM_CONSTRUCTOR (rtx SYMBOL, int PRIORITY)
  30792. If defined, a function that outputs assembler code to arrange to
  30793. call the function referenced by SYMBOL at initialization time.
  30794. Assume that SYMBOL is a 'SYMBOL_REF' for a function taking no
  30795. arguments and with no return value. If the target supports
  30796. initialization priorities, PRIORITY is a value between 0 and
  30797. 'MAX_INIT_PRIORITY'; otherwise it must be 'DEFAULT_INIT_PRIORITY'.
  30798. If this macro is not defined by the target, a suitable default will
  30799. be chosen if (1) the target supports arbitrary section names, (2)
  30800. the target defines 'CTORS_SECTION_ASM_OP', or (3) 'USE_COLLECT2' is
  30801. not defined.
  30802. -- Target Hook: void TARGET_ASM_DESTRUCTOR (rtx SYMBOL, int PRIORITY)
  30803. This is like 'TARGET_ASM_CONSTRUCTOR' but used for termination
  30804. functions rather than initialization functions.
  30805. If 'TARGET_HAVE_CTORS_DTORS' is true, the initialization routine
  30806. generated for the generated object file will have static linkage.
  30807. If your system uses 'collect2' as the means of processing constructors,
  30808. then that program normally uses 'nm' to scan an object file for
  30809. constructor functions to be called.
  30810. On certain kinds of systems, you can define this macro to make
  30811. 'collect2' work faster (and, in some cases, make it work at all):
  30812. -- Macro: OBJECT_FORMAT_COFF
  30813. Define this macro if the system uses COFF (Common Object File
  30814. Format) object files, so that 'collect2' can assume this format and
  30815. scan object files directly for dynamic constructor/destructor
  30816. functions.
  30817. This macro is effective only in a native compiler; 'collect2' as
  30818. part of a cross compiler always uses 'nm' for the target machine.
  30819. -- Macro: REAL_NM_FILE_NAME
  30820. Define this macro as a C string constant containing the file name
  30821. to use to execute 'nm'. The default is to search the path normally
  30822. for 'nm'.
  30823. -- Macro: NM_FLAGS
  30824. 'collect2' calls 'nm' to scan object files for static constructors
  30825. and destructors and LTO info. By default, '-n' is passed. Define
  30826. 'NM_FLAGS' to a C string constant if other options are needed to
  30827. get the same output format as GNU 'nm -n' produces.
  30828. If your system supports shared libraries and has a program to list the
  30829. dynamic dependencies of a given library or executable, you can define
  30830. these macros to enable support for running initialization and
  30831. termination functions in shared libraries:
  30832. -- Macro: LDD_SUFFIX
  30833. Define this macro to a C string constant containing the name of the
  30834. program which lists dynamic dependencies, like 'ldd' under SunOS 4.
  30835. -- Macro: PARSE_LDD_OUTPUT (PTR)
  30836. Define this macro to be C code that extracts filenames from the
  30837. output of the program denoted by 'LDD_SUFFIX'. PTR is a variable
  30838. of type 'char *' that points to the beginning of a line of output
  30839. from 'LDD_SUFFIX'. If the line lists a dynamic dependency, the
  30840. code must advance PTR to the beginning of the filename on that
  30841. line. Otherwise, it must set PTR to 'NULL'.
  30842. -- Macro: SHLIB_SUFFIX
  30843. Define this macro to a C string constant containing the default
  30844. shared library extension of the target (e.g., '".so"'). 'collect2'
  30845. strips version information after this suffix when generating global
  30846. constructor and destructor names. This define is only needed on
  30847. targets that use 'collect2' to process constructors and
  30848. destructors.
  30849. 
  30850. File: gccint.info, Node: Instruction Output, Next: Dispatch Tables, Prev: Macros for Initialization, Up: Assembler Format
  30851. 18.20.7 Output of Assembler Instructions
  30852. ----------------------------------------
  30853. This describes assembler instruction output.
  30854. -- Macro: REGISTER_NAMES
  30855. A C initializer containing the assembler's names for the machine
  30856. registers, each one as a C string constant. This is what
  30857. translates register numbers in the compiler into assembler
  30858. language.
  30859. -- Macro: ADDITIONAL_REGISTER_NAMES
  30860. If defined, a C initializer for an array of structures containing a
  30861. name and a register number. This macro defines additional names
  30862. for hard registers, thus allowing the 'asm' option in declarations
  30863. to refer to registers using alternate names.
  30864. -- Macro: OVERLAPPING_REGISTER_NAMES
  30865. If defined, a C initializer for an array of structures containing a
  30866. name, a register number and a count of the number of consecutive
  30867. machine registers the name overlaps. This macro defines additional
  30868. names for hard registers, thus allowing the 'asm' option in
  30869. declarations to refer to registers using alternate names. Unlike
  30870. 'ADDITIONAL_REGISTER_NAMES', this macro should be used when the
  30871. register name implies multiple underlying registers.
  30872. This macro should be used when it is important that a clobber in an
  30873. 'asm' statement clobbers all the underlying values implied by the
  30874. register name. For example, on ARM, clobbering the
  30875. double-precision VFP register "d0" implies clobbering both
  30876. single-precision registers "s0" and "s1".
  30877. -- Macro: ASM_OUTPUT_OPCODE (STREAM, PTR)
  30878. Define this macro if you are using an unusual assembler that
  30879. requires different names for the machine instructions.
  30880. The definition is a C statement or statements which output an
  30881. assembler instruction opcode to the stdio stream STREAM. The
  30882. macro-operand PTR is a variable of type 'char *' which points to
  30883. the opcode name in its "internal" form--the form that is written in
  30884. the machine description. The definition should output the opcode
  30885. name to STREAM, performing any translation you desire, and
  30886. increment the variable PTR to point at the end of the opcode so
  30887. that it will not be output twice.
  30888. In fact, your macro definition may process less than the entire
  30889. opcode name, or more than the opcode name; but if you want to
  30890. process text that includes '%'-sequences to substitute operands,
  30891. you must take care of the substitution yourself. Just be sure to
  30892. increment PTR over whatever text should not be output normally.
  30893. If you need to look at the operand values, they can be found as the
  30894. elements of 'recog_data.operand'.
  30895. If the macro definition does nothing, the instruction is output in
  30896. the usual way.
  30897. -- Macro: FINAL_PRESCAN_INSN (INSN, OPVEC, NOPERANDS)
  30898. If defined, a C statement to be executed just prior to the output
  30899. of assembler code for INSN, to modify the extracted operands so
  30900. they will be output differently.
  30901. Here the argument OPVEC is the vector containing the operands
  30902. extracted from INSN, and NOPERANDS is the number of elements of the
  30903. vector which contain meaningful data for this insn. The contents
  30904. of this vector are what will be used to convert the insn template
  30905. into assembler code, so you can change the assembler output by
  30906. changing the contents of the vector.
  30907. This macro is useful when various assembler syntaxes share a single
  30908. file of instruction patterns; by defining this macro differently,
  30909. you can cause a large class of instructions to be output
  30910. differently (such as with rearranged operands). Naturally,
  30911. variations in assembler syntax affecting individual insn patterns
  30912. ought to be handled by writing conditional output routines in those
  30913. patterns.
  30914. If this macro is not defined, it is equivalent to a null statement.
  30915. -- Target Hook: void TARGET_ASM_FINAL_POSTSCAN_INSN (FILE *FILE,
  30916. rtx_insn *INSN, rtx *OPVEC, int NOPERANDS)
  30917. If defined, this target hook is a function which is executed just
  30918. after the output of assembler code for INSN, to change the mode of
  30919. the assembler if necessary.
  30920. Here the argument OPVEC is the vector containing the operands
  30921. extracted from INSN, and NOPERANDS is the number of elements of the
  30922. vector which contain meaningful data for this insn. The contents
  30923. of this vector are what was used to convert the insn template into
  30924. assembler code, so you can change the assembler mode by checking
  30925. the contents of the vector.
  30926. -- Macro: PRINT_OPERAND (STREAM, X, CODE)
  30927. A C compound statement to output to stdio stream STREAM the
  30928. assembler syntax for an instruction operand X. X is an RTL
  30929. expression.
  30930. CODE is a value that can be used to specify one of several ways of
  30931. printing the operand. It is used when identical operands must be
  30932. printed differently depending on the context. CODE comes from the
  30933. '%' specification that was used to request printing of the operand.
  30934. If the specification was just '%DIGIT' then CODE is 0; if the
  30935. specification was '%LTR DIGIT' then CODE is the ASCII code for LTR.
  30936. If X is a register, this macro should print the register's name.
  30937. The names can be found in an array 'reg_names' whose type is 'char
  30938. *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'.
  30939. When the machine description has a specification '%PUNCT' (a '%'
  30940. followed by a punctuation character), this macro is called with a
  30941. null pointer for X and the punctuation character for CODE.
  30942. -- Macro: PRINT_OPERAND_PUNCT_VALID_P (CODE)
  30943. A C expression which evaluates to true if CODE is a valid
  30944. punctuation character for use in the 'PRINT_OPERAND' macro. If
  30945. 'PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
  30946. punctuation characters (except for the standard one, '%') are used
  30947. in this way.
  30948. -- Macro: PRINT_OPERAND_ADDRESS (STREAM, X)
  30949. A C compound statement to output to stdio stream STREAM the
  30950. assembler syntax for an instruction operand that is a memory
  30951. reference whose address is X. X is an RTL expression.
  30952. On some machines, the syntax for a symbolic address depends on the
  30953. section that the address refers to. On these machines, define the
  30954. hook 'TARGET_ENCODE_SECTION_INFO' to store the information into the
  30955. 'symbol_ref', and then check for it here. *Note Assembler
  30956. Format::.
  30957. -- Macro: DBR_OUTPUT_SEQEND (FILE)
  30958. A C statement, to be executed after all slot-filler instructions
  30959. have been output. If necessary, call 'dbr_sequence_length' to
  30960. determine the number of slots filled in a sequence (zero if not
  30961. currently outputting a sequence), to decide how many no-ops to
  30962. output, or whatever.
  30963. Don't define this macro if it has nothing to do, but it is helpful
  30964. in reading assembly output if the extent of the delay sequence is
  30965. made explicit (e.g. with white space).
  30966. Note that output routines for instructions with delay slots must be
  30967. prepared to deal with not being output as part of a sequence (i.e. when
  30968. the scheduling pass is not run, or when no slot fillers could be found.)
  30969. The variable 'final_sequence' is null when not processing a sequence,
  30970. otherwise it contains the 'sequence' rtx being output.
  30971. -- Macro: REGISTER_PREFIX
  30972. -- Macro: LOCAL_LABEL_PREFIX
  30973. -- Macro: USER_LABEL_PREFIX
  30974. -- Macro: IMMEDIATE_PREFIX
  30975. If defined, C string expressions to be used for the '%R', '%L',
  30976. '%U', and '%I' options of 'asm_fprintf' (see 'final.c'). These are
  30977. useful when a single 'md' file must support multiple assembler
  30978. formats. In that case, the various 'tm.h' files can define these
  30979. macros differently.
  30980. -- Macro: ASM_FPRINTF_EXTENSIONS (FILE, ARGPTR, FORMAT)
  30981. If defined this macro should expand to a series of 'case'
  30982. statements which will be parsed inside the 'switch' statement of
  30983. the 'asm_fprintf' function. This allows targets to define extra
  30984. printf formats which may useful when generating their assembler
  30985. statements. Note that uppercase letters are reserved for future
  30986. generic extensions to asm_fprintf, and so are not available to
  30987. target specific code. The output file is given by the parameter
  30988. FILE. The varargs input pointer is ARGPTR and the rest of the
  30989. format string, starting the character after the one that is being
  30990. switched upon, is pointed to by FORMAT.
  30991. -- Macro: ASSEMBLER_DIALECT
  30992. If your target supports multiple dialects of assembler language
  30993. (such as different opcodes), define this macro as a C expression
  30994. that gives the numeric index of the assembler language dialect to
  30995. use, with zero as the first variant.
  30996. If this macro is defined, you may use constructs of the form
  30997. '{option0|option1|option2...}'
  30998. in the output templates of patterns (*note Output Template::) or in
  30999. the first argument of 'asm_fprintf'. This construct outputs
  31000. 'option0', 'option1', 'option2', etc., if the value of
  31001. 'ASSEMBLER_DIALECT' is zero, one, two, etc. Any special characters
  31002. within these strings retain their usual meaning. If there are
  31003. fewer alternatives within the braces than the value of
  31004. 'ASSEMBLER_DIALECT', the construct outputs nothing. If it's needed
  31005. to print curly braces or '|' character in assembler output
  31006. directly, '%{', '%}' and '%|' can be used.
  31007. If you do not define this macro, the characters '{', '|' and '}' do
  31008. not have any special meaning when used in templates or operands to
  31009. 'asm_fprintf'.
  31010. Define the macros 'REGISTER_PREFIX', 'LOCAL_LABEL_PREFIX',
  31011. 'USER_LABEL_PREFIX' and 'IMMEDIATE_PREFIX' if you can express the
  31012. variations in assembler language syntax with that mechanism.
  31013. Define 'ASSEMBLER_DIALECT' and use the '{option0|option1}' syntax
  31014. if the syntax variant are larger and involve such things as
  31015. different opcodes or operand order.
  31016. -- Macro: ASM_OUTPUT_REG_PUSH (STREAM, REGNO)
  31017. A C expression to output to STREAM some assembler code which will
  31018. push hard register number REGNO onto the stack. The code need not
  31019. be optimal, since this macro is used only when profiling.
  31020. -- Macro: ASM_OUTPUT_REG_POP (STREAM, REGNO)
  31021. A C expression to output to STREAM some assembler code which will
  31022. pop hard register number REGNO off of the stack. The code need not
  31023. be optimal, since this macro is used only when profiling.
  31024. 
  31025. File: gccint.info, Node: Dispatch Tables, Next: Exception Region Output, Prev: Instruction Output, Up: Assembler Format
  31026. 18.20.8 Output of Dispatch Tables
  31027. ---------------------------------
  31028. This concerns dispatch tables.
  31029. -- Macro: ASM_OUTPUT_ADDR_DIFF_ELT (STREAM, BODY, VALUE, REL)
  31030. A C statement to output to the stdio stream STREAM an assembler
  31031. pseudo-instruction to generate a difference between two labels.
  31032. VALUE and REL are the numbers of two internal labels. The
  31033. definitions of these labels are output using
  31034. '(*targetm.asm_out.internal_label)', and they must be printed in
  31035. the same way here. For example,
  31036. fprintf (STREAM, "\t.word L%d-L%d\n",
  31037. VALUE, REL)
  31038. You must provide this macro on machines where the addresses in a
  31039. dispatch table are relative to the table's own address. If
  31040. defined, GCC will also use this macro on all machines when
  31041. producing PIC. BODY is the body of the 'ADDR_DIFF_VEC'; it is
  31042. provided so that the mode and flags can be read.
  31043. -- Macro: ASM_OUTPUT_ADDR_VEC_ELT (STREAM, VALUE)
  31044. This macro should be provided on machines where the addresses in a
  31045. dispatch table are absolute.
  31046. The definition should be a C statement to output to the stdio
  31047. stream STREAM an assembler pseudo-instruction to generate a
  31048. reference to a label. VALUE is the number of an internal label
  31049. whose definition is output using
  31050. '(*targetm.asm_out.internal_label)'. For example,
  31051. fprintf (STREAM, "\t.word L%d\n", VALUE)
  31052. -- Macro: ASM_OUTPUT_CASE_LABEL (STREAM, PREFIX, NUM, TABLE)
  31053. Define this if the label before a jump-table needs to be output
  31054. specially. The first three arguments are the same as for
  31055. '(*targetm.asm_out.internal_label)'; the fourth argument is the
  31056. jump-table which follows (a 'jump_table_data' containing an
  31057. 'addr_vec' or 'addr_diff_vec').
  31058. This feature is used on system V to output a 'swbeg' statement for
  31059. the table.
  31060. If this macro is not defined, these labels are output with
  31061. '(*targetm.asm_out.internal_label)'.
  31062. -- Macro: ASM_OUTPUT_CASE_END (STREAM, NUM, TABLE)
  31063. Define this if something special must be output at the end of a
  31064. jump-table. The definition should be a C statement to be executed
  31065. after the assembler code for the table is written. It should write
  31066. the appropriate code to stdio stream STREAM. The argument TABLE is
  31067. the jump-table insn, and NUM is the label-number of the preceding
  31068. label.
  31069. If this macro is not defined, nothing special is output at the end
  31070. of the jump-table.
  31071. -- Target Hook: void TARGET_ASM_EMIT_UNWIND_LABEL (FILE *STREAM, tree
  31072. DECL, int FOR_EH, int EMPTY)
  31073. This target hook emits a label at the beginning of each FDE. It
  31074. should be defined on targets where FDEs need special labels, and it
  31075. should write the appropriate label, for the FDE associated with the
  31076. function declaration DECL, to the stdio stream STREAM. The third
  31077. argument, FOR_EH, is a boolean: true if this is for an exception
  31078. table. The fourth argument, EMPTY, is a boolean: true if this is a
  31079. placeholder label for an omitted FDE.
  31080. The default is that FDEs are not given nonlocal labels.
  31081. -- Target Hook: void TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL (FILE *STREAM)
  31082. This target hook emits a label at the beginning of the exception
  31083. table. It should be defined on targets where it is desirable for
  31084. the table to be broken up according to function.
  31085. The default is that no label is emitted.
  31086. -- Target Hook: void TARGET_ASM_EMIT_EXCEPT_PERSONALITY (rtx
  31087. PERSONALITY)
  31088. If the target implements 'TARGET_ASM_UNWIND_EMIT', this hook may be
  31089. used to emit a directive to install a personality hook into the
  31090. unwind info. This hook should not be used if dwarf2 unwind info is
  31091. used.
  31092. -- Target Hook: void TARGET_ASM_UNWIND_EMIT (FILE *STREAM, rtx_insn
  31093. *INSN)
  31094. This target hook emits assembly directives required to unwind the
  31095. given instruction. This is only used when
  31096. 'TARGET_EXCEPT_UNWIND_INFO' returns 'UI_TARGET'.
  31097. -- Target Hook: bool TARGET_ASM_UNWIND_EMIT_BEFORE_INSN
  31098. True if the 'TARGET_ASM_UNWIND_EMIT' hook should be called before
  31099. the assembly for INSN has been emitted, false if the hook should be
  31100. called afterward.
  31101. 
  31102. File: gccint.info, Node: Exception Region Output, Next: Alignment Output, Prev: Dispatch Tables, Up: Assembler Format
  31103. 18.20.9 Assembler Commands for Exception Regions
  31104. ------------------------------------------------
  31105. This describes commands marking the start and the end of an exception
  31106. region.
  31107. -- Macro: EH_FRAME_SECTION_NAME
  31108. If defined, a C string constant for the name of the section
  31109. containing exception handling frame unwind information. If not
  31110. defined, GCC will provide a default definition if the target
  31111. supports named sections. 'crtstuff.c' uses this macro to switch to
  31112. the appropriate section.
  31113. You should define this symbol if your target supports DWARF 2 frame
  31114. unwind information and the default definition does not work.
  31115. -- Macro: EH_FRAME_THROUGH_COLLECT2
  31116. If defined, DWARF 2 frame unwind information will identified by
  31117. specially named labels. The collect2 process will locate these
  31118. labels and generate code to register the frames.
  31119. This might be necessary, for instance, if the system linker will
  31120. not place the eh_frames in-between the sentinals from 'crtstuff.c',
  31121. or if the system linker does garbage collection and sections cannot
  31122. be marked as not to be collected.
  31123. -- Macro: EH_TABLES_CAN_BE_READ_ONLY
  31124. Define this macro to 1 if your target is such that no frame unwind
  31125. information encoding used with non-PIC code will ever require a
  31126. runtime relocation, but the linker may not support merging
  31127. read-only and read-write sections into a single read-write section.
  31128. -- Macro: MASK_RETURN_ADDR
  31129. An rtx used to mask the return address found via 'RETURN_ADDR_RTX',
  31130. so that it does not contain any extraneous set bits in it.
  31131. -- Macro: DWARF2_UNWIND_INFO
  31132. Define this macro to 0 if your target supports DWARF 2 frame unwind
  31133. information, but it does not yet work with exception handling.
  31134. Otherwise, if your target supports this information (if it defines
  31135. 'INCOMING_RETURN_ADDR_RTX' and 'OBJECT_FORMAT_ELF'), GCC will
  31136. provide a default definition of 1.
  31137. -- Common Target Hook: enum unwind_info_type TARGET_EXCEPT_UNWIND_INFO
  31138. (struct gcc_options *OPTS)
  31139. This hook defines the mechanism that will be used for exception
  31140. handling by the target. If the target has ABI specified unwind
  31141. tables, the hook should return 'UI_TARGET'. If the target is to
  31142. use the 'setjmp'/'longjmp'-based exception handling scheme, the
  31143. hook should return 'UI_SJLJ'. If the target supports DWARF 2 frame
  31144. unwind information, the hook should return 'UI_DWARF2'.
  31145. A target may, if exceptions are disabled, choose to return
  31146. 'UI_NONE'. This may end up simplifying other parts of
  31147. target-specific code. The default implementation of this hook
  31148. never returns 'UI_NONE'.
  31149. Note that the value returned by this hook should be constant. It
  31150. should not depend on anything except the command-line switches
  31151. described by OPTS. In particular, the setting 'UI_SJLJ' must be
  31152. fixed at compiler start-up as C pre-processor macros and builtin
  31153. functions related to exception handling are set up depending on
  31154. this setting.
  31155. The default implementation of the hook first honors the
  31156. '--enable-sjlj-exceptions' configure option, then
  31157. 'DWARF2_UNWIND_INFO', and finally defaults to 'UI_SJLJ'. If
  31158. 'DWARF2_UNWIND_INFO' depends on command-line options, the target
  31159. must define this hook so that OPTS is used correctly.
  31160. -- Common Target Hook: bool TARGET_UNWIND_TABLES_DEFAULT
  31161. This variable should be set to 'true' if the target ABI requires
  31162. unwinding tables even when exceptions are not used. It must not be
  31163. modified by command-line option processing.
  31164. -- Macro: DONT_USE_BUILTIN_SETJMP
  31165. Define this macro to 1 if the 'setjmp'/'longjmp'-based scheme
  31166. should use the 'setjmp'/'longjmp' functions from the C library
  31167. instead of the '__builtin_setjmp'/'__builtin_longjmp' machinery.
  31168. -- Macro: JMP_BUF_SIZE
  31169. This macro has no effect unless 'DONT_USE_BUILTIN_SETJMP' is also
  31170. defined. Define this macro if the default size of 'jmp_buf' buffer
  31171. for the 'setjmp'/'longjmp'-based exception handling mechanism is
  31172. not large enough, or if it is much too large. The default size is
  31173. 'FIRST_PSEUDO_REGISTER * sizeof(void *)'.
  31174. -- Macro: DWARF_CIE_DATA_ALIGNMENT
  31175. This macro need only be defined if the target might save registers
  31176. in the function prologue at an offset to the stack pointer that is
  31177. not aligned to 'UNITS_PER_WORD'. The definition should be the
  31178. negative minimum alignment if 'STACK_GROWS_DOWNWARD' is true, and
  31179. the positive minimum alignment otherwise. *Note DWARF::. Only
  31180. applicable if the target supports DWARF 2 frame unwind information.
  31181. -- Target Hook: bool TARGET_TERMINATE_DW2_EH_FRAME_INFO
  31182. Contains the value true if the target should add a zero word onto
  31183. the end of a Dwarf-2 frame info section when used for exception
  31184. handling. Default value is false if 'EH_FRAME_SECTION_NAME' is
  31185. defined, and true otherwise.
  31186. -- Target Hook: rtx TARGET_DWARF_REGISTER_SPAN (rtx REG)
  31187. Given a register, this hook should return a parallel of registers
  31188. to represent where to find the register pieces. Define this hook
  31189. if the register and its mode are represented in Dwarf in
  31190. non-contiguous locations, or if the register should be represented
  31191. in more than one register in Dwarf. Otherwise, this hook should
  31192. return 'NULL_RTX'. If not defined, the default is to return
  31193. 'NULL_RTX'.
  31194. -- Target Hook: machine_mode TARGET_DWARF_FRAME_REG_MODE (int REGNO)
  31195. Given a register, this hook should return the mode which the
  31196. corresponding Dwarf frame register should have. This is normally
  31197. used to return a smaller mode than the raw mode to prevent call
  31198. clobbered parts of a register altering the frame register size
  31199. -- Target Hook: void TARGET_INIT_DWARF_REG_SIZES_EXTRA (tree ADDRESS)
  31200. If some registers are represented in Dwarf-2 unwind information in
  31201. multiple pieces, define this hook to fill in information about the
  31202. sizes of those pieces in the table used by the unwinder at runtime.
  31203. It will be called by 'expand_builtin_init_dwarf_reg_sizes' after
  31204. filling in a single size corresponding to each hard register;
  31205. ADDRESS is the address of the table.
  31206. -- Target Hook: bool TARGET_ASM_TTYPE (rtx SYM)
  31207. This hook is used to output a reference from a frame unwinding
  31208. table to the type_info object identified by SYM. It should return
  31209. 'true' if the reference was output. Returning 'false' will cause
  31210. the reference to be output using the normal Dwarf2 routines.
  31211. -- Target Hook: bool TARGET_ARM_EABI_UNWINDER
  31212. This flag should be set to 'true' on targets that use an ARM EABI
  31213. based unwinding library, and 'false' on other targets. This
  31214. effects the format of unwinding tables, and how the unwinder in
  31215. entered after running a cleanup. The default is 'false'.
  31216. 
  31217. File: gccint.info, Node: Alignment Output, Prev: Exception Region Output, Up: Assembler Format
  31218. 18.20.10 Assembler Commands for Alignment
  31219. -----------------------------------------
  31220. This describes commands for alignment.
  31221. -- Macro: JUMP_ALIGN (LABEL)
  31222. The alignment (log base 2) to put in front of LABEL, which is a
  31223. common destination of jumps and has no fallthru incoming edge.
  31224. This macro need not be defined if you don't want any special
  31225. alignment to be done at such a time. Most machine descriptions do
  31226. not currently define the macro.
  31227. Unless it's necessary to inspect the LABEL parameter, it is better
  31228. to set the variable ALIGN_JUMPS in the target's
  31229. 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the
  31230. user's selection in ALIGN_JUMPS in a 'JUMP_ALIGN' implementation.
  31231. -- Target Hook: int TARGET_ASM_JUMP_ALIGN_MAX_SKIP (rtx_insn *LABEL)
  31232. The maximum number of bytes to skip before LABEL when applying
  31233. 'JUMP_ALIGN'. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is
  31234. defined.
  31235. -- Macro: LABEL_ALIGN_AFTER_BARRIER (LABEL)
  31236. The alignment (log base 2) to put in front of LABEL, which follows
  31237. a 'BARRIER'.
  31238. This macro need not be defined if you don't want any special
  31239. alignment to be done at such a time. Most machine descriptions do
  31240. not currently define the macro.
  31241. -- Target Hook: int TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
  31242. (rtx_insn *LABEL)
  31243. The maximum number of bytes to skip before LABEL when applying
  31244. 'LABEL_ALIGN_AFTER_BARRIER'. This works only if
  31245. 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined.
  31246. -- Macro: LOOP_ALIGN (LABEL)
  31247. The alignment (log base 2) to put in front of LABEL that heads a
  31248. frequently executed basic block (usually the header of a loop).
  31249. This macro need not be defined if you don't want any special
  31250. alignment to be done at such a time. Most machine descriptions do
  31251. not currently define the macro.
  31252. Unless it's necessary to inspect the LABEL parameter, it is better
  31253. to set the variable 'align_loops' in the target's
  31254. 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the
  31255. user's selection in 'align_loops' in a 'LOOP_ALIGN' implementation.
  31256. -- Target Hook: int TARGET_ASM_LOOP_ALIGN_MAX_SKIP (rtx_insn *LABEL)
  31257. The maximum number of bytes to skip when applying 'LOOP_ALIGN' to
  31258. LABEL. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined.
  31259. -- Macro: LABEL_ALIGN (LABEL)
  31260. The alignment (log base 2) to put in front of LABEL. If
  31261. 'LABEL_ALIGN_AFTER_BARRIER' / 'LOOP_ALIGN' specify a different
  31262. alignment, the maximum of the specified values is used.
  31263. Unless it's necessary to inspect the LABEL parameter, it is better
  31264. to set the variable 'align_labels' in the target's
  31265. 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the
  31266. user's selection in 'align_labels' in a 'LABEL_ALIGN'
  31267. implementation.
  31268. -- Target Hook: int TARGET_ASM_LABEL_ALIGN_MAX_SKIP (rtx_insn *LABEL)
  31269. The maximum number of bytes to skip when applying 'LABEL_ALIGN' to
  31270. LABEL. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined.
  31271. -- Macro: ASM_OUTPUT_SKIP (STREAM, NBYTES)
  31272. A C statement to output to the stdio stream STREAM an assembler
  31273. instruction to advance the location counter by NBYTES bytes. Those
  31274. bytes should be zero when loaded. NBYTES will be a C expression of
  31275. type 'unsigned HOST_WIDE_INT'.
  31276. -- Macro: ASM_NO_SKIP_IN_TEXT
  31277. Define this macro if 'ASM_OUTPUT_SKIP' should not be used in the
  31278. text section because it fails to put zeros in the bytes that are
  31279. skipped. This is true on many Unix systems, where the pseudo-op to
  31280. skip bytes produces no-op instructions rather than zeros when used
  31281. in the text section.
  31282. -- Macro: ASM_OUTPUT_ALIGN (STREAM, POWER)
  31283. A C statement to output to the stdio stream STREAM an assembler
  31284. command to advance the location counter to a multiple of 2 to the
  31285. POWER bytes. POWER will be a C expression of type 'int'.
  31286. -- Macro: ASM_OUTPUT_ALIGN_WITH_NOP (STREAM, POWER)
  31287. Like 'ASM_OUTPUT_ALIGN', except that the "nop" instruction is used
  31288. for padding, if necessary.
  31289. -- Macro: ASM_OUTPUT_MAX_SKIP_ALIGN (STREAM, POWER, MAX_SKIP)
  31290. A C statement to output to the stdio stream STREAM an assembler
  31291. command to advance the location counter to a multiple of 2 to the
  31292. POWER bytes, but only if MAX_SKIP or fewer bytes are needed to
  31293. satisfy the alignment request. POWER and MAX_SKIP will be a C
  31294. expression of type 'int'.
  31295. 
  31296. File: gccint.info, Node: Debugging Info, Next: Floating Point, Prev: Assembler Format, Up: Target Macros
  31297. 18.21 Controlling Debugging Information Format
  31298. ==============================================
  31299. This describes how to specify debugging information.
  31300. * Menu:
  31301. * All Debuggers:: Macros that affect all debugging formats uniformly.
  31302. * DBX Options:: Macros enabling specific options in DBX format.
  31303. * DBX Hooks:: Hook macros for varying DBX format.
  31304. * File Names and DBX:: Macros controlling output of file names in DBX format.
  31305. * DWARF:: Macros for DWARF format.
  31306. * VMS Debug:: Macros for VMS debug format.
  31307. 
  31308. File: gccint.info, Node: All Debuggers, Next: DBX Options, Up: Debugging Info
  31309. 18.21.1 Macros Affecting All Debugging Formats
  31310. ----------------------------------------------
  31311. These macros affect all debugging formats.
  31312. -- Macro: DBX_REGISTER_NUMBER (REGNO)
  31313. A C expression that returns the DBX register number for the
  31314. compiler register number REGNO. In the default macro provided, the
  31315. value of this expression will be REGNO itself. But sometimes there
  31316. are some registers that the compiler knows about and DBX does not,
  31317. or vice versa. In such cases, some register may need to have one
  31318. number in the compiler and another for DBX.
  31319. If two registers have consecutive numbers inside GCC, and they can
  31320. be used as a pair to hold a multiword value, then they _must_ have
  31321. consecutive numbers after renumbering with 'DBX_REGISTER_NUMBER'.
  31322. Otherwise, debuggers will be unable to access such a pair, because
  31323. they expect register pairs to be consecutive in their own numbering
  31324. scheme.
  31325. If you find yourself defining 'DBX_REGISTER_NUMBER' in way that
  31326. does not preserve register pairs, then what you must do instead is
  31327. redefine the actual register numbering scheme.
  31328. -- Macro: DEBUGGER_AUTO_OFFSET (X)
  31329. A C expression that returns the integer offset value for an
  31330. automatic variable having address X (an RTL expression). The
  31331. default computation assumes that X is based on the frame-pointer
  31332. and gives the offset from the frame-pointer. This is required for
  31333. targets that produce debugging output for DBX and allow the
  31334. frame-pointer to be eliminated when the '-g' option is used.
  31335. -- Macro: DEBUGGER_ARG_OFFSET (OFFSET, X)
  31336. A C expression that returns the integer offset value for an
  31337. argument having address X (an RTL expression). The nominal offset
  31338. is OFFSET.
  31339. -- Macro: PREFERRED_DEBUGGING_TYPE
  31340. A C expression that returns the type of debugging output GCC should
  31341. produce when the user specifies just '-g'. Define this if you have
  31342. arranged for GCC to support more than one format of debugging
  31343. output. Currently, the allowable values are 'DBX_DEBUG',
  31344. 'DWARF2_DEBUG', 'XCOFF_DEBUG', 'VMS_DEBUG', and
  31345. 'VMS_AND_DWARF2_DEBUG'.
  31346. When the user specifies '-ggdb', GCC normally also uses the value
  31347. of this macro to select the debugging output format, but with two
  31348. exceptions. If 'DWARF2_DEBUGGING_INFO' is defined, GCC uses the
  31349. value 'DWARF2_DEBUG'. Otherwise, if 'DBX_DEBUGGING_INFO' is
  31350. defined, GCC uses 'DBX_DEBUG'.
  31351. The value of this macro only affects the default debugging output;
  31352. the user can always get a specific type of output by using
  31353. '-gstabs', '-gdwarf-2', '-gxcoff', or '-gvms'.
  31354. 
  31355. File: gccint.info, Node: DBX Options, Next: DBX Hooks, Prev: All Debuggers, Up: Debugging Info
  31356. 18.21.2 Specific Options for DBX Output
  31357. ---------------------------------------
  31358. These are specific options for DBX output.
  31359. -- Macro: DBX_DEBUGGING_INFO
  31360. Define this macro if GCC should produce debugging output for DBX in
  31361. response to the '-g' option.
  31362. -- Macro: XCOFF_DEBUGGING_INFO
  31363. Define this macro if GCC should produce XCOFF format debugging
  31364. output in response to the '-g' option. This is a variant of DBX
  31365. format.
  31366. -- Macro: DEFAULT_GDB_EXTENSIONS
  31367. Define this macro to control whether GCC should by default generate
  31368. GDB's extended version of DBX debugging information (assuming
  31369. DBX-format debugging information is enabled at all). If you don't
  31370. define the macro, the default is 1: always generate the extended
  31371. information if there is any occasion to.
  31372. -- Macro: DEBUG_SYMS_TEXT
  31373. Define this macro if all '.stabs' commands should be output while
  31374. in the text section.
  31375. -- Macro: ASM_STABS_OP
  31376. A C string constant, including spacing, naming the assembler pseudo
  31377. op to use instead of '"\t.stabs\t"' to define an ordinary debugging
  31378. symbol. If you don't define this macro, '"\t.stabs\t"' is used.
  31379. This macro applies only to DBX debugging information format.
  31380. -- Macro: ASM_STABD_OP
  31381. A C string constant, including spacing, naming the assembler pseudo
  31382. op to use instead of '"\t.stabd\t"' to define a debugging symbol
  31383. whose value is the current location. If you don't define this
  31384. macro, '"\t.stabd\t"' is used. This macro applies only to DBX
  31385. debugging information format.
  31386. -- Macro: ASM_STABN_OP
  31387. A C string constant, including spacing, naming the assembler pseudo
  31388. op to use instead of '"\t.stabn\t"' to define a debugging symbol
  31389. with no name. If you don't define this macro, '"\t.stabn\t"' is
  31390. used. This macro applies only to DBX debugging information format.
  31391. -- Macro: DBX_NO_XREFS
  31392. Define this macro if DBX on your system does not support the
  31393. construct 'xsTAGNAME'. On some systems, this construct is used to
  31394. describe a forward reference to a structure named TAGNAME. On
  31395. other systems, this construct is not supported at all.
  31396. -- Macro: DBX_CONTIN_LENGTH
  31397. A symbol name in DBX-format debugging information is normally
  31398. continued (split into two separate '.stabs' directives) when it
  31399. exceeds a certain length (by default, 80 characters). On some
  31400. operating systems, DBX requires this splitting; on others,
  31401. splitting must not be done. You can inhibit splitting by defining
  31402. this macro with the value zero. You can override the default
  31403. splitting-length by defining this macro as an expression for the
  31404. length you desire.
  31405. -- Macro: DBX_CONTIN_CHAR
  31406. Normally continuation is indicated by adding a '\' character to the
  31407. end of a '.stabs' string when a continuation follows. To use a
  31408. different character instead, define this macro as a character
  31409. constant for the character you want to use. Do not define this
  31410. macro if backslash is correct for your system.
  31411. -- Macro: DBX_STATIC_STAB_DATA_SECTION
  31412. Define this macro if it is necessary to go to the data section
  31413. before outputting the '.stabs' pseudo-op for a non-global static
  31414. variable.
  31415. -- Macro: DBX_TYPE_DECL_STABS_CODE
  31416. The value to use in the "code" field of the '.stabs' directive for
  31417. a typedef. The default is 'N_LSYM'.
  31418. -- Macro: DBX_STATIC_CONST_VAR_CODE
  31419. The value to use in the "code" field of the '.stabs' directive for
  31420. a static variable located in the text section. DBX format does not
  31421. provide any "right" way to do this. The default is 'N_FUN'.
  31422. -- Macro: DBX_REGPARM_STABS_CODE
  31423. The value to use in the "code" field of the '.stabs' directive for
  31424. a parameter passed in registers. DBX format does not provide any
  31425. "right" way to do this. The default is 'N_RSYM'.
  31426. -- Macro: DBX_REGPARM_STABS_LETTER
  31427. The letter to use in DBX symbol data to identify a symbol as a
  31428. parameter passed in registers. DBX format does not customarily
  31429. provide any way to do this. The default is ''P''.
  31430. -- Macro: DBX_FUNCTION_FIRST
  31431. Define this macro if the DBX information for a function and its
  31432. arguments should precede the assembler code for the function.
  31433. Normally, in DBX format, the debugging information entirely follows
  31434. the assembler code.
  31435. -- Macro: DBX_BLOCKS_FUNCTION_RELATIVE
  31436. Define this macro, with value 1, if the value of a symbol
  31437. describing the scope of a block ('N_LBRAC' or 'N_RBRAC') should be
  31438. relative to the start of the enclosing function. Normally, GCC
  31439. uses an absolute address.
  31440. -- Macro: DBX_LINES_FUNCTION_RELATIVE
  31441. Define this macro, with value 1, if the value of a symbol
  31442. indicating the current line number ('N_SLINE') should be relative
  31443. to the start of the enclosing function. Normally, GCC uses an
  31444. absolute address.
  31445. -- Macro: DBX_USE_BINCL
  31446. Define this macro if GCC should generate 'N_BINCL' and 'N_EINCL'
  31447. stabs for included header files, as on Sun systems. This macro
  31448. also directs GCC to output a type number as a pair of a file number
  31449. and a type number within the file. Normally, GCC does not generate
  31450. 'N_BINCL' or 'N_EINCL' stabs, and it outputs a single number for a
  31451. type number.
  31452. 
  31453. File: gccint.info, Node: DBX Hooks, Next: File Names and DBX, Prev: DBX Options, Up: Debugging Info
  31454. 18.21.3 Open-Ended Hooks for DBX Format
  31455. ---------------------------------------
  31456. These are hooks for DBX format.
  31457. -- Macro: DBX_OUTPUT_SOURCE_LINE (STREAM, LINE, COUNTER)
  31458. A C statement to output DBX debugging information before code for
  31459. line number LINE of the current source file to the stdio stream
  31460. STREAM. COUNTER is the number of time the macro was invoked,
  31461. including the current invocation; it is intended to generate unique
  31462. labels in the assembly output.
  31463. This macro should not be defined if the default output is correct,
  31464. or if it can be made correct by defining
  31465. 'DBX_LINES_FUNCTION_RELATIVE'.
  31466. -- Macro: NO_DBX_FUNCTION_END
  31467. Some stabs encapsulation formats (in particular ECOFF), cannot
  31468. handle the '.stabs "",N_FUN,,0,0,Lscope-function-1' gdb dbx
  31469. extension construct. On those machines, define this macro to turn
  31470. this feature off without disturbing the rest of the gdb extensions.
  31471. -- Macro: NO_DBX_BNSYM_ENSYM
  31472. Some assemblers cannot handle the '.stabd BNSYM/ENSYM,0,0' gdb dbx
  31473. extension construct. On those machines, define this macro to turn
  31474. this feature off without disturbing the rest of the gdb extensions.
  31475. 
  31476. File: gccint.info, Node: File Names and DBX, Next: DWARF, Prev: DBX Hooks, Up: Debugging Info
  31477. 18.21.4 File Names in DBX Format
  31478. --------------------------------
  31479. This describes file names in DBX format.
  31480. -- Macro: DBX_OUTPUT_MAIN_SOURCE_FILENAME (STREAM, NAME)
  31481. A C statement to output DBX debugging information to the stdio
  31482. stream STREAM, which indicates that file NAME is the main source
  31483. file--the file specified as the input file for compilation. This
  31484. macro is called only once, at the beginning of compilation.
  31485. This macro need not be defined if the standard form of output for
  31486. DBX debugging information is appropriate.
  31487. It may be necessary to refer to a label equal to the beginning of
  31488. the text section. You can use 'assemble_name (stream,
  31489. ltext_label_name)' to do so. If you do this, you must also set the
  31490. variable USED_LTEXT_LABEL_NAME to 'true'.
  31491. -- Macro: NO_DBX_MAIN_SOURCE_DIRECTORY
  31492. Define this macro, with value 1, if GCC should not emit an
  31493. indication of the current directory for compilation and current
  31494. source language at the beginning of the file.
  31495. -- Macro: NO_DBX_GCC_MARKER
  31496. Define this macro, with value 1, if GCC should not emit an
  31497. indication that this object file was compiled by GCC. The default
  31498. is to emit an 'N_OPT' stab at the beginning of every source file,
  31499. with 'gcc2_compiled.' for the string and value 0.
  31500. -- Macro: DBX_OUTPUT_MAIN_SOURCE_FILE_END (STREAM, NAME)
  31501. A C statement to output DBX debugging information at the end of
  31502. compilation of the main source file NAME. Output should be written
  31503. to the stdio stream STREAM.
  31504. If you don't define this macro, nothing special is output at the
  31505. end of compilation, which is correct for most machines.
  31506. -- Macro: DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END
  31507. Define this macro _instead of_ defining
  31508. 'DBX_OUTPUT_MAIN_SOURCE_FILE_END', if what needs to be output at
  31509. the end of compilation is an 'N_SO' stab with an empty string,
  31510. whose value is the highest absolute text address in the file.
  31511. 
  31512. File: gccint.info, Node: DWARF, Next: VMS Debug, Prev: File Names and DBX, Up: Debugging Info
  31513. 18.21.5 Macros for DWARF Output
  31514. -------------------------------
  31515. Here are macros for DWARF output.
  31516. -- Macro: DWARF2_DEBUGGING_INFO
  31517. Define this macro if GCC should produce dwarf version 2 format
  31518. debugging output in response to the '-g' option.
  31519. -- Target Hook: int TARGET_DWARF_CALLING_CONVENTION (const_tree
  31520. FUNCTION)
  31521. Define this to enable the dwarf attribute
  31522. 'DW_AT_calling_convention' to be emitted for each function.
  31523. Instead of an integer return the enum value for the 'DW_CC_'
  31524. tag.
  31525. To support optional call frame debugging information, you must also
  31526. define 'INCOMING_RETURN_ADDR_RTX' and either set
  31527. 'RTX_FRAME_RELATED_P' on the prologue insns if you use RTL for the
  31528. prologue, or call 'dwarf2out_def_cfa' and 'dwarf2out_reg_save' as
  31529. appropriate from 'TARGET_ASM_FUNCTION_PROLOGUE' if you don't.
  31530. -- Macro: DWARF2_FRAME_INFO
  31531. Define this macro to a nonzero value if GCC should always output
  31532. Dwarf 2 frame information. If 'TARGET_EXCEPT_UNWIND_INFO' (*note
  31533. Exception Region Output::) returns 'UI_DWARF2', and exceptions are
  31534. enabled, GCC will output this information not matter how you define
  31535. 'DWARF2_FRAME_INFO'.
  31536. -- Target Hook: enum unwind_info_type TARGET_DEBUG_UNWIND_INFO (void)
  31537. This hook defines the mechanism that will be used for describing
  31538. frame unwind information to the debugger. Normally the hook will
  31539. return 'UI_DWARF2' if DWARF 2 debug information is enabled, and
  31540. return 'UI_NONE' otherwise.
  31541. A target may return 'UI_DWARF2' even when DWARF 2 debug information
  31542. is disabled in order to always output DWARF 2 frame information.
  31543. A target may return 'UI_TARGET' if it has ABI specified unwind
  31544. tables. This will suppress generation of the normal debug frame
  31545. unwind information.
  31546. -- Macro: DWARF2_ASM_LINE_DEBUG_INFO
  31547. Define this macro to be a nonzero value if the assembler can
  31548. generate Dwarf 2 line debug info sections. This will result in
  31549. much more compact line number tables, and hence is desirable if it
  31550. works.
  31551. -- Macro: DWARF2_ASM_VIEW_DEBUG_INFO
  31552. Define this macro to be a nonzero value if the assembler supports
  31553. view assignment and verification in '.loc'. If it does not, but
  31554. the user enables location views, the compiler may have to fallback
  31555. to internal line number tables.
  31556. -- Target Hook: int TARGET_RESET_LOCATION_VIEW (rtx_insn *)
  31557. This hook, if defined, enables -ginternal-reset-location-views, and
  31558. uses its result to override cases in which the estimated min insn
  31559. length might be nonzero even when a PC advance (i.e., a view reset)
  31560. cannot be taken for granted.
  31561. If the hook is defined, it must return a positive value to indicate
  31562. the insn definitely advances the PC, and so the view number can be
  31563. safely assumed to be reset; a negative value to mean the insn
  31564. definitely does not advance the PC, and os the view number must not
  31565. be reset; or zero to decide based on the estimated insn length.
  31566. If insn length is to be regarded as reliable, set the hook to
  31567. 'hook_int_rtx_insn_0'.
  31568. -- Target Hook: bool TARGET_WANT_DEBUG_PUB_SECTIONS
  31569. True if the '.debug_pubtypes' and '.debug_pubnames' sections should
  31570. be emitted. These sections are not used on most platforms, and in
  31571. particular GDB does not use them.
  31572. -- Target Hook: bool TARGET_DELAY_SCHED2
  31573. True if sched2 is not to be run at its normal place. This usually
  31574. means it will be run as part of machine-specific reorg.
  31575. -- Target Hook: bool TARGET_DELAY_VARTRACK
  31576. True if vartrack is not to be run at its normal place. This
  31577. usually means it will be run as part of machine-specific reorg.
  31578. -- Target Hook: bool TARGET_NO_REGISTER_ALLOCATION
  31579. True if register allocation and the passes following it should not
  31580. be run. Usually true only for virtual assembler targets.
  31581. -- Macro: ASM_OUTPUT_DWARF_DELTA (STREAM, SIZE, LABEL1, LABEL2)
  31582. A C statement to issue assembly directives that create a difference
  31583. LAB1 minus LAB2, using an integer of the given SIZE.
  31584. -- Macro: ASM_OUTPUT_DWARF_VMS_DELTA (STREAM, SIZE, LABEL1, LABEL2)
  31585. A C statement to issue assembly directives that create a difference
  31586. between the two given labels in system defined units, e.g.
  31587. instruction slots on IA64 VMS, using an integer of the given size.
  31588. -- Macro: ASM_OUTPUT_DWARF_OFFSET (STREAM, SIZE, LABEL, OFFSET,
  31589. SECTION)
  31590. A C statement to issue assembly directives that create a
  31591. section-relative reference to the given LABEL plus OFFSET, using an
  31592. integer of the given SIZE. The label is known to be defined in the
  31593. given SECTION.
  31594. -- Macro: ASM_OUTPUT_DWARF_PCREL (STREAM, SIZE, LABEL)
  31595. A C statement to issue assembly directives that create a
  31596. self-relative reference to the given LABEL, using an integer of the
  31597. given SIZE.
  31598. -- Macro: ASM_OUTPUT_DWARF_DATAREL (STREAM, SIZE, LABEL)
  31599. A C statement to issue assembly directives that create a reference
  31600. to the given LABEL relative to the dbase, using an integer of the
  31601. given SIZE.
  31602. -- Macro: ASM_OUTPUT_DWARF_TABLE_REF (LABEL)
  31603. A C statement to issue assembly directives that create a reference
  31604. to the DWARF table identifier LABEL from the current section. This
  31605. is used on some systems to avoid garbage collecting a DWARF table
  31606. which is referenced by a function.
  31607. -- Target Hook: void TARGET_ASM_OUTPUT_DWARF_DTPREL (FILE *FILE, int
  31608. SIZE, rtx X)
  31609. If defined, this target hook is a function which outputs a
  31610. DTP-relative reference to the given TLS symbol of the specified
  31611. size.
  31612. 
  31613. File: gccint.info, Node: VMS Debug, Prev: DWARF, Up: Debugging Info
  31614. 18.21.6 Macros for VMS Debug Format
  31615. -----------------------------------
  31616. Here are macros for VMS debug format.
  31617. -- Macro: VMS_DEBUGGING_INFO
  31618. Define this macro if GCC should produce debugging output for VMS in
  31619. response to the '-g' option. The default behavior for VMS is to
  31620. generate minimal debug info for a traceback in the absence of '-g'
  31621. unless explicitly overridden with '-g0'. This behavior is
  31622. controlled by 'TARGET_OPTION_OPTIMIZATION' and
  31623. 'TARGET_OPTION_OVERRIDE'.
  31624. 
  31625. File: gccint.info, Node: Floating Point, Next: Mode Switching, Prev: Debugging Info, Up: Target Macros
  31626. 18.22 Cross Compilation and Floating Point
  31627. ==========================================
  31628. While all modern machines use twos-complement representation for
  31629. integers, there are a variety of representations for floating point
  31630. numbers. This means that in a cross-compiler the representation of
  31631. floating point numbers in the compiled program may be different from
  31632. that used in the machine doing the compilation.
  31633. Because different representation systems may offer different amounts of
  31634. range and precision, all floating point constants must be represented in
  31635. the target machine's format. Therefore, the cross compiler cannot
  31636. safely use the host machine's floating point arithmetic; it must emulate
  31637. the target's arithmetic. To ensure consistency, GCC always uses
  31638. emulation to work with floating point values, even when the host and
  31639. target floating point formats are identical.
  31640. The following macros are provided by 'real.h' for the compiler to use.
  31641. All parts of the compiler which generate or optimize floating-point
  31642. calculations must use these macros. They may evaluate their operands
  31643. more than once, so operands must not have side effects.
  31644. -- Macro: REAL_VALUE_TYPE
  31645. The C data type to be used to hold a floating point value in the
  31646. target machine's format. Typically this is a 'struct' containing
  31647. an array of 'HOST_WIDE_INT', but all code should treat it as an
  31648. opaque quantity.
  31649. -- Macro: HOST_WIDE_INT REAL_VALUE_FIX (REAL_VALUE_TYPE X)
  31650. Truncates X to a signed integer, rounding toward zero.
  31651. -- Macro: unsigned HOST_WIDE_INT REAL_VALUE_UNSIGNED_FIX
  31652. (REAL_VALUE_TYPE X)
  31653. Truncates X to an unsigned integer, rounding toward zero. If X is
  31654. negative, returns zero.
  31655. -- Macro: REAL_VALUE_TYPE REAL_VALUE_ATOF (const char *STRING,
  31656. machine_mode MODE)
  31657. Converts STRING into a floating point number in the target
  31658. machine's representation for mode MODE. This routine can handle
  31659. both decimal and hexadecimal floating point constants, using the
  31660. syntax defined by the C language for both.
  31661. -- Macro: int REAL_VALUE_NEGATIVE (REAL_VALUE_TYPE X)
  31662. Returns 1 if X is negative (including negative zero), 0 otherwise.
  31663. -- Macro: int REAL_VALUE_ISINF (REAL_VALUE_TYPE X)
  31664. Determines whether X represents infinity (positive or negative).
  31665. -- Macro: int REAL_VALUE_ISNAN (REAL_VALUE_TYPE X)
  31666. Determines whether X represents a "NaN" (not-a-number).
  31667. -- Macro: REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL_VALUE_TYPE X)
  31668. Returns the negative of the floating point value X.
  31669. -- Macro: REAL_VALUE_TYPE REAL_VALUE_ABS (REAL_VALUE_TYPE X)
  31670. Returns the absolute value of X.
  31671. 
  31672. File: gccint.info, Node: Mode Switching, Next: Target Attributes, Prev: Floating Point, Up: Target Macros
  31673. 18.23 Mode Switching Instructions
  31674. =================================
  31675. The following macros control mode switching optimizations:
  31676. -- Macro: OPTIMIZE_MODE_SWITCHING (ENTITY)
  31677. Define this macro if the port needs extra instructions inserted for
  31678. mode switching in an optimizing compilation.
  31679. For an example, the SH4 can perform both single and double
  31680. precision floating point operations, but to perform a single
  31681. precision operation, the FPSCR PR bit has to be cleared, while for
  31682. a double precision operation, this bit has to be set. Changing the
  31683. PR bit requires a general purpose register as a scratch register,
  31684. hence these FPSCR sets have to be inserted before reload, i.e. you
  31685. cannot put this into instruction emitting or
  31686. 'TARGET_MACHINE_DEPENDENT_REORG'.
  31687. You can have multiple entities that are mode-switched, and select
  31688. at run time which entities actually need it.
  31689. 'OPTIMIZE_MODE_SWITCHING' should return nonzero for any ENTITY that
  31690. needs mode-switching. If you define this macro, you also have to
  31691. define 'NUM_MODES_FOR_MODE_SWITCHING', 'TARGET_MODE_NEEDED',
  31692. 'TARGET_MODE_PRIORITY' and 'TARGET_MODE_EMIT'.
  31693. 'TARGET_MODE_AFTER', 'TARGET_MODE_ENTRY', and 'TARGET_MODE_EXIT'
  31694. are optional.
  31695. -- Macro: NUM_MODES_FOR_MODE_SWITCHING
  31696. If you define 'OPTIMIZE_MODE_SWITCHING', you have to define this as
  31697. initializer for an array of integers. Each initializer element N
  31698. refers to an entity that needs mode switching, and specifies the
  31699. number of different modes that might need to be set for this
  31700. entity. The position of the initializer in the
  31701. initializer--starting counting at zero--determines the integer that
  31702. is used to refer to the mode-switched entity in question. In
  31703. macros that take mode arguments / yield a mode result, modes are
  31704. represented as numbers 0 ... N - 1. N is used to specify that no
  31705. mode switch is needed / supplied.
  31706. -- Target Hook: void TARGET_MODE_EMIT (int ENTITY, int MODE, int
  31707. PREV_MODE, HARD_REG_SET REGS_LIVE)
  31708. Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE is
  31709. the set of hard registers live at the point where the insn(s) are
  31710. to be inserted. PREV_MOXDE indicates the mode to switch from.
  31711. Sets of a lower numbered entity will be emitted before sets of a
  31712. higher numbered entity to a mode of the same or lower priority.
  31713. -- Target Hook: int TARGET_MODE_NEEDED (int ENTITY, rtx_insn *INSN)
  31714. ENTITY is an integer specifying a mode-switched entity. If
  31715. 'OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
  31716. return an integer value not larger than the corresponding element
  31717. in 'NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
  31718. must be switched into prior to the execution of INSN.
  31719. -- Target Hook: int TARGET_MODE_AFTER (int ENTITY, int MODE, rtx_insn
  31720. *INSN)
  31721. ENTITY is an integer specifying a mode-switched entity. If this
  31722. macro is defined, it is evaluated for every INSN during mode
  31723. switching. It determines the mode that an insn results in (if
  31724. different from the incoming mode).
  31725. -- Target Hook: int TARGET_MODE_ENTRY (int ENTITY)
  31726. If this macro is defined, it is evaluated for every ENTITY that
  31727. needs mode switching. It should evaluate to an integer, which is a
  31728. mode that ENTITY is assumed to be switched to at function entry.
  31729. If 'TARGET_MODE_ENTRY' is defined then 'TARGET_MODE_EXIT' must be
  31730. defined.
  31731. -- Target Hook: int TARGET_MODE_EXIT (int ENTITY)
  31732. If this macro is defined, it is evaluated for every ENTITY that
  31733. needs mode switching. It should evaluate to an integer, which is a
  31734. mode that ENTITY is assumed to be switched to at function exit. If
  31735. 'TARGET_MODE_EXIT' is defined then 'TARGET_MODE_ENTRY' must be
  31736. defined.
  31737. -- Target Hook: int TARGET_MODE_PRIORITY (int ENTITY, int N)
  31738. This macro specifies the order in which modes for ENTITY are
  31739. processed. 0 is the highest priority,
  31740. 'NUM_MODES_FOR_MODE_SWITCHING[ENTITY] - 1' the lowest. The value
  31741. of the macro should be an integer designating a mode for ENTITY.
  31742. For any fixed ENTITY, 'mode_priority' (ENTITY, N) shall be a
  31743. bijection in 0 ... 'num_modes_for_mode_switching[ENTITY] - 1'.
  31744. 
  31745. File: gccint.info, Node: Target Attributes, Next: Emulated TLS, Prev: Mode Switching, Up: Target Macros
  31746. 18.24 Defining target-specific uses of '__attribute__'
  31747. ======================================================
  31748. Target-specific attributes may be defined for functions, data and types.
  31749. These are described using the following target hooks; they also need to
  31750. be documented in 'extend.texi'.
  31751. -- Target Hook: const struct attribute_spec * TARGET_ATTRIBUTE_TABLE
  31752. If defined, this target hook points to an array of 'struct
  31753. attribute_spec' (defined in 'tree-core.h') specifying the machine
  31754. specific attributes for this target and some of the restrictions on
  31755. the entities to which these attributes are applied and the
  31756. arguments they take.
  31757. -- Target Hook: bool TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P (const_tree
  31758. NAME)
  31759. If defined, this target hook is a function which returns true if
  31760. the machine-specific attribute named NAME expects an identifier
  31761. given as its first argument to be passed on as a plain identifier,
  31762. not subjected to name lookup. If this is not defined, the default
  31763. is false for all machine-specific attributes.
  31764. -- Target Hook: int TARGET_COMP_TYPE_ATTRIBUTES (const_tree TYPE1,
  31765. const_tree TYPE2)
  31766. If defined, this target hook is a function which returns zero if
  31767. the attributes on TYPE1 and TYPE2 are incompatible, one if they are
  31768. compatible, and two if they are nearly compatible (which causes a
  31769. warning to be generated). If this is not defined, machine-specific
  31770. attributes are supposed always to be compatible.
  31771. -- Target Hook: void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree TYPE)
  31772. If defined, this target hook is a function which assigns default
  31773. attributes to the newly defined TYPE.
  31774. -- Target Hook: tree TARGET_MERGE_TYPE_ATTRIBUTES (tree TYPE1, tree
  31775. TYPE2)
  31776. Define this target hook if the merging of type attributes needs
  31777. special handling. If defined, the result is a list of the combined
  31778. 'TYPE_ATTRIBUTES' of TYPE1 and TYPE2. It is assumed that
  31779. 'comptypes' has already been called and returned 1. This function
  31780. may call 'merge_attributes' to handle machine-independent merging.
  31781. -- Target Hook: tree TARGET_MERGE_DECL_ATTRIBUTES (tree OLDDECL, tree
  31782. NEWDECL)
  31783. Define this target hook if the merging of decl attributes needs
  31784. special handling. If defined, the result is a list of the combined
  31785. 'DECL_ATTRIBUTES' of OLDDECL and NEWDECL. NEWDECL is a duplicate
  31786. declaration of OLDDECL. Examples of when this is needed are when
  31787. one attribute overrides another, or when an attribute is nullified
  31788. by a subsequent definition. This function may call
  31789. 'merge_attributes' to handle machine-independent merging.
  31790. If the only target-specific handling you require is 'dllimport' for
  31791. Microsoft Windows targets, you should define the macro
  31792. 'TARGET_DLLIMPORT_DECL_ATTRIBUTES' to '1'. The compiler will then
  31793. define a function called 'merge_dllimport_decl_attributes' which
  31794. can then be defined as the expansion of
  31795. 'TARGET_MERGE_DECL_ATTRIBUTES'. You can also add
  31796. 'handle_dll_attribute' in the attribute table for your port to
  31797. perform initial processing of the 'dllimport' and 'dllexport'
  31798. attributes. This is done in 'i386/cygwin.h' and 'i386/i386.c', for
  31799. example.
  31800. -- Target Hook: bool TARGET_VALID_DLLIMPORT_ATTRIBUTE_P (const_tree
  31801. DECL)
  31802. DECL is a variable or function with '__attribute__((dllimport))'
  31803. specified. Use this hook if the target needs to add extra
  31804. validation checks to 'handle_dll_attribute'.
  31805. -- Macro: TARGET_DECLSPEC
  31806. Define this macro to a nonzero value if you want to treat
  31807. '__declspec(X)' as equivalent to '__attribute((X))'. By default,
  31808. this behavior is enabled only for targets that define
  31809. 'TARGET_DLLIMPORT_DECL_ATTRIBUTES'. The current implementation of
  31810. '__declspec' is via a built-in macro, but you should not rely on
  31811. this implementation detail.
  31812. -- Target Hook: void TARGET_INSERT_ATTRIBUTES (tree NODE, tree
  31813. *ATTR_PTR)
  31814. Define this target hook if you want to be able to add attributes to
  31815. a decl when it is being created. This is normally useful for back
  31816. ends which wish to implement a pragma by using the attributes which
  31817. correspond to the pragma's effect. The NODE argument is the decl
  31818. which is being created. The ATTR_PTR argument is a pointer to the
  31819. attribute list for this decl. The list itself should not be
  31820. modified, since it may be shared with other decls, but attributes
  31821. may be chained on the head of the list and '*ATTR_PTR' modified to
  31822. point to the new attributes, or a copy of the list may be made if
  31823. further changes are needed.
  31824. -- Target Hook: bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (const_tree
  31825. FNDECL)
  31826. This target hook returns 'true' if it is OK to inline FNDECL into
  31827. the current function, despite its having target-specific
  31828. attributes, 'false' otherwise. By default, if a function has a
  31829. target specific attribute attached to it, it will not be inlined.
  31830. -- Target Hook: bool TARGET_OPTION_VALID_ATTRIBUTE_P (tree FNDECL, tree
  31831. NAME, tree ARGS, int FLAGS)
  31832. This hook is called to parse 'attribute(target("..."))', which
  31833. allows setting target-specific options on individual functions.
  31834. These function-specific options may differ from the options
  31835. specified on the command line. The hook should return 'true' if
  31836. the options are valid.
  31837. The hook should set the 'DECL_FUNCTION_SPECIFIC_TARGET' field in
  31838. the function declaration to hold a pointer to a target-specific
  31839. 'struct cl_target_option' structure.
  31840. -- Target Hook: void TARGET_OPTION_SAVE (struct cl_target_option *PTR,
  31841. struct gcc_options *OPTS)
  31842. This hook is called to save any additional target-specific
  31843. information in the 'struct cl_target_option' structure for
  31844. function-specific options from the 'struct gcc_options' structure.
  31845. *Note Option file format::.
  31846. -- Target Hook: void TARGET_OPTION_RESTORE (struct gcc_options *OPTS,
  31847. struct cl_target_option *PTR)
  31848. This hook is called to restore any additional target-specific
  31849. information in the 'struct cl_target_option' structure for
  31850. function-specific options to the 'struct gcc_options' structure.
  31851. -- Target Hook: void TARGET_OPTION_POST_STREAM_IN (struct
  31852. cl_target_option *PTR)
  31853. This hook is called to update target-specific information in the
  31854. 'struct cl_target_option' structure after it is streamed in from
  31855. LTO bytecode.
  31856. -- Target Hook: void TARGET_OPTION_PRINT (FILE *FILE, int INDENT,
  31857. struct cl_target_option *PTR)
  31858. This hook is called to print any additional target-specific
  31859. information in the 'struct cl_target_option' structure for
  31860. function-specific options.
  31861. -- Target Hook: bool TARGET_OPTION_PRAGMA_PARSE (tree ARGS, tree
  31862. POP_TARGET)
  31863. This target hook parses the options for '#pragma GCC target', which
  31864. sets the target-specific options for functions that occur later in
  31865. the input stream. The options accepted should be the same as those
  31866. handled by the 'TARGET_OPTION_VALID_ATTRIBUTE_P' hook.
  31867. -- Target Hook: void TARGET_OPTION_OVERRIDE (void)
  31868. Sometimes certain combinations of command options do not make sense
  31869. on a particular target machine. You can override the hook
  31870. 'TARGET_OPTION_OVERRIDE' to take account of this. This hooks is
  31871. called once just after all the command options have been parsed.
  31872. Don't use this hook to turn on various extra optimizations for
  31873. '-O'. That is what 'TARGET_OPTION_OPTIMIZATION' is for.
  31874. If you need to do something whenever the optimization level is
  31875. changed via the optimize attribute or pragma, see
  31876. 'TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE'
  31877. -- Target Hook: bool TARGET_OPTION_FUNCTION_VERSIONS (tree DECL1, tree
  31878. DECL2)
  31879. This target hook returns 'true' if DECL1 and DECL2 are versions of
  31880. the same function. DECL1 and DECL2 are function versions if and
  31881. only if they have the same function signature and different target
  31882. specific attributes, that is, they are compiled for different
  31883. target machines.
  31884. -- Target Hook: bool TARGET_CAN_INLINE_P (tree CALLER, tree CALLEE)
  31885. This target hook returns 'false' if the CALLER function cannot
  31886. inline CALLEE, based on target specific information. By default,
  31887. inlining is not allowed if the callee function has function
  31888. specific target options and the caller does not use the same
  31889. options.
  31890. -- Target Hook: void TARGET_RELAYOUT_FUNCTION (tree FNDECL)
  31891. This target hook fixes function FNDECL after attributes are
  31892. processed. Default does nothing. On ARM, the default function's
  31893. alignment is updated with the attribute target.
  31894. 
  31895. File: gccint.info, Node: Emulated TLS, Next: MIPS Coprocessors, Prev: Target Attributes, Up: Target Macros
  31896. 18.25 Emulating TLS
  31897. ===================
  31898. For targets whose psABI does not provide Thread Local Storage via
  31899. specific relocations and instruction sequences, an emulation layer is
  31900. used. A set of target hooks allows this emulation layer to be
  31901. configured for the requirements of a particular target. For instance
  31902. the psABI may in fact specify TLS support in terms of an emulation
  31903. layer.
  31904. The emulation layer works by creating a control object for every TLS
  31905. object. To access the TLS object, a lookup function is provided which,
  31906. when given the address of the control object, will return the address of
  31907. the current thread's instance of the TLS object.
  31908. -- Target Hook: const char * TARGET_EMUTLS_GET_ADDRESS
  31909. Contains the name of the helper function that uses a TLS control
  31910. object to locate a TLS instance. The default causes libgcc's
  31911. emulated TLS helper function to be used.
  31912. -- Target Hook: const char * TARGET_EMUTLS_REGISTER_COMMON
  31913. Contains the name of the helper function that should be used at
  31914. program startup to register TLS objects that are implicitly
  31915. initialized to zero. If this is 'NULL', all TLS objects will have
  31916. explicit initializers. The default causes libgcc's emulated TLS
  31917. registration function to be used.
  31918. -- Target Hook: const char * TARGET_EMUTLS_VAR_SECTION
  31919. Contains the name of the section in which TLS control variables
  31920. should be placed. The default of 'NULL' allows these to be placed
  31921. in any section.
  31922. -- Target Hook: const char * TARGET_EMUTLS_TMPL_SECTION
  31923. Contains the name of the section in which TLS initializers should
  31924. be placed. The default of 'NULL' allows these to be placed in any
  31925. section.
  31926. -- Target Hook: const char * TARGET_EMUTLS_VAR_PREFIX
  31927. Contains the prefix to be prepended to TLS control variable names.
  31928. The default of 'NULL' uses a target-specific prefix.
  31929. -- Target Hook: const char * TARGET_EMUTLS_TMPL_PREFIX
  31930. Contains the prefix to be prepended to TLS initializer objects.
  31931. The default of 'NULL' uses a target-specific prefix.
  31932. -- Target Hook: tree TARGET_EMUTLS_VAR_FIELDS (tree TYPE, tree *NAME)
  31933. Specifies a function that generates the FIELD_DECLs for a TLS
  31934. control object type. TYPE is the RECORD_TYPE the fields are for
  31935. and NAME should be filled with the structure tag, if the default of
  31936. '__emutls_object' is unsuitable. The default creates a type
  31937. suitable for libgcc's emulated TLS function.
  31938. -- Target Hook: tree TARGET_EMUTLS_VAR_INIT (tree VAR, tree DECL, tree
  31939. TMPL_ADDR)
  31940. Specifies a function that generates the CONSTRUCTOR to initialize a
  31941. TLS control object. VAR is the TLS control object, DECL is the TLS
  31942. object and TMPL_ADDR is the address of the initializer. The
  31943. default initializes libgcc's emulated TLS control object.
  31944. -- Target Hook: bool TARGET_EMUTLS_VAR_ALIGN_FIXED
  31945. Specifies whether the alignment of TLS control variable objects is
  31946. fixed and should not be increased as some backends may do to
  31947. optimize single objects. The default is false.
  31948. -- Target Hook: bool TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS
  31949. Specifies whether a DWARF 'DW_OP_form_tls_address' location
  31950. descriptor may be used to describe emulated TLS control objects.
  31951. 
  31952. File: gccint.info, Node: MIPS Coprocessors, Next: PCH Target, Prev: Emulated TLS, Up: Target Macros
  31953. 18.26 Defining coprocessor specifics for MIPS targets.
  31954. ======================================================
  31955. The MIPS specification allows MIPS implementations to have as many as 4
  31956. coprocessors, each with as many as 32 private registers. GCC supports
  31957. accessing these registers and transferring values between the registers
  31958. and memory using asm-ized variables. For example:
  31959. register unsigned int cp0count asm ("c0r1");
  31960. unsigned int d;
  31961. d = cp0count + 3;
  31962. ("c0r1" is the default name of register 1 in coprocessor 0; alternate
  31963. names may be added as described below, or the default names may be
  31964. overridden entirely in 'SUBTARGET_CONDITIONAL_REGISTER_USAGE'.)
  31965. Coprocessor registers are assumed to be epilogue-used; sets to them
  31966. will be preserved even if it does not appear that the register is used
  31967. again later in the function.
  31968. Another note: according to the MIPS spec, coprocessor 1 (if present) is
  31969. the FPU. One accesses COP1 registers through standard mips
  31970. floating-point support; they are not included in this mechanism.
  31971. 
  31972. File: gccint.info, Node: PCH Target, Next: C++ ABI, Prev: MIPS Coprocessors, Up: Target Macros
  31973. 18.27 Parameters for Precompiled Header Validity Checking
  31974. =========================================================
  31975. -- Target Hook: void * TARGET_GET_PCH_VALIDITY (size_t *SZ)
  31976. This hook returns a pointer to the data needed by
  31977. 'TARGET_PCH_VALID_P' and sets '*SZ' to the size of the data in
  31978. bytes.
  31979. -- Target Hook: const char * TARGET_PCH_VALID_P (const void *DATA,
  31980. size_t SZ)
  31981. This hook checks whether the options used to create a PCH file are
  31982. compatible with the current settings. It returns 'NULL' if so and
  31983. a suitable error message if not. Error messages will be presented
  31984. to the user and must be localized using '_(MSG)'.
  31985. DATA is the data that was returned by 'TARGET_GET_PCH_VALIDITY'
  31986. when the PCH file was created and SZ is the size of that data in
  31987. bytes. It's safe to assume that the data was created by the same
  31988. version of the compiler, so no format checking is needed.
  31989. The default definition of 'default_pch_valid_p' should be suitable
  31990. for most targets.
  31991. -- Target Hook: const char * TARGET_CHECK_PCH_TARGET_FLAGS (int
  31992. PCH_FLAGS)
  31993. If this hook is nonnull, the default implementation of
  31994. 'TARGET_PCH_VALID_P' will use it to check for compatible values of
  31995. 'target_flags'. PCH_FLAGS specifies the value that 'target_flags'
  31996. had when the PCH file was created. The return value is the same as
  31997. for 'TARGET_PCH_VALID_P'.
  31998. -- Target Hook: void TARGET_PREPARE_PCH_SAVE (void)
  31999. Called before writing out a PCH file. If the target has some
  32000. garbage-collected data that needs to be in a particular state on
  32001. PCH loads, it can use this hook to enforce that state. Very few
  32002. targets need to do anything here.
  32003. 
  32004. File: gccint.info, Node: C++ ABI, Next: Named Address Spaces, Prev: PCH Target, Up: Target Macros
  32005. 18.28 C++ ABI parameters
  32006. ========================
  32007. -- Target Hook: tree TARGET_CXX_GUARD_TYPE (void)
  32008. Define this hook to override the integer type used for guard
  32009. variables. These are used to implement one-time construction of
  32010. static objects. The default is long_long_integer_type_node.
  32011. -- Target Hook: bool TARGET_CXX_GUARD_MASK_BIT (void)
  32012. This hook determines how guard variables are used. It should
  32013. return 'false' (the default) if the first byte should be used. A
  32014. return value of 'true' indicates that only the least significant
  32015. bit should be used.
  32016. -- Target Hook: tree TARGET_CXX_GET_COOKIE_SIZE (tree TYPE)
  32017. This hook returns the size of the cookie to use when allocating an
  32018. array whose elements have the indicated TYPE. Assumes that it is
  32019. already known that a cookie is needed. The default is 'max(sizeof
  32020. (size_t), alignof(type))', as defined in section 2.7 of the
  32021. IA64/Generic C++ ABI.
  32022. -- Target Hook: bool TARGET_CXX_COOKIE_HAS_SIZE (void)
  32023. This hook should return 'true' if the element size should be stored
  32024. in array cookies. The default is to return 'false'.
  32025. -- Target Hook: int TARGET_CXX_IMPORT_EXPORT_CLASS (tree TYPE, int
  32026. IMPORT_EXPORT)
  32027. If defined by a backend this hook allows the decision made to
  32028. export class TYPE to be overruled. Upon entry IMPORT_EXPORT will
  32029. contain 1 if the class is going to be exported, -1 if it is going
  32030. to be imported and 0 otherwise. This function should return the
  32031. modified value and perform any other actions necessary to support
  32032. the backend's targeted operating system.
  32033. -- Target Hook: bool TARGET_CXX_CDTOR_RETURNS_THIS (void)
  32034. This hook should return 'true' if constructors and destructors
  32035. return the address of the object created/destroyed. The default is
  32036. to return 'false'.
  32037. -- Target Hook: bool TARGET_CXX_KEY_METHOD_MAY_BE_INLINE (void)
  32038. This hook returns true if the key method for a class (i.e., the
  32039. method which, if defined in the current translation unit, causes
  32040. the virtual table to be emitted) may be an inline function. Under
  32041. the standard Itanium C++ ABI the key method may be an inline
  32042. function so long as the function is not declared inline in the
  32043. class definition. Under some variants of the ABI, an inline
  32044. function can never be the key method. The default is to return
  32045. 'true'.
  32046. -- Target Hook: void TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY (tree
  32047. DECL)
  32048. DECL is a virtual table, virtual table table, typeinfo object, or
  32049. other similar implicit class data object that will be emitted with
  32050. external linkage in this translation unit. No ELF visibility has
  32051. been explicitly specified. If the target needs to specify a
  32052. visibility other than that of the containing class, use this hook
  32053. to set 'DECL_VISIBILITY' and 'DECL_VISIBILITY_SPECIFIED'.
  32054. -- Target Hook: bool TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT (void)
  32055. This hook returns true (the default) if virtual tables and other
  32056. similar implicit class data objects are always COMDAT if they have
  32057. external linkage. If this hook returns false, then class data for
  32058. classes whose virtual table will be emitted in only one translation
  32059. unit will not be COMDAT.
  32060. -- Target Hook: bool TARGET_CXX_LIBRARY_RTTI_COMDAT (void)
  32061. This hook returns true (the default) if the RTTI information for
  32062. the basic types which is defined in the C++ runtime should always
  32063. be COMDAT, false if it should not be COMDAT.
  32064. -- Target Hook: bool TARGET_CXX_USE_AEABI_ATEXIT (void)
  32065. This hook returns true if '__aeabi_atexit' (as defined by the ARM
  32066. EABI) should be used to register static destructors when
  32067. '-fuse-cxa-atexit' is in effect. The default is to return false to
  32068. use '__cxa_atexit'.
  32069. -- Target Hook: bool TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT (void)
  32070. This hook returns true if the target 'atexit' function can be used
  32071. in the same manner as '__cxa_atexit' to register C++ static
  32072. destructors. This requires that 'atexit'-registered functions in
  32073. shared libraries are run in the correct order when the libraries
  32074. are unloaded. The default is to return false.
  32075. -- Target Hook: void TARGET_CXX_ADJUST_CLASS_AT_DEFINITION (tree TYPE)
  32076. TYPE is a C++ class (i.e., RECORD_TYPE or UNION_TYPE) that has just
  32077. been defined. Use this hook to make adjustments to the class (eg,
  32078. tweak visibility or perform any other required target
  32079. modifications).
  32080. -- Target Hook: tree TARGET_CXX_DECL_MANGLING_CONTEXT (const_tree DECL)
  32081. Return target-specific mangling context of DECL or 'NULL_TREE'.
  32082. 
  32083. File: gccint.info, Node: Named Address Spaces, Next: Misc, Prev: C++ ABI, Up: Target Macros
  32084. 18.29 Adding support for named address spaces
  32085. =============================================
  32086. The draft technical report of the ISO/IEC JTC1 S22 WG14 N1275 standards
  32087. committee, 'Programming Languages - C - Extensions to support embedded
  32088. processors', specifies a syntax for embedded processors to specify
  32089. alternate address spaces. You can configure a GCC port to support
  32090. section 5.1 of the draft report to add support for address spaces other
  32091. than the default address space. These address spaces are new keywords
  32092. that are similar to the 'volatile' and 'const' type attributes.
  32093. Pointers to named address spaces can have a different size than
  32094. pointers to the generic address space.
  32095. For example, the SPU port uses the '__ea' address space to refer to
  32096. memory in the host processor, rather than memory local to the SPU
  32097. processor. Access to memory in the '__ea' address space involves
  32098. issuing DMA operations to move data between the host processor and the
  32099. local processor memory address space. Pointers in the '__ea' address
  32100. space are either 32 bits or 64 bits based on the '-mea32' or '-mea64'
  32101. switches (native SPU pointers are always 32 bits).
  32102. Internally, address spaces are represented as a small integer in the
  32103. range 0 to 15 with address space 0 being reserved for the generic
  32104. address space.
  32105. To register a named address space qualifier keyword with the C front
  32106. end, the target may call the 'c_register_addr_space' routine. For
  32107. example, the SPU port uses the following to declare '__ea' as the
  32108. keyword for named address space #1:
  32109. #define ADDR_SPACE_EA 1
  32110. c_register_addr_space ("__ea", ADDR_SPACE_EA);
  32111. -- Target Hook: scalar_int_mode TARGET_ADDR_SPACE_POINTER_MODE
  32112. (addr_space_t ADDRESS_SPACE)
  32113. Define this to return the machine mode to use for pointers to
  32114. ADDRESS_SPACE if the target supports named address spaces. The
  32115. default version of this hook returns 'ptr_mode'.
  32116. -- Target Hook: scalar_int_mode TARGET_ADDR_SPACE_ADDRESS_MODE
  32117. (addr_space_t ADDRESS_SPACE)
  32118. Define this to return the machine mode to use for addresses in
  32119. ADDRESS_SPACE if the target supports named address spaces. The
  32120. default version of this hook returns 'Pmode'.
  32121. -- Target Hook: bool TARGET_ADDR_SPACE_VALID_POINTER_MODE
  32122. (scalar_int_mode MODE, addr_space_t AS)
  32123. Define this to return nonzero if the port can handle pointers with
  32124. machine mode MODE to address space AS. This target hook is the
  32125. same as the 'TARGET_VALID_POINTER_MODE' target hook, except that it
  32126. includes explicit named address space support. The default version
  32127. of this hook returns true for the modes returned by either the
  32128. 'TARGET_ADDR_SPACE_POINTER_MODE' or
  32129. 'TARGET_ADDR_SPACE_ADDRESS_MODE' target hooks for the given address
  32130. space.
  32131. -- Target Hook: bool TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
  32132. (machine_mode MODE, rtx EXP, bool STRICT, addr_space_t AS)
  32133. Define this to return true if EXP is a valid address for mode MODE
  32134. in the named address space AS. The STRICT parameter says whether
  32135. strict addressing is in effect after reload has finished. This
  32136. target hook is the same as the 'TARGET_LEGITIMATE_ADDRESS_P' target
  32137. hook, except that it includes explicit named address space support.
  32138. -- Target Hook: rtx TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS (rtx X, rtx
  32139. OLDX, machine_mode MODE, addr_space_t AS)
  32140. Define this to modify an invalid address X to be a valid address
  32141. with mode MODE in the named address space AS. This target hook is
  32142. the same as the 'TARGET_LEGITIMIZE_ADDRESS' target hook, except
  32143. that it includes explicit named address space support.
  32144. -- Target Hook: bool TARGET_ADDR_SPACE_SUBSET_P (addr_space_t SUBSET,
  32145. addr_space_t SUPERSET)
  32146. Define this to return whether the SUBSET named address space is
  32147. contained within the SUPERSET named address space. Pointers to a
  32148. named address space that is a subset of another named address space
  32149. will be converted automatically without a cast if used together in
  32150. arithmetic operations. Pointers to a superset address space can be
  32151. converted to pointers to a subset address space via explicit casts.
  32152. -- Target Hook: bool TARGET_ADDR_SPACE_ZERO_ADDRESS_VALID (addr_space_t
  32153. AS)
  32154. Define this to modify the default handling of address 0 for the
  32155. address space. Return true if 0 should be considered a valid
  32156. address.
  32157. -- Target Hook: rtx TARGET_ADDR_SPACE_CONVERT (rtx OP, tree FROM_TYPE,
  32158. tree TO_TYPE)
  32159. Define this to convert the pointer expression represented by the
  32160. RTL OP with type FROM_TYPE that points to a named address space to
  32161. a new pointer expression with type TO_TYPE that points to a
  32162. different named address space. When this hook it called, it is
  32163. guaranteed that one of the two address spaces is a subset of the
  32164. other, as determined by the 'TARGET_ADDR_SPACE_SUBSET_P' target
  32165. hook.
  32166. -- Target Hook: int TARGET_ADDR_SPACE_DEBUG (addr_space_t AS)
  32167. Define this to define how the address space is encoded in dwarf.
  32168. The result is the value to be used with 'DW_AT_address_class'.
  32169. -- Target Hook: void TARGET_ADDR_SPACE_DIAGNOSE_USAGE (addr_space_t AS,
  32170. location_t LOC)
  32171. Define this hook if the availability of an address space depends on
  32172. command line options and some diagnostics should be printed when
  32173. the address space is used. This hook is called during parsing and
  32174. allows to emit a better diagnostic compared to the case where the
  32175. address space was not registered with 'c_register_addr_space'. AS
  32176. is the address space as registered with 'c_register_addr_space'.
  32177. LOC is the location of the address space qualifier token. The
  32178. default implementation does nothing.
  32179. 
  32180. File: gccint.info, Node: Misc, Prev: Named Address Spaces, Up: Target Macros
  32181. 18.30 Miscellaneous Parameters
  32182. ==============================
  32183. Here are several miscellaneous parameters.
  32184. -- Macro: HAS_LONG_COND_BRANCH
  32185. Define this boolean macro to indicate whether or not your
  32186. architecture has conditional branches that can span all of memory.
  32187. It is used in conjunction with an optimization that partitions hot
  32188. and cold basic blocks into separate sections of the executable. If
  32189. this macro is set to false, gcc will convert any conditional
  32190. branches that attempt to cross between sections into unconditional
  32191. branches or indirect jumps.
  32192. -- Macro: HAS_LONG_UNCOND_BRANCH
  32193. Define this boolean macro to indicate whether or not your
  32194. architecture has unconditional branches that can span all of
  32195. memory. It is used in conjunction with an optimization that
  32196. partitions hot and cold basic blocks into separate sections of the
  32197. executable. If this macro is set to false, gcc will convert any
  32198. unconditional branches that attempt to cross between sections into
  32199. indirect jumps.
  32200. -- Macro: CASE_VECTOR_MODE
  32201. An alias for a machine mode name. This is the machine mode that
  32202. elements of a jump-table should have.
  32203. -- Macro: CASE_VECTOR_SHORTEN_MODE (MIN_OFFSET, MAX_OFFSET, BODY)
  32204. Optional: return the preferred mode for an 'addr_diff_vec' when the
  32205. minimum and maximum offset are known. If you define this, it
  32206. enables extra code in branch shortening to deal with
  32207. 'addr_diff_vec'. To make this work, you also have to define
  32208. 'INSN_ALIGN' and make the alignment for 'addr_diff_vec' explicit.
  32209. The BODY argument is provided so that the offset_unsigned and scale
  32210. flags can be updated.
  32211. -- Macro: CASE_VECTOR_PC_RELATIVE
  32212. Define this macro to be a C expression to indicate when jump-tables
  32213. should contain relative addresses. You need not define this macro
  32214. if jump-tables never contain relative addresses, or jump-tables
  32215. should contain relative addresses only when '-fPIC' or '-fPIC' is
  32216. in effect.
  32217. -- Target Hook: unsigned int TARGET_CASE_VALUES_THRESHOLD (void)
  32218. This function return the smallest number of different values for
  32219. which it is best to use a jump-table instead of a tree of
  32220. conditional branches. The default is four for machines with a
  32221. 'casesi' instruction and five otherwise. This is best for most
  32222. machines.
  32223. -- Macro: WORD_REGISTER_OPERATIONS
  32224. Define this macro to 1 if operations between registers with
  32225. integral mode smaller than a word are always performed on the
  32226. entire register. To be more explicit, if you start with a pair of
  32227. 'word_mode' registers with known values and you do a subword, for
  32228. example 'QImode', addition on the low part of the registers, then
  32229. the compiler may consider that the result has a known value in
  32230. 'word_mode' too if the macro is defined to 1. Most RISC machines
  32231. have this property and most CISC machines do not.
  32232. -- Target Hook: unsigned int TARGET_MIN_ARITHMETIC_PRECISION (void)
  32233. On some RISC architectures with 64-bit registers, the processor
  32234. also maintains 32-bit condition codes that make it possible to do
  32235. real 32-bit arithmetic, although the operations are performed on
  32236. the full registers.
  32237. On such architectures, defining this hook to 32 tells the compiler
  32238. to try using 32-bit arithmetical operations setting the condition
  32239. codes instead of doing full 64-bit arithmetic.
  32240. More generally, define this hook on RISC architectures if you want
  32241. the compiler to try using arithmetical operations setting the
  32242. condition codes with a precision lower than the word precision.
  32243. You need not define this hook if 'WORD_REGISTER_OPERATIONS' is not
  32244. defined to 1.
  32245. -- Macro: LOAD_EXTEND_OP (MEM_MODE)
  32246. Define this macro to be a C expression indicating when insns that
  32247. read memory in MEM_MODE, an integral mode narrower than a word, set
  32248. the bits outside of MEM_MODE to be either the sign-extension or the
  32249. zero-extension of the data read. Return 'SIGN_EXTEND' for values
  32250. of MEM_MODE for which the insn sign-extends, 'ZERO_EXTEND' for
  32251. which it zero-extends, and 'UNKNOWN' for other modes.
  32252. This macro is not called with MEM_MODE non-integral or with a width
  32253. greater than or equal to 'BITS_PER_WORD', so you may return any
  32254. value in this case. Do not define this macro if it would always
  32255. return 'UNKNOWN'. On machines where this macro is defined, you
  32256. will normally define it as the constant 'SIGN_EXTEND' or
  32257. 'ZERO_EXTEND'.
  32258. You may return a non-'UNKNOWN' value even if for some hard
  32259. registers the sign extension is not performed, if for the
  32260. 'REGNO_REG_CLASS' of these hard registers
  32261. 'TARGET_CAN_CHANGE_MODE_CLASS' returns false when the FROM mode is
  32262. MEM_MODE and the TO mode is any integral mode larger than this but
  32263. not larger than 'word_mode'.
  32264. You must return 'UNKNOWN' if for some hard registers that allow
  32265. this mode, 'TARGET_CAN_CHANGE_MODE_CLASS' says that they cannot
  32266. change to 'word_mode', but that they can change to another integral
  32267. mode that is larger then MEM_MODE but still smaller than
  32268. 'word_mode'.
  32269. -- Macro: SHORT_IMMEDIATES_SIGN_EXTEND
  32270. Define this macro to 1 if loading short immediate values into
  32271. registers sign extends.
  32272. -- Target Hook: unsigned int TARGET_MIN_DIVISIONS_FOR_RECIP_MUL
  32273. (machine_mode MODE)
  32274. When '-ffast-math' is in effect, GCC tries to optimize divisions by
  32275. the same divisor, by turning them into multiplications by the
  32276. reciprocal. This target hook specifies the minimum number of
  32277. divisions that should be there for GCC to perform the optimization
  32278. for a variable of mode MODE. The default implementation returns 3
  32279. if the machine has an instruction for the division, and 2 if it
  32280. does not.
  32281. -- Macro: MOVE_MAX
  32282. The maximum number of bytes that a single instruction can move
  32283. quickly between memory and registers or between two memory
  32284. locations.
  32285. -- Macro: MAX_MOVE_MAX
  32286. The maximum number of bytes that a single instruction can move
  32287. quickly between memory and registers or between two memory
  32288. locations. If this is undefined, the default is 'MOVE_MAX'.
  32289. Otherwise, it is the constant value that is the largest value that
  32290. 'MOVE_MAX' can have at run-time.
  32291. -- Macro: SHIFT_COUNT_TRUNCATED
  32292. A C expression that is nonzero if on this machine the number of
  32293. bits actually used for the count of a shift operation is equal to
  32294. the number of bits needed to represent the size of the object being
  32295. shifted. When this macro is nonzero, the compiler will assume that
  32296. it is safe to omit a sign-extend, zero-extend, and certain bitwise
  32297. 'and' instructions that truncates the count of a shift operation.
  32298. On machines that have instructions that act on bit-fields at
  32299. variable positions, which may include 'bit test' instructions, a
  32300. nonzero 'SHIFT_COUNT_TRUNCATED' also enables deletion of
  32301. truncations of the values that serve as arguments to bit-field
  32302. instructions.
  32303. If both types of instructions truncate the count (for shifts) and
  32304. position (for bit-field operations), or if no variable-position
  32305. bit-field instructions exist, you should define this macro.
  32306. However, on some machines, such as the 80386 and the 680x0,
  32307. truncation only applies to shift operations and not the (real or
  32308. pretended) bit-field operations. Define 'SHIFT_COUNT_TRUNCATED' to
  32309. be zero on such machines. Instead, add patterns to the 'md' file
  32310. that include the implied truncation of the shift instructions.
  32311. You need not define this macro if it would always have the value of
  32312. zero.
  32313. -- Target Hook: unsigned HOST_WIDE_INT TARGET_SHIFT_TRUNCATION_MASK
  32314. (machine_mode MODE)
  32315. This function describes how the standard shift patterns for MODE
  32316. deal with shifts by negative amounts or by more than the width of
  32317. the mode. *Note shift patterns::.
  32318. On many machines, the shift patterns will apply a mask M to the
  32319. shift count, meaning that a fixed-width shift of X by Y is
  32320. equivalent to an arbitrary-width shift of X by Y & M. If this is
  32321. true for mode MODE, the function should return M, otherwise it
  32322. should return 0. A return value of 0 indicates that no particular
  32323. behavior is guaranteed.
  32324. Note that, unlike 'SHIFT_COUNT_TRUNCATED', this function does _not_
  32325. apply to general shift rtxes; it applies only to instructions that
  32326. are generated by the named shift patterns.
  32327. The default implementation of this function returns
  32328. 'GET_MODE_BITSIZE (MODE) - 1' if 'SHIFT_COUNT_TRUNCATED' and 0
  32329. otherwise. This definition is always safe, but if
  32330. 'SHIFT_COUNT_TRUNCATED' is false, and some shift patterns
  32331. nevertheless truncate the shift count, you may get better code by
  32332. overriding it.
  32333. -- Target Hook: bool TARGET_TRULY_NOOP_TRUNCATION (poly_uint64 OUTPREC,
  32334. poly_uint64 INPREC)
  32335. This hook returns true if it is safe to "convert" a value of INPREC
  32336. bits to one of OUTPREC bits (where OUTPREC is smaller than INPREC)
  32337. by merely operating on it as if it had only OUTPREC bits. The
  32338. default returns true unconditionally, which is correct for most
  32339. machines.
  32340. If 'TARGET_MODES_TIEABLE_P' returns false for a pair of modes,
  32341. suboptimal code can result if this hook returns true for the
  32342. corresponding mode sizes. Making this hook return false in such
  32343. cases may improve things.
  32344. -- Target Hook: int TARGET_MODE_REP_EXTENDED (scalar_int_mode MODE,
  32345. scalar_int_mode REP_MODE)
  32346. The representation of an integral mode can be such that the values
  32347. are always extended to a wider integral mode. Return 'SIGN_EXTEND'
  32348. if values of MODE are represented in sign-extended form to
  32349. REP_MODE. Return 'UNKNOWN' otherwise. (Currently, none of the
  32350. targets use zero-extended representation this way so unlike
  32351. 'LOAD_EXTEND_OP', 'TARGET_MODE_REP_EXTENDED' is expected to return
  32352. either 'SIGN_EXTEND' or 'UNKNOWN'. Also no target extends MODE to
  32353. REP_MODE so that REP_MODE is not the next widest integral mode and
  32354. currently we take advantage of this fact.)
  32355. Similarly to 'LOAD_EXTEND_OP' you may return a non-'UNKNOWN' value
  32356. even if the extension is not performed on certain hard registers as
  32357. long as for the 'REGNO_REG_CLASS' of these hard registers
  32358. 'TARGET_CAN_CHANGE_MODE_CLASS' returns false.
  32359. Note that 'TARGET_MODE_REP_EXTENDED' and 'LOAD_EXTEND_OP' describe
  32360. two related properties. If you define 'TARGET_MODE_REP_EXTENDED
  32361. (mode, word_mode)' you probably also want to define 'LOAD_EXTEND_OP
  32362. (mode)' to return the same type of extension.
  32363. In order to enforce the representation of 'mode',
  32364. 'TARGET_TRULY_NOOP_TRUNCATION' should return false when truncating
  32365. to 'mode'.
  32366. -- Macro: STORE_FLAG_VALUE
  32367. A C expression describing the value returned by a comparison
  32368. operator with an integral mode and stored by a store-flag
  32369. instruction ('cstoreMODE4') when the condition is true. This
  32370. description must apply to _all_ the 'cstoreMODE4' patterns and all
  32371. the comparison operators whose results have a 'MODE_INT' mode.
  32372. A value of 1 or -1 means that the instruction implementing the
  32373. comparison operator returns exactly 1 or -1 when the comparison is
  32374. true and 0 when the comparison is false. Otherwise, the value
  32375. indicates which bits of the result are guaranteed to be 1 when the
  32376. comparison is true. This value is interpreted in the mode of the
  32377. comparison operation, which is given by the mode of the first
  32378. operand in the 'cstoreMODE4' pattern. Either the low bit or the
  32379. sign bit of 'STORE_FLAG_VALUE' be on. Presently, only those bits
  32380. are used by the compiler.
  32381. If 'STORE_FLAG_VALUE' is neither 1 or -1, the compiler will
  32382. generate code that depends only on the specified bits. It can also
  32383. replace comparison operators with equivalent operations if they
  32384. cause the required bits to be set, even if the remaining bits are
  32385. undefined. For example, on a machine whose comparison operators
  32386. return an 'SImode' value and where 'STORE_FLAG_VALUE' is defined as
  32387. '0x80000000', saying that just the sign bit is relevant, the
  32388. expression
  32389. (ne:SI (and:SI X (const_int POWER-OF-2)) (const_int 0))
  32390. can be converted to
  32391. (ashift:SI X (const_int N))
  32392. where N is the appropriate shift count to move the bit being tested
  32393. into the sign bit.
  32394. There is no way to describe a machine that always sets the
  32395. low-order bit for a true value, but does not guarantee the value of
  32396. any other bits, but we do not know of any machine that has such an
  32397. instruction. If you are trying to port GCC to such a machine,
  32398. include an instruction to perform a logical-and of the result with
  32399. 1 in the pattern for the comparison operators and let us know at
  32400. <gcc@gcc.gnu.org>.
  32401. Often, a machine will have multiple instructions that obtain a
  32402. value from a comparison (or the condition codes). Here are rules
  32403. to guide the choice of value for 'STORE_FLAG_VALUE', and hence the
  32404. instructions to be used:
  32405. * Use the shortest sequence that yields a valid definition for
  32406. 'STORE_FLAG_VALUE'. It is more efficient for the compiler to
  32407. "normalize" the value (convert it to, e.g., 1 or 0) than for
  32408. the comparison operators to do so because there may be
  32409. opportunities to combine the normalization with other
  32410. operations.
  32411. * For equal-length sequences, use a value of 1 or -1, with -1
  32412. being slightly preferred on machines with expensive jumps and
  32413. 1 preferred on other machines.
  32414. * As a second choice, choose a value of '0x80000001' if
  32415. instructions exist that set both the sign and low-order bits
  32416. but do not define the others.
  32417. * Otherwise, use a value of '0x80000000'.
  32418. Many machines can produce both the value chosen for
  32419. 'STORE_FLAG_VALUE' and its negation in the same number of
  32420. instructions. On those machines, you should also define a pattern
  32421. for those cases, e.g., one matching
  32422. (set A (neg:M (ne:M B C)))
  32423. Some machines can also perform 'and' or 'plus' operations on
  32424. condition code values with less instructions than the corresponding
  32425. 'cstoreMODE4' insn followed by 'and' or 'plus'. On those machines,
  32426. define the appropriate patterns. Use the names 'incscc' and
  32427. 'decscc', respectively, for the patterns which perform 'plus' or
  32428. 'minus' operations on condition code values. See 'rs6000.md' for
  32429. some examples. The GNU Superoptimizer can be used to find such
  32430. instruction sequences on other machines.
  32431. If this macro is not defined, the default value, 1, is used. You
  32432. need not define 'STORE_FLAG_VALUE' if the machine has no store-flag
  32433. instructions, or if the value generated by these instructions is 1.
  32434. -- Macro: FLOAT_STORE_FLAG_VALUE (MODE)
  32435. A C expression that gives a nonzero 'REAL_VALUE_TYPE' value that is
  32436. returned when comparison operators with floating-point results are
  32437. true. Define this macro on machines that have comparison
  32438. operations that return floating-point values. If there are no such
  32439. operations, do not define this macro.
  32440. -- Macro: VECTOR_STORE_FLAG_VALUE (MODE)
  32441. A C expression that gives a rtx representing the nonzero true
  32442. element for vector comparisons. The returned rtx should be valid
  32443. for the inner mode of MODE which is guaranteed to be a vector mode.
  32444. Define this macro on machines that have vector comparison
  32445. operations that return a vector result. If there are no such
  32446. operations, do not define this macro. Typically, this macro is
  32447. defined as 'const1_rtx' or 'constm1_rtx'. This macro may return
  32448. 'NULL_RTX' to prevent the compiler optimizing such vector
  32449. comparison operations for the given mode.
  32450. -- Macro: CLZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE)
  32451. -- Macro: CTZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE)
  32452. A C expression that indicates whether the architecture defines a
  32453. value for 'clz' or 'ctz' with a zero operand. A result of '0'
  32454. indicates the value is undefined. If the value is defined for only
  32455. the RTL expression, the macro should evaluate to '1'; if the value
  32456. applies also to the corresponding optab entry (which is normally
  32457. the case if it expands directly into the corresponding RTL), then
  32458. the macro should evaluate to '2'. In the cases where the value is
  32459. defined, VALUE should be set to this value.
  32460. If this macro is not defined, the value of 'clz' or 'ctz' at zero
  32461. is assumed to be undefined.
  32462. This macro must be defined if the target's expansion for 'ffs'
  32463. relies on a particular value to get correct results. Otherwise it
  32464. is not necessary, though it may be used to optimize some corner
  32465. cases, and to provide a default expansion for the 'ffs' optab.
  32466. Note that regardless of this macro the "definedness" of 'clz' and
  32467. 'ctz' at zero do _not_ extend to the builtin functions visible to
  32468. the user. Thus one may be free to adjust the value at will to
  32469. match the target expansion of these operations without fear of
  32470. breaking the API.
  32471. -- Macro: Pmode
  32472. An alias for the machine mode for pointers. On most machines,
  32473. define this to be the integer mode corresponding to the width of a
  32474. hardware pointer; 'SImode' on 32-bit machine or 'DImode' on 64-bit
  32475. machines. On some machines you must define this to be one of the
  32476. partial integer modes, such as 'PSImode'.
  32477. The width of 'Pmode' must be at least as large as the value of
  32478. 'POINTER_SIZE'. If it is not equal, you must define the macro
  32479. 'POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to
  32480. 'Pmode'.
  32481. -- Macro: FUNCTION_MODE
  32482. An alias for the machine mode used for memory references to
  32483. functions being called, in 'call' RTL expressions. On most CISC
  32484. machines, where an instruction can begin at any byte address, this
  32485. should be 'QImode'. On most RISC machines, where all instructions
  32486. have fixed size and alignment, this should be a mode with the same
  32487. size and alignment as the machine instruction words - typically
  32488. 'SImode' or 'HImode'.
  32489. -- Macro: STDC_0_IN_SYSTEM_HEADERS
  32490. In normal operation, the preprocessor expands '__STDC__' to the
  32491. constant 1, to signify that GCC conforms to ISO Standard C. On
  32492. some hosts, like Solaris, the system compiler uses a different
  32493. convention, where '__STDC__' is normally 0, but is 1 if the user
  32494. specifies strict conformance to the C Standard.
  32495. Defining 'STDC_0_IN_SYSTEM_HEADERS' makes GNU CPP follows the host
  32496. convention when processing system header files, but when processing
  32497. user files '__STDC__' will always expand to 1.
  32498. -- C Target Hook: const char * TARGET_C_PREINCLUDE (void)
  32499. Define this hook to return the name of a header file to be included
  32500. at the start of all compilations, as if it had been included with
  32501. '#include <FILE>'. If this hook returns 'NULL', or is not defined,
  32502. or the header is not found, or if the user specifies
  32503. '-ffreestanding' or '-nostdinc', no header is included.
  32504. This hook can be used together with a header provided by the system
  32505. C library to implement ISO C requirements for certain macros to be
  32506. predefined that describe properties of the whole implementation
  32507. rather than just the compiler.
  32508. -- C Target Hook: bool TARGET_CXX_IMPLICIT_EXTERN_C (const char*)
  32509. Define this hook to add target-specific C++ implicit extern C
  32510. functions. If this function returns true for the name of a
  32511. file-scope function, that function implicitly gets extern "C"
  32512. linkage rather than whatever language linkage the declaration would
  32513. normally have. An example of such function is WinMain on Win32
  32514. targets.
  32515. -- Macro: NO_IMPLICIT_EXTERN_C
  32516. Define this macro if the system header files support C++ as well as
  32517. C. This macro inhibits the usual method of using system header
  32518. files in C++, which is to pretend that the file's contents are
  32519. enclosed in 'extern "C" {...}'.
  32520. -- Macro: REGISTER_TARGET_PRAGMAS ()
  32521. Define this macro if you want to implement any target-specific
  32522. pragmas. If defined, it is a C expression which makes a series of
  32523. calls to 'c_register_pragma' or 'c_register_pragma_with_expansion'
  32524. for each pragma. The macro may also do any setup required for the
  32525. pragmas.
  32526. The primary reason to define this macro is to provide compatibility
  32527. with other compilers for the same target. In general, we
  32528. discourage definition of target-specific pragmas for GCC.
  32529. If the pragma can be implemented by attributes then you should
  32530. consider defining the target hook 'TARGET_INSERT_ATTRIBUTES' as
  32531. well.
  32532. Preprocessor macros that appear on pragma lines are not expanded.
  32533. All '#pragma' directives that do not match any registered pragma
  32534. are silently ignored, unless the user specifies
  32535. '-Wunknown-pragmas'.
  32536. -- Function: void c_register_pragma (const char *SPACE, const char
  32537. *NAME, void (*CALLBACK) (struct cpp_reader *))
  32538. -- Function: void c_register_pragma_with_expansion (const char *SPACE,
  32539. const char *NAME, void (*CALLBACK) (struct cpp_reader *))
  32540. Each call to 'c_register_pragma' or
  32541. 'c_register_pragma_with_expansion' establishes one pragma. The
  32542. CALLBACK routine will be called when the preprocessor encounters a
  32543. pragma of the form
  32544. #pragma [SPACE] NAME ...
  32545. SPACE is the case-sensitive namespace of the pragma, or 'NULL' to
  32546. put the pragma in the global namespace. The callback routine
  32547. receives PFILE as its first argument, which can be passed on to
  32548. cpplib's functions if necessary. You can lex tokens after the NAME
  32549. by calling 'pragma_lex'. Tokens that are not read by the callback
  32550. will be silently ignored. The end of the line is indicated by a
  32551. token of type 'CPP_EOF'. Macro expansion occurs on the arguments
  32552. of pragmas registered with 'c_register_pragma_with_expansion' but
  32553. not on the arguments of pragmas registered with
  32554. 'c_register_pragma'.
  32555. Note that the use of 'pragma_lex' is specific to the C and C++
  32556. compilers. It will not work in the Java or Fortran compilers, or
  32557. any other language compilers for that matter. Thus if 'pragma_lex'
  32558. is going to be called from target-specific code, it must only be
  32559. done so when building the C and C++ compilers. This can be done by
  32560. defining the variables 'c_target_objs' and 'cxx_target_objs' in the
  32561. target entry in the 'config.gcc' file. These variables should name
  32562. the target-specific, language-specific object file which contains
  32563. the code that uses 'pragma_lex'. Note it will also be necessary to
  32564. add a rule to the makefile fragment pointed to by 'tmake_file' that
  32565. shows how to build this object file.
  32566. -- Macro: HANDLE_PRAGMA_PACK_WITH_EXPANSION
  32567. Define this macro if macros should be expanded in the arguments of
  32568. '#pragma pack'.
  32569. -- Macro: TARGET_DEFAULT_PACK_STRUCT
  32570. If your target requires a structure packing default other than 0
  32571. (meaning the machine default), define this macro to the necessary
  32572. value (in bytes). This must be a value that would also be valid to
  32573. use with '#pragma pack()' (that is, a small power of two).
  32574. -- Macro: DOLLARS_IN_IDENTIFIERS
  32575. Define this macro to control use of the character '$' in identifier
  32576. names for the C family of languages. 0 means '$' is not allowed by
  32577. default; 1 means it is allowed. 1 is the default; there is no need
  32578. to define this macro in that case.
  32579. -- Macro: INSN_SETS_ARE_DELAYED (INSN)
  32580. Define this macro as a C expression that is nonzero if it is safe
  32581. for the delay slot scheduler to place instructions in the delay
  32582. slot of INSN, even if they appear to use a resource set or
  32583. clobbered in INSN. INSN is always a 'jump_insn' or an 'insn'; GCC
  32584. knows that every 'call_insn' has this behavior. On machines where
  32585. some 'insn' or 'jump_insn' is really a function call and hence has
  32586. this behavior, you should define this macro.
  32587. You need not define this macro if it would always return zero.
  32588. -- Macro: INSN_REFERENCES_ARE_DELAYED (INSN)
  32589. Define this macro as a C expression that is nonzero if it is safe
  32590. for the delay slot scheduler to place instructions in the delay
  32591. slot of INSN, even if they appear to set or clobber a resource
  32592. referenced in INSN. INSN is always a 'jump_insn' or an 'insn'. On
  32593. machines where some 'insn' or 'jump_insn' is really a function call
  32594. and its operands are registers whose use is actually in the
  32595. subroutine it calls, you should define this macro. Doing so allows
  32596. the delay slot scheduler to move instructions which copy arguments
  32597. into the argument registers into the delay slot of INSN.
  32598. You need not define this macro if it would always return zero.
  32599. -- Macro: MULTIPLE_SYMBOL_SPACES
  32600. Define this macro as a C expression that is nonzero if, in some
  32601. cases, global symbols from one translation unit may not be bound to
  32602. undefined symbols in another translation unit without user
  32603. intervention. For instance, under Microsoft Windows symbols must
  32604. be explicitly imported from shared libraries (DLLs).
  32605. You need not define this macro if it would always evaluate to zero.
  32606. -- Target Hook: rtx_insn * TARGET_MD_ASM_ADJUST (vec<rtx>& OUTPUTS,
  32607. vec<rtx>& INPUTS, vec<const char *>& CONSTRAINTS, vec<rtx>&
  32608. CLOBBERS, HARD_REG_SET& CLOBBERED_REGS)
  32609. This target hook may add "clobbers" to CLOBBERS and CLOBBERED_REGS
  32610. for any hard regs the port wishes to automatically clobber for an
  32611. asm. The OUTPUTS and INPUTS may be inspected to avoid clobbering a
  32612. register that is already used by the asm.
  32613. It may modify the OUTPUTS, INPUTS, and CONSTRAINTS as necessary for
  32614. other pre-processing. In this case the return value is a sequence
  32615. of insns to emit after the asm.
  32616. -- Macro: MATH_LIBRARY
  32617. Define this macro as a C string constant for the linker argument to
  32618. link in the system math library, minus the initial '"-l"', or '""'
  32619. if the target does not have a separate math library.
  32620. You need only define this macro if the default of '"m"' is wrong.
  32621. -- Macro: LIBRARY_PATH_ENV
  32622. Define this macro as a C string constant for the environment
  32623. variable that specifies where the linker should look for libraries.
  32624. You need only define this macro if the default of '"LIBRARY_PATH"'
  32625. is wrong.
  32626. -- Macro: TARGET_POSIX_IO
  32627. Define this macro if the target supports the following POSIX file
  32628. functions, access, mkdir and file locking with fcntl / F_SETLKW.
  32629. Defining 'TARGET_POSIX_IO' will enable the test coverage code to
  32630. use file locking when exiting a program, which avoids race
  32631. conditions if the program has forked. It will also create
  32632. directories at run-time for cross-profiling.
  32633. -- Macro: MAX_CONDITIONAL_EXECUTE
  32634. A C expression for the maximum number of instructions to execute
  32635. via conditional execution instructions instead of a branch. A
  32636. value of 'BRANCH_COST'+1 is the default if the machine does not use
  32637. cc0, and 1 if it does use cc0.
  32638. -- Macro: IFCVT_MODIFY_TESTS (CE_INFO, TRUE_EXPR, FALSE_EXPR)
  32639. Used if the target needs to perform machine-dependent modifications
  32640. on the conditionals used for turning basic blocks into
  32641. conditionally executed code. CE_INFO points to a data structure,
  32642. 'struct ce_if_block', which contains information about the
  32643. currently processed blocks. TRUE_EXPR and FALSE_EXPR are the tests
  32644. that are used for converting the then-block and the else-block,
  32645. respectively. Set either TRUE_EXPR or FALSE_EXPR to a null pointer
  32646. if the tests cannot be converted.
  32647. -- Macro: IFCVT_MODIFY_MULTIPLE_TESTS (CE_INFO, BB, TRUE_EXPR,
  32648. FALSE_EXPR)
  32649. Like 'IFCVT_MODIFY_TESTS', but used when converting more
  32650. complicated if-statements into conditions combined by 'and' and
  32651. 'or' operations. BB contains the basic block that contains the
  32652. test that is currently being processed and about to be turned into
  32653. a condition.
  32654. -- Macro: IFCVT_MODIFY_INSN (CE_INFO, PATTERN, INSN)
  32655. A C expression to modify the PATTERN of an INSN that is to be
  32656. converted to conditional execution format. CE_INFO points to a
  32657. data structure, 'struct ce_if_block', which contains information
  32658. about the currently processed blocks.
  32659. -- Macro: IFCVT_MODIFY_FINAL (CE_INFO)
  32660. A C expression to perform any final machine dependent modifications
  32661. in converting code to conditional execution. The involved basic
  32662. blocks can be found in the 'struct ce_if_block' structure that is
  32663. pointed to by CE_INFO.
  32664. -- Macro: IFCVT_MODIFY_CANCEL (CE_INFO)
  32665. A C expression to cancel any machine dependent modifications in
  32666. converting code to conditional execution. The involved basic
  32667. blocks can be found in the 'struct ce_if_block' structure that is
  32668. pointed to by CE_INFO.
  32669. -- Macro: IFCVT_MACHDEP_INIT (CE_INFO)
  32670. A C expression to initialize any machine specific data for
  32671. if-conversion of the if-block in the 'struct ce_if_block' structure
  32672. that is pointed to by CE_INFO.
  32673. -- Target Hook: void TARGET_MACHINE_DEPENDENT_REORG (void)
  32674. If non-null, this hook performs a target-specific pass over the
  32675. instruction stream. The compiler will run it at all optimization
  32676. levels, just before the point at which it normally does
  32677. delayed-branch scheduling.
  32678. The exact purpose of the hook varies from target to target. Some
  32679. use it to do transformations that are necessary for correctness,
  32680. such as laying out in-function constant pools or avoiding hardware
  32681. hazards. Others use it as an opportunity to do some
  32682. machine-dependent optimizations.
  32683. You need not implement the hook if it has nothing to do. The
  32684. default definition is null.
  32685. -- Target Hook: void TARGET_INIT_BUILTINS (void)
  32686. Define this hook if you have any machine-specific built-in
  32687. functions that need to be defined. It should be a function that
  32688. performs the necessary setup.
  32689. Machine specific built-in functions can be useful to expand special
  32690. machine instructions that would otherwise not normally be generated
  32691. because they have no equivalent in the source language (for
  32692. example, SIMD vector instructions or prefetch instructions).
  32693. To create a built-in function, call the function
  32694. 'lang_hooks.builtin_function' which is defined by the language
  32695. front end. You can use any type nodes set up by
  32696. 'build_common_tree_nodes'; only language front ends that use those
  32697. two functions will call 'TARGET_INIT_BUILTINS'.
  32698. -- Target Hook: tree TARGET_BUILTIN_DECL (unsigned CODE, bool
  32699. INITIALIZE_P)
  32700. Define this hook if you have any machine-specific built-in
  32701. functions that need to be defined. It should be a function that
  32702. returns the builtin function declaration for the builtin function
  32703. code CODE. If there is no such builtin and it cannot be
  32704. initialized at this time if INITIALIZE_P is true the function
  32705. should return 'NULL_TREE'. If CODE is out of range the function
  32706. should return 'error_mark_node'.
  32707. -- Target Hook: rtx TARGET_EXPAND_BUILTIN (tree EXP, rtx TARGET, rtx
  32708. SUBTARGET, machine_mode MODE, int IGNORE)
  32709. Expand a call to a machine specific built-in function that was set
  32710. up by 'TARGET_INIT_BUILTINS'. EXP is the expression for the
  32711. function call; the result should go to TARGET if that is
  32712. convenient, and have mode MODE if that is convenient. SUBTARGET
  32713. may be used as the target for computing one of EXP's operands.
  32714. IGNORE is nonzero if the value is to be ignored. This function
  32715. should return the result of the call to the built-in function.
  32716. -- Target Hook: tree TARGET_BUILTIN_CHKP_FUNCTION (unsigned FCODE)
  32717. This hook allows target to redefine built-in functions used by
  32718. Pointer Bounds Checker for code instrumentation. Hook should
  32719. return fndecl of function implementing generic builtin whose code
  32720. is passed in FCODE. Currently following built-in functions are
  32721. obtained using this hook:
  32722. -- Built-in Function: __bounds_type __chkp_bndmk (const void *LB,
  32723. size_t SIZE)
  32724. Function code - BUILT_IN_CHKP_BNDMK. This built-in function is
  32725. used by Pointer Bounds Checker to create bound values. LB
  32726. holds low bound of the resulting bounds. SIZE holds size of
  32727. created bounds.
  32728. -- Built-in Function: void __chkp_bndstx (const void *PTR,
  32729. __bounds_type B, const void **LOC)
  32730. Function code - 'BUILT_IN_CHKP_BNDSTX'. This built-in
  32731. function is used by Pointer Bounds Checker to store bounds B
  32732. for pointer PTR when PTR is stored by address LOC.
  32733. -- Built-in Function: __bounds_type __chkp_bndldx (const void
  32734. **LOC, const void *PTR)
  32735. Function code - 'BUILT_IN_CHKP_BNDLDX'. This built-in
  32736. function is used by Pointer Bounds Checker to get bounds of
  32737. pointer PTR loaded by address LOC.
  32738. -- Built-in Function: void __chkp_bndcl (const void *PTR,
  32739. __bounds_type B)
  32740. Function code - 'BUILT_IN_CHKP_BNDCL'. This built-in function
  32741. is used by Pointer Bounds Checker to perform check for pointer
  32742. PTR against lower bound of bounds B.
  32743. -- Built-in Function: void __chkp_bndcu (const void *PTR,
  32744. __bounds_type B)
  32745. Function code - 'BUILT_IN_CHKP_BNDCU'. This built-in function
  32746. is used by Pointer Bounds Checker to perform check for pointer
  32747. PTR against upper bound of bounds B.
  32748. -- Built-in Function: __bounds_type __chkp_bndret (void *PTR)
  32749. Function code - 'BUILT_IN_CHKP_BNDRET'. This built-in
  32750. function is used by Pointer Bounds Checker to obtain bounds
  32751. returned by a call statement. PTR passed to built-in is
  32752. 'SSA_NAME' returned by the call.
  32753. -- Built-in Function: __bounds_type __chkp_intersect
  32754. (__bounds_type B1, __bounds_type B2)
  32755. Function code - 'BUILT_IN_CHKP_INTERSECT'. This built-in
  32756. function returns intersection of bounds B1 and B2.
  32757. -- Built-in Function: __bounds_type __chkp_narrow (const void
  32758. *PTR, __bounds_type B, size_t S)
  32759. Function code - 'BUILT_IN_CHKP_NARROW'. This built-in
  32760. function returns intersection of bounds B and [PTR, PTR + S -
  32761. '1'].
  32762. -- Built-in Function: size_t __chkp_sizeof (const void *PTR)
  32763. Function code - 'BUILT_IN_CHKP_SIZEOF'. This built-in
  32764. function returns size of object referenced by PTR. PTR is
  32765. always 'ADDR_EXPR' of 'VAR_DECL'. This built-in is used by
  32766. Pointer Bounds Checker when bounds of object cannot be
  32767. computed statically (e.g. object has incomplete type).
  32768. -- Built-in Function: const void *__chkp_extract_lower
  32769. (__bounds_type B)
  32770. Function code - 'BUILT_IN_CHKP_EXTRACT_LOWER'. This built-in
  32771. function returns lower bound of bounds B.
  32772. -- Built-in Function: const void *__chkp_extract_upper
  32773. (__bounds_type B)
  32774. Function code - 'BUILT_IN_CHKP_EXTRACT_UPPER'. This built-in
  32775. function returns upper bound of bounds B.
  32776. -- Target Hook: tree TARGET_CHKP_BOUND_TYPE (void)
  32777. Return type to be used for bounds
  32778. -- Target Hook: machine_mode TARGET_CHKP_BOUND_MODE (void)
  32779. Return mode to be used for bounds.
  32780. -- Target Hook: tree TARGET_CHKP_MAKE_BOUNDS_CONSTANT (HOST_WIDE_INT
  32781. LB, HOST_WIDE_INT UB)
  32782. Return constant used to statically initialize constant bounds with
  32783. specified lower bound LB and upper bounds UB.
  32784. -- Target Hook: int TARGET_CHKP_INITIALIZE_BOUNDS (tree VAR, tree LB,
  32785. tree UB, tree *STMTS)
  32786. Generate a list of statements STMTS to initialize pointer bounds
  32787. variable VAR with bounds LB and UB. Return the number of generated
  32788. statements.
  32789. -- Target Hook: tree TARGET_RESOLVE_OVERLOADED_BUILTIN (unsigned int
  32790. LOC, tree FNDECL, void *ARGLIST)
  32791. Select a replacement for a machine specific built-in function that
  32792. was set up by 'TARGET_INIT_BUILTINS'. This is done _before_
  32793. regular type checking, and so allows the target to implement a
  32794. crude form of function overloading. FNDECL is the declaration of
  32795. the built-in function. ARGLIST is the list of arguments passed to
  32796. the built-in function. The result is a complete expression that
  32797. implements the operation, usually another 'CALL_EXPR'. ARGLIST
  32798. really has type 'VEC(tree,gc)*'
  32799. -- Target Hook: tree TARGET_FOLD_BUILTIN (tree FNDECL, int N_ARGS, tree
  32800. *ARGP, bool IGNORE)
  32801. Fold a call to a machine specific built-in function that was set up
  32802. by 'TARGET_INIT_BUILTINS'. FNDECL is the declaration of the
  32803. built-in function. N_ARGS is the number of arguments passed to the
  32804. function; the arguments themselves are pointed to by ARGP. The
  32805. result is another tree, valid for both GIMPLE and GENERIC,
  32806. containing a simplified expression for the call's result. If
  32807. IGNORE is true the value will be ignored.
  32808. -- Target Hook: bool TARGET_GIMPLE_FOLD_BUILTIN (gimple_stmt_iterator
  32809. *GSI)
  32810. Fold a call to a machine specific built-in function that was set up
  32811. by 'TARGET_INIT_BUILTINS'. GSI points to the gimple statement
  32812. holding the function call. Returns true if any change was made to
  32813. the GIMPLE stream.
  32814. -- Target Hook: int TARGET_COMPARE_VERSION_PRIORITY (tree DECL1, tree
  32815. DECL2)
  32816. This hook is used to compare the target attributes in two functions
  32817. to determine which function's features get higher priority. This
  32818. is used during function multi-versioning to figure out the order in
  32819. which two versions must be dispatched. A function version with a
  32820. higher priority is checked for dispatching earlier. DECL1 and
  32821. DECL2 are the two function decls that will be compared.
  32822. -- Target Hook: tree TARGET_GET_FUNCTION_VERSIONS_DISPATCHER (void
  32823. *DECL)
  32824. This hook is used to get the dispatcher function for a set of
  32825. function versions. The dispatcher function is called to invoke the
  32826. right function version at run-time. DECL is one version from a set
  32827. of semantically identical versions.
  32828. -- Target Hook: tree TARGET_GENERATE_VERSION_DISPATCHER_BODY (void
  32829. *ARG)
  32830. This hook is used to generate the dispatcher logic to invoke the
  32831. right function version at run-time for a given set of function
  32832. versions. ARG points to the callgraph node of the dispatcher
  32833. function whose body must be generated.
  32834. -- Target Hook: bool TARGET_CAN_USE_DOLOOP_P (const widest_int
  32835. &ITERATIONS, const widest_int &ITERATIONS_MAX, unsigned int
  32836. LOOP_DEPTH, bool ENTERED_AT_TOP)
  32837. Return true if it is possible to use low-overhead loops
  32838. ('doloop_end' and 'doloop_begin') for a particular loop.
  32839. ITERATIONS gives the exact number of iterations, or 0 if not known.
  32840. ITERATIONS_MAX gives the maximum number of iterations, or 0 if not
  32841. known. LOOP_DEPTH is the nesting depth of the loop, with 1 for
  32842. innermost loops, 2 for loops that contain innermost loops, and so
  32843. on. ENTERED_AT_TOP is true if the loop is only entered from the
  32844. top.
  32845. This hook is only used if 'doloop_end' is available. The default
  32846. implementation returns true. You can use
  32847. 'can_use_doloop_if_innermost' if the loop must be the innermost,
  32848. and if there are no other restrictions.
  32849. -- Target Hook: const char * TARGET_INVALID_WITHIN_DOLOOP (const
  32850. rtx_insn *INSN)
  32851. Take an instruction in INSN and return NULL if it is valid within a
  32852. low-overhead loop, otherwise return a string explaining why doloop
  32853. could not be applied.
  32854. Many targets use special registers for low-overhead looping. For
  32855. any instruction that clobbers these this function should return a
  32856. string indicating the reason why the doloop could not be applied.
  32857. By default, the RTL loop optimizer does not use a present doloop
  32858. pattern for loops containing function calls or branch on table
  32859. instructions.
  32860. -- Target Hook: bool TARGET_LEGITIMATE_COMBINED_INSN (rtx_insn *INSN)
  32861. Take an instruction in INSN and return 'false' if the instruction
  32862. is not appropriate as a combination of two or more instructions.
  32863. The default is to accept all instructions.
  32864. -- Target Hook: bool TARGET_CAN_FOLLOW_JUMP (const rtx_insn *FOLLOWER,
  32865. const rtx_insn *FOLLOWEE)
  32866. FOLLOWER and FOLLOWEE are JUMP_INSN instructions; return true if
  32867. FOLLOWER may be modified to follow FOLLOWEE; false, if it can't.
  32868. For example, on some targets, certain kinds of branches can't be
  32869. made to follow through a hot/cold partitioning.
  32870. -- Target Hook: bool TARGET_COMMUTATIVE_P (const_rtx X, int OUTER_CODE)
  32871. This target hook returns 'true' if X is considered to be
  32872. commutative. Usually, this is just COMMUTATIVE_P (X), but the HP
  32873. PA doesn't consider PLUS to be commutative inside a MEM.
  32874. OUTER_CODE is the rtx code of the enclosing rtl, if known,
  32875. otherwise it is UNKNOWN.
  32876. -- Target Hook: rtx TARGET_ALLOCATE_INITIAL_VALUE (rtx HARD_REG)
  32877. When the initial value of a hard register has been copied in a
  32878. pseudo register, it is often not necessary to actually allocate
  32879. another register to this pseudo register, because the original hard
  32880. register or a stack slot it has been saved into can be used.
  32881. 'TARGET_ALLOCATE_INITIAL_VALUE' is called at the start of register
  32882. allocation once for each hard register that had its initial value
  32883. copied by using 'get_func_hard_reg_initial_val' or
  32884. 'get_hard_reg_initial_val'. Possible values are 'NULL_RTX', if you
  32885. don't want to do any special allocation, a 'REG' rtx--that would
  32886. typically be the hard register itself, if it is known not to be
  32887. clobbered--or a 'MEM'. If you are returning a 'MEM', this is only
  32888. a hint for the allocator; it might decide to use another register
  32889. anyways. You may use 'current_function_is_leaf' or 'REG_N_SETS' in
  32890. the hook to determine if the hard register in question will not be
  32891. clobbered. The default value of this hook is 'NULL', which
  32892. disables any special allocation.
  32893. -- Target Hook: int TARGET_UNSPEC_MAY_TRAP_P (const_rtx X, unsigned
  32894. FLAGS)
  32895. This target hook returns nonzero if X, an 'unspec' or
  32896. 'unspec_volatile' operation, might cause a trap. Targets can use
  32897. this hook to enhance precision of analysis for 'unspec' and
  32898. 'unspec_volatile' operations. You may call 'may_trap_p_1' to
  32899. analyze inner elements of X in which case FLAGS should be passed
  32900. along.
  32901. -- Target Hook: void TARGET_SET_CURRENT_FUNCTION (tree DECL)
  32902. The compiler invokes this hook whenever it changes its current
  32903. function context ('cfun'). You can define this function if the
  32904. back end needs to perform any initialization or reset actions on a
  32905. per-function basis. For example, it may be used to implement
  32906. function attributes that affect register usage or code generation
  32907. patterns. The argument DECL is the declaration for the new
  32908. function context, and may be null to indicate that the compiler has
  32909. left a function context and is returning to processing at the top
  32910. level. The default hook function does nothing.
  32911. GCC sets 'cfun' to a dummy function context during initialization
  32912. of some parts of the back end. The hook function is not invoked in
  32913. this situation; you need not worry about the hook being invoked
  32914. recursively, or when the back end is in a partially-initialized
  32915. state. 'cfun' might be 'NULL' to indicate processing at top level,
  32916. outside of any function scope.
  32917. -- Macro: TARGET_OBJECT_SUFFIX
  32918. Define this macro to be a C string representing the suffix for
  32919. object files on your target machine. If you do not define this
  32920. macro, GCC will use '.o' as the suffix for object files.
  32921. -- Macro: TARGET_EXECUTABLE_SUFFIX
  32922. Define this macro to be a C string representing the suffix to be
  32923. automatically added to executable files on your target machine. If
  32924. you do not define this macro, GCC will use the null string as the
  32925. suffix for executable files.
  32926. -- Macro: COLLECT_EXPORT_LIST
  32927. If defined, 'collect2' will scan the individual object files
  32928. specified on its command line and create an export list for the
  32929. linker. Define this macro for systems like AIX, where the linker
  32930. discards object files that are not referenced from 'main' and uses
  32931. export lists.
  32932. -- Macro: MODIFY_JNI_METHOD_CALL (MDECL)
  32933. Define this macro to a C expression representing a variant of the
  32934. method call MDECL, if Java Native Interface (JNI) methods must be
  32935. invoked differently from other methods on your target. For
  32936. example, on 32-bit Microsoft Windows, JNI methods must be invoked
  32937. using the 'stdcall' calling convention and this macro is then
  32938. defined as this expression:
  32939. build_type_attribute_variant (MDECL,
  32940. build_tree_list
  32941. (get_identifier ("stdcall"),
  32942. NULL))
  32943. -- Target Hook: bool TARGET_CANNOT_MODIFY_JUMPS_P (void)
  32944. This target hook returns 'true' past the point in which new jump
  32945. instructions could be created. On machines that require a register
  32946. for every jump such as the SHmedia ISA of SH5, this point would
  32947. typically be reload, so this target hook should be defined to a
  32948. function such as:
  32949. static bool
  32950. cannot_modify_jumps_past_reload_p ()
  32951. {
  32952. return (reload_completed || reload_in_progress);
  32953. }
  32954. -- Target Hook: reg_class_t TARGET_BRANCH_TARGET_REGISTER_CLASS (void)
  32955. This target hook returns a register class for which branch target
  32956. register optimizations should be applied. All registers in this
  32957. class should be usable interchangeably. After reload, registers in
  32958. this class will be re-allocated and loads will be hoisted out of
  32959. loops and be subjected to inter-block scheduling.
  32960. -- Target Hook: bool TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED (bool
  32961. AFTER_PROLOGUE_EPILOGUE_GEN)
  32962. Branch target register optimization will by default exclude
  32963. callee-saved registers that are not already live during the current
  32964. function; if this target hook returns true, they will be included.
  32965. The target code must than make sure that all target registers in
  32966. the class returned by 'TARGET_BRANCH_TARGET_REGISTER_CLASS' that
  32967. might need saving are saved. AFTER_PROLOGUE_EPILOGUE_GEN indicates
  32968. if prologues and epilogues have already been generated. Note, even
  32969. if you only return true when AFTER_PROLOGUE_EPILOGUE_GEN is false,
  32970. you still are likely to have to make special provisions in
  32971. 'INITIAL_ELIMINATION_OFFSET' to reserve space for caller-saved
  32972. target registers.
  32973. -- Target Hook: bool TARGET_HAVE_CONDITIONAL_EXECUTION (void)
  32974. This target hook returns true if the target supports conditional
  32975. execution. This target hook is required only when the target has
  32976. several different modes and they have different conditional
  32977. execution capability, such as ARM.
  32978. -- Target Hook: rtx TARGET_GEN_CCMP_FIRST (rtx_insn **PREP_SEQ,
  32979. rtx_insn **GEN_SEQ, int CODE, tree OP0, tree OP1)
  32980. This function prepares to emit a comparison insn for the first
  32981. compare in a sequence of conditional comparisions. It returns an
  32982. appropriate comparison with 'CC' for passing to 'gen_ccmp_next' or
  32983. 'cbranch_optab'. The insns to prepare the compare are saved in
  32984. PREP_SEQ and the compare insns are saved in GEN_SEQ. They will be
  32985. emitted when all the compares in the the conditional comparision
  32986. are generated without error. CODE is the 'rtx_code' of the compare
  32987. for OP0 and OP1.
  32988. -- Target Hook: rtx TARGET_GEN_CCMP_NEXT (rtx_insn **PREP_SEQ, rtx_insn
  32989. **GEN_SEQ, rtx PREV, int CMP_CODE, tree OP0, tree OP1, int
  32990. BIT_CODE)
  32991. This function prepares to emit a conditional comparison within a
  32992. sequence of conditional comparisons. It returns an appropriate
  32993. comparison with 'CC' for passing to 'gen_ccmp_next' or
  32994. 'cbranch_optab'. The insns to prepare the compare are saved in
  32995. PREP_SEQ and the compare insns are saved in GEN_SEQ. They will be
  32996. emitted when all the compares in the conditional comparision are
  32997. generated without error. The PREV expression is the result of a
  32998. prior call to 'gen_ccmp_first' or 'gen_ccmp_next'. It may return
  32999. 'NULL' if the combination of PREV and this comparison is not
  33000. supported, otherwise the result must be appropriate for passing to
  33001. 'gen_ccmp_next' or 'cbranch_optab'. CODE is the 'rtx_code' of the
  33002. compare for OP0 and OP1. BIT_CODE is 'AND' or 'IOR', which is the
  33003. op on the compares.
  33004. -- Target Hook: unsigned TARGET_LOOP_UNROLL_ADJUST (unsigned NUNROLL,
  33005. struct loop *LOOP)
  33006. This target hook returns a new value for the number of times LOOP
  33007. should be unrolled. The parameter NUNROLL is the number of times
  33008. the loop is to be unrolled. The parameter LOOP is a pointer to the
  33009. loop, which is going to be checked for unrolling. This target hook
  33010. is required only when the target has special constraints like
  33011. maximum number of memory accesses.
  33012. -- Macro: POWI_MAX_MULTS
  33013. If defined, this macro is interpreted as a signed integer C
  33014. expression that specifies the maximum number of floating point
  33015. multiplications that should be emitted when expanding
  33016. exponentiation by an integer constant inline. When this value is
  33017. defined, exponentiation requiring more than this number of
  33018. multiplications is implemented by calling the system library's
  33019. 'pow', 'powf' or 'powl' routines. The default value places no
  33020. upper bound on the multiplication count.
  33021. -- Macro: void TARGET_EXTRA_INCLUDES (const char *SYSROOT, const char
  33022. *IPREFIX, int STDINC)
  33023. This target hook should register any extra include files for the
  33024. target. The parameter STDINC indicates if normal include files are
  33025. present. The parameter SYSROOT is the system root directory. The
  33026. parameter IPREFIX is the prefix for the gcc directory.
  33027. -- Macro: void TARGET_EXTRA_PRE_INCLUDES (const char *SYSROOT, const
  33028. char *IPREFIX, int STDINC)
  33029. This target hook should register any extra include files for the
  33030. target before any standard headers. The parameter STDINC indicates
  33031. if normal include files are present. The parameter SYSROOT is the
  33032. system root directory. The parameter IPREFIX is the prefix for the
  33033. gcc directory.
  33034. -- Macro: void TARGET_OPTF (char *PATH)
  33035. This target hook should register special include paths for the
  33036. target. The parameter PATH is the include to register. On Darwin
  33037. systems, this is used for Framework includes, which have semantics
  33038. that are different from '-I'.
  33039. -- Macro: bool TARGET_USE_LOCAL_THUNK_ALIAS_P (tree FNDECL)
  33040. This target macro returns 'true' if it is safe to use a local alias
  33041. for a virtual function FNDECL when constructing thunks, 'false'
  33042. otherwise. By default, the macro returns 'true' for all functions,
  33043. if a target supports aliases (i.e. defines 'ASM_OUTPUT_DEF'),
  33044. 'false' otherwise,
  33045. -- Macro: TARGET_FORMAT_TYPES
  33046. If defined, this macro is the name of a global variable containing
  33047. target-specific format checking information for the '-Wformat'
  33048. option. The default is to have no target-specific format checks.
  33049. -- Macro: TARGET_N_FORMAT_TYPES
  33050. If defined, this macro is the number of entries in
  33051. 'TARGET_FORMAT_TYPES'.
  33052. -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES
  33053. If defined, this macro is the name of a global variable containing
  33054. target-specific format overrides for the '-Wformat' option. The
  33055. default is to have no target-specific format overrides. If
  33056. defined, 'TARGET_FORMAT_TYPES' must be defined, too.
  33057. -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT
  33058. If defined, this macro specifies the number of entries in
  33059. 'TARGET_OVERRIDES_FORMAT_ATTRIBUTES'.
  33060. -- Macro: TARGET_OVERRIDES_FORMAT_INIT
  33061. If defined, this macro specifies the optional initialization
  33062. routine for target specific customizations of the system printf and
  33063. scanf formatter settings.
  33064. -- Target Hook: const char * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
  33065. (const_tree TYPELIST, const_tree FUNCDECL, const_tree VAL)
  33066. If defined, this macro returns the diagnostic message when it is
  33067. illegal to pass argument VAL to function FUNCDECL with prototype
  33068. TYPELIST.
  33069. -- Target Hook: const char * TARGET_INVALID_CONVERSION (const_tree
  33070. FROMTYPE, const_tree TOTYPE)
  33071. If defined, this macro returns the diagnostic message when it is
  33072. invalid to convert from FROMTYPE to TOTYPE, or 'NULL' if validity
  33073. should be determined by the front end.
  33074. -- Target Hook: const char * TARGET_INVALID_UNARY_OP (int OP,
  33075. const_tree TYPE)
  33076. If defined, this macro returns the diagnostic message when it is
  33077. invalid to apply operation OP (where unary plus is denoted by
  33078. 'CONVERT_EXPR') to an operand of type TYPE, or 'NULL' if validity
  33079. should be determined by the front end.
  33080. -- Target Hook: const char * TARGET_INVALID_BINARY_OP (int OP,
  33081. const_tree TYPE1, const_tree TYPE2)
  33082. If defined, this macro returns the diagnostic message when it is
  33083. invalid to apply operation OP to operands of types TYPE1 and TYPE2,
  33084. or 'NULL' if validity should be determined by the front end.
  33085. -- Target Hook: tree TARGET_PROMOTED_TYPE (const_tree TYPE)
  33086. If defined, this target hook returns the type to which values of
  33087. TYPE should be promoted when they appear in expressions, analogous
  33088. to the integer promotions, or 'NULL_TREE' to use the front end's
  33089. normal promotion rules. This hook is useful when there are
  33090. target-specific types with special promotion rules. This is
  33091. currently used only by the C and C++ front ends.
  33092. -- Target Hook: tree TARGET_CONVERT_TO_TYPE (tree TYPE, tree EXPR)
  33093. If defined, this hook returns the result of converting EXPR to
  33094. TYPE. It should return the converted expression, or 'NULL_TREE' to
  33095. apply the front end's normal conversion rules. This hook is useful
  33096. when there are target-specific types with special conversion rules.
  33097. This is currently used only by the C and C++ front ends.
  33098. -- Macro: OBJC_JBLEN
  33099. This macro determines the size of the objective C jump buffer for
  33100. the NeXT runtime. By default, OBJC_JBLEN is defined to an
  33101. innocuous value.
  33102. -- Macro: LIBGCC2_UNWIND_ATTRIBUTE
  33103. Define this macro if any target-specific attributes need to be
  33104. attached to the functions in 'libgcc' that provide low-level
  33105. support for call stack unwinding. It is used in declarations in
  33106. 'unwind-generic.h' and the associated definitions of those
  33107. functions.
  33108. -- Target Hook: void TARGET_UPDATE_STACK_BOUNDARY (void)
  33109. Define this macro to update the current function stack boundary if
  33110. necessary.
  33111. -- Target Hook: rtx TARGET_GET_DRAP_RTX (void)
  33112. This hook should return an rtx for Dynamic Realign Argument Pointer
  33113. (DRAP) if a different argument pointer register is needed to access
  33114. the function's argument list due to stack realignment. Return
  33115. 'NULL' if no DRAP is needed.
  33116. -- Target Hook: bool TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS (void)
  33117. When optimization is disabled, this hook indicates whether or not
  33118. arguments should be allocated to stack slots. Normally, GCC
  33119. allocates stacks slots for arguments when not optimizing in order
  33120. to make debugging easier. However, when a function is declared
  33121. with '__attribute__((naked))', there is no stack frame, and the
  33122. compiler cannot safely move arguments from the registers in which
  33123. they are passed to the stack. Therefore, this hook should return
  33124. true in general, but false for naked functions. The default
  33125. implementation always returns true.
  33126. -- Target Hook: unsigned HOST_WIDE_INT TARGET_CONST_ANCHOR
  33127. On some architectures it can take multiple instructions to
  33128. synthesize a constant. If there is another constant already in a
  33129. register that is close enough in value then it is preferable that
  33130. the new constant is computed from this register using immediate
  33131. addition or subtraction. We accomplish this through CSE. Besides
  33132. the value of the constant we also add a lower and an upper constant
  33133. anchor to the available expressions. These are then queried when
  33134. encountering new constants. The anchors are computed by rounding
  33135. the constant up and down to a multiple of the value of
  33136. 'TARGET_CONST_ANCHOR'. 'TARGET_CONST_ANCHOR' should be the maximum
  33137. positive value accepted by immediate-add plus one. We currently
  33138. assume that the value of 'TARGET_CONST_ANCHOR' is a power of 2.
  33139. For example, on MIPS, where add-immediate takes a 16-bit signed
  33140. value, 'TARGET_CONST_ANCHOR' is set to '0x8000'. The default value
  33141. is zero, which disables this optimization.
  33142. -- Target Hook: unsigned HOST_WIDE_INT TARGET_ASAN_SHADOW_OFFSET (void)
  33143. Return the offset bitwise ored into shifted address to get
  33144. corresponding Address Sanitizer shadow memory address. NULL if
  33145. Address Sanitizer is not supported by the target.
  33146. -- Target Hook: unsigned HOST_WIDE_INT TARGET_MEMMODEL_CHECK (unsigned
  33147. HOST_WIDE_INT VAL)
  33148. Validate target specific memory model mask bits. When NULL no
  33149. target specific memory model bits are allowed.
  33150. -- Target Hook: unsigned char TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
  33151. This value should be set if the result written by
  33152. 'atomic_test_and_set' is not exactly 1, i.e. the 'bool' 'true'.
  33153. -- Target Hook: bool TARGET_HAS_IFUNC_P (void)
  33154. It returns true if the target supports GNU indirect functions. The
  33155. support includes the assembler, linker and dynamic linker. The
  33156. default value of this hook is based on target's libc.
  33157. -- Target Hook: unsigned int TARGET_ATOMIC_ALIGN_FOR_MODE (machine_mode
  33158. MODE)
  33159. If defined, this function returns an appropriate alignment in bits
  33160. for an atomic object of machine_mode MODE. If 0 is returned then
  33161. the default alignment for the specified mode is used.
  33162. -- Target Hook: void TARGET_ATOMIC_ASSIGN_EXPAND_FENV (tree *HOLD, tree
  33163. *CLEAR, tree *UPDATE)
  33164. ISO C11 requires atomic compound assignments that may raise
  33165. floating-point exceptions to raise exceptions corresponding to the
  33166. arithmetic operation whose result was successfully stored in a
  33167. compare-and-exchange sequence. This requires code equivalent to
  33168. calls to 'feholdexcept', 'feclearexcept' and 'feupdateenv' to be
  33169. generated at appropriate points in the compare-and-exchange
  33170. sequence. This hook should set '*HOLD' to an expression equivalent
  33171. to the call to 'feholdexcept', '*CLEAR' to an expression equivalent
  33172. to the call to 'feclearexcept' and '*UPDATE' to an expression
  33173. equivalent to the call to 'feupdateenv'. The three expressions are
  33174. 'NULL_TREE' on entry to the hook and may be left as 'NULL_TREE' if
  33175. no code is required in a particular place. The default
  33176. implementation leaves all three expressions as 'NULL_TREE'. The
  33177. '__atomic_feraiseexcept' function from 'libatomic' may be of use as
  33178. part of the code generated in '*UPDATE'.
  33179. -- Target Hook: void TARGET_RECORD_OFFLOAD_SYMBOL (tree)
  33180. Used when offloaded functions are seen in the compilation unit and
  33181. no named sections are available. It is called once for each symbol
  33182. that must be recorded in the offload function and variable table.
  33183. -- Target Hook: char * TARGET_OFFLOAD_OPTIONS (void)
  33184. Used when writing out the list of options into an LTO file. It
  33185. should translate any relevant target-specific options (such as the
  33186. ABI in use) into one of the '-foffload' options that exist as a
  33187. common interface to express such options. It should return a
  33188. string containing these options, separated by spaces, which the
  33189. caller will free.
  33190. -- Macro: TARGET_SUPPORTS_WIDE_INT
  33191. On older ports, large integers are stored in 'CONST_DOUBLE' rtl
  33192. objects. Newer ports define 'TARGET_SUPPORTS_WIDE_INT' to be
  33193. nonzero to indicate that large integers are stored in
  33194. 'CONST_WIDE_INT' rtl objects. The 'CONST_WIDE_INT' allows very
  33195. large integer constants to be represented. 'CONST_DOUBLE' is
  33196. limited to twice the size of the host's 'HOST_WIDE_INT'
  33197. representation.
  33198. Converting a port mostly requires looking for the places where
  33199. 'CONST_DOUBLE's are used with 'VOIDmode' and replacing that code
  33200. with code that accesses 'CONST_WIDE_INT's. '"grep -i
  33201. const_double"' at the port level gets you to 95% of the changes
  33202. that need to be made. There are a few places that require a deeper
  33203. look.
  33204. * There is no equivalent to 'hval' and 'lval' for
  33205. 'CONST_WIDE_INT's. This would be difficult to express in the
  33206. md language since there are a variable number of elements.
  33207. Most ports only check that 'hval' is either 0 or -1 to see if
  33208. the value is small. As mentioned above, this will no longer
  33209. be necessary since small constants are always 'CONST_INT'. Of
  33210. course there are still a few exceptions, the alpha's
  33211. constraint used by the zap instruction certainly requires
  33212. careful examination by C code. However, all the current code
  33213. does is pass the hval and lval to C code, so evolving the c
  33214. code to look at the 'CONST_WIDE_INT' is not really a large
  33215. change.
  33216. * Because there is no standard template that ports use to
  33217. materialize constants, there is likely to be some futzing that
  33218. is unique to each port in this code.
  33219. * The rtx costs may have to be adjusted to properly account for
  33220. larger constants that are represented as 'CONST_WIDE_INT'.
  33221. All and all it does not take long to convert ports that the
  33222. maintainer is familiar with.
  33223. -- Target Hook: void TARGET_RUN_TARGET_SELFTESTS (void)
  33224. If selftests are enabled, run any selftests for this target.
  33225. 
  33226. File: gccint.info, Node: Host Config, Next: Fragments, Prev: Target Macros, Up: Top
  33227. 19 Host Configuration
  33228. *********************
  33229. Most details about the machine and system on which the compiler is
  33230. actually running are detected by the 'configure' script. Some things
  33231. are impossible for 'configure' to detect; these are described in two
  33232. ways, either by macros defined in a file named 'xm-MACHINE.h' or by hook
  33233. functions in the file specified by the OUT_HOST_HOOK_OBJ variable in
  33234. 'config.gcc'. (The intention is that very few hosts will need a header
  33235. file but nearly every fully supported host will need to override some
  33236. hooks.)
  33237. If you need to define only a few macros, and they have simple
  33238. definitions, consider using the 'xm_defines' variable in your
  33239. 'config.gcc' entry instead of creating a host configuration header.
  33240. *Note System Config::.
  33241. * Menu:
  33242. * Host Common:: Things every host probably needs implemented.
  33243. * Filesystem:: Your host cannot have the letter 'a' in filenames?
  33244. * Host Misc:: Rare configuration options for hosts.
  33245. 
  33246. File: gccint.info, Node: Host Common, Next: Filesystem, Up: Host Config
  33247. 19.1 Host Common
  33248. ================
  33249. Some things are just not portable, even between similar operating
  33250. systems, and are too difficult for autoconf to detect. They get
  33251. implemented using hook functions in the file specified by the
  33252. HOST_HOOK_OBJ variable in 'config.gcc'.
  33253. -- Host Hook: void HOST_HOOKS_EXTRA_SIGNALS (void)
  33254. This host hook is used to set up handling for extra signals. The
  33255. most common thing to do in this hook is to detect stack overflow.
  33256. -- Host Hook: void * HOST_HOOKS_GT_PCH_GET_ADDRESS (size_t SIZE, int
  33257. FD)
  33258. This host hook returns the address of some space that is likely to
  33259. be free in some subsequent invocation of the compiler. We intend
  33260. to load the PCH data at this address such that the data need not be
  33261. relocated. The area should be able to hold SIZE bytes. If the
  33262. host uses 'mmap', FD is an open file descriptor that can be used
  33263. for probing.
  33264. -- Host Hook: int HOST_HOOKS_GT_PCH_USE_ADDRESS (void * ADDRESS, size_t
  33265. SIZE, int FD, size_t OFFSET)
  33266. This host hook is called when a PCH file is about to be loaded. We
  33267. want to load SIZE bytes from FD at OFFSET into memory at ADDRESS.
  33268. The given address will be the result of a previous invocation of
  33269. 'HOST_HOOKS_GT_PCH_GET_ADDRESS'. Return -1 if we couldn't allocate
  33270. SIZE bytes at ADDRESS. Return 0 if the memory is allocated but the
  33271. data is not loaded. Return 1 if the hook has performed everything.
  33272. If the implementation uses reserved address space, free any
  33273. reserved space beyond SIZE, regardless of the return value. If no
  33274. PCH will be loaded, this hook may be called with SIZE zero, in
  33275. which case all reserved address space should be freed.
  33276. Do not try to handle values of ADDRESS that could not have been
  33277. returned by this executable; just return -1. Such values usually
  33278. indicate an out-of-date PCH file (built by some other GCC
  33279. executable), and such a PCH file won't work.
  33280. -- Host Hook: size_t HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY (void);
  33281. This host hook returns the alignment required for allocating
  33282. virtual memory. Usually this is the same as getpagesize, but on
  33283. some hosts the alignment for reserving memory differs from the
  33284. pagesize for committing memory.
  33285. 
  33286. File: gccint.info, Node: Filesystem, Next: Host Misc, Prev: Host Common, Up: Host Config
  33287. 19.2 Host Filesystem
  33288. ====================
  33289. GCC needs to know a number of things about the semantics of the host
  33290. machine's filesystem. Filesystems with Unix and MS-DOS semantics are
  33291. automatically detected. For other systems, you can define the following
  33292. macros in 'xm-MACHINE.h'.
  33293. 'HAVE_DOS_BASED_FILE_SYSTEM'
  33294. This macro is automatically defined by 'system.h' if the host file
  33295. system obeys the semantics defined by MS-DOS instead of Unix. DOS
  33296. file systems are case insensitive, file specifications may begin
  33297. with a drive letter, and both forward slash and backslash ('/' and
  33298. '\') are directory separators.
  33299. 'DIR_SEPARATOR'
  33300. 'DIR_SEPARATOR_2'
  33301. If defined, these macros expand to character constants specifying
  33302. separators for directory names within a file specification.
  33303. 'system.h' will automatically give them appropriate values on Unix
  33304. and MS-DOS file systems. If your file system is neither of these,
  33305. define one or both appropriately in 'xm-MACHINE.h'.
  33306. However, operating systems like VMS, where constructing a pathname
  33307. is more complicated than just stringing together directory names
  33308. separated by a special character, should not define either of these
  33309. macros.
  33310. 'PATH_SEPARATOR'
  33311. If defined, this macro should expand to a character constant
  33312. specifying the separator for elements of search paths. The default
  33313. value is a colon (':'). DOS-based systems usually, but not always,
  33314. use semicolon (';').
  33315. 'VMS'
  33316. Define this macro if the host system is VMS.
  33317. 'HOST_OBJECT_SUFFIX'
  33318. Define this macro to be a C string representing the suffix for
  33319. object files on your host machine. If you do not define this
  33320. macro, GCC will use '.o' as the suffix for object files.
  33321. 'HOST_EXECUTABLE_SUFFIX'
  33322. Define this macro to be a C string representing the suffix for
  33323. executable files on your host machine. If you do not define this
  33324. macro, GCC will use the null string as the suffix for executable
  33325. files.
  33326. 'HOST_BIT_BUCKET'
  33327. A pathname defined by the host operating system, which can be
  33328. opened as a file and written to, but all the information written is
  33329. discarded. This is commonly known as a "bit bucket" or "null
  33330. device". If you do not define this macro, GCC will use '/dev/null'
  33331. as the bit bucket. If the host does not support a bit bucket,
  33332. define this macro to an invalid filename.
  33333. 'UPDATE_PATH_HOST_CANONICALIZE (PATH)'
  33334. If defined, a C statement (sans semicolon) that performs
  33335. host-dependent canonicalization when a path used in a compilation
  33336. driver or preprocessor is canonicalized. PATH is a malloc-ed path
  33337. to be canonicalized. If the C statement does canonicalize PATH
  33338. into a different buffer, the old path should be freed and the new
  33339. buffer should have been allocated with malloc.
  33340. 'DUMPFILE_FORMAT'
  33341. Define this macro to be a C string representing the format to use
  33342. for constructing the index part of debugging dump file names. The
  33343. resultant string must fit in fifteen bytes. The full filename will
  33344. be the concatenation of: the prefix of the assembler file name, the
  33345. string resulting from applying this format to an index number, and
  33346. a string unique to each dump file kind, e.g. 'rtl'.
  33347. If you do not define this macro, GCC will use '.%02d.'. You should
  33348. define this macro if using the default will create an invalid file
  33349. name.
  33350. 'DELETE_IF_ORDINARY'
  33351. Define this macro to be a C statement (sans semicolon) that
  33352. performs host-dependent removal of ordinary temp files in the
  33353. compilation driver.
  33354. If you do not define this macro, GCC will use the default version.
  33355. You should define this macro if the default version does not
  33356. reliably remove the temp file as, for example, on VMS which allows
  33357. multiple versions of a file.
  33358. 'HOST_LACKS_INODE_NUMBERS'
  33359. Define this macro if the host filesystem does not report meaningful
  33360. inode numbers in struct stat.
  33361. 
  33362. File: gccint.info, Node: Host Misc, Prev: Filesystem, Up: Host Config
  33363. 19.3 Host Misc
  33364. ==============
  33365. 'FATAL_EXIT_CODE'
  33366. A C expression for the status code to be returned when the compiler
  33367. exits after serious errors. The default is the system-provided
  33368. macro 'EXIT_FAILURE', or '1' if the system doesn't define that
  33369. macro. Define this macro only if these defaults are incorrect.
  33370. 'SUCCESS_EXIT_CODE'
  33371. A C expression for the status code to be returned when the compiler
  33372. exits without serious errors. (Warnings are not serious errors.)
  33373. The default is the system-provided macro 'EXIT_SUCCESS', or '0' if
  33374. the system doesn't define that macro. Define this macro only if
  33375. these defaults are incorrect.
  33376. 'USE_C_ALLOCA'
  33377. Define this macro if GCC should use the C implementation of
  33378. 'alloca' provided by 'libiberty.a'. This only affects how some
  33379. parts of the compiler itself allocate memory. It does not change
  33380. code generation.
  33381. When GCC is built with a compiler other than itself, the C 'alloca'
  33382. is always used. This is because most other implementations have
  33383. serious bugs. You should define this macro only on a system where
  33384. no stack-based 'alloca' can possibly work. For instance, if a
  33385. system has a small limit on the size of the stack, GCC's builtin
  33386. 'alloca' will not work reliably.
  33387. 'COLLECT2_HOST_INITIALIZATION'
  33388. If defined, a C statement (sans semicolon) that performs
  33389. host-dependent initialization when 'collect2' is being initialized.
  33390. 'GCC_DRIVER_HOST_INITIALIZATION'
  33391. If defined, a C statement (sans semicolon) that performs
  33392. host-dependent initialization when a compilation driver is being
  33393. initialized.
  33394. 'HOST_LONG_LONG_FORMAT'
  33395. If defined, the string used to indicate an argument of type 'long
  33396. long' to functions like 'printf'. The default value is '"ll"'.
  33397. 'HOST_LONG_FORMAT'
  33398. If defined, the string used to indicate an argument of type 'long'
  33399. to functions like 'printf'. The default value is '"l"'.
  33400. 'HOST_PTR_PRINTF'
  33401. If defined, the string used to indicate an argument of type 'void
  33402. *' to functions like 'printf'. The default value is '"%p"'.
  33403. In addition, if 'configure' generates an incorrect definition of any of
  33404. the macros in 'auto-host.h', you can override that definition in a host
  33405. configuration header. If you need to do this, first see if it is
  33406. possible to fix 'configure'.
  33407. 
  33408. File: gccint.info, Node: Fragments, Next: Collect2, Prev: Host Config, Up: Top
  33409. 20 Makefile Fragments
  33410. *********************
  33411. When you configure GCC using the 'configure' script, it will construct
  33412. the file 'Makefile' from the template file 'Makefile.in'. When it does
  33413. this, it can incorporate makefile fragments from the 'config' directory.
  33414. These are used to set Makefile parameters that are not amenable to being
  33415. calculated by autoconf. The list of fragments to incorporate is set by
  33416. 'config.gcc' (and occasionally 'config.build' and 'config.host'); *Note
  33417. System Config::.
  33418. Fragments are named either 't-TARGET' or 'x-HOST', depending on whether
  33419. they are relevant to configuring GCC to produce code for a particular
  33420. target, or to configuring GCC to run on a particular host. Here TARGET
  33421. and HOST are mnemonics which usually have some relationship to the
  33422. canonical system name, but no formal connection.
  33423. If these files do not exist, it means nothing needs to be added for a
  33424. given target or host. Most targets need a few 't-TARGET' fragments, but
  33425. needing 'x-HOST' fragments is rare.
  33426. * Menu:
  33427. * Target Fragment:: Writing 't-TARGET' files.
  33428. * Host Fragment:: Writing 'x-HOST' files.
  33429. 
  33430. File: gccint.info, Node: Target Fragment, Next: Host Fragment, Up: Fragments
  33431. 20.1 Target Makefile Fragments
  33432. ==============================
  33433. Target makefile fragments can set these Makefile variables.
  33434. 'LIBGCC2_CFLAGS'
  33435. Compiler flags to use when compiling 'libgcc2.c'.
  33436. 'LIB2FUNCS_EXTRA'
  33437. A list of source file names to be compiled or assembled and
  33438. inserted into 'libgcc.a'.
  33439. 'CRTSTUFF_T_CFLAGS'
  33440. Special flags used when compiling 'crtstuff.c'. *Note
  33441. Initialization::.
  33442. 'CRTSTUFF_T_CFLAGS_S'
  33443. Special flags used when compiling 'crtstuff.c' for shared linking.
  33444. Used if you use 'crtbeginS.o' and 'crtendS.o' in 'EXTRA-PARTS'.
  33445. *Note Initialization::.
  33446. 'MULTILIB_OPTIONS'
  33447. For some targets, invoking GCC in different ways produces objects
  33448. that can not be linked together. For example, for some targets GCC
  33449. produces both big and little endian code. For these targets, you
  33450. must arrange for multiple versions of 'libgcc.a' to be compiled,
  33451. one for each set of incompatible options. When GCC invokes the
  33452. linker, it arranges to link in the right version of 'libgcc.a',
  33453. based on the command line options used.
  33454. The 'MULTILIB_OPTIONS' macro lists the set of options for which
  33455. special versions of 'libgcc.a' must be built. Write options that
  33456. are mutually incompatible side by side, separated by a slash.
  33457. Write options that may be used together separated by a space. The
  33458. build procedure will build all combinations of compatible options.
  33459. For example, if you set 'MULTILIB_OPTIONS' to 'm68000/m68020
  33460. msoft-float', 'Makefile' will build special versions of 'libgcc.a'
  33461. using the following sets of options: '-m68000', '-m68020',
  33462. '-msoft-float', '-m68000 -msoft-float', and '-m68020 -msoft-float'.
  33463. 'MULTILIB_DIRNAMES'
  33464. If 'MULTILIB_OPTIONS' is used, this variable specifies the
  33465. directory names that should be used to hold the various libraries.
  33466. Write one element in 'MULTILIB_DIRNAMES' for each element in
  33467. 'MULTILIB_OPTIONS'. If 'MULTILIB_DIRNAMES' is not used, the
  33468. default value will be 'MULTILIB_OPTIONS', with all slashes treated
  33469. as spaces.
  33470. 'MULTILIB_DIRNAMES' describes the multilib directories using GCC
  33471. conventions and is applied to directories that are part of the GCC
  33472. installation. When multilib-enabled, the compiler will add a
  33473. subdirectory of the form PREFIX/MULTILIB before each directory in
  33474. the search path for libraries and crt files.
  33475. For example, if 'MULTILIB_OPTIONS' is set to 'm68000/m68020
  33476. msoft-float', then the default value of 'MULTILIB_DIRNAMES' is
  33477. 'm68000 m68020 msoft-float'. You may specify a different value if
  33478. you desire a different set of directory names.
  33479. 'MULTILIB_MATCHES'
  33480. Sometimes the same option may be written in two different ways. If
  33481. an option is listed in 'MULTILIB_OPTIONS', GCC needs to know about
  33482. any synonyms. In that case, set 'MULTILIB_MATCHES' to a list of
  33483. items of the form 'option=option' to describe all relevant
  33484. synonyms. For example, 'm68000=mc68000 m68020=mc68020'.
  33485. 'MULTILIB_EXCEPTIONS'
  33486. Sometimes when there are multiple sets of 'MULTILIB_OPTIONS' being
  33487. specified, there are combinations that should not be built. In
  33488. that case, set 'MULTILIB_EXCEPTIONS' to be all of the switch
  33489. exceptions in shell case syntax that should not be built.
  33490. For example the ARM processor cannot execute both hardware floating
  33491. point instructions and the reduced size THUMB instructions at the
  33492. same time, so there is no need to build libraries with both of
  33493. these options enabled. Therefore 'MULTILIB_EXCEPTIONS' is set to:
  33494. *mthumb/*mhard-float*
  33495. 'MULTILIB_REQUIRED'
  33496. Sometimes when there are only a few combinations are required, it
  33497. would be a big effort to come up with a 'MULTILIB_EXCEPTIONS' list
  33498. to cover all undesired ones. In such a case, just listing all the
  33499. required combinations in 'MULTILIB_REQUIRED' would be more
  33500. straightforward.
  33501. The way to specify the entries in 'MULTILIB_REQUIRED' is same with
  33502. the way used for 'MULTILIB_EXCEPTIONS', only this time what are
  33503. required will be specified. Suppose there are multiple sets of
  33504. 'MULTILIB_OPTIONS' and only two combinations are required, one for
  33505. ARMv7-M and one for ARMv7-R with hard floating-point ABI and FPU,
  33506. the 'MULTILIB_REQUIRED' can be set to:
  33507. MULTILIB_REQUIRED = mthumb/march=armv7-m
  33508. MULTILIB_REQUIRED += march=armv7-r/mfloat-abi=hard/mfpu=vfpv3-d16
  33509. The 'MULTILIB_REQUIRED' can be used together with
  33510. 'MULTILIB_EXCEPTIONS'. The option combinations generated from
  33511. 'MULTILIB_OPTIONS' will be filtered by 'MULTILIB_EXCEPTIONS' and
  33512. then by 'MULTILIB_REQUIRED'.
  33513. 'MULTILIB_REUSE'
  33514. Sometimes it is desirable to reuse one existing multilib for
  33515. different sets of options. Such kind of reuse can minimize the
  33516. number of multilib variants. And for some targets it is better to
  33517. reuse an existing multilib than to fall back to default multilib
  33518. when there is no corresponding multilib. This can be done by
  33519. adding reuse rules to 'MULTILIB_REUSE'.
  33520. A reuse rule is comprised of two parts connected by equality sign.
  33521. The left part is the option set used to build multilib and the
  33522. right part is the option set that will reuse this multilib. Both
  33523. parts should only use options specified in 'MULTILIB_OPTIONS' and
  33524. the equality signs found in options name should be replaced with
  33525. periods. An explicit period in the rule can be escaped by
  33526. preceding it with a backslash. The order of options in the left
  33527. part matters and should be same with those specified in
  33528. 'MULTILIB_REQUIRED' or aligned with the order in
  33529. 'MULTILIB_OPTIONS'. There is no such limitation for options in the
  33530. right part as we don't build multilib from them.
  33531. 'MULTILIB_REUSE' is different from 'MULTILIB_MATCHES' in that it
  33532. sets up relations between two option sets rather than two options.
  33533. Here is an example to demo how we reuse libraries built in Thumb
  33534. mode for applications built in ARM mode:
  33535. MULTILIB_REUSE = mthumb/march.armv7-r=marm/march.armv7-r
  33536. Before the advent of 'MULTILIB_REUSE', GCC select multilib by
  33537. comparing command line options with options used to build multilib.
  33538. The 'MULTILIB_REUSE' is complementary to that way. Only when the
  33539. original comparison matches nothing it will work to see if it is OK
  33540. to reuse some existing multilib.
  33541. 'MULTILIB_EXTRA_OPTS'
  33542. Sometimes it is desirable that when building multiple versions of
  33543. 'libgcc.a' certain options should always be passed on to the
  33544. compiler. In that case, set 'MULTILIB_EXTRA_OPTS' to be the list
  33545. of options to be used for all builds. If you set this, you should
  33546. probably set 'CRTSTUFF_T_CFLAGS' to a dash followed by it.
  33547. 'MULTILIB_OSDIRNAMES'
  33548. If 'MULTILIB_OPTIONS' is used, this variable specifies a list of
  33549. subdirectory names, that are used to modify the search path
  33550. depending on the chosen multilib. Unlike 'MULTILIB_DIRNAMES',
  33551. 'MULTILIB_OSDIRNAMES' describes the multilib directories using
  33552. operating systems conventions, and is applied to the directories
  33553. such as 'lib' or those in the 'LIBRARY_PATH' environment variable.
  33554. The format is either the same as of 'MULTILIB_DIRNAMES', or a set
  33555. of mappings. When it is the same as 'MULTILIB_DIRNAMES', it
  33556. describes the multilib directories using operating system
  33557. conventions, rather than GCC conventions. When it is a set of
  33558. mappings of the form GCCDIR=OSDIR, the left side gives the GCC
  33559. convention and the right gives the equivalent OS defined location.
  33560. If the OSDIR part begins with a '!', GCC will not search in the
  33561. non-multilib directory and use exclusively the multilib directory.
  33562. Otherwise, the compiler will examine the search path for libraries
  33563. and crt files twice; the first time it will add MULTILIB to each
  33564. directory in the search path, the second it will not.
  33565. For configurations that support both multilib and multiarch,
  33566. 'MULTILIB_OSDIRNAMES' also encodes the multiarch name, thus
  33567. subsuming 'MULTIARCH_DIRNAME'. The multiarch name is appended to
  33568. each directory name, separated by a colon (e.g.
  33569. '../lib32:i386-linux-gnu').
  33570. Each multiarch subdirectory will be searched before the
  33571. corresponding OS multilib directory, for example
  33572. '/lib/i386-linux-gnu' before '/lib/../lib32'. The multiarch name
  33573. will also be used to modify the system header search path, as
  33574. explained for 'MULTIARCH_DIRNAME'.
  33575. 'MULTIARCH_DIRNAME'
  33576. This variable specifies the multiarch name for configurations that
  33577. are multiarch-enabled but not multilibbed configurations.
  33578. The multiarch name is used to augment the search path for
  33579. libraries, crt files and system header files with additional
  33580. locations. The compiler will add a multiarch subdirectory of the
  33581. form PREFIX/MULTIARCH before each directory in the library and crt
  33582. search path. It will also add two directories
  33583. 'LOCAL_INCLUDE_DIR'/MULTIARCH and
  33584. 'NATIVE_SYSTEM_HEADER_DIR'/MULTIARCH) to the system header search
  33585. path, respectively before 'LOCAL_INCLUDE_DIR' and
  33586. 'NATIVE_SYSTEM_HEADER_DIR'.
  33587. 'MULTIARCH_DIRNAME' is not used for configurations that support
  33588. both multilib and multiarch. In that case, multiarch names are
  33589. encoded in 'MULTILIB_OSDIRNAMES' instead.
  33590. More documentation about multiarch can be found at
  33591. <https://wiki.debian.org/Multiarch>.
  33592. 'SPECS'
  33593. Unfortunately, setting 'MULTILIB_EXTRA_OPTS' is not enough, since
  33594. it does not affect the build of target libraries, at least not the
  33595. build of the default multilib. One possible work-around is to use
  33596. 'DRIVER_SELF_SPECS' to bring options from the 'specs' file as if
  33597. they had been passed in the compiler driver command line. However,
  33598. you don't want to be adding these options after the toolchain is
  33599. installed, so you can instead tweak the 'specs' file that will be
  33600. used during the toolchain build, while you still install the
  33601. original, built-in 'specs'. The trick is to set 'SPECS' to some
  33602. other filename (say 'specs.install'), that will then be created out
  33603. of the built-in specs, and introduce a 'Makefile' rule to generate
  33604. the 'specs' file that's going to be used at build time out of your
  33605. 'specs.install'.
  33606. 'T_CFLAGS'
  33607. These are extra flags to pass to the C compiler. They are used
  33608. both when building GCC, and when compiling things with the
  33609. just-built GCC. This variable is deprecated and should not be
  33610. used.
  33611. 
  33612. File: gccint.info, Node: Host Fragment, Prev: Target Fragment, Up: Fragments
  33613. 20.2 Host Makefile Fragments
  33614. ============================
  33615. The use of 'x-HOST' fragments is discouraged. You should only use it
  33616. for makefile dependencies.
  33617. 
  33618. File: gccint.info, Node: Collect2, Next: Header Dirs, Prev: Fragments, Up: Top
  33619. 21 'collect2'
  33620. *************
  33621. GCC uses a utility called 'collect2' on nearly all systems to arrange to
  33622. call various initialization functions at start time.
  33623. The program 'collect2' works by linking the program once and looking
  33624. through the linker output file for symbols with particular names
  33625. indicating they are constructor functions. If it finds any, it creates
  33626. a new temporary '.c' file containing a table of them, compiles it, and
  33627. links the program a second time including that file.
  33628. The actual calls to the constructors are carried out by a subroutine
  33629. called '__main', which is called (automatically) at the beginning of the
  33630. body of 'main' (provided 'main' was compiled with GNU CC). Calling
  33631. '__main' is necessary, even when compiling C code, to allow linking C
  33632. and C++ object code together. (If you use '-nostdlib', you get an
  33633. unresolved reference to '__main', since it's defined in the standard GCC
  33634. library. Include '-lgcc' at the end of your compiler command line to
  33635. resolve this reference.)
  33636. The program 'collect2' is installed as 'ld' in the directory where the
  33637. passes of the compiler are installed. When 'collect2' needs to find the
  33638. _real_ 'ld', it tries the following file names:
  33639. * a hard coded linker file name, if GCC was configured with the
  33640. '--with-ld' option.
  33641. * 'real-ld' in the directories listed in the compiler's search
  33642. directories.
  33643. * 'real-ld' in the directories listed in the environment variable
  33644. 'PATH'.
  33645. * The file specified in the 'REAL_LD_FILE_NAME' configuration macro,
  33646. if specified.
  33647. * 'ld' in the compiler's search directories, except that 'collect2'
  33648. will not execute itself recursively.
  33649. * 'ld' in 'PATH'.
  33650. "The compiler's search directories" means all the directories where
  33651. 'gcc' searches for passes of the compiler. This includes directories
  33652. that you specify with '-B'.
  33653. Cross-compilers search a little differently:
  33654. * 'real-ld' in the compiler's search directories.
  33655. * 'TARGET-real-ld' in 'PATH'.
  33656. * The file specified in the 'REAL_LD_FILE_NAME' configuration macro,
  33657. if specified.
  33658. * 'ld' in the compiler's search directories.
  33659. * 'TARGET-ld' in 'PATH'.
  33660. 'collect2' explicitly avoids running 'ld' using the file name under
  33661. which 'collect2' itself was invoked. In fact, it remembers up a list of
  33662. such names--in case one copy of 'collect2' finds another copy (or
  33663. version) of 'collect2' installed as 'ld' in a second place in the search
  33664. path.
  33665. 'collect2' searches for the utilities 'nm' and 'strip' using the same
  33666. algorithm as above for 'ld'.
  33667. 
  33668. File: gccint.info, Node: Header Dirs, Next: Type Information, Prev: Collect2, Up: Top
  33669. 22 Standard Header File Directories
  33670. ***********************************
  33671. 'GCC_INCLUDE_DIR' means the same thing for native and cross. It is
  33672. where GCC stores its private include files, and also where GCC stores
  33673. the fixed include files. A cross compiled GCC runs 'fixincludes' on the
  33674. header files in '$(tooldir)/include'. (If the cross compilation header
  33675. files need to be fixed, they must be installed before GCC is built. If
  33676. the cross compilation header files are already suitable for GCC, nothing
  33677. special need be done).
  33678. 'GPLUSPLUS_INCLUDE_DIR' means the same thing for native and cross. It
  33679. is where 'g++' looks first for header files. The C++ library installs
  33680. only target independent header files in that directory.
  33681. 'LOCAL_INCLUDE_DIR' is used only by native compilers. GCC doesn't
  33682. install anything there. It is normally '/usr/local/include'. This is
  33683. where local additions to a packaged system should place header files.
  33684. 'CROSS_INCLUDE_DIR' is used only by cross compilers. GCC doesn't
  33685. install anything there.
  33686. 'TOOL_INCLUDE_DIR' is used for both native and cross compilers. It is
  33687. the place for other packages to install header files that GCC will use.
  33688. For a cross-compiler, this is the equivalent of '/usr/include'. When
  33689. you build a cross-compiler, 'fixincludes' processes any header files in
  33690. this directory.
  33691. 
  33692. File: gccint.info, Node: Type Information, Next: Plugins, Prev: Header Dirs, Up: Top
  33693. 23 Memory Management and Type Information
  33694. *****************************************
  33695. GCC uses some fairly sophisticated memory management techniques, which
  33696. involve determining information about GCC's data structures from GCC's
  33697. source code and using this information to perform garbage collection and
  33698. implement precompiled headers.
  33699. A full C++ parser would be too complicated for this task, so a limited
  33700. subset of C++ is interpreted and special markers are used to determine
  33701. what parts of the source to look at. All 'struct', 'union' and
  33702. 'template' structure declarations that define data structures that are
  33703. allocated under control of the garbage collector must be marked. All
  33704. global variables that hold pointers to garbage-collected memory must
  33705. also be marked. Finally, all global variables that need to be saved and
  33706. restored by a precompiled header must be marked. (The precompiled
  33707. header mechanism can only save static variables if they're scalar.
  33708. Complex data structures must be allocated in garbage-collected memory to
  33709. be saved in a precompiled header.)
  33710. The full format of a marker is
  33711. GTY (([OPTION] [(PARAM)], [OPTION] [(PARAM)] ...))
  33712. but in most cases no options are needed. The outer double parentheses
  33713. are still necessary, though: 'GTY(())'. Markers can appear:
  33714. * In a structure definition, before the open brace;
  33715. * In a global variable declaration, after the keyword 'static' or
  33716. 'extern'; and
  33717. * In a structure field definition, before the name of the field.
  33718. Here are some examples of marking simple data structures and globals.
  33719. struct GTY(()) TAG
  33720. {
  33721. FIELDS...
  33722. };
  33723. typedef struct GTY(()) TAG
  33724. {
  33725. FIELDS...
  33726. } *TYPENAME;
  33727. static GTY(()) struct TAG *LIST; /* points to GC memory */
  33728. static GTY(()) int COUNTER; /* save counter in a PCH */
  33729. The parser understands simple typedefs such as 'typedef struct TAG
  33730. *NAME;' and 'typedef int NAME;'. These don't need to be marked.
  33731. Since 'gengtype''s understanding of C++ is limited, there are several
  33732. constructs and declarations that are not supported inside
  33733. classes/structures marked for automatic GC code generation. The
  33734. following C++ constructs produce a 'gengtype' error on
  33735. structures/classes marked for automatic GC code generation:
  33736. * Type definitions inside classes/structures are not supported.
  33737. * Enumerations inside classes/structures are not supported.
  33738. If you have a class or structure using any of the above constructs, you
  33739. need to mark that class as 'GTY ((user))' and provide your own marking
  33740. routines (see section *note User GC:: for details).
  33741. It is always valid to include function definitions inside classes.
  33742. Those are always ignored by 'gengtype', as it only cares about data
  33743. members.
  33744. * Menu:
  33745. * GTY Options:: What goes inside a 'GTY(())'.
  33746. * Inheritance and GTY:: Adding GTY to a class hierarchy.
  33747. * User GC:: Adding user-provided GC marking routines.
  33748. * GGC Roots:: Making global variables GGC roots.
  33749. * Files:: How the generated files work.
  33750. * Invoking the garbage collector:: How to invoke the garbage collector.
  33751. * Troubleshooting:: When something does not work as expected.
  33752. 
  33753. File: gccint.info, Node: GTY Options, Next: Inheritance and GTY, Up: Type Information
  33754. 23.1 The Inside of a 'GTY(())'
  33755. ==============================
  33756. Sometimes the C code is not enough to fully describe the type structure.
  33757. Extra information can be provided with 'GTY' options and additional
  33758. markers. Some options take a parameter, which may be either a string or
  33759. a type name, depending on the parameter. If an option takes no
  33760. parameter, it is acceptable either to omit the parameter entirely, or to
  33761. provide an empty string as a parameter. For example, 'GTY ((skip))' and
  33762. 'GTY ((skip ("")))' are equivalent.
  33763. When the parameter is a string, often it is a fragment of C code. Four
  33764. special escapes may be used in these strings, to refer to pieces of the
  33765. data structure being marked:
  33766. '%h'
  33767. The current structure.
  33768. '%1'
  33769. The structure that immediately contains the current structure.
  33770. '%0'
  33771. The outermost structure that contains the current structure.
  33772. '%a'
  33773. A partial expression of the form '[i1][i2]...' that indexes the
  33774. array item currently being marked.
  33775. For instance, suppose that you have a structure of the form
  33776. struct A {
  33777. ...
  33778. };
  33779. struct B {
  33780. struct A foo[12];
  33781. };
  33782. and 'b' is a variable of type 'struct B'. When marking 'b.foo[11]',
  33783. '%h' would expand to 'b.foo[11]', '%0' and '%1' would both expand to
  33784. 'b', and '%a' would expand to '[11]'.
  33785. As in ordinary C, adjacent strings will be concatenated; this is
  33786. helpful when you have a complicated expression.
  33787. GTY ((chain_next ("TREE_CODE (&%h.generic) == INTEGER_TYPE"
  33788. " ? TYPE_NEXT_VARIANT (&%h.generic)"
  33789. " : TREE_CHAIN (&%h.generic)")))
  33790. The available options are:
  33791. 'length ("EXPRESSION")'
  33792. There are two places the type machinery will need to be explicitly
  33793. told the length of an array of non-atomic objects. The first case
  33794. is when a structure ends in a variable-length array, like this:
  33795. struct GTY(()) rtvec_def {
  33796. int num_elem; /* number of elements */
  33797. rtx GTY ((length ("%h.num_elem"))) elem[1];
  33798. };
  33799. In this case, the 'length' option is used to override the specified
  33800. array length (which should usually be '1'). The parameter of the
  33801. option is a fragment of C code that calculates the length.
  33802. The second case is when a structure or a global variable contains a
  33803. pointer to an array, like this:
  33804. struct gimple_omp_for_iter * GTY((length ("%h.collapse"))) iter;
  33805. In this case, 'iter' has been allocated by writing something like
  33806. x->iter = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
  33807. and the 'collapse' provides the length of the field.
  33808. This second use of 'length' also works on global variables, like:
  33809. static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
  33810. Note that the 'length' option is only meant for use with arrays of
  33811. non-atomic objects, that is, objects that contain pointers pointing
  33812. to other GTY-managed objects. For other GC-allocated arrays and
  33813. strings you should use 'atomic'.
  33814. 'skip'
  33815. If 'skip' is applied to a field, the type machinery will ignore it.
  33816. This is somewhat dangerous; the only safe use is in a union when
  33817. one field really isn't ever used.
  33818. 'for_user'
  33819. Use this to mark types that need to be marked by user gc routines,
  33820. but are not refered to in a template argument. So if you have some
  33821. user gc type T1 and a non user gc type T2 you can give T2 the
  33822. for_user option so that the marking functions for T1 can call non
  33823. mangled functions to mark T2.
  33824. 'desc ("EXPRESSION")'
  33825. 'tag ("CONSTANT")'
  33826. 'default'
  33827. The type machinery needs to be told which field of a 'union' is
  33828. currently active. This is done by giving each field a constant
  33829. 'tag' value, and then specifying a discriminator using 'desc'. The
  33830. value of the expression given by 'desc' is compared against each
  33831. 'tag' value, each of which should be different. If no 'tag' is
  33832. matched, the field marked with 'default' is used if there is one,
  33833. otherwise no field in the union will be marked.
  33834. In the 'desc' option, the "current structure" is the union that it
  33835. discriminates. Use '%1' to mean the structure containing it.
  33836. There are no escapes available to the 'tag' option, since it is a
  33837. constant.
  33838. For example,
  33839. struct GTY(()) tree_binding
  33840. {
  33841. struct tree_common common;
  33842. union tree_binding_u {
  33843. tree GTY ((tag ("0"))) scope;
  33844. struct cp_binding_level * GTY ((tag ("1"))) level;
  33845. } GTY ((desc ("BINDING_HAS_LEVEL_P ((tree)&%0)"))) xscope;
  33846. tree value;
  33847. };
  33848. In this example, the value of BINDING_HAS_LEVEL_P when applied to a
  33849. 'struct tree_binding *' is presumed to be 0 or 1. If 1, the type
  33850. mechanism will treat the field 'level' as being present and if 0,
  33851. will treat the field 'scope' as being present.
  33852. The 'desc' and 'tag' options can also be used for inheritance to
  33853. denote which subclass an instance is. See *note Inheritance and
  33854. GTY:: for more information.
  33855. 'cache'
  33856. When the 'cache' option is applied to a global variable
  33857. gt_clear_cache is called on that variable between the mark and
  33858. sweep phases of garbage collection. The gt_clear_cache function is
  33859. free to mark blocks as used, or to clear pointers in the variable.
  33860. 'deletable'
  33861. 'deletable', when applied to a global variable, indicates that when
  33862. garbage collection runs, there's no need to mark anything pointed
  33863. to by this variable, it can just be set to 'NULL' instead. This is
  33864. used to keep a list of free structures around for re-use.
  33865. 'maybe_undef'
  33866. When applied to a field, 'maybe_undef' indicates that it's OK if
  33867. the structure that this fields points to is never defined, so long
  33868. as this field is always 'NULL'. This is used to avoid requiring
  33869. backends to define certain optional structures. It doesn't work
  33870. with language frontends.
  33871. 'nested_ptr (TYPE, "TO EXPRESSION", "FROM EXPRESSION")'
  33872. The type machinery expects all pointers to point to the start of an
  33873. object. Sometimes for abstraction purposes it's convenient to have
  33874. a pointer which points inside an object. So long as it's possible
  33875. to convert the original object to and from the pointer, such
  33876. pointers can still be used. TYPE is the type of the original
  33877. object, the TO EXPRESSION returns the pointer given the original
  33878. object, and the FROM EXPRESSION returns the original object given
  33879. the pointer. The pointer will be available using the '%h' escape.
  33880. 'chain_next ("EXPRESSION")'
  33881. 'chain_prev ("EXPRESSION")'
  33882. 'chain_circular ("EXPRESSION")'
  33883. It's helpful for the type machinery to know if objects are often
  33884. chained together in long lists; this lets it generate code that
  33885. uses less stack space by iterating along the list instead of
  33886. recursing down it. 'chain_next' is an expression for the next item
  33887. in the list, 'chain_prev' is an expression for the previous item.
  33888. For singly linked lists, use only 'chain_next'; for doubly linked
  33889. lists, use both. The machinery requires that taking the next item
  33890. of the previous item gives the original item. 'chain_circular' is
  33891. similar to 'chain_next', but can be used for circular single linked
  33892. lists.
  33893. 'reorder ("FUNCTION NAME")'
  33894. Some data structures depend on the relative ordering of pointers.
  33895. If the precompiled header machinery needs to change that ordering,
  33896. it will call the function referenced by the 'reorder' option,
  33897. before changing the pointers in the object that's pointed to by the
  33898. field the option applies to. The function must take four
  33899. arguments, with the signature
  33900. 'void *, void *, gt_pointer_operator, void *'. The first parameter
  33901. is a pointer to the structure that contains the object being
  33902. updated, or the object itself if there is no containing structure.
  33903. The second parameter is a cookie that should be ignored. The third
  33904. parameter is a routine that, given a pointer, will update it to its
  33905. correct new value. The fourth parameter is a cookie that must be
  33906. passed to the second parameter.
  33907. PCH cannot handle data structures that depend on the absolute
  33908. values of pointers. 'reorder' functions can be expensive. When
  33909. possible, it is better to depend on properties of the data, like an
  33910. ID number or the hash of a string instead.
  33911. 'atomic'
  33912. The 'atomic' option can only be used with pointers. It informs the
  33913. GC machinery that the memory that the pointer points to does not
  33914. contain any pointers, and hence it should be treated by the GC and
  33915. PCH machinery as an "atomic" block of memory that does not need to
  33916. be examined when scanning memory for pointers. In particular, the
  33917. machinery will not scan that memory for pointers to mark them as
  33918. reachable (when marking pointers for GC) or to relocate them (when
  33919. writing a PCH file).
  33920. The 'atomic' option differs from the 'skip' option. 'atomic' keeps
  33921. the memory under Garbage Collection, but makes the GC ignore the
  33922. contents of the memory. 'skip' is more drastic in that it causes
  33923. the pointer and the memory to be completely ignored by the Garbage
  33924. Collector. So, memory marked as 'atomic' is automatically freed
  33925. when no longer reachable, while memory marked as 'skip' is not.
  33926. The 'atomic' option must be used with great care, because all sorts
  33927. of problem can occur if used incorrectly, that is, if the memory
  33928. the pointer points to does actually contain a pointer.
  33929. Here is an example of how to use it:
  33930. struct GTY(()) my_struct {
  33931. int number_of_elements;
  33932. unsigned int * GTY ((atomic)) elements;
  33933. };
  33934. In this case, 'elements' is a pointer under GC, and the memory it
  33935. points to needs to be allocated using the Garbage Collector, and
  33936. will be freed automatically by the Garbage Collector when it is no
  33937. longer referenced. But the memory that the pointer points to is an
  33938. array of 'unsigned int' elements, and the GC must not try to scan
  33939. it to find pointers to mark or relocate, which is why it is marked
  33940. with the 'atomic' option.
  33941. Note that, currently, global variables can not be marked with
  33942. 'atomic'; only fields of a struct can. This is a known limitation.
  33943. It would be useful to be able to mark global pointers with 'atomic'
  33944. to make the PCH machinery aware of them so that they are saved and
  33945. restored correctly to PCH files.
  33946. 'special ("NAME")'
  33947. The 'special' option is used to mark types that have to be dealt
  33948. with by special case machinery. The parameter is the name of the
  33949. special case. See 'gengtype.c' for further details. Avoid adding
  33950. new special cases unless there is no other alternative.
  33951. 'user'
  33952. The 'user' option indicates that the code to mark structure fields
  33953. is completely handled by user-provided routines. See section *note
  33954. User GC:: for details on what functions need to be provided.
  33955. 
  33956. File: gccint.info, Node: Inheritance and GTY, Next: User GC, Prev: GTY Options, Up: Type Information
  33957. 23.2 Support for inheritance
  33958. ============================
  33959. gengtype has some support for simple class hierarchies. You can use
  33960. this to have gengtype autogenerate marking routines, provided:
  33961. * There must be a concrete base class, with a discriminator
  33962. expression that can be used to identify which subclass an instance
  33963. is.
  33964. * Only single inheritance is used.
  33965. * None of the classes within the hierarchy are templates.
  33966. If your class hierarchy does not fit in this pattern, you must use
  33967. *note User GC:: instead.
  33968. The base class and its discriminator must be identified using the
  33969. "desc" option. Each concrete subclass must use the "tag" option to
  33970. identify which value of the discriminator it corresponds to.
  33971. Every class in the hierarchy must have a 'GTY(())' marker, as gengtype
  33972. will only attempt to parse classes that have such a marker (1).
  33973. class GTY((desc("%h.kind"), tag("0"))) example_base
  33974. {
  33975. public:
  33976. int kind;
  33977. tree a;
  33978. };
  33979. class GTY((tag("1"))) some_subclass : public example_base
  33980. {
  33981. public:
  33982. tree b;
  33983. };
  33984. class GTY((tag("2"))) some_other_subclass : public example_base
  33985. {
  33986. public:
  33987. tree c;
  33988. };
  33989. The generated marking routines for the above will contain a "switch" on
  33990. "kind", visiting all appropriate fields. For example, if kind is 2, it
  33991. will cast to "some_other_subclass" and visit fields a, b, and c.
  33992. ---------- Footnotes ----------
  33993. (1) Classes lacking such a marker will not be identified as being
  33994. part of the hierarchy, and so the marking routines will not handle them,
  33995. leading to a assertion failure within the marking routines due to an
  33996. unknown tag value (assuming that assertions are enabled).
  33997. 
  33998. File: gccint.info, Node: User GC, Next: GGC Roots, Prev: Inheritance and GTY, Up: Type Information
  33999. 23.3 Support for user-provided GC marking routines
  34000. ==================================================
  34001. The garbage collector supports types for which no automatic marking code
  34002. is generated. For these types, the user is required to provide three
  34003. functions: one to act as a marker for garbage collection, and two
  34004. functions to act as marker and pointer walker for pre-compiled headers.
  34005. Given a structure 'struct GTY((user)) my_struct', the following
  34006. functions should be defined to mark 'my_struct':
  34007. void gt_ggc_mx (my_struct *p)
  34008. {
  34009. /* This marks field 'fld'. */
  34010. gt_ggc_mx (p->fld);
  34011. }
  34012. void gt_pch_nx (my_struct *p)
  34013. {
  34014. /* This marks field 'fld'. */
  34015. gt_pch_nx (tp->fld);
  34016. }
  34017. void gt_pch_nx (my_struct *p, gt_pointer_operator op, void *cookie)
  34018. {
  34019. /* For every field 'fld', call the given pointer operator. */
  34020. op (&(tp->fld), cookie);
  34021. }
  34022. In general, each marker 'M' should call 'M' for every pointer field in
  34023. the structure. Fields that are not allocated in GC or are not pointers
  34024. must be ignored.
  34025. For embedded lists (e.g., structures with a 'next' or 'prev' pointer),
  34026. the marker must follow the chain and mark every element in it.
  34027. Note that the rules for the pointer walker 'gt_pch_nx (my_struct *,
  34028. gt_pointer_operator, void *)' are slightly different. In this case, the
  34029. operation 'op' must be applied to the _address_ of every pointer field.
  34030. 23.3.1 User-provided marking routines for template types
  34031. --------------------------------------------------------
  34032. When a template type 'TP' is marked with 'GTY', all instances of that
  34033. type are considered user-provided types. This means that the individual
  34034. instances of 'TP' do not need to be marked with 'GTY'. The user needs
  34035. to provide template functions to mark all the fields of the type.
  34036. The following code snippets represent all the functions that need to be
  34037. provided. Note that type 'TP' may reference to more than one type. In
  34038. these snippets, there is only one type 'T', but there could be more.
  34039. template<typename T>
  34040. void gt_ggc_mx (TP<T> *tp)
  34041. {
  34042. extern void gt_ggc_mx (T&);
  34043. /* This marks field 'fld' of type 'T'. */
  34044. gt_ggc_mx (tp->fld);
  34045. }
  34046. template<typename T>
  34047. void gt_pch_nx (TP<T> *tp)
  34048. {
  34049. extern void gt_pch_nx (T&);
  34050. /* This marks field 'fld' of type 'T'. */
  34051. gt_pch_nx (tp->fld);
  34052. }
  34053. template<typename T>
  34054. void gt_pch_nx (TP<T *> *tp, gt_pointer_operator op, void *cookie)
  34055. {
  34056. /* For every field 'fld' of 'tp' with type 'T *', call the given
  34057. pointer operator. */
  34058. op (&(tp->fld), cookie);
  34059. }
  34060. template<typename T>
  34061. void gt_pch_nx (TP<T> *tp, gt_pointer_operator, void *cookie)
  34062. {
  34063. extern void gt_pch_nx (T *, gt_pointer_operator, void *);
  34064. /* For every field 'fld' of 'tp' with type 'T', call the pointer
  34065. walker for all the fields of T. */
  34066. gt_pch_nx (&(tp->fld), op, cookie);
  34067. }
  34068. Support for user-defined types is currently limited. The following
  34069. restrictions apply:
  34070. 1. Type 'TP' and all the argument types 'T' must be marked with 'GTY'.
  34071. 2. Type 'TP' can only have type names in its argument list.
  34072. 3. The pointer walker functions are different for 'TP<T>' and 'TP<T
  34073. *>'. In the case of 'TP<T>', references to 'T' must be handled by
  34074. calling 'gt_pch_nx' (which will, in turn, walk all the pointers
  34075. inside fields of 'T'). In the case of 'TP<T *>', references to 'T
  34076. *' must be handled by calling the 'op' function on the address of
  34077. the pointer (see the code snippets above).
  34078. 
  34079. File: gccint.info, Node: GGC Roots, Next: Files, Prev: User GC, Up: Type Information
  34080. 23.4 Marking Roots for the Garbage Collector
  34081. ============================================
  34082. In addition to keeping track of types, the type machinery also locates
  34083. the global variables ("roots") that the garbage collector starts at.
  34084. Roots must be declared using one of the following syntaxes:
  34085. * 'extern GTY(([OPTIONS])) TYPE NAME;'
  34086. * 'static GTY(([OPTIONS])) TYPE NAME;'
  34087. The syntax
  34088. * 'GTY(([OPTIONS])) TYPE NAME;'
  34089. is _not_ accepted. There should be an 'extern' declaration of such a
  34090. variable in a header somewhere--mark that, not the definition. Or, if
  34091. the variable is only used in one file, make it 'static'.
  34092. 
  34093. File: gccint.info, Node: Files, Next: Invoking the garbage collector, Prev: GGC Roots, Up: Type Information
  34094. 23.5 Source Files Containing Type Information
  34095. =============================================
  34096. Whenever you add 'GTY' markers to a source file that previously had
  34097. none, or create a new source file containing 'GTY' markers, there are
  34098. three things you need to do:
  34099. 1. You need to add the file to the list of source files the type
  34100. machinery scans. There are four cases:
  34101. a. For a back-end file, this is usually done automatically; if
  34102. not, you should add it to 'target_gtfiles' in the appropriate
  34103. port's entries in 'config.gcc'.
  34104. b. For files shared by all front ends, add the filename to the
  34105. 'GTFILES' variable in 'Makefile.in'.
  34106. c. For files that are part of one front end, add the filename to
  34107. the 'gtfiles' variable defined in the appropriate
  34108. 'config-lang.in'. Headers should appear before non-headers in
  34109. this list.
  34110. d. For files that are part of some but not all front ends, add
  34111. the filename to the 'gtfiles' variable of _all_ the front ends
  34112. that use it.
  34113. 2. If the file was a header file, you'll need to check that it's
  34114. included in the right place to be visible to the generated files.
  34115. For a back-end header file, this should be done automatically. For
  34116. a front-end header file, it needs to be included by the same file
  34117. that includes 'gtype-LANG.h'. For other header files, it needs to
  34118. be included in 'gtype-desc.c', which is a generated file, so add it
  34119. to 'ifiles' in 'open_base_file' in 'gengtype.c'.
  34120. For source files that aren't header files, the machinery will
  34121. generate a header file that should be included in the source file
  34122. you just changed. The file will be called 'gt-PATH.h' where PATH
  34123. is the pathname relative to the 'gcc' directory with slashes
  34124. replaced by -, so for example the header file to be included in
  34125. 'cp/parser.c' is called 'gt-cp-parser.c'. The generated header
  34126. file should be included after everything else in the source file.
  34127. Don't forget to mention this file as a dependency in the
  34128. 'Makefile'!
  34129. For language frontends, there is another file that needs to be included
  34130. somewhere. It will be called 'gtype-LANG.h', where LANG is the name of
  34131. the subdirectory the language is contained in.
  34132. Plugins can add additional root tables. Run the 'gengtype' utility in
  34133. plugin mode as 'gengtype -P pluginout.h SOURCE-DIR FILE-LIST PLUGIN*.C'
  34134. with your plugin files PLUGIN*.C using 'GTY' to generate the PLUGINOUT.H
  34135. file. The GCC build tree is needed to be present in that mode.
  34136. 
  34137. File: gccint.info, Node: Invoking the garbage collector, Next: Troubleshooting, Prev: Files, Up: Type Information
  34138. 23.6 How to invoke the garbage collector
  34139. ========================================
  34140. The GCC garbage collector GGC is only invoked explicitly. In contrast
  34141. with many other garbage collectors, it is not implicitly invoked by
  34142. allocation routines when a lot of memory has been consumed. So the only
  34143. way to have GGC reclaim storage is to call the 'ggc_collect' function
  34144. explicitly. This call is an expensive operation, as it may have to scan
  34145. the entire heap. Beware that local variables (on the GCC call stack)
  34146. are not followed by such an invocation (as many other garbage collectors
  34147. do): you should reference all your data from static or external 'GTY'-ed
  34148. variables, and it is advised to call 'ggc_collect' with a shallow call
  34149. stack. The GGC is an exact mark and sweep garbage collector (so it does
  34150. not scan the call stack for pointers). In practice GCC passes don't
  34151. often call 'ggc_collect' themselves, because it is called by the pass
  34152. manager between passes.
  34153. At the time of the 'ggc_collect' call all pointers in the GC-marked
  34154. structures must be valid or 'NULL'. In practice this means that there
  34155. should not be uninitialized pointer fields in the structures even if
  34156. your code never reads or writes those fields at a particular instance.
  34157. One way to ensure this is to use cleared versions of allocators unless
  34158. all the fields are initialized manually immediately after allocation.
  34159. 
  34160. File: gccint.info, Node: Troubleshooting, Prev: Invoking the garbage collector, Up: Type Information
  34161. 23.7 Troubleshooting the garbage collector
  34162. ==========================================
  34163. With the current garbage collector implementation, most issues should
  34164. show up as GCC compilation errors. Some of the most commonly
  34165. encountered issues are described below.
  34166. * Gengtype does not produce allocators for a 'GTY'-marked type.
  34167. Gengtype checks if there is at least one possible path from GC
  34168. roots to at least one instance of each type before outputting
  34169. allocators. If there is no such path, the 'GTY' markers will be
  34170. ignored and no allocators will be output. Solve this by making
  34171. sure that there exists at least one such path. If creating it is
  34172. unfeasible or raises a "code smell", consider if you really must
  34173. use GC for allocating such type.
  34174. * Link-time errors about undefined 'gt_ggc_r_foo_bar' and
  34175. similarly-named symbols. Check if your 'foo_bar' source file has
  34176. '#include "gt-foo_bar.h"' as its very last line.
  34177. 
  34178. File: gccint.info, Node: Plugins, Next: LTO, Prev: Type Information, Up: Top
  34179. 24 Plugins
  34180. **********
  34181. GCC plugins are loadable modules that provide extra features to the
  34182. compiler. Like GCC itself they can be distributed in source and binary
  34183. forms.
  34184. GCC plugins provide developers with a rich subset of the GCC API to
  34185. allow them to extend GCC as they see fit. Whether it is writing an
  34186. additional optimization pass, transforming code, or analyzing
  34187. information, plugins can be quite useful.
  34188. * Menu:
  34189. * Plugins loading:: How can we load plugins.
  34190. * Plugin API:: The APIs for plugins.
  34191. * Plugins pass:: How a plugin interact with the pass manager.
  34192. * Plugins GC:: How a plugin Interact with GCC Garbage Collector.
  34193. * Plugins description:: Giving information about a plugin itself.
  34194. * Plugins attr:: Registering custom attributes or pragmas.
  34195. * Plugins recording:: Recording information about pass execution.
  34196. * Plugins gate:: Controlling which passes are being run.
  34197. * Plugins tracking:: Keeping track of available passes.
  34198. * Plugins building:: How can we build a plugin.
  34199. 
  34200. File: gccint.info, Node: Plugins loading, Next: Plugin API, Up: Plugins
  34201. 24.1 Loading Plugins
  34202. ====================
  34203. Plugins are supported on platforms that support '-ldl -rdynamic' as well
  34204. as Windows/MinGW. They are loaded by the compiler using 'dlopen' or
  34205. equivalent and invoked at pre-determined locations in the compilation
  34206. process.
  34207. Plugins are loaded with
  34208. '-fplugin=/path/to/NAME.EXT' '-fplugin-arg-NAME-KEY1[=VALUE1]'
  34209. Where NAME is the plugin name and EXT is the platform-specific dynamic
  34210. library extension. It should be 'dll' on Windows/MinGW, 'dylib' on
  34211. Darwin/Mac OS X, and 'so' on all other platforms. The plugin arguments
  34212. are parsed by GCC and passed to respective plugins as key-value pairs.
  34213. Multiple plugins can be invoked by specifying multiple '-fplugin'
  34214. arguments.
  34215. A plugin can be simply given by its short name (no dots or slashes).
  34216. When simply passing '-fplugin=NAME', the plugin is loaded from the
  34217. 'plugin' directory, so '-fplugin=NAME' is the same as '-fplugin=`gcc
  34218. -print-file-name=plugin`/NAME.EXT', using backquote shell syntax to
  34219. query the 'plugin' directory.
  34220. 
  34221. File: gccint.info, Node: Plugin API, Next: Plugins pass, Prev: Plugins loading, Up: Plugins
  34222. 24.2 Plugin API
  34223. ===============
  34224. Plugins are activated by the compiler at specific events as defined in
  34225. 'gcc-plugin.h'. For each event of interest, the plugin should call
  34226. 'register_callback' specifying the name of the event and address of the
  34227. callback function that will handle that event.
  34228. The header 'gcc-plugin.h' must be the first gcc header to be included.
  34229. 24.2.1 Plugin license check
  34230. ---------------------------
  34231. Every plugin should define the global symbol 'plugin_is_GPL_compatible'
  34232. to assert that it has been licensed under a GPL-compatible license. If
  34233. this symbol does not exist, the compiler will emit a fatal error and
  34234. exit with the error message:
  34235. fatal error: plugin NAME is not licensed under a GPL-compatible license
  34236. NAME: undefined symbol: plugin_is_GPL_compatible
  34237. compilation terminated
  34238. The declared type of the symbol should be int, to match a forward
  34239. declaration in 'gcc-plugin.h' that suppresses C++ mangling. It does not
  34240. need to be in any allocated section, though. The compiler merely
  34241. asserts that the symbol exists in the global scope. Something like this
  34242. is enough:
  34243. int plugin_is_GPL_compatible;
  34244. 24.2.2 Plugin initialization
  34245. ----------------------------
  34246. Every plugin should export a function called 'plugin_init' that is
  34247. called right after the plugin is loaded. This function is responsible
  34248. for registering all the callbacks required by the plugin and do any
  34249. other required initialization.
  34250. This function is called from 'compile_file' right before invoking the
  34251. parser. The arguments to 'plugin_init' are:
  34252. * 'plugin_info': Plugin invocation information.
  34253. * 'version': GCC version.
  34254. The 'plugin_info' struct is defined as follows:
  34255. struct plugin_name_args
  34256. {
  34257. char *base_name; /* Short name of the plugin
  34258. (filename without .so suffix). */
  34259. const char *full_name; /* Path to the plugin as specified with
  34260. -fplugin=. */
  34261. int argc; /* Number of arguments specified with
  34262. -fplugin-arg-.... */
  34263. struct plugin_argument *argv; /* Array of ARGC key-value pairs. */
  34264. const char *version; /* Version string provided by plugin. */
  34265. const char *help; /* Help string provided by plugin. */
  34266. }
  34267. If initialization fails, 'plugin_init' must return a non-zero value.
  34268. Otherwise, it should return 0.
  34269. The version of the GCC compiler loading the plugin is described by the
  34270. following structure:
  34271. struct plugin_gcc_version
  34272. {
  34273. const char *basever;
  34274. const char *datestamp;
  34275. const char *devphase;
  34276. const char *revision;
  34277. const char *configuration_arguments;
  34278. };
  34279. The function 'plugin_default_version_check' takes two pointers to such
  34280. structure and compare them field by field. It can be used by the
  34281. plugin's 'plugin_init' function.
  34282. The version of GCC used to compile the plugin can be found in the
  34283. symbol 'gcc_version' defined in the header 'plugin-version.h'. The
  34284. recommended version check to perform looks like
  34285. #include "plugin-version.h"
  34286. ...
  34287. int
  34288. plugin_init (struct plugin_name_args *plugin_info,
  34289. struct plugin_gcc_version *version)
  34290. {
  34291. if (!plugin_default_version_check (version, &gcc_version))
  34292. return 1;
  34293. }
  34294. but you can also check the individual fields if you want a less strict
  34295. check.
  34296. 24.2.3 Plugin callbacks
  34297. -----------------------
  34298. Callback functions have the following prototype:
  34299. /* The prototype for a plugin callback function.
  34300. gcc_data - event-specific data provided by GCC
  34301. user_data - plugin-specific data provided by the plug-in. */
  34302. typedef void (*plugin_callback_func)(void *gcc_data, void *user_data);
  34303. Callbacks can be invoked at the following pre-determined events:
  34304. enum plugin_event
  34305. {
  34306. PLUGIN_START_PARSE_FUNCTION, /* Called before parsing the body of a function. */
  34307. PLUGIN_FINISH_PARSE_FUNCTION, /* After finishing parsing a function. */
  34308. PLUGIN_PASS_MANAGER_SETUP, /* To hook into pass manager. */
  34309. PLUGIN_FINISH_TYPE, /* After finishing parsing a type. */
  34310. PLUGIN_FINISH_DECL, /* After finishing parsing a declaration. */
  34311. PLUGIN_FINISH_UNIT, /* Useful for summary processing. */
  34312. PLUGIN_PRE_GENERICIZE, /* Allows to see low level AST in C and C++ frontends. */
  34313. PLUGIN_FINISH, /* Called before GCC exits. */
  34314. PLUGIN_INFO, /* Information about the plugin. */
  34315. PLUGIN_GGC_START, /* Called at start of GCC Garbage Collection. */
  34316. PLUGIN_GGC_MARKING, /* Extend the GGC marking. */
  34317. PLUGIN_GGC_END, /* Called at end of GGC. */
  34318. PLUGIN_REGISTER_GGC_ROOTS, /* Register an extra GGC root table. */
  34319. PLUGIN_ATTRIBUTES, /* Called during attribute registration */
  34320. PLUGIN_START_UNIT, /* Called before processing a translation unit. */
  34321. PLUGIN_PRAGMAS, /* Called during pragma registration. */
  34322. /* Called before first pass from all_passes. */
  34323. PLUGIN_ALL_PASSES_START,
  34324. /* Called after last pass from all_passes. */
  34325. PLUGIN_ALL_PASSES_END,
  34326. /* Called before first ipa pass. */
  34327. PLUGIN_ALL_IPA_PASSES_START,
  34328. /* Called after last ipa pass. */
  34329. PLUGIN_ALL_IPA_PASSES_END,
  34330. /* Allows to override pass gate decision for current_pass. */
  34331. PLUGIN_OVERRIDE_GATE,
  34332. /* Called before executing a pass. */
  34333. PLUGIN_PASS_EXECUTION,
  34334. /* Called before executing subpasses of a GIMPLE_PASS in
  34335. execute_ipa_pass_list. */
  34336. PLUGIN_EARLY_GIMPLE_PASSES_START,
  34337. /* Called after executing subpasses of a GIMPLE_PASS in
  34338. execute_ipa_pass_list. */
  34339. PLUGIN_EARLY_GIMPLE_PASSES_END,
  34340. /* Called when a pass is first instantiated. */
  34341. PLUGIN_NEW_PASS,
  34342. /* Called when a file is #include-d or given via the #line directive.
  34343. This could happen many times. The event data is the included file path,
  34344. as a const char* pointer. */
  34345. PLUGIN_INCLUDE_FILE,
  34346. PLUGIN_EVENT_FIRST_DYNAMIC /* Dummy event used for indexing callback
  34347. array. */
  34348. };
  34349. In addition, plugins can also look up the enumerator of a named event,
  34350. and / or generate new events dynamically, by calling the function
  34351. 'get_named_event_id'.
  34352. To register a callback, the plugin calls 'register_callback' with the
  34353. arguments:
  34354. * 'char *name': Plugin name.
  34355. * 'int event': The event code.
  34356. * 'plugin_callback_func callback': The function that handles 'event'.
  34357. * 'void *user_data': Pointer to plugin-specific data.
  34358. For the PLUGIN_PASS_MANAGER_SETUP, PLUGIN_INFO, and
  34359. PLUGIN_REGISTER_GGC_ROOTS pseudo-events the 'callback' should be null,
  34360. and the 'user_data' is specific.
  34361. When the PLUGIN_PRAGMAS event is triggered (with a null pointer as data
  34362. from GCC), plugins may register their own pragmas. Notice that pragmas
  34363. are not available from 'lto1', so plugins used with '-flto' option to
  34364. GCC during link-time optimization cannot use pragmas and do not even see
  34365. functions like 'c_register_pragma' or 'pragma_lex'.
  34366. The PLUGIN_INCLUDE_FILE event, with a 'const char*' file path as GCC
  34367. data, is triggered for processing of '#include' or '#line' directives.
  34368. The PLUGIN_FINISH event is the last time that plugins can call GCC
  34369. functions, notably emit diagnostics with 'warning', 'error' etc.
  34370. 
  34371. File: gccint.info, Node: Plugins pass, Next: Plugins GC, Prev: Plugin API, Up: Plugins
  34372. 24.3 Interacting with the pass manager
  34373. ======================================
  34374. There needs to be a way to add/reorder/remove passes dynamically. This
  34375. is useful for both analysis plugins (plugging in after a certain pass
  34376. such as CFG or an IPA pass) and optimization plugins.
  34377. Basic support for inserting new passes or replacing existing passes is
  34378. provided. A plugin registers a new pass with GCC by calling
  34379. 'register_callback' with the 'PLUGIN_PASS_MANAGER_SETUP' event and a
  34380. pointer to a 'struct register_pass_info' object defined as follows
  34381. enum pass_positioning_ops
  34382. {
  34383. PASS_POS_INSERT_AFTER, // Insert after the reference pass.
  34384. PASS_POS_INSERT_BEFORE, // Insert before the reference pass.
  34385. PASS_POS_REPLACE // Replace the reference pass.
  34386. };
  34387. struct register_pass_info
  34388. {
  34389. struct opt_pass *pass; /* New pass provided by the plugin. */
  34390. const char *reference_pass_name; /* Name of the reference pass for hooking
  34391. up the new pass. */
  34392. int ref_pass_instance_number; /* Insert the pass at the specified
  34393. instance number of the reference pass. */
  34394. /* Do it for every instance if it is 0. */
  34395. enum pass_positioning_ops pos_op; /* how to insert the new pass. */
  34396. };
  34397. /* Sample plugin code that registers a new pass. */
  34398. int
  34399. plugin_init (struct plugin_name_args *plugin_info,
  34400. struct plugin_gcc_version *version)
  34401. {
  34402. struct register_pass_info pass_info;
  34403. ...
  34404. /* Code to fill in the pass_info object with new pass information. */
  34405. ...
  34406. /* Register the new pass. */
  34407. register_callback (plugin_info->base_name, PLUGIN_PASS_MANAGER_SETUP, NULL, &pass_info);
  34408. ...
  34409. }
  34410. 
  34411. File: gccint.info, Node: Plugins GC, Next: Plugins description, Prev: Plugins pass, Up: Plugins
  34412. 24.4 Interacting with the GCC Garbage Collector
  34413. ===============================================
  34414. Some plugins may want to be informed when GGC (the GCC Garbage
  34415. Collector) is running. They can register callbacks for the
  34416. 'PLUGIN_GGC_START' and 'PLUGIN_GGC_END' events (for which the callback
  34417. is called with a null 'gcc_data') to be notified of the start or end of
  34418. the GCC garbage collection.
  34419. Some plugins may need to have GGC mark additional data. This can be
  34420. done by registering a callback (called with a null 'gcc_data') for the
  34421. 'PLUGIN_GGC_MARKING' event. Such callbacks can call the 'ggc_set_mark'
  34422. routine, preferably through the 'ggc_mark' macro (and conversely, these
  34423. routines should usually not be used in plugins outside of the
  34424. 'PLUGIN_GGC_MARKING' event). Plugins that wish to hold weak references
  34425. to gc data may also use this event to drop weak references when the
  34426. object is about to be collected. The 'ggc_marked_p' function can be
  34427. used to tell if an object is marked, or is about to be collected. The
  34428. 'gt_clear_cache' overloads which some types define may also be of use in
  34429. managing weak references.
  34430. Some plugins may need to add extra GGC root tables, e.g. to handle
  34431. their own 'GTY'-ed data. This can be done with the
  34432. 'PLUGIN_REGISTER_GGC_ROOTS' pseudo-event with a null callback and the
  34433. extra root table (of type 'struct ggc_root_tab*') as 'user_data'.
  34434. Running the 'gengtype -p SOURCE-DIR FILE-LIST PLUGIN*.C ...' utility
  34435. generates these extra root tables.
  34436. You should understand the details of memory management inside GCC
  34437. before using 'PLUGIN_GGC_MARKING' or 'PLUGIN_REGISTER_GGC_ROOTS'.
  34438. 
  34439. File: gccint.info, Node: Plugins description, Next: Plugins attr, Prev: Plugins GC, Up: Plugins
  34440. 24.5 Giving information about a plugin
  34441. ======================================
  34442. A plugin should give some information to the user about itself. This
  34443. uses the following structure:
  34444. struct plugin_info
  34445. {
  34446. const char *version;
  34447. const char *help;
  34448. };
  34449. Such a structure is passed as the 'user_data' by the plugin's init
  34450. routine using 'register_callback' with the 'PLUGIN_INFO' pseudo-event
  34451. and a null callback.
  34452. 
  34453. File: gccint.info, Node: Plugins attr, Next: Plugins recording, Prev: Plugins description, Up: Plugins
  34454. 24.6 Registering custom attributes or pragmas
  34455. =============================================
  34456. For analysis (or other) purposes it is useful to be able to add custom
  34457. attributes or pragmas.
  34458. The 'PLUGIN_ATTRIBUTES' callback is called during attribute
  34459. registration. Use the 'register_attribute' function to register custom
  34460. attributes.
  34461. /* Attribute handler callback */
  34462. static tree
  34463. handle_user_attribute (tree *node, tree name, tree args,
  34464. int flags, bool *no_add_attrs)
  34465. {
  34466. return NULL_TREE;
  34467. }
  34468. /* Attribute definition */
  34469. static struct attribute_spec user_attr =
  34470. { "user", 1, 1, false, false, false, false, handle_user_attribute, NULL };
  34471. /* Plugin callback called during attribute registration.
  34472. Registered with register_callback (plugin_name, PLUGIN_ATTRIBUTES, register_attributes, NULL)
  34473. */
  34474. static void
  34475. register_attributes (void *event_data, void *data)
  34476. {
  34477. warning (0, G_("Callback to register attributes"));
  34478. register_attribute (&user_attr);
  34479. }
  34480. The PLUGIN_PRAGMAS callback is called once during pragmas registration.
  34481. Use the 'c_register_pragma', 'c_register_pragma_with_data',
  34482. 'c_register_pragma_with_expansion',
  34483. 'c_register_pragma_with_expansion_and_data' functions to register custom
  34484. pragmas and their handlers (which often want to call 'pragma_lex') from
  34485. 'c-family/c-pragma.h'.
  34486. /* Plugin callback called during pragmas registration. Registered with
  34487. register_callback (plugin_name, PLUGIN_PRAGMAS,
  34488. register_my_pragma, NULL);
  34489. */
  34490. static void
  34491. register_my_pragma (void *event_data, void *data)
  34492. {
  34493. warning (0, G_("Callback to register pragmas"));
  34494. c_register_pragma ("GCCPLUGIN", "sayhello", handle_pragma_sayhello);
  34495. }
  34496. It is suggested to pass '"GCCPLUGIN"' (or a short name identifying your
  34497. plugin) as the "space" argument of your pragma.
  34498. Pragmas registered with 'c_register_pragma_with_expansion' or
  34499. 'c_register_pragma_with_expansion_and_data' support preprocessor
  34500. expansions. For example:
  34501. #define NUMBER 10
  34502. #pragma GCCPLUGIN foothreshold (NUMBER)
  34503. 
  34504. File: gccint.info, Node: Plugins recording, Next: Plugins gate, Prev: Plugins attr, Up: Plugins
  34505. 24.7 Recording information about pass execution
  34506. ===============================================
  34507. The event PLUGIN_PASS_EXECUTION passes the pointer to the executed pass
  34508. (the same as current_pass) as 'gcc_data' to the callback. You can also
  34509. inspect cfun to find out about which function this pass is executed for.
  34510. Note that this event will only be invoked if the gate check (if
  34511. applicable, modified by PLUGIN_OVERRIDE_GATE) succeeds. You can use
  34512. other hooks, like 'PLUGIN_ALL_PASSES_START', 'PLUGIN_ALL_PASSES_END',
  34513. 'PLUGIN_ALL_IPA_PASSES_START', 'PLUGIN_ALL_IPA_PASSES_END',
  34514. 'PLUGIN_EARLY_GIMPLE_PASSES_START', and/or
  34515. 'PLUGIN_EARLY_GIMPLE_PASSES_END' to manipulate global state in your
  34516. plugin(s) in order to get context for the pass execution.
  34517. 
  34518. File: gccint.info, Node: Plugins gate, Next: Plugins tracking, Prev: Plugins recording, Up: Plugins
  34519. 24.8 Controlling which passes are being run
  34520. ===========================================
  34521. After the original gate function for a pass is called, its result - the
  34522. gate status - is stored as an integer. Then the event
  34523. 'PLUGIN_OVERRIDE_GATE' is invoked, with a pointer to the gate status in
  34524. the 'gcc_data' parameter to the callback function. A nonzero value of
  34525. the gate status means that the pass is to be executed. You can both
  34526. read and write the gate status via the passed pointer.
  34527. 
  34528. File: gccint.info, Node: Plugins tracking, Next: Plugins building, Prev: Plugins gate, Up: Plugins
  34529. 24.9 Keeping track of available passes
  34530. ======================================
  34531. When your plugin is loaded, you can inspect the various pass lists to
  34532. determine what passes are available. However, other plugins might add
  34533. new passes. Also, future changes to GCC might cause generic passes to
  34534. be added after plugin loading. When a pass is first added to one of the
  34535. pass lists, the event 'PLUGIN_NEW_PASS' is invoked, with the callback
  34536. parameter 'gcc_data' pointing to the new pass.
  34537. 
  34538. File: gccint.info, Node: Plugins building, Prev: Plugins tracking, Up: Plugins
  34539. 24.10 Building GCC plugins
  34540. ==========================
  34541. If plugins are enabled, GCC installs the headers needed to build a
  34542. plugin (somewhere in the installation tree, e.g. under '/usr/local').
  34543. In particular a 'plugin/include' directory is installed, containing all
  34544. the header files needed to build plugins.
  34545. On most systems, you can query this 'plugin' directory by invoking 'gcc
  34546. -print-file-name=plugin' (replace if needed 'gcc' with the appropriate
  34547. program path).
  34548. Inside plugins, this 'plugin' directory name can be queried by calling
  34549. 'default_plugin_dir_name ()'.
  34550. Plugins may know, when they are compiled, the GCC version for which
  34551. 'plugin-version.h' is provided. The constant macros
  34552. 'GCCPLUGIN_VERSION_MAJOR', 'GCCPLUGIN_VERSION_MINOR',
  34553. 'GCCPLUGIN_VERSION_PATCHLEVEL', 'GCCPLUGIN_VERSION' are integer numbers,
  34554. so a plugin could ensure it is built for GCC 4.7 with
  34555. #if GCCPLUGIN_VERSION != 4007
  34556. #error this GCC plugin is for GCC 4.7
  34557. #endif
  34558. The following GNU Makefile excerpt shows how to build a simple plugin:
  34559. HOST_GCC=g++
  34560. TARGET_GCC=gcc
  34561. PLUGIN_SOURCE_FILES= plugin1.c plugin2.cc
  34562. GCCPLUGINS_DIR:= $(shell $(TARGET_GCC) -print-file-name=plugin)
  34563. CXXFLAGS+= -I$(GCCPLUGINS_DIR)/include -fPIC -fno-rtti -O2
  34564. plugin.so: $(PLUGIN_SOURCE_FILES)
  34565. $(HOST_GCC) -shared $(CXXFLAGS) $^ -o $@
  34566. A single source file plugin may be built with 'g++ -I`gcc
  34567. -print-file-name=plugin`/include -fPIC -shared -fno-rtti -O2 plugin.c -o
  34568. plugin.so', using backquote shell syntax to query the 'plugin'
  34569. directory.
  34570. Plugin support on Windows/MinGW has a number of limitations and
  34571. additional requirements. When building a plugin on Windows we have to
  34572. link an import library for the corresponding backend executable, for
  34573. example, 'cc1.exe', 'cc1plus.exe', etc., in order to gain access to the
  34574. symbols provided by GCC. This means that on Windows a plugin is
  34575. language-specific, for example, for C, C++, etc. If you wish to use
  34576. your plugin with multiple languages, then you will need to build
  34577. multiple plugin libraries and either instruct your users on how to load
  34578. the correct version or provide a compiler wrapper that does this
  34579. automatically.
  34580. Additionally, on Windows the plugin library has to export the
  34581. 'plugin_is_GPL_compatible' and 'plugin_init' symbols. If you do not
  34582. wish to modify the source code of your plugin, then you can use the
  34583. '-Wl,--export-all-symbols' option or provide a suitable DEF file.
  34584. Alternatively, you can export just these two symbols by decorating them
  34585. with '__declspec(dllexport)', for example:
  34586. #ifdef _WIN32
  34587. __declspec(dllexport)
  34588. #endif
  34589. int plugin_is_GPL_compatible;
  34590. #ifdef _WIN32
  34591. __declspec(dllexport)
  34592. #endif
  34593. int plugin_init (plugin_name_args *, plugin_gcc_version *)
  34594. The import libraries are installed into the 'plugin' directory and
  34595. their names are derived by appending the '.a' extension to the backend
  34596. executable names, for example, 'cc1.exe.a', 'cc1plus.exe.a', etc. The
  34597. following command line shows how to build the single source file plugin
  34598. on Windows to be used with the C++ compiler:
  34599. g++ -I`gcc -print-file-name=plugin`/include -shared -Wl,--export-all-symbols \
  34600. -o plugin.dll plugin.c `gcc -print-file-name=plugin`/cc1plus.exe.a
  34601. When a plugin needs to use 'gengtype', be sure that both 'gengtype' and
  34602. 'gtype.state' have the same version as the GCC for which the plugin is
  34603. built.
  34604. 
  34605. File: gccint.info, Node: LTO, Next: Match and Simplify, Prev: Plugins, Up: Top
  34606. 25 Link Time Optimization
  34607. *************************
  34608. Link Time Optimization (LTO) gives GCC the capability of dumping its
  34609. internal representation (GIMPLE) to disk, so that all the different
  34610. compilation units that make up a single executable can be optimized as a
  34611. single module. This expands the scope of inter-procedural optimizations
  34612. to encompass the whole program (or, rather, everything that is visible
  34613. at link time).
  34614. * Menu:
  34615. * LTO Overview:: Overview of LTO.
  34616. * LTO object file layout:: LTO file sections in ELF.
  34617. * IPA:: Using summary information in IPA passes.
  34618. * WHOPR:: Whole program assumptions,
  34619. linker plugin and symbol visibilities.
  34620. * Internal flags:: Internal flags controlling 'lto1'.
  34621. 
  34622. File: gccint.info, Node: LTO Overview, Next: LTO object file layout, Up: LTO
  34623. 25.1 Design Overview
  34624. ====================
  34625. Link time optimization is implemented as a GCC front end for a bytecode
  34626. representation of GIMPLE that is emitted in special sections of '.o'
  34627. files. Currently, LTO support is enabled in most ELF-based systems, as
  34628. well as darwin, cygwin and mingw systems.
  34629. Since GIMPLE bytecode is saved alongside final object code, object
  34630. files generated with LTO support are larger than regular object files.
  34631. This "fat" object format makes it easy to integrate LTO into existing
  34632. build systems, as one can, for instance, produce archives of the files.
  34633. Additionally, one might be able to ship one set of fat objects which
  34634. could be used both for development and the production of optimized
  34635. builds. A, perhaps surprising, side effect of this feature is that any
  34636. mistake in the toolchain leads to LTO information not being used (e.g.
  34637. an older 'libtool' calling 'ld' directly). This is both an advantage,
  34638. as the system is more robust, and a disadvantage, as the user is not
  34639. informed that the optimization has been disabled.
  34640. The current implementation only produces "fat" objects, effectively
  34641. doubling compilation time and increasing file sizes up to 5x the
  34642. original size. This hides the problem that some tools, such as 'ar' and
  34643. 'nm', need to understand symbol tables of LTO sections. These tools
  34644. were extended to use the plugin infrastructure, and with these problems
  34645. solved, GCC will also support "slim" objects consisting of the
  34646. intermediate code alone.
  34647. At the highest level, LTO splits the compiler in two. The first half
  34648. (the "writer") produces a streaming representation of all the internal
  34649. data structures needed to optimize and generate code. This includes
  34650. declarations, types, the callgraph and the GIMPLE representation of
  34651. function bodies.
  34652. When '-flto' is given during compilation of a source file, the pass
  34653. manager executes all the passes in 'all_lto_gen_passes'. Currently,
  34654. this phase is composed of two IPA passes:
  34655. * 'pass_ipa_lto_gimple_out' This pass executes the function
  34656. 'lto_output' in 'lto-streamer-out.c', which traverses the call
  34657. graph encoding every reachable declaration, type and function.
  34658. This generates a memory representation of all the file sections
  34659. described below.
  34660. * 'pass_ipa_lto_finish_out' This pass executes the function
  34661. 'produce_asm_for_decls' in 'lto-streamer-out.c', which takes the
  34662. memory image built in the previous pass and encodes it in the
  34663. corresponding ELF file sections.
  34664. The second half of LTO support is the "reader". This is implemented as
  34665. the GCC front end 'lto1' in 'lto/lto.c'. When 'collect2' detects a link
  34666. set of '.o'/'.a' files with LTO information and the '-flto' is enabled,
  34667. it invokes 'lto1' which reads the set of files and aggregates them into
  34668. a single translation unit for optimization. The main entry point for
  34669. the reader is 'lto/lto.c':'lto_main'.
  34670. 25.1.1 LTO modes of operation
  34671. -----------------------------
  34672. One of the main goals of the GCC link-time infrastructure was to allow
  34673. effective compilation of large programs. For this reason GCC implements
  34674. two link-time compilation modes.
  34675. 1. _LTO mode_, in which the whole program is read into the compiler at
  34676. link-time and optimized in a similar way as if it were a single
  34677. source-level compilation unit.
  34678. 2. _WHOPR or partitioned mode_, designed to utilize multiple CPUs
  34679. and/or a distributed compilation environment to quickly link large
  34680. applications. WHOPR stands for WHOle Program optimizeR (not to be
  34681. confused with the semantics of '-fwhole-program'). It partitions
  34682. the aggregated callgraph from many different '.o' files and
  34683. distributes the compilation of the sub-graphs to different CPUs.
  34684. Note that distributed compilation is not implemented yet, but since
  34685. the parallelism is facilitated via generating a 'Makefile', it
  34686. would be easy to implement.
  34687. WHOPR splits LTO into three main stages:
  34688. 1. Local generation (LGEN) This stage executes in parallel. Every
  34689. file in the program is compiled into the intermediate language and
  34690. packaged together with the local call-graph and summary
  34691. information. This stage is the same for both the LTO and WHOPR
  34692. compilation mode.
  34693. 2. Whole Program Analysis (WPA) WPA is performed sequentially. The
  34694. global call-graph is generated, and a global analysis procedure
  34695. makes transformation decisions. The global call-graph is
  34696. partitioned to facilitate parallel optimization during phase 3.
  34697. The results of the WPA stage are stored into new object files which
  34698. contain the partitions of program expressed in the intermediate
  34699. language and the optimization decisions.
  34700. 3. Local transformations (LTRANS) This stage executes in parallel.
  34701. All the decisions made during phase 2 are implemented locally in
  34702. each partitioned object file, and the final object code is
  34703. generated. Optimizations which cannot be decided efficiently
  34704. during the phase 2 may be performed on the local call-graph
  34705. partitions.
  34706. WHOPR can be seen as an extension of the usual LTO mode of compilation.
  34707. In LTO, WPA and LTRANS are executed within a single execution of the
  34708. compiler, after the whole program has been read into memory.
  34709. When compiling in WHOPR mode, the callgraph is partitioned during the
  34710. WPA stage. The whole program is split into a given number of partitions
  34711. of roughly the same size. The compiler tries to minimize the number of
  34712. references which cross partition boundaries. The main advantage of
  34713. WHOPR is to allow the parallel execution of LTRANS stages, which are the
  34714. most time-consuming part of the compilation process. Additionally, it
  34715. avoids the need to load the whole program into memory.
  34716. 
  34717. File: gccint.info, Node: LTO object file layout, Next: IPA, Prev: LTO Overview, Up: LTO
  34718. 25.2 LTO file sections
  34719. ======================
  34720. LTO information is stored in several ELF sections inside object files.
  34721. Data structures and enum codes for sections are defined in
  34722. 'lto-streamer.h'.
  34723. These sections are emitted from 'lto-streamer-out.c' and mapped in all
  34724. at once from 'lto/lto.c':'lto_file_read'. The individual functions
  34725. dealing with the reading/writing of each section are described below.
  34726. * Command line options ('.gnu.lto_.opts')
  34727. This section contains the command line options used to generate the
  34728. object files. This is used at link time to determine the
  34729. optimization level and other settings when they are not explicitly
  34730. specified at the linker command line.
  34731. Currently, GCC does not support combining LTO object files compiled
  34732. with different set of the command line options into a single
  34733. binary. At link time, the options given on the command line and
  34734. the options saved on all the files in a link-time set are applied
  34735. globally. No attempt is made at validating the combination of
  34736. flags (other than the usual validation done by option processing).
  34737. This is implemented in 'lto/lto.c':'lto_read_all_file_options'.
  34738. * Symbol table ('.gnu.lto_.symtab')
  34739. This table replaces the ELF symbol table for functions and
  34740. variables represented in the LTO IL. Symbols used and exported by
  34741. the optimized assembly code of "fat" objects might not match the
  34742. ones used and exported by the intermediate code. This table is
  34743. necessary because the intermediate code is less optimized and thus
  34744. requires a separate symbol table.
  34745. Additionally, the binary code in the "fat" object will lack a call
  34746. to a function, since the call was optimized out at compilation time
  34747. after the intermediate language was streamed out. In some special
  34748. cases, the same optimization may not happen during link-time
  34749. optimization. This would lead to an undefined symbol if only one
  34750. symbol table was used.
  34751. The symbol table is emitted in
  34752. 'lto-streamer-out.c':'produce_symtab'.
  34753. * Global declarations and types ('.gnu.lto_.decls')
  34754. This section contains an intermediate language dump of all
  34755. declarations and types required to represent the callgraph, static
  34756. variables and top-level debug info.
  34757. The contents of this section are emitted in
  34758. 'lto-streamer-out.c':'produce_asm_for_decls'. Types and symbols
  34759. are emitted in a topological order that preserves the sharing of
  34760. pointers when the file is read back in
  34761. ('lto.c':'read_cgraph_and_symbols').
  34762. * The callgraph ('.gnu.lto_.cgraph')
  34763. This section contains the basic data structure used by the GCC
  34764. inter-procedural optimization infrastructure. This section stores
  34765. an annotated multi-graph which represents the functions and call
  34766. sites as well as the variables, aliases and top-level 'asm'
  34767. statements.
  34768. This section is emitted in 'lto-streamer-out.c':'output_cgraph' and
  34769. read in 'lto-cgraph.c':'input_cgraph'.
  34770. * IPA references ('.gnu.lto_.refs')
  34771. This section contains references between function and static
  34772. variables. It is emitted by 'lto-cgraph.c':'output_refs' and read
  34773. by 'lto-cgraph.c':'input_refs'.
  34774. * Function bodies ('.gnu.lto_.function_body.<name>')
  34775. This section contains function bodies in the intermediate language
  34776. representation. Every function body is in a separate section to
  34777. allow copying of the section independently to different object
  34778. files or reading the function on demand.
  34779. Functions are emitted in 'lto-streamer-out.c':'output_function' and
  34780. read in 'lto-streamer-in.c':'input_function'.
  34781. * Static variable initializers ('.gnu.lto_.vars')
  34782. This section contains all the symbols in the global variable pool.
  34783. It is emitted by 'lto-cgraph.c':'output_varpool' and read in
  34784. 'lto-cgraph.c':'input_cgraph'.
  34785. * Summaries and optimization summaries used by IPA passes
  34786. ('.gnu.lto_.<xxx>', where '<xxx>' is one of 'jmpfuncs', 'pureconst'
  34787. or 'reference')
  34788. These sections are used by IPA passes that need to emit summary
  34789. information during LTO generation to be read and aggregated at link
  34790. time. Each pass is responsible for implementing two pass manager
  34791. hooks: one for writing the summary and another for reading it in.
  34792. The format of these sections is entirely up to each individual
  34793. pass. The only requirement is that the writer and reader hooks
  34794. agree on the format.
  34795. 
  34796. File: gccint.info, Node: IPA, Next: WHOPR, Prev: LTO object file layout, Up: LTO
  34797. 25.3 Using summary information in IPA passes
  34798. ============================================
  34799. Programs are represented internally as a _callgraph_ (a multi-graph
  34800. where nodes are functions and edges are call sites) and a _varpool_ (a
  34801. list of static and external variables in the program).
  34802. The inter-procedural optimization is organized as a sequence of
  34803. individual passes, which operate on the callgraph and the varpool. To
  34804. make the implementation of WHOPR possible, every inter-procedural
  34805. optimization pass is split into several stages that are executed at
  34806. different times during WHOPR compilation:
  34807. * LGEN time
  34808. 1. _Generate summary_ ('generate_summary' in 'struct
  34809. ipa_opt_pass_d'). This stage analyzes every function body and
  34810. variable initializer is examined and stores relevant
  34811. information into a pass-specific data structure.
  34812. 2. _Write summary_ ('write_summary' in 'struct ipa_opt_pass_d').
  34813. This stage writes all the pass-specific information generated
  34814. by 'generate_summary'. Summaries go into their own
  34815. 'LTO_section_*' sections that have to be declared in
  34816. 'lto-streamer.h':'enum lto_section_type'. A new section is
  34817. created by calling 'create_output_block' and data can be
  34818. written using the 'lto_output_*' routines.
  34819. * WPA time
  34820. 1. _Read summary_ ('read_summary' in 'struct ipa_opt_pass_d').
  34821. This stage reads all the pass-specific information in exactly
  34822. the same order that it was written by 'write_summary'.
  34823. 2. _Execute_ ('execute' in 'struct opt_pass'). This performs
  34824. inter-procedural propagation. This must be done without
  34825. actual access to the individual function bodies or variable
  34826. initializers. Typically, this results in a transitive closure
  34827. operation over the summary information of all the nodes in the
  34828. callgraph.
  34829. 3. _Write optimization summary_ ('write_optimization_summary' in
  34830. 'struct ipa_opt_pass_d'). This writes the result of the
  34831. inter-procedural propagation into the object file. This can
  34832. use the same data structures and helper routines used in
  34833. 'write_summary'.
  34834. * LTRANS time
  34835. 1. _Read optimization summary_ ('read_optimization_summary' in
  34836. 'struct ipa_opt_pass_d'). The counterpart to
  34837. 'write_optimization_summary'. This reads the interprocedural
  34838. optimization decisions in exactly the same format emitted by
  34839. 'write_optimization_summary'.
  34840. 2. _Transform_ ('function_transform' and 'variable_transform' in
  34841. 'struct ipa_opt_pass_d'). The actual function bodies and
  34842. variable initializers are updated based on the information
  34843. passed down from the _Execute_ stage.
  34844. The implementation of the inter-procedural passes are shared between
  34845. LTO, WHOPR and classic non-LTO compilation.
  34846. * During the traditional file-by-file mode every pass executes its
  34847. own _Generate summary_, _Execute_, and _Transform_ stages within
  34848. the single execution context of the compiler.
  34849. * In LTO compilation mode, every pass uses _Generate summary_ and
  34850. _Write summary_ stages at compilation time, while the _Read
  34851. summary_, _Execute_, and _Transform_ stages are executed at link
  34852. time.
  34853. * In WHOPR mode all stages are used.
  34854. To simplify development, the GCC pass manager differentiates between
  34855. normal inter-procedural passes and small inter-procedural passes. A
  34856. _small inter-procedural pass_ ('SIMPLE_IPA_PASS') is a pass that does
  34857. everything at once and thus it can not be executed during WPA in WHOPR
  34858. mode. It defines only the _Execute_ stage and during this stage it
  34859. accesses and modifies the function bodies. Such passes are useful for
  34860. optimization at LGEN or LTRANS time and are used, for example, to
  34861. implement early optimization before writing object files. The simple
  34862. inter-procedural passes can also be used for easier prototyping and
  34863. development of a new inter-procedural pass.
  34864. 25.3.1 Virtual clones
  34865. ---------------------
  34866. One of the main challenges of introducing the WHOPR compilation mode was
  34867. addressing the interactions between optimization passes. In LTO
  34868. compilation mode, the passes are executed in a sequence, each of which
  34869. consists of analysis (or _Generate summary_), propagation (or _Execute_)
  34870. and _Transform_ stages. Once the work of one pass is finished, the next
  34871. pass sees the updated program representation and can execute. This
  34872. makes the individual passes dependent on each other.
  34873. In WHOPR mode all passes first execute their _Generate summary_ stage.
  34874. Then summary writing marks the end of the LGEN stage. At WPA time, the
  34875. summaries are read back into memory and all passes run the _Execute_
  34876. stage. Optimization summaries are streamed and sent to LTRANS, where
  34877. all the passes execute the _Transform_ stage.
  34878. Most optimization passes split naturally into analysis, propagation and
  34879. transformation stages. But some do not. The main problem arises when
  34880. one pass performs changes and the following pass gets confused by seeing
  34881. different callgraphs between the _Transform_ stage and the _Generate
  34882. summary_ or _Execute_ stage. This means that the passes are required to
  34883. communicate their decisions with each other.
  34884. To facilitate this communication, the GCC callgraph infrastructure
  34885. implements _virtual clones_, a method of representing the changes
  34886. performed by the optimization passes in the callgraph without needing to
  34887. update function bodies.
  34888. A _virtual clone_ in the callgraph is a function that has no associated
  34889. body, just a description of how to create its body based on a different
  34890. function (which itself may be a virtual clone).
  34891. The description of function modifications includes adjustments to the
  34892. function's signature (which allows, for example, removing or adding
  34893. function arguments), substitutions to perform on the function body, and,
  34894. for inlined functions, a pointer to the function that it will be inlined
  34895. into.
  34896. It is also possible to redirect any edge of the callgraph from a
  34897. function to its virtual clone. This implies updating of the call site
  34898. to adjust for the new function signature.
  34899. Most of the transformations performed by inter-procedural optimizations
  34900. can be represented via virtual clones. For instance, a constant
  34901. propagation pass can produce a virtual clone of the function which
  34902. replaces one of its arguments by a constant. The inliner can represent
  34903. its decisions by producing a clone of a function whose body will be
  34904. later integrated into a given function.
  34905. Using _virtual clones_, the program can be easily updated during the
  34906. _Execute_ stage, solving most of pass interactions problems that would
  34907. otherwise occur during _Transform_.
  34908. Virtual clones are later materialized in the LTRANS stage and turned
  34909. into real functions. Passes executed after the virtual clone were
  34910. introduced also perform their _Transform_ stage on new functions, so for
  34911. a pass there is no significant difference between operating on a real
  34912. function or a virtual clone introduced before its _Execute_ stage.
  34913. Optimization passes then work on virtual clones introduced before their
  34914. _Execute_ stage as if they were real functions. The only difference is
  34915. that clones are not visible during the _Generate Summary_ stage.
  34916. To keep function summaries updated, the callgraph interface allows an
  34917. optimizer to register a callback that is called every time a new clone
  34918. is introduced as well as when the actual function or variable is
  34919. generated or when a function or variable is removed. These hooks are
  34920. registered in the _Generate summary_ stage and allow the pass to keep
  34921. its information intact until the _Execute_ stage. The same hooks can
  34922. also be registered during the _Execute_ stage to keep the optimization
  34923. summaries updated for the _Transform_ stage.
  34924. 25.3.2 IPA references
  34925. ---------------------
  34926. GCC represents IPA references in the callgraph. For a function or
  34927. variable 'A', the _IPA reference_ is a list of all locations where the
  34928. address of 'A' is taken and, when 'A' is a variable, a list of all
  34929. direct stores and reads to/from 'A'. References represent an oriented
  34930. multi-graph on the union of nodes of the callgraph and the varpool. See
  34931. 'ipa-reference.c':'ipa_reference_write_optimization_summary' and
  34932. 'ipa-reference.c':'ipa_reference_read_optimization_summary' for details.
  34933. 25.3.3 Jump functions
  34934. ---------------------
  34935. Suppose that an optimization pass sees a function 'A' and it knows the
  34936. values of (some of) its arguments. The _jump function_ describes the
  34937. value of a parameter of a given function call in function 'A' based on
  34938. this knowledge.
  34939. Jump functions are used by several optimizations, such as the
  34940. inter-procedural constant propagation pass and the devirtualization
  34941. pass. The inliner also uses jump functions to perform inlining of
  34942. callbacks.
  34943. 
  34944. File: gccint.info, Node: WHOPR, Next: Internal flags, Prev: IPA, Up: LTO
  34945. 25.4 Whole program assumptions, linker plugin and symbol visibilities
  34946. =====================================================================
  34947. Link-time optimization gives relatively minor benefits when used alone.
  34948. The problem is that propagation of inter-procedural information does not
  34949. work well across functions and variables that are called or referenced
  34950. by other compilation units (such as from a dynamically linked library).
  34951. We say that such functions and variables are _externally visible_.
  34952. To make the situation even more difficult, many applications organize
  34953. themselves as a set of shared libraries, and the default ELF visibility
  34954. rules allow one to overwrite any externally visible symbol with a
  34955. different symbol at runtime. This basically disables any optimizations
  34956. across such functions and variables, because the compiler cannot be sure
  34957. that the function body it is seeing is the same function body that will
  34958. be used at runtime. Any function or variable not declared 'static' in
  34959. the sources degrades the quality of inter-procedural optimization.
  34960. To avoid this problem the compiler must assume that it sees the whole
  34961. program when doing link-time optimization. Strictly speaking, the whole
  34962. program is rarely visible even at link-time. Standard system libraries
  34963. are usually linked dynamically or not provided with the link-time
  34964. information. In GCC, the whole program option ('-fwhole-program')
  34965. asserts that every function and variable defined in the current
  34966. compilation unit is static, except for function 'main' (note: at link
  34967. time, the current unit is the union of all objects compiled with LTO).
  34968. Since some functions and variables need to be referenced externally, for
  34969. example by another DSO or from an assembler file, GCC also provides the
  34970. function and variable attribute 'externally_visible' which can be used
  34971. to disable the effect of '-fwhole-program' on a specific symbol.
  34972. The whole program mode assumptions are slightly more complex in C++,
  34973. where inline functions in headers are put into _COMDAT_ sections.
  34974. COMDAT function and variables can be defined by multiple object files
  34975. and their bodies are unified at link-time and dynamic link-time. COMDAT
  34976. functions are changed to local only when their address is not taken and
  34977. thus un-sharing them with a library is not harmful. COMDAT variables
  34978. always remain externally visible, however for readonly variables it is
  34979. assumed that their initializers cannot be overwritten by a different
  34980. value.
  34981. GCC provides the function and variable attribute 'visibility' that can
  34982. be used to specify the visibility of externally visible symbols (or
  34983. alternatively an '-fdefault-visibility' command line option). ELF
  34984. defines the 'default', 'protected', 'hidden' and 'internal'
  34985. visibilities.
  34986. The most commonly used is visibility is 'hidden'. It specifies that
  34987. the symbol cannot be referenced from outside of the current shared
  34988. library. Unfortunately, this information cannot be used directly by the
  34989. link-time optimization in the compiler since the whole shared library
  34990. also might contain non-LTO objects and those are not visible to the
  34991. compiler.
  34992. GCC solves this problem using linker plugins. A _linker plugin_ is an
  34993. interface to the linker that allows an external program to claim the
  34994. ownership of a given object file. The linker then performs the linking
  34995. procedure by querying the plugin about the symbol table of the claimed
  34996. objects and once the linking decisions are complete, the plugin is
  34997. allowed to provide the final object file before the actual linking is
  34998. made. The linker plugin obtains the symbol resolution information which
  34999. specifies which symbols provided by the claimed objects are bound from
  35000. the rest of a binary being linked.
  35001. GCC is designed to be independent of the rest of the toolchain and aims
  35002. to support linkers without plugin support. For this reason it does not
  35003. use the linker plugin by default. Instead, the object files are
  35004. examined by 'collect2' before being passed to the linker and objects
  35005. found to have LTO sections are passed to 'lto1' first. This mode does
  35006. not work for library archives. The decision on what object files from
  35007. the archive are needed depends on the actual linking and thus GCC would
  35008. have to implement the linker itself. The resolution information is
  35009. missing too and thus GCC needs to make an educated guess based on
  35010. '-fwhole-program'. Without the linker plugin GCC also assumes that
  35011. symbols are declared 'hidden' and not referred by non-LTO code by
  35012. default.
  35013. 
  35014. File: gccint.info, Node: Internal flags, Prev: WHOPR, Up: LTO
  35015. 25.5 Internal flags controlling 'lto1'
  35016. ======================================
  35017. The following flags are passed into 'lto1' and are not meant to be used
  35018. directly from the command line.
  35019. * -fwpa This option runs the serial part of the link-time optimizer
  35020. performing the inter-procedural propagation (WPA mode). The
  35021. compiler reads in summary information from all inputs and performs
  35022. an analysis based on summary information only. It generates object
  35023. files for subsequent runs of the link-time optimizer where
  35024. individual object files are optimized using both summary
  35025. information from the WPA mode and the actual function bodies. It
  35026. then drives the LTRANS phase.
  35027. * -fltrans This option runs the link-time optimizer in the
  35028. local-transformation (LTRANS) mode, which reads in output from a
  35029. previous run of the LTO in WPA mode. In the LTRANS mode, LTO
  35030. optimizes an object and produces the final assembly.
  35031. * -fltrans-output-list=FILE This option specifies a file to which the
  35032. names of LTRANS output files are written. This option is only
  35033. meaningful in conjunction with '-fwpa'.
  35034. * -fresolution=FILE This option specifies the linker resolution file.
  35035. This option is only meaningful in conjunction with '-fwpa' and as
  35036. option to pass through to the LTO linker plugin.
  35037. 
  35038. File: gccint.info, Node: Match and Simplify, Next: Funding, Prev: LTO, Up: Top
  35039. 26 Match and Simplify
  35040. *********************
  35041. The GIMPLE and GENERIC pattern matching project match-and-simplify tries
  35042. to address several issues.
  35043. 1. unify expression simplifications currently spread and duplicated
  35044. over separate files like fold-const.c, gimple-fold.c and builtins.c
  35045. 2. allow for a cheap way to implement building and simplifying
  35046. non-trivial GIMPLE expressions, avoiding the need to go through
  35047. building and simplifying GENERIC via fold_buildN and then
  35048. gimplifying via force_gimple_operand
  35049. To address these the project introduces a simple domain specific
  35050. language to write expression simplifications from which code targeting
  35051. GIMPLE and GENERIC is auto-generated. The GENERIC variant follows the
  35052. fold_buildN API while for the GIMPLE variant and to address 2) new APIs
  35053. are introduced.
  35054. * Menu:
  35055. * GIMPLE API::
  35056. * The Language::
  35057. 
  35058. File: gccint.info, Node: GIMPLE API, Next: The Language, Up: Match and Simplify
  35059. 26.1 GIMPLE API
  35060. ===============
  35061. -- GIMPLE function: tree gimple_simplify (enum tree_code, tree, tree,
  35062. gimple_seq *, tree (*)(tree))
  35063. -- GIMPLE function: tree gimple_simplify (enum tree_code, tree, tree,
  35064. tree, gimple_seq *, tree (*)(tree))
  35065. -- GIMPLE function: tree gimple_simplify (enum tree_code, tree, tree,
  35066. tree, tree, gimple_seq *, tree (*)(tree))
  35067. -- GIMPLE function: tree gimple_simplify (enum built_in_function, tree,
  35068. tree, gimple_seq *, tree (*)(tree))
  35069. -- GIMPLE function: tree gimple_simplify (enum built_in_function, tree,
  35070. tree, tree, gimple_seq *, tree (*)(tree))
  35071. -- GIMPLE function: tree gimple_simplify (enum built_in_function, tree,
  35072. tree, tree, tree, gimple_seq *, tree (*)(tree))
  35073. The main GIMPLE API entry to the expression simplifications
  35074. mimicing that of the GENERIC fold_{unary,binary,ternary} functions.
  35075. thus providing n-ary overloads for operation or function. The
  35076. additional arguments are a gimple_seq where built statements are
  35077. inserted on (if 'NULL' then simplifications requiring new statements are
  35078. not performed) and a valueization hook that can be used to tie
  35079. simplifications to a SSA lattice.
  35080. In addition to those APIs 'fold_stmt' is overloaded with a valueization
  35081. hook:
  35082. -- bool: fold_stmt (gimple_stmt_iterator *, tree (*)(tree));
  35083. Ontop of these a 'fold_buildN'-like API for GIMPLE is introduced:
  35084. -- GIMPLE function: tree gimple_build (gimple_seq *, location_t, enum
  35085. tree_code, tree, tree, tree (*valueize) (tree) = NULL);
  35086. -- GIMPLE function: tree gimple_build (gimple_seq *, location_t, enum
  35087. tree_code, tree, tree, tree, tree (*valueize) (tree) = NULL);
  35088. -- GIMPLE function: tree gimple_build (gimple_seq *, location_t, enum
  35089. tree_code, tree, tree, tree, tree, tree (*valueize) (tree) =
  35090. NULL);
  35091. -- GIMPLE function: tree gimple_build (gimple_seq *, location_t, enum
  35092. built_in_function, tree, tree, tree (*valueize) (tree) =
  35093. NULL);
  35094. -- GIMPLE function: tree gimple_build (gimple_seq *, location_t, enum
  35095. built_in_function, tree, tree, tree, tree (*valueize) (tree) =
  35096. NULL);
  35097. -- GIMPLE function: tree gimple_build (gimple_seq *, location_t, enum
  35098. built_in_function, tree, tree, tree, tree, tree (*valueize)
  35099. (tree) = NULL);
  35100. -- GIMPLE function: tree gimple_convert (gimple_seq *, location_t,
  35101. tree, tree);
  35102. which is supposed to replace 'force_gimple_operand (fold_buildN (...),
  35103. ...)' and calls to 'fold_convert'. Overloads without the 'location_t'
  35104. argument exist. Built statements are inserted on the provided sequence
  35105. and simplification is performed using the optional valueization hook.
  35106. 
  35107. File: gccint.info, Node: The Language, Prev: GIMPLE API, Up: Match and Simplify
  35108. 26.2 The Language
  35109. =================
  35110. The language to write expression simplifications in resembles other
  35111. domain-specific languages GCC uses. Thus it is lispy. Lets start with
  35112. an example from the match.pd file:
  35113. (simplify
  35114. (bit_and @0 integer_all_onesp)
  35115. @0)
  35116. This example contains all required parts of an expression
  35117. simplification. A simplification is wrapped inside a '(simplify ...)'
  35118. expression. That contains at least two operands - an expression that is
  35119. matched with the GIMPLE or GENERIC IL and a replacement expression that
  35120. is returned if the match was successful.
  35121. Expressions have an operator ID, 'bit_and' in this case. Expressions
  35122. can be lower-case tree codes with '_expr' stripped off or builtin
  35123. function code names in all-caps, like 'BUILT_IN_SQRT'.
  35124. '@n' denotes a so-called capture. It captures the operand and lets you
  35125. refer to it in other places of the match-and-simplify. In the above
  35126. example it is refered to in the replacement expression. Captures are
  35127. '@' followed by a number or an identifier.
  35128. (simplify
  35129. (bit_xor @0 @0)
  35130. { build_zero_cst (type); })
  35131. In this example '@0' is mentioned twice which constrains the matched
  35132. expression to have two equal operands. Usually matches are constraint
  35133. to equal types. If operands may be constants and conversions are
  35134. involved matching by value might be preferred in which case use '@@0' to
  35135. denote a by value match and the specific operand you want to refer to in
  35136. the result part. This example also introduces operands written in C
  35137. code. These can be used in the expression replacements and are supposed
  35138. to evaluate to a tree node which has to be a valid GIMPLE operand (so
  35139. you cannot generate expressions in C code).
  35140. (simplify
  35141. (trunc_mod integer_zerop@0 @1)
  35142. (if (!integer_zerop (@1))
  35143. @0))
  35144. Here '@0' captures the first operand of the trunc_mod expression which
  35145. is also predicated with 'integer_zerop'. Expression operands may be
  35146. either expressions, predicates or captures. Captures can be
  35147. unconstrained or capture expresions or predicates.
  35148. This example introduces an optional operand of simplify, the
  35149. if-expression. This condition is evaluated after the expression matched
  35150. in the IL and is required to evaluate to true to enable the replacement
  35151. expression in the second operand position. The expression operand of
  35152. the 'if' is a standard C expression which may contain references to
  35153. captures. The 'if' has an optional third operand which may contain the
  35154. replacement expression that is enabled when the condition evaluates to
  35155. false.
  35156. A 'if' expression can be used to specify a common condition for
  35157. multiple simplify patterns, avoiding the need to repeat that multiple
  35158. times:
  35159. (if (!TYPE_SATURATING (type)
  35160. && !FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
  35161. (simplify
  35162. (minus (plus @0 @1) @0)
  35163. @1)
  35164. (simplify
  35165. (minus (minus @0 @1) @0)
  35166. (negate @1)))
  35167. Note that 'if's in outer position do not have the optional else clause
  35168. but instead have multiple then clauses.
  35169. Ifs can be nested.
  35170. There exists a 'switch' expression which can be used to chain
  35171. conditions avoiding nesting 'if's too much:
  35172. (simplify
  35173. (simple_comparison @0 REAL_CST@1)
  35174. (switch
  35175. /* a CMP (-0) -> a CMP 0 */
  35176. (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
  35177. (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
  35178. /* x != NaN is always true, other ops are always false. */
  35179. (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
  35180. && ! HONOR_SNANS (@1))
  35181. { constant_boolean_node (cmp == NE_EXPR, type); })))
  35182. Is equal to
  35183. (simplify
  35184. (simple_comparison @0 REAL_CST@1)
  35185. (switch
  35186. /* a CMP (-0) -> a CMP 0 */
  35187. (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
  35188. (cmp @0 { build_real (TREE_TYPE (@1), dconst0); })
  35189. /* x != NaN is always true, other ops are always false. */
  35190. (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
  35191. && ! HONOR_SNANS (@1))
  35192. { constant_boolean_node (cmp == NE_EXPR, type); }))))
  35193. which has the second 'if' in the else operand of the first. The
  35194. 'switch' expression takes 'if' expressions as operands (which may not
  35195. have else clauses) and as a last operand a replacement expression which
  35196. should be enabled by default if no other condition evaluated to true.
  35197. Captures can also be used for capturing results of sub-expressions.
  35198. #if GIMPLE
  35199. (simplify
  35200. (pointer_plus (addr@2 @0) INTEGER_CST_P@1)
  35201. (if (is_gimple_min_invariant (@2)))
  35202. {
  35203. poly_int64 off;
  35204. tree base = get_addr_base_and_unit_offset (@0, &off);
  35205. off += tree_to_uhwi (@1);
  35206. /* Now with that we should be able to simply write
  35207. (addr (mem_ref (addr @base) (plus @off @1))) */
  35208. build1 (ADDR_EXPR, type,
  35209. build2 (MEM_REF, TREE_TYPE (TREE_TYPE (@2)),
  35210. build_fold_addr_expr (base),
  35211. build_int_cst (ptr_type_node, off)));
  35212. })
  35213. #endif
  35214. In the above example, '@2' captures the result of the expression '(addr
  35215. @0)'. For outermost expression only its type can be captured, and the
  35216. keyword 'type' is reserved for this purpose. The above example also
  35217. gives a way to conditionalize patterns to only apply to 'GIMPLE' or
  35218. 'GENERIC' by means of using the pre-defined preprocessor macros 'GIMPLE'
  35219. and 'GENERIC' and using preprocessor directives.
  35220. (simplify
  35221. (bit_and:c integral_op_p@0 (bit_ior:c (bit_not @0) @1))
  35222. (bit_and @1 @0))
  35223. Here we introduce flags on match expressions. The flag used above,
  35224. 'c', denotes that the expression should be also matched commutated.
  35225. Thus the above match expression is really the following four match
  35226. expressions:
  35227. (bit_and integral_op_p@0 (bit_ior (bit_not @0) @1))
  35228. (bit_and (bit_ior (bit_not @0) @1) integral_op_p@0)
  35229. (bit_and integral_op_p@0 (bit_ior @1 (bit_not @0)))
  35230. (bit_and (bit_ior @1 (bit_not @0)) integral_op_p@0)
  35231. Usual canonicalizations you know from GENERIC expressions are applied
  35232. before matching, so for example constant operands always come second in
  35233. commutative expressions.
  35234. The second supported flag is 's' which tells the code generator to fail
  35235. the pattern if the expression marked with 's' does have more than one
  35236. use. For example in
  35237. (simplify
  35238. (pointer_plus (pointer_plus:s @0 @1) @3)
  35239. (pointer_plus @0 (plus @1 @3)))
  35240. this avoids the association if '(pointer_plus @0 @1)' is used outside
  35241. of the matched expression and thus it would stay live and not trivially
  35242. removed by dead code elimination.
  35243. More features exist to avoid too much repetition.
  35244. (for op (plus pointer_plus minus bit_ior bit_xor)
  35245. (simplify
  35246. (op @0 integer_zerop)
  35247. @0))
  35248. A 'for' expression can be used to repeat a pattern for each operator
  35249. specified, substituting 'op'. 'for' can be nested and a 'for' can have
  35250. multiple operators to iterate.
  35251. (for opa (plus minus)
  35252. opb (minus plus)
  35253. (for opc (plus minus)
  35254. (simplify...
  35255. In this example the pattern will be repeated four times with 'opa, opb,
  35256. opc' being 'plus, minus, plus', 'plus, minus, minus', 'minus, plus,
  35257. plus', 'minus, plus, minus'.
  35258. To avoid repeating operator lists in 'for' you can name them via
  35259. (define_operator_list pmm plus minus mult)
  35260. and use them in 'for' operator lists where they get expanded.
  35261. (for opa (pmm trunc_div)
  35262. (simplify...
  35263. So this example iterates over 'plus', 'minus', 'mult' and 'trunc_div'.
  35264. Using operator lists can also remove the need to explicitely write a
  35265. 'for'. All operator list uses that appear in a 'simplify' or 'match'
  35266. pattern in operator positions will implicitely be added to a new 'for'.
  35267. For example
  35268. (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
  35269. (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
  35270. (simplify
  35271. (SQRT (POW @0 @1))
  35272. (POW (abs @0) (mult @1 { built_real (TREE_TYPE (@1), dconsthalf); })))
  35273. is the same as
  35274. (for SQRT (BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
  35275. POW (BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
  35276. (simplify
  35277. (SQRT (POW @0 @1))
  35278. (POW (abs @0) (mult @1 { built_real (TREE_TYPE (@1), dconsthalf); }))))
  35279. 'for's and operator lists can include the special identifier 'null'
  35280. that matches nothing and can never be generated. This can be used to
  35281. pad an operator list so that it has a standard form, even if there isn't
  35282. a suitable operator for every form.
  35283. Another building block are 'with' expressions in the result expression
  35284. which nest the generated code in a new C block followed by its argument:
  35285. (simplify
  35286. (convert (mult @0 @1))
  35287. (with { tree utype = unsigned_type_for (type); }
  35288. (convert (mult (convert:utype @0) (convert:utype @1)))))
  35289. This allows code nested in the 'with' to refer to the declared
  35290. variables. In the above case we use the feature to specify the type of
  35291. a generated expression with the ':type' syntax where 'type' needs to be
  35292. an identifier that refers to the desired type. Usually the types of the
  35293. generated result expressions are determined from the context, but
  35294. sometimes like in the above case it is required that you specify them
  35295. explicitely.
  35296. As intermediate conversions are often optional there is a way to avoid
  35297. the need to repeat patterns both with and without such conversions.
  35298. Namely you can mark a conversion as being optional with a '?':
  35299. (simplify
  35300. (eq (convert@0 @1) (convert? @2))
  35301. (eq @1 (convert @2)))
  35302. which will match both '(eq (convert @1) (convert @2))' and '(eq
  35303. (convert @1) @2)'. The optional converts are supposed to be all either
  35304. present or not, thus '(eq (convert? @1) (convert? @2))' will result in
  35305. two patterns only. If you want to match all four combinations you have
  35306. access to two additional conditional converts as in '(eq (convert1? @1)
  35307. (convert2? @2))'.
  35308. Predicates available from the GCC middle-end need to be made available
  35309. explicitely via 'define_predicates':
  35310. (define_predicates
  35311. integer_onep integer_zerop integer_all_onesp)
  35312. You can also define predicates using the pattern matching language and
  35313. the 'match' form:
  35314. (match negate_expr_p
  35315. INTEGER_CST
  35316. (if (TYPE_OVERFLOW_WRAPS (type)
  35317. || may_negate_without_overflow_p (t))))
  35318. (match negate_expr_p
  35319. (negate @0))
  35320. This shows that for 'match' expressions there is 't' available which
  35321. captures the outermost expression (something not possible in the
  35322. 'simplify' context). As you can see 'match' has an identifier as first
  35323. operand which is how you refer to the predicate in patterns. Multiple
  35324. 'match' for the same identifier add additional cases where the predicate
  35325. matches.
  35326. Predicates can also match an expression in which case you need to
  35327. provide a template specifying the identifier and where to get its
  35328. operands from:
  35329. (match (logical_inverted_value @0)
  35330. (eq @0 integer_zerop))
  35331. (match (logical_inverted_value @0)
  35332. (bit_not truth_valued_p@0))
  35333. You can use the above predicate like
  35334. (simplify
  35335. (bit_and @0 (logical_inverted_value @0))
  35336. { build_zero_cst (type); })
  35337. Which will match a bitwise and of an operand with its logical inverted
  35338. value.
  35339. 
  35340. File: gccint.info, Node: Funding, Next: GNU Project, Prev: Match and Simplify, Up: Top
  35341. Funding Free Software
  35342. *********************
  35343. If you want to have more free software a few years from now, it makes
  35344. sense for you to help encourage people to contribute funds for its
  35345. development. The most effective approach known is to encourage
  35346. commercial redistributors to donate.
  35347. Users of free software systems can boost the pace of development by
  35348. encouraging for-a-fee distributors to donate part of their selling price
  35349. to free software developers--the Free Software Foundation, and others.
  35350. The way to convince distributors to do this is to demand it and expect
  35351. it from them. So when you compare distributors, judge them partly by
  35352. how much they give to free software development. Show distributors they
  35353. must compete to be the one who gives the most.
  35354. To make this approach work, you must insist on numbers that you can
  35355. compare, such as, "We will donate ten dollars to the Frobnitz project
  35356. for each disk sold." Don't be satisfied with a vague promise, such as
  35357. "A portion of the profits are donated," since it doesn't give a basis
  35358. for comparison.
  35359. Even a precise fraction "of the profits from this disk" is not very
  35360. meaningful, since creative accounting and unrelated business decisions
  35361. can greatly alter what fraction of the sales price counts as profit. If
  35362. the price you pay is $50, ten percent of the profit is probably less
  35363. than a dollar; it might be a few cents, or nothing at all.
  35364. Some redistributors do development work themselves. This is useful
  35365. too; but to keep everyone honest, you need to inquire how much they do,
  35366. and what kind. Some kinds of development make much more long-term
  35367. difference than others. For example, maintaining a separate version of
  35368. a program contributes very little; maintaining the standard version of a
  35369. program for the whole community contributes much. Easy new ports
  35370. contribute little, since someone else would surely do them; difficult
  35371. ports such as adding a new CPU to the GNU Compiler Collection contribute
  35372. more; major new features or packages contribute the most.
  35373. By establishing the idea that supporting further development is "the
  35374. proper thing to do" when distributing free software for a fee, we can
  35375. assure a steady flow of resources into making more free software.
  35376. Copyright (C) 1994 Free Software Foundation, Inc.
  35377. Verbatim copying and redistribution of this section is permitted
  35378. without royalty; alteration is not permitted.
  35379. 
  35380. File: gccint.info, Node: GNU Project, Next: Copying, Prev: Funding, Up: Top
  35381. The GNU Project and GNU/Linux
  35382. *****************************
  35383. The GNU Project was launched in 1984 to develop a complete Unix-like
  35384. operating system which is free software: the GNU system. (GNU is a
  35385. recursive acronym for "GNU's Not Unix"; it is pronounced "guh-NEW".)
  35386. Variants of the GNU operating system, which use the kernel Linux, are
  35387. now widely used; though these systems are often referred to as "Linux",
  35388. they are more accurately called GNU/Linux systems.
  35389. For more information, see:
  35390. <http://www.gnu.org/>
  35391. <http://www.gnu.org/gnu/linux-and-gnu.html>
  35392. 
  35393. File: gccint.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top
  35394. GNU General Public License
  35395. **************************
  35396. Version 3, 29 June 2007
  35397. Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
  35398. Everyone is permitted to copy and distribute verbatim copies of this
  35399. license document, but changing it is not allowed.
  35400. Preamble
  35401. ========
  35402. The GNU General Public License is a free, copyleft license for software
  35403. and other kinds of works.
  35404. The licenses for most software and other practical works are designed
  35405. to take away your freedom to share and change the works. By contrast,
  35406. the GNU General Public License is intended to guarantee your freedom to
  35407. share and change all versions of a program-to make sure it remains free
  35408. software for all its users. We, the Free Software Foundation, use the
  35409. GNU General Public License for most of our software; it applies also to
  35410. any other work released this way by its authors. You can apply it to
  35411. your programs, too.
  35412. When we speak of free software, we are referring to freedom, not price.
  35413. Our General Public Licenses are designed to make sure that you have the
  35414. freedom to distribute copies of free software (and charge for them if
  35415. you wish), that you receive source code or can get it if you want it,
  35416. that you can change the software or use pieces of it in new free
  35417. programs, and that you know you can do these things.
  35418. To protect your rights, we need to prevent others from denying you
  35419. these rights or asking you to surrender the rights. Therefore, you have
  35420. certain responsibilities if you distribute copies of the software, or if
  35421. you modify it: responsibilities to respect the freedom of others.
  35422. For example, if you distribute copies of such a program, whether gratis
  35423. or for a fee, you must pass on to the recipients the same freedoms that
  35424. you received. You must make sure that they, too, receive or can get the
  35425. source code. And you must show them these terms so they know their
  35426. rights.
  35427. Developers that use the GNU GPL protect your rights with two steps: (1)
  35428. assert copyright on the software, and (2) offer you this License giving
  35429. you legal permission to copy, distribute and/or modify it.
  35430. For the developers' and authors' protection, the GPL clearly explains
  35431. that there is no warranty for this free software. For both users' and
  35432. authors' sake, the GPL requires that modified versions be marked as
  35433. changed, so that their problems will not be attributed erroneously to
  35434. authors of previous versions.
  35435. Some devices are designed to deny users access to install or run
  35436. modified versions of the software inside them, although the manufacturer
  35437. can do so. This is fundamentally incompatible with the aim of
  35438. protecting users' freedom to change the software. The systematic
  35439. pattern of such abuse occurs in the area of products for individuals to
  35440. use, which is precisely where it is most unacceptable. Therefore, we
  35441. have designed this version of the GPL to prohibit the practice for those
  35442. products. If such problems arise substantially in other domains, we
  35443. stand ready to extend this provision to those domains in future versions
  35444. of the GPL, as needed to protect the freedom of users.
  35445. Finally, every program is threatened constantly by software patents.
  35446. States should not allow patents to restrict development and use of
  35447. software on general-purpose computers, but in those that do, we wish to
  35448. avoid the special danger that patents applied to a free program could
  35449. make it effectively proprietary. To prevent this, the GPL assures that
  35450. patents cannot be used to render the program non-free.
  35451. The precise terms and conditions for copying, distribution and
  35452. modification follow.
  35453. TERMS AND CONDITIONS
  35454. ====================
  35455. 0. Definitions.
  35456. "This License" refers to version 3 of the GNU General Public
  35457. License.
  35458. "Copyright" also means copyright-like laws that apply to other
  35459. kinds of works, such as semiconductor masks.
  35460. "The Program" refers to any copyrightable work licensed under this
  35461. License. Each licensee is addressed as "you". "Licensees" and
  35462. "recipients" may be individuals or organizations.
  35463. To "modify" a work means to copy from or adapt all or part of the
  35464. work in a fashion requiring copyright permission, other than the
  35465. making of an exact copy. The resulting work is called a "modified
  35466. version" of the earlier work or a work "based on" the earlier work.
  35467. A "covered work" means either the unmodified Program or a work
  35468. based on the Program.
  35469. To "propagate" a work means to do anything with it that, without
  35470. permission, would make you directly or secondarily liable for
  35471. infringement under applicable copyright law, except executing it on
  35472. a computer or modifying a private copy. Propagation includes
  35473. copying, distribution (with or without modification), making
  35474. available to the public, and in some countries other activities as
  35475. well.
  35476. To "convey" a work means any kind of propagation that enables other
  35477. parties to make or receive copies. Mere interaction with a user
  35478. through a computer network, with no transfer of a copy, is not
  35479. conveying.
  35480. An interactive user interface displays "Appropriate Legal Notices"
  35481. to the extent that it includes a convenient and prominently visible
  35482. feature that (1) displays an appropriate copyright notice, and (2)
  35483. tells the user that there is no warranty for the work (except to
  35484. the extent that warranties are provided), that licensees may convey
  35485. the work under this License, and how to view a copy of this
  35486. License. If the interface presents a list of user commands or
  35487. options, such as a menu, a prominent item in the list meets this
  35488. criterion.
  35489. 1. Source Code.
  35490. The "source code" for a work means the preferred form of the work
  35491. for making modifications to it. "Object code" means any non-source
  35492. form of a work.
  35493. A "Standard Interface" means an interface that either is an
  35494. official standard defined by a recognized standards body, or, in
  35495. the case of interfaces specified for a particular programming
  35496. language, one that is widely used among developers working in that
  35497. language.
  35498. The "System Libraries" of an executable work include anything,
  35499. other than the work as a whole, that (a) is included in the normal
  35500. form of packaging a Major Component, but which is not part of that
  35501. Major Component, and (b) serves only to enable use of the work with
  35502. that Major Component, or to implement a Standard Interface for
  35503. which an implementation is available to the public in source code
  35504. form. A "Major Component", in this context, means a major
  35505. essential component (kernel, window system, and so on) of the
  35506. specific operating system (if any) on which the executable work
  35507. runs, or a compiler used to produce the work, or an object code
  35508. interpreter used to run it.
  35509. The "Corresponding Source" for a work in object code form means all
  35510. the source code needed to generate, install, and (for an executable
  35511. work) run the object code and to modify the work, including scripts
  35512. to control those activities. However, it does not include the
  35513. work's System Libraries, or general-purpose tools or generally
  35514. available free programs which are used unmodified in performing
  35515. those activities but which are not part of the work. For example,
  35516. Corresponding Source includes interface definition files associated
  35517. with source files for the work, and the source code for shared
  35518. libraries and dynamically linked subprograms that the work is
  35519. specifically designed to require, such as by intimate data
  35520. communication or control flow between those subprograms and other
  35521. parts of the work.
  35522. The Corresponding Source need not include anything that users can
  35523. regenerate automatically from other parts of the Corresponding
  35524. Source.
  35525. The Corresponding Source for a work in source code form is that
  35526. same work.
  35527. 2. Basic Permissions.
  35528. All rights granted under this License are granted for the term of
  35529. copyright on the Program, and are irrevocable provided the stated
  35530. conditions are met. This License explicitly affirms your unlimited
  35531. permission to run the unmodified Program. The output from running
  35532. a covered work is covered by this License only if the output, given
  35533. its content, constitutes a covered work. This License acknowledges
  35534. your rights of fair use or other equivalent, as provided by
  35535. copyright law.
  35536. You may make, run and propagate covered works that you do not
  35537. convey, without conditions so long as your license otherwise
  35538. remains in force. You may convey covered works to others for the
  35539. sole purpose of having them make modifications exclusively for you,
  35540. or provide you with facilities for running those works, provided
  35541. that you comply with the terms of this License in conveying all
  35542. material for which you do not control copyright. Those thus making
  35543. or running the covered works for you must do so exclusively on your
  35544. behalf, under your direction and control, on terms that prohibit
  35545. them from making any copies of your copyrighted material outside
  35546. their relationship with you.
  35547. Conveying under any other circumstances is permitted solely under
  35548. the conditions stated below. Sublicensing is not allowed; section
  35549. 10 makes it unnecessary.
  35550. 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
  35551. No covered work shall be deemed part of an effective technological
  35552. measure under any applicable law fulfilling obligations under
  35553. article 11 of the WIPO copyright treaty adopted on 20 December
  35554. 1996, or similar laws prohibiting or restricting circumvention of
  35555. such measures.
  35556. When you convey a covered work, you waive any legal power to forbid
  35557. circumvention of technological measures to the extent such
  35558. circumvention is effected by exercising rights under this License
  35559. with respect to the covered work, and you disclaim any intention to
  35560. limit operation or modification of the work as a means of
  35561. enforcing, against the work's users, your or third parties' legal
  35562. rights to forbid circumvention of technological measures.
  35563. 4. Conveying Verbatim Copies.
  35564. You may convey verbatim copies of the Program's source code as you
  35565. receive it, in any medium, provided that you conspicuously and
  35566. appropriately publish on each copy an appropriate copyright notice;
  35567. keep intact all notices stating that this License and any
  35568. non-permissive terms added in accord with section 7 apply to the
  35569. code; keep intact all notices of the absence of any warranty; and
  35570. give all recipients a copy of this License along with the Program.
  35571. You may charge any price or no price for each copy that you convey,
  35572. and you may offer support or warranty protection for a fee.
  35573. 5. Conveying Modified Source Versions.
  35574. You may convey a work based on the Program, or the modifications to
  35575. produce it from the Program, in the form of source code under the
  35576. terms of section 4, provided that you also meet all of these
  35577. conditions:
  35578. a. The work must carry prominent notices stating that you
  35579. modified it, and giving a relevant date.
  35580. b. The work must carry prominent notices stating that it is
  35581. released under this License and any conditions added under
  35582. section 7. This requirement modifies the requirement in
  35583. section 4 to "keep intact all notices".
  35584. c. You must license the entire work, as a whole, under this
  35585. License to anyone who comes into possession of a copy. This
  35586. License will therefore apply, along with any applicable
  35587. section 7 additional terms, to the whole of the work, and all
  35588. its parts, regardless of how they are packaged. This License
  35589. gives no permission to license the work in any other way, but
  35590. it does not invalidate such permission if you have separately
  35591. received it.
  35592. d. If the work has interactive user interfaces, each must display
  35593. Appropriate Legal Notices; however, if the Program has
  35594. interactive interfaces that do not display Appropriate Legal
  35595. Notices, your work need not make them do so.
  35596. A compilation of a covered work with other separate and independent
  35597. works, which are not by their nature extensions of the covered
  35598. work, and which are not combined with it such as to form a larger
  35599. program, in or on a volume of a storage or distribution medium, is
  35600. called an "aggregate" if the compilation and its resulting
  35601. copyright are not used to limit the access or legal rights of the
  35602. compilation's users beyond what the individual works permit.
  35603. Inclusion of a covered work in an aggregate does not cause this
  35604. License to apply to the other parts of the aggregate.
  35605. 6. Conveying Non-Source Forms.
  35606. You may convey a covered work in object code form under the terms
  35607. of sections 4 and 5, provided that you also convey the
  35608. machine-readable Corresponding Source under the terms of this
  35609. License, in one of these ways:
  35610. a. Convey the object code in, or embodied in, a physical product
  35611. (including a physical distribution medium), accompanied by the
  35612. Corresponding Source fixed on a durable physical medium
  35613. customarily used for software interchange.
  35614. b. Convey the object code in, or embodied in, a physical product
  35615. (including a physical distribution medium), accompanied by a
  35616. written offer, valid for at least three years and valid for as
  35617. long as you offer spare parts or customer support for that
  35618. product model, to give anyone who possesses the object code
  35619. either (1) a copy of the Corresponding Source for all the
  35620. software in the product that is covered by this License, on a
  35621. durable physical medium customarily used for software
  35622. interchange, for a price no more than your reasonable cost of
  35623. physically performing this conveying of source, or (2) access
  35624. to copy the Corresponding Source from a network server at no
  35625. charge.
  35626. c. Convey individual copies of the object code with a copy of the
  35627. written offer to provide the Corresponding Source. This
  35628. alternative is allowed only occasionally and noncommercially,
  35629. and only if you received the object code with such an offer,
  35630. in accord with subsection 6b.
  35631. d. Convey the object code by offering access from a designated
  35632. place (gratis or for a charge), and offer equivalent access to
  35633. the Corresponding Source in the same way through the same
  35634. place at no further charge. You need not require recipients
  35635. to copy the Corresponding Source along with the object code.
  35636. If the place to copy the object code is a network server, the
  35637. Corresponding Source may be on a different server (operated by
  35638. you or a third party) that supports equivalent copying
  35639. facilities, provided you maintain clear directions next to the
  35640. object code saying where to find the Corresponding Source.
  35641. Regardless of what server hosts the Corresponding Source, you
  35642. remain obligated to ensure that it is available for as long as
  35643. needed to satisfy these requirements.
  35644. e. Convey the object code using peer-to-peer transmission,
  35645. provided you inform other peers where the object code and
  35646. Corresponding Source of the work are being offered to the
  35647. general public at no charge under subsection 6d.
  35648. A separable portion of the object code, whose source code is
  35649. excluded from the Corresponding Source as a System Library, need
  35650. not be included in conveying the object code work.
  35651. A "User Product" is either (1) a "consumer product", which means
  35652. any tangible personal property which is normally used for personal,
  35653. family, or household purposes, or (2) anything designed or sold for
  35654. incorporation into a dwelling. In determining whether a product is
  35655. a consumer product, doubtful cases shall be resolved in favor of
  35656. coverage. For a particular product received by a particular user,
  35657. "normally used" refers to a typical or common use of that class of
  35658. product, regardless of the status of the particular user or of the
  35659. way in which the particular user actually uses, or expects or is
  35660. expected to use, the product. A product is a consumer product
  35661. regardless of whether the product has substantial commercial,
  35662. industrial or non-consumer uses, unless such uses represent the
  35663. only significant mode of use of the product.
  35664. "Installation Information" for a User Product means any methods,
  35665. procedures, authorization keys, or other information required to
  35666. install and execute modified versions of a covered work in that
  35667. User Product from a modified version of its Corresponding Source.
  35668. The information must suffice to ensure that the continued
  35669. functioning of the modified object code is in no case prevented or
  35670. interfered with solely because modification has been made.
  35671. If you convey an object code work under this section in, or with,
  35672. or specifically for use in, a User Product, and the conveying
  35673. occurs as part of a transaction in which the right of possession
  35674. and use of the User Product is transferred to the recipient in
  35675. perpetuity or for a fixed term (regardless of how the transaction
  35676. is characterized), the Corresponding Source conveyed under this
  35677. section must be accompanied by the Installation Information. But
  35678. this requirement does not apply if neither you nor any third party
  35679. retains the ability to install modified object code on the User
  35680. Product (for example, the work has been installed in ROM).
  35681. The requirement to provide Installation Information does not
  35682. include a requirement to continue to provide support service,
  35683. warranty, or updates for a work that has been modified or installed
  35684. by the recipient, or for the User Product in which it has been
  35685. modified or installed. Access to a network may be denied when the
  35686. modification itself materially and adversely affects the operation
  35687. of the network or violates the rules and protocols for
  35688. communication across the network.
  35689. Corresponding Source conveyed, and Installation Information
  35690. provided, in accord with this section must be in a format that is
  35691. publicly documented (and with an implementation available to the
  35692. public in source code form), and must require no special password
  35693. or key for unpacking, reading or copying.
  35694. 7. Additional Terms.
  35695. "Additional permissions" are terms that supplement the terms of
  35696. this License by making exceptions from one or more of its
  35697. conditions. Additional permissions that are applicable to the
  35698. entire Program shall be treated as though they were included in
  35699. this License, to the extent that they are valid under applicable
  35700. law. If additional permissions apply only to part of the Program,
  35701. that part may be used separately under those permissions, but the
  35702. entire Program remains governed by this License without regard to
  35703. the additional permissions.
  35704. When you convey a copy of a covered work, you may at your option
  35705. remove any additional permissions from that copy, or from any part
  35706. of it. (Additional permissions may be written to require their own
  35707. removal in certain cases when you modify the work.) You may place
  35708. additional permissions on material, added by you to a covered work,
  35709. for which you have or can give appropriate copyright permission.
  35710. Notwithstanding any other provision of this License, for material
  35711. you add to a covered work, you may (if authorized by the copyright
  35712. holders of that material) supplement the terms of this License with
  35713. terms:
  35714. a. Disclaiming warranty or limiting liability differently from
  35715. the terms of sections 15 and 16 of this License; or
  35716. b. Requiring preservation of specified reasonable legal notices
  35717. or author attributions in that material or in the Appropriate
  35718. Legal Notices displayed by works containing it; or
  35719. c. Prohibiting misrepresentation of the origin of that material,
  35720. or requiring that modified versions of such material be marked
  35721. in reasonable ways as different from the original version; or
  35722. d. Limiting the use for publicity purposes of names of licensors
  35723. or authors of the material; or
  35724. e. Declining to grant rights under trademark law for use of some
  35725. trade names, trademarks, or service marks; or
  35726. f. Requiring indemnification of licensors and authors of that
  35727. material by anyone who conveys the material (or modified
  35728. versions of it) with contractual assumptions of liability to
  35729. the recipient, for any liability that these contractual
  35730. assumptions directly impose on those licensors and authors.
  35731. All other non-permissive additional terms are considered "further
  35732. restrictions" within the meaning of section 10. If the Program as
  35733. you received it, or any part of it, contains a notice stating that
  35734. it is governed by this License along with a term that is a further
  35735. restriction, you may remove that term. If a license document
  35736. contains a further restriction but permits relicensing or conveying
  35737. under this License, you may add to a covered work material governed
  35738. by the terms of that license document, provided that the further
  35739. restriction does not survive such relicensing or conveying.
  35740. If you add terms to a covered work in accord with this section, you
  35741. must place, in the relevant source files, a statement of the
  35742. additional terms that apply to those files, or a notice indicating
  35743. where to find the applicable terms.
  35744. Additional terms, permissive or non-permissive, may be stated in
  35745. the form of a separately written license, or stated as exceptions;
  35746. the above requirements apply either way.
  35747. 8. Termination.
  35748. You may not propagate or modify a covered work except as expressly
  35749. provided under this License. Any attempt otherwise to propagate or
  35750. modify it is void, and will automatically terminate your rights
  35751. under this License (including any patent licenses granted under the
  35752. third paragraph of section 11).
  35753. However, if you cease all violation of this License, then your
  35754. license from a particular copyright holder is reinstated (a)
  35755. provisionally, unless and until the copyright holder explicitly and
  35756. finally terminates your license, and (b) permanently, if the
  35757. copyright holder fails to notify you of the violation by some
  35758. reasonable means prior to 60 days after the cessation.
  35759. Moreover, your license from a particular copyright holder is
  35760. reinstated permanently if the copyright holder notifies you of the
  35761. violation by some reasonable means, this is the first time you have
  35762. received notice of violation of this License (for any work) from
  35763. that copyright holder, and you cure the violation prior to 30 days
  35764. after your receipt of the notice.
  35765. Termination of your rights under this section does not terminate
  35766. the licenses of parties who have received copies or rights from you
  35767. under this License. If your rights have been terminated and not
  35768. permanently reinstated, you do not qualify to receive new licenses
  35769. for the same material under section 10.
  35770. 9. Acceptance Not Required for Having Copies.
  35771. You are not required to accept this License in order to receive or
  35772. run a copy of the Program. Ancillary propagation of a covered work
  35773. occurring solely as a consequence of using peer-to-peer
  35774. transmission to receive a copy likewise does not require
  35775. acceptance. However, nothing other than this License grants you
  35776. permission to propagate or modify any covered work. These actions
  35777. infringe copyright if you do not accept this License. Therefore,
  35778. by modifying or propagating a covered work, you indicate your
  35779. acceptance of this License to do so.
  35780. 10. Automatic Licensing of Downstream Recipients.
  35781. Each time you convey a covered work, the recipient automatically
  35782. receives a license from the original licensors, to run, modify and
  35783. propagate that work, subject to this License. You are not
  35784. responsible for enforcing compliance by third parties with this
  35785. License.
  35786. An "entity transaction" is a transaction transferring control of an
  35787. organization, or substantially all assets of one, or subdividing an
  35788. organization, or merging organizations. If propagation of a
  35789. covered work results from an entity transaction, each party to that
  35790. transaction who receives a copy of the work also receives whatever
  35791. licenses to the work the party's predecessor in interest had or
  35792. could give under the previous paragraph, plus a right to possession
  35793. of the Corresponding Source of the work from the predecessor in
  35794. interest, if the predecessor has it or can get it with reasonable
  35795. efforts.
  35796. You may not impose any further restrictions on the exercise of the
  35797. rights granted or affirmed under this License. For example, you
  35798. may not impose a license fee, royalty, or other charge for exercise
  35799. of rights granted under this License, and you may not initiate
  35800. litigation (including a cross-claim or counterclaim in a lawsuit)
  35801. alleging that any patent claim is infringed by making, using,
  35802. selling, offering for sale, or importing the Program or any portion
  35803. of it.
  35804. 11. Patents.
  35805. A "contributor" is a copyright holder who authorizes use under this
  35806. License of the Program or a work on which the Program is based.
  35807. The work thus licensed is called the contributor's "contributor
  35808. version".
  35809. A contributor's "essential patent claims" are all patent claims
  35810. owned or controlled by the contributor, whether already acquired or
  35811. hereafter acquired, that would be infringed by some manner,
  35812. permitted by this License, of making, using, or selling its
  35813. contributor version, but do not include claims that would be
  35814. infringed only as a consequence of further modification of the
  35815. contributor version. For purposes of this definition, "control"
  35816. includes the right to grant patent sublicenses in a manner
  35817. consistent with the requirements of this License.
  35818. Each contributor grants you a non-exclusive, worldwide,
  35819. royalty-free patent license under the contributor's essential
  35820. patent claims, to make, use, sell, offer for sale, import and
  35821. otherwise run, modify and propagate the contents of its contributor
  35822. version.
  35823. In the following three paragraphs, a "patent license" is any
  35824. express agreement or commitment, however denominated, not to
  35825. enforce a patent (such as an express permission to practice a
  35826. patent or covenant not to sue for patent infringement). To "grant"
  35827. such a patent license to a party means to make such an agreement or
  35828. commitment not to enforce a patent against the party.
  35829. If you convey a covered work, knowingly relying on a patent
  35830. license, and the Corresponding Source of the work is not available
  35831. for anyone to copy, free of charge and under the terms of this
  35832. License, through a publicly available network server or other
  35833. readily accessible means, then you must either (1) cause the
  35834. Corresponding Source to be so available, or (2) arrange to deprive
  35835. yourself of the benefit of the patent license for this particular
  35836. work, or (3) arrange, in a manner consistent with the requirements
  35837. of this License, to extend the patent license to downstream
  35838. recipients. "Knowingly relying" means you have actual knowledge
  35839. that, but for the patent license, your conveying the covered work
  35840. in a country, or your recipient's use of the covered work in a
  35841. country, would infringe one or more identifiable patents in that
  35842. country that you have reason to believe are valid.
  35843. If, pursuant to or in connection with a single transaction or
  35844. arrangement, you convey, or propagate by procuring conveyance of, a
  35845. covered work, and grant a patent license to some of the parties
  35846. receiving the covered work authorizing them to use, propagate,
  35847. modify or convey a specific copy of the covered work, then the
  35848. patent license you grant is automatically extended to all
  35849. recipients of the covered work and works based on it.
  35850. A patent license is "discriminatory" if it does not include within
  35851. the scope of its coverage, prohibits the exercise of, or is
  35852. conditioned on the non-exercise of one or more of the rights that
  35853. are specifically granted under this License. You may not convey a
  35854. covered work if you are a party to an arrangement with a third
  35855. party that is in the business of distributing software, under which
  35856. you make payment to the third party based on the extent of your
  35857. activity of conveying the work, and under which the third party
  35858. grants, to any of the parties who would receive the covered work
  35859. from you, a discriminatory patent license (a) in connection with
  35860. copies of the covered work conveyed by you (or copies made from
  35861. those copies), or (b) primarily for and in connection with specific
  35862. products or compilations that contain the covered work, unless you
  35863. entered into that arrangement, or that patent license was granted,
  35864. prior to 28 March 2007.
  35865. Nothing in this License shall be construed as excluding or limiting
  35866. any implied license or other defenses to infringement that may
  35867. otherwise be available to you under applicable patent law.
  35868. 12. No Surrender of Others' Freedom.
  35869. If conditions are imposed on you (whether by court order, agreement
  35870. or otherwise) that contradict the conditions of this License, they
  35871. do not excuse you from the conditions of this License. If you
  35872. cannot convey a covered work so as to satisfy simultaneously your
  35873. obligations under this License and any other pertinent obligations,
  35874. then as a consequence you may not convey it at all. For example,
  35875. if you agree to terms that obligate you to collect a royalty for
  35876. further conveying from those to whom you convey the Program, the
  35877. only way you could satisfy both those terms and this License would
  35878. be to refrain entirely from conveying the Program.
  35879. 13. Use with the GNU Affero General Public License.
  35880. Notwithstanding any other provision of this License, you have
  35881. permission to link or combine any covered work with a work licensed
  35882. under version 3 of the GNU Affero General Public License into a
  35883. single combined work, and to convey the resulting work. The terms
  35884. of this License will continue to apply to the part which is the
  35885. covered work, but the special requirements of the GNU Affero
  35886. General Public License, section 13, concerning interaction through
  35887. a network will apply to the combination as such.
  35888. 14. Revised Versions of this License.
  35889. The Free Software Foundation may publish revised and/or new
  35890. versions of the GNU General Public License from time to time. Such
  35891. new versions will be similar in spirit to the present version, but
  35892. may differ in detail to address new problems or concerns.
  35893. Each version is given a distinguishing version number. If the
  35894. Program specifies that a certain numbered version of the GNU
  35895. General Public License "or any later version" applies to it, you
  35896. have the option of following the terms and conditions either of
  35897. that numbered version or of any later version published by the Free
  35898. Software Foundation. If the Program does not specify a version
  35899. number of the GNU General Public License, you may choose any
  35900. version ever published by the Free Software Foundation.
  35901. If the Program specifies that a proxy can decide which future
  35902. versions of the GNU General Public License can be used, that
  35903. proxy's public statement of acceptance of a version permanently
  35904. authorizes you to choose that version for the Program.
  35905. Later license versions may give you additional or different
  35906. permissions. However, no additional obligations are imposed on any
  35907. author or copyright holder as a result of your choosing to follow a
  35908. later version.
  35909. 15. Disclaimer of Warranty.
  35910. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
  35911. APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
  35912. COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
  35913. WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
  35914. INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  35915. MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
  35916. RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
  35917. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
  35918. NECESSARY SERVICING, REPAIR OR CORRECTION.
  35919. 16. Limitation of Liability.
  35920. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
  35921. WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
  35922. AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
  35923. DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
  35924. CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
  35925. THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
  35926. BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
  35927. PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
  35928. PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
  35929. THE POSSIBILITY OF SUCH DAMAGES.
  35930. 17. Interpretation of Sections 15 and 16.
  35931. If the disclaimer of warranty and limitation of liability provided
  35932. above cannot be given local legal effect according to their terms,
  35933. reviewing courts shall apply local law that most closely
  35934. approximates an absolute waiver of all civil liability in
  35935. connection with the Program, unless a warranty or assumption of
  35936. liability accompanies a copy of the Program in return for a fee.
  35937. END OF TERMS AND CONDITIONS
  35938. ===========================
  35939. How to Apply These Terms to Your New Programs
  35940. =============================================
  35941. If you develop a new program, and you want it to be of the greatest
  35942. possible use to the public, the best way to achieve this is to make it
  35943. free software which everyone can redistribute and change under these
  35944. terms.
  35945. To do so, attach the following notices to the program. It is safest to
  35946. attach them to the start of each source file to most effectively state
  35947. the exclusion of warranty; and each file should have at least the
  35948. "copyright" line and a pointer to where the full notice is found.
  35949. ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
  35950. Copyright (C) YEAR NAME OF AUTHOR
  35951. This program is free software: you can redistribute it and/or modify
  35952. it under the terms of the GNU General Public License as published by
  35953. the Free Software Foundation, either version 3 of the License, or (at
  35954. your option) any later version.
  35955. This program is distributed in the hope that it will be useful, but
  35956. WITHOUT ANY WARRANTY; without even the implied warranty of
  35957. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  35958. General Public License for more details.
  35959. You should have received a copy of the GNU General Public License
  35960. along with this program. If not, see <http://www.gnu.org/licenses/>.
  35961. Also add information on how to contact you by electronic and paper
  35962. mail.
  35963. If the program does terminal interaction, make it output a short notice
  35964. like this when it starts in an interactive mode:
  35965. PROGRAM Copyright (C) YEAR NAME OF AUTHOR
  35966. This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
  35967. This is free software, and you are welcome to redistribute it
  35968. under certain conditions; type 'show c' for details.
  35969. The hypothetical commands 'show w' and 'show c' should show the
  35970. appropriate parts of the General Public License. Of course, your
  35971. program's commands might be different; for a GUI interface, you would
  35972. use an "about box".
  35973. You should also get your employer (if you work as a programmer) or
  35974. school, if any, to sign a "copyright disclaimer" for the program, if
  35975. necessary. For more information on this, and how to apply and follow
  35976. the GNU GPL, see <http://www.gnu.org/licenses/>.
  35977. The GNU General Public License does not permit incorporating your
  35978. program into proprietary programs. If your program is a subroutine
  35979. library, you may consider it more useful to permit linking proprietary
  35980. applications with the library. If this is what you want to do, use the
  35981. GNU Lesser General Public License instead of this License. But first,
  35982. please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
  35983. 
  35984. File: gccint.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top
  35985. GNU Free Documentation License
  35986. ******************************
  35987. Version 1.3, 3 November 2008
  35988. Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
  35989. <http://fsf.org/>
  35990. Everyone is permitted to copy and distribute verbatim copies
  35991. of this license document, but changing it is not allowed.
  35992. 0. PREAMBLE
  35993. The purpose of this License is to make a manual, textbook, or other
  35994. functional and useful document "free" in the sense of freedom: to
  35995. assure everyone the effective freedom to copy and redistribute it,
  35996. with or without modifying it, either commercially or
  35997. noncommercially. Secondarily, this License preserves for the
  35998. author and publisher a way to get credit for their work, while not
  35999. being considered responsible for modifications made by others.
  36000. This License is a kind of "copyleft", which means that derivative
  36001. works of the document must themselves be free in the same sense.
  36002. It complements the GNU General Public License, which is a copyleft
  36003. license designed for free software.
  36004. We have designed this License in order to use it for manuals for
  36005. free software, because free software needs free documentation: a
  36006. free program should come with manuals providing the same freedoms
  36007. that the software does. But this License is not limited to
  36008. software manuals; it can be used for any textual work, regardless
  36009. of subject matter or whether it is published as a printed book. We
  36010. recommend this License principally for works whose purpose is
  36011. instruction or reference.
  36012. 1. APPLICABILITY AND DEFINITIONS
  36013. This License applies to any manual or other work, in any medium,
  36014. that contains a notice placed by the copyright holder saying it can
  36015. be distributed under the terms of this License. Such a notice
  36016. grants a world-wide, royalty-free license, unlimited in duration,
  36017. to use that work under the conditions stated herein. The
  36018. "Document", below, refers to any such manual or work. Any member
  36019. of the public is a licensee, and is addressed as "you". You accept
  36020. the license if you copy, modify or distribute the work in a way
  36021. requiring permission under copyright law.
  36022. A "Modified Version" of the Document means any work containing the
  36023. Document or a portion of it, either copied verbatim, or with
  36024. modifications and/or translated into another language.
  36025. A "Secondary Section" is a named appendix or a front-matter section
  36026. of the Document that deals exclusively with the relationship of the
  36027. publishers or authors of the Document to the Document's overall
  36028. subject (or to related matters) and contains nothing that could
  36029. fall directly within that overall subject. (Thus, if the Document
  36030. is in part a textbook of mathematics, a Secondary Section may not
  36031. explain any mathematics.) The relationship could be a matter of
  36032. historical connection with the subject or with related matters, or
  36033. of legal, commercial, philosophical, ethical or political position
  36034. regarding them.
  36035. The "Invariant Sections" are certain Secondary Sections whose
  36036. titles are designated, as being those of Invariant Sections, in the
  36037. notice that says that the Document is released under this License.
  36038. If a section does not fit the above definition of Secondary then it
  36039. is not allowed to be designated as Invariant. The Document may
  36040. contain zero Invariant Sections. If the Document does not identify
  36041. any Invariant Sections then there are none.
  36042. The "Cover Texts" are certain short passages of text that are
  36043. listed, as Front-Cover Texts or Back-Cover Texts, in the notice
  36044. that says that the Document is released under this License. A
  36045. Front-Cover Text may be at most 5 words, and a Back-Cover Text may
  36046. be at most 25 words.
  36047. A "Transparent" copy of the Document means a machine-readable copy,
  36048. represented in a format whose specification is available to the
  36049. general public, that is suitable for revising the document
  36050. straightforwardly with generic text editors or (for images composed
  36051. of pixels) generic paint programs or (for drawings) some widely
  36052. available drawing editor, and that is suitable for input to text
  36053. formatters or for automatic translation to a variety of formats
  36054. suitable for input to text formatters. A copy made in an otherwise
  36055. Transparent file format whose markup, or absence of markup, has
  36056. been arranged to thwart or discourage subsequent modification by
  36057. readers is not Transparent. An image format is not Transparent if
  36058. used for any substantial amount of text. A copy that is not
  36059. "Transparent" is called "Opaque".
  36060. Examples of suitable formats for Transparent copies include plain
  36061. ASCII without markup, Texinfo input format, LaTeX input format,
  36062. SGML or XML using a publicly available DTD, and standard-conforming
  36063. simple HTML, PostScript or PDF designed for human modification.
  36064. Examples of transparent image formats include PNG, XCF and JPG.
  36065. Opaque formats include proprietary formats that can be read and
  36066. edited only by proprietary word processors, SGML or XML for which
  36067. the DTD and/or processing tools are not generally available, and
  36068. the machine-generated HTML, PostScript or PDF produced by some word
  36069. processors for output purposes only.
  36070. The "Title Page" means, for a printed book, the title page itself,
  36071. plus such following pages as are needed to hold, legibly, the
  36072. material this License requires to appear in the title page. For
  36073. works in formats which do not have any title page as such, "Title
  36074. Page" means the text near the most prominent appearance of the
  36075. work's title, preceding the beginning of the body of the text.
  36076. The "publisher" means any person or entity that distributes copies
  36077. of the Document to the public.
  36078. A section "Entitled XYZ" means a named subunit of the Document
  36079. whose title either is precisely XYZ or contains XYZ in parentheses
  36080. following text that translates XYZ in another language. (Here XYZ
  36081. stands for a specific section name mentioned below, such as
  36082. "Acknowledgements", "Dedications", "Endorsements", or "History".)
  36083. To "Preserve the Title" of such a section when you modify the
  36084. Document means that it remains a section "Entitled XYZ" according
  36085. to this definition.
  36086. The Document may include Warranty Disclaimers next to the notice
  36087. which states that this License applies to the Document. These
  36088. Warranty Disclaimers are considered to be included by reference in
  36089. this License, but only as regards disclaiming warranties: any other
  36090. implication that these Warranty Disclaimers may have is void and
  36091. has no effect on the meaning of this License.
  36092. 2. VERBATIM COPYING
  36093. You may copy and distribute the Document in any medium, either
  36094. commercially or noncommercially, provided that this License, the
  36095. copyright notices, and the license notice saying this License
  36096. applies to the Document are reproduced in all copies, and that you
  36097. add no other conditions whatsoever to those of this License. You
  36098. may not use technical measures to obstruct or control the reading
  36099. or further copying of the copies you make or distribute. However,
  36100. you may accept compensation in exchange for copies. If you
  36101. distribute a large enough number of copies you must also follow the
  36102. conditions in section 3.
  36103. You may also lend copies, under the same conditions stated above,
  36104. and you may publicly display copies.
  36105. 3. COPYING IN QUANTITY
  36106. If you publish printed copies (or copies in media that commonly
  36107. have printed covers) of the Document, numbering more than 100, and
  36108. the Document's license notice requires Cover Texts, you must
  36109. enclose the copies in covers that carry, clearly and legibly, all
  36110. these Cover Texts: Front-Cover Texts on the front cover, and
  36111. Back-Cover Texts on the back cover. Both covers must also clearly
  36112. and legibly identify you as the publisher of these copies. The
  36113. front cover must present the full title with all words of the title
  36114. equally prominent and visible. You may add other material on the
  36115. covers in addition. Copying with changes limited to the covers, as
  36116. long as they preserve the title of the Document and satisfy these
  36117. conditions, can be treated as verbatim copying in other respects.
  36118. If the required texts for either cover are too voluminous to fit
  36119. legibly, you should put the first ones listed (as many as fit
  36120. reasonably) on the actual cover, and continue the rest onto
  36121. adjacent pages.
  36122. If you publish or distribute Opaque copies of the Document
  36123. numbering more than 100, you must either include a machine-readable
  36124. Transparent copy along with each Opaque copy, or state in or with
  36125. each Opaque copy a computer-network location from which the general
  36126. network-using public has access to download using public-standard
  36127. network protocols a complete Transparent copy of the Document, free
  36128. of added material. If you use the latter option, you must take
  36129. reasonably prudent steps, when you begin distribution of Opaque
  36130. copies in quantity, to ensure that this Transparent copy will
  36131. remain thus accessible at the stated location until at least one
  36132. year after the last time you distribute an Opaque copy (directly or
  36133. through your agents or retailers) of that edition to the public.
  36134. It is requested, but not required, that you contact the authors of
  36135. the Document well before redistributing any large number of copies,
  36136. to give them a chance to provide you with an updated version of the
  36137. Document.
  36138. 4. MODIFICATIONS
  36139. You may copy and distribute a Modified Version of the Document
  36140. under the conditions of sections 2 and 3 above, provided that you
  36141. release the Modified Version under precisely this License, with the
  36142. Modified Version filling the role of the Document, thus licensing
  36143. distribution and modification of the Modified Version to whoever
  36144. possesses a copy of it. In addition, you must do these things in
  36145. the Modified Version:
  36146. A. Use in the Title Page (and on the covers, if any) a title
  36147. distinct from that of the Document, and from those of previous
  36148. versions (which should, if there were any, be listed in the
  36149. History section of the Document). You may use the same title
  36150. as a previous version if the original publisher of that
  36151. version gives permission.
  36152. B. List on the Title Page, as authors, one or more persons or
  36153. entities responsible for authorship of the modifications in
  36154. the Modified Version, together with at least five of the
  36155. principal authors of the Document (all of its principal
  36156. authors, if it has fewer than five), unless they release you
  36157. from this requirement.
  36158. C. State on the Title page the name of the publisher of the
  36159. Modified Version, as the publisher.
  36160. D. Preserve all the copyright notices of the Document.
  36161. E. Add an appropriate copyright notice for your modifications
  36162. adjacent to the other copyright notices.
  36163. F. Include, immediately after the copyright notices, a license
  36164. notice giving the public permission to use the Modified
  36165. Version under the terms of this License, in the form shown in
  36166. the Addendum below.
  36167. G. Preserve in that license notice the full lists of Invariant
  36168. Sections and required Cover Texts given in the Document's
  36169. license notice.
  36170. H. Include an unaltered copy of this License.
  36171. I. Preserve the section Entitled "History", Preserve its Title,
  36172. and add to it an item stating at least the title, year, new
  36173. authors, and publisher of the Modified Version as given on the
  36174. Title Page. If there is no section Entitled "History" in the
  36175. Document, create one stating the title, year, authors, and
  36176. publisher of the Document as given on its Title Page, then add
  36177. an item describing the Modified Version as stated in the
  36178. previous sentence.
  36179. J. Preserve the network location, if any, given in the Document
  36180. for public access to a Transparent copy of the Document, and
  36181. likewise the network locations given in the Document for
  36182. previous versions it was based on. These may be placed in the
  36183. "History" section. You may omit a network location for a work
  36184. that was published at least four years before the Document
  36185. itself, or if the original publisher of the version it refers
  36186. to gives permission.
  36187. K. For any section Entitled "Acknowledgements" or "Dedications",
  36188. Preserve the Title of the section, and preserve in the section
  36189. all the substance and tone of each of the contributor
  36190. acknowledgements and/or dedications given therein.
  36191. L. Preserve all the Invariant Sections of the Document, unaltered
  36192. in their text and in their titles. Section numbers or the
  36193. equivalent are not considered part of the section titles.
  36194. M. Delete any section Entitled "Endorsements". Such a section
  36195. may not be included in the Modified Version.
  36196. N. Do not retitle any existing section to be Entitled
  36197. "Endorsements" or to conflict in title with any Invariant
  36198. Section.
  36199. O. Preserve any Warranty Disclaimers.
  36200. If the Modified Version includes new front-matter sections or
  36201. appendices that qualify as Secondary Sections and contain no
  36202. material copied from the Document, you may at your option designate
  36203. some or all of these sections as invariant. To do this, add their
  36204. titles to the list of Invariant Sections in the Modified Version's
  36205. license notice. These titles must be distinct from any other
  36206. section titles.
  36207. You may add a section Entitled "Endorsements", provided it contains
  36208. nothing but endorsements of your Modified Version by various
  36209. parties--for example, statements of peer review or that the text
  36210. has been approved by an organization as the authoritative
  36211. definition of a standard.
  36212. You may add a passage of up to five words as a Front-Cover Text,
  36213. and a passage of up to 25 words as a Back-Cover Text, to the end of
  36214. the list of Cover Texts in the Modified Version. Only one passage
  36215. of Front-Cover Text and one of Back-Cover Text may be added by (or
  36216. through arrangements made by) any one entity. If the Document
  36217. already includes a cover text for the same cover, previously added
  36218. by you or by arrangement made by the same entity you are acting on
  36219. behalf of, you may not add another; but you may replace the old
  36220. one, on explicit permission from the previous publisher that added
  36221. the old one.
  36222. The author(s) and publisher(s) of the Document do not by this
  36223. License give permission to use their names for publicity for or to
  36224. assert or imply endorsement of any Modified Version.
  36225. 5. COMBINING DOCUMENTS
  36226. You may combine the Document with other documents released under
  36227. this License, under the terms defined in section 4 above for
  36228. modified versions, provided that you include in the combination all
  36229. of the Invariant Sections of all of the original documents,
  36230. unmodified, and list them all as Invariant Sections of your
  36231. combined work in its license notice, and that you preserve all
  36232. their Warranty Disclaimers.
  36233. The combined work need only contain one copy of this License, and
  36234. multiple identical Invariant Sections may be replaced with a single
  36235. copy. If there are multiple Invariant Sections with the same name
  36236. but different contents, make the title of each such section unique
  36237. by adding at the end of it, in parentheses, the name of the
  36238. original author or publisher of that section if known, or else a
  36239. unique number. Make the same adjustment to the section titles in
  36240. the list of Invariant Sections in the license notice of the
  36241. combined work.
  36242. In the combination, you must combine any sections Entitled
  36243. "History" in the various original documents, forming one section
  36244. Entitled "History"; likewise combine any sections Entitled
  36245. "Acknowledgements", and any sections Entitled "Dedications". You
  36246. must delete all sections Entitled "Endorsements."
  36247. 6. COLLECTIONS OF DOCUMENTS
  36248. You may make a collection consisting of the Document and other
  36249. documents released under this License, and replace the individual
  36250. copies of this License in the various documents with a single copy
  36251. that is included in the collection, provided that you follow the
  36252. rules of this License for verbatim copying of each of the documents
  36253. in all other respects.
  36254. You may extract a single document from such a collection, and
  36255. distribute it individually under this License, provided you insert
  36256. a copy of this License into the extracted document, and follow this
  36257. License in all other respects regarding verbatim copying of that
  36258. document.
  36259. 7. AGGREGATION WITH INDEPENDENT WORKS
  36260. A compilation of the Document or its derivatives with other
  36261. separate and independent documents or works, in or on a volume of a
  36262. storage or distribution medium, is called an "aggregate" if the
  36263. copyright resulting from the compilation is not used to limit the
  36264. legal rights of the compilation's users beyond what the individual
  36265. works permit. When the Document is included in an aggregate, this
  36266. License does not apply to the other works in the aggregate which
  36267. are not themselves derivative works of the Document.
  36268. If the Cover Text requirement of section 3 is applicable to these
  36269. copies of the Document, then if the Document is less than one half
  36270. of the entire aggregate, the Document's Cover Texts may be placed
  36271. on covers that bracket the Document within the aggregate, or the
  36272. electronic equivalent of covers if the Document is in electronic
  36273. form. Otherwise they must appear on printed covers that bracket
  36274. the whole aggregate.
  36275. 8. TRANSLATION
  36276. Translation is considered a kind of modification, so you may
  36277. distribute translations of the Document under the terms of section
  36278. 4. Replacing Invariant Sections with translations requires special
  36279. permission from their copyright holders, but you may include
  36280. translations of some or all Invariant Sections in addition to the
  36281. original versions of these Invariant Sections. You may include a
  36282. translation of this License, and all the license notices in the
  36283. Document, and any Warranty Disclaimers, provided that you also
  36284. include the original English version of this License and the
  36285. original versions of those notices and disclaimers. In case of a
  36286. disagreement between the translation and the original version of
  36287. this License or a notice or disclaimer, the original version will
  36288. prevail.
  36289. If a section in the Document is Entitled "Acknowledgements",
  36290. "Dedications", or "History", the requirement (section 4) to
  36291. Preserve its Title (section 1) will typically require changing the
  36292. actual title.
  36293. 9. TERMINATION
  36294. You may not copy, modify, sublicense, or distribute the Document
  36295. except as expressly provided under this License. Any attempt
  36296. otherwise to copy, modify, sublicense, or distribute it is void,
  36297. and will automatically terminate your rights under this License.
  36298. However, if you cease all violation of this License, then your
  36299. license from a particular copyright holder is reinstated (a)
  36300. provisionally, unless and until the copyright holder explicitly and
  36301. finally terminates your license, and (b) permanently, if the
  36302. copyright holder fails to notify you of the violation by some
  36303. reasonable means prior to 60 days after the cessation.
  36304. Moreover, your license from a particular copyright holder is
  36305. reinstated permanently if the copyright holder notifies you of the
  36306. violation by some reasonable means, this is the first time you have
  36307. received notice of violation of this License (for any work) from
  36308. that copyright holder, and you cure the violation prior to 30 days
  36309. after your receipt of the notice.
  36310. Termination of your rights under this section does not terminate
  36311. the licenses of parties who have received copies or rights from you
  36312. under this License. If your rights have been terminated and not
  36313. permanently reinstated, receipt of a copy of some or all of the
  36314. same material does not give you any rights to use it.
  36315. 10. FUTURE REVISIONS OF THIS LICENSE
  36316. The Free Software Foundation may publish new, revised versions of
  36317. the GNU Free Documentation License from time to time. Such new
  36318. versions will be similar in spirit to the present version, but may
  36319. differ in detail to address new problems or concerns. See
  36320. <http://www.gnu.org/copyleft/>.
  36321. Each version of the License is given a distinguishing version
  36322. number. If the Document specifies that a particular numbered
  36323. version of this License "or any later version" applies to it, you
  36324. have the option of following the terms and conditions either of
  36325. that specified version or of any later version that has been
  36326. published (not as a draft) by the Free Software Foundation. If the
  36327. Document does not specify a version number of this License, you may
  36328. choose any version ever published (not as a draft) by the Free
  36329. Software Foundation. If the Document specifies that a proxy can
  36330. decide which future versions of this License can be used, that
  36331. proxy's public statement of acceptance of a version permanently
  36332. authorizes you to choose that version for the Document.
  36333. 11. RELICENSING
  36334. "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
  36335. World Wide Web server that publishes copyrightable works and also
  36336. provides prominent facilities for anybody to edit those works. A
  36337. public wiki that anybody can edit is an example of such a server.
  36338. A "Massive Multiauthor Collaboration" (or "MMC") contained in the
  36339. site means any set of copyrightable works thus published on the MMC
  36340. site.
  36341. "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
  36342. license published by Creative Commons Corporation, a not-for-profit
  36343. corporation with a principal place of business in San Francisco,
  36344. California, as well as future copyleft versions of that license
  36345. published by that same organization.
  36346. "Incorporate" means to publish or republish a Document, in whole or
  36347. in part, as part of another Document.
  36348. An MMC is "eligible for relicensing" if it is licensed under this
  36349. License, and if all works that were first published under this
  36350. License somewhere other than this MMC, and subsequently
  36351. incorporated in whole or in part into the MMC, (1) had no cover
  36352. texts or invariant sections, and (2) were thus incorporated prior
  36353. to November 1, 2008.
  36354. The operator of an MMC Site may republish an MMC contained in the
  36355. site under CC-BY-SA on the same site at any time before August 1,
  36356. 2009, provided the MMC is eligible for relicensing.
  36357. ADDENDUM: How to use this License for your documents
  36358. ====================================================
  36359. To use this License in a document you have written, include a copy of
  36360. the License in the document and put the following copyright and license
  36361. notices just after the title page:
  36362. Copyright (C) YEAR YOUR NAME.
  36363. Permission is granted to copy, distribute and/or modify this document
  36364. under the terms of the GNU Free Documentation License, Version 1.3
  36365. or any later version published by the Free Software Foundation;
  36366. with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
  36367. Texts. A copy of the license is included in the section entitled ``GNU
  36368. Free Documentation License''.
  36369. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
  36370. replace the "with...Texts." line with this:
  36371. with the Invariant Sections being LIST THEIR TITLES, with
  36372. the Front-Cover Texts being LIST, and with the Back-Cover Texts
  36373. being LIST.
  36374. If you have Invariant Sections without Cover Texts, or some other
  36375. combination of the three, merge those two alternatives to suit the
  36376. situation.
  36377. If your document contains nontrivial examples of program code, we
  36378. recommend releasing these examples in parallel under your choice of free
  36379. software license, such as the GNU General Public License, to permit
  36380. their use in free software.
  36381. 
  36382. File: gccint.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top
  36383. Contributors to GCC
  36384. *******************
  36385. The GCC project would like to thank its many contributors. Without them
  36386. the project would not have been nearly as successful as it has been.
  36387. Any omissions in this list are accidental. Feel free to contact
  36388. <law@redhat.com> or <gerald@pfeifer.com> if you have been left out or
  36389. some of your contributions are not listed. Please keep this list in
  36390. alphabetical order.
  36391. * Analog Devices helped implement the support for complex data types
  36392. and iterators.
  36393. * John David Anglin for threading-related fixes and improvements to
  36394. libstdc++-v3, and the HP-UX port.
  36395. * James van Artsdalen wrote the code that makes efficient use of the
  36396. Intel 80387 register stack.
  36397. * Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta
  36398. Series port.
  36399. * Alasdair Baird for various bug fixes.
  36400. * Giovanni Bajo for analyzing lots of complicated C++ problem
  36401. reports.
  36402. * Peter Barada for his work to improve code generation for new
  36403. ColdFire cores.
  36404. * Gerald Baumgartner added the signature extension to the C++ front
  36405. end.
  36406. * Godmar Back for his Java improvements and encouragement.
  36407. * Scott Bambrough for help porting the Java compiler.
  36408. * Wolfgang Bangerth for processing tons of bug reports.
  36409. * Jon Beniston for his Microsoft Windows port of Java and port to
  36410. Lattice Mico32.
  36411. * Daniel Berlin for better DWARF 2 support, faster/better
  36412. optimizations, improved alias analysis, plus migrating GCC to
  36413. Bugzilla.
  36414. * Geoff Berry for his Java object serialization work and various
  36415. patches.
  36416. * David Binderman tests weekly snapshots of GCC trunk against Fedora
  36417. Rawhide for several architectures.
  36418. * Laurynas Biveinis for memory management work and DJGPP port fixes.
  36419. * Uros Bizjak for the implementation of x87 math built-in functions
  36420. and for various middle end and i386 back end improvements and bug
  36421. fixes.
  36422. * Eric Blake for helping to make GCJ and libgcj conform to the
  36423. specifications.
  36424. * Janne Blomqvist for contributions to GNU Fortran.
  36425. * Hans-J. Boehm for his garbage collector, IA-64 libffi port, and
  36426. other Java work.
  36427. * Segher Boessenkool for helping maintain the PowerPC port and the
  36428. instruction combiner plus various contributions to the middle end.
  36429. * Neil Booth for work on cpplib, lang hooks, debug hooks and other
  36430. miscellaneous clean-ups.
  36431. * Steven Bosscher for integrating the GNU Fortran front end into GCC
  36432. and for contributing to the tree-ssa branch.
  36433. * Eric Botcazou for fixing middle- and backend bugs left and right.
  36434. * Per Bothner for his direction via the steering committee and
  36435. various improvements to the infrastructure for supporting new
  36436. languages. Chill front end implementation. Initial
  36437. implementations of cpplib, fix-header, config.guess, libio, and
  36438. past C++ library (libg++) maintainer. Dreaming up, designing and
  36439. implementing much of GCJ.
  36440. * Devon Bowen helped port GCC to the Tahoe.
  36441. * Don Bowman for mips-vxworks contributions.
  36442. * James Bowman for the FT32 port.
  36443. * Dave Brolley for work on cpplib and Chill.
  36444. * Paul Brook for work on the ARM architecture and maintaining GNU
  36445. Fortran.
  36446. * Robert Brown implemented the support for Encore 32000 systems.
  36447. * Christian Bruel for improvements to local store elimination.
  36448. * Herman A.J. ten Brugge for various fixes.
  36449. * Joerg Brunsmann for Java compiler hacking and help with the GCJ
  36450. FAQ.
  36451. * Joe Buck for his direction via the steering committee from its
  36452. creation to 2013.
  36453. * Craig Burley for leadership of the G77 Fortran effort.
  36454. * Tobias Burnus for contributions to GNU Fortran.
  36455. * Stephan Buys for contributing Doxygen notes for libstdc++.
  36456. * Paolo Carlini for libstdc++ work: lots of efficiency improvements
  36457. to the C++ strings, streambufs and formatted I/O, hard detective
  36458. work on the frustrating localization issues, and keeping up with
  36459. the problem reports.
  36460. * John Carr for his alias work, SPARC hacking, infrastructure
  36461. improvements, previous contributions to the steering committee,
  36462. loop optimizations, etc.
  36463. * Stephane Carrez for 68HC11 and 68HC12 ports.
  36464. * Steve Chamberlain for support for the Renesas SH and H8 processors
  36465. and the PicoJava processor, and for GCJ config fixes.
  36466. * Glenn Chambers for help with the GCJ FAQ.
  36467. * John-Marc Chandonia for various libgcj patches.
  36468. * Denis Chertykov for contributing and maintaining the AVR port, the
  36469. first GCC port for an 8-bit architecture.
  36470. * Kito Cheng for his work on the RISC-V port, including bringing up
  36471. the test suite and maintenance.
  36472. * Scott Christley for his Objective-C contributions.
  36473. * Eric Christopher for his Java porting help and clean-ups.
  36474. * Branko Cibej for more warning contributions.
  36475. * The GNU Classpath project for all of their merged runtime code.
  36476. * Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work,
  36477. '--help', and other random hacking.
  36478. * Michael Cook for libstdc++ cleanup patches to reduce warnings.
  36479. * R. Kelley Cook for making GCC buildable from a read-only directory
  36480. as well as other miscellaneous build process and documentation
  36481. clean-ups.
  36482. * Ralf Corsepius for SH testing and minor bug fixing.
  36483. * François-Xavier Coudert for contributions to GNU Fortran.
  36484. * Stan Cox for care and feeding of the x86 port and lots of behind
  36485. the scenes hacking.
  36486. * Alex Crain provided changes for the 3b1.
  36487. * Ian Dall for major improvements to the NS32k port.
  36488. * Paul Dale for his work to add uClinux platform support to the m68k
  36489. backend.
  36490. * Palmer Dabbelt for his work maintaining the RISC-V port.
  36491. * Dario Dariol contributed the four varieties of sample programs that
  36492. print a copy of their source.
  36493. * Russell Davidson for fstream and stringstream fixes in libstdc++.
  36494. * Bud Davis for work on the G77 and GNU Fortran compilers.
  36495. * Mo DeJong for GCJ and libgcj bug fixes.
  36496. * Jerry DeLisle for contributions to GNU Fortran.
  36497. * DJ Delorie for the DJGPP port, build and libiberty maintenance,
  36498. various bug fixes, and the M32C, MeP, MSP430, and RL78 ports.
  36499. * Arnaud Desitter for helping to debug GNU Fortran.
  36500. * Gabriel Dos Reis for contributions to G++, contributions and
  36501. maintenance of GCC diagnostics infrastructure, libstdc++-v3,
  36502. including 'valarray<>', 'complex<>', maintaining the numerics
  36503. library (including that pesky '<limits>' :-) and keeping up-to-date
  36504. anything to do with numbers.
  36505. * Ulrich Drepper for his work on glibc, testing of GCC using glibc,
  36506. ISO C99 support, CFG dumping support, etc., plus support of the C++
  36507. runtime libraries including for all kinds of C interface issues,
  36508. contributing and maintaining 'complex<>', sanity checking and
  36509. disbursement, configuration architecture, libio maintenance, and
  36510. early math work.
  36511. * François Dumont for his work on libstdc++-v3, especially
  36512. maintaining and improving 'debug-mode' and associative and
  36513. unordered containers.
  36514. * Zdenek Dvorak for a new loop unroller and various fixes.
  36515. * Michael Eager for his work on the Xilinx MicroBlaze port.
  36516. * Richard Earnshaw for his ongoing work with the ARM.
  36517. * David Edelsohn for his direction via the steering committee,
  36518. ongoing work with the RS6000/PowerPC port, help cleaning up Haifa
  36519. loop changes, doing the entire AIX port of libstdc++ with his bare
  36520. hands, and for ensuring GCC properly keeps working on AIX.
  36521. * Kevin Ediger for the floating point formatting of num_put::do_put
  36522. in libstdc++.
  36523. * Phil Edwards for libstdc++ work including configuration hackery,
  36524. documentation maintainer, chief breaker of the web pages, the
  36525. occasional iostream bug fix, and work on shared library symbol
  36526. versioning.
  36527. * Paul Eggert for random hacking all over GCC.
  36528. * Mark Elbrecht for various DJGPP improvements, and for libstdc++
  36529. configuration support for locales and fstream-related fixes.
  36530. * Vadim Egorov for libstdc++ fixes in strings, streambufs, and
  36531. iostreams.
  36532. * Christian Ehrhardt for dealing with bug reports.
  36533. * Ben Elliston for his work to move the Objective-C runtime into its
  36534. own subdirectory and for his work on autoconf.
  36535. * Revital Eres for work on the PowerPC 750CL port.
  36536. * Marc Espie for OpenBSD support.
  36537. * Doug Evans for much of the global optimization framework, arc,
  36538. m32r, and SPARC work.
  36539. * Christopher Faylor for his work on the Cygwin port and for caring
  36540. and feeding the gcc.gnu.org box and saving its users tons of spam.
  36541. * Fred Fish for BeOS support and Ada fixes.
  36542. * Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.
  36543. * Peter Gerwinski for various bug fixes and the Pascal front end.
  36544. * Kaveh R. Ghazi for his direction via the steering committee,
  36545. amazing work to make '-W -Wall -W* -Werror' useful, and testing GCC
  36546. on a plethora of platforms. Kaveh extends his gratitude to the
  36547. CAIP Center at Rutgers University for providing him with computing
  36548. resources to work on Free Software from the late 1980s to 2010.
  36549. * John Gilmore for a donation to the FSF earmarked improving GNU
  36550. Java.
  36551. * Judy Goldberg for c++ contributions.
  36552. * Torbjorn Granlund for various fixes and the c-torture testsuite,
  36553. multiply- and divide-by-constant optimization, improved long long
  36554. support, improved leaf function register allocation, and his
  36555. direction via the steering committee.
  36556. * Jonny Grant for improvements to 'collect2's' '--help'
  36557. documentation.
  36558. * Anthony Green for his '-Os' contributions, the moxie port, and Java
  36559. front end work.
  36560. * Stu Grossman for gdb hacking, allowing GCJ developers to debug Java
  36561. code.
  36562. * Michael K. Gschwind contributed the port to the PDP-11.
  36563. * Richard Biener for his ongoing middle-end contributions and bug
  36564. fixes and for release management.
  36565. * Ron Guilmette implemented the 'protoize' and 'unprotoize' tools,
  36566. the support for DWARF 1 symbolic debugging information, and much of
  36567. the support for System V Release 4. He has also worked heavily on
  36568. the Intel 386 and 860 support.
  36569. * Sumanth Gundapaneni for contributing the CR16 port.
  36570. * Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload
  36571. GCSE.
  36572. * Bruno Haible for improvements in the runtime overhead for EH, new
  36573. warnings and assorted bug fixes.
  36574. * Andrew Haley for his amazing Java compiler and library efforts.
  36575. * Chris Hanson assisted in making GCC work on HP-UX for the 9000
  36576. series 300.
  36577. * Michael Hayes for various thankless work he's done trying to get
  36578. the c30/c40 ports functional. Lots of loop and unroll improvements
  36579. and fixes.
  36580. * Dara Hazeghi for wading through myriads of target-specific bug
  36581. reports.
  36582. * Kate Hedstrom for staking the G77 folks with an initial testsuite.
  36583. * Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64
  36584. work, loop opts, and generally fixing lots of old problems we've
  36585. ignored for years, flow rewrite and lots of further stuff,
  36586. including reviewing tons of patches.
  36587. * Aldy Hernandez for working on the PowerPC port, SIMD support, and
  36588. various fixes.
  36589. * Nobuyuki Hikichi of Software Research Associates, Tokyo,
  36590. contributed the support for the Sony NEWS machine.
  36591. * Kazu Hirata for caring and feeding the Renesas H8/300 port and
  36592. various fixes.
  36593. * Katherine Holcomb for work on GNU Fortran.
  36594. * Manfred Hollstein for his ongoing work to keep the m88k alive, lots
  36595. of testing and bug fixing, particularly of GCC configury code.
  36596. * Steve Holmgren for MachTen patches.
  36597. * Mat Hostetter for work on the TILE-Gx and TILEPro ports.
  36598. * Jan Hubicka for his x86 port improvements.
  36599. * Falk Hueffner for working on C and optimization bug reports.
  36600. * Bernardo Innocenti for his m68k work, including merging of ColdFire
  36601. improvements and uClinux support.
  36602. * Christian Iseli for various bug fixes.
  36603. * Kamil Iskra for general m68k hacking.
  36604. * Lee Iverson for random fixes and MIPS testing.
  36605. * Balaji V. Iyer for Cilk+ development and merging.
  36606. * Andreas Jaeger for testing and benchmarking of GCC and various bug
  36607. fixes.
  36608. * Martin Jambor for his work on inter-procedural optimizations, the
  36609. switch conversion pass, and scalar replacement of aggregates.
  36610. * Jakub Jelinek for his SPARC work and sibling call optimizations as
  36611. well as lots of bug fixes and test cases, and for improving the
  36612. Java build system.
  36613. * Janis Johnson for ia64 testing and fixes, her quality improvement
  36614. sidetracks, and web page maintenance.
  36615. * Kean Johnston for SCO OpenServer support and various fixes.
  36616. * Tim Josling for the sample language treelang based originally on
  36617. Richard Kenner's "toy" language.
  36618. * Nicolai Josuttis for additional libstdc++ documentation.
  36619. * Klaus Kaempf for his ongoing work to make alpha-vms a viable
  36620. target.
  36621. * Steven G. Kargl for work on GNU Fortran.
  36622. * David Kashtan of SRI adapted GCC to VMS.
  36623. * Ryszard Kabatek for many, many libstdc++ bug fixes and
  36624. optimizations of strings, especially member functions, and for
  36625. auto_ptr fixes.
  36626. * Geoffrey Keating for his ongoing work to make the PPC work for
  36627. GNU/Linux and his automatic regression tester.
  36628. * Brendan Kehoe for his ongoing work with G++ and for a lot of early
  36629. work in just about every part of libstdc++.
  36630. * Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
  36631. MIL-STD-1750A.
  36632. * Richard Kenner of the New York University Ultracomputer Research
  36633. Laboratory wrote the machine descriptions for the AMD 29000, the
  36634. DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the
  36635. support for instruction attributes. He also made changes to better
  36636. support RISC processors including changes to common subexpression
  36637. elimination, strength reduction, function calling sequence
  36638. handling, and condition code support, in addition to generalizing
  36639. the code for frame pointer elimination and delay slot scheduling.
  36640. Richard Kenner was also the head maintainer of GCC for several
  36641. years.
  36642. * Mumit Khan for various contributions to the Cygwin and Mingw32
  36643. ports and maintaining binary releases for Microsoft Windows hosts,
  36644. and for massive libstdc++ porting work to Cygwin/Mingw32.
  36645. * Robin Kirkham for cpu32 support.
  36646. * Mark Klein for PA improvements.
  36647. * Thomas Koenig for various bug fixes.
  36648. * Bruce Korb for the new and improved fixincludes code.
  36649. * Benjamin Kosnik for his G++ work and for leading the libstdc++-v3
  36650. effort.
  36651. * Maxim Kuvyrkov for contributions to the instruction scheduler, the
  36652. Android and m68k/Coldfire ports, and optimizations.
  36653. * Charles LaBrec contributed the support for the Integrated Solutions
  36654. 68020 system.
  36655. * Asher Langton and Mike Kumbera for contributing Cray pointer
  36656. support to GNU Fortran, and for other GNU Fortran improvements.
  36657. * Jeff Law for his direction via the steering committee, coordinating
  36658. the entire egcs project and GCC 2.95, rolling out snapshots and
  36659. releases, handling merges from GCC2, reviewing tons of patches that
  36660. might have fallen through the cracks else, and random but extensive
  36661. hacking.
  36662. * Walter Lee for work on the TILE-Gx and TILEPro ports.
  36663. * Marc Lehmann for his direction via the steering committee and
  36664. helping with analysis and improvements of x86 performance.
  36665. * Victor Leikehman for work on GNU Fortran.
  36666. * Ted Lemon wrote parts of the RTL reader and printer.
  36667. * Kriang Lerdsuwanakij for C++ improvements including template as
  36668. template parameter support, and many C++ fixes.
  36669. * Warren Levy for tremendous work on libgcj (Java Runtime Library)
  36670. and random work on the Java front end.
  36671. * Alain Lichnewsky ported GCC to the MIPS CPU.
  36672. * Oskar Liljeblad for hacking on AWT and his many Java bug reports
  36673. and patches.
  36674. * Robert Lipe for OpenServer support, new testsuites, testing, etc.
  36675. * Chen Liqin for various S+core related fixes/improvement, and for
  36676. maintaining the S+core port.
  36677. * Martin Liska for his work on identical code folding, the
  36678. sanitizers, HSA, general bug fixing and for running automated
  36679. regression testing of GCC and reporting numerous bugs.
  36680. * Weiwen Liu for testing and various bug fixes.
  36681. * Manuel López-Ibáñez for improving '-Wconversion' and many other
  36682. diagnostics fixes and improvements.
  36683. * Dave Love for his ongoing work with the Fortran front end and
  36684. runtime libraries.
  36685. * Martin von Löwis for internal consistency checking infrastructure,
  36686. various C++ improvements including namespace support, and tons of
  36687. assistance with libstdc++/compiler merges.
  36688. * H.J. Lu for his previous contributions to the steering committee,
  36689. many x86 bug reports, prototype patches, and keeping the GNU/Linux
  36690. ports working.
  36691. * Greg McGary for random fixes and (someday) bounded pointers.
  36692. * Andrew MacLeod for his ongoing work in building a real EH system,
  36693. various code generation improvements, work on the global optimizer,
  36694. etc.
  36695. * Vladimir Makarov for hacking some ugly i960 problems, PowerPC
  36696. hacking improvements to compile-time performance, overall knowledge
  36697. and direction in the area of instruction scheduling, design and
  36698. implementation of the automaton based instruction scheduler and
  36699. design and implementation of the integrated and local register
  36700. allocators.
  36701. * David Malcolm for his work on improving GCC diagnostics, JIT,
  36702. self-tests and unit testing.
  36703. * Bob Manson for his behind the scenes work on dejagnu.
  36704. * John Marino for contributing the DragonFly BSD port.
  36705. * Philip Martin for lots of libstdc++ string and vector iterator
  36706. fixes and improvements, and string clean up and testsuites.
  36707. * Michael Matz for his work on dominance tree discovery, the x86-64
  36708. port, link-time optimization framework and general optimization
  36709. improvements.
  36710. * All of the Mauve project contributors for Java test code.
  36711. * Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
  36712. * Adam Megacz for his work on the Microsoft Windows port of GCJ.
  36713. * Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS,
  36714. powerpc, haifa, ECOFF debug support, and other assorted hacking.
  36715. * Jason Merrill for his direction via the steering committee and
  36716. leading the G++ effort.
  36717. * Martin Michlmayr for testing GCC on several architectures using the
  36718. entire Debian archive.
  36719. * David Miller for his direction via the steering committee, lots of
  36720. SPARC work, improvements in jump.c and interfacing with the Linux
  36721. kernel developers.
  36722. * Gary Miller ported GCC to Charles River Data Systems machines.
  36723. * Alfred Minarik for libstdc++ string and ios bug fixes, and turning
  36724. the entire libstdc++ testsuite namespace-compatible.
  36725. * Mark Mitchell for his direction via the steering committee,
  36726. mountains of C++ work, load/store hoisting out of loops, alias
  36727. analysis improvements, ISO C 'restrict' support, and serving as
  36728. release manager from 2000 to 2011.
  36729. * Alan Modra for various GNU/Linux bits and testing.
  36730. * Toon Moene for his direction via the steering committee, Fortran
  36731. maintenance, and his ongoing work to make us make Fortran run fast.
  36732. * Jason Molenda for major help in the care and feeding of all the
  36733. services on the gcc.gnu.org (formerly egcs.cygnus.com)
  36734. machine--mail, web services, ftp services, etc etc. Doing all this
  36735. work on scrap paper and the backs of envelopes would have been...
  36736. difficult.
  36737. * Catherine Moore for fixing various ugly problems we have sent her
  36738. way, including the haifa bug which was killing the Alpha & PowerPC
  36739. Linux kernels.
  36740. * Mike Moreton for his various Java patches.
  36741. * David Mosberger-Tang for various Alpha improvements, and for the
  36742. initial IA-64 port.
  36743. * Stephen Moshier contributed the floating point emulator that
  36744. assists in cross-compilation and permits support for floating point
  36745. numbers wider than 64 bits and for ISO C99 support.
  36746. * Bill Moyer for his behind the scenes work on various issues.
  36747. * Philippe De Muyter for his work on the m68k port.
  36748. * Joseph S. Myers for his work on the PDP-11 port, format checking
  36749. and ISO C99 support, and continuous emphasis on (and contributions
  36750. to) documentation.
  36751. * Nathan Myers for his work on libstdc++-v3: architecture and
  36752. authorship through the first three snapshots, including
  36753. implementation of locale infrastructure, string, shadow C headers,
  36754. and the initial project documentation (DESIGN, CHECKLIST, and so
  36755. forth). Later, more work on MT-safe string and shadow headers.
  36756. * Felix Natter for documentation on porting libstdc++.
  36757. * Nathanael Nerode for cleaning up the configuration/build process.
  36758. * NeXT, Inc. donated the front end that supports the Objective-C
  36759. language.
  36760. * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the
  36761. search engine setup, various documentation fixes and other small
  36762. fixes.
  36763. * Geoff Noer for his work on getting cygwin native builds working.
  36764. * Vegard Nossum for running automated regression testing of GCC and
  36765. reporting numerous bugs.
  36766. * Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance
  36767. tracking web pages, GIMPLE tuples, and assorted fixes.
  36768. * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64,
  36769. FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related
  36770. infrastructure improvements.
  36771. * Alexandre Oliva for various build infrastructure improvements,
  36772. scripts and amazing testing work, including keeping libtool issues
  36773. sane and happy.
  36774. * Stefan Olsson for work on mt_alloc.
  36775. * Melissa O'Neill for various NeXT fixes.
  36776. * Rainer Orth for random MIPS work, including improvements to GCC's
  36777. o32 ABI support, improvements to dejagnu's MIPS support, Java
  36778. configuration clean-ups and porting work, and maintaining the IRIX,
  36779. Solaris 2, and Tru64 UNIX ports.
  36780. * Steven Pemberton for his contribution of 'enquire' which allowed
  36781. GCC to determine various properties of the floating point unit and
  36782. generate 'float.h' in older versions of GCC.
  36783. * Hartmut Penner for work on the s390 port.
  36784. * Paul Petersen wrote the machine description for the Alliant FX/8.
  36785. * Alexandre Petit-Bianco for implementing much of the Java compiler
  36786. and continued Java maintainership.
  36787. * Matthias Pfaller for major improvements to the NS32k port.
  36788. * Gerald Pfeifer for his direction via the steering committee,
  36789. pointing out lots of problems we need to solve, maintenance of the
  36790. web pages, and taking care of documentation maintenance in general.
  36791. * Marek Polacek for his work on the C front end, the sanitizers and
  36792. general bug fixing.
  36793. * Andrew Pinski for processing bug reports by the dozen.
  36794. * Ovidiu Predescu for his work on the Objective-C front end and
  36795. runtime libraries.
  36796. * Jerry Quinn for major performance improvements in C++ formatted
  36797. I/O.
  36798. * Ken Raeburn for various improvements to checker, MIPS ports and
  36799. various cleanups in the compiler.
  36800. * Rolf W. Rasmussen for hacking on AWT.
  36801. * David Reese of Sun Microsystems contributed to the Solaris on
  36802. PowerPC port.
  36803. * John Regehr for running automated regression testing of GCC and
  36804. reporting numerous bugs.
  36805. * Volker Reichelt for running automated regression testing of GCC and
  36806. reporting numerous bugs and for keeping up with the problem
  36807. reports.
  36808. * Joern Rennecke for maintaining the sh port, loop, regmove & reload
  36809. hacking and developing and maintaining the Epiphany port.
  36810. * Loren J. Rittle for improvements to libstdc++-v3 including the
  36811. FreeBSD port, threading fixes, thread-related configury changes,
  36812. critical threading documentation, and solutions to really tricky
  36813. I/O problems, as well as keeping GCC properly working on FreeBSD
  36814. and continuous testing.
  36815. * Craig Rodrigues for processing tons of bug reports.
  36816. * Ola Rönnerup for work on mt_alloc.
  36817. * Gavin Romig-Koch for lots of behind the scenes MIPS work.
  36818. * David Ronis inspired and encouraged Craig to rewrite the G77
  36819. documentation in texinfo format by contributing a first pass at a
  36820. translation of the old 'g77-0.5.16/f/DOC' file.
  36821. * Ken Rose for fixes to GCC's delay slot filling code.
  36822. * Ira Rosen for her contributions to the auto-vectorizer.
  36823. * Paul Rubin wrote most of the preprocessor.
  36824. * Pétur Runólfsson for major performance improvements in C++
  36825. formatted I/O and large file support in C++ filebuf.
  36826. * Chip Salzenberg for libstdc++ patches and improvements to locales,
  36827. traits, Makefiles, libio, libtool hackery, and "long long" support.
  36828. * Juha Sarlin for improvements to the H8 code generator.
  36829. * Greg Satz assisted in making GCC work on HP-UX for the 9000 series
  36830. 300.
  36831. * Roger Sayle for improvements to constant folding and GCC's RTL
  36832. optimizers as well as for fixing numerous bugs.
  36833. * Bradley Schatz for his work on the GCJ FAQ.
  36834. * Peter Schauer wrote the code to allow debugging to work on the
  36835. Alpha.
  36836. * William Schelter did most of the work on the Intel 80386 support.
  36837. * Tobias Schlüter for work on GNU Fortran.
  36838. * Bernd Schmidt for various code generation improvements and major
  36839. work in the reload pass, serving as release manager for GCC 2.95.3,
  36840. and work on the Blackfin and C6X ports.
  36841. * Peter Schmid for constant testing of libstdc++--especially
  36842. application testing, going above and beyond what was requested for
  36843. the release criteria--and libstdc++ header file tweaks.
  36844. * Jason Schroeder for jcf-dump patches.
  36845. * Andreas Schwab for his work on the m68k port.
  36846. * Lars Segerlund for work on GNU Fortran.
  36847. * Dodji Seketeli for numerous C++ bug fixes and debug info
  36848. improvements.
  36849. * Tim Shen for major work on '<regex>'.
  36850. * Joel Sherrill for his direction via the steering committee, RTEMS
  36851. contributions and RTEMS testing.
  36852. * Nathan Sidwell for many C++ fixes/improvements.
  36853. * Jeffrey Siegal for helping RMS with the original design of GCC,
  36854. some code which handles the parse tree and RTL data structures,
  36855. constant folding and help with the original VAX & m68k ports.
  36856. * Kenny Simpson for prompting libstdc++ fixes due to defect reports
  36857. from the LWG (thereby keeping GCC in line with updates from the
  36858. ISO).
  36859. * Franz Sirl for his ongoing work with making the PPC port stable for
  36860. GNU/Linux.
  36861. * Andrey Slepuhin for assorted AIX hacking.
  36862. * Trevor Smigiel for contributing the SPU port.
  36863. * Christopher Smith did the port for Convex machines.
  36864. * Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
  36865. Retired from GCC maintainership August 2010, having mentored two
  36866. new maintainers into the role.
  36867. * Randy Smith finished the Sun FPA support.
  36868. * Ed Smith-Rowland for his continuous work on libstdc++-v3, special
  36869. functions, '<random>', and various improvements to C++11 features.
  36870. * Scott Snyder for queue, iterator, istream, and string fixes and
  36871. libstdc++ testsuite entries. Also for providing the patch to G77
  36872. to add rudimentary support for 'INTEGER*1', 'INTEGER*2', and
  36873. 'LOGICAL*1'.
  36874. * Zdenek Sojka for running automated regression testing of GCC and
  36875. reporting numerous bugs.
  36876. * Arseny Solokha for running automated regression testing of GCC and
  36877. reporting numerous bugs.
  36878. * Jayant Sonar for contributing the CR16 port.
  36879. * Brad Spencer for contributions to the GLIBCPP_FORCE_NEW technique.
  36880. * Richard Stallman, for writing the original GCC and launching the
  36881. GNU project.
  36882. * Jan Stein of the Chalmers Computer Society provided support for
  36883. Genix, as well as part of the 32000 machine description.
  36884. * Gerhard Steinmetz for running automated regression testing of GCC
  36885. and reporting numerous bugs.
  36886. * Nigel Stephens for various mips16 related fixes/improvements.
  36887. * Jonathan Stone wrote the machine description for the Pyramid
  36888. computer.
  36889. * Graham Stott for various infrastructure improvements.
  36890. * John Stracke for his Java HTTP protocol fixes.
  36891. * Mike Stump for his Elxsi port, G++ contributions over the years and
  36892. more recently his vxworks contributions
  36893. * Jeff Sturm for Java porting help, bug fixes, and encouragement.
  36894. * Zhendong Su for running automated regression testing of GCC and
  36895. reporting numerous bugs.
  36896. * Chengnian Sun for running automated regression testing of GCC and
  36897. reporting numerous bugs.
  36898. * Shigeya Suzuki for this fixes for the bsdi platforms.
  36899. * Ian Lance Taylor for the Go frontend, the initial mips16 and mips64
  36900. support, general configury hacking, fixincludes, etc.
  36901. * Holger Teutsch provided the support for the Clipper CPU.
  36902. * Gary Thomas for his ongoing work to make the PPC work for
  36903. GNU/Linux.
  36904. * Paul Thomas for contributions to GNU Fortran.
  36905. * Philipp Thomas for random bug fixes throughout the compiler
  36906. * Jason Thorpe for thread support in libstdc++ on NetBSD.
  36907. * Kresten Krab Thorup wrote the run time support for the Objective-C
  36908. language and the fantastic Java bytecode interpreter.
  36909. * Michael Tiemann for random bug fixes, the first instruction
  36910. scheduler, initial C++ support, function integration, NS32k, SPARC
  36911. and M88k machine description work, delay slot scheduling.
  36912. * Andreas Tobler for his work porting libgcj to Darwin.
  36913. * Teemu Torma for thread safe exception handling support.
  36914. * Leonard Tower wrote parts of the parser, RTL generator, and RTL
  36915. definitions, and of the VAX machine description.
  36916. * Daniel Towner and Hariharan Sandanagobalane contributed and
  36917. maintain the picoChip port.
  36918. * Tom Tromey for internationalization support and for his many Java
  36919. contributions and libgcj maintainership.
  36920. * Lassi Tuura for improvements to config.guess to determine HP
  36921. processor types.
  36922. * Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.
  36923. * Andy Vaught for the design and initial implementation of the GNU
  36924. Fortran front end.
  36925. * Brent Verner for work with the libstdc++ cshadow files and their
  36926. associated configure steps.
  36927. * Todd Vierling for contributions for NetBSD ports.
  36928. * Andrew Waterman for contributing the RISC-V port, as well as
  36929. maintaining it.
  36930. * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML
  36931. guidance and maintaining libstdc++.
  36932. * Dean Wakerley for converting the install documentation from HTML to
  36933. texinfo in time for GCC 3.0.
  36934. * Krister Walfridsson for random bug fixes.
  36935. * Feng Wang for contributions to GNU Fortran.
  36936. * Stephen M. Webb for time and effort on making libstdc++ shadow
  36937. files work with the tricky Solaris 8+ headers, and for pushing the
  36938. build-time header tree. Also, for starting and driving the
  36939. '<regex>' effort.
  36940. * John Wehle for various improvements for the x86 code generator,
  36941. related infrastructure improvements to help x86 code generation,
  36942. value range propagation and other work, WE32k port.
  36943. * Ulrich Weigand for work on the s390 port.
  36944. * Janus Weil for contributions to GNU Fortran.
  36945. * Zack Weinberg for major work on cpplib and various other bug fixes.
  36946. * Matt Welsh for help with Linux Threads support in GCJ.
  36947. * Urban Widmark for help fixing java.io.
  36948. * Mark Wielaard for new Java library code and his work integrating
  36949. with Classpath.
  36950. * Dale Wiles helped port GCC to the Tahoe.
  36951. * Bob Wilson from Tensilica, Inc. for the Xtensa port.
  36952. * Jim Wilson for his direction via the steering committee, tackling
  36953. hard problems in various places that nobody else wanted to work on,
  36954. strength reduction and other loop optimizations.
  36955. * Paul Woegerer and Tal Agmon for the CRX port.
  36956. * Carlo Wood for various fixes.
  36957. * Tom Wood for work on the m88k port.
  36958. * Chung-Ju Wu for his work on the Andes NDS32 port.
  36959. * Canqun Yang for work on GNU Fortran.
  36960. * Masanobu Yuhara of Fujitsu Laboratories implemented the machine
  36961. description for the Tron architecture (specifically, the Gmicro).
  36962. * Kevin Zachmann helped port GCC to the Tahoe.
  36963. * Ayal Zaks for Swing Modulo Scheduling (SMS).
  36964. * Qirun Zhang for running automated regression testing of GCC and
  36965. reporting numerous bugs.
  36966. * Xiaoqiang Zhang for work on GNU Fortran.
  36967. * Gilles Zunino for help porting Java to Irix.
  36968. The following people are recognized for their contributions to GNAT,
  36969. the Ada front end of GCC:
  36970. * Bernard Banner
  36971. * Romain Berrendonner
  36972. * Geert Bosch
  36973. * Emmanuel Briot
  36974. * Joel Brobecker
  36975. * Ben Brosgol
  36976. * Vincent Celier
  36977. * Arnaud Charlet
  36978. * Chien Chieng
  36979. * Cyrille Comar
  36980. * Cyrille Crozes
  36981. * Robert Dewar
  36982. * Gary Dismukes
  36983. * Robert Duff
  36984. * Ed Falis
  36985. * Ramon Fernandez
  36986. * Sam Figueroa
  36987. * Vasiliy Fofanov
  36988. * Michael Friess
  36989. * Franco Gasperoni
  36990. * Ted Giering
  36991. * Matthew Gingell
  36992. * Laurent Guerby
  36993. * Jerome Guitton
  36994. * Olivier Hainque
  36995. * Jerome Hugues
  36996. * Hristian Kirtchev
  36997. * Jerome Lambourg
  36998. * Bruno Leclerc
  36999. * Albert Lee
  37000. * Sean McNeil
  37001. * Javier Miranda
  37002. * Laurent Nana
  37003. * Pascal Obry
  37004. * Dong-Ik Oh
  37005. * Laurent Pautet
  37006. * Brett Porter
  37007. * Thomas Quinot
  37008. * Nicolas Roche
  37009. * Pat Rogers
  37010. * Jose Ruiz
  37011. * Douglas Rupp
  37012. * Sergey Rybin
  37013. * Gail Schenker
  37014. * Ed Schonberg
  37015. * Nicolas Setton
  37016. * Samuel Tardieu
  37017. The following people are recognized for their contributions of new
  37018. features, bug reports, testing and integration of classpath/libgcj for
  37019. GCC version 4.1:
  37020. * Lillian Angel for 'JTree' implementation and lots Free Swing
  37021. additions and bug fixes.
  37022. * Wolfgang Baer for 'GapContent' bug fixes.
  37023. * Anthony Balkissoon for 'JList', Free Swing 1.5 updates and mouse
  37024. event fixes, lots of Free Swing work including 'JTable' editing.
  37025. * Stuart Ballard for RMI constant fixes.
  37026. * Goffredo Baroncelli for 'HTTPURLConnection' fixes.
  37027. * Gary Benson for 'MessageFormat' fixes.
  37028. * Daniel Bonniot for 'Serialization' fixes.
  37029. * Chris Burdess for lots of gnu.xml and http protocol fixes, 'StAX'
  37030. and 'DOM xml:id' support.
  37031. * Ka-Hing Cheung for 'TreePath' and 'TreeSelection' fixes.
  37032. * Archie Cobbs for build fixes, VM interface updates,
  37033. 'URLClassLoader' updates.
  37034. * Kelley Cook for build fixes.
  37035. * Martin Cordova for Suggestions for better 'SocketTimeoutException'.
  37036. * David Daney for 'BitSet' bug fixes, 'HttpURLConnection' rewrite and
  37037. improvements.
  37038. * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo
  37039. 2D support. Lots of imageio framework additions, lots of AWT and
  37040. Free Swing bug fixes.
  37041. * Jeroen Frijters for 'ClassLoader' and nio cleanups, serialization
  37042. fixes, better 'Proxy' support, bug fixes and IKVM integration.
  37043. * Santiago Gala for 'AccessControlContext' fixes.
  37044. * Nicolas Geoffray for 'VMClassLoader' and 'AccessController'
  37045. improvements.
  37046. * David Gilbert for 'basic' and 'metal' icon and plaf support and
  37047. lots of documenting, Lots of Free Swing and metal theme additions.
  37048. 'MetalIconFactory' implementation.
  37049. * Anthony Green for 'MIDI' framework, 'ALSA' and 'DSSI' providers.
  37050. * Andrew Haley for 'Serialization' and 'URLClassLoader' fixes, gcj
  37051. build speedups.
  37052. * Kim Ho for 'JFileChooser' implementation.
  37053. * Andrew John Hughes for 'Locale' and net fixes, URI RFC2986 updates,
  37054. 'Serialization' fixes, 'Properties' XML support and generic branch
  37055. work, VMIntegration guide update.
  37056. * Bastiaan Huisman for 'TimeZone' bug fixing.
  37057. * Andreas Jaeger for mprec updates.
  37058. * Paul Jenner for better '-Werror' support.
  37059. * Ito Kazumitsu for 'NetworkInterface' implementation and updates.
  37060. * Roman Kennke for 'BoxLayout', 'GrayFilter' and 'SplitPane', plus
  37061. bug fixes all over. Lots of Free Swing work including styled text.
  37062. * Simon Kitching for 'String' cleanups and optimization suggestions.
  37063. * Michael Koch for configuration fixes, 'Locale' updates, bug and
  37064. build fixes.
  37065. * Guilhem Lavaux for configuration, thread and channel fixes and
  37066. Kaffe integration. JCL native 'Pointer' updates. Logger bug
  37067. fixes.
  37068. * David Lichteblau for JCL support library global/local reference
  37069. cleanups.
  37070. * Aaron Luchko for JDWP updates and documentation fixes.
  37071. * Ziga Mahkovec for 'Graphics2D' upgraded to Cairo 0.5 and new regex
  37072. features.
  37073. * Sven de Marothy for BMP imageio support, CSS and 'TextLayout'
  37074. fixes. 'GtkImage' rewrite, 2D, awt, free swing and date/time fixes
  37075. and implementing the Qt4 peers.
  37076. * Casey Marshall for crypto algorithm fixes, 'FileChannel' lock,
  37077. 'SystemLogger' and 'FileHandler' rotate implementations, NIO
  37078. 'FileChannel.map' support, security and policy updates.
  37079. * Bryce McKinlay for RMI work.
  37080. * Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus
  37081. testing and documenting.
  37082. * Kalle Olavi Niemitalo for build fixes.
  37083. * Rainer Orth for build fixes.
  37084. * Andrew Overholt for 'File' locking fixes.
  37085. * Ingo Proetel for 'Image', 'Logger' and 'URLClassLoader' updates.
  37086. * Olga Rodimina for 'MenuSelectionManager' implementation.
  37087. * Jan Roehrich for 'BasicTreeUI' and 'JTree' fixes.
  37088. * Julian Scheid for documentation updates and gjdoc support.
  37089. * Christian Schlichtherle for zip fixes and cleanups.
  37090. * Robert Schuster for documentation updates and beans fixes,
  37091. 'TreeNode' enumerations and 'ActionCommand' and various fixes, XML
  37092. and URL, AWT and Free Swing bug fixes.
  37093. * Keith Seitz for lots of JDWP work.
  37094. * Christian Thalinger for 64-bit cleanups, Configuration and VM
  37095. interface fixes and 'CACAO' integration, 'fdlibm' updates.
  37096. * Gael Thomas for 'VMClassLoader' boot packages support suggestions.
  37097. * Andreas Tobler for Darwin and Solaris testing and fixing, 'Qt4'
  37098. support for Darwin/OS X, 'Graphics2D' support, 'gtk+' updates.
  37099. * Dalibor Topic for better 'DEBUG' support, build cleanups and Kaffe
  37100. integration. 'Qt4' build infrastructure, 'SHA1PRNG' and
  37101. 'GdkPixbugDecoder' updates.
  37102. * Tom Tromey for Eclipse integration, generics work, lots of bug
  37103. fixes and gcj integration including coordinating The Big Merge.
  37104. * Mark Wielaard for bug fixes, packaging and release management,
  37105. 'Clipboard' implementation, system call interrupts and network
  37106. timeouts and 'GdkPixpufDecoder' fixes.
  37107. In addition to the above, all of which also contributed time and energy
  37108. in testing GCC, we would like to thank the following for their
  37109. contributions to testing:
  37110. * Michael Abd-El-Malek
  37111. * Thomas Arend
  37112. * Bonzo Armstrong
  37113. * Steven Ashe
  37114. * Chris Baldwin
  37115. * David Billinghurst
  37116. * Jim Blandy
  37117. * Stephane Bortzmeyer
  37118. * Horst von Brand
  37119. * Frank Braun
  37120. * Rodney Brown
  37121. * Sidney Cadot
  37122. * Bradford Castalia
  37123. * Robert Clark
  37124. * Jonathan Corbet
  37125. * Ralph Doncaster
  37126. * Richard Emberson
  37127. * Levente Farkas
  37128. * Graham Fawcett
  37129. * Mark Fernyhough
  37130. * Robert A. French
  37131. * Jörgen Freyh
  37132. * Mark K. Gardner
  37133. * Charles-Antoine Gauthier
  37134. * Yung Shing Gene
  37135. * David Gilbert
  37136. * Simon Gornall
  37137. * Fred Gray
  37138. * John Griffin
  37139. * Patrik Hagglund
  37140. * Phil Hargett
  37141. * Amancio Hasty
  37142. * Takafumi Hayashi
  37143. * Bryan W. Headley
  37144. * Kevin B. Hendricks
  37145. * Joep Jansen
  37146. * Christian Joensson
  37147. * Michel Kern
  37148. * David Kidd
  37149. * Tobias Kuipers
  37150. * Anand Krishnaswamy
  37151. * A. O. V. Le Blanc
  37152. * llewelly
  37153. * Damon Love
  37154. * Brad Lucier
  37155. * Matthias Klose
  37156. * Martin Knoblauch
  37157. * Rick Lutowski
  37158. * Jesse Macnish
  37159. * Stefan Morrell
  37160. * Anon A. Mous
  37161. * Matthias Mueller
  37162. * Pekka Nikander
  37163. * Rick Niles
  37164. * Jon Olson
  37165. * Magnus Persson
  37166. * Chris Pollard
  37167. * Richard Polton
  37168. * Derk Reefman
  37169. * David Rees
  37170. * Paul Reilly
  37171. * Tom Reilly
  37172. * Torsten Rueger
  37173. * Danny Sadinoff
  37174. * Marc Schifer
  37175. * Erik Schnetter
  37176. * Wayne K. Schroll
  37177. * David Schuler
  37178. * Vin Shelton
  37179. * Tim Souder
  37180. * Adam Sulmicki
  37181. * Bill Thorson
  37182. * George Talbot
  37183. * Pedro A. M. Vazquez
  37184. * Gregory Warnes
  37185. * Ian Watson
  37186. * David E. Young
  37187. * And many others
  37188. And finally we'd like to thank everyone who uses the compiler, provides
  37189. feedback and generally reminds us why we're doing this work in the first
  37190. place.
  37191. 
  37192. File: gccint.info, Node: Option Index, Next: Concept Index, Prev: Contributors, Up: Top
  37193. Option Index
  37194. ************
  37195. GCC's command line options are indexed here without any initial '-' or
  37196. '--'. Where an option has both positive and negative forms (such as
  37197. '-fOPTION' and '-fno-OPTION'), relevant entries in the manual are
  37198. indexed under the most appropriate form; it may sometimes be useful to
  37199. look up both forms.
  37200. �[index�]
  37201. * Menu:
  37202. * fltrans: Internal flags. (line 18)
  37203. * fltrans-output-list: Internal flags. (line 23)
  37204. * fresolution: Internal flags. (line 27)
  37205. * fwpa: Internal flags. (line 9)
  37206. * msoft-float: Soft float library routines.
  37207. (line 6)
  37208. 
  37209. File: gccint.info, Node: Concept Index, Prev: Option Index, Up: Top
  37210. Concept Index
  37211. *************
  37212. �[index�]
  37213. * Menu:
  37214. * ! in constraint: Multi-Alternative. (line 48)
  37215. * # in constraint: Modifiers. (line 78)
  37216. * # in template: Output Template. (line 66)
  37217. * #pragma: Misc. (line 409)
  37218. * $ in constraint: Multi-Alternative. (line 57)
  37219. * % in constraint: Modifiers. (line 52)
  37220. * % in GTY option: GTY Options. (line 18)
  37221. * % in template: Output Template. (line 6)
  37222. * & in constraint: Modifiers. (line 25)
  37223. * (gimple: Logical Operators. (line 169)
  37224. * (gimple <1>: Logical Operators. (line 173)
  37225. * (gimple <2>: Logical Operators. (line 177)
  37226. * (gimple_stmt_iterator: GIMPLE API. (line 30)
  37227. * (nil): RTL Objects. (line 73)
  37228. * * in constraint: Modifiers. (line 83)
  37229. * * in template: Output Statement. (line 29)
  37230. * *gimple_build_asm_vec: GIMPLE_ASM. (line 6)
  37231. * *gimple_build_assign: GIMPLE_ASSIGN. (line 6)
  37232. * *gimple_build_assign <1>: GIMPLE_ASSIGN. (line 18)
  37233. * *gimple_build_assign <2>: GIMPLE_ASSIGN. (line 29)
  37234. * *gimple_build_assign <3>: GIMPLE_ASSIGN. (line 35)
  37235. * *gimple_build_bind: GIMPLE_BIND. (line 6)
  37236. * *gimple_build_call: GIMPLE_CALL. (line 6)
  37237. * *gimple_build_call_from_tree: GIMPLE_CALL. (line 15)
  37238. * *gimple_build_call_vec: GIMPLE_CALL. (line 25)
  37239. * *gimple_build_catch: GIMPLE_CATCH. (line 6)
  37240. * *gimple_build_cond: GIMPLE_COND. (line 6)
  37241. * *gimple_build_cond_from_tree: GIMPLE_COND. (line 14)
  37242. * *gimple_build_debug_bind: GIMPLE_DEBUG. (line 6)
  37243. * *gimple_build_eh_filter: GIMPLE_EH_FILTER. (line 6)
  37244. * *gimple_build_goto: GIMPLE_GOTO. (line 6)
  37245. * *gimple_build_label: GIMPLE_LABEL. (line 6)
  37246. * *gimple_build_omp_atomic_load: GIMPLE_OMP_ATOMIC_LOAD.
  37247. (line 6)
  37248. * *gimple_build_omp_atomic_store: GIMPLE_OMP_ATOMIC_STORE.
  37249. (line 6)
  37250. * *gimple_build_omp_continue: GIMPLE_OMP_CONTINUE.
  37251. (line 6)
  37252. * *gimple_build_omp_critical: GIMPLE_OMP_CRITICAL.
  37253. (line 6)
  37254. * *gimple_build_omp_for: GIMPLE_OMP_FOR. (line 6)
  37255. * *gimple_build_omp_parallel: GIMPLE_OMP_PARALLEL.
  37256. (line 6)
  37257. * *gimple_build_omp_sections: GIMPLE_OMP_SECTIONS.
  37258. (line 6)
  37259. * *gimple_build_omp_single: GIMPLE_OMP_SINGLE. (line 6)
  37260. * *gimple_build_resx: GIMPLE_RESX. (line 6)
  37261. * *gimple_build_return: GIMPLE_RETURN. (line 6)
  37262. * *gimple_build_switch: GIMPLE_SWITCH. (line 6)
  37263. * *gimple_build_try: GIMPLE_TRY. (line 6)
  37264. * + in constraint: Modifiers. (line 12)
  37265. * -fsection-anchors: Special Accessors. (line 117)
  37266. * -fsection-anchors <1>: Anchored Addresses. (line 6)
  37267. * /c in RTL dump: Flags. (line 230)
  37268. * /f in RTL dump: Flags. (line 238)
  37269. * /i in RTL dump: Flags. (line 283)
  37270. * /j in RTL dump: Flags. (line 295)
  37271. * /s in RTL dump: Flags. (line 254)
  37272. * /u in RTL dump: Flags. (line 307)
  37273. * /v in RTL dump: Flags. (line 339)
  37274. * 0 in constraint: Simple Constraints. (line 128)
  37275. * < in constraint: Simple Constraints. (line 47)
  37276. * = in constraint: Modifiers. (line 8)
  37277. * > in constraint: Simple Constraints. (line 59)
  37278. * ? in constraint: Multi-Alternative. (line 42)
  37279. * \: Output Template. (line 46)
  37280. * ^ in constraint: Multi-Alternative. (line 53)
  37281. * __absvdi2: Integer library routines.
  37282. (line 106)
  37283. * __absvsi2: Integer library routines.
  37284. (line 105)
  37285. * __addda3: Fixed-point fractional library routines.
  37286. (line 52)
  37287. * __adddf3: Soft float library routines.
  37288. (line 22)
  37289. * __adddq3: Fixed-point fractional library routines.
  37290. (line 39)
  37291. * __addha3: Fixed-point fractional library routines.
  37292. (line 49)
  37293. * __addhq3: Fixed-point fractional library routines.
  37294. (line 37)
  37295. * __addqq3: Fixed-point fractional library routines.
  37296. (line 35)
  37297. * __addsa3: Fixed-point fractional library routines.
  37298. (line 51)
  37299. * __addsf3: Soft float library routines.
  37300. (line 21)
  37301. * __addsq3: Fixed-point fractional library routines.
  37302. (line 38)
  37303. * __addta3: Fixed-point fractional library routines.
  37304. (line 53)
  37305. * __addtf3: Soft float library routines.
  37306. (line 23)
  37307. * __adduda3: Fixed-point fractional library routines.
  37308. (line 59)
  37309. * __addudq3: Fixed-point fractional library routines.
  37310. (line 47)
  37311. * __adduha3: Fixed-point fractional library routines.
  37312. (line 55)
  37313. * __adduhq3: Fixed-point fractional library routines.
  37314. (line 43)
  37315. * __adduqq3: Fixed-point fractional library routines.
  37316. (line 41)
  37317. * __addusa3: Fixed-point fractional library routines.
  37318. (line 57)
  37319. * __addusq3: Fixed-point fractional library routines.
  37320. (line 45)
  37321. * __adduta3: Fixed-point fractional library routines.
  37322. (line 61)
  37323. * __addvdi3: Integer library routines.
  37324. (line 110)
  37325. * __addvsi3: Integer library routines.
  37326. (line 109)
  37327. * __addxf3: Soft float library routines.
  37328. (line 25)
  37329. * __ashlda3: Fixed-point fractional library routines.
  37330. (line 358)
  37331. * __ashldi3: Integer library routines.
  37332. (line 13)
  37333. * __ashldq3: Fixed-point fractional library routines.
  37334. (line 346)
  37335. * __ashlha3: Fixed-point fractional library routines.
  37336. (line 356)
  37337. * __ashlhq3: Fixed-point fractional library routines.
  37338. (line 344)
  37339. * __ashlqq3: Fixed-point fractional library routines.
  37340. (line 343)
  37341. * __ashlsa3: Fixed-point fractional library routines.
  37342. (line 357)
  37343. * __ashlsi3: Integer library routines.
  37344. (line 12)
  37345. * __ashlsq3: Fixed-point fractional library routines.
  37346. (line 345)
  37347. * __ashlta3: Fixed-point fractional library routines.
  37348. (line 359)
  37349. * __ashlti3: Integer library routines.
  37350. (line 14)
  37351. * __ashluda3: Fixed-point fractional library routines.
  37352. (line 365)
  37353. * __ashludq3: Fixed-point fractional library routines.
  37354. (line 354)
  37355. * __ashluha3: Fixed-point fractional library routines.
  37356. (line 361)
  37357. * __ashluhq3: Fixed-point fractional library routines.
  37358. (line 350)
  37359. * __ashluqq3: Fixed-point fractional library routines.
  37360. (line 348)
  37361. * __ashlusa3: Fixed-point fractional library routines.
  37362. (line 363)
  37363. * __ashlusq3: Fixed-point fractional library routines.
  37364. (line 352)
  37365. * __ashluta3: Fixed-point fractional library routines.
  37366. (line 367)
  37367. * __ashrda3: Fixed-point fractional library routines.
  37368. (line 378)
  37369. * __ashrdi3: Integer library routines.
  37370. (line 18)
  37371. * __ashrdq3: Fixed-point fractional library routines.
  37372. (line 374)
  37373. * __ashrha3: Fixed-point fractional library routines.
  37374. (line 376)
  37375. * __ashrhq3: Fixed-point fractional library routines.
  37376. (line 372)
  37377. * __ashrqq3: Fixed-point fractional library routines.
  37378. (line 371)
  37379. * __ashrsa3: Fixed-point fractional library routines.
  37380. (line 377)
  37381. * __ashrsi3: Integer library routines.
  37382. (line 17)
  37383. * __ashrsq3: Fixed-point fractional library routines.
  37384. (line 373)
  37385. * __ashrta3: Fixed-point fractional library routines.
  37386. (line 379)
  37387. * __ashrti3: Integer library routines.
  37388. (line 19)
  37389. * __bid_adddd3: Decimal float library routines.
  37390. (line 23)
  37391. * __bid_addsd3: Decimal float library routines.
  37392. (line 19)
  37393. * __bid_addtd3: Decimal float library routines.
  37394. (line 27)
  37395. * __bid_divdd3: Decimal float library routines.
  37396. (line 66)
  37397. * __bid_divsd3: Decimal float library routines.
  37398. (line 62)
  37399. * __bid_divtd3: Decimal float library routines.
  37400. (line 70)
  37401. * __bid_eqdd2: Decimal float library routines.
  37402. (line 258)
  37403. * __bid_eqsd2: Decimal float library routines.
  37404. (line 256)
  37405. * __bid_eqtd2: Decimal float library routines.
  37406. (line 260)
  37407. * __bid_extendddtd2: Decimal float library routines.
  37408. (line 91)
  37409. * __bid_extendddtf: Decimal float library routines.
  37410. (line 139)
  37411. * __bid_extendddxf: Decimal float library routines.
  37412. (line 133)
  37413. * __bid_extenddfdd: Decimal float library routines.
  37414. (line 146)
  37415. * __bid_extenddftd: Decimal float library routines.
  37416. (line 106)
  37417. * __bid_extendsddd2: Decimal float library routines.
  37418. (line 87)
  37419. * __bid_extendsddf: Decimal float library routines.
  37420. (line 127)
  37421. * __bid_extendsdtd2: Decimal float library routines.
  37422. (line 89)
  37423. * __bid_extendsdtf: Decimal float library routines.
  37424. (line 137)
  37425. * __bid_extendsdxf: Decimal float library routines.
  37426. (line 131)
  37427. * __bid_extendsfdd: Decimal float library routines.
  37428. (line 102)
  37429. * __bid_extendsfsd: Decimal float library routines.
  37430. (line 144)
  37431. * __bid_extendsftd: Decimal float library routines.
  37432. (line 104)
  37433. * __bid_extendtftd: Decimal float library routines.
  37434. (line 148)
  37435. * __bid_extendxftd: Decimal float library routines.
  37436. (line 108)
  37437. * __bid_fixdddi: Decimal float library routines.
  37438. (line 169)
  37439. * __bid_fixddsi: Decimal float library routines.
  37440. (line 161)
  37441. * __bid_fixsddi: Decimal float library routines.
  37442. (line 167)
  37443. * __bid_fixsdsi: Decimal float library routines.
  37444. (line 159)
  37445. * __bid_fixtddi: Decimal float library routines.
  37446. (line 171)
  37447. * __bid_fixtdsi: Decimal float library routines.
  37448. (line 163)
  37449. * __bid_fixunsdddi: Decimal float library routines.
  37450. (line 186)
  37451. * __bid_fixunsddsi: Decimal float library routines.
  37452. (line 177)
  37453. * __bid_fixunssddi: Decimal float library routines.
  37454. (line 184)
  37455. * __bid_fixunssdsi: Decimal float library routines.
  37456. (line 175)
  37457. * __bid_fixunstddi: Decimal float library routines.
  37458. (line 188)
  37459. * __bid_fixunstdsi: Decimal float library routines.
  37460. (line 179)
  37461. * __bid_floatdidd: Decimal float library routines.
  37462. (line 204)
  37463. * __bid_floatdisd: Decimal float library routines.
  37464. (line 202)
  37465. * __bid_floatditd: Decimal float library routines.
  37466. (line 206)
  37467. * __bid_floatsidd: Decimal float library routines.
  37468. (line 195)
  37469. * __bid_floatsisd: Decimal float library routines.
  37470. (line 193)
  37471. * __bid_floatsitd: Decimal float library routines.
  37472. (line 197)
  37473. * __bid_floatunsdidd: Decimal float library routines.
  37474. (line 222)
  37475. * __bid_floatunsdisd: Decimal float library routines.
  37476. (line 220)
  37477. * __bid_floatunsditd: Decimal float library routines.
  37478. (line 224)
  37479. * __bid_floatunssidd: Decimal float library routines.
  37480. (line 213)
  37481. * __bid_floatunssisd: Decimal float library routines.
  37482. (line 211)
  37483. * __bid_floatunssitd: Decimal float library routines.
  37484. (line 215)
  37485. * __bid_gedd2: Decimal float library routines.
  37486. (line 276)
  37487. * __bid_gesd2: Decimal float library routines.
  37488. (line 274)
  37489. * __bid_getd2: Decimal float library routines.
  37490. (line 278)
  37491. * __bid_gtdd2: Decimal float library routines.
  37492. (line 303)
  37493. * __bid_gtsd2: Decimal float library routines.
  37494. (line 301)
  37495. * __bid_gttd2: Decimal float library routines.
  37496. (line 305)
  37497. * __bid_ledd2: Decimal float library routines.
  37498. (line 294)
  37499. * __bid_lesd2: Decimal float library routines.
  37500. (line 292)
  37501. * __bid_letd2: Decimal float library routines.
  37502. (line 296)
  37503. * __bid_ltdd2: Decimal float library routines.
  37504. (line 285)
  37505. * __bid_ltsd2: Decimal float library routines.
  37506. (line 283)
  37507. * __bid_lttd2: Decimal float library routines.
  37508. (line 287)
  37509. * __bid_muldd3: Decimal float library routines.
  37510. (line 52)
  37511. * __bid_mulsd3: Decimal float library routines.
  37512. (line 48)
  37513. * __bid_multd3: Decimal float library routines.
  37514. (line 56)
  37515. * __bid_nedd2: Decimal float library routines.
  37516. (line 267)
  37517. * __bid_negdd2: Decimal float library routines.
  37518. (line 77)
  37519. * __bid_negsd2: Decimal float library routines.
  37520. (line 75)
  37521. * __bid_negtd2: Decimal float library routines.
  37522. (line 79)
  37523. * __bid_nesd2: Decimal float library routines.
  37524. (line 265)
  37525. * __bid_netd2: Decimal float library routines.
  37526. (line 269)
  37527. * __bid_subdd3: Decimal float library routines.
  37528. (line 37)
  37529. * __bid_subsd3: Decimal float library routines.
  37530. (line 33)
  37531. * __bid_subtd3: Decimal float library routines.
  37532. (line 41)
  37533. * __bid_truncdddf: Decimal float library routines.
  37534. (line 152)
  37535. * __bid_truncddsd2: Decimal float library routines.
  37536. (line 93)
  37537. * __bid_truncddsf: Decimal float library routines.
  37538. (line 123)
  37539. * __bid_truncdfsd: Decimal float library routines.
  37540. (line 110)
  37541. * __bid_truncsdsf: Decimal float library routines.
  37542. (line 150)
  37543. * __bid_trunctddd2: Decimal float library routines.
  37544. (line 97)
  37545. * __bid_trunctddf: Decimal float library routines.
  37546. (line 129)
  37547. * __bid_trunctdsd2: Decimal float library routines.
  37548. (line 95)
  37549. * __bid_trunctdsf: Decimal float library routines.
  37550. (line 125)
  37551. * __bid_trunctdtf: Decimal float library routines.
  37552. (line 154)
  37553. * __bid_trunctdxf: Decimal float library routines.
  37554. (line 135)
  37555. * __bid_trunctfdd: Decimal float library routines.
  37556. (line 118)
  37557. * __bid_trunctfsd: Decimal float library routines.
  37558. (line 114)
  37559. * __bid_truncxfdd: Decimal float library routines.
  37560. (line 116)
  37561. * __bid_truncxfsd: Decimal float library routines.
  37562. (line 112)
  37563. * __bid_unorddd2: Decimal float library routines.
  37564. (line 234)
  37565. * __bid_unordsd2: Decimal float library routines.
  37566. (line 232)
  37567. * __bid_unordtd2: Decimal float library routines.
  37568. (line 236)
  37569. * __bswapdi2: Integer library routines.
  37570. (line 161)
  37571. * __bswapsi2: Integer library routines.
  37572. (line 160)
  37573. * __builtin_classify_type: Varargs. (line 48)
  37574. * __builtin_next_arg: Varargs. (line 39)
  37575. * __builtin_saveregs: Varargs. (line 22)
  37576. * __chkp_bndcl: Misc. (line 672)
  37577. * __chkp_bndcu: Misc. (line 678)
  37578. * __chkp_bndldx: Misc. (line 666)
  37579. * __chkp_bndmk: Misc. (line 653)
  37580. * __chkp_bndret: Misc. (line 684)
  37581. * __chkp_bndstx: Misc. (line 660)
  37582. * __chkp_intersect: Misc. (line 690)
  37583. * __chkp_narrow: Misc. (line 695)
  37584. * __chkp_sizeof: Misc. (line 701)
  37585. * __clear_cache: Miscellaneous routines.
  37586. (line 9)
  37587. * __clzdi2: Integer library routines.
  37588. (line 130)
  37589. * __clzsi2: Integer library routines.
  37590. (line 129)
  37591. * __clzti2: Integer library routines.
  37592. (line 131)
  37593. * __cmpda2: Fixed-point fractional library routines.
  37594. (line 458)
  37595. * __cmpdf2: Soft float library routines.
  37596. (line 163)
  37597. * __cmpdi2: Integer library routines.
  37598. (line 86)
  37599. * __cmpdq2: Fixed-point fractional library routines.
  37600. (line 447)
  37601. * __cmpha2: Fixed-point fractional library routines.
  37602. (line 456)
  37603. * __cmphq2: Fixed-point fractional library routines.
  37604. (line 445)
  37605. * __cmpqq2: Fixed-point fractional library routines.
  37606. (line 444)
  37607. * __cmpsa2: Fixed-point fractional library routines.
  37608. (line 457)
  37609. * __cmpsf2: Soft float library routines.
  37610. (line 162)
  37611. * __cmpsq2: Fixed-point fractional library routines.
  37612. (line 446)
  37613. * __cmpta2: Fixed-point fractional library routines.
  37614. (line 459)
  37615. * __cmptf2: Soft float library routines.
  37616. (line 164)
  37617. * __cmpti2: Integer library routines.
  37618. (line 87)
  37619. * __cmpuda2: Fixed-point fractional library routines.
  37620. (line 464)
  37621. * __cmpudq2: Fixed-point fractional library routines.
  37622. (line 454)
  37623. * __cmpuha2: Fixed-point fractional library routines.
  37624. (line 461)
  37625. * __cmpuhq2: Fixed-point fractional library routines.
  37626. (line 451)
  37627. * __cmpuqq2: Fixed-point fractional library routines.
  37628. (line 449)
  37629. * __cmpusa2: Fixed-point fractional library routines.
  37630. (line 463)
  37631. * __cmpusq2: Fixed-point fractional library routines.
  37632. (line 452)
  37633. * __cmputa2: Fixed-point fractional library routines.
  37634. (line 466)
  37635. * __CTOR_LIST__: Initialization. (line 25)
  37636. * __ctzdi2: Integer library routines.
  37637. (line 137)
  37638. * __ctzsi2: Integer library routines.
  37639. (line 136)
  37640. * __ctzti2: Integer library routines.
  37641. (line 138)
  37642. * __divda3: Fixed-point fractional library routines.
  37643. (line 234)
  37644. * __divdc3: Soft float library routines.
  37645. (line 250)
  37646. * __divdf3: Soft float library routines.
  37647. (line 47)
  37648. * __divdi3: Integer library routines.
  37649. (line 24)
  37650. * __divdq3: Fixed-point fractional library routines.
  37651. (line 229)
  37652. * __divha3: Fixed-point fractional library routines.
  37653. (line 231)
  37654. * __divhq3: Fixed-point fractional library routines.
  37655. (line 227)
  37656. * __divqq3: Fixed-point fractional library routines.
  37657. (line 225)
  37658. * __divsa3: Fixed-point fractional library routines.
  37659. (line 233)
  37660. * __divsc3: Soft float library routines.
  37661. (line 248)
  37662. * __divsf3: Soft float library routines.
  37663. (line 46)
  37664. * __divsi3: Integer library routines.
  37665. (line 23)
  37666. * __divsq3: Fixed-point fractional library routines.
  37667. (line 228)
  37668. * __divta3: Fixed-point fractional library routines.
  37669. (line 235)
  37670. * __divtc3: Soft float library routines.
  37671. (line 252)
  37672. * __divtf3: Soft float library routines.
  37673. (line 48)
  37674. * __divti3: Integer library routines.
  37675. (line 25)
  37676. * __divxc3: Soft float library routines.
  37677. (line 254)
  37678. * __divxf3: Soft float library routines.
  37679. (line 50)
  37680. * __dpd_adddd3: Decimal float library routines.
  37681. (line 21)
  37682. * __dpd_addsd3: Decimal float library routines.
  37683. (line 17)
  37684. * __dpd_addtd3: Decimal float library routines.
  37685. (line 25)
  37686. * __dpd_divdd3: Decimal float library routines.
  37687. (line 64)
  37688. * __dpd_divsd3: Decimal float library routines.
  37689. (line 60)
  37690. * __dpd_divtd3: Decimal float library routines.
  37691. (line 68)
  37692. * __dpd_eqdd2: Decimal float library routines.
  37693. (line 257)
  37694. * __dpd_eqsd2: Decimal float library routines.
  37695. (line 255)
  37696. * __dpd_eqtd2: Decimal float library routines.
  37697. (line 259)
  37698. * __dpd_extendddtd2: Decimal float library routines.
  37699. (line 90)
  37700. * __dpd_extendddtf: Decimal float library routines.
  37701. (line 138)
  37702. * __dpd_extendddxf: Decimal float library routines.
  37703. (line 132)
  37704. * __dpd_extenddfdd: Decimal float library routines.
  37705. (line 145)
  37706. * __dpd_extenddftd: Decimal float library routines.
  37707. (line 105)
  37708. * __dpd_extendsddd2: Decimal float library routines.
  37709. (line 86)
  37710. * __dpd_extendsddf: Decimal float library routines.
  37711. (line 126)
  37712. * __dpd_extendsdtd2: Decimal float library routines.
  37713. (line 88)
  37714. * __dpd_extendsdtf: Decimal float library routines.
  37715. (line 136)
  37716. * __dpd_extendsdxf: Decimal float library routines.
  37717. (line 130)
  37718. * __dpd_extendsfdd: Decimal float library routines.
  37719. (line 101)
  37720. * __dpd_extendsfsd: Decimal float library routines.
  37721. (line 143)
  37722. * __dpd_extendsftd: Decimal float library routines.
  37723. (line 103)
  37724. * __dpd_extendtftd: Decimal float library routines.
  37725. (line 147)
  37726. * __dpd_extendxftd: Decimal float library routines.
  37727. (line 107)
  37728. * __dpd_fixdddi: Decimal float library routines.
  37729. (line 168)
  37730. * __dpd_fixddsi: Decimal float library routines.
  37731. (line 160)
  37732. * __dpd_fixsddi: Decimal float library routines.
  37733. (line 166)
  37734. * __dpd_fixsdsi: Decimal float library routines.
  37735. (line 158)
  37736. * __dpd_fixtddi: Decimal float library routines.
  37737. (line 170)
  37738. * __dpd_fixtdsi: Decimal float library routines.
  37739. (line 162)
  37740. * __dpd_fixunsdddi: Decimal float library routines.
  37741. (line 185)
  37742. * __dpd_fixunsddsi: Decimal float library routines.
  37743. (line 176)
  37744. * __dpd_fixunssddi: Decimal float library routines.
  37745. (line 183)
  37746. * __dpd_fixunssdsi: Decimal float library routines.
  37747. (line 174)
  37748. * __dpd_fixunstddi: Decimal float library routines.
  37749. (line 187)
  37750. * __dpd_fixunstdsi: Decimal float library routines.
  37751. (line 178)
  37752. * __dpd_floatdidd: Decimal float library routines.
  37753. (line 203)
  37754. * __dpd_floatdisd: Decimal float library routines.
  37755. (line 201)
  37756. * __dpd_floatditd: Decimal float library routines.
  37757. (line 205)
  37758. * __dpd_floatsidd: Decimal float library routines.
  37759. (line 194)
  37760. * __dpd_floatsisd: Decimal float library routines.
  37761. (line 192)
  37762. * __dpd_floatsitd: Decimal float library routines.
  37763. (line 196)
  37764. * __dpd_floatunsdidd: Decimal float library routines.
  37765. (line 221)
  37766. * __dpd_floatunsdisd: Decimal float library routines.
  37767. (line 219)
  37768. * __dpd_floatunsditd: Decimal float library routines.
  37769. (line 223)
  37770. * __dpd_floatunssidd: Decimal float library routines.
  37771. (line 212)
  37772. * __dpd_floatunssisd: Decimal float library routines.
  37773. (line 210)
  37774. * __dpd_floatunssitd: Decimal float library routines.
  37775. (line 214)
  37776. * __dpd_gedd2: Decimal float library routines.
  37777. (line 275)
  37778. * __dpd_gesd2: Decimal float library routines.
  37779. (line 273)
  37780. * __dpd_getd2: Decimal float library routines.
  37781. (line 277)
  37782. * __dpd_gtdd2: Decimal float library routines.
  37783. (line 302)
  37784. * __dpd_gtsd2: Decimal float library routines.
  37785. (line 300)
  37786. * __dpd_gttd2: Decimal float library routines.
  37787. (line 304)
  37788. * __dpd_ledd2: Decimal float library routines.
  37789. (line 293)
  37790. * __dpd_lesd2: Decimal float library routines.
  37791. (line 291)
  37792. * __dpd_letd2: Decimal float library routines.
  37793. (line 295)
  37794. * __dpd_ltdd2: Decimal float library routines.
  37795. (line 284)
  37796. * __dpd_ltsd2: Decimal float library routines.
  37797. (line 282)
  37798. * __dpd_lttd2: Decimal float library routines.
  37799. (line 286)
  37800. * __dpd_muldd3: Decimal float library routines.
  37801. (line 50)
  37802. * __dpd_mulsd3: Decimal float library routines.
  37803. (line 46)
  37804. * __dpd_multd3: Decimal float library routines.
  37805. (line 54)
  37806. * __dpd_nedd2: Decimal float library routines.
  37807. (line 266)
  37808. * __dpd_negdd2: Decimal float library routines.
  37809. (line 76)
  37810. * __dpd_negsd2: Decimal float library routines.
  37811. (line 74)
  37812. * __dpd_negtd2: Decimal float library routines.
  37813. (line 78)
  37814. * __dpd_nesd2: Decimal float library routines.
  37815. (line 264)
  37816. * __dpd_netd2: Decimal float library routines.
  37817. (line 268)
  37818. * __dpd_subdd3: Decimal float library routines.
  37819. (line 35)
  37820. * __dpd_subsd3: Decimal float library routines.
  37821. (line 31)
  37822. * __dpd_subtd3: Decimal float library routines.
  37823. (line 39)
  37824. * __dpd_truncdddf: Decimal float library routines.
  37825. (line 151)
  37826. * __dpd_truncddsd2: Decimal float library routines.
  37827. (line 92)
  37828. * __dpd_truncddsf: Decimal float library routines.
  37829. (line 122)
  37830. * __dpd_truncdfsd: Decimal float library routines.
  37831. (line 109)
  37832. * __dpd_truncsdsf: Decimal float library routines.
  37833. (line 149)
  37834. * __dpd_trunctddd2: Decimal float library routines.
  37835. (line 96)
  37836. * __dpd_trunctddf: Decimal float library routines.
  37837. (line 128)
  37838. * __dpd_trunctdsd2: Decimal float library routines.
  37839. (line 94)
  37840. * __dpd_trunctdsf: Decimal float library routines.
  37841. (line 124)
  37842. * __dpd_trunctdtf: Decimal float library routines.
  37843. (line 153)
  37844. * __dpd_trunctdxf: Decimal float library routines.
  37845. (line 134)
  37846. * __dpd_trunctfdd: Decimal float library routines.
  37847. (line 117)
  37848. * __dpd_trunctfsd: Decimal float library routines.
  37849. (line 113)
  37850. * __dpd_truncxfdd: Decimal float library routines.
  37851. (line 115)
  37852. * __dpd_truncxfsd: Decimal float library routines.
  37853. (line 111)
  37854. * __dpd_unorddd2: Decimal float library routines.
  37855. (line 233)
  37856. * __dpd_unordsd2: Decimal float library routines.
  37857. (line 231)
  37858. * __dpd_unordtd2: Decimal float library routines.
  37859. (line 235)
  37860. * __DTOR_LIST__: Initialization. (line 25)
  37861. * __eqdf2: Soft float library routines.
  37862. (line 193)
  37863. * __eqsf2: Soft float library routines.
  37864. (line 192)
  37865. * __eqtf2: Soft float library routines.
  37866. (line 194)
  37867. * __extenddftf2: Soft float library routines.
  37868. (line 67)
  37869. * __extenddfxf2: Soft float library routines.
  37870. (line 68)
  37871. * __extendsfdf2: Soft float library routines.
  37872. (line 64)
  37873. * __extendsftf2: Soft float library routines.
  37874. (line 65)
  37875. * __extendsfxf2: Soft float library routines.
  37876. (line 66)
  37877. * __ffsdi2: Integer library routines.
  37878. (line 143)
  37879. * __ffsti2: Integer library routines.
  37880. (line 144)
  37881. * __fixdfdi: Soft float library routines.
  37882. (line 87)
  37883. * __fixdfsi: Soft float library routines.
  37884. (line 80)
  37885. * __fixdfti: Soft float library routines.
  37886. (line 93)
  37887. * __fixsfdi: Soft float library routines.
  37888. (line 86)
  37889. * __fixsfsi: Soft float library routines.
  37890. (line 79)
  37891. * __fixsfti: Soft float library routines.
  37892. (line 92)
  37893. * __fixtfdi: Soft float library routines.
  37894. (line 88)
  37895. * __fixtfsi: Soft float library routines.
  37896. (line 81)
  37897. * __fixtfti: Soft float library routines.
  37898. (line 94)
  37899. * __fixunsdfdi: Soft float library routines.
  37900. (line 107)
  37901. * __fixunsdfsi: Soft float library routines.
  37902. (line 100)
  37903. * __fixunsdfti: Soft float library routines.
  37904. (line 114)
  37905. * __fixunssfdi: Soft float library routines.
  37906. (line 106)
  37907. * __fixunssfsi: Soft float library routines.
  37908. (line 99)
  37909. * __fixunssfti: Soft float library routines.
  37910. (line 113)
  37911. * __fixunstfdi: Soft float library routines.
  37912. (line 108)
  37913. * __fixunstfsi: Soft float library routines.
  37914. (line 101)
  37915. * __fixunstfti: Soft float library routines.
  37916. (line 115)
  37917. * __fixunsxfdi: Soft float library routines.
  37918. (line 109)
  37919. * __fixunsxfsi: Soft float library routines.
  37920. (line 102)
  37921. * __fixunsxfti: Soft float library routines.
  37922. (line 116)
  37923. * __fixxfdi: Soft float library routines.
  37924. (line 89)
  37925. * __fixxfsi: Soft float library routines.
  37926. (line 82)
  37927. * __fixxfti: Soft float library routines.
  37928. (line 95)
  37929. * __floatdidf: Soft float library routines.
  37930. (line 127)
  37931. * __floatdisf: Soft float library routines.
  37932. (line 126)
  37933. * __floatditf: Soft float library routines.
  37934. (line 128)
  37935. * __floatdixf: Soft float library routines.
  37936. (line 129)
  37937. * __floatsidf: Soft float library routines.
  37938. (line 121)
  37939. * __floatsisf: Soft float library routines.
  37940. (line 120)
  37941. * __floatsitf: Soft float library routines.
  37942. (line 122)
  37943. * __floatsixf: Soft float library routines.
  37944. (line 123)
  37945. * __floattidf: Soft float library routines.
  37946. (line 133)
  37947. * __floattisf: Soft float library routines.
  37948. (line 132)
  37949. * __floattitf: Soft float library routines.
  37950. (line 134)
  37951. * __floattixf: Soft float library routines.
  37952. (line 135)
  37953. * __floatundidf: Soft float library routines.
  37954. (line 145)
  37955. * __floatundisf: Soft float library routines.
  37956. (line 144)
  37957. * __floatunditf: Soft float library routines.
  37958. (line 146)
  37959. * __floatundixf: Soft float library routines.
  37960. (line 147)
  37961. * __floatunsidf: Soft float library routines.
  37962. (line 139)
  37963. * __floatunsisf: Soft float library routines.
  37964. (line 138)
  37965. * __floatunsitf: Soft float library routines.
  37966. (line 140)
  37967. * __floatunsixf: Soft float library routines.
  37968. (line 141)
  37969. * __floatuntidf: Soft float library routines.
  37970. (line 151)
  37971. * __floatuntisf: Soft float library routines.
  37972. (line 150)
  37973. * __floatuntitf: Soft float library routines.
  37974. (line 152)
  37975. * __floatuntixf: Soft float library routines.
  37976. (line 153)
  37977. * __fractdadf: Fixed-point fractional library routines.
  37978. (line 643)
  37979. * __fractdadi: Fixed-point fractional library routines.
  37980. (line 640)
  37981. * __fractdadq: Fixed-point fractional library routines.
  37982. (line 623)
  37983. * __fractdaha2: Fixed-point fractional library routines.
  37984. (line 624)
  37985. * __fractdahi: Fixed-point fractional library routines.
  37986. (line 638)
  37987. * __fractdahq: Fixed-point fractional library routines.
  37988. (line 621)
  37989. * __fractdaqi: Fixed-point fractional library routines.
  37990. (line 637)
  37991. * __fractdaqq: Fixed-point fractional library routines.
  37992. (line 620)
  37993. * __fractdasa2: Fixed-point fractional library routines.
  37994. (line 625)
  37995. * __fractdasf: Fixed-point fractional library routines.
  37996. (line 642)
  37997. * __fractdasi: Fixed-point fractional library routines.
  37998. (line 639)
  37999. * __fractdasq: Fixed-point fractional library routines.
  38000. (line 622)
  38001. * __fractdata2: Fixed-point fractional library routines.
  38002. (line 626)
  38003. * __fractdati: Fixed-point fractional library routines.
  38004. (line 641)
  38005. * __fractdauda: Fixed-point fractional library routines.
  38006. (line 634)
  38007. * __fractdaudq: Fixed-point fractional library routines.
  38008. (line 630)
  38009. * __fractdauha: Fixed-point fractional library routines.
  38010. (line 632)
  38011. * __fractdauhq: Fixed-point fractional library routines.
  38012. (line 628)
  38013. * __fractdauqq: Fixed-point fractional library routines.
  38014. (line 627)
  38015. * __fractdausa: Fixed-point fractional library routines.
  38016. (line 633)
  38017. * __fractdausq: Fixed-point fractional library routines.
  38018. (line 629)
  38019. * __fractdauta: Fixed-point fractional library routines.
  38020. (line 635)
  38021. * __fractdfda: Fixed-point fractional library routines.
  38022. (line 1032)
  38023. * __fractdfdq: Fixed-point fractional library routines.
  38024. (line 1029)
  38025. * __fractdfha: Fixed-point fractional library routines.
  38026. (line 1030)
  38027. * __fractdfhq: Fixed-point fractional library routines.
  38028. (line 1027)
  38029. * __fractdfqq: Fixed-point fractional library routines.
  38030. (line 1026)
  38031. * __fractdfsa: Fixed-point fractional library routines.
  38032. (line 1031)
  38033. * __fractdfsq: Fixed-point fractional library routines.
  38034. (line 1028)
  38035. * __fractdfta: Fixed-point fractional library routines.
  38036. (line 1033)
  38037. * __fractdfuda: Fixed-point fractional library routines.
  38038. (line 1040)
  38039. * __fractdfudq: Fixed-point fractional library routines.
  38040. (line 1037)
  38041. * __fractdfuha: Fixed-point fractional library routines.
  38042. (line 1038)
  38043. * __fractdfuhq: Fixed-point fractional library routines.
  38044. (line 1035)
  38045. * __fractdfuqq: Fixed-point fractional library routines.
  38046. (line 1034)
  38047. * __fractdfusa: Fixed-point fractional library routines.
  38048. (line 1039)
  38049. * __fractdfusq: Fixed-point fractional library routines.
  38050. (line 1036)
  38051. * __fractdfuta: Fixed-point fractional library routines.
  38052. (line 1041)
  38053. * __fractdida: Fixed-point fractional library routines.
  38054. (line 982)
  38055. * __fractdidq: Fixed-point fractional library routines.
  38056. (line 979)
  38057. * __fractdiha: Fixed-point fractional library routines.
  38058. (line 980)
  38059. * __fractdihq: Fixed-point fractional library routines.
  38060. (line 977)
  38061. * __fractdiqq: Fixed-point fractional library routines.
  38062. (line 976)
  38063. * __fractdisa: Fixed-point fractional library routines.
  38064. (line 981)
  38065. * __fractdisq: Fixed-point fractional library routines.
  38066. (line 978)
  38067. * __fractdita: Fixed-point fractional library routines.
  38068. (line 983)
  38069. * __fractdiuda: Fixed-point fractional library routines.
  38070. (line 990)
  38071. * __fractdiudq: Fixed-point fractional library routines.
  38072. (line 987)
  38073. * __fractdiuha: Fixed-point fractional library routines.
  38074. (line 988)
  38075. * __fractdiuhq: Fixed-point fractional library routines.
  38076. (line 985)
  38077. * __fractdiuqq: Fixed-point fractional library routines.
  38078. (line 984)
  38079. * __fractdiusa: Fixed-point fractional library routines.
  38080. (line 989)
  38081. * __fractdiusq: Fixed-point fractional library routines.
  38082. (line 986)
  38083. * __fractdiuta: Fixed-point fractional library routines.
  38084. (line 991)
  38085. * __fractdqda: Fixed-point fractional library routines.
  38086. (line 551)
  38087. * __fractdqdf: Fixed-point fractional library routines.
  38088. (line 573)
  38089. * __fractdqdi: Fixed-point fractional library routines.
  38090. (line 570)
  38091. * __fractdqha: Fixed-point fractional library routines.
  38092. (line 549)
  38093. * __fractdqhi: Fixed-point fractional library routines.
  38094. (line 568)
  38095. * __fractdqhq2: Fixed-point fractional library routines.
  38096. (line 547)
  38097. * __fractdqqi: Fixed-point fractional library routines.
  38098. (line 567)
  38099. * __fractdqqq2: Fixed-point fractional library routines.
  38100. (line 546)
  38101. * __fractdqsa: Fixed-point fractional library routines.
  38102. (line 550)
  38103. * __fractdqsf: Fixed-point fractional library routines.
  38104. (line 572)
  38105. * __fractdqsi: Fixed-point fractional library routines.
  38106. (line 569)
  38107. * __fractdqsq2: Fixed-point fractional library routines.
  38108. (line 548)
  38109. * __fractdqta: Fixed-point fractional library routines.
  38110. (line 552)
  38111. * __fractdqti: Fixed-point fractional library routines.
  38112. (line 571)
  38113. * __fractdquda: Fixed-point fractional library routines.
  38114. (line 563)
  38115. * __fractdqudq: Fixed-point fractional library routines.
  38116. (line 558)
  38117. * __fractdquha: Fixed-point fractional library routines.
  38118. (line 560)
  38119. * __fractdquhq: Fixed-point fractional library routines.
  38120. (line 555)
  38121. * __fractdquqq: Fixed-point fractional library routines.
  38122. (line 553)
  38123. * __fractdqusa: Fixed-point fractional library routines.
  38124. (line 562)
  38125. * __fractdqusq: Fixed-point fractional library routines.
  38126. (line 556)
  38127. * __fractdquta: Fixed-point fractional library routines.
  38128. (line 565)
  38129. * __fracthada2: Fixed-point fractional library routines.
  38130. (line 579)
  38131. * __fracthadf: Fixed-point fractional library routines.
  38132. (line 597)
  38133. * __fracthadi: Fixed-point fractional library routines.
  38134. (line 594)
  38135. * __fracthadq: Fixed-point fractional library routines.
  38136. (line 577)
  38137. * __fracthahi: Fixed-point fractional library routines.
  38138. (line 592)
  38139. * __fracthahq: Fixed-point fractional library routines.
  38140. (line 575)
  38141. * __fracthaqi: Fixed-point fractional library routines.
  38142. (line 591)
  38143. * __fracthaqq: Fixed-point fractional library routines.
  38144. (line 574)
  38145. * __fracthasa2: Fixed-point fractional library routines.
  38146. (line 578)
  38147. * __fracthasf: Fixed-point fractional library routines.
  38148. (line 596)
  38149. * __fracthasi: Fixed-point fractional library routines.
  38150. (line 593)
  38151. * __fracthasq: Fixed-point fractional library routines.
  38152. (line 576)
  38153. * __fracthata2: Fixed-point fractional library routines.
  38154. (line 580)
  38155. * __fracthati: Fixed-point fractional library routines.
  38156. (line 595)
  38157. * __fracthauda: Fixed-point fractional library routines.
  38158. (line 588)
  38159. * __fracthaudq: Fixed-point fractional library routines.
  38160. (line 584)
  38161. * __fracthauha: Fixed-point fractional library routines.
  38162. (line 586)
  38163. * __fracthauhq: Fixed-point fractional library routines.
  38164. (line 582)
  38165. * __fracthauqq: Fixed-point fractional library routines.
  38166. (line 581)
  38167. * __fracthausa: Fixed-point fractional library routines.
  38168. (line 587)
  38169. * __fracthausq: Fixed-point fractional library routines.
  38170. (line 583)
  38171. * __fracthauta: Fixed-point fractional library routines.
  38172. (line 589)
  38173. * __fracthida: Fixed-point fractional library routines.
  38174. (line 950)
  38175. * __fracthidq: Fixed-point fractional library routines.
  38176. (line 947)
  38177. * __fracthiha: Fixed-point fractional library routines.
  38178. (line 948)
  38179. * __fracthihq: Fixed-point fractional library routines.
  38180. (line 945)
  38181. * __fracthiqq: Fixed-point fractional library routines.
  38182. (line 944)
  38183. * __fracthisa: Fixed-point fractional library routines.
  38184. (line 949)
  38185. * __fracthisq: Fixed-point fractional library routines.
  38186. (line 946)
  38187. * __fracthita: Fixed-point fractional library routines.
  38188. (line 951)
  38189. * __fracthiuda: Fixed-point fractional library routines.
  38190. (line 958)
  38191. * __fracthiudq: Fixed-point fractional library routines.
  38192. (line 955)
  38193. * __fracthiuha: Fixed-point fractional library routines.
  38194. (line 956)
  38195. * __fracthiuhq: Fixed-point fractional library routines.
  38196. (line 953)
  38197. * __fracthiuqq: Fixed-point fractional library routines.
  38198. (line 952)
  38199. * __fracthiusa: Fixed-point fractional library routines.
  38200. (line 957)
  38201. * __fracthiusq: Fixed-point fractional library routines.
  38202. (line 954)
  38203. * __fracthiuta: Fixed-point fractional library routines.
  38204. (line 959)
  38205. * __fracthqda: Fixed-point fractional library routines.
  38206. (line 505)
  38207. * __fracthqdf: Fixed-point fractional library routines.
  38208. (line 521)
  38209. * __fracthqdi: Fixed-point fractional library routines.
  38210. (line 518)
  38211. * __fracthqdq2: Fixed-point fractional library routines.
  38212. (line 502)
  38213. * __fracthqha: Fixed-point fractional library routines.
  38214. (line 503)
  38215. * __fracthqhi: Fixed-point fractional library routines.
  38216. (line 516)
  38217. * __fracthqqi: Fixed-point fractional library routines.
  38218. (line 515)
  38219. * __fracthqqq2: Fixed-point fractional library routines.
  38220. (line 500)
  38221. * __fracthqsa: Fixed-point fractional library routines.
  38222. (line 504)
  38223. * __fracthqsf: Fixed-point fractional library routines.
  38224. (line 520)
  38225. * __fracthqsi: Fixed-point fractional library routines.
  38226. (line 517)
  38227. * __fracthqsq2: Fixed-point fractional library routines.
  38228. (line 501)
  38229. * __fracthqta: Fixed-point fractional library routines.
  38230. (line 506)
  38231. * __fracthqti: Fixed-point fractional library routines.
  38232. (line 519)
  38233. * __fracthquda: Fixed-point fractional library routines.
  38234. (line 513)
  38235. * __fracthqudq: Fixed-point fractional library routines.
  38236. (line 510)
  38237. * __fracthquha: Fixed-point fractional library routines.
  38238. (line 511)
  38239. * __fracthquhq: Fixed-point fractional library routines.
  38240. (line 508)
  38241. * __fracthquqq: Fixed-point fractional library routines.
  38242. (line 507)
  38243. * __fracthqusa: Fixed-point fractional library routines.
  38244. (line 512)
  38245. * __fracthqusq: Fixed-point fractional library routines.
  38246. (line 509)
  38247. * __fracthquta: Fixed-point fractional library routines.
  38248. (line 514)
  38249. * __fractqida: Fixed-point fractional library routines.
  38250. (line 932)
  38251. * __fractqidq: Fixed-point fractional library routines.
  38252. (line 929)
  38253. * __fractqiha: Fixed-point fractional library routines.
  38254. (line 930)
  38255. * __fractqihq: Fixed-point fractional library routines.
  38256. (line 927)
  38257. * __fractqiqq: Fixed-point fractional library routines.
  38258. (line 926)
  38259. * __fractqisa: Fixed-point fractional library routines.
  38260. (line 931)
  38261. * __fractqisq: Fixed-point fractional library routines.
  38262. (line 928)
  38263. * __fractqita: Fixed-point fractional library routines.
  38264. (line 933)
  38265. * __fractqiuda: Fixed-point fractional library routines.
  38266. (line 941)
  38267. * __fractqiudq: Fixed-point fractional library routines.
  38268. (line 937)
  38269. * __fractqiuha: Fixed-point fractional library routines.
  38270. (line 939)
  38271. * __fractqiuhq: Fixed-point fractional library routines.
  38272. (line 935)
  38273. * __fractqiuqq: Fixed-point fractional library routines.
  38274. (line 934)
  38275. * __fractqiusa: Fixed-point fractional library routines.
  38276. (line 940)
  38277. * __fractqiusq: Fixed-point fractional library routines.
  38278. (line 936)
  38279. * __fractqiuta: Fixed-point fractional library routines.
  38280. (line 942)
  38281. * __fractqqda: Fixed-point fractional library routines.
  38282. (line 481)
  38283. * __fractqqdf: Fixed-point fractional library routines.
  38284. (line 499)
  38285. * __fractqqdi: Fixed-point fractional library routines.
  38286. (line 496)
  38287. * __fractqqdq2: Fixed-point fractional library routines.
  38288. (line 478)
  38289. * __fractqqha: Fixed-point fractional library routines.
  38290. (line 479)
  38291. * __fractqqhi: Fixed-point fractional library routines.
  38292. (line 494)
  38293. * __fractqqhq2: Fixed-point fractional library routines.
  38294. (line 476)
  38295. * __fractqqqi: Fixed-point fractional library routines.
  38296. (line 493)
  38297. * __fractqqsa: Fixed-point fractional library routines.
  38298. (line 480)
  38299. * __fractqqsf: Fixed-point fractional library routines.
  38300. (line 498)
  38301. * __fractqqsi: Fixed-point fractional library routines.
  38302. (line 495)
  38303. * __fractqqsq2: Fixed-point fractional library routines.
  38304. (line 477)
  38305. * __fractqqta: Fixed-point fractional library routines.
  38306. (line 482)
  38307. * __fractqqti: Fixed-point fractional library routines.
  38308. (line 497)
  38309. * __fractqquda: Fixed-point fractional library routines.
  38310. (line 490)
  38311. * __fractqqudq: Fixed-point fractional library routines.
  38312. (line 486)
  38313. * __fractqquha: Fixed-point fractional library routines.
  38314. (line 488)
  38315. * __fractqquhq: Fixed-point fractional library routines.
  38316. (line 484)
  38317. * __fractqquqq: Fixed-point fractional library routines.
  38318. (line 483)
  38319. * __fractqqusa: Fixed-point fractional library routines.
  38320. (line 489)
  38321. * __fractqqusq: Fixed-point fractional library routines.
  38322. (line 485)
  38323. * __fractqquta: Fixed-point fractional library routines.
  38324. (line 491)
  38325. * __fractsada2: Fixed-point fractional library routines.
  38326. (line 603)
  38327. * __fractsadf: Fixed-point fractional library routines.
  38328. (line 619)
  38329. * __fractsadi: Fixed-point fractional library routines.
  38330. (line 616)
  38331. * __fractsadq: Fixed-point fractional library routines.
  38332. (line 601)
  38333. * __fractsaha2: Fixed-point fractional library routines.
  38334. (line 602)
  38335. * __fractsahi: Fixed-point fractional library routines.
  38336. (line 614)
  38337. * __fractsahq: Fixed-point fractional library routines.
  38338. (line 599)
  38339. * __fractsaqi: Fixed-point fractional library routines.
  38340. (line 613)
  38341. * __fractsaqq: Fixed-point fractional library routines.
  38342. (line 598)
  38343. * __fractsasf: Fixed-point fractional library routines.
  38344. (line 618)
  38345. * __fractsasi: Fixed-point fractional library routines.
  38346. (line 615)
  38347. * __fractsasq: Fixed-point fractional library routines.
  38348. (line 600)
  38349. * __fractsata2: Fixed-point fractional library routines.
  38350. (line 604)
  38351. * __fractsati: Fixed-point fractional library routines.
  38352. (line 617)
  38353. * __fractsauda: Fixed-point fractional library routines.
  38354. (line 611)
  38355. * __fractsaudq: Fixed-point fractional library routines.
  38356. (line 608)
  38357. * __fractsauha: Fixed-point fractional library routines.
  38358. (line 609)
  38359. * __fractsauhq: Fixed-point fractional library routines.
  38360. (line 606)
  38361. * __fractsauqq: Fixed-point fractional library routines.
  38362. (line 605)
  38363. * __fractsausa: Fixed-point fractional library routines.
  38364. (line 610)
  38365. * __fractsausq: Fixed-point fractional library routines.
  38366. (line 607)
  38367. * __fractsauta: Fixed-point fractional library routines.
  38368. (line 612)
  38369. * __fractsfda: Fixed-point fractional library routines.
  38370. (line 1016)
  38371. * __fractsfdq: Fixed-point fractional library routines.
  38372. (line 1013)
  38373. * __fractsfha: Fixed-point fractional library routines.
  38374. (line 1014)
  38375. * __fractsfhq: Fixed-point fractional library routines.
  38376. (line 1011)
  38377. * __fractsfqq: Fixed-point fractional library routines.
  38378. (line 1010)
  38379. * __fractsfsa: Fixed-point fractional library routines.
  38380. (line 1015)
  38381. * __fractsfsq: Fixed-point fractional library routines.
  38382. (line 1012)
  38383. * __fractsfta: Fixed-point fractional library routines.
  38384. (line 1017)
  38385. * __fractsfuda: Fixed-point fractional library routines.
  38386. (line 1024)
  38387. * __fractsfudq: Fixed-point fractional library routines.
  38388. (line 1021)
  38389. * __fractsfuha: Fixed-point fractional library routines.
  38390. (line 1022)
  38391. * __fractsfuhq: Fixed-point fractional library routines.
  38392. (line 1019)
  38393. * __fractsfuqq: Fixed-point fractional library routines.
  38394. (line 1018)
  38395. * __fractsfusa: Fixed-point fractional library routines.
  38396. (line 1023)
  38397. * __fractsfusq: Fixed-point fractional library routines.
  38398. (line 1020)
  38399. * __fractsfuta: Fixed-point fractional library routines.
  38400. (line 1025)
  38401. * __fractsida: Fixed-point fractional library routines.
  38402. (line 966)
  38403. * __fractsidq: Fixed-point fractional library routines.
  38404. (line 963)
  38405. * __fractsiha: Fixed-point fractional library routines.
  38406. (line 964)
  38407. * __fractsihq: Fixed-point fractional library routines.
  38408. (line 961)
  38409. * __fractsiqq: Fixed-point fractional library routines.
  38410. (line 960)
  38411. * __fractsisa: Fixed-point fractional library routines.
  38412. (line 965)
  38413. * __fractsisq: Fixed-point fractional library routines.
  38414. (line 962)
  38415. * __fractsita: Fixed-point fractional library routines.
  38416. (line 967)
  38417. * __fractsiuda: Fixed-point fractional library routines.
  38418. (line 974)
  38419. * __fractsiudq: Fixed-point fractional library routines.
  38420. (line 971)
  38421. * __fractsiuha: Fixed-point fractional library routines.
  38422. (line 972)
  38423. * __fractsiuhq: Fixed-point fractional library routines.
  38424. (line 969)
  38425. * __fractsiuqq: Fixed-point fractional library routines.
  38426. (line 968)
  38427. * __fractsiusa: Fixed-point fractional library routines.
  38428. (line 973)
  38429. * __fractsiusq: Fixed-point fractional library routines.
  38430. (line 970)
  38431. * __fractsiuta: Fixed-point fractional library routines.
  38432. (line 975)
  38433. * __fractsqda: Fixed-point fractional library routines.
  38434. (line 527)
  38435. * __fractsqdf: Fixed-point fractional library routines.
  38436. (line 545)
  38437. * __fractsqdi: Fixed-point fractional library routines.
  38438. (line 542)
  38439. * __fractsqdq2: Fixed-point fractional library routines.
  38440. (line 524)
  38441. * __fractsqha: Fixed-point fractional library routines.
  38442. (line 525)
  38443. * __fractsqhi: Fixed-point fractional library routines.
  38444. (line 540)
  38445. * __fractsqhq2: Fixed-point fractional library routines.
  38446. (line 523)
  38447. * __fractsqqi: Fixed-point fractional library routines.
  38448. (line 539)
  38449. * __fractsqqq2: Fixed-point fractional library routines.
  38450. (line 522)
  38451. * __fractsqsa: Fixed-point fractional library routines.
  38452. (line 526)
  38453. * __fractsqsf: Fixed-point fractional library routines.
  38454. (line 544)
  38455. * __fractsqsi: Fixed-point fractional library routines.
  38456. (line 541)
  38457. * __fractsqta: Fixed-point fractional library routines.
  38458. (line 528)
  38459. * __fractsqti: Fixed-point fractional library routines.
  38460. (line 543)
  38461. * __fractsquda: Fixed-point fractional library routines.
  38462. (line 536)
  38463. * __fractsqudq: Fixed-point fractional library routines.
  38464. (line 532)
  38465. * __fractsquha: Fixed-point fractional library routines.
  38466. (line 534)
  38467. * __fractsquhq: Fixed-point fractional library routines.
  38468. (line 530)
  38469. * __fractsquqq: Fixed-point fractional library routines.
  38470. (line 529)
  38471. * __fractsqusa: Fixed-point fractional library routines.
  38472. (line 535)
  38473. * __fractsqusq: Fixed-point fractional library routines.
  38474. (line 531)
  38475. * __fractsquta: Fixed-point fractional library routines.
  38476. (line 537)
  38477. * __fracttada2: Fixed-point fractional library routines.
  38478. (line 650)
  38479. * __fracttadf: Fixed-point fractional library routines.
  38480. (line 671)
  38481. * __fracttadi: Fixed-point fractional library routines.
  38482. (line 668)
  38483. * __fracttadq: Fixed-point fractional library routines.
  38484. (line 647)
  38485. * __fracttaha2: Fixed-point fractional library routines.
  38486. (line 648)
  38487. * __fracttahi: Fixed-point fractional library routines.
  38488. (line 666)
  38489. * __fracttahq: Fixed-point fractional library routines.
  38490. (line 645)
  38491. * __fracttaqi: Fixed-point fractional library routines.
  38492. (line 665)
  38493. * __fracttaqq: Fixed-point fractional library routines.
  38494. (line 644)
  38495. * __fracttasa2: Fixed-point fractional library routines.
  38496. (line 649)
  38497. * __fracttasf: Fixed-point fractional library routines.
  38498. (line 670)
  38499. * __fracttasi: Fixed-point fractional library routines.
  38500. (line 667)
  38501. * __fracttasq: Fixed-point fractional library routines.
  38502. (line 646)
  38503. * __fracttati: Fixed-point fractional library routines.
  38504. (line 669)
  38505. * __fracttauda: Fixed-point fractional library routines.
  38506. (line 661)
  38507. * __fracttaudq: Fixed-point fractional library routines.
  38508. (line 656)
  38509. * __fracttauha: Fixed-point fractional library routines.
  38510. (line 658)
  38511. * __fracttauhq: Fixed-point fractional library routines.
  38512. (line 653)
  38513. * __fracttauqq: Fixed-point fractional library routines.
  38514. (line 651)
  38515. * __fracttausa: Fixed-point fractional library routines.
  38516. (line 660)
  38517. * __fracttausq: Fixed-point fractional library routines.
  38518. (line 654)
  38519. * __fracttauta: Fixed-point fractional library routines.
  38520. (line 663)
  38521. * __fracttida: Fixed-point fractional library routines.
  38522. (line 998)
  38523. * __fracttidq: Fixed-point fractional library routines.
  38524. (line 995)
  38525. * __fracttiha: Fixed-point fractional library routines.
  38526. (line 996)
  38527. * __fracttihq: Fixed-point fractional library routines.
  38528. (line 993)
  38529. * __fracttiqq: Fixed-point fractional library routines.
  38530. (line 992)
  38531. * __fracttisa: Fixed-point fractional library routines.
  38532. (line 997)
  38533. * __fracttisq: Fixed-point fractional library routines.
  38534. (line 994)
  38535. * __fracttita: Fixed-point fractional library routines.
  38536. (line 999)
  38537. * __fracttiuda: Fixed-point fractional library routines.
  38538. (line 1007)
  38539. * __fracttiudq: Fixed-point fractional library routines.
  38540. (line 1003)
  38541. * __fracttiuha: Fixed-point fractional library routines.
  38542. (line 1005)
  38543. * __fracttiuhq: Fixed-point fractional library routines.
  38544. (line 1001)
  38545. * __fracttiuqq: Fixed-point fractional library routines.
  38546. (line 1000)
  38547. * __fracttiusa: Fixed-point fractional library routines.
  38548. (line 1006)
  38549. * __fracttiusq: Fixed-point fractional library routines.
  38550. (line 1002)
  38551. * __fracttiuta: Fixed-point fractional library routines.
  38552. (line 1008)
  38553. * __fractudada: Fixed-point fractional library routines.
  38554. (line 865)
  38555. * __fractudadf: Fixed-point fractional library routines.
  38556. (line 888)
  38557. * __fractudadi: Fixed-point fractional library routines.
  38558. (line 885)
  38559. * __fractudadq: Fixed-point fractional library routines.
  38560. (line 861)
  38561. * __fractudaha: Fixed-point fractional library routines.
  38562. (line 863)
  38563. * __fractudahi: Fixed-point fractional library routines.
  38564. (line 883)
  38565. * __fractudahq: Fixed-point fractional library routines.
  38566. (line 859)
  38567. * __fractudaqi: Fixed-point fractional library routines.
  38568. (line 882)
  38569. * __fractudaqq: Fixed-point fractional library routines.
  38570. (line 858)
  38571. * __fractudasa: Fixed-point fractional library routines.
  38572. (line 864)
  38573. * __fractudasf: Fixed-point fractional library routines.
  38574. (line 887)
  38575. * __fractudasi: Fixed-point fractional library routines.
  38576. (line 884)
  38577. * __fractudasq: Fixed-point fractional library routines.
  38578. (line 860)
  38579. * __fractudata: Fixed-point fractional library routines.
  38580. (line 866)
  38581. * __fractudati: Fixed-point fractional library routines.
  38582. (line 886)
  38583. * __fractudaudq: Fixed-point fractional library routines.
  38584. (line 874)
  38585. * __fractudauha2: Fixed-point fractional library routines.
  38586. (line 876)
  38587. * __fractudauhq: Fixed-point fractional library routines.
  38588. (line 870)
  38589. * __fractudauqq: Fixed-point fractional library routines.
  38590. (line 868)
  38591. * __fractudausa2: Fixed-point fractional library routines.
  38592. (line 878)
  38593. * __fractudausq: Fixed-point fractional library routines.
  38594. (line 872)
  38595. * __fractudauta2: Fixed-point fractional library routines.
  38596. (line 880)
  38597. * __fractudqda: Fixed-point fractional library routines.
  38598. (line 772)
  38599. * __fractudqdf: Fixed-point fractional library routines.
  38600. (line 798)
  38601. * __fractudqdi: Fixed-point fractional library routines.
  38602. (line 794)
  38603. * __fractudqdq: Fixed-point fractional library routines.
  38604. (line 767)
  38605. * __fractudqha: Fixed-point fractional library routines.
  38606. (line 769)
  38607. * __fractudqhi: Fixed-point fractional library routines.
  38608. (line 792)
  38609. * __fractudqhq: Fixed-point fractional library routines.
  38610. (line 764)
  38611. * __fractudqqi: Fixed-point fractional library routines.
  38612. (line 790)
  38613. * __fractudqqq: Fixed-point fractional library routines.
  38614. (line 762)
  38615. * __fractudqsa: Fixed-point fractional library routines.
  38616. (line 771)
  38617. * __fractudqsf: Fixed-point fractional library routines.
  38618. (line 797)
  38619. * __fractudqsi: Fixed-point fractional library routines.
  38620. (line 793)
  38621. * __fractudqsq: Fixed-point fractional library routines.
  38622. (line 765)
  38623. * __fractudqta: Fixed-point fractional library routines.
  38624. (line 774)
  38625. * __fractudqti: Fixed-point fractional library routines.
  38626. (line 795)
  38627. * __fractudquda: Fixed-point fractional library routines.
  38628. (line 786)
  38629. * __fractudquha: Fixed-point fractional library routines.
  38630. (line 782)
  38631. * __fractudquhq2: Fixed-point fractional library routines.
  38632. (line 778)
  38633. * __fractudquqq2: Fixed-point fractional library routines.
  38634. (line 776)
  38635. * __fractudqusa: Fixed-point fractional library routines.
  38636. (line 784)
  38637. * __fractudqusq2: Fixed-point fractional library routines.
  38638. (line 780)
  38639. * __fractudquta: Fixed-point fractional library routines.
  38640. (line 788)
  38641. * __fractuhada: Fixed-point fractional library routines.
  38642. (line 806)
  38643. * __fractuhadf: Fixed-point fractional library routines.
  38644. (line 829)
  38645. * __fractuhadi: Fixed-point fractional library routines.
  38646. (line 826)
  38647. * __fractuhadq: Fixed-point fractional library routines.
  38648. (line 802)
  38649. * __fractuhaha: Fixed-point fractional library routines.
  38650. (line 804)
  38651. * __fractuhahi: Fixed-point fractional library routines.
  38652. (line 824)
  38653. * __fractuhahq: Fixed-point fractional library routines.
  38654. (line 800)
  38655. * __fractuhaqi: Fixed-point fractional library routines.
  38656. (line 823)
  38657. * __fractuhaqq: Fixed-point fractional library routines.
  38658. (line 799)
  38659. * __fractuhasa: Fixed-point fractional library routines.
  38660. (line 805)
  38661. * __fractuhasf: Fixed-point fractional library routines.
  38662. (line 828)
  38663. * __fractuhasi: Fixed-point fractional library routines.
  38664. (line 825)
  38665. * __fractuhasq: Fixed-point fractional library routines.
  38666. (line 801)
  38667. * __fractuhata: Fixed-point fractional library routines.
  38668. (line 807)
  38669. * __fractuhati: Fixed-point fractional library routines.
  38670. (line 827)
  38671. * __fractuhauda2: Fixed-point fractional library routines.
  38672. (line 819)
  38673. * __fractuhaudq: Fixed-point fractional library routines.
  38674. (line 815)
  38675. * __fractuhauhq: Fixed-point fractional library routines.
  38676. (line 811)
  38677. * __fractuhauqq: Fixed-point fractional library routines.
  38678. (line 809)
  38679. * __fractuhausa2: Fixed-point fractional library routines.
  38680. (line 817)
  38681. * __fractuhausq: Fixed-point fractional library routines.
  38682. (line 813)
  38683. * __fractuhauta2: Fixed-point fractional library routines.
  38684. (line 821)
  38685. * __fractuhqda: Fixed-point fractional library routines.
  38686. (line 709)
  38687. * __fractuhqdf: Fixed-point fractional library routines.
  38688. (line 730)
  38689. * __fractuhqdi: Fixed-point fractional library routines.
  38690. (line 727)
  38691. * __fractuhqdq: Fixed-point fractional library routines.
  38692. (line 706)
  38693. * __fractuhqha: Fixed-point fractional library routines.
  38694. (line 707)
  38695. * __fractuhqhi: Fixed-point fractional library routines.
  38696. (line 725)
  38697. * __fractuhqhq: Fixed-point fractional library routines.
  38698. (line 704)
  38699. * __fractuhqqi: Fixed-point fractional library routines.
  38700. (line 724)
  38701. * __fractuhqqq: Fixed-point fractional library routines.
  38702. (line 703)
  38703. * __fractuhqsa: Fixed-point fractional library routines.
  38704. (line 708)
  38705. * __fractuhqsf: Fixed-point fractional library routines.
  38706. (line 729)
  38707. * __fractuhqsi: Fixed-point fractional library routines.
  38708. (line 726)
  38709. * __fractuhqsq: Fixed-point fractional library routines.
  38710. (line 705)
  38711. * __fractuhqta: Fixed-point fractional library routines.
  38712. (line 710)
  38713. * __fractuhqti: Fixed-point fractional library routines.
  38714. (line 728)
  38715. * __fractuhquda: Fixed-point fractional library routines.
  38716. (line 720)
  38717. * __fractuhqudq2: Fixed-point fractional library routines.
  38718. (line 715)
  38719. * __fractuhquha: Fixed-point fractional library routines.
  38720. (line 717)
  38721. * __fractuhquqq2: Fixed-point fractional library routines.
  38722. (line 711)
  38723. * __fractuhqusa: Fixed-point fractional library routines.
  38724. (line 719)
  38725. * __fractuhqusq2: Fixed-point fractional library routines.
  38726. (line 713)
  38727. * __fractuhquta: Fixed-point fractional library routines.
  38728. (line 722)
  38729. * __fractunsdadi: Fixed-point fractional library routines.
  38730. (line 1562)
  38731. * __fractunsdahi: Fixed-point fractional library routines.
  38732. (line 1560)
  38733. * __fractunsdaqi: Fixed-point fractional library routines.
  38734. (line 1559)
  38735. * __fractunsdasi: Fixed-point fractional library routines.
  38736. (line 1561)
  38737. * __fractunsdati: Fixed-point fractional library routines.
  38738. (line 1563)
  38739. * __fractunsdida: Fixed-point fractional library routines.
  38740. (line 1714)
  38741. * __fractunsdidq: Fixed-point fractional library routines.
  38742. (line 1711)
  38743. * __fractunsdiha: Fixed-point fractional library routines.
  38744. (line 1712)
  38745. * __fractunsdihq: Fixed-point fractional library routines.
  38746. (line 1709)
  38747. * __fractunsdiqq: Fixed-point fractional library routines.
  38748. (line 1708)
  38749. * __fractunsdisa: Fixed-point fractional library routines.
  38750. (line 1713)
  38751. * __fractunsdisq: Fixed-point fractional library routines.
  38752. (line 1710)
  38753. * __fractunsdita: Fixed-point fractional library routines.
  38754. (line 1715)
  38755. * __fractunsdiuda: Fixed-point fractional library routines.
  38756. (line 1726)
  38757. * __fractunsdiudq: Fixed-point fractional library routines.
  38758. (line 1721)
  38759. * __fractunsdiuha: Fixed-point fractional library routines.
  38760. (line 1723)
  38761. * __fractunsdiuhq: Fixed-point fractional library routines.
  38762. (line 1718)
  38763. * __fractunsdiuqq: Fixed-point fractional library routines.
  38764. (line 1716)
  38765. * __fractunsdiusa: Fixed-point fractional library routines.
  38766. (line 1725)
  38767. * __fractunsdiusq: Fixed-point fractional library routines.
  38768. (line 1719)
  38769. * __fractunsdiuta: Fixed-point fractional library routines.
  38770. (line 1728)
  38771. * __fractunsdqdi: Fixed-point fractional library routines.
  38772. (line 1546)
  38773. * __fractunsdqhi: Fixed-point fractional library routines.
  38774. (line 1544)
  38775. * __fractunsdqqi: Fixed-point fractional library routines.
  38776. (line 1543)
  38777. * __fractunsdqsi: Fixed-point fractional library routines.
  38778. (line 1545)
  38779. * __fractunsdqti: Fixed-point fractional library routines.
  38780. (line 1547)
  38781. * __fractunshadi: Fixed-point fractional library routines.
  38782. (line 1552)
  38783. * __fractunshahi: Fixed-point fractional library routines.
  38784. (line 1550)
  38785. * __fractunshaqi: Fixed-point fractional library routines.
  38786. (line 1549)
  38787. * __fractunshasi: Fixed-point fractional library routines.
  38788. (line 1551)
  38789. * __fractunshati: Fixed-point fractional library routines.
  38790. (line 1553)
  38791. * __fractunshida: Fixed-point fractional library routines.
  38792. (line 1670)
  38793. * __fractunshidq: Fixed-point fractional library routines.
  38794. (line 1667)
  38795. * __fractunshiha: Fixed-point fractional library routines.
  38796. (line 1668)
  38797. * __fractunshihq: Fixed-point fractional library routines.
  38798. (line 1665)
  38799. * __fractunshiqq: Fixed-point fractional library routines.
  38800. (line 1664)
  38801. * __fractunshisa: Fixed-point fractional library routines.
  38802. (line 1669)
  38803. * __fractunshisq: Fixed-point fractional library routines.
  38804. (line 1666)
  38805. * __fractunshita: Fixed-point fractional library routines.
  38806. (line 1671)
  38807. * __fractunshiuda: Fixed-point fractional library routines.
  38808. (line 1682)
  38809. * __fractunshiudq: Fixed-point fractional library routines.
  38810. (line 1677)
  38811. * __fractunshiuha: Fixed-point fractional library routines.
  38812. (line 1679)
  38813. * __fractunshiuhq: Fixed-point fractional library routines.
  38814. (line 1674)
  38815. * __fractunshiuqq: Fixed-point fractional library routines.
  38816. (line 1672)
  38817. * __fractunshiusa: Fixed-point fractional library routines.
  38818. (line 1681)
  38819. * __fractunshiusq: Fixed-point fractional library routines.
  38820. (line 1675)
  38821. * __fractunshiuta: Fixed-point fractional library routines.
  38822. (line 1684)
  38823. * __fractunshqdi: Fixed-point fractional library routines.
  38824. (line 1536)
  38825. * __fractunshqhi: Fixed-point fractional library routines.
  38826. (line 1534)
  38827. * __fractunshqqi: Fixed-point fractional library routines.
  38828. (line 1533)
  38829. * __fractunshqsi: Fixed-point fractional library routines.
  38830. (line 1535)
  38831. * __fractunshqti: Fixed-point fractional library routines.
  38832. (line 1537)
  38833. * __fractunsqida: Fixed-point fractional library routines.
  38834. (line 1648)
  38835. * __fractunsqidq: Fixed-point fractional library routines.
  38836. (line 1645)
  38837. * __fractunsqiha: Fixed-point fractional library routines.
  38838. (line 1646)
  38839. * __fractunsqihq: Fixed-point fractional library routines.
  38840. (line 1643)
  38841. * __fractunsqiqq: Fixed-point fractional library routines.
  38842. (line 1642)
  38843. * __fractunsqisa: Fixed-point fractional library routines.
  38844. (line 1647)
  38845. * __fractunsqisq: Fixed-point fractional library routines.
  38846. (line 1644)
  38847. * __fractunsqita: Fixed-point fractional library routines.
  38848. (line 1649)
  38849. * __fractunsqiuda: Fixed-point fractional library routines.
  38850. (line 1660)
  38851. * __fractunsqiudq: Fixed-point fractional library routines.
  38852. (line 1655)
  38853. * __fractunsqiuha: Fixed-point fractional library routines.
  38854. (line 1657)
  38855. * __fractunsqiuhq: Fixed-point fractional library routines.
  38856. (line 1652)
  38857. * __fractunsqiuqq: Fixed-point fractional library routines.
  38858. (line 1650)
  38859. * __fractunsqiusa: Fixed-point fractional library routines.
  38860. (line 1659)
  38861. * __fractunsqiusq: Fixed-point fractional library routines.
  38862. (line 1653)
  38863. * __fractunsqiuta: Fixed-point fractional library routines.
  38864. (line 1662)
  38865. * __fractunsqqdi: Fixed-point fractional library routines.
  38866. (line 1531)
  38867. * __fractunsqqhi: Fixed-point fractional library routines.
  38868. (line 1529)
  38869. * __fractunsqqqi: Fixed-point fractional library routines.
  38870. (line 1528)
  38871. * __fractunsqqsi: Fixed-point fractional library routines.
  38872. (line 1530)
  38873. * __fractunsqqti: Fixed-point fractional library routines.
  38874. (line 1532)
  38875. * __fractunssadi: Fixed-point fractional library routines.
  38876. (line 1557)
  38877. * __fractunssahi: Fixed-point fractional library routines.
  38878. (line 1555)
  38879. * __fractunssaqi: Fixed-point fractional library routines.
  38880. (line 1554)
  38881. * __fractunssasi: Fixed-point fractional library routines.
  38882. (line 1556)
  38883. * __fractunssati: Fixed-point fractional library routines.
  38884. (line 1558)
  38885. * __fractunssida: Fixed-point fractional library routines.
  38886. (line 1692)
  38887. * __fractunssidq: Fixed-point fractional library routines.
  38888. (line 1689)
  38889. * __fractunssiha: Fixed-point fractional library routines.
  38890. (line 1690)
  38891. * __fractunssihq: Fixed-point fractional library routines.
  38892. (line 1687)
  38893. * __fractunssiqq: Fixed-point fractional library routines.
  38894. (line 1686)
  38895. * __fractunssisa: Fixed-point fractional library routines.
  38896. (line 1691)
  38897. * __fractunssisq: Fixed-point fractional library routines.
  38898. (line 1688)
  38899. * __fractunssita: Fixed-point fractional library routines.
  38900. (line 1693)
  38901. * __fractunssiuda: Fixed-point fractional library routines.
  38902. (line 1704)
  38903. * __fractunssiudq: Fixed-point fractional library routines.
  38904. (line 1699)
  38905. * __fractunssiuha: Fixed-point fractional library routines.
  38906. (line 1701)
  38907. * __fractunssiuhq: Fixed-point fractional library routines.
  38908. (line 1696)
  38909. * __fractunssiuqq: Fixed-point fractional library routines.
  38910. (line 1694)
  38911. * __fractunssiusa: Fixed-point fractional library routines.
  38912. (line 1703)
  38913. * __fractunssiusq: Fixed-point fractional library routines.
  38914. (line 1697)
  38915. * __fractunssiuta: Fixed-point fractional library routines.
  38916. (line 1706)
  38917. * __fractunssqdi: Fixed-point fractional library routines.
  38918. (line 1541)
  38919. * __fractunssqhi: Fixed-point fractional library routines.
  38920. (line 1539)
  38921. * __fractunssqqi: Fixed-point fractional library routines.
  38922. (line 1538)
  38923. * __fractunssqsi: Fixed-point fractional library routines.
  38924. (line 1540)
  38925. * __fractunssqti: Fixed-point fractional library routines.
  38926. (line 1542)
  38927. * __fractunstadi: Fixed-point fractional library routines.
  38928. (line 1567)
  38929. * __fractunstahi: Fixed-point fractional library routines.
  38930. (line 1565)
  38931. * __fractunstaqi: Fixed-point fractional library routines.
  38932. (line 1564)
  38933. * __fractunstasi: Fixed-point fractional library routines.
  38934. (line 1566)
  38935. * __fractunstati: Fixed-point fractional library routines.
  38936. (line 1568)
  38937. * __fractunstida: Fixed-point fractional library routines.
  38938. (line 1737)
  38939. * __fractunstidq: Fixed-point fractional library routines.
  38940. (line 1733)
  38941. * __fractunstiha: Fixed-point fractional library routines.
  38942. (line 1735)
  38943. * __fractunstihq: Fixed-point fractional library routines.
  38944. (line 1731)
  38945. * __fractunstiqq: Fixed-point fractional library routines.
  38946. (line 1730)
  38947. * __fractunstisa: Fixed-point fractional library routines.
  38948. (line 1736)
  38949. * __fractunstisq: Fixed-point fractional library routines.
  38950. (line 1732)
  38951. * __fractunstita: Fixed-point fractional library routines.
  38952. (line 1738)
  38953. * __fractunstiuda: Fixed-point fractional library routines.
  38954. (line 1752)
  38955. * __fractunstiudq: Fixed-point fractional library routines.
  38956. (line 1746)
  38957. * __fractunstiuha: Fixed-point fractional library routines.
  38958. (line 1748)
  38959. * __fractunstiuhq: Fixed-point fractional library routines.
  38960. (line 1742)
  38961. * __fractunstiuqq: Fixed-point fractional library routines.
  38962. (line 1740)
  38963. * __fractunstiusa: Fixed-point fractional library routines.
  38964. (line 1750)
  38965. * __fractunstiusq: Fixed-point fractional library routines.
  38966. (line 1744)
  38967. * __fractunstiuta: Fixed-point fractional library routines.
  38968. (line 1754)
  38969. * __fractunsudadi: Fixed-point fractional library routines.
  38970. (line 1628)
  38971. * __fractunsudahi: Fixed-point fractional library routines.
  38972. (line 1624)
  38973. * __fractunsudaqi: Fixed-point fractional library routines.
  38974. (line 1622)
  38975. * __fractunsudasi: Fixed-point fractional library routines.
  38976. (line 1626)
  38977. * __fractunsudati: Fixed-point fractional library routines.
  38978. (line 1630)
  38979. * __fractunsudqdi: Fixed-point fractional library routines.
  38980. (line 1602)
  38981. * __fractunsudqhi: Fixed-point fractional library routines.
  38982. (line 1598)
  38983. * __fractunsudqqi: Fixed-point fractional library routines.
  38984. (line 1596)
  38985. * __fractunsudqsi: Fixed-point fractional library routines.
  38986. (line 1600)
  38987. * __fractunsudqti: Fixed-point fractional library routines.
  38988. (line 1604)
  38989. * __fractunsuhadi: Fixed-point fractional library routines.
  38990. (line 1612)
  38991. * __fractunsuhahi: Fixed-point fractional library routines.
  38992. (line 1608)
  38993. * __fractunsuhaqi: Fixed-point fractional library routines.
  38994. (line 1606)
  38995. * __fractunsuhasi: Fixed-point fractional library routines.
  38996. (line 1610)
  38997. * __fractunsuhati: Fixed-point fractional library routines.
  38998. (line 1614)
  38999. * __fractunsuhqdi: Fixed-point fractional library routines.
  39000. (line 1583)
  39001. * __fractunsuhqhi: Fixed-point fractional library routines.
  39002. (line 1581)
  39003. * __fractunsuhqqi: Fixed-point fractional library routines.
  39004. (line 1580)
  39005. * __fractunsuhqsi: Fixed-point fractional library routines.
  39006. (line 1582)
  39007. * __fractunsuhqti: Fixed-point fractional library routines.
  39008. (line 1584)
  39009. * __fractunsuqqdi: Fixed-point fractional library routines.
  39010. (line 1576)
  39011. * __fractunsuqqhi: Fixed-point fractional library routines.
  39012. (line 1572)
  39013. * __fractunsuqqqi: Fixed-point fractional library routines.
  39014. (line 1570)
  39015. * __fractunsuqqsi: Fixed-point fractional library routines.
  39016. (line 1574)
  39017. * __fractunsuqqti: Fixed-point fractional library routines.
  39018. (line 1578)
  39019. * __fractunsusadi: Fixed-point fractional library routines.
  39020. (line 1619)
  39021. * __fractunsusahi: Fixed-point fractional library routines.
  39022. (line 1617)
  39023. * __fractunsusaqi: Fixed-point fractional library routines.
  39024. (line 1616)
  39025. * __fractunsusasi: Fixed-point fractional library routines.
  39026. (line 1618)
  39027. * __fractunsusati: Fixed-point fractional library routines.
  39028. (line 1620)
  39029. * __fractunsusqdi: Fixed-point fractional library routines.
  39030. (line 1592)
  39031. * __fractunsusqhi: Fixed-point fractional library routines.
  39032. (line 1588)
  39033. * __fractunsusqqi: Fixed-point fractional library routines.
  39034. (line 1586)
  39035. * __fractunsusqsi: Fixed-point fractional library routines.
  39036. (line 1590)
  39037. * __fractunsusqti: Fixed-point fractional library routines.
  39038. (line 1594)
  39039. * __fractunsutadi: Fixed-point fractional library routines.
  39040. (line 1638)
  39041. * __fractunsutahi: Fixed-point fractional library routines.
  39042. (line 1634)
  39043. * __fractunsutaqi: Fixed-point fractional library routines.
  39044. (line 1632)
  39045. * __fractunsutasi: Fixed-point fractional library routines.
  39046. (line 1636)
  39047. * __fractunsutati: Fixed-point fractional library routines.
  39048. (line 1640)
  39049. * __fractuqqda: Fixed-point fractional library routines.
  39050. (line 679)
  39051. * __fractuqqdf: Fixed-point fractional library routines.
  39052. (line 702)
  39053. * __fractuqqdi: Fixed-point fractional library routines.
  39054. (line 699)
  39055. * __fractuqqdq: Fixed-point fractional library routines.
  39056. (line 675)
  39057. * __fractuqqha: Fixed-point fractional library routines.
  39058. (line 677)
  39059. * __fractuqqhi: Fixed-point fractional library routines.
  39060. (line 697)
  39061. * __fractuqqhq: Fixed-point fractional library routines.
  39062. (line 673)
  39063. * __fractuqqqi: Fixed-point fractional library routines.
  39064. (line 696)
  39065. * __fractuqqqq: Fixed-point fractional library routines.
  39066. (line 672)
  39067. * __fractuqqsa: Fixed-point fractional library routines.
  39068. (line 678)
  39069. * __fractuqqsf: Fixed-point fractional library routines.
  39070. (line 701)
  39071. * __fractuqqsi: Fixed-point fractional library routines.
  39072. (line 698)
  39073. * __fractuqqsq: Fixed-point fractional library routines.
  39074. (line 674)
  39075. * __fractuqqta: Fixed-point fractional library routines.
  39076. (line 680)
  39077. * __fractuqqti: Fixed-point fractional library routines.
  39078. (line 700)
  39079. * __fractuqquda: Fixed-point fractional library routines.
  39080. (line 692)
  39081. * __fractuqqudq2: Fixed-point fractional library routines.
  39082. (line 686)
  39083. * __fractuqquha: Fixed-point fractional library routines.
  39084. (line 688)
  39085. * __fractuqquhq2: Fixed-point fractional library routines.
  39086. (line 682)
  39087. * __fractuqqusa: Fixed-point fractional library routines.
  39088. (line 690)
  39089. * __fractuqqusq2: Fixed-point fractional library routines.
  39090. (line 684)
  39091. * __fractuqquta: Fixed-point fractional library routines.
  39092. (line 694)
  39093. * __fractusada: Fixed-point fractional library routines.
  39094. (line 836)
  39095. * __fractusadf: Fixed-point fractional library routines.
  39096. (line 857)
  39097. * __fractusadi: Fixed-point fractional library routines.
  39098. (line 854)
  39099. * __fractusadq: Fixed-point fractional library routines.
  39100. (line 833)
  39101. * __fractusaha: Fixed-point fractional library routines.
  39102. (line 834)
  39103. * __fractusahi: Fixed-point fractional library routines.
  39104. (line 852)
  39105. * __fractusahq: Fixed-point fractional library routines.
  39106. (line 831)
  39107. * __fractusaqi: Fixed-point fractional library routines.
  39108. (line 851)
  39109. * __fractusaqq: Fixed-point fractional library routines.
  39110. (line 830)
  39111. * __fractusasa: Fixed-point fractional library routines.
  39112. (line 835)
  39113. * __fractusasf: Fixed-point fractional library routines.
  39114. (line 856)
  39115. * __fractusasi: Fixed-point fractional library routines.
  39116. (line 853)
  39117. * __fractusasq: Fixed-point fractional library routines.
  39118. (line 832)
  39119. * __fractusata: Fixed-point fractional library routines.
  39120. (line 837)
  39121. * __fractusati: Fixed-point fractional library routines.
  39122. (line 855)
  39123. * __fractusauda2: Fixed-point fractional library routines.
  39124. (line 847)
  39125. * __fractusaudq: Fixed-point fractional library routines.
  39126. (line 843)
  39127. * __fractusauha2: Fixed-point fractional library routines.
  39128. (line 845)
  39129. * __fractusauhq: Fixed-point fractional library routines.
  39130. (line 840)
  39131. * __fractusauqq: Fixed-point fractional library routines.
  39132. (line 838)
  39133. * __fractusausq: Fixed-point fractional library routines.
  39134. (line 841)
  39135. * __fractusauta2: Fixed-point fractional library routines.
  39136. (line 849)
  39137. * __fractusqda: Fixed-point fractional library routines.
  39138. (line 738)
  39139. * __fractusqdf: Fixed-point fractional library routines.
  39140. (line 761)
  39141. * __fractusqdi: Fixed-point fractional library routines.
  39142. (line 758)
  39143. * __fractusqdq: Fixed-point fractional library routines.
  39144. (line 734)
  39145. * __fractusqha: Fixed-point fractional library routines.
  39146. (line 736)
  39147. * __fractusqhi: Fixed-point fractional library routines.
  39148. (line 756)
  39149. * __fractusqhq: Fixed-point fractional library routines.
  39150. (line 732)
  39151. * __fractusqqi: Fixed-point fractional library routines.
  39152. (line 755)
  39153. * __fractusqqq: Fixed-point fractional library routines.
  39154. (line 731)
  39155. * __fractusqsa: Fixed-point fractional library routines.
  39156. (line 737)
  39157. * __fractusqsf: Fixed-point fractional library routines.
  39158. (line 760)
  39159. * __fractusqsi: Fixed-point fractional library routines.
  39160. (line 757)
  39161. * __fractusqsq: Fixed-point fractional library routines.
  39162. (line 733)
  39163. * __fractusqta: Fixed-point fractional library routines.
  39164. (line 739)
  39165. * __fractusqti: Fixed-point fractional library routines.
  39166. (line 759)
  39167. * __fractusquda: Fixed-point fractional library routines.
  39168. (line 751)
  39169. * __fractusqudq2: Fixed-point fractional library routines.
  39170. (line 745)
  39171. * __fractusquha: Fixed-point fractional library routines.
  39172. (line 747)
  39173. * __fractusquhq2: Fixed-point fractional library routines.
  39174. (line 743)
  39175. * __fractusquqq2: Fixed-point fractional library routines.
  39176. (line 741)
  39177. * __fractusqusa: Fixed-point fractional library routines.
  39178. (line 749)
  39179. * __fractusquta: Fixed-point fractional library routines.
  39180. (line 753)
  39181. * __fractutada: Fixed-point fractional library routines.
  39182. (line 899)
  39183. * __fractutadf: Fixed-point fractional library routines.
  39184. (line 925)
  39185. * __fractutadi: Fixed-point fractional library routines.
  39186. (line 921)
  39187. * __fractutadq: Fixed-point fractional library routines.
  39188. (line 894)
  39189. * __fractutaha: Fixed-point fractional library routines.
  39190. (line 896)
  39191. * __fractutahi: Fixed-point fractional library routines.
  39192. (line 919)
  39193. * __fractutahq: Fixed-point fractional library routines.
  39194. (line 891)
  39195. * __fractutaqi: Fixed-point fractional library routines.
  39196. (line 917)
  39197. * __fractutaqq: Fixed-point fractional library routines.
  39198. (line 889)
  39199. * __fractutasa: Fixed-point fractional library routines.
  39200. (line 898)
  39201. * __fractutasf: Fixed-point fractional library routines.
  39202. (line 924)
  39203. * __fractutasi: Fixed-point fractional library routines.
  39204. (line 920)
  39205. * __fractutasq: Fixed-point fractional library routines.
  39206. (line 892)
  39207. * __fractutata: Fixed-point fractional library routines.
  39208. (line 901)
  39209. * __fractutati: Fixed-point fractional library routines.
  39210. (line 922)
  39211. * __fractutauda2: Fixed-point fractional library routines.
  39212. (line 915)
  39213. * __fractutaudq: Fixed-point fractional library routines.
  39214. (line 909)
  39215. * __fractutauha2: Fixed-point fractional library routines.
  39216. (line 911)
  39217. * __fractutauhq: Fixed-point fractional library routines.
  39218. (line 905)
  39219. * __fractutauqq: Fixed-point fractional library routines.
  39220. (line 903)
  39221. * __fractutausa2: Fixed-point fractional library routines.
  39222. (line 913)
  39223. * __fractutausq: Fixed-point fractional library routines.
  39224. (line 907)
  39225. * __gedf2: Soft float library routines.
  39226. (line 205)
  39227. * __gesf2: Soft float library routines.
  39228. (line 204)
  39229. * __getf2: Soft float library routines.
  39230. (line 206)
  39231. * __gtdf2: Soft float library routines.
  39232. (line 223)
  39233. * __gtsf2: Soft float library routines.
  39234. (line 222)
  39235. * __gttf2: Soft float library routines.
  39236. (line 224)
  39237. * __ledf2: Soft float library routines.
  39238. (line 217)
  39239. * __lesf2: Soft float library routines.
  39240. (line 216)
  39241. * __letf2: Soft float library routines.
  39242. (line 218)
  39243. * __lshrdi3: Integer library routines.
  39244. (line 30)
  39245. * __lshrsi3: Integer library routines.
  39246. (line 29)
  39247. * __lshrti3: Integer library routines.
  39248. (line 31)
  39249. * __lshruda3: Fixed-point fractional library routines.
  39250. (line 396)
  39251. * __lshrudq3: Fixed-point fractional library routines.
  39252. (line 390)
  39253. * __lshruha3: Fixed-point fractional library routines.
  39254. (line 392)
  39255. * __lshruhq3: Fixed-point fractional library routines.
  39256. (line 386)
  39257. * __lshruqq3: Fixed-point fractional library routines.
  39258. (line 384)
  39259. * __lshrusa3: Fixed-point fractional library routines.
  39260. (line 394)
  39261. * __lshrusq3: Fixed-point fractional library routines.
  39262. (line 388)
  39263. * __lshruta3: Fixed-point fractional library routines.
  39264. (line 398)
  39265. * __ltdf2: Soft float library routines.
  39266. (line 211)
  39267. * __ltsf2: Soft float library routines.
  39268. (line 210)
  39269. * __lttf2: Soft float library routines.
  39270. (line 212)
  39271. * __main: Collect2. (line 15)
  39272. * __moddi3: Integer library routines.
  39273. (line 36)
  39274. * __modsi3: Integer library routines.
  39275. (line 35)
  39276. * __modti3: Integer library routines.
  39277. (line 37)
  39278. * __morestack_current_segment: Miscellaneous routines.
  39279. (line 45)
  39280. * __morestack_initial_sp: Miscellaneous routines.
  39281. (line 46)
  39282. * __morestack_segments: Miscellaneous routines.
  39283. (line 44)
  39284. * __mulda3: Fixed-point fractional library routines.
  39285. (line 178)
  39286. * __muldc3: Soft float library routines.
  39287. (line 239)
  39288. * __muldf3: Soft float library routines.
  39289. (line 39)
  39290. * __muldi3: Integer library routines.
  39291. (line 42)
  39292. * __muldq3: Fixed-point fractional library routines.
  39293. (line 165)
  39294. * __mulha3: Fixed-point fractional library routines.
  39295. (line 175)
  39296. * __mulhq3: Fixed-point fractional library routines.
  39297. (line 163)
  39298. * __mulqq3: Fixed-point fractional library routines.
  39299. (line 161)
  39300. * __mulsa3: Fixed-point fractional library routines.
  39301. (line 177)
  39302. * __mulsc3: Soft float library routines.
  39303. (line 237)
  39304. * __mulsf3: Soft float library routines.
  39305. (line 38)
  39306. * __mulsi3: Integer library routines.
  39307. (line 41)
  39308. * __mulsq3: Fixed-point fractional library routines.
  39309. (line 164)
  39310. * __multa3: Fixed-point fractional library routines.
  39311. (line 179)
  39312. * __multc3: Soft float library routines.
  39313. (line 241)
  39314. * __multf3: Soft float library routines.
  39315. (line 40)
  39316. * __multi3: Integer library routines.
  39317. (line 43)
  39318. * __muluda3: Fixed-point fractional library routines.
  39319. (line 185)
  39320. * __muludq3: Fixed-point fractional library routines.
  39321. (line 173)
  39322. * __muluha3: Fixed-point fractional library routines.
  39323. (line 181)
  39324. * __muluhq3: Fixed-point fractional library routines.
  39325. (line 169)
  39326. * __muluqq3: Fixed-point fractional library routines.
  39327. (line 167)
  39328. * __mulusa3: Fixed-point fractional library routines.
  39329. (line 183)
  39330. * __mulusq3: Fixed-point fractional library routines.
  39331. (line 171)
  39332. * __muluta3: Fixed-point fractional library routines.
  39333. (line 187)
  39334. * __mulvdi3: Integer library routines.
  39335. (line 114)
  39336. * __mulvsi3: Integer library routines.
  39337. (line 113)
  39338. * __mulxc3: Soft float library routines.
  39339. (line 243)
  39340. * __mulxf3: Soft float library routines.
  39341. (line 42)
  39342. * __nedf2: Soft float library routines.
  39343. (line 199)
  39344. * __negda2: Fixed-point fractional library routines.
  39345. (line 306)
  39346. * __negdf2: Soft float library routines.
  39347. (line 55)
  39348. * __negdi2: Integer library routines.
  39349. (line 46)
  39350. * __negdq2: Fixed-point fractional library routines.
  39351. (line 296)
  39352. * __negha2: Fixed-point fractional library routines.
  39353. (line 304)
  39354. * __neghq2: Fixed-point fractional library routines.
  39355. (line 294)
  39356. * __negqq2: Fixed-point fractional library routines.
  39357. (line 293)
  39358. * __negsa2: Fixed-point fractional library routines.
  39359. (line 305)
  39360. * __negsf2: Soft float library routines.
  39361. (line 54)
  39362. * __negsq2: Fixed-point fractional library routines.
  39363. (line 295)
  39364. * __negta2: Fixed-point fractional library routines.
  39365. (line 307)
  39366. * __negtf2: Soft float library routines.
  39367. (line 56)
  39368. * __negti2: Integer library routines.
  39369. (line 47)
  39370. * __neguda2: Fixed-point fractional library routines.
  39371. (line 311)
  39372. * __negudq2: Fixed-point fractional library routines.
  39373. (line 302)
  39374. * __neguha2: Fixed-point fractional library routines.
  39375. (line 308)
  39376. * __neguhq2: Fixed-point fractional library routines.
  39377. (line 299)
  39378. * __neguqq2: Fixed-point fractional library routines.
  39379. (line 297)
  39380. * __negusa2: Fixed-point fractional library routines.
  39381. (line 310)
  39382. * __negusq2: Fixed-point fractional library routines.
  39383. (line 300)
  39384. * __neguta2: Fixed-point fractional library routines.
  39385. (line 313)
  39386. * __negvdi2: Integer library routines.
  39387. (line 118)
  39388. * __negvsi2: Integer library routines.
  39389. (line 117)
  39390. * __negxf2: Soft float library routines.
  39391. (line 57)
  39392. * __nesf2: Soft float library routines.
  39393. (line 198)
  39394. * __netf2: Soft float library routines.
  39395. (line 200)
  39396. * __paritydi2: Integer library routines.
  39397. (line 150)
  39398. * __paritysi2: Integer library routines.
  39399. (line 149)
  39400. * __parityti2: Integer library routines.
  39401. (line 151)
  39402. * __popcountdi2: Integer library routines.
  39403. (line 156)
  39404. * __popcountsi2: Integer library routines.
  39405. (line 155)
  39406. * __popcountti2: Integer library routines.
  39407. (line 157)
  39408. * __powidf2: Soft float library routines.
  39409. (line 232)
  39410. * __powisf2: Soft float library routines.
  39411. (line 231)
  39412. * __powitf2: Soft float library routines.
  39413. (line 233)
  39414. * __powixf2: Soft float library routines.
  39415. (line 234)
  39416. * __satfractdadq: Fixed-point fractional library routines.
  39417. (line 1160)
  39418. * __satfractdaha2: Fixed-point fractional library routines.
  39419. (line 1161)
  39420. * __satfractdahq: Fixed-point fractional library routines.
  39421. (line 1158)
  39422. * __satfractdaqq: Fixed-point fractional library routines.
  39423. (line 1157)
  39424. * __satfractdasa2: Fixed-point fractional library routines.
  39425. (line 1162)
  39426. * __satfractdasq: Fixed-point fractional library routines.
  39427. (line 1159)
  39428. * __satfractdata2: Fixed-point fractional library routines.
  39429. (line 1163)
  39430. * __satfractdauda: Fixed-point fractional library routines.
  39431. (line 1173)
  39432. * __satfractdaudq: Fixed-point fractional library routines.
  39433. (line 1168)
  39434. * __satfractdauha: Fixed-point fractional library routines.
  39435. (line 1170)
  39436. * __satfractdauhq: Fixed-point fractional library routines.
  39437. (line 1166)
  39438. * __satfractdauqq: Fixed-point fractional library routines.
  39439. (line 1164)
  39440. * __satfractdausa: Fixed-point fractional library routines.
  39441. (line 1172)
  39442. * __satfractdausq: Fixed-point fractional library routines.
  39443. (line 1167)
  39444. * __satfractdauta: Fixed-point fractional library routines.
  39445. (line 1174)
  39446. * __satfractdfda: Fixed-point fractional library routines.
  39447. (line 1513)
  39448. * __satfractdfdq: Fixed-point fractional library routines.
  39449. (line 1510)
  39450. * __satfractdfha: Fixed-point fractional library routines.
  39451. (line 1511)
  39452. * __satfractdfhq: Fixed-point fractional library routines.
  39453. (line 1508)
  39454. * __satfractdfqq: Fixed-point fractional library routines.
  39455. (line 1507)
  39456. * __satfractdfsa: Fixed-point fractional library routines.
  39457. (line 1512)
  39458. * __satfractdfsq: Fixed-point fractional library routines.
  39459. (line 1509)
  39460. * __satfractdfta: Fixed-point fractional library routines.
  39461. (line 1514)
  39462. * __satfractdfuda: Fixed-point fractional library routines.
  39463. (line 1522)
  39464. * __satfractdfudq: Fixed-point fractional library routines.
  39465. (line 1518)
  39466. * __satfractdfuha: Fixed-point fractional library routines.
  39467. (line 1520)
  39468. * __satfractdfuhq: Fixed-point fractional library routines.
  39469. (line 1516)
  39470. * __satfractdfuqq: Fixed-point fractional library routines.
  39471. (line 1515)
  39472. * __satfractdfusa: Fixed-point fractional library routines.
  39473. (line 1521)
  39474. * __satfractdfusq: Fixed-point fractional library routines.
  39475. (line 1517)
  39476. * __satfractdfuta: Fixed-point fractional library routines.
  39477. (line 1523)
  39478. * __satfractdida: Fixed-point fractional library routines.
  39479. (line 1463)
  39480. * __satfractdidq: Fixed-point fractional library routines.
  39481. (line 1460)
  39482. * __satfractdiha: Fixed-point fractional library routines.
  39483. (line 1461)
  39484. * __satfractdihq: Fixed-point fractional library routines.
  39485. (line 1458)
  39486. * __satfractdiqq: Fixed-point fractional library routines.
  39487. (line 1457)
  39488. * __satfractdisa: Fixed-point fractional library routines.
  39489. (line 1462)
  39490. * __satfractdisq: Fixed-point fractional library routines.
  39491. (line 1459)
  39492. * __satfractdita: Fixed-point fractional library routines.
  39493. (line 1464)
  39494. * __satfractdiuda: Fixed-point fractional library routines.
  39495. (line 1471)
  39496. * __satfractdiudq: Fixed-point fractional library routines.
  39497. (line 1468)
  39498. * __satfractdiuha: Fixed-point fractional library routines.
  39499. (line 1469)
  39500. * __satfractdiuhq: Fixed-point fractional library routines.
  39501. (line 1466)
  39502. * __satfractdiuqq: Fixed-point fractional library routines.
  39503. (line 1465)
  39504. * __satfractdiusa: Fixed-point fractional library routines.
  39505. (line 1470)
  39506. * __satfractdiusq: Fixed-point fractional library routines.
  39507. (line 1467)
  39508. * __satfractdiuta: Fixed-point fractional library routines.
  39509. (line 1472)
  39510. * __satfractdqda: Fixed-point fractional library routines.
  39511. (line 1105)
  39512. * __satfractdqha: Fixed-point fractional library routines.
  39513. (line 1103)
  39514. * __satfractdqhq2: Fixed-point fractional library routines.
  39515. (line 1101)
  39516. * __satfractdqqq2: Fixed-point fractional library routines.
  39517. (line 1100)
  39518. * __satfractdqsa: Fixed-point fractional library routines.
  39519. (line 1104)
  39520. * __satfractdqsq2: Fixed-point fractional library routines.
  39521. (line 1102)
  39522. * __satfractdqta: Fixed-point fractional library routines.
  39523. (line 1106)
  39524. * __satfractdquda: Fixed-point fractional library routines.
  39525. (line 1117)
  39526. * __satfractdqudq: Fixed-point fractional library routines.
  39527. (line 1112)
  39528. * __satfractdquha: Fixed-point fractional library routines.
  39529. (line 1114)
  39530. * __satfractdquhq: Fixed-point fractional library routines.
  39531. (line 1109)
  39532. * __satfractdquqq: Fixed-point fractional library routines.
  39533. (line 1107)
  39534. * __satfractdqusa: Fixed-point fractional library routines.
  39535. (line 1116)
  39536. * __satfractdqusq: Fixed-point fractional library routines.
  39537. (line 1110)
  39538. * __satfractdquta: Fixed-point fractional library routines.
  39539. (line 1119)
  39540. * __satfracthada2: Fixed-point fractional library routines.
  39541. (line 1126)
  39542. * __satfracthadq: Fixed-point fractional library routines.
  39543. (line 1124)
  39544. * __satfracthahq: Fixed-point fractional library routines.
  39545. (line 1122)
  39546. * __satfracthaqq: Fixed-point fractional library routines.
  39547. (line 1121)
  39548. * __satfracthasa2: Fixed-point fractional library routines.
  39549. (line 1125)
  39550. * __satfracthasq: Fixed-point fractional library routines.
  39551. (line 1123)
  39552. * __satfracthata2: Fixed-point fractional library routines.
  39553. (line 1127)
  39554. * __satfracthauda: Fixed-point fractional library routines.
  39555. (line 1138)
  39556. * __satfracthaudq: Fixed-point fractional library routines.
  39557. (line 1133)
  39558. * __satfracthauha: Fixed-point fractional library routines.
  39559. (line 1135)
  39560. * __satfracthauhq: Fixed-point fractional library routines.
  39561. (line 1130)
  39562. * __satfracthauqq: Fixed-point fractional library routines.
  39563. (line 1128)
  39564. * __satfracthausa: Fixed-point fractional library routines.
  39565. (line 1137)
  39566. * __satfracthausq: Fixed-point fractional library routines.
  39567. (line 1131)
  39568. * __satfracthauta: Fixed-point fractional library routines.
  39569. (line 1140)
  39570. * __satfracthida: Fixed-point fractional library routines.
  39571. (line 1431)
  39572. * __satfracthidq: Fixed-point fractional library routines.
  39573. (line 1428)
  39574. * __satfracthiha: Fixed-point fractional library routines.
  39575. (line 1429)
  39576. * __satfracthihq: Fixed-point fractional library routines.
  39577. (line 1426)
  39578. * __satfracthiqq: Fixed-point fractional library routines.
  39579. (line 1425)
  39580. * __satfracthisa: Fixed-point fractional library routines.
  39581. (line 1430)
  39582. * __satfracthisq: Fixed-point fractional library routines.
  39583. (line 1427)
  39584. * __satfracthita: Fixed-point fractional library routines.
  39585. (line 1432)
  39586. * __satfracthiuda: Fixed-point fractional library routines.
  39587. (line 1439)
  39588. * __satfracthiudq: Fixed-point fractional library routines.
  39589. (line 1436)
  39590. * __satfracthiuha: Fixed-point fractional library routines.
  39591. (line 1437)
  39592. * __satfracthiuhq: Fixed-point fractional library routines.
  39593. (line 1434)
  39594. * __satfracthiuqq: Fixed-point fractional library routines.
  39595. (line 1433)
  39596. * __satfracthiusa: Fixed-point fractional library routines.
  39597. (line 1438)
  39598. * __satfracthiusq: Fixed-point fractional library routines.
  39599. (line 1435)
  39600. * __satfracthiuta: Fixed-point fractional library routines.
  39601. (line 1440)
  39602. * __satfracthqda: Fixed-point fractional library routines.
  39603. (line 1071)
  39604. * __satfracthqdq2: Fixed-point fractional library routines.
  39605. (line 1068)
  39606. * __satfracthqha: Fixed-point fractional library routines.
  39607. (line 1069)
  39608. * __satfracthqqq2: Fixed-point fractional library routines.
  39609. (line 1066)
  39610. * __satfracthqsa: Fixed-point fractional library routines.
  39611. (line 1070)
  39612. * __satfracthqsq2: Fixed-point fractional library routines.
  39613. (line 1067)
  39614. * __satfracthqta: Fixed-point fractional library routines.
  39615. (line 1072)
  39616. * __satfracthquda: Fixed-point fractional library routines.
  39617. (line 1079)
  39618. * __satfracthqudq: Fixed-point fractional library routines.
  39619. (line 1076)
  39620. * __satfracthquha: Fixed-point fractional library routines.
  39621. (line 1077)
  39622. * __satfracthquhq: Fixed-point fractional library routines.
  39623. (line 1074)
  39624. * __satfracthquqq: Fixed-point fractional library routines.
  39625. (line 1073)
  39626. * __satfracthqusa: Fixed-point fractional library routines.
  39627. (line 1078)
  39628. * __satfracthqusq: Fixed-point fractional library routines.
  39629. (line 1075)
  39630. * __satfracthquta: Fixed-point fractional library routines.
  39631. (line 1080)
  39632. * __satfractqida: Fixed-point fractional library routines.
  39633. (line 1409)
  39634. * __satfractqidq: Fixed-point fractional library routines.
  39635. (line 1406)
  39636. * __satfractqiha: Fixed-point fractional library routines.
  39637. (line 1407)
  39638. * __satfractqihq: Fixed-point fractional library routines.
  39639. (line 1404)
  39640. * __satfractqiqq: Fixed-point fractional library routines.
  39641. (line 1403)
  39642. * __satfractqisa: Fixed-point fractional library routines.
  39643. (line 1408)
  39644. * __satfractqisq: Fixed-point fractional library routines.
  39645. (line 1405)
  39646. * __satfractqita: Fixed-point fractional library routines.
  39647. (line 1410)
  39648. * __satfractqiuda: Fixed-point fractional library routines.
  39649. (line 1421)
  39650. * __satfractqiudq: Fixed-point fractional library routines.
  39651. (line 1416)
  39652. * __satfractqiuha: Fixed-point fractional library routines.
  39653. (line 1418)
  39654. * __satfractqiuhq: Fixed-point fractional library routines.
  39655. (line 1413)
  39656. * __satfractqiuqq: Fixed-point fractional library routines.
  39657. (line 1411)
  39658. * __satfractqiusa: Fixed-point fractional library routines.
  39659. (line 1420)
  39660. * __satfractqiusq: Fixed-point fractional library routines.
  39661. (line 1414)
  39662. * __satfractqiuta: Fixed-point fractional library routines.
  39663. (line 1423)
  39664. * __satfractqqda: Fixed-point fractional library routines.
  39665. (line 1050)
  39666. * __satfractqqdq2: Fixed-point fractional library routines.
  39667. (line 1047)
  39668. * __satfractqqha: Fixed-point fractional library routines.
  39669. (line 1048)
  39670. * __satfractqqhq2: Fixed-point fractional library routines.
  39671. (line 1045)
  39672. * __satfractqqsa: Fixed-point fractional library routines.
  39673. (line 1049)
  39674. * __satfractqqsq2: Fixed-point fractional library routines.
  39675. (line 1046)
  39676. * __satfractqqta: Fixed-point fractional library routines.
  39677. (line 1051)
  39678. * __satfractqquda: Fixed-point fractional library routines.
  39679. (line 1062)
  39680. * __satfractqqudq: Fixed-point fractional library routines.
  39681. (line 1057)
  39682. * __satfractqquha: Fixed-point fractional library routines.
  39683. (line 1059)
  39684. * __satfractqquhq: Fixed-point fractional library routines.
  39685. (line 1054)
  39686. * __satfractqquqq: Fixed-point fractional library routines.
  39687. (line 1052)
  39688. * __satfractqqusa: Fixed-point fractional library routines.
  39689. (line 1061)
  39690. * __satfractqqusq: Fixed-point fractional library routines.
  39691. (line 1055)
  39692. * __satfractqquta: Fixed-point fractional library routines.
  39693. (line 1064)
  39694. * __satfractsada2: Fixed-point fractional library routines.
  39695. (line 1147)
  39696. * __satfractsadq: Fixed-point fractional library routines.
  39697. (line 1145)
  39698. * __satfractsaha2: Fixed-point fractional library routines.
  39699. (line 1146)
  39700. * __satfractsahq: Fixed-point fractional library routines.
  39701. (line 1143)
  39702. * __satfractsaqq: Fixed-point fractional library routines.
  39703. (line 1142)
  39704. * __satfractsasq: Fixed-point fractional library routines.
  39705. (line 1144)
  39706. * __satfractsata2: Fixed-point fractional library routines.
  39707. (line 1148)
  39708. * __satfractsauda: Fixed-point fractional library routines.
  39709. (line 1155)
  39710. * __satfractsaudq: Fixed-point fractional library routines.
  39711. (line 1152)
  39712. * __satfractsauha: Fixed-point fractional library routines.
  39713. (line 1153)
  39714. * __satfractsauhq: Fixed-point fractional library routines.
  39715. (line 1150)
  39716. * __satfractsauqq: Fixed-point fractional library routines.
  39717. (line 1149)
  39718. * __satfractsausa: Fixed-point fractional library routines.
  39719. (line 1154)
  39720. * __satfractsausq: Fixed-point fractional library routines.
  39721. (line 1151)
  39722. * __satfractsauta: Fixed-point fractional library routines.
  39723. (line 1156)
  39724. * __satfractsfda: Fixed-point fractional library routines.
  39725. (line 1497)
  39726. * __satfractsfdq: Fixed-point fractional library routines.
  39727. (line 1494)
  39728. * __satfractsfha: Fixed-point fractional library routines.
  39729. (line 1495)
  39730. * __satfractsfhq: Fixed-point fractional library routines.
  39731. (line 1492)
  39732. * __satfractsfqq: Fixed-point fractional library routines.
  39733. (line 1491)
  39734. * __satfractsfsa: Fixed-point fractional library routines.
  39735. (line 1496)
  39736. * __satfractsfsq: Fixed-point fractional library routines.
  39737. (line 1493)
  39738. * __satfractsfta: Fixed-point fractional library routines.
  39739. (line 1498)
  39740. * __satfractsfuda: Fixed-point fractional library routines.
  39741. (line 1505)
  39742. * __satfractsfudq: Fixed-point fractional library routines.
  39743. (line 1502)
  39744. * __satfractsfuha: Fixed-point fractional library routines.
  39745. (line 1503)
  39746. * __satfractsfuhq: Fixed-point fractional library routines.
  39747. (line 1500)
  39748. * __satfractsfuqq: Fixed-point fractional library routines.
  39749. (line 1499)
  39750. * __satfractsfusa: Fixed-point fractional library routines.
  39751. (line 1504)
  39752. * __satfractsfusq: Fixed-point fractional library routines.
  39753. (line 1501)
  39754. * __satfractsfuta: Fixed-point fractional library routines.
  39755. (line 1506)
  39756. * __satfractsida: Fixed-point fractional library routines.
  39757. (line 1447)
  39758. * __satfractsidq: Fixed-point fractional library routines.
  39759. (line 1444)
  39760. * __satfractsiha: Fixed-point fractional library routines.
  39761. (line 1445)
  39762. * __satfractsihq: Fixed-point fractional library routines.
  39763. (line 1442)
  39764. * __satfractsiqq: Fixed-point fractional library routines.
  39765. (line 1441)
  39766. * __satfractsisa: Fixed-point fractional library routines.
  39767. (line 1446)
  39768. * __satfractsisq: Fixed-point fractional library routines.
  39769. (line 1443)
  39770. * __satfractsita: Fixed-point fractional library routines.
  39771. (line 1448)
  39772. * __satfractsiuda: Fixed-point fractional library routines.
  39773. (line 1455)
  39774. * __satfractsiudq: Fixed-point fractional library routines.
  39775. (line 1452)
  39776. * __satfractsiuha: Fixed-point fractional library routines.
  39777. (line 1453)
  39778. * __satfractsiuhq: Fixed-point fractional library routines.
  39779. (line 1450)
  39780. * __satfractsiuqq: Fixed-point fractional library routines.
  39781. (line 1449)
  39782. * __satfractsiusa: Fixed-point fractional library routines.
  39783. (line 1454)
  39784. * __satfractsiusq: Fixed-point fractional library routines.
  39785. (line 1451)
  39786. * __satfractsiuta: Fixed-point fractional library routines.
  39787. (line 1456)
  39788. * __satfractsqda: Fixed-point fractional library routines.
  39789. (line 1086)
  39790. * __satfractsqdq2: Fixed-point fractional library routines.
  39791. (line 1083)
  39792. * __satfractsqha: Fixed-point fractional library routines.
  39793. (line 1084)
  39794. * __satfractsqhq2: Fixed-point fractional library routines.
  39795. (line 1082)
  39796. * __satfractsqqq2: Fixed-point fractional library routines.
  39797. (line 1081)
  39798. * __satfractsqsa: Fixed-point fractional library routines.
  39799. (line 1085)
  39800. * __satfractsqta: Fixed-point fractional library routines.
  39801. (line 1087)
  39802. * __satfractsquda: Fixed-point fractional library routines.
  39803. (line 1097)
  39804. * __satfractsqudq: Fixed-point fractional library routines.
  39805. (line 1092)
  39806. * __satfractsquha: Fixed-point fractional library routines.
  39807. (line 1094)
  39808. * __satfractsquhq: Fixed-point fractional library routines.
  39809. (line 1090)
  39810. * __satfractsquqq: Fixed-point fractional library routines.
  39811. (line 1088)
  39812. * __satfractsqusa: Fixed-point fractional library routines.
  39813. (line 1096)
  39814. * __satfractsqusq: Fixed-point fractional library routines.
  39815. (line 1091)
  39816. * __satfractsquta: Fixed-point fractional library routines.
  39817. (line 1098)
  39818. * __satfracttada2: Fixed-point fractional library routines.
  39819. (line 1182)
  39820. * __satfracttadq: Fixed-point fractional library routines.
  39821. (line 1179)
  39822. * __satfracttaha2: Fixed-point fractional library routines.
  39823. (line 1180)
  39824. * __satfracttahq: Fixed-point fractional library routines.
  39825. (line 1177)
  39826. * __satfracttaqq: Fixed-point fractional library routines.
  39827. (line 1176)
  39828. * __satfracttasa2: Fixed-point fractional library routines.
  39829. (line 1181)
  39830. * __satfracttasq: Fixed-point fractional library routines.
  39831. (line 1178)
  39832. * __satfracttauda: Fixed-point fractional library routines.
  39833. (line 1193)
  39834. * __satfracttaudq: Fixed-point fractional library routines.
  39835. (line 1188)
  39836. * __satfracttauha: Fixed-point fractional library routines.
  39837. (line 1190)
  39838. * __satfracttauhq: Fixed-point fractional library routines.
  39839. (line 1185)
  39840. * __satfracttauqq: Fixed-point fractional library routines.
  39841. (line 1183)
  39842. * __satfracttausa: Fixed-point fractional library routines.
  39843. (line 1192)
  39844. * __satfracttausq: Fixed-point fractional library routines.
  39845. (line 1186)
  39846. * __satfracttauta: Fixed-point fractional library routines.
  39847. (line 1195)
  39848. * __satfracttida: Fixed-point fractional library routines.
  39849. (line 1479)
  39850. * __satfracttidq: Fixed-point fractional library routines.
  39851. (line 1476)
  39852. * __satfracttiha: Fixed-point fractional library routines.
  39853. (line 1477)
  39854. * __satfracttihq: Fixed-point fractional library routines.
  39855. (line 1474)
  39856. * __satfracttiqq: Fixed-point fractional library routines.
  39857. (line 1473)
  39858. * __satfracttisa: Fixed-point fractional library routines.
  39859. (line 1478)
  39860. * __satfracttisq: Fixed-point fractional library routines.
  39861. (line 1475)
  39862. * __satfracttita: Fixed-point fractional library routines.
  39863. (line 1480)
  39864. * __satfracttiuda: Fixed-point fractional library routines.
  39865. (line 1488)
  39866. * __satfracttiudq: Fixed-point fractional library routines.
  39867. (line 1484)
  39868. * __satfracttiuha: Fixed-point fractional library routines.
  39869. (line 1486)
  39870. * __satfracttiuhq: Fixed-point fractional library routines.
  39871. (line 1482)
  39872. * __satfracttiuqq: Fixed-point fractional library routines.
  39873. (line 1481)
  39874. * __satfracttiusa: Fixed-point fractional library routines.
  39875. (line 1487)
  39876. * __satfracttiusq: Fixed-point fractional library routines.
  39877. (line 1483)
  39878. * __satfracttiuta: Fixed-point fractional library routines.
  39879. (line 1489)
  39880. * __satfractudada: Fixed-point fractional library routines.
  39881. (line 1358)
  39882. * __satfractudadq: Fixed-point fractional library routines.
  39883. (line 1353)
  39884. * __satfractudaha: Fixed-point fractional library routines.
  39885. (line 1355)
  39886. * __satfractudahq: Fixed-point fractional library routines.
  39887. (line 1351)
  39888. * __satfractudaqq: Fixed-point fractional library routines.
  39889. (line 1349)
  39890. * __satfractudasa: Fixed-point fractional library routines.
  39891. (line 1357)
  39892. * __satfractudasq: Fixed-point fractional library routines.
  39893. (line 1352)
  39894. * __satfractudata: Fixed-point fractional library routines.
  39895. (line 1359)
  39896. * __satfractudaudq: Fixed-point fractional library routines.
  39897. (line 1367)
  39898. * __satfractudauha2: Fixed-point fractional library routines.
  39899. (line 1369)
  39900. * __satfractudauhq: Fixed-point fractional library routines.
  39901. (line 1363)
  39902. * __satfractudauqq: Fixed-point fractional library routines.
  39903. (line 1361)
  39904. * __satfractudausa2: Fixed-point fractional library routines.
  39905. (line 1371)
  39906. * __satfractudausq: Fixed-point fractional library routines.
  39907. (line 1365)
  39908. * __satfractudauta2: Fixed-point fractional library routines.
  39909. (line 1373)
  39910. * __satfractudqda: Fixed-point fractional library routines.
  39911. (line 1282)
  39912. * __satfractudqdq: Fixed-point fractional library routines.
  39913. (line 1277)
  39914. * __satfractudqha: Fixed-point fractional library routines.
  39915. (line 1279)
  39916. * __satfractudqhq: Fixed-point fractional library routines.
  39917. (line 1274)
  39918. * __satfractudqqq: Fixed-point fractional library routines.
  39919. (line 1272)
  39920. * __satfractudqsa: Fixed-point fractional library routines.
  39921. (line 1281)
  39922. * __satfractudqsq: Fixed-point fractional library routines.
  39923. (line 1275)
  39924. * __satfractudqta: Fixed-point fractional library routines.
  39925. (line 1284)
  39926. * __satfractudquda: Fixed-point fractional library routines.
  39927. (line 1296)
  39928. * __satfractudquha: Fixed-point fractional library routines.
  39929. (line 1292)
  39930. * __satfractudquhq2: Fixed-point fractional library routines.
  39931. (line 1288)
  39932. * __satfractudquqq2: Fixed-point fractional library routines.
  39933. (line 1286)
  39934. * __satfractudqusa: Fixed-point fractional library routines.
  39935. (line 1294)
  39936. * __satfractudqusq2: Fixed-point fractional library routines.
  39937. (line 1290)
  39938. * __satfractudquta: Fixed-point fractional library routines.
  39939. (line 1298)
  39940. * __satfractuhada: Fixed-point fractional library routines.
  39941. (line 1310)
  39942. * __satfractuhadq: Fixed-point fractional library routines.
  39943. (line 1305)
  39944. * __satfractuhaha: Fixed-point fractional library routines.
  39945. (line 1307)
  39946. * __satfractuhahq: Fixed-point fractional library routines.
  39947. (line 1302)
  39948. * __satfractuhaqq: Fixed-point fractional library routines.
  39949. (line 1300)
  39950. * __satfractuhasa: Fixed-point fractional library routines.
  39951. (line 1309)
  39952. * __satfractuhasq: Fixed-point fractional library routines.
  39953. (line 1303)
  39954. * __satfractuhata: Fixed-point fractional library routines.
  39955. (line 1312)
  39956. * __satfractuhauda2: Fixed-point fractional library routines.
  39957. (line 1324)
  39958. * __satfractuhaudq: Fixed-point fractional library routines.
  39959. (line 1320)
  39960. * __satfractuhauhq: Fixed-point fractional library routines.
  39961. (line 1316)
  39962. * __satfractuhauqq: Fixed-point fractional library routines.
  39963. (line 1314)
  39964. * __satfractuhausa2: Fixed-point fractional library routines.
  39965. (line 1322)
  39966. * __satfractuhausq: Fixed-point fractional library routines.
  39967. (line 1318)
  39968. * __satfractuhauta2: Fixed-point fractional library routines.
  39969. (line 1326)
  39970. * __satfractuhqda: Fixed-point fractional library routines.
  39971. (line 1231)
  39972. * __satfractuhqdq: Fixed-point fractional library routines.
  39973. (line 1228)
  39974. * __satfractuhqha: Fixed-point fractional library routines.
  39975. (line 1229)
  39976. * __satfractuhqhq: Fixed-point fractional library routines.
  39977. (line 1226)
  39978. * __satfractuhqqq: Fixed-point fractional library routines.
  39979. (line 1225)
  39980. * __satfractuhqsa: Fixed-point fractional library routines.
  39981. (line 1230)
  39982. * __satfractuhqsq: Fixed-point fractional library routines.
  39983. (line 1227)
  39984. * __satfractuhqta: Fixed-point fractional library routines.
  39985. (line 1232)
  39986. * __satfractuhquda: Fixed-point fractional library routines.
  39987. (line 1242)
  39988. * __satfractuhqudq2: Fixed-point fractional library routines.
  39989. (line 1237)
  39990. * __satfractuhquha: Fixed-point fractional library routines.
  39991. (line 1239)
  39992. * __satfractuhquqq2: Fixed-point fractional library routines.
  39993. (line 1233)
  39994. * __satfractuhqusa: Fixed-point fractional library routines.
  39995. (line 1241)
  39996. * __satfractuhqusq2: Fixed-point fractional library routines.
  39997. (line 1235)
  39998. * __satfractuhquta: Fixed-point fractional library routines.
  39999. (line 1244)
  40000. * __satfractunsdida: Fixed-point fractional library routines.
  40001. (line 1841)
  40002. * __satfractunsdidq: Fixed-point fractional library routines.
  40003. (line 1837)
  40004. * __satfractunsdiha: Fixed-point fractional library routines.
  40005. (line 1839)
  40006. * __satfractunsdihq: Fixed-point fractional library routines.
  40007. (line 1835)
  40008. * __satfractunsdiqq: Fixed-point fractional library routines.
  40009. (line 1834)
  40010. * __satfractunsdisa: Fixed-point fractional library routines.
  40011. (line 1840)
  40012. * __satfractunsdisq: Fixed-point fractional library routines.
  40013. (line 1836)
  40014. * __satfractunsdita: Fixed-point fractional library routines.
  40015. (line 1842)
  40016. * __satfractunsdiuda: Fixed-point fractional library routines.
  40017. (line 1856)
  40018. * __satfractunsdiudq: Fixed-point fractional library routines.
  40019. (line 1850)
  40020. * __satfractunsdiuha: Fixed-point fractional library routines.
  40021. (line 1852)
  40022. * __satfractunsdiuhq: Fixed-point fractional library routines.
  40023. (line 1846)
  40024. * __satfractunsdiuqq: Fixed-point fractional library routines.
  40025. (line 1844)
  40026. * __satfractunsdiusa: Fixed-point fractional library routines.
  40027. (line 1854)
  40028. * __satfractunsdiusq: Fixed-point fractional library routines.
  40029. (line 1848)
  40030. * __satfractunsdiuta: Fixed-point fractional library routines.
  40031. (line 1858)
  40032. * __satfractunshida: Fixed-point fractional library routines.
  40033. (line 1793)
  40034. * __satfractunshidq: Fixed-point fractional library routines.
  40035. (line 1789)
  40036. * __satfractunshiha: Fixed-point fractional library routines.
  40037. (line 1791)
  40038. * __satfractunshihq: Fixed-point fractional library routines.
  40039. (line 1787)
  40040. * __satfractunshiqq: Fixed-point fractional library routines.
  40041. (line 1786)
  40042. * __satfractunshisa: Fixed-point fractional library routines.
  40043. (line 1792)
  40044. * __satfractunshisq: Fixed-point fractional library routines.
  40045. (line 1788)
  40046. * __satfractunshita: Fixed-point fractional library routines.
  40047. (line 1794)
  40048. * __satfractunshiuda: Fixed-point fractional library routines.
  40049. (line 1808)
  40050. * __satfractunshiudq: Fixed-point fractional library routines.
  40051. (line 1802)
  40052. * __satfractunshiuha: Fixed-point fractional library routines.
  40053. (line 1804)
  40054. * __satfractunshiuhq: Fixed-point fractional library routines.
  40055. (line 1798)
  40056. * __satfractunshiuqq: Fixed-point fractional library routines.
  40057. (line 1796)
  40058. * __satfractunshiusa: Fixed-point fractional library routines.
  40059. (line 1806)
  40060. * __satfractunshiusq: Fixed-point fractional library routines.
  40061. (line 1800)
  40062. * __satfractunshiuta: Fixed-point fractional library routines.
  40063. (line 1810)
  40064. * __satfractunsqida: Fixed-point fractional library routines.
  40065. (line 1767)
  40066. * __satfractunsqidq: Fixed-point fractional library routines.
  40067. (line 1763)
  40068. * __satfractunsqiha: Fixed-point fractional library routines.
  40069. (line 1765)
  40070. * __satfractunsqihq: Fixed-point fractional library routines.
  40071. (line 1761)
  40072. * __satfractunsqiqq: Fixed-point fractional library routines.
  40073. (line 1760)
  40074. * __satfractunsqisa: Fixed-point fractional library routines.
  40075. (line 1766)
  40076. * __satfractunsqisq: Fixed-point fractional library routines.
  40077. (line 1762)
  40078. * __satfractunsqita: Fixed-point fractional library routines.
  40079. (line 1768)
  40080. * __satfractunsqiuda: Fixed-point fractional library routines.
  40081. (line 1782)
  40082. * __satfractunsqiudq: Fixed-point fractional library routines.
  40083. (line 1776)
  40084. * __satfractunsqiuha: Fixed-point fractional library routines.
  40085. (line 1778)
  40086. * __satfractunsqiuhq: Fixed-point fractional library routines.
  40087. (line 1772)
  40088. * __satfractunsqiuqq: Fixed-point fractional library routines.
  40089. (line 1770)
  40090. * __satfractunsqiusa: Fixed-point fractional library routines.
  40091. (line 1780)
  40092. * __satfractunsqiusq: Fixed-point fractional library routines.
  40093. (line 1774)
  40094. * __satfractunsqiuta: Fixed-point fractional library routines.
  40095. (line 1784)
  40096. * __satfractunssida: Fixed-point fractional library routines.
  40097. (line 1818)
  40098. * __satfractunssidq: Fixed-point fractional library routines.
  40099. (line 1815)
  40100. * __satfractunssiha: Fixed-point fractional library routines.
  40101. (line 1816)
  40102. * __satfractunssihq: Fixed-point fractional library routines.
  40103. (line 1813)
  40104. * __satfractunssiqq: Fixed-point fractional library routines.
  40105. (line 1812)
  40106. * __satfractunssisa: Fixed-point fractional library routines.
  40107. (line 1817)
  40108. * __satfractunssisq: Fixed-point fractional library routines.
  40109. (line 1814)
  40110. * __satfractunssita: Fixed-point fractional library routines.
  40111. (line 1819)
  40112. * __satfractunssiuda: Fixed-point fractional library routines.
  40113. (line 1830)
  40114. * __satfractunssiudq: Fixed-point fractional library routines.
  40115. (line 1825)
  40116. * __satfractunssiuha: Fixed-point fractional library routines.
  40117. (line 1827)
  40118. * __satfractunssiuhq: Fixed-point fractional library routines.
  40119. (line 1822)
  40120. * __satfractunssiuqq: Fixed-point fractional library routines.
  40121. (line 1820)
  40122. * __satfractunssiusa: Fixed-point fractional library routines.
  40123. (line 1829)
  40124. * __satfractunssiusq: Fixed-point fractional library routines.
  40125. (line 1823)
  40126. * __satfractunssiuta: Fixed-point fractional library routines.
  40127. (line 1832)
  40128. * __satfractunstida: Fixed-point fractional library routines.
  40129. (line 1870)
  40130. * __satfractunstidq: Fixed-point fractional library routines.
  40131. (line 1865)
  40132. * __satfractunstiha: Fixed-point fractional library routines.
  40133. (line 1867)
  40134. * __satfractunstihq: Fixed-point fractional library routines.
  40135. (line 1862)
  40136. * __satfractunstiqq: Fixed-point fractional library routines.
  40137. (line 1860)
  40138. * __satfractunstisa: Fixed-point fractional library routines.
  40139. (line 1869)
  40140. * __satfractunstisq: Fixed-point fractional library routines.
  40141. (line 1863)
  40142. * __satfractunstita: Fixed-point fractional library routines.
  40143. (line 1872)
  40144. * __satfractunstiuda: Fixed-point fractional library routines.
  40145. (line 1886)
  40146. * __satfractunstiudq: Fixed-point fractional library routines.
  40147. (line 1880)
  40148. * __satfractunstiuha: Fixed-point fractional library routines.
  40149. (line 1882)
  40150. * __satfractunstiuhq: Fixed-point fractional library routines.
  40151. (line 1876)
  40152. * __satfractunstiuqq: Fixed-point fractional library routines.
  40153. (line 1874)
  40154. * __satfractunstiusa: Fixed-point fractional library routines.
  40155. (line 1884)
  40156. * __satfractunstiusq: Fixed-point fractional library routines.
  40157. (line 1878)
  40158. * __satfractunstiuta: Fixed-point fractional library routines.
  40159. (line 1888)
  40160. * __satfractuqqda: Fixed-point fractional library routines.
  40161. (line 1207)
  40162. * __satfractuqqdq: Fixed-point fractional library routines.
  40163. (line 1202)
  40164. * __satfractuqqha: Fixed-point fractional library routines.
  40165. (line 1204)
  40166. * __satfractuqqhq: Fixed-point fractional library routines.
  40167. (line 1199)
  40168. * __satfractuqqqq: Fixed-point fractional library routines.
  40169. (line 1197)
  40170. * __satfractuqqsa: Fixed-point fractional library routines.
  40171. (line 1206)
  40172. * __satfractuqqsq: Fixed-point fractional library routines.
  40173. (line 1200)
  40174. * __satfractuqqta: Fixed-point fractional library routines.
  40175. (line 1209)
  40176. * __satfractuqquda: Fixed-point fractional library routines.
  40177. (line 1221)
  40178. * __satfractuqqudq2: Fixed-point fractional library routines.
  40179. (line 1215)
  40180. * __satfractuqquha: Fixed-point fractional library routines.
  40181. (line 1217)
  40182. * __satfractuqquhq2: Fixed-point fractional library routines.
  40183. (line 1211)
  40184. * __satfractuqqusa: Fixed-point fractional library routines.
  40185. (line 1219)
  40186. * __satfractuqqusq2: Fixed-point fractional library routines.
  40187. (line 1213)
  40188. * __satfractuqquta: Fixed-point fractional library routines.
  40189. (line 1223)
  40190. * __satfractusada: Fixed-point fractional library routines.
  40191. (line 1334)
  40192. * __satfractusadq: Fixed-point fractional library routines.
  40193. (line 1331)
  40194. * __satfractusaha: Fixed-point fractional library routines.
  40195. (line 1332)
  40196. * __satfractusahq: Fixed-point fractional library routines.
  40197. (line 1329)
  40198. * __satfractusaqq: Fixed-point fractional library routines.
  40199. (line 1328)
  40200. * __satfractusasa: Fixed-point fractional library routines.
  40201. (line 1333)
  40202. * __satfractusasq: Fixed-point fractional library routines.
  40203. (line 1330)
  40204. * __satfractusata: Fixed-point fractional library routines.
  40205. (line 1335)
  40206. * __satfractusauda2: Fixed-point fractional library routines.
  40207. (line 1345)
  40208. * __satfractusaudq: Fixed-point fractional library routines.
  40209. (line 1341)
  40210. * __satfractusauha2: Fixed-point fractional library routines.
  40211. (line 1343)
  40212. * __satfractusauhq: Fixed-point fractional library routines.
  40213. (line 1338)
  40214. * __satfractusauqq: Fixed-point fractional library routines.
  40215. (line 1336)
  40216. * __satfractusausq: Fixed-point fractional library routines.
  40217. (line 1339)
  40218. * __satfractusauta2: Fixed-point fractional library routines.
  40219. (line 1347)
  40220. * __satfractusqda: Fixed-point fractional library routines.
  40221. (line 1255)
  40222. * __satfractusqdq: Fixed-point fractional library routines.
  40223. (line 1250)
  40224. * __satfractusqha: Fixed-point fractional library routines.
  40225. (line 1252)
  40226. * __satfractusqhq: Fixed-point fractional library routines.
  40227. (line 1248)
  40228. * __satfractusqqq: Fixed-point fractional library routines.
  40229. (line 1246)
  40230. * __satfractusqsa: Fixed-point fractional library routines.
  40231. (line 1254)
  40232. * __satfractusqsq: Fixed-point fractional library routines.
  40233. (line 1249)
  40234. * __satfractusqta: Fixed-point fractional library routines.
  40235. (line 1256)
  40236. * __satfractusquda: Fixed-point fractional library routines.
  40237. (line 1268)
  40238. * __satfractusqudq2: Fixed-point fractional library routines.
  40239. (line 1262)
  40240. * __satfractusquha: Fixed-point fractional library routines.
  40241. (line 1264)
  40242. * __satfractusquhq2: Fixed-point fractional library routines.
  40243. (line 1260)
  40244. * __satfractusquqq2: Fixed-point fractional library routines.
  40245. (line 1258)
  40246. * __satfractusqusa: Fixed-point fractional library routines.
  40247. (line 1266)
  40248. * __satfractusquta: Fixed-point fractional library routines.
  40249. (line 1270)
  40250. * __satfractutada: Fixed-point fractional library routines.
  40251. (line 1385)
  40252. * __satfractutadq: Fixed-point fractional library routines.
  40253. (line 1380)
  40254. * __satfractutaha: Fixed-point fractional library routines.
  40255. (line 1382)
  40256. * __satfractutahq: Fixed-point fractional library routines.
  40257. (line 1377)
  40258. * __satfractutaqq: Fixed-point fractional library routines.
  40259. (line 1375)
  40260. * __satfractutasa: Fixed-point fractional library routines.
  40261. (line 1384)
  40262. * __satfractutasq: Fixed-point fractional library routines.
  40263. (line 1378)
  40264. * __satfractutata: Fixed-point fractional library routines.
  40265. (line 1387)
  40266. * __satfractutauda2: Fixed-point fractional library routines.
  40267. (line 1401)
  40268. * __satfractutaudq: Fixed-point fractional library routines.
  40269. (line 1395)
  40270. * __satfractutauha2: Fixed-point fractional library routines.
  40271. (line 1397)
  40272. * __satfractutauhq: Fixed-point fractional library routines.
  40273. (line 1391)
  40274. * __satfractutauqq: Fixed-point fractional library routines.
  40275. (line 1389)
  40276. * __satfractutausa2: Fixed-point fractional library routines.
  40277. (line 1399)
  40278. * __satfractutausq: Fixed-point fractional library routines.
  40279. (line 1393)
  40280. * __splitstack_find: Miscellaneous routines.
  40281. (line 15)
  40282. * __ssaddda3: Fixed-point fractional library routines.
  40283. (line 74)
  40284. * __ssadddq3: Fixed-point fractional library routines.
  40285. (line 69)
  40286. * __ssaddha3: Fixed-point fractional library routines.
  40287. (line 71)
  40288. * __ssaddhq3: Fixed-point fractional library routines.
  40289. (line 67)
  40290. * __ssaddqq3: Fixed-point fractional library routines.
  40291. (line 65)
  40292. * __ssaddsa3: Fixed-point fractional library routines.
  40293. (line 73)
  40294. * __ssaddsq3: Fixed-point fractional library routines.
  40295. (line 68)
  40296. * __ssaddta3: Fixed-point fractional library routines.
  40297. (line 75)
  40298. * __ssashlda3: Fixed-point fractional library routines.
  40299. (line 409)
  40300. * __ssashldq3: Fixed-point fractional library routines.
  40301. (line 405)
  40302. * __ssashlha3: Fixed-point fractional library routines.
  40303. (line 407)
  40304. * __ssashlhq3: Fixed-point fractional library routines.
  40305. (line 403)
  40306. * __ssashlsa3: Fixed-point fractional library routines.
  40307. (line 408)
  40308. * __ssashlsq3: Fixed-point fractional library routines.
  40309. (line 404)
  40310. * __ssashlta3: Fixed-point fractional library routines.
  40311. (line 410)
  40312. * __ssdivda3: Fixed-point fractional library routines.
  40313. (line 268)
  40314. * __ssdivdq3: Fixed-point fractional library routines.
  40315. (line 263)
  40316. * __ssdivha3: Fixed-point fractional library routines.
  40317. (line 265)
  40318. * __ssdivhq3: Fixed-point fractional library routines.
  40319. (line 261)
  40320. * __ssdivqq3: Fixed-point fractional library routines.
  40321. (line 259)
  40322. * __ssdivsa3: Fixed-point fractional library routines.
  40323. (line 267)
  40324. * __ssdivsq3: Fixed-point fractional library routines.
  40325. (line 262)
  40326. * __ssdivta3: Fixed-point fractional library routines.
  40327. (line 269)
  40328. * __ssmulda3: Fixed-point fractional library routines.
  40329. (line 200)
  40330. * __ssmuldq3: Fixed-point fractional library routines.
  40331. (line 195)
  40332. * __ssmulha3: Fixed-point fractional library routines.
  40333. (line 197)
  40334. * __ssmulhq3: Fixed-point fractional library routines.
  40335. (line 193)
  40336. * __ssmulqq3: Fixed-point fractional library routines.
  40337. (line 191)
  40338. * __ssmulsa3: Fixed-point fractional library routines.
  40339. (line 199)
  40340. * __ssmulsq3: Fixed-point fractional library routines.
  40341. (line 194)
  40342. * __ssmulta3: Fixed-point fractional library routines.
  40343. (line 201)
  40344. * __ssnegda2: Fixed-point fractional library routines.
  40345. (line 323)
  40346. * __ssnegdq2: Fixed-point fractional library routines.
  40347. (line 320)
  40348. * __ssnegha2: Fixed-point fractional library routines.
  40349. (line 321)
  40350. * __ssneghq2: Fixed-point fractional library routines.
  40351. (line 318)
  40352. * __ssnegqq2: Fixed-point fractional library routines.
  40353. (line 317)
  40354. * __ssnegsa2: Fixed-point fractional library routines.
  40355. (line 322)
  40356. * __ssnegsq2: Fixed-point fractional library routines.
  40357. (line 319)
  40358. * __ssnegta2: Fixed-point fractional library routines.
  40359. (line 324)
  40360. * __sssubda3: Fixed-point fractional library routines.
  40361. (line 136)
  40362. * __sssubdq3: Fixed-point fractional library routines.
  40363. (line 131)
  40364. * __sssubha3: Fixed-point fractional library routines.
  40365. (line 133)
  40366. * __sssubhq3: Fixed-point fractional library routines.
  40367. (line 129)
  40368. * __sssubqq3: Fixed-point fractional library routines.
  40369. (line 127)
  40370. * __sssubsa3: Fixed-point fractional library routines.
  40371. (line 135)
  40372. * __sssubsq3: Fixed-point fractional library routines.
  40373. (line 130)
  40374. * __sssubta3: Fixed-point fractional library routines.
  40375. (line 137)
  40376. * __subda3: Fixed-point fractional library routines.
  40377. (line 114)
  40378. * __subdf3: Soft float library routines.
  40379. (line 30)
  40380. * __subdq3: Fixed-point fractional library routines.
  40381. (line 101)
  40382. * __subha3: Fixed-point fractional library routines.
  40383. (line 111)
  40384. * __subhq3: Fixed-point fractional library routines.
  40385. (line 99)
  40386. * __subqq3: Fixed-point fractional library routines.
  40387. (line 97)
  40388. * __subsa3: Fixed-point fractional library routines.
  40389. (line 113)
  40390. * __subsf3: Soft float library routines.
  40391. (line 29)
  40392. * __subsq3: Fixed-point fractional library routines.
  40393. (line 100)
  40394. * __subta3: Fixed-point fractional library routines.
  40395. (line 115)
  40396. * __subtf3: Soft float library routines.
  40397. (line 31)
  40398. * __subuda3: Fixed-point fractional library routines.
  40399. (line 121)
  40400. * __subudq3: Fixed-point fractional library routines.
  40401. (line 109)
  40402. * __subuha3: Fixed-point fractional library routines.
  40403. (line 117)
  40404. * __subuhq3: Fixed-point fractional library routines.
  40405. (line 105)
  40406. * __subuqq3: Fixed-point fractional library routines.
  40407. (line 103)
  40408. * __subusa3: Fixed-point fractional library routines.
  40409. (line 119)
  40410. * __subusq3: Fixed-point fractional library routines.
  40411. (line 107)
  40412. * __subuta3: Fixed-point fractional library routines.
  40413. (line 123)
  40414. * __subvdi3: Integer library routines.
  40415. (line 122)
  40416. * __subvsi3: Integer library routines.
  40417. (line 121)
  40418. * __subxf3: Soft float library routines.
  40419. (line 33)
  40420. * __truncdfsf2: Soft float library routines.
  40421. (line 75)
  40422. * __trunctfdf2: Soft float library routines.
  40423. (line 72)
  40424. * __trunctfsf2: Soft float library routines.
  40425. (line 74)
  40426. * __truncxfdf2: Soft float library routines.
  40427. (line 71)
  40428. * __truncxfsf2: Soft float library routines.
  40429. (line 73)
  40430. * __ucmpdi2: Integer library routines.
  40431. (line 92)
  40432. * __ucmpti2: Integer library routines.
  40433. (line 93)
  40434. * __udivdi3: Integer library routines.
  40435. (line 52)
  40436. * __udivmoddi4: Integer library routines.
  40437. (line 59)
  40438. * __udivmodti4: Integer library routines.
  40439. (line 61)
  40440. * __udivsi3: Integer library routines.
  40441. (line 50)
  40442. * __udivti3: Integer library routines.
  40443. (line 54)
  40444. * __udivuda3: Fixed-point fractional library routines.
  40445. (line 252)
  40446. * __udivudq3: Fixed-point fractional library routines.
  40447. (line 246)
  40448. * __udivuha3: Fixed-point fractional library routines.
  40449. (line 248)
  40450. * __udivuhq3: Fixed-point fractional library routines.
  40451. (line 242)
  40452. * __udivuqq3: Fixed-point fractional library routines.
  40453. (line 240)
  40454. * __udivusa3: Fixed-point fractional library routines.
  40455. (line 250)
  40456. * __udivusq3: Fixed-point fractional library routines.
  40457. (line 244)
  40458. * __udivuta3: Fixed-point fractional library routines.
  40459. (line 254)
  40460. * __umoddi3: Integer library routines.
  40461. (line 69)
  40462. * __umodsi3: Integer library routines.
  40463. (line 67)
  40464. * __umodti3: Integer library routines.
  40465. (line 71)
  40466. * __unorddf2: Soft float library routines.
  40467. (line 172)
  40468. * __unordsf2: Soft float library routines.
  40469. (line 171)
  40470. * __unordtf2: Soft float library routines.
  40471. (line 173)
  40472. * __usadduda3: Fixed-point fractional library routines.
  40473. (line 91)
  40474. * __usaddudq3: Fixed-point fractional library routines.
  40475. (line 85)
  40476. * __usadduha3: Fixed-point fractional library routines.
  40477. (line 87)
  40478. * __usadduhq3: Fixed-point fractional library routines.
  40479. (line 81)
  40480. * __usadduqq3: Fixed-point fractional library routines.
  40481. (line 79)
  40482. * __usaddusa3: Fixed-point fractional library routines.
  40483. (line 89)
  40484. * __usaddusq3: Fixed-point fractional library routines.
  40485. (line 83)
  40486. * __usadduta3: Fixed-point fractional library routines.
  40487. (line 93)
  40488. * __usashluda3: Fixed-point fractional library routines.
  40489. (line 427)
  40490. * __usashludq3: Fixed-point fractional library routines.
  40491. (line 421)
  40492. * __usashluha3: Fixed-point fractional library routines.
  40493. (line 423)
  40494. * __usashluhq3: Fixed-point fractional library routines.
  40495. (line 417)
  40496. * __usashluqq3: Fixed-point fractional library routines.
  40497. (line 415)
  40498. * __usashlusa3: Fixed-point fractional library routines.
  40499. (line 425)
  40500. * __usashlusq3: Fixed-point fractional library routines.
  40501. (line 419)
  40502. * __usashluta3: Fixed-point fractional library routines.
  40503. (line 429)
  40504. * __usdivuda3: Fixed-point fractional library routines.
  40505. (line 286)
  40506. * __usdivudq3: Fixed-point fractional library routines.
  40507. (line 280)
  40508. * __usdivuha3: Fixed-point fractional library routines.
  40509. (line 282)
  40510. * __usdivuhq3: Fixed-point fractional library routines.
  40511. (line 276)
  40512. * __usdivuqq3: Fixed-point fractional library routines.
  40513. (line 274)
  40514. * __usdivusa3: Fixed-point fractional library routines.
  40515. (line 284)
  40516. * __usdivusq3: Fixed-point fractional library routines.
  40517. (line 278)
  40518. * __usdivuta3: Fixed-point fractional library routines.
  40519. (line 288)
  40520. * __usmuluda3: Fixed-point fractional library routines.
  40521. (line 218)
  40522. * __usmuludq3: Fixed-point fractional library routines.
  40523. (line 212)
  40524. * __usmuluha3: Fixed-point fractional library routines.
  40525. (line 214)
  40526. * __usmuluhq3: Fixed-point fractional library routines.
  40527. (line 208)
  40528. * __usmuluqq3: Fixed-point fractional library routines.
  40529. (line 206)
  40530. * __usmulusa3: Fixed-point fractional library routines.
  40531. (line 216)
  40532. * __usmulusq3: Fixed-point fractional library routines.
  40533. (line 210)
  40534. * __usmuluta3: Fixed-point fractional library routines.
  40535. (line 220)
  40536. * __usneguda2: Fixed-point fractional library routines.
  40537. (line 337)
  40538. * __usnegudq2: Fixed-point fractional library routines.
  40539. (line 332)
  40540. * __usneguha2: Fixed-point fractional library routines.
  40541. (line 334)
  40542. * __usneguhq2: Fixed-point fractional library routines.
  40543. (line 329)
  40544. * __usneguqq2: Fixed-point fractional library routines.
  40545. (line 327)
  40546. * __usnegusa2: Fixed-point fractional library routines.
  40547. (line 336)
  40548. * __usnegusq2: Fixed-point fractional library routines.
  40549. (line 330)
  40550. * __usneguta2: Fixed-point fractional library routines.
  40551. (line 339)
  40552. * __ussubuda3: Fixed-point fractional library routines.
  40553. (line 154)
  40554. * __ussubudq3: Fixed-point fractional library routines.
  40555. (line 148)
  40556. * __ussubuha3: Fixed-point fractional library routines.
  40557. (line 150)
  40558. * __ussubuhq3: Fixed-point fractional library routines.
  40559. (line 144)
  40560. * __ussubuqq3: Fixed-point fractional library routines.
  40561. (line 142)
  40562. * __ussubusa3: Fixed-point fractional library routines.
  40563. (line 152)
  40564. * __ussubusq3: Fixed-point fractional library routines.
  40565. (line 146)
  40566. * __ussubuta3: Fixed-point fractional library routines.
  40567. (line 156)
  40568. * abort: Portability. (line 20)
  40569. * abs: Arithmetic. (line 200)
  40570. * abs and attributes: Expressions. (line 83)
  40571. * absence_set: Processor pipeline description.
  40572. (line 223)
  40573. * absM2 instruction pattern: Standard Names. (line 761)
  40574. * absolute value: Arithmetic. (line 200)
  40575. * ABS_EXPR: Unary and Binary Expressions.
  40576. (line 6)
  40577. * access to operands: Accessors. (line 6)
  40578. * access to special operands: Special Accessors. (line 6)
  40579. * accessors: Accessors. (line 6)
  40580. * ACCUMULATE_OUTGOING_ARGS: Stack Arguments. (line 48)
  40581. * ACCUMULATE_OUTGOING_ARGS and stack frames: Function Entry. (line 140)
  40582. * ACCUM_TYPE_SIZE: Type Layout. (line 87)
  40583. * acosM2 instruction pattern: Standard Names. (line 848)
  40584. * ADA_LONG_TYPE_SIZE: Type Layout. (line 25)
  40585. * Adding a new GIMPLE statement code: Adding a new GIMPLE statement code.
  40586. (line 6)
  40587. * ADDITIONAL_REGISTER_NAMES: Instruction Output. (line 14)
  40588. * addM3 instruction pattern: Standard Names. (line 410)
  40589. * addMODEcc instruction pattern: Standard Names. (line 1425)
  40590. * addptrM3 instruction pattern: Standard Names. (line 443)
  40591. * address constraints: Simple Constraints. (line 162)
  40592. * addressing modes: Addressing Modes. (line 6)
  40593. * address_operand: Machine-Independent Predicates.
  40594. (line 62)
  40595. * address_operand <1>: Simple Constraints. (line 166)
  40596. * addr_diff_vec: Side Effects. (line 314)
  40597. * addr_diff_vec, length of: Insn Lengths. (line 26)
  40598. * ADDR_EXPR: Storage References. (line 6)
  40599. * addr_vec: Side Effects. (line 309)
  40600. * addr_vec, length of: Insn Lengths. (line 26)
  40601. * addvM4 instruction pattern: Standard Names. (line 426)
  40602. * ADJUST_FIELD_ALIGN: Storage Layout. (line 212)
  40603. * ADJUST_INSN_LENGTH: Insn Lengths. (line 41)
  40604. * ADJUST_REG_ALLOC_ORDER: Allocation Order. (line 22)
  40605. * aggregates as return values: Aggregate Return. (line 6)
  40606. * alias: Alias analysis. (line 6)
  40607. * allocate_stack instruction pattern: Standard Names. (line 1778)
  40608. * ALL_REGS: Register Classes. (line 17)
  40609. * alternate entry points: Insns. (line 146)
  40610. * anchored addresses: Anchored Addresses. (line 6)
  40611. * and: Arithmetic. (line 158)
  40612. * and and attributes: Expressions. (line 50)
  40613. * and, canonicalization of: Insn Canonicalizations.
  40614. (line 67)
  40615. * andM3 instruction pattern: Standard Names. (line 416)
  40616. * ANNOTATE_EXPR: Unary and Binary Expressions.
  40617. (line 6)
  40618. * annotations: Annotations. (line 6)
  40619. * APPLY_RESULT_SIZE: Scalar Return. (line 112)
  40620. * ARGS_GROW_DOWNWARD: Frame Layout. (line 30)
  40621. * argument passing: Interface. (line 36)
  40622. * arguments in registers: Register Arguments. (line 6)
  40623. * arguments on stack: Stack Arguments. (line 6)
  40624. * ARG_POINTER_CFA_OFFSET: Frame Layout. (line 207)
  40625. * ARG_POINTER_REGNUM: Frame Registers. (line 40)
  40626. * ARG_POINTER_REGNUM and virtual registers: Regs and Memory. (line 65)
  40627. * arg_pointer_rtx: Frame Registers. (line 104)
  40628. * arithmetic library: Soft float library routines.
  40629. (line 6)
  40630. * arithmetic shift: Arithmetic. (line 173)
  40631. * arithmetic shift with signed saturation: Arithmetic. (line 173)
  40632. * arithmetic shift with unsigned saturation: Arithmetic. (line 173)
  40633. * arithmetic, in RTL: Arithmetic. (line 6)
  40634. * ARITHMETIC_TYPE_P: Types for C++. (line 59)
  40635. * array: Types. (line 6)
  40636. * ARRAY_RANGE_REF: Storage References. (line 6)
  40637. * ARRAY_REF: Storage References. (line 6)
  40638. * ARRAY_TYPE: Types. (line 6)
  40639. * ashift: Arithmetic. (line 173)
  40640. * ashift and attributes: Expressions. (line 83)
  40641. * ashiftrt: Arithmetic. (line 190)
  40642. * ashiftrt and attributes: Expressions. (line 83)
  40643. * ashlM3 instruction pattern: Standard Names. (line 730)
  40644. * ashrM3 instruction pattern: Standard Names. (line 742)
  40645. * asinM2 instruction pattern: Standard Names. (line 842)
  40646. * ASM_APP_OFF: File Framework. (line 76)
  40647. * ASM_APP_ON: File Framework. (line 69)
  40648. * ASM_COMMENT_START: File Framework. (line 64)
  40649. * ASM_DECLARE_COLD_FUNCTION_NAME: Label Output. (line 136)
  40650. * ASM_DECLARE_COLD_FUNCTION_SIZE: Label Output. (line 151)
  40651. * ASM_DECLARE_FUNCTION_NAME: Label Output. (line 108)
  40652. * ASM_DECLARE_FUNCTION_SIZE: Label Output. (line 123)
  40653. * ASM_DECLARE_OBJECT_NAME: Label Output. (line 164)
  40654. * ASM_DECLARE_REGISTER_GLOBAL: Label Output. (line 192)
  40655. * ASM_FINAL_SPEC: Driver. (line 81)
  40656. * ASM_FINISH_DECLARE_OBJECT: Label Output. (line 200)
  40657. * ASM_FORMAT_PRIVATE_NAME: Label Output. (line 426)
  40658. * asm_fprintf: Instruction Output. (line 150)
  40659. * ASM_FPRINTF_EXTENSIONS: Instruction Output. (line 160)
  40660. * ASM_GENERATE_INTERNAL_LABEL: Label Output. (line 410)
  40661. * asm_input: Side Effects. (line 296)
  40662. * asm_input and /v: Flags. (line 65)
  40663. * ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX: Exception Handling. (line 80)
  40664. * asm_noperands: Insns. (line 327)
  40665. * ASM_NO_SKIP_IN_TEXT: Alignment Output. (line 78)
  40666. * asm_operands and /v: Flags. (line 65)
  40667. * asm_operands, RTL sharing: Sharing. (line 48)
  40668. * asm_operands, usage: Assembler. (line 6)
  40669. * ASM_OUTPUT_ADDR_DIFF_ELT: Dispatch Tables. (line 8)
  40670. * ASM_OUTPUT_ADDR_VEC_ELT: Dispatch Tables. (line 25)
  40671. * ASM_OUTPUT_ALIGN: Alignment Output. (line 85)
  40672. * ASM_OUTPUT_ALIGNED_BSS: Uninitialized Data. (line 45)
  40673. * ASM_OUTPUT_ALIGNED_COMMON: Uninitialized Data. (line 29)
  40674. * ASM_OUTPUT_ALIGNED_DECL_COMMON: Uninitialized Data. (line 36)
  40675. * ASM_OUTPUT_ALIGNED_DECL_LOCAL: Uninitialized Data. (line 89)
  40676. * ASM_OUTPUT_ALIGNED_LOCAL: Uninitialized Data. (line 82)
  40677. * ASM_OUTPUT_ALIGN_WITH_NOP: Alignment Output. (line 90)
  40678. * ASM_OUTPUT_ASCII: Data Output. (line 54)
  40679. * ASM_OUTPUT_CASE_END: Dispatch Tables. (line 50)
  40680. * ASM_OUTPUT_CASE_LABEL: Dispatch Tables. (line 37)
  40681. * ASM_OUTPUT_COMMON: Uninitialized Data. (line 9)
  40682. * ASM_OUTPUT_DEBUG_LABEL: Label Output. (line 398)
  40683. * ASM_OUTPUT_DEF: Label Output. (line 447)
  40684. * ASM_OUTPUT_DEF_FROM_DECLS: Label Output. (line 454)
  40685. * ASM_OUTPUT_DWARF_DATAREL: DWARF. (line 110)
  40686. * ASM_OUTPUT_DWARF_DELTA: DWARF. (line 89)
  40687. * ASM_OUTPUT_DWARF_OFFSET: DWARF. (line 98)
  40688. * ASM_OUTPUT_DWARF_PCREL: DWARF. (line 105)
  40689. * ASM_OUTPUT_DWARF_TABLE_REF: DWARF. (line 115)
  40690. * ASM_OUTPUT_DWARF_VMS_DELTA: DWARF. (line 93)
  40691. * ASM_OUTPUT_EXTERNAL: Label Output. (line 327)
  40692. * ASM_OUTPUT_FDESC: Data Output. (line 63)
  40693. * ASM_OUTPUT_FUNCTION_LABEL: Label Output. (line 16)
  40694. * ASM_OUTPUT_INTERNAL_LABEL: Label Output. (line 27)
  40695. * ASM_OUTPUT_LABEL: Label Output. (line 8)
  40696. * ASM_OUTPUT_LABELREF: Label Output. (line 349)
  40697. * ASM_OUTPUT_LABEL_REF: Label Output. (line 371)
  40698. * ASM_OUTPUT_LOCAL: Uninitialized Data. (line 69)
  40699. * ASM_OUTPUT_MAX_SKIP_ALIGN: Alignment Output. (line 94)
  40700. * ASM_OUTPUT_MEASURED_SIZE: Label Output. (line 51)
  40701. * ASM_OUTPUT_OPCODE: Instruction Output. (line 35)
  40702. * ASM_OUTPUT_POOL_EPILOGUE: Data Output. (line 112)
  40703. * ASM_OUTPUT_POOL_PROLOGUE: Data Output. (line 76)
  40704. * ASM_OUTPUT_REG_POP: Instruction Output. (line 206)
  40705. * ASM_OUTPUT_REG_PUSH: Instruction Output. (line 201)
  40706. * ASM_OUTPUT_SIZE_DIRECTIVE: Label Output. (line 45)
  40707. * ASM_OUTPUT_SKIP: Alignment Output. (line 72)
  40708. * ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 83)
  40709. * ASM_OUTPUT_SPECIAL_POOL_ENTRY: Data Output. (line 87)
  40710. * ASM_OUTPUT_SYMBOL_REF: Label Output. (line 364)
  40711. * ASM_OUTPUT_TYPE_DIRECTIVE: Label Output. (line 98)
  40712. * ASM_OUTPUT_WEAKREF: Label Output. (line 259)
  40713. * ASM_OUTPUT_WEAK_ALIAS: Label Output. (line 473)
  40714. * ASM_PREFERRED_EH_DATA_FORMAT: Exception Handling. (line 66)
  40715. * ASM_SPEC: Driver. (line 73)
  40716. * ASM_STABD_OP: DBX Options. (line 34)
  40717. * ASM_STABN_OP: DBX Options. (line 41)
  40718. * ASM_STABS_OP: DBX Options. (line 28)
  40719. * ASM_WEAKEN_DECL: Label Output. (line 251)
  40720. * ASM_WEAKEN_LABEL: Label Output. (line 238)
  40721. * assembler format: File Framework. (line 6)
  40722. * assembler instructions in RTL: Assembler. (line 6)
  40723. * ASSEMBLER_DIALECT: Instruction Output. (line 172)
  40724. * assemble_name: Label Output. (line 8)
  40725. * assemble_name_raw: Label Output. (line 27)
  40726. * assigning attribute values to insns: Tagging Insns. (line 6)
  40727. * ASSUME_EXTENDED_UNWIND_CONTEXT: Frame Registers. (line 163)
  40728. * asterisk in template: Output Statement. (line 29)
  40729. * AS_NEEDS_DASH_FOR_PIPED_INPUT: Driver. (line 88)
  40730. * atan2M3 instruction pattern: Standard Names. (line 943)
  40731. * atanM2 instruction pattern: Standard Names. (line 854)
  40732. * atomic: GTY Options. (line 197)
  40733. * atomic_addMODE instruction pattern: Standard Names. (line 2188)
  40734. * atomic_add_fetchMODE instruction pattern: Standard Names. (line 2217)
  40735. * atomic_andMODE instruction pattern: Standard Names. (line 2188)
  40736. * atomic_and_fetchMODE instruction pattern: Standard Names. (line 2217)
  40737. * atomic_bit_test_and_complementMODE instruction pattern: Standard Names.
  40738. (line 2245)
  40739. * atomic_bit_test_and_resetMODE instruction pattern: Standard Names.
  40740. (line 2245)
  40741. * atomic_bit_test_and_setMODE instruction pattern: Standard Names.
  40742. (line 2245)
  40743. * atomic_compare_and_swapMODE instruction pattern: Standard Names.
  40744. (line 2124)
  40745. * atomic_exchangeMODE instruction pattern: Standard Names. (line 2176)
  40746. * atomic_fetch_addMODE instruction pattern: Standard Names. (line 2202)
  40747. * atomic_fetch_andMODE instruction pattern: Standard Names. (line 2202)
  40748. * atomic_fetch_nandMODE instruction pattern: Standard Names. (line 2202)
  40749. * atomic_fetch_orMODE instruction pattern: Standard Names. (line 2202)
  40750. * atomic_fetch_subMODE instruction pattern: Standard Names. (line 2202)
  40751. * atomic_fetch_xorMODE instruction pattern: Standard Names. (line 2202)
  40752. * atomic_loadMODE instruction pattern: Standard Names. (line 2155)
  40753. * atomic_nandMODE instruction pattern: Standard Names. (line 2188)
  40754. * atomic_nand_fetchMODE instruction pattern: Standard Names. (line 2217)
  40755. * atomic_orMODE instruction pattern: Standard Names. (line 2188)
  40756. * atomic_or_fetchMODE instruction pattern: Standard Names. (line 2217)
  40757. * atomic_storeMODE instruction pattern: Standard Names. (line 2165)
  40758. * atomic_subMODE instruction pattern: Standard Names. (line 2188)
  40759. * atomic_sub_fetchMODE instruction pattern: Standard Names. (line 2217)
  40760. * atomic_test_and_set instruction pattern: Standard Names. (line 2234)
  40761. * atomic_xorMODE instruction pattern: Standard Names. (line 2188)
  40762. * atomic_xor_fetchMODE instruction pattern: Standard Names. (line 2217)
  40763. * attr: Expressions. (line 163)
  40764. * attr <1>: Tagging Insns. (line 54)
  40765. * attribute expressions: Expressions. (line 6)
  40766. * attribute specifications: Attr Example. (line 6)
  40767. * attribute specifications example: Attr Example. (line 6)
  40768. * attributes: Attributes. (line 6)
  40769. * attributes, defining: Defining Attributes.
  40770. (line 6)
  40771. * attributes, target-specific: Target Attributes. (line 6)
  40772. * ATTRIBUTE_ALIGNED_VALUE: Storage Layout. (line 194)
  40773. * attr_flag: Expressions. (line 138)
  40774. * autoincrement addressing, availability: Portability. (line 20)
  40775. * autoincrement/decrement addressing: Simple Constraints. (line 30)
  40776. * automata_option: Processor pipeline description.
  40777. (line 304)
  40778. * automaton based pipeline description: Processor pipeline description.
  40779. (line 6)
  40780. * automaton based pipeline description <1>: Processor pipeline description.
  40781. (line 49)
  40782. * automaton based scheduler: Processor pipeline description.
  40783. (line 6)
  40784. * AVOID_CCMODE_COPIES: Values in Registers.
  40785. (line 148)
  40786. * backslash: Output Template. (line 46)
  40787. * barrier: Insns. (line 176)
  40788. * barrier and /f: Flags. (line 135)
  40789. * barrier and /v: Flags. (line 33)
  40790. * BASE_REG_CLASS: Register Classes. (line 111)
  40791. * basic block: Basic Blocks. (line 6)
  40792. * Basic Statements: Basic Statements. (line 6)
  40793. * basic-block.h: Control Flow. (line 6)
  40794. * basic_block: Basic Blocks. (line 6)
  40795. * BASIC_BLOCK: Basic Blocks. (line 14)
  40796. * BB_HEAD, BB_END: Maintaining the CFG.
  40797. (line 76)
  40798. * bb_seq: GIMPLE sequences. (line 72)
  40799. * BIGGEST_ALIGNMENT: Storage Layout. (line 179)
  40800. * BIGGEST_FIELD_ALIGNMENT: Storage Layout. (line 205)
  40801. * BImode: Machine Modes. (line 22)
  40802. * BIND_EXPR: Unary and Binary Expressions.
  40803. (line 6)
  40804. * BINFO_TYPE: Classes. (line 6)
  40805. * bit-fields: Bit-Fields. (line 6)
  40806. * BITFIELD_NBYTES_LIMITED: Storage Layout. (line 425)
  40807. * BITS_BIG_ENDIAN: Storage Layout. (line 11)
  40808. * BITS_BIG_ENDIAN, effect on sign_extract: Bit-Fields. (line 8)
  40809. * BITS_PER_UNIT: Machine Modes. (line 444)
  40810. * BITS_PER_WORD: Storage Layout. (line 50)
  40811. * bitwise complement: Arithmetic. (line 154)
  40812. * bitwise exclusive-or: Arithmetic. (line 168)
  40813. * bitwise inclusive-or: Arithmetic. (line 163)
  40814. * bitwise logical-and: Arithmetic. (line 158)
  40815. * BIT_AND_EXPR: Unary and Binary Expressions.
  40816. (line 6)
  40817. * BIT_IOR_EXPR: Unary and Binary Expressions.
  40818. (line 6)
  40819. * BIT_NOT_EXPR: Unary and Binary Expressions.
  40820. (line 6)
  40821. * BIT_XOR_EXPR: Unary and Binary Expressions.
  40822. (line 6)
  40823. * BLKmode: Machine Modes. (line 185)
  40824. * BLKmode, and function return values: Calls. (line 23)
  40825. * blockage instruction pattern: Standard Names. (line 1978)
  40826. * Blocks: Blocks. (line 6)
  40827. * BLOCK_FOR_INSN, gimple_bb: Maintaining the CFG.
  40828. (line 28)
  40829. * BLOCK_REG_PADDING: Register Arguments. (line 246)
  40830. * BND32mode: Machine Modes. (line 210)
  40831. * BND64mode: Machine Modes. (line 210)
  40832. * bool: Misc. (line 1017)
  40833. * BOOLEAN_TYPE: Types. (line 6)
  40834. * BOOL_TYPE_SIZE: Type Layout. (line 43)
  40835. * branch prediction: Profile information.
  40836. (line 24)
  40837. * BRANCH_COST: Costs. (line 104)
  40838. * break_out_memory_refs: Addressing Modes. (line 134)
  40839. * BREAK_STMT: Statements for C++. (line 6)
  40840. * BSS_SECTION_ASM_OP: Sections. (line 67)
  40841. * bswap: Arithmetic. (line 246)
  40842. * bswapM2 instruction pattern: Standard Names. (line 750)
  40843. * btruncM2 instruction pattern: Standard Names. (line 960)
  40844. * build0: Macros and Functions.
  40845. (line 16)
  40846. * build1: Macros and Functions.
  40847. (line 17)
  40848. * build2: Macros and Functions.
  40849. (line 18)
  40850. * build3: Macros and Functions.
  40851. (line 19)
  40852. * build4: Macros and Functions.
  40853. (line 20)
  40854. * build5: Macros and Functions.
  40855. (line 21)
  40856. * build6: Macros and Functions.
  40857. (line 22)
  40858. * builtin_longjmp instruction pattern: Standard Names. (line 1876)
  40859. * builtin_setjmp_receiver instruction pattern: Standard Names.
  40860. (line 1866)
  40861. * builtin_setjmp_setup instruction pattern: Standard Names. (line 1855)
  40862. * BYTES_BIG_ENDIAN: Storage Layout. (line 23)
  40863. * BYTES_BIG_ENDIAN, effect on subreg: Regs and Memory. (line 229)
  40864. * byte_mode: Machine Modes. (line 462)
  40865. * C statements for assembler output: Output Statement. (line 6)
  40866. * cache: GTY Options. (line 127)
  40867. * call: Flags. (line 230)
  40868. * call <1>: Side Effects. (line 92)
  40869. * call instruction pattern: Standard Names. (line 1521)
  40870. * call usage: Calls. (line 10)
  40871. * call, in call_insn: Flags. (line 129)
  40872. * call, in mem: Flags. (line 70)
  40873. * call-clobbered register: Register Basics. (line 35)
  40874. * call-clobbered register <1>: Register Basics. (line 46)
  40875. * call-clobbered register <2>: Register Basics. (line 52)
  40876. * call-saved register: Register Basics. (line 35)
  40877. * call-saved register <1>: Register Basics. (line 46)
  40878. * call-saved register <2>: Register Basics. (line 52)
  40879. * call-used register: Register Basics. (line 35)
  40880. * call-used register <1>: Register Basics. (line 46)
  40881. * call-used register <2>: Register Basics. (line 52)
  40882. * calling conventions: Stack and Calling. (line 6)
  40883. * calling functions in RTL: Calls. (line 6)
  40884. * CALL_EXPR: Unary and Binary Expressions.
  40885. (line 6)
  40886. * call_insn: Insns. (line 95)
  40887. * call_insn and /c: Flags. (line 129)
  40888. * call_insn and /f: Flags. (line 135)
  40889. * call_insn and /i: Flags. (line 120)
  40890. * call_insn and /j: Flags. (line 175)
  40891. * call_insn and /s: Flags. (line 38)
  40892. * call_insn and /s <1>: Flags. (line 162)
  40893. * call_insn and /u: Flags. (line 28)
  40894. * call_insn and /u <1>: Flags. (line 115)
  40895. * call_insn and /u or /i: Flags. (line 125)
  40896. * call_insn and /v: Flags. (line 33)
  40897. * CALL_INSN_FUNCTION_USAGE: Insns. (line 101)
  40898. * call_pop instruction pattern: Standard Names. (line 1549)
  40899. * CALL_POPS_ARGS: Stack Arguments. (line 138)
  40900. * CALL_REALLY_USED_REGISTERS: Register Basics. (line 45)
  40901. * CALL_USED_REGISTERS: Register Basics. (line 34)
  40902. * call_used_regs: Register Basics. (line 63)
  40903. * call_value instruction pattern: Standard Names. (line 1541)
  40904. * call_value_pop instruction pattern: Standard Names. (line 1549)
  40905. * canadian: Configure Terms. (line 6)
  40906. * canonicalization of instructions: Insn Canonicalizations.
  40907. (line 6)
  40908. * canonicalize_funcptr_for_compare instruction pattern: Standard Names.
  40909. (line 1710)
  40910. * can_create_pseudo_p: Standard Names. (line 75)
  40911. * can_fallthru: Basic Blocks. (line 67)
  40912. * caret: Multi-Alternative. (line 53)
  40913. * casesi instruction pattern: Standard Names. (line 1642)
  40914. * CASE_VECTOR_MODE: Misc. (line 26)
  40915. * CASE_VECTOR_PC_RELATIVE: Misc. (line 39)
  40916. * CASE_VECTOR_SHORTEN_MODE: Misc. (line 30)
  40917. * cbranchMODE4 instruction pattern: Standard Names. (line 1510)
  40918. * cc0: Regs and Memory. (line 329)
  40919. * cc0 <1>: CC0 Condition Codes.
  40920. (line 6)
  40921. * cc0, RTL sharing: Sharing. (line 30)
  40922. * cc0_rtx: Regs and Memory. (line 355)
  40923. * CC1PLUS_SPEC: Driver. (line 63)
  40924. * CC1_SPEC: Driver. (line 55)
  40925. * CCmode: Machine Modes. (line 178)
  40926. * CCmode <1>: MODE_CC Condition Codes.
  40927. (line 6)
  40928. * cc_status: CC0 Condition Codes.
  40929. (line 6)
  40930. * CC_STATUS_MDEP: CC0 Condition Codes.
  40931. (line 16)
  40932. * CC_STATUS_MDEP_INIT: CC0 Condition Codes.
  40933. (line 22)
  40934. * CDImode: Machine Modes. (line 204)
  40935. * ceilM2 instruction pattern: Standard Names. (line 979)
  40936. * CEIL_DIV_EXPR: Unary and Binary Expressions.
  40937. (line 6)
  40938. * CEIL_MOD_EXPR: Unary and Binary Expressions.
  40939. (line 6)
  40940. * CFA_FRAME_BASE_OFFSET: Frame Layout. (line 239)
  40941. * CFG verification: Maintaining the CFG.
  40942. (line 116)
  40943. * CFG, Control Flow Graph: Control Flow. (line 6)
  40944. * cfghooks.h: Maintaining the CFG.
  40945. (line 6)
  40946. * cgraph_finalize_function: Parsing pass. (line 51)
  40947. * chain_circular: GTY Options. (line 160)
  40948. * chain_next: GTY Options. (line 160)
  40949. * chain_prev: GTY Options. (line 160)
  40950. * change_address: Standard Names. (line 47)
  40951. * CHAR_TYPE_SIZE: Type Layout. (line 38)
  40952. * check_stack instruction pattern: Standard Names. (line 1796)
  40953. * CHImode: Machine Modes. (line 204)
  40954. * class definitions, register: Register Classes. (line 6)
  40955. * class preference constraints: Class Preferences. (line 6)
  40956. * class, scope: Classes. (line 6)
  40957. * classes of RTX codes: RTL Classes. (line 6)
  40958. * CLASSTYPE_DECLARED_CLASS: Classes. (line 6)
  40959. * CLASSTYPE_HAS_MUTABLE: Classes. (line 82)
  40960. * CLASSTYPE_NON_POD_P: Classes. (line 87)
  40961. * CLASS_MAX_NREGS: Register Classes. (line 531)
  40962. * CLASS_TYPE_P: Types for C++. (line 63)
  40963. * Cleanups: Cleanups. (line 6)
  40964. * CLEANUP_DECL: Statements for C++. (line 6)
  40965. * CLEANUP_EXPR: Statements for C++. (line 6)
  40966. * CLEANUP_POINT_EXPR: Unary and Binary Expressions.
  40967. (line 6)
  40968. * CLEANUP_STMT: Statements for C++. (line 6)
  40969. * clear_cache instruction pattern: Standard Names. (line 2314)
  40970. * CLEAR_INSN_CACHE: Trampolines. (line 117)
  40971. * CLEAR_RATIO: Costs. (line 225)
  40972. * clobber: Side Effects. (line 106)
  40973. * clrsb: Arithmetic. (line 215)
  40974. * clrsbM2 instruction pattern: Standard Names. (line 1044)
  40975. * clz: Arithmetic. (line 222)
  40976. * clzM2 instruction pattern: Standard Names. (line 1060)
  40977. * CLZ_DEFINED_VALUE_AT_ZERO: Misc. (line 326)
  40978. * cmpmemM instruction pattern: Standard Names. (line 1225)
  40979. * cmpstrM instruction pattern: Standard Names. (line 1204)
  40980. * cmpstrnM instruction pattern: Standard Names. (line 1191)
  40981. * code generation RTL sequences: Expander Definitions.
  40982. (line 6)
  40983. * code iterators in .md files: Code Iterators. (line 6)
  40984. * codes, RTL expression: RTL Objects. (line 47)
  40985. * code_label: Insns. (line 125)
  40986. * CODE_LABEL: Basic Blocks. (line 50)
  40987. * code_label and /i: Flags. (line 48)
  40988. * code_label and /v: Flags. (line 33)
  40989. * CODE_LABEL_NUMBER: Insns. (line 125)
  40990. * COImode: Machine Modes. (line 204)
  40991. * COLLECT2_HOST_INITIALIZATION: Host Misc. (line 32)
  40992. * COLLECT_EXPORT_LIST: Misc. (line 889)
  40993. * COLLECT_SHARED_FINI_FUNC: Macros for Initialization.
  40994. (line 43)
  40995. * COLLECT_SHARED_INIT_FUNC: Macros for Initialization.
  40996. (line 32)
  40997. * commit_edge_insertions: Maintaining the CFG.
  40998. (line 104)
  40999. * compare: Arithmetic. (line 46)
  41000. * compare, canonicalization of: Insn Canonicalizations.
  41001. (line 36)
  41002. * COMPARE_MAX_PIECES: Costs. (line 220)
  41003. * comparison_operator: Machine-Independent Predicates.
  41004. (line 110)
  41005. * compiler passes and files: Passes. (line 6)
  41006. * complement, bitwise: Arithmetic. (line 154)
  41007. * COMPLEX_CST: Constant expressions.
  41008. (line 6)
  41009. * COMPLEX_EXPR: Unary and Binary Expressions.
  41010. (line 6)
  41011. * complex_mode: Machine Modes. (line 306)
  41012. * COMPLEX_TYPE: Types. (line 6)
  41013. * COMPONENT_REF: Storage References. (line 6)
  41014. * Compound Expressions: Compound Expressions.
  41015. (line 6)
  41016. * Compound Lvalues: Compound Lvalues. (line 6)
  41017. * COMPOUND_EXPR: Unary and Binary Expressions.
  41018. (line 6)
  41019. * COMPOUND_LITERAL_EXPR: Unary and Binary Expressions.
  41020. (line 6)
  41021. * COMPOUND_LITERAL_EXPR_DECL: Unary and Binary Expressions.
  41022. (line 387)
  41023. * COMPOUND_LITERAL_EXPR_DECL_EXPR: Unary and Binary Expressions.
  41024. (line 387)
  41025. * computed jump: Edges. (line 127)
  41026. * computing the length of an insn: Insn Lengths. (line 6)
  41027. * concat: Regs and Memory. (line 407)
  41028. * concatn: Regs and Memory. (line 413)
  41029. * cond: Comparisons. (line 90)
  41030. * cond and attributes: Expressions. (line 37)
  41031. * condition code register: Regs and Memory. (line 329)
  41032. * condition code status: Condition Code. (line 6)
  41033. * condition codes: Comparisons. (line 20)
  41034. * conditional execution: Conditional Execution.
  41035. (line 6)
  41036. * Conditional Expressions: Conditional Expressions.
  41037. (line 6)
  41038. * conditions, in patterns: Patterns. (line 43)
  41039. * cond_addMODE instruction pattern: Standard Names. (line 1432)
  41040. * cond_andMODE instruction pattern: Standard Names. (line 1432)
  41041. * cond_exec: Side Effects. (line 254)
  41042. * COND_EXPR: Unary and Binary Expressions.
  41043. (line 6)
  41044. * cond_iorMODE instruction pattern: Standard Names. (line 1432)
  41045. * cond_smaxMODE instruction pattern: Standard Names. (line 1432)
  41046. * cond_sminMODE instruction pattern: Standard Names. (line 1432)
  41047. * cond_subMODE instruction pattern: Standard Names. (line 1432)
  41048. * cond_umaxMODE instruction pattern: Standard Names. (line 1432)
  41049. * cond_uminMODE instruction pattern: Standard Names. (line 1432)
  41050. * cond_xorMODE instruction pattern: Standard Names. (line 1432)
  41051. * configuration file: Filesystem. (line 6)
  41052. * configuration file <1>: Host Misc. (line 6)
  41053. * configure terms: Configure Terms. (line 6)
  41054. * CONJ_EXPR: Unary and Binary Expressions.
  41055. (line 6)
  41056. * const: Constants. (line 212)
  41057. * const0_rtx: Constants. (line 21)
  41058. * CONST0_RTX: Constants. (line 230)
  41059. * const1_rtx: Constants. (line 21)
  41060. * CONST1_RTX: Constants. (line 230)
  41061. * const2_rtx: Constants. (line 21)
  41062. * CONST2_RTX: Constants. (line 230)
  41063. * constant attributes: Constant Attributes.
  41064. (line 6)
  41065. * constant definitions: Constant Definitions.
  41066. (line 6)
  41067. * constants in constraints: Simple Constraints. (line 68)
  41068. * CONSTANT_ADDRESS_P: Addressing Modes. (line 28)
  41069. * CONSTANT_P: Addressing Modes. (line 35)
  41070. * CONSTANT_POOL_ADDRESS_P: Flags. (line 19)
  41071. * CONSTANT_POOL_BEFORE_FUNCTION: Data Output. (line 68)
  41072. * constm1_rtx: Constants. (line 21)
  41073. * constraint modifier characters: Modifiers. (line 6)
  41074. * constraint, matching: Simple Constraints. (line 140)
  41075. * constraints: Constraints. (line 6)
  41076. * constraints, defining: Define Constraints. (line 6)
  41077. * constraints, machine specific: Machine Constraints.
  41078. (line 6)
  41079. * constraints, testing: C Constraint Interface.
  41080. (line 6)
  41081. * constraint_num: C Constraint Interface.
  41082. (line 30)
  41083. * constraint_satisfied_p: C Constraint Interface.
  41084. (line 42)
  41085. * CONSTRUCTOR: Unary and Binary Expressions.
  41086. (line 6)
  41087. * constructors, automatic calls: Collect2. (line 15)
  41088. * constructors, output of: Initialization. (line 6)
  41089. * CONST_DECL: Declarations. (line 6)
  41090. * const_double: Constants. (line 37)
  41091. * const_double, RTL sharing: Sharing. (line 32)
  41092. * CONST_DOUBLE_LOW: Constants. (line 54)
  41093. * const_double_operand: Machine-Independent Predicates.
  41094. (line 20)
  41095. * const_fixed: Constants. (line 93)
  41096. * const_int: Constants. (line 8)
  41097. * const_int and attribute tests: Expressions. (line 47)
  41098. * const_int and attributes: Expressions. (line 10)
  41099. * const_int, RTL sharing: Sharing. (line 23)
  41100. * const_int_operand: Machine-Independent Predicates.
  41101. (line 15)
  41102. * const_poly_int: Constants. (line 100)
  41103. * const_poly_int, RTL sharing: Sharing. (line 25)
  41104. * const_string: Constants. (line 184)
  41105. * const_string and attributes: Expressions. (line 20)
  41106. * const_true_rtx: Constants. (line 31)
  41107. * const_vector: Constants. (line 107)
  41108. * const_vector, RTL sharing: Sharing. (line 35)
  41109. * CONST_WIDE_INT: Constants. (line 67)
  41110. * CONST_WIDE_INT_ELT: Constants. (line 89)
  41111. * CONST_WIDE_INT_NUNITS: Constants. (line 84)
  41112. * CONST_WIDE_INT_VEC: Constants. (line 80)
  41113. * container: Containers. (line 6)
  41114. * CONTINUE_STMT: Statements for C++. (line 6)
  41115. * contributors: Contributors. (line 6)
  41116. * controlling register usage: Register Basics. (line 77)
  41117. * controlling the compilation driver: Driver. (line 6)
  41118. * conventions, run-time: Interface. (line 6)
  41119. * conversions: Conversions. (line 6)
  41120. * CONVERT_EXPR: Unary and Binary Expressions.
  41121. (line 6)
  41122. * copysignM3 instruction pattern: Standard Names. (line 1024)
  41123. * copy_rtx: Addressing Modes. (line 189)
  41124. * copy_rtx_if_shared: Sharing. (line 67)
  41125. * cosM2 instruction pattern: Standard Names. (line 813)
  41126. * costs of instructions: Costs. (line 6)
  41127. * CPLUSPLUS_CPP_SPEC: Driver. (line 50)
  41128. * CPP_SPEC: Driver. (line 43)
  41129. * CPSImode: Machine Modes. (line 204)
  41130. * CP_INTEGRAL_TYPE: Types for C++. (line 55)
  41131. * cp_namespace_decls: Namespaces. (line 49)
  41132. * CP_TYPE_CONST_NON_VOLATILE_P: Types for C++. (line 33)
  41133. * CP_TYPE_CONST_P: Types for C++. (line 24)
  41134. * cp_type_quals: Types for C++. (line 6)
  41135. * cp_type_quals <1>: Types for C++. (line 16)
  41136. * CP_TYPE_RESTRICT_P: Types for C++. (line 30)
  41137. * CP_TYPE_VOLATILE_P: Types for C++. (line 27)
  41138. * CQImode: Machine Modes. (line 204)
  41139. * cross compilation and floating point: Floating Point. (line 6)
  41140. * CROSSING_JUMP_P: Flags. (line 10)
  41141. * crtl->args.pops_args: Function Entry. (line 111)
  41142. * crtl->args.pretend_args_size: Function Entry. (line 117)
  41143. * crtl->outgoing_args_size: Stack Arguments. (line 48)
  41144. * CRTSTUFF_T_CFLAGS: Target Fragment. (line 15)
  41145. * CRTSTUFF_T_CFLAGS_S: Target Fragment. (line 19)
  41146. * CRT_CALL_STATIC_FUNCTION: Sections. (line 125)
  41147. * CSImode: Machine Modes. (line 204)
  41148. * cstoreMODE4 instruction pattern: Standard Names. (line 1471)
  41149. * CTImode: Machine Modes. (line 204)
  41150. * ctrapMM4 instruction pattern: Standard Names. (line 1947)
  41151. * ctz: Arithmetic. (line 230)
  41152. * ctzM2 instruction pattern: Standard Names. (line 1075)
  41153. * CTZ_DEFINED_VALUE_AT_ZERO: Misc. (line 327)
  41154. * CUMULATIVE_ARGS: Register Arguments. (line 144)
  41155. * current_function_is_leaf: Leaf Functions. (line 50)
  41156. * current_function_uses_only_leaf_regs: Leaf Functions. (line 50)
  41157. * current_insn_predicate: Conditional Execution.
  41158. (line 27)
  41159. * C_COMMON_OVERRIDE_OPTIONS: Run-time Target. (line 136)
  41160. * c_register_pragma: Misc. (line 429)
  41161. * c_register_pragma_with_expansion: Misc. (line 431)
  41162. * DAmode: Machine Modes. (line 154)
  41163. * data bypass: Processor pipeline description.
  41164. (line 105)
  41165. * data bypass <1>: Processor pipeline description.
  41166. (line 196)
  41167. * data dependence delays: Processor pipeline description.
  41168. (line 6)
  41169. * Data Dependency Analysis: Dependency analysis.
  41170. (line 6)
  41171. * data structures: Per-Function Data. (line 6)
  41172. * DATA_ABI_ALIGNMENT: Storage Layout. (line 260)
  41173. * DATA_ALIGNMENT: Storage Layout. (line 247)
  41174. * DATA_SECTION_ASM_OP: Sections. (line 52)
  41175. * DBR_OUTPUT_SEQEND: Instruction Output. (line 133)
  41176. * dbr_sequence_length: Instruction Output. (line 133)
  41177. * DBX_BLOCKS_FUNCTION_RELATIVE: DBX Options. (line 100)
  41178. * DBX_CONTIN_CHAR: DBX Options. (line 63)
  41179. * DBX_CONTIN_LENGTH: DBX Options. (line 53)
  41180. * DBX_DEBUGGING_INFO: DBX Options. (line 8)
  41181. * DBX_FUNCTION_FIRST: DBX Options. (line 94)
  41182. * DBX_LINES_FUNCTION_RELATIVE: DBX Options. (line 106)
  41183. * DBX_NO_XREFS: DBX Options. (line 47)
  41184. * DBX_OUTPUT_MAIN_SOURCE_FILENAME: File Names and DBX. (line 8)
  41185. * DBX_OUTPUT_MAIN_SOURCE_FILE_END: File Names and DBX. (line 33)
  41186. * DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END: File Names and DBX.
  41187. (line 41)
  41188. * DBX_OUTPUT_SOURCE_LINE: DBX Hooks. (line 8)
  41189. * DBX_REGISTER_NUMBER: All Debuggers. (line 8)
  41190. * DBX_REGPARM_STABS_CODE: DBX Options. (line 84)
  41191. * DBX_REGPARM_STABS_LETTER: DBX Options. (line 89)
  41192. * DBX_STATIC_CONST_VAR_CODE: DBX Options. (line 79)
  41193. * DBX_STATIC_STAB_DATA_SECTION: DBX Options. (line 70)
  41194. * DBX_TYPE_DECL_STABS_CODE: DBX Options. (line 75)
  41195. * DBX_USE_BINCL: DBX Options. (line 112)
  41196. * DCmode: Machine Modes. (line 199)
  41197. * DDmode: Machine Modes. (line 93)
  41198. * De Morgan's law: Insn Canonicalizations.
  41199. (line 67)
  41200. * dead_or_set_p: define_peephole. (line 65)
  41201. * DEBUGGER_ARG_OFFSET: All Debuggers. (line 35)
  41202. * DEBUGGER_AUTO_OFFSET: All Debuggers. (line 27)
  41203. * debug_expr: Debug Information. (line 22)
  41204. * DEBUG_EXPR_DECL: Declarations. (line 6)
  41205. * debug_implicit_ptr: Debug Information. (line 27)
  41206. * debug_insn: Insns. (line 247)
  41207. * debug_marker: Debug Information. (line 37)
  41208. * debug_parameter_ref: Debug Information. (line 34)
  41209. * DEBUG_SYMS_TEXT: DBX Options. (line 24)
  41210. * decimal float library: Decimal float library routines.
  41211. (line 6)
  41212. * declaration: Declarations. (line 6)
  41213. * declarations, RTL: RTL Declarations. (line 6)
  41214. * DECLARE_LIBRARY_RENAMES: Library Calls. (line 8)
  41215. * DECL_ALIGN: Declarations. (line 6)
  41216. * DECL_ANTICIPATED: Functions for C++. (line 42)
  41217. * DECL_ARGUMENTS: Function Basics. (line 36)
  41218. * DECL_ARRAY_DELETE_OPERATOR_P: Functions for C++. (line 158)
  41219. * DECL_ARTIFICIAL: Working with declarations.
  41220. (line 24)
  41221. * DECL_ARTIFICIAL <1>: Function Basics. (line 6)
  41222. * DECL_ARTIFICIAL <2>: Function Properties.
  41223. (line 47)
  41224. * DECL_ASSEMBLER_NAME: Function Basics. (line 6)
  41225. * DECL_ASSEMBLER_NAME <1>: Function Basics. (line 19)
  41226. * DECL_ATTRIBUTES: Attributes. (line 21)
  41227. * DECL_BASE_CONSTRUCTOR_P: Functions for C++. (line 88)
  41228. * DECL_COMPLETE_CONSTRUCTOR_P: Functions for C++. (line 84)
  41229. * DECL_COMPLETE_DESTRUCTOR_P: Functions for C++. (line 98)
  41230. * DECL_CONSTRUCTOR_P: Functions for C++. (line 77)
  41231. * DECL_CONST_MEMFUNC_P: Functions for C++. (line 71)
  41232. * DECL_CONTEXT: Namespaces. (line 31)
  41233. * DECL_CONV_FN_P: Functions for C++. (line 105)
  41234. * DECL_COPY_CONSTRUCTOR_P: Functions for C++. (line 92)
  41235. * DECL_DESTRUCTOR_P: Functions for C++. (line 95)
  41236. * DECL_EXTERNAL: Declarations. (line 6)
  41237. * DECL_EXTERNAL <1>: Function Properties.
  41238. (line 25)
  41239. * DECL_EXTERN_C_FUNCTION_P: Functions for C++. (line 46)
  41240. * DECL_FUNCTION_MEMBER_P: Functions for C++. (line 61)
  41241. * DECL_FUNCTION_SPECIFIC_OPTIMIZATION: Function Basics. (line 6)
  41242. * DECL_FUNCTION_SPECIFIC_OPTIMIZATION <1>: Function Properties.
  41243. (line 61)
  41244. * DECL_FUNCTION_SPECIFIC_TARGET: Function Basics. (line 6)
  41245. * DECL_FUNCTION_SPECIFIC_TARGET <1>: Function Properties.
  41246. (line 55)
  41247. * DECL_GLOBAL_CTOR_P: Functions for C++. (line 108)
  41248. * DECL_GLOBAL_DTOR_P: Functions for C++. (line 112)
  41249. * DECL_INITIAL: Declarations. (line 6)
  41250. * DECL_INITIAL <1>: Function Basics. (line 51)
  41251. * DECL_LINKONCE_P: Functions for C++. (line 50)
  41252. * DECL_LOCAL_FUNCTION_P: Functions for C++. (line 38)
  41253. * DECL_MAIN_P: Functions for C++. (line 34)
  41254. * DECL_NAME: Working with declarations.
  41255. (line 7)
  41256. * DECL_NAME <1>: Function Basics. (line 6)
  41257. * DECL_NAME <2>: Function Basics. (line 9)
  41258. * DECL_NAME <3>: Namespaces. (line 20)
  41259. * DECL_NAMESPACE_ALIAS: Namespaces. (line 35)
  41260. * DECL_NAMESPACE_STD_P: Namespaces. (line 45)
  41261. * DECL_NONCONVERTING_P: Functions for C++. (line 80)
  41262. * DECL_NONSTATIC_MEMBER_FUNCTION_P: Functions for C++. (line 68)
  41263. * DECL_NON_THUNK_FUNCTION_P: Functions for C++. (line 138)
  41264. * DECL_OVERLOADED_OPERATOR_P: Functions for C++. (line 102)
  41265. * DECL_PURE_P: Function Properties.
  41266. (line 40)
  41267. * DECL_RESULT: Function Basics. (line 41)
  41268. * DECL_SAVED_TREE: Function Basics. (line 44)
  41269. * DECL_SIZE: Declarations. (line 6)
  41270. * DECL_STATIC_FUNCTION_P: Functions for C++. (line 65)
  41271. * DECL_STMT: Statements for C++. (line 6)
  41272. * DECL_STMT_DECL: Statements for C++. (line 6)
  41273. * DECL_THUNK_P: Functions for C++. (line 116)
  41274. * DECL_VIRTUAL_P: Function Properties.
  41275. (line 44)
  41276. * DECL_VOLATILE_MEMFUNC_P: Functions for C++. (line 74)
  41277. * decrement_and_branch_until_zero instruction pattern: Standard Names.
  41278. (line 1679)
  41279. * default: GTY Options. (line 90)
  41280. * default_file_start: File Framework. (line 8)
  41281. * DEFAULT_GDB_EXTENSIONS: DBX Options. (line 17)
  41282. * DEFAULT_INCOMING_FRAME_SP_OFFSET: Frame Layout. (line 199)
  41283. * DEFAULT_PCC_STRUCT_RETURN: Aggregate Return. (line 34)
  41284. * DEFAULT_SIGNED_CHAR: Type Layout. (line 117)
  41285. * define_address_constraint: Define Constraints. (line 113)
  41286. * define_asm_attributes: Tagging Insns. (line 73)
  41287. * define_attr: Defining Attributes.
  41288. (line 6)
  41289. * define_automaton: Processor pipeline description.
  41290. (line 53)
  41291. * define_bypass: Processor pipeline description.
  41292. (line 196)
  41293. * define_code_attr: Code Iterators. (line 6)
  41294. * define_code_iterator: Code Iterators. (line 6)
  41295. * define_cond_exec: Conditional Execution.
  41296. (line 13)
  41297. * define_constants: Constant Definitions.
  41298. (line 6)
  41299. * define_constraint: Define Constraints. (line 45)
  41300. * define_cpu_unit: Processor pipeline description.
  41301. (line 68)
  41302. * define_c_enum: Constant Definitions.
  41303. (line 49)
  41304. * define_delay: Delay Slots. (line 25)
  41305. * define_enum: Constant Definitions.
  41306. (line 118)
  41307. * define_enum_attr: Defining Attributes.
  41308. (line 83)
  41309. * define_enum_attr <1>: Constant Definitions.
  41310. (line 136)
  41311. * define_expand: Expander Definitions.
  41312. (line 11)
  41313. * define_insn: Patterns. (line 6)
  41314. * define_insn example: Example. (line 6)
  41315. * define_insn_and_split: Insn Splitting. (line 170)
  41316. * define_insn_reservation: Processor pipeline description.
  41317. (line 105)
  41318. * define_int_attr: Int Iterators. (line 6)
  41319. * define_int_iterator: Int Iterators. (line 6)
  41320. * define_memory_constraint: Define Constraints. (line 80)
  41321. * define_mode_attr: Substitutions. (line 6)
  41322. * define_mode_iterator: Defining Mode Iterators.
  41323. (line 6)
  41324. * define_peephole: define_peephole. (line 6)
  41325. * define_peephole2: define_peephole2. (line 6)
  41326. * define_predicate: Defining Predicates.
  41327. (line 6)
  41328. * define_query_cpu_unit: Processor pipeline description.
  41329. (line 90)
  41330. * define_register_constraint: Define Constraints. (line 26)
  41331. * define_reservation: Processor pipeline description.
  41332. (line 185)
  41333. * define_special_memory_constraint: Define Constraints. (line 99)
  41334. * define_special_predicate: Defining Predicates.
  41335. (line 6)
  41336. * define_split: Insn Splitting. (line 32)
  41337. * define_subst: Define Subst. (line 6)
  41338. * define_subst <1>: Define Subst Example.
  41339. (line 6)
  41340. * define_subst <2>: Define Subst Pattern Matching.
  41341. (line 6)
  41342. * define_subst <3>: Define Subst Output Template.
  41343. (line 6)
  41344. * define_subst <4>: Define Subst. (line 14)
  41345. * define_subst <5>: Subst Iterators. (line 6)
  41346. * define_subst_attr: Subst Iterators. (line 6)
  41347. * define_subst_attr <1>: Subst Iterators. (line 26)
  41348. * defining attributes and their values: Defining Attributes.
  41349. (line 6)
  41350. * defining constraints: Define Constraints. (line 6)
  41351. * defining jump instruction patterns: Jump Patterns. (line 6)
  41352. * defining looping instruction patterns: Looping Patterns. (line 6)
  41353. * defining peephole optimizers: Peephole Definitions.
  41354. (line 6)
  41355. * defining predicates: Defining Predicates.
  41356. (line 6)
  41357. * defining RTL sequences for code generation: Expander Definitions.
  41358. (line 6)
  41359. * delay slots, defining: Delay Slots. (line 6)
  41360. * deletable: GTY Options. (line 134)
  41361. * DELETE_IF_ORDINARY: Filesystem. (line 79)
  41362. * Dependent Patterns: Dependent Patterns. (line 6)
  41363. * desc: GTY Options. (line 90)
  41364. * destructors, output of: Initialization. (line 6)
  41365. * deterministic finite state automaton: Processor pipeline description.
  41366. (line 6)
  41367. * deterministic finite state automaton <1>: Processor pipeline description.
  41368. (line 304)
  41369. * DFmode: Machine Modes. (line 76)
  41370. * digits in constraint: Simple Constraints. (line 128)
  41371. * DImode: Machine Modes. (line 45)
  41372. * directory options .md: Including Patterns. (line 47)
  41373. * DIR_SEPARATOR: Filesystem. (line 18)
  41374. * DIR_SEPARATOR_2: Filesystem. (line 19)
  41375. * disabling certain registers: Register Basics. (line 77)
  41376. * dispatch table: Dispatch Tables. (line 8)
  41377. * div: Arithmetic. (line 116)
  41378. * div and attributes: Expressions. (line 83)
  41379. * division: Arithmetic. (line 116)
  41380. * division <1>: Arithmetic. (line 130)
  41381. * division <2>: Arithmetic. (line 136)
  41382. * divM3 instruction pattern: Standard Names. (line 416)
  41383. * divmodM4 instruction pattern: Standard Names. (line 710)
  41384. * dollar sign: Multi-Alternative. (line 57)
  41385. * DOLLARS_IN_IDENTIFIERS: Misc. (line 474)
  41386. * doloop_begin instruction pattern: Standard Names. (line 1701)
  41387. * doloop_end instruction pattern: Standard Names. (line 1689)
  41388. * DONE: Expander Definitions.
  41389. (line 77)
  41390. * DONT_USE_BUILTIN_SETJMP: Exception Region Output.
  41391. (line 78)
  41392. * DOUBLE_TYPE_SIZE: Type Layout. (line 52)
  41393. * DO_BODY: Statements for C++. (line 6)
  41394. * DO_COND: Statements for C++. (line 6)
  41395. * DO_STMT: Statements for C++. (line 6)
  41396. * DQmode: Machine Modes. (line 118)
  41397. * driver: Driver. (line 6)
  41398. * DRIVER_SELF_SPECS: Driver. (line 8)
  41399. * dump examples: Dump examples. (line 6)
  41400. * dump setup: Dump setup. (line 6)
  41401. * dump types: Dump types. (line 6)
  41402. * dump verbosity: Dump output verbosity.
  41403. (line 6)
  41404. * DUMPFILE_FORMAT: Filesystem. (line 67)
  41405. * dump_basic_block: Dump types. (line 29)
  41406. * dump_generic_expr: Dump types. (line 31)
  41407. * dump_gimple_stmt: Dump types. (line 33)
  41408. * dump_printf: Dump types. (line 6)
  41409. * DWARF2_ASM_LINE_DEBUG_INFO: DWARF. (line 45)
  41410. * DWARF2_ASM_VIEW_DEBUG_INFO: DWARF. (line 51)
  41411. * DWARF2_DEBUGGING_INFO: DWARF. (line 8)
  41412. * DWARF2_FRAME_INFO: DWARF. (line 25)
  41413. * DWARF2_FRAME_REG_OUT: Frame Registers. (line 149)
  41414. * DWARF2_UNWIND_INFO: Exception Region Output.
  41415. (line 39)
  41416. * DWARF_ALT_FRAME_RETURN_COLUMN: Frame Layout. (line 146)
  41417. * DWARF_CIE_DATA_ALIGNMENT: Exception Region Output.
  41418. (line 90)
  41419. * DWARF_FRAME_REGISTERS: Frame Registers. (line 109)
  41420. * DWARF_FRAME_REGNUM: Frame Registers. (line 141)
  41421. * DWARF_LAZY_REGISTER_VALUE: Frame Registers. (line 170)
  41422. * DWARF_REG_TO_UNWIND_COLUMN: Frame Registers. (line 134)
  41423. * DWARF_ZERO_REG: Frame Layout. (line 157)
  41424. * DYNAMIC_CHAIN_ADDRESS: Frame Layout. (line 84)
  41425. * E in constraint: Simple Constraints. (line 87)
  41426. * earlyclobber operand: Modifiers. (line 25)
  41427. * edge: Edges. (line 6)
  41428. * edge in the flow graph: Edges. (line 6)
  41429. * edge iterators: Edges. (line 15)
  41430. * edge splitting: Maintaining the CFG.
  41431. (line 104)
  41432. * EDGE_ABNORMAL: Edges. (line 127)
  41433. * EDGE_ABNORMAL, EDGE_ABNORMAL_CALL: Edges. (line 171)
  41434. * EDGE_ABNORMAL, EDGE_EH: Edges. (line 95)
  41435. * EDGE_ABNORMAL, EDGE_SIBCALL: Edges. (line 121)
  41436. * EDGE_FALLTHRU, force_nonfallthru: Edges. (line 85)
  41437. * EDOM, implicit usage: Library Calls. (line 59)
  41438. * EH_FRAME_SECTION_NAME: Exception Region Output.
  41439. (line 9)
  41440. * EH_FRAME_THROUGH_COLLECT2: Exception Region Output.
  41441. (line 19)
  41442. * eh_return instruction pattern: Standard Names. (line 1882)
  41443. * EH_RETURN_DATA_REGNO: Exception Handling. (line 6)
  41444. * EH_RETURN_HANDLER_RTX: Exception Handling. (line 38)
  41445. * EH_RETURN_STACKADJ_RTX: Exception Handling. (line 21)
  41446. * EH_TABLES_CAN_BE_READ_ONLY: Exception Region Output.
  41447. (line 29)
  41448. * EH_USES: Function Entry. (line 162)
  41449. * ei_edge: Edges. (line 43)
  41450. * ei_end_p: Edges. (line 27)
  41451. * ei_last: Edges. (line 23)
  41452. * ei_next: Edges. (line 35)
  41453. * ei_one_before_end_p: Edges. (line 31)
  41454. * ei_prev: Edges. (line 39)
  41455. * ei_safe_safe: Edges. (line 47)
  41456. * ei_start: Edges. (line 19)
  41457. * ELIMINABLE_REGS: Elimination. (line 34)
  41458. * ELSE_CLAUSE: Statements for C++. (line 6)
  41459. * Embedded C: Fixed-point fractional library routines.
  41460. (line 6)
  41461. * Empty Statements: Empty Statements. (line 6)
  41462. * EMPTY_CLASS_EXPR: Statements for C++. (line 6)
  41463. * EMPTY_FIELD_BOUNDARY: Storage Layout. (line 338)
  41464. * Emulated TLS: Emulated TLS. (line 6)
  41465. * enabled: Disable Insn Alternatives.
  41466. (line 6)
  41467. * ENDFILE_SPEC: Driver. (line 155)
  41468. * endianness: Portability. (line 20)
  41469. * ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR: Basic Blocks. (line 10)
  41470. * entry_value: Debug Information. (line 30)
  41471. * enum reg_class: Register Classes. (line 70)
  41472. * ENUMERAL_TYPE: Types. (line 6)
  41473. * enumerations: Constant Definitions.
  41474. (line 49)
  41475. * epilogue: Function Entry. (line 6)
  41476. * epilogue instruction pattern: Standard Names. (line 1920)
  41477. * EPILOGUE_USES: Function Entry. (line 156)
  41478. * eq: Comparisons. (line 52)
  41479. * eq and attributes: Expressions. (line 83)
  41480. * equal: Comparisons. (line 52)
  41481. * eq_attr: Expressions. (line 104)
  41482. * EQ_EXPR: Unary and Binary Expressions.
  41483. (line 6)
  41484. * errno, implicit usage: Library Calls. (line 71)
  41485. * EXACT_DIV_EXPR: Unary and Binary Expressions.
  41486. (line 6)
  41487. * examining SSA_NAMEs: SSA. (line 182)
  41488. * exception handling: Edges. (line 95)
  41489. * exception handling <1>: Exception Handling. (line 6)
  41490. * exception_receiver instruction pattern: Standard Names. (line 1847)
  41491. * exclamation point: Multi-Alternative. (line 48)
  41492. * exclusion_set: Processor pipeline description.
  41493. (line 223)
  41494. * exclusive-or, bitwise: Arithmetic. (line 168)
  41495. * EXIT_EXPR: Unary and Binary Expressions.
  41496. (line 6)
  41497. * EXIT_IGNORE_STACK: Function Entry. (line 144)
  41498. * exp10M2 instruction pattern: Standard Names. (line 877)
  41499. * exp2M2 instruction pattern: Standard Names. (line 884)
  41500. * expander definitions: Expander Definitions.
  41501. (line 6)
  41502. * expm1M2 instruction pattern: Standard Names. (line 867)
  41503. * expM2 instruction pattern: Standard Names. (line 860)
  41504. * expression: Expression trees. (line 6)
  41505. * expression codes: RTL Objects. (line 47)
  41506. * EXPR_FILENAME: Working with declarations.
  41507. (line 14)
  41508. * EXPR_LINENO: Working with declarations.
  41509. (line 20)
  41510. * expr_list: Insns. (line 568)
  41511. * EXPR_STMT: Statements for C++. (line 6)
  41512. * EXPR_STMT_EXPR: Statements for C++. (line 6)
  41513. * extendMN2 instruction pattern: Standard Names. (line 1283)
  41514. * extensible constraints: Simple Constraints. (line 171)
  41515. * extract_last_M instruction pattern: Standard Names. (line 518)
  41516. * EXTRA_SPECS: Driver. (line 182)
  41517. * extv instruction pattern: Standard Names. (line 1374)
  41518. * extvM instruction pattern: Standard Names. (line 1319)
  41519. * extvmisalignM instruction pattern: Standard Names. (line 1329)
  41520. * extzv instruction pattern: Standard Names. (line 1392)
  41521. * extzvM instruction pattern: Standard Names. (line 1343)
  41522. * extzvmisalignM instruction pattern: Standard Names. (line 1346)
  41523. * F in constraint: Simple Constraints. (line 92)
  41524. * FAIL: Expander Definitions.
  41525. (line 83)
  41526. * fall-thru: Edges. (line 68)
  41527. * FATAL_EXIT_CODE: Host Misc. (line 6)
  41528. * FDL, GNU Free Documentation License: GNU Free Documentation License.
  41529. (line 6)
  41530. * features, optional, in system conventions: Run-time Target.
  41531. (line 59)
  41532. * ffs: Arithmetic. (line 210)
  41533. * ffsM2 instruction pattern: Standard Names. (line 1031)
  41534. * FIELD_DECL: Declarations. (line 6)
  41535. * files and passes of the compiler: Passes. (line 6)
  41536. * files, generated: Files. (line 6)
  41537. * file_end_indicate_exec_stack: File Framework. (line 39)
  41538. * final_absence_set: Processor pipeline description.
  41539. (line 223)
  41540. * FINAL_PRESCAN_INSN: Instruction Output. (line 60)
  41541. * final_presence_set: Processor pipeline description.
  41542. (line 223)
  41543. * final_sequence: Instruction Output. (line 144)
  41544. * FIND_BASE_TERM: Addressing Modes. (line 117)
  41545. * finite state automaton minimization: Processor pipeline description.
  41546. (line 304)
  41547. * FINI_ARRAY_SECTION_ASM_OP: Sections. (line 113)
  41548. * FINI_SECTION_ASM_OP: Sections. (line 98)
  41549. * FIRST_PARM_OFFSET: Frame Layout. (line 59)
  41550. * FIRST_PARM_OFFSET and virtual registers: Regs and Memory. (line 65)
  41551. * FIRST_PSEUDO_REGISTER: Register Basics. (line 8)
  41552. * FIRST_STACK_REG: Stack Registers. (line 26)
  41553. * FIRST_VIRTUAL_REGISTER: Regs and Memory. (line 51)
  41554. * fix: Conversions. (line 66)
  41555. * fixed register: Register Basics. (line 15)
  41556. * fixed-point fractional library: Fixed-point fractional library routines.
  41557. (line 6)
  41558. * FIXED_CONVERT_EXPR: Unary and Binary Expressions.
  41559. (line 6)
  41560. * FIXED_CST: Constant expressions.
  41561. (line 6)
  41562. * FIXED_POINT_TYPE: Types. (line 6)
  41563. * FIXED_REGISTERS: Register Basics. (line 14)
  41564. * fixed_regs: Register Basics. (line 63)
  41565. * fixed_size_mode: Machine Modes. (line 309)
  41566. * fixMN2 instruction pattern: Standard Names. (line 1250)
  41567. * fixunsMN2 instruction pattern: Standard Names. (line 1259)
  41568. * fixuns_truncMN2 instruction pattern: Standard Names. (line 1274)
  41569. * fix_truncMN2 instruction pattern: Standard Names. (line 1270)
  41570. * FIX_TRUNC_EXPR: Unary and Binary Expressions.
  41571. (line 6)
  41572. * flags in RTL expression: Flags. (line 6)
  41573. * float: Conversions. (line 58)
  41574. * floating point and cross compilation: Floating Point. (line 6)
  41575. * floatMN2 instruction pattern: Standard Names. (line 1242)
  41576. * floatunsMN2 instruction pattern: Standard Names. (line 1246)
  41577. * FLOAT_EXPR: Unary and Binary Expressions.
  41578. (line 6)
  41579. * float_extend: Conversions. (line 33)
  41580. * FLOAT_LIB_COMPARE_RETURNS_BOOL: Library Calls. (line 32)
  41581. * FLOAT_STORE_FLAG_VALUE: Misc. (line 308)
  41582. * float_truncate: Conversions. (line 53)
  41583. * FLOAT_TYPE_SIZE: Type Layout. (line 48)
  41584. * FLOAT_WORDS_BIG_ENDIAN: Storage Layout. (line 41)
  41585. * FLOAT_WORDS_BIG_ENDIAN, (lack of) effect on subreg: Regs and Memory.
  41586. (line 234)
  41587. * floorM2 instruction pattern: Standard Names. (line 951)
  41588. * FLOOR_DIV_EXPR: Unary and Binary Expressions.
  41589. (line 6)
  41590. * FLOOR_MOD_EXPR: Unary and Binary Expressions.
  41591. (line 6)
  41592. * flow-insensitive alias analysis: Alias analysis. (line 6)
  41593. * flow-sensitive alias analysis: Alias analysis. (line 6)
  41594. * fma: Arithmetic. (line 112)
  41595. * fmaM4 instruction pattern: Standard Names. (line 453)
  41596. * fmaxM3 instruction pattern: Standard Names. (line 484)
  41597. * fminM3 instruction pattern: Standard Names. (line 484)
  41598. * fmodM3 instruction pattern: Standard Names. (line 783)
  41599. * fmsM4 instruction pattern: Standard Names. (line 460)
  41600. * fnmaM4 instruction pattern: Standard Names. (line 466)
  41601. * fnmsM4 instruction pattern: Standard Names. (line 472)
  41602. * fold_extract_last_M instruction pattern: Standard Names. (line 525)
  41603. * fold_left_plus_M instruction pattern: Standard Names. (line 533)
  41604. * FORCE_CODE_SECTION_ALIGN: Sections. (line 149)
  41605. * force_reg: Standard Names. (line 36)
  41606. * FOR_BODY: Statements for C++. (line 6)
  41607. * FOR_COND: Statements for C++. (line 6)
  41608. * FOR_EXPR: Statements for C++. (line 6)
  41609. * FOR_INIT_STMT: Statements for C++. (line 6)
  41610. * FOR_STMT: Statements for C++. (line 6)
  41611. * for_user: GTY Options. (line 82)
  41612. * fractional types: Fixed-point fractional library routines.
  41613. (line 6)
  41614. * fractMN2 instruction pattern: Standard Names. (line 1292)
  41615. * fractunsMN2 instruction pattern: Standard Names. (line 1307)
  41616. * fract_convert: Conversions. (line 82)
  41617. * FRACT_TYPE_SIZE: Type Layout. (line 67)
  41618. * frame layout: Frame Layout. (line 6)
  41619. * FRAME_ADDR_RTX: Frame Layout. (line 108)
  41620. * FRAME_GROWS_DOWNWARD: Frame Layout. (line 26)
  41621. * FRAME_GROWS_DOWNWARD and virtual registers: Regs and Memory.
  41622. (line 69)
  41623. * FRAME_POINTER_CFA_OFFSET: Frame Layout. (line 225)
  41624. * frame_pointer_needed: Function Entry. (line 42)
  41625. * FRAME_POINTER_REGNUM: Frame Registers. (line 13)
  41626. * FRAME_POINTER_REGNUM and virtual registers: Regs and Memory.
  41627. (line 74)
  41628. * frame_pointer_rtx: Frame Registers. (line 104)
  41629. * frame_related: Flags. (line 238)
  41630. * frame_related, in insn, call_insn, jump_insn, barrier, and set: Flags.
  41631. (line 135)
  41632. * frame_related, in mem: Flags. (line 74)
  41633. * frame_related, in reg: Flags. (line 102)
  41634. * frame_related, in symbol_ref: Flags. (line 179)
  41635. * frequency, count, BB_FREQ_BASE: Profile information.
  41636. (line 30)
  41637. * ftruncM2 instruction pattern: Standard Names. (line 1265)
  41638. * function: Functions. (line 6)
  41639. * function <1>: Functions for C++. (line 6)
  41640. * function call conventions: Interface. (line 6)
  41641. * function entry and exit: Function Entry. (line 6)
  41642. * function entry point, alternate function entry point: Edges.
  41643. (line 180)
  41644. * function properties: Function Properties.
  41645. (line 6)
  41646. * function-call insns: Calls. (line 6)
  41647. * functions, leaf: Leaf Functions. (line 6)
  41648. * FUNCTION_ARG_REGNO_P: Register Arguments. (line 269)
  41649. * FUNCTION_BOUNDARY: Storage Layout. (line 176)
  41650. * FUNCTION_DECL: Functions. (line 6)
  41651. * FUNCTION_DECL <1>: Functions for C++. (line 6)
  41652. * FUNCTION_MODE: Misc. (line 363)
  41653. * FUNCTION_PROFILER: Profiling. (line 8)
  41654. * FUNCTION_TYPE: Types. (line 6)
  41655. * FUNCTION_VALUE: Scalar Return. (line 52)
  41656. * FUNCTION_VALUE_REGNO_P: Scalar Return. (line 78)
  41657. * fundamental type: Types. (line 6)
  41658. * G in constraint: Simple Constraints. (line 96)
  41659. * g in constraint: Simple Constraints. (line 118)
  41660. * garbage collector, invocation: Invoking the garbage collector.
  41661. (line 6)
  41662. * garbage collector, troubleshooting: Troubleshooting. (line 6)
  41663. * gather_loadM instruction pattern: Standard Names. (line 232)
  41664. * GCC and portability: Portability. (line 6)
  41665. * GCC_DRIVER_HOST_INITIALIZATION: Host Misc. (line 36)
  41666. * gcov_type: Profile information.
  41667. (line 41)
  41668. * ge: Comparisons. (line 72)
  41669. * ge and attributes: Expressions. (line 83)
  41670. * gencodes: RTL passes. (line 18)
  41671. * general_operand: Machine-Independent Predicates.
  41672. (line 104)
  41673. * GENERAL_REGS: Register Classes. (line 22)
  41674. * generated files: Files. (line 6)
  41675. * generating assembler output: Output Statement. (line 6)
  41676. * generating insns: RTL Template. (line 6)
  41677. * GENERIC: Parsing pass. (line 6)
  41678. * GENERIC <1>: GENERIC. (line 6)
  41679. * generic predicates: Machine-Independent Predicates.
  41680. (line 6)
  41681. * genflags: RTL passes. (line 18)
  41682. * GEN_ERRNO_RTX: Library Calls. (line 71)
  41683. * get_attr: Expressions. (line 99)
  41684. * get_attr_length: Insn Lengths. (line 52)
  41685. * GET_CLASS_NARROWEST_MODE: Machine Modes. (line 434)
  41686. * GET_CODE: RTL Objects. (line 47)
  41687. * get_insns: Insns. (line 34)
  41688. * get_last_insn: Insns. (line 34)
  41689. * GET_MODE: Machine Modes. (line 381)
  41690. * GET_MODE_ALIGNMENT: Machine Modes. (line 421)
  41691. * GET_MODE_BITSIZE: Machine Modes. (line 405)
  41692. * GET_MODE_CLASS: Machine Modes. (line 395)
  41693. * GET_MODE_FBIT: Machine Modes. (line 412)
  41694. * GET_MODE_IBIT: Machine Modes. (line 408)
  41695. * GET_MODE_MASK: Machine Modes. (line 416)
  41696. * GET_MODE_NAME: Machine Modes. (line 392)
  41697. * GET_MODE_NUNITS: Machine Modes. (line 430)
  41698. * GET_MODE_SIZE: Machine Modes. (line 402)
  41699. * GET_MODE_UNIT_SIZE: Machine Modes. (line 424)
  41700. * GET_MODE_WIDER_MODE: Machine Modes. (line 398)
  41701. * GET_RTX_CLASS: RTL Classes. (line 6)
  41702. * GET_RTX_FORMAT: RTL Classes. (line 135)
  41703. * GET_RTX_LENGTH: RTL Classes. (line 132)
  41704. * get_thread_pointerMODE instruction pattern: Standard Names.
  41705. (line 2285)
  41706. * geu: Comparisons. (line 72)
  41707. * geu and attributes: Expressions. (line 83)
  41708. * GE_EXPR: Unary and Binary Expressions.
  41709. (line 6)
  41710. * GGC: Type Information. (line 6)
  41711. * ggc_collect: Invoking the garbage collector.
  41712. (line 6)
  41713. * GIMPLE: Parsing pass. (line 13)
  41714. * GIMPLE <1>: Gimplification pass.
  41715. (line 6)
  41716. * GIMPLE <2>: GIMPLE. (line 6)
  41717. * gimple: Tuple representation.
  41718. (line 14)
  41719. * GIMPLE API: GIMPLE API. (line 6)
  41720. * GIMPLE class hierarchy: Class hierarchy of GIMPLE statements.
  41721. (line 6)
  41722. * GIMPLE Exception Handling: GIMPLE Exception Handling.
  41723. (line 6)
  41724. * GIMPLE instruction set: GIMPLE instruction set.
  41725. (line 6)
  41726. * GIMPLE sequences: GIMPLE sequences. (line 6)
  41727. * GIMPLE statement iterators: Basic Blocks. (line 78)
  41728. * GIMPLE statement iterators <1>: Maintaining the CFG.
  41729. (line 33)
  41730. * gimple_addresses_taken: Manipulating GIMPLE statements.
  41731. (line 89)
  41732. * GIMPLE_ASM: GIMPLE_ASM. (line 6)
  41733. * gimple_asm_clobber_op: GIMPLE_ASM. (line 39)
  41734. * gimple_asm_input_op: GIMPLE_ASM. (line 23)
  41735. * gimple_asm_nclobbers: GIMPLE_ASM. (line 20)
  41736. * gimple_asm_ninputs: GIMPLE_ASM. (line 14)
  41737. * gimple_asm_noutputs: GIMPLE_ASM. (line 17)
  41738. * gimple_asm_output_op: GIMPLE_ASM. (line 31)
  41739. * gimple_asm_set_clobber_op: GIMPLE_ASM. (line 43)
  41740. * gimple_asm_set_input_op: GIMPLE_ASM. (line 27)
  41741. * gimple_asm_set_output_op: GIMPLE_ASM. (line 35)
  41742. * gimple_asm_set_volatile: GIMPLE_ASM. (line 54)
  41743. * gimple_asm_string: GIMPLE_ASM. (line 47)
  41744. * gimple_asm_volatile_p: GIMPLE_ASM. (line 51)
  41745. * GIMPLE_ASSIGN: GIMPLE_ASSIGN. (line 6)
  41746. * gimple_assign_cast_p: Logical Operators. (line 158)
  41747. * gimple_assign_cast_p <1>: GIMPLE_ASSIGN. (line 104)
  41748. * gimple_assign_lhs: GIMPLE_ASSIGN. (line 62)
  41749. * gimple_assign_lhs_ptr: GIMPLE_ASSIGN. (line 65)
  41750. * gimple_assign_rhs1: GIMPLE_ASSIGN. (line 68)
  41751. * gimple_assign_rhs1_ptr: GIMPLE_ASSIGN. (line 71)
  41752. * gimple_assign_rhs2: GIMPLE_ASSIGN. (line 75)
  41753. * gimple_assign_rhs2_ptr: GIMPLE_ASSIGN. (line 78)
  41754. * gimple_assign_rhs3: GIMPLE_ASSIGN. (line 82)
  41755. * gimple_assign_rhs3_ptr: GIMPLE_ASSIGN. (line 85)
  41756. * gimple_assign_rhs_class: GIMPLE_ASSIGN. (line 56)
  41757. * gimple_assign_rhs_code: GIMPLE_ASSIGN. (line 52)
  41758. * gimple_assign_set_lhs: GIMPLE_ASSIGN. (line 89)
  41759. * gimple_assign_set_rhs1: GIMPLE_ASSIGN. (line 92)
  41760. * gimple_assign_set_rhs2: GIMPLE_ASSIGN. (line 96)
  41761. * gimple_assign_set_rhs3: GIMPLE_ASSIGN. (line 100)
  41762. * gimple_bb: Manipulating GIMPLE statements.
  41763. (line 17)
  41764. * GIMPLE_BIND: GIMPLE_BIND. (line 6)
  41765. * gimple_bind_add_seq: GIMPLE_BIND. (line 34)
  41766. * gimple_bind_add_stmt: GIMPLE_BIND. (line 31)
  41767. * gimple_bind_append_vars: GIMPLE_BIND. (line 18)
  41768. * gimple_bind_block: GIMPLE_BIND. (line 39)
  41769. * gimple_bind_body: GIMPLE_BIND. (line 22)
  41770. * gimple_bind_set_block: GIMPLE_BIND. (line 44)
  41771. * gimple_bind_set_body: GIMPLE_BIND. (line 26)
  41772. * gimple_bind_set_vars: GIMPLE_BIND. (line 14)
  41773. * gimple_bind_vars: GIMPLE_BIND. (line 11)
  41774. * gimple_block: Manipulating GIMPLE statements.
  41775. (line 20)
  41776. * gimple_build: GIMPLE API. (line 34)
  41777. * gimple_build <1>: GIMPLE API. (line 36)
  41778. * gimple_build <2>: GIMPLE API. (line 38)
  41779. * gimple_build <3>: GIMPLE API. (line 41)
  41780. * gimple_build <4>: GIMPLE API. (line 44)
  41781. * gimple_build <5>: GIMPLE API. (line 47)
  41782. * gimple_build_debug_begin_stmt: GIMPLE_DEBUG. (line 72)
  41783. * gimple_build_debug_inline_entry: GIMPLE_DEBUG. (line 82)
  41784. * gimple_build_nop: GIMPLE_NOP. (line 6)
  41785. * gimple_build_omp_master: GIMPLE_OMP_MASTER. (line 6)
  41786. * gimple_build_omp_ordered: GIMPLE_OMP_ORDERED. (line 6)
  41787. * gimple_build_omp_return: GIMPLE_OMP_RETURN. (line 6)
  41788. * gimple_build_omp_section: GIMPLE_OMP_SECTION. (line 6)
  41789. * gimple_build_omp_sections_switch: GIMPLE_OMP_SECTIONS.
  41790. (line 13)
  41791. * gimple_build_wce: GIMPLE_WITH_CLEANUP_EXPR.
  41792. (line 6)
  41793. * GIMPLE_CALL: GIMPLE_CALL. (line 6)
  41794. * gimple_call_arg: GIMPLE_CALL. (line 67)
  41795. * gimple_call_arg_ptr: GIMPLE_CALL. (line 71)
  41796. * gimple_call_chain: GIMPLE_CALL. (line 58)
  41797. * gimple_call_copy_skip_args: GIMPLE_CALL. (line 92)
  41798. * gimple_call_fn: GIMPLE_CALL. (line 39)
  41799. * gimple_call_fndecl: GIMPLE_CALL. (line 47)
  41800. * gimple_call_lhs: GIMPLE_CALL. (line 30)
  41801. * gimple_call_lhs_ptr: GIMPLE_CALL. (line 33)
  41802. * gimple_call_noreturn_p: GIMPLE_CALL. (line 89)
  41803. * gimple_call_num_args: GIMPLE_CALL. (line 64)
  41804. * gimple_call_return_type: GIMPLE_CALL. (line 55)
  41805. * gimple_call_set_arg: GIMPLE_CALL. (line 76)
  41806. * gimple_call_set_chain: GIMPLE_CALL. (line 61)
  41807. * gimple_call_set_fn: GIMPLE_CALL. (line 43)
  41808. * gimple_call_set_fndecl: GIMPLE_CALL. (line 52)
  41809. * gimple_call_set_lhs: GIMPLE_CALL. (line 36)
  41810. * gimple_call_set_tail: GIMPLE_CALL. (line 81)
  41811. * gimple_call_tail_p: GIMPLE_CALL. (line 86)
  41812. * GIMPLE_CATCH: GIMPLE_CATCH. (line 6)
  41813. * gimple_catch_handler: GIMPLE_CATCH. (line 19)
  41814. * gimple_catch_set_handler: GIMPLE_CATCH. (line 26)
  41815. * gimple_catch_set_types: GIMPLE_CATCH. (line 23)
  41816. * gimple_catch_types: GIMPLE_CATCH. (line 12)
  41817. * gimple_catch_types_ptr: GIMPLE_CATCH. (line 15)
  41818. * gimple_code: Manipulating GIMPLE statements.
  41819. (line 14)
  41820. * GIMPLE_COND: GIMPLE_COND. (line 6)
  41821. * gimple_cond_code: GIMPLE_COND. (line 20)
  41822. * gimple_cond_false_label: GIMPLE_COND. (line 59)
  41823. * gimple_cond_lhs: GIMPLE_COND. (line 29)
  41824. * gimple_cond_make_false: GIMPLE_COND. (line 63)
  41825. * gimple_cond_make_true: GIMPLE_COND. (line 66)
  41826. * gimple_cond_rhs: GIMPLE_COND. (line 37)
  41827. * gimple_cond_set_code: GIMPLE_COND. (line 24)
  41828. * gimple_cond_set_false_label: GIMPLE_COND. (line 54)
  41829. * gimple_cond_set_lhs: GIMPLE_COND. (line 33)
  41830. * gimple_cond_set_rhs: GIMPLE_COND. (line 41)
  41831. * gimple_cond_set_true_label: GIMPLE_COND. (line 49)
  41832. * gimple_cond_true_label: GIMPLE_COND. (line 45)
  41833. * gimple_convert: GIMPLE API. (line 50)
  41834. * gimple_copy: Manipulating GIMPLE statements.
  41835. (line 146)
  41836. * GIMPLE_DEBUG: GIMPLE_DEBUG. (line 6)
  41837. * GIMPLE_DEBUG_BEGIN_STMT: GIMPLE_DEBUG. (line 6)
  41838. * GIMPLE_DEBUG_BIND: GIMPLE_DEBUG. (line 6)
  41839. * gimple_debug_bind_get_value: GIMPLE_DEBUG. (line 46)
  41840. * gimple_debug_bind_get_value_ptr: GIMPLE_DEBUG. (line 50)
  41841. * gimple_debug_bind_get_var: GIMPLE_DEBUG. (line 43)
  41842. * gimple_debug_bind_has_value_p: GIMPLE_DEBUG. (line 68)
  41843. * gimple_debug_bind_p: Logical Operators. (line 162)
  41844. * gimple_debug_bind_reset_value: GIMPLE_DEBUG. (line 64)
  41845. * gimple_debug_bind_set_value: GIMPLE_DEBUG. (line 59)
  41846. * gimple_debug_bind_set_var: GIMPLE_DEBUG. (line 55)
  41847. * GIMPLE_DEBUG_INLINE_ENTRY: GIMPLE_DEBUG. (line 6)
  41848. * gimple_def_ops: Manipulating GIMPLE statements.
  41849. (line 93)
  41850. * GIMPLE_EH_FILTER: GIMPLE_EH_FILTER. (line 6)
  41851. * gimple_eh_filter_failure: GIMPLE_EH_FILTER. (line 18)
  41852. * gimple_eh_filter_set_failure: GIMPLE_EH_FILTER. (line 27)
  41853. * gimple_eh_filter_set_types: GIMPLE_EH_FILTER. (line 22)
  41854. * gimple_eh_filter_types: GIMPLE_EH_FILTER. (line 11)
  41855. * gimple_eh_filter_types_ptr: GIMPLE_EH_FILTER. (line 14)
  41856. * gimple_eh_must_not_throw_fndecl: GIMPLE_EH_FILTER. (line 32)
  41857. * gimple_eh_must_not_throw_set_fndecl: GIMPLE_EH_FILTER. (line 36)
  41858. * gimple_expr_code: Manipulating GIMPLE statements.
  41859. (line 30)
  41860. * gimple_expr_type: Manipulating GIMPLE statements.
  41861. (line 23)
  41862. * GIMPLE_GOTO: GIMPLE_GOTO. (line 6)
  41863. * gimple_goto_dest: GIMPLE_GOTO. (line 9)
  41864. * gimple_goto_set_dest: GIMPLE_GOTO. (line 12)
  41865. * gimple_has_mem_ops: Manipulating GIMPLE statements.
  41866. (line 71)
  41867. * gimple_has_ops: Manipulating GIMPLE statements.
  41868. (line 68)
  41869. * gimple_has_volatile_ops: Manipulating GIMPLE statements.
  41870. (line 133)
  41871. * GIMPLE_LABEL: GIMPLE_LABEL. (line 6)
  41872. * gimple_label_label: GIMPLE_LABEL. (line 10)
  41873. * gimple_label_set_label: GIMPLE_LABEL. (line 13)
  41874. * gimple_loaded_syms: Manipulating GIMPLE statements.
  41875. (line 121)
  41876. * gimple_locus: Manipulating GIMPLE statements.
  41877. (line 41)
  41878. * gimple_locus_empty_p: Manipulating GIMPLE statements.
  41879. (line 47)
  41880. * gimple_modified_p: Manipulating GIMPLE statements.
  41881. (line 129)
  41882. * GIMPLE_NOP: GIMPLE_NOP. (line 6)
  41883. * gimple_nop_p: GIMPLE_NOP. (line 9)
  41884. * gimple_no_warning_p: Manipulating GIMPLE statements.
  41885. (line 50)
  41886. * gimple_num_ops: Logical Operators. (line 76)
  41887. * gimple_num_ops <1>: Manipulating GIMPLE statements.
  41888. (line 74)
  41889. * GIMPLE_OMP_ATOMIC_LOAD: GIMPLE_OMP_ATOMIC_LOAD.
  41890. (line 6)
  41891. * gimple_omp_atomic_load_lhs: GIMPLE_OMP_ATOMIC_LOAD.
  41892. (line 16)
  41893. * gimple_omp_atomic_load_rhs: GIMPLE_OMP_ATOMIC_LOAD.
  41894. (line 24)
  41895. * gimple_omp_atomic_load_set_lhs: GIMPLE_OMP_ATOMIC_LOAD.
  41896. (line 12)
  41897. * gimple_omp_atomic_load_set_rhs: GIMPLE_OMP_ATOMIC_LOAD.
  41898. (line 20)
  41899. * GIMPLE_OMP_ATOMIC_STORE: GIMPLE_OMP_ATOMIC_STORE.
  41900. (line 6)
  41901. * gimple_omp_atomic_store_set_val: GIMPLE_OMP_ATOMIC_STORE.
  41902. (line 11)
  41903. * gimple_omp_atomic_store_val: GIMPLE_OMP_ATOMIC_STORE.
  41904. (line 15)
  41905. * gimple_omp_body: GIMPLE_OMP_PARALLEL.
  41906. (line 23)
  41907. * GIMPLE_OMP_CONTINUE: GIMPLE_OMP_CONTINUE.
  41908. (line 6)
  41909. * gimple_omp_continue_control_def: GIMPLE_OMP_CONTINUE.
  41910. (line 12)
  41911. * gimple_omp_continue_control_def_ptr: GIMPLE_OMP_CONTINUE.
  41912. (line 17)
  41913. * gimple_omp_continue_control_use: GIMPLE_OMP_CONTINUE.
  41914. (line 26)
  41915. * gimple_omp_continue_control_use_ptr: GIMPLE_OMP_CONTINUE.
  41916. (line 31)
  41917. * gimple_omp_continue_set_control_def: GIMPLE_OMP_CONTINUE.
  41918. (line 21)
  41919. * gimple_omp_continue_set_control_use: GIMPLE_OMP_CONTINUE.
  41920. (line 35)
  41921. * GIMPLE_OMP_CRITICAL: GIMPLE_OMP_CRITICAL.
  41922. (line 6)
  41923. * gimple_omp_critical_name: GIMPLE_OMP_CRITICAL.
  41924. (line 12)
  41925. * gimple_omp_critical_name_ptr: GIMPLE_OMP_CRITICAL.
  41926. (line 16)
  41927. * gimple_omp_critical_set_name: GIMPLE_OMP_CRITICAL.
  41928. (line 21)
  41929. * GIMPLE_OMP_FOR: GIMPLE_OMP_FOR. (line 6)
  41930. * gimple_omp_for_clauses: GIMPLE_OMP_FOR. (line 17)
  41931. * gimple_omp_for_clauses_ptr: GIMPLE_OMP_FOR. (line 20)
  41932. * gimple_omp_for_cond: GIMPLE_OMP_FOR. (line 80)
  41933. * gimple_omp_for_final: GIMPLE_OMP_FOR. (line 48)
  41934. * gimple_omp_for_final_ptr: GIMPLE_OMP_FOR. (line 51)
  41935. * gimple_omp_for_incr: GIMPLE_OMP_FOR. (line 58)
  41936. * gimple_omp_for_incr_ptr: GIMPLE_OMP_FOR. (line 61)
  41937. * gimple_omp_for_index: GIMPLE_OMP_FOR. (line 28)
  41938. * gimple_omp_for_index_ptr: GIMPLE_OMP_FOR. (line 31)
  41939. * gimple_omp_for_initial: GIMPLE_OMP_FOR. (line 38)
  41940. * gimple_omp_for_initial_ptr: GIMPLE_OMP_FOR. (line 41)
  41941. * gimple_omp_for_pre_body: GIMPLE_OMP_FOR. (line 67)
  41942. * gimple_omp_for_set_clauses: GIMPLE_OMP_FOR. (line 23)
  41943. * gimple_omp_for_set_cond: GIMPLE_OMP_FOR. (line 76)
  41944. * gimple_omp_for_set_final: GIMPLE_OMP_FOR. (line 54)
  41945. * gimple_omp_for_set_incr: GIMPLE_OMP_FOR. (line 64)
  41946. * gimple_omp_for_set_index: GIMPLE_OMP_FOR. (line 34)
  41947. * gimple_omp_for_set_initial: GIMPLE_OMP_FOR. (line 44)
  41948. * gimple_omp_for_set_pre_body: GIMPLE_OMP_FOR. (line 71)
  41949. * GIMPLE_OMP_MASTER: GIMPLE_OMP_MASTER. (line 6)
  41950. * GIMPLE_OMP_ORDERED: GIMPLE_OMP_ORDERED. (line 6)
  41951. * GIMPLE_OMP_PARALLEL: GIMPLE_OMP_PARALLEL.
  41952. (line 6)
  41953. * gimple_omp_parallel_child_fn: GIMPLE_OMP_PARALLEL.
  41954. (line 42)
  41955. * gimple_omp_parallel_child_fn_ptr: GIMPLE_OMP_PARALLEL.
  41956. (line 47)
  41957. * gimple_omp_parallel_clauses: GIMPLE_OMP_PARALLEL.
  41958. (line 30)
  41959. * gimple_omp_parallel_clauses_ptr: GIMPLE_OMP_PARALLEL.
  41960. (line 33)
  41961. * gimple_omp_parallel_combined_p: GIMPLE_OMP_PARALLEL.
  41962. (line 15)
  41963. * gimple_omp_parallel_data_arg: GIMPLE_OMP_PARALLEL.
  41964. (line 56)
  41965. * gimple_omp_parallel_data_arg_ptr: GIMPLE_OMP_PARALLEL.
  41966. (line 61)
  41967. * gimple_omp_parallel_set_child_fn: GIMPLE_OMP_PARALLEL.
  41968. (line 52)
  41969. * gimple_omp_parallel_set_clauses: GIMPLE_OMP_PARALLEL.
  41970. (line 37)
  41971. * gimple_omp_parallel_set_combined_p: GIMPLE_OMP_PARALLEL.
  41972. (line 19)
  41973. * gimple_omp_parallel_set_data_arg: GIMPLE_OMP_PARALLEL.
  41974. (line 65)
  41975. * GIMPLE_OMP_RETURN: GIMPLE_OMP_RETURN. (line 6)
  41976. * gimple_omp_return_nowait_p: GIMPLE_OMP_RETURN. (line 13)
  41977. * gimple_omp_return_set_nowait: GIMPLE_OMP_RETURN. (line 10)
  41978. * GIMPLE_OMP_SECTION: GIMPLE_OMP_SECTION. (line 6)
  41979. * GIMPLE_OMP_SECTIONS: GIMPLE_OMP_SECTIONS.
  41980. (line 6)
  41981. * gimple_omp_sections_clauses: GIMPLE_OMP_SECTIONS.
  41982. (line 29)
  41983. * gimple_omp_sections_clauses_ptr: GIMPLE_OMP_SECTIONS.
  41984. (line 32)
  41985. * gimple_omp_sections_control: GIMPLE_OMP_SECTIONS.
  41986. (line 16)
  41987. * gimple_omp_sections_control_ptr: GIMPLE_OMP_SECTIONS.
  41988. (line 20)
  41989. * gimple_omp_sections_set_clauses: GIMPLE_OMP_SECTIONS.
  41990. (line 35)
  41991. * gimple_omp_sections_set_control: GIMPLE_OMP_SECTIONS.
  41992. (line 24)
  41993. * gimple_omp_section_last_p: GIMPLE_OMP_SECTION. (line 11)
  41994. * gimple_omp_section_set_last: GIMPLE_OMP_SECTION. (line 15)
  41995. * gimple_omp_set_body: GIMPLE_OMP_PARALLEL.
  41996. (line 26)
  41997. * GIMPLE_OMP_SINGLE: GIMPLE_OMP_SINGLE. (line 6)
  41998. * gimple_omp_single_clauses: GIMPLE_OMP_SINGLE. (line 13)
  41999. * gimple_omp_single_clauses_ptr: GIMPLE_OMP_SINGLE. (line 16)
  42000. * gimple_omp_single_set_clauses: GIMPLE_OMP_SINGLE. (line 19)
  42001. * gimple_op: Logical Operators. (line 79)
  42002. * gimple_op <1>: Manipulating GIMPLE statements.
  42003. (line 80)
  42004. * gimple_ops: Logical Operators. (line 82)
  42005. * gimple_ops <1>: Manipulating GIMPLE statements.
  42006. (line 77)
  42007. * gimple_op_ptr: Manipulating GIMPLE statements.
  42008. (line 83)
  42009. * GIMPLE_PHI: GIMPLE_PHI. (line 6)
  42010. * gimple_phi_arg: GIMPLE_PHI. (line 24)
  42011. * gimple_phi_arg <1>: SSA. (line 62)
  42012. * gimple_phi_arg_def: SSA. (line 68)
  42013. * gimple_phi_arg_edge: SSA. (line 65)
  42014. * gimple_phi_capacity: GIMPLE_PHI. (line 6)
  42015. * gimple_phi_num_args: GIMPLE_PHI. (line 10)
  42016. * gimple_phi_num_args <1>: SSA. (line 58)
  42017. * gimple_phi_result: GIMPLE_PHI. (line 15)
  42018. * gimple_phi_result <1>: SSA. (line 55)
  42019. * gimple_phi_result_ptr: GIMPLE_PHI. (line 18)
  42020. * gimple_phi_set_arg: GIMPLE_PHI. (line 28)
  42021. * gimple_phi_set_result: GIMPLE_PHI. (line 21)
  42022. * gimple_plf: Manipulating GIMPLE statements.
  42023. (line 64)
  42024. * GIMPLE_RESX: GIMPLE_RESX. (line 6)
  42025. * gimple_resx_region: GIMPLE_RESX. (line 12)
  42026. * gimple_resx_set_region: GIMPLE_RESX. (line 15)
  42027. * GIMPLE_RETURN: GIMPLE_RETURN. (line 6)
  42028. * gimple_return_retval: GIMPLE_RETURN. (line 9)
  42029. * gimple_return_set_retval: GIMPLE_RETURN. (line 12)
  42030. * gimple_seq_add_seq: GIMPLE sequences. (line 30)
  42031. * gimple_seq_add_stmt: GIMPLE sequences. (line 24)
  42032. * gimple_seq_alloc: GIMPLE sequences. (line 61)
  42033. * gimple_seq_copy: GIMPLE sequences. (line 65)
  42034. * gimple_seq_deep_copy: GIMPLE sequences. (line 36)
  42035. * gimple_seq_empty_p: GIMPLE sequences. (line 69)
  42036. * gimple_seq_first: GIMPLE sequences. (line 43)
  42037. * gimple_seq_init: GIMPLE sequences. (line 58)
  42038. * gimple_seq_last: GIMPLE sequences. (line 46)
  42039. * gimple_seq_reverse: GIMPLE sequences. (line 39)
  42040. * gimple_seq_set_first: GIMPLE sequences. (line 53)
  42041. * gimple_seq_set_last: GIMPLE sequences. (line 49)
  42042. * gimple_seq_singleton_p: GIMPLE sequences. (line 78)
  42043. * gimple_set_block: Manipulating GIMPLE statements.
  42044. (line 38)
  42045. * gimple_set_def_ops: Manipulating GIMPLE statements.
  42046. (line 96)
  42047. * gimple_set_has_volatile_ops: Manipulating GIMPLE statements.
  42048. (line 136)
  42049. * gimple_set_locus: Manipulating GIMPLE statements.
  42050. (line 44)
  42051. * gimple_set_op: Manipulating GIMPLE statements.
  42052. (line 86)
  42053. * gimple_set_plf: Manipulating GIMPLE statements.
  42054. (line 60)
  42055. * gimple_set_use_ops: Manipulating GIMPLE statements.
  42056. (line 103)
  42057. * gimple_set_vdef_ops: Manipulating GIMPLE statements.
  42058. (line 117)
  42059. * gimple_set_visited: Manipulating GIMPLE statements.
  42060. (line 53)
  42061. * gimple_set_vuse_ops: Manipulating GIMPLE statements.
  42062. (line 110)
  42063. * gimple_simplify: GIMPLE API. (line 6)
  42064. * gimple_simplify <1>: GIMPLE API. (line 8)
  42065. * gimple_simplify <2>: GIMPLE API. (line 10)
  42066. * gimple_simplify <3>: GIMPLE API. (line 12)
  42067. * gimple_simplify <4>: GIMPLE API. (line 14)
  42068. * gimple_simplify <5>: GIMPLE API. (line 16)
  42069. * gimple_statement_with_ops: Tuple representation.
  42070. (line 96)
  42071. * gimple_stored_syms: Manipulating GIMPLE statements.
  42072. (line 125)
  42073. * GIMPLE_SWITCH: GIMPLE_SWITCH. (line 6)
  42074. * gimple_switch_default_label: GIMPLE_SWITCH. (line 41)
  42075. * gimple_switch_index: GIMPLE_SWITCH. (line 24)
  42076. * gimple_switch_label: GIMPLE_SWITCH. (line 31)
  42077. * gimple_switch_num_labels: GIMPLE_SWITCH. (line 14)
  42078. * gimple_switch_set_default_label: GIMPLE_SWITCH. (line 45)
  42079. * gimple_switch_set_index: GIMPLE_SWITCH. (line 27)
  42080. * gimple_switch_set_label: GIMPLE_SWITCH. (line 36)
  42081. * gimple_switch_set_num_labels: GIMPLE_SWITCH. (line 19)
  42082. * GIMPLE_TRY: GIMPLE_TRY. (line 6)
  42083. * gimple_try_catch_is_cleanup: GIMPLE_TRY. (line 19)
  42084. * gimple_try_cleanup: GIMPLE_TRY. (line 26)
  42085. * gimple_try_eval: GIMPLE_TRY. (line 22)
  42086. * gimple_try_kind: GIMPLE_TRY. (line 15)
  42087. * gimple_try_set_catch_is_cleanup: GIMPLE_TRY. (line 30)
  42088. * gimple_try_set_cleanup: GIMPLE_TRY. (line 38)
  42089. * gimple_try_set_eval: GIMPLE_TRY. (line 34)
  42090. * gimple_use_ops: Manipulating GIMPLE statements.
  42091. (line 100)
  42092. * gimple_vdef_ops: Manipulating GIMPLE statements.
  42093. (line 114)
  42094. * gimple_visited_p: Manipulating GIMPLE statements.
  42095. (line 57)
  42096. * gimple_vuse_ops: Manipulating GIMPLE statements.
  42097. (line 107)
  42098. * gimple_wce_cleanup: GIMPLE_WITH_CLEANUP_EXPR.
  42099. (line 10)
  42100. * gimple_wce_cleanup_eh_only: GIMPLE_WITH_CLEANUP_EXPR.
  42101. (line 17)
  42102. * gimple_wce_set_cleanup: GIMPLE_WITH_CLEANUP_EXPR.
  42103. (line 13)
  42104. * gimple_wce_set_cleanup_eh_only: GIMPLE_WITH_CLEANUP_EXPR.
  42105. (line 20)
  42106. * GIMPLE_WITH_CLEANUP_EXPR: GIMPLE_WITH_CLEANUP_EXPR.
  42107. (line 6)
  42108. * gimplification: Parsing pass. (line 13)
  42109. * gimplification <1>: Gimplification pass.
  42110. (line 6)
  42111. * gimplifier: Parsing pass. (line 13)
  42112. * gimplify_assign: GIMPLE_ASSIGN. (line 41)
  42113. * gimplify_expr: Gimplification pass.
  42114. (line 18)
  42115. * gimplify_function_tree: Gimplification pass.
  42116. (line 18)
  42117. * GLOBAL_INIT_PRIORITY: Functions for C++. (line 141)
  42118. * global_regs: Register Basics. (line 63)
  42119. * GO_IF_LEGITIMATE_ADDRESS: Addressing Modes. (line 90)
  42120. * greater than: Comparisons. (line 60)
  42121. * greater than <1>: Comparisons. (line 64)
  42122. * greater than <2>: Comparisons. (line 72)
  42123. * gsi_after_labels: Sequence iterators. (line 74)
  42124. * gsi_bb: Sequence iterators. (line 82)
  42125. * gsi_commit_edge_inserts: Sequence iterators. (line 193)
  42126. * gsi_commit_edge_inserts <1>: Maintaining the CFG.
  42127. (line 104)
  42128. * gsi_commit_one_edge_insert: Sequence iterators. (line 188)
  42129. * gsi_end_p: Sequence iterators. (line 59)
  42130. * gsi_end_p <1>: Maintaining the CFG.
  42131. (line 48)
  42132. * gsi_for_stmt: Sequence iterators. (line 156)
  42133. * gsi_insert_after: Sequence iterators. (line 145)
  42134. * gsi_insert_after <1>: Maintaining the CFG.
  42135. (line 60)
  42136. * gsi_insert_before: Sequence iterators. (line 134)
  42137. * gsi_insert_before <1>: Maintaining the CFG.
  42138. (line 66)
  42139. * gsi_insert_on_edge: Sequence iterators. (line 173)
  42140. * gsi_insert_on_edge <1>: Maintaining the CFG.
  42141. (line 104)
  42142. * gsi_insert_on_edge_immediate: Sequence iterators. (line 183)
  42143. * gsi_insert_seq_after: Sequence iterators. (line 152)
  42144. * gsi_insert_seq_before: Sequence iterators. (line 141)
  42145. * gsi_insert_seq_on_edge: Sequence iterators. (line 177)
  42146. * gsi_last: Sequence iterators. (line 49)
  42147. * gsi_last <1>: Maintaining the CFG.
  42148. (line 44)
  42149. * gsi_last_bb: Sequence iterators. (line 55)
  42150. * gsi_link_after: Sequence iterators. (line 113)
  42151. * gsi_link_before: Sequence iterators. (line 103)
  42152. * gsi_link_seq_after: Sequence iterators. (line 108)
  42153. * gsi_link_seq_before: Sequence iterators. (line 97)
  42154. * gsi_move_after: Sequence iterators. (line 159)
  42155. * gsi_move_before: Sequence iterators. (line 164)
  42156. * gsi_move_to_bb_end: Sequence iterators. (line 169)
  42157. * gsi_next: Sequence iterators. (line 65)
  42158. * gsi_next <1>: Maintaining the CFG.
  42159. (line 52)
  42160. * gsi_one_before_end_p: Sequence iterators. (line 62)
  42161. * gsi_prev: Sequence iterators. (line 68)
  42162. * gsi_prev <1>: Maintaining the CFG.
  42163. (line 56)
  42164. * gsi_remove: Sequence iterators. (line 88)
  42165. * gsi_remove <1>: Maintaining the CFG.
  42166. (line 72)
  42167. * gsi_replace: Sequence iterators. (line 128)
  42168. * gsi_seq: Sequence iterators. (line 85)
  42169. * gsi_split_seq_after: Sequence iterators. (line 118)
  42170. * gsi_split_seq_before: Sequence iterators. (line 123)
  42171. * gsi_start: Sequence iterators. (line 39)
  42172. * gsi_start <1>: Maintaining the CFG.
  42173. (line 40)
  42174. * gsi_start_bb: Sequence iterators. (line 45)
  42175. * gsi_stmt: Sequence iterators. (line 71)
  42176. * gsi_stmt_ptr: Sequence iterators. (line 79)
  42177. * gt: Comparisons. (line 60)
  42178. * gt and attributes: Expressions. (line 83)
  42179. * gtu: Comparisons. (line 64)
  42180. * gtu and attributes: Expressions. (line 83)
  42181. * GTY: Type Information. (line 6)
  42182. * GT_EXPR: Unary and Binary Expressions.
  42183. (line 6)
  42184. * H in constraint: Simple Constraints. (line 96)
  42185. * HAmode: Machine Modes. (line 146)
  42186. * HANDLER: Statements for C++. (line 6)
  42187. * HANDLER_BODY: Statements for C++. (line 6)
  42188. * HANDLER_PARMS: Statements for C++. (line 6)
  42189. * HANDLE_PRAGMA_PACK_WITH_EXPANSION: Misc. (line 464)
  42190. * hard registers: Regs and Memory. (line 9)
  42191. * HARD_FRAME_POINTER_IS_ARG_POINTER: Frame Registers. (line 57)
  42192. * HARD_FRAME_POINTER_IS_FRAME_POINTER: Frame Registers. (line 50)
  42193. * HARD_FRAME_POINTER_REGNUM: Frame Registers. (line 19)
  42194. * HARD_REGNO_CALLER_SAVE_MODE: Caller Saves. (line 10)
  42195. * HARD_REGNO_NREGS_HAS_PADDING: Values in Registers.
  42196. (line 21)
  42197. * HARD_REGNO_NREGS_WITH_PADDING: Values in Registers.
  42198. (line 39)
  42199. * HARD_REGNO_RENAME_OK: Values in Registers.
  42200. (line 113)
  42201. * HAS_INIT_SECTION: Macros for Initialization.
  42202. (line 18)
  42203. * HAS_LONG_COND_BRANCH: Misc. (line 8)
  42204. * HAS_LONG_UNCOND_BRANCH: Misc. (line 17)
  42205. * HAVE_DOS_BASED_FILE_SYSTEM: Filesystem. (line 11)
  42206. * HAVE_POST_DECREMENT: Addressing Modes. (line 11)
  42207. * HAVE_POST_INCREMENT: Addressing Modes. (line 10)
  42208. * HAVE_POST_MODIFY_DISP: Addressing Modes. (line 17)
  42209. * HAVE_POST_MODIFY_REG: Addressing Modes. (line 23)
  42210. * HAVE_PRE_DECREMENT: Addressing Modes. (line 9)
  42211. * HAVE_PRE_INCREMENT: Addressing Modes. (line 8)
  42212. * HAVE_PRE_MODIFY_DISP: Addressing Modes. (line 16)
  42213. * HAVE_PRE_MODIFY_REG: Addressing Modes. (line 22)
  42214. * HCmode: Machine Modes. (line 199)
  42215. * HFmode: Machine Modes. (line 61)
  42216. * high: Constants. (line 220)
  42217. * HImode: Machine Modes. (line 29)
  42218. * HImode, in insn: Insns. (line 291)
  42219. * HONOR_REG_ALLOC_ORDER: Allocation Order. (line 36)
  42220. * host configuration: Host Config. (line 6)
  42221. * host functions: Host Common. (line 6)
  42222. * host hooks: Host Common. (line 6)
  42223. * host makefile fragment: Host Fragment. (line 6)
  42224. * HOST_BIT_BUCKET: Filesystem. (line 51)
  42225. * HOST_EXECUTABLE_SUFFIX: Filesystem. (line 45)
  42226. * HOST_HOOKS_EXTRA_SIGNALS: Host Common. (line 11)
  42227. * HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY: Host Common. (line 43)
  42228. * HOST_HOOKS_GT_PCH_GET_ADDRESS: Host Common. (line 15)
  42229. * HOST_HOOKS_GT_PCH_USE_ADDRESS: Host Common. (line 24)
  42230. * HOST_LACKS_INODE_NUMBERS: Filesystem. (line 89)
  42231. * HOST_LONG_FORMAT: Host Misc. (line 45)
  42232. * HOST_LONG_LONG_FORMAT: Host Misc. (line 41)
  42233. * HOST_OBJECT_SUFFIX: Filesystem. (line 40)
  42234. * HOST_PTR_PRINTF: Host Misc. (line 49)
  42235. * HOT_TEXT_SECTION_NAME: Sections. (line 42)
  42236. * HQmode: Machine Modes. (line 110)
  42237. * i in constraint: Simple Constraints. (line 68)
  42238. * I in constraint: Simple Constraints. (line 79)
  42239. * identifier: Identifiers. (line 6)
  42240. * IDENTIFIER_LENGTH: Identifiers. (line 22)
  42241. * IDENTIFIER_NODE: Identifiers. (line 6)
  42242. * IDENTIFIER_OPNAME_P: Identifiers. (line 27)
  42243. * IDENTIFIER_POINTER: Identifiers. (line 17)
  42244. * IDENTIFIER_TYPENAME_P: Identifiers. (line 33)
  42245. * IEEE 754-2008: Decimal float library routines.
  42246. (line 6)
  42247. * IFCVT_MACHDEP_INIT: Misc. (line 590)
  42248. * IFCVT_MODIFY_CANCEL: Misc. (line 584)
  42249. * IFCVT_MODIFY_FINAL: Misc. (line 578)
  42250. * IFCVT_MODIFY_INSN: Misc. (line 572)
  42251. * IFCVT_MODIFY_MULTIPLE_TESTS: Misc. (line 564)
  42252. * IFCVT_MODIFY_TESTS: Misc. (line 554)
  42253. * IF_COND: Statements for C++. (line 6)
  42254. * IF_STMT: Statements for C++. (line 6)
  42255. * if_then_else: Comparisons. (line 80)
  42256. * if_then_else and attributes: Expressions. (line 32)
  42257. * if_then_else usage: Side Effects. (line 56)
  42258. * IMAGPART_EXPR: Unary and Binary Expressions.
  42259. (line 6)
  42260. * Immediate Uses: SSA Operands. (line 258)
  42261. * immediate_operand: Machine-Independent Predicates.
  42262. (line 10)
  42263. * IMMEDIATE_PREFIX: Instruction Output. (line 153)
  42264. * include: Including Patterns. (line 6)
  42265. * INCLUDE_DEFAULTS: Driver. (line 331)
  42266. * inclusive-or, bitwise: Arithmetic. (line 163)
  42267. * INCOMING_FRAME_SP_OFFSET: Frame Layout. (line 188)
  42268. * INCOMING_REGNO: Register Basics. (line 90)
  42269. * INCOMING_REG_PARM_STACK_SPACE: Stack Arguments. (line 73)
  42270. * INCOMING_RETURN_ADDR_RTX: Frame Layout. (line 133)
  42271. * INCOMING_STACK_BOUNDARY: Storage Layout. (line 171)
  42272. * INDEX_REG_CLASS: Register Classes. (line 140)
  42273. * indirect_jump instruction pattern: Standard Names. (line 1638)
  42274. * indirect_operand: Machine-Independent Predicates.
  42275. (line 70)
  42276. * INDIRECT_REF: Storage References. (line 6)
  42277. * initialization routines: Initialization. (line 6)
  42278. * INITIAL_ELIMINATION_OFFSET: Elimination. (line 68)
  42279. * INITIAL_FRAME_ADDRESS_RTX: Frame Layout. (line 75)
  42280. * INIT_ARRAY_SECTION_ASM_OP: Sections. (line 106)
  42281. * INIT_CUMULATIVE_ARGS: Register Arguments. (line 165)
  42282. * INIT_CUMULATIVE_INCOMING_ARGS: Register Arguments. (line 193)
  42283. * INIT_CUMULATIVE_LIBCALL_ARGS: Register Arguments. (line 187)
  42284. * INIT_ENVIRONMENT: Driver. (line 309)
  42285. * INIT_EXPANDERS: Per-Function Data. (line 36)
  42286. * INIT_EXPR: Unary and Binary Expressions.
  42287. (line 6)
  42288. * init_machine_status: Per-Function Data. (line 42)
  42289. * init_one_libfunc: Library Calls. (line 15)
  42290. * INIT_SECTION_ASM_OP: Sections. (line 90)
  42291. * INIT_SECTION_ASM_OP <1>: Macros for Initialization.
  42292. (line 9)
  42293. * inlining: Target Attributes. (line 95)
  42294. * insert_insn_on_edge: Maintaining the CFG.
  42295. (line 104)
  42296. * insn: Insns. (line 63)
  42297. * insn and /f: Flags. (line 135)
  42298. * insn and /j: Flags. (line 171)
  42299. * insn and /s: Flags. (line 38)
  42300. * insn and /s <1>: Flags. (line 162)
  42301. * insn and /u: Flags. (line 28)
  42302. * insn and /v: Flags. (line 33)
  42303. * insn attributes: Insn Attributes. (line 6)
  42304. * insn canonicalization: Insn Canonicalizations.
  42305. (line 6)
  42306. * insn includes: Including Patterns. (line 6)
  42307. * insn lengths, computing: Insn Lengths. (line 6)
  42308. * insn notes, notes: Basic Blocks. (line 52)
  42309. * insn splitting: Insn Splitting. (line 6)
  42310. * insn-attr.h: Defining Attributes.
  42311. (line 34)
  42312. * insns: Insns. (line 6)
  42313. * insns, generating: RTL Template. (line 6)
  42314. * insns, recognizing: RTL Template. (line 6)
  42315. * INSN_ANNULLED_BRANCH_P: Flags. (line 28)
  42316. * INSN_CODE: Insns. (line 318)
  42317. * INSN_DELETED_P: Flags. (line 33)
  42318. * INSN_FROM_TARGET_P: Flags. (line 38)
  42319. * insn_list: Insns. (line 568)
  42320. * INSN_REFERENCES_ARE_DELAYED: Misc. (line 491)
  42321. * INSN_SETS_ARE_DELAYED: Misc. (line 480)
  42322. * INSN_UID: Insns. (line 23)
  42323. * INSN_VAR_LOCATION: Insns. (line 247)
  42324. * instruction attributes: Insn Attributes. (line 6)
  42325. * instruction latency time: Processor pipeline description.
  42326. (line 6)
  42327. * instruction latency time <1>: Processor pipeline description.
  42328. (line 105)
  42329. * instruction latency time <2>: Processor pipeline description.
  42330. (line 196)
  42331. * instruction patterns: Patterns. (line 6)
  42332. * instruction splitting: Insn Splitting. (line 6)
  42333. * insv instruction pattern: Standard Names. (line 1398)
  42334. * insvM instruction pattern: Standard Names. (line 1350)
  42335. * insvmisalignM instruction pattern: Standard Names. (line 1360)
  42336. * int iterators in .md files: Int Iterators. (line 6)
  42337. * INT16_TYPE: Type Layout. (line 210)
  42338. * INT32_TYPE: Type Layout. (line 211)
  42339. * INT64_TYPE: Type Layout. (line 212)
  42340. * INT8_TYPE: Type Layout. (line 209)
  42341. * INTEGER_CST: Constant expressions.
  42342. (line 6)
  42343. * INTEGER_TYPE: Types. (line 6)
  42344. * Interdependence of Patterns: Dependent Patterns. (line 6)
  42345. * interfacing to GCC output: Interface. (line 6)
  42346. * interlock delays: Processor pipeline description.
  42347. (line 6)
  42348. * intermediate representation lowering: Parsing pass. (line 13)
  42349. * INTMAX_TYPE: Type Layout. (line 186)
  42350. * INTPTR_TYPE: Type Layout. (line 233)
  42351. * introduction: Top. (line 6)
  42352. * INT_FAST16_TYPE: Type Layout. (line 226)
  42353. * INT_FAST32_TYPE: Type Layout. (line 227)
  42354. * INT_FAST64_TYPE: Type Layout. (line 228)
  42355. * INT_FAST8_TYPE: Type Layout. (line 225)
  42356. * INT_LEAST16_TYPE: Type Layout. (line 218)
  42357. * INT_LEAST32_TYPE: Type Layout. (line 219)
  42358. * INT_LEAST64_TYPE: Type Layout. (line 220)
  42359. * INT_LEAST8_TYPE: Type Layout. (line 217)
  42360. * INT_TYPE_SIZE: Type Layout. (line 11)
  42361. * INVOKE__main: Macros for Initialization.
  42362. (line 50)
  42363. * in_struct: Flags. (line 254)
  42364. * in_struct, in code_label and note: Flags. (line 48)
  42365. * in_struct, in insn and jump_insn and call_insn: Flags. (line 38)
  42366. * in_struct, in insn, call_insn, jump_insn and jump_table_data: Flags.
  42367. (line 162)
  42368. * in_struct, in subreg: Flags. (line 201)
  42369. * ior: Arithmetic. (line 163)
  42370. * ior and attributes: Expressions. (line 50)
  42371. * ior, canonicalization of: Insn Canonicalizations.
  42372. (line 67)
  42373. * iorM3 instruction pattern: Standard Names. (line 416)
  42374. * IRA_HARD_REGNO_ADD_COST_MULTIPLIER: Allocation Order. (line 44)
  42375. * is_a: Machine Modes. (line 351)
  42376. * IS_ASM_LOGICAL_LINE_SEPARATOR: Data Output. (line 123)
  42377. * is_gimple_addressable: Logical Operators. (line 113)
  42378. * is_gimple_asm_val: Logical Operators. (line 117)
  42379. * is_gimple_assign: Logical Operators. (line 149)
  42380. * is_gimple_call: Logical Operators. (line 152)
  42381. * is_gimple_call_addr: Logical Operators. (line 120)
  42382. * is_gimple_constant: Logical Operators. (line 128)
  42383. * is_gimple_debug: Logical Operators. (line 155)
  42384. * is_gimple_ip_invariant: Logical Operators. (line 137)
  42385. * is_gimple_ip_invariant_address: Logical Operators. (line 142)
  42386. * is_gimple_mem_ref_addr: Logical Operators. (line 124)
  42387. * is_gimple_min_invariant: Logical Operators. (line 131)
  42388. * is_gimple_omp: Logical Operators. (line 166)
  42389. * is_gimple_val: Logical Operators. (line 107)
  42390. * iterators in .md files: Iterators. (line 6)
  42391. * IV analysis on GIMPLE: Scalar evolutions. (line 6)
  42392. * IV analysis on RTL: loop-iv. (line 6)
  42393. * JMP_BUF_SIZE: Exception Region Output.
  42394. (line 83)
  42395. * jump: Flags. (line 295)
  42396. * jump instruction pattern: Standard Names. (line 1516)
  42397. * jump instruction patterns: Jump Patterns. (line 6)
  42398. * jump instructions and set: Side Effects. (line 56)
  42399. * jump, in call_insn: Flags. (line 175)
  42400. * jump, in insn: Flags. (line 171)
  42401. * jump, in mem: Flags. (line 59)
  42402. * Jumps: Jumps. (line 6)
  42403. * JUMP_ALIGN: Alignment Output. (line 8)
  42404. * jump_insn: Insns. (line 73)
  42405. * jump_insn and /f: Flags. (line 135)
  42406. * jump_insn and /j: Flags. (line 10)
  42407. * jump_insn and /s: Flags. (line 38)
  42408. * jump_insn and /s <1>: Flags. (line 162)
  42409. * jump_insn and /u: Flags. (line 28)
  42410. * jump_insn and /v: Flags. (line 33)
  42411. * JUMP_LABEL: Insns. (line 80)
  42412. * JUMP_TABLES_IN_TEXT_SECTION: Sections. (line 155)
  42413. * jump_table_data: Insns. (line 166)
  42414. * jump_table_data and /s: Flags. (line 162)
  42415. * jump_table_data and /v: Flags. (line 33)
  42416. * LABEL_ALIGN: Alignment Output. (line 57)
  42417. * LABEL_ALIGN_AFTER_BARRIER: Alignment Output. (line 26)
  42418. * LABEL_ALTERNATE_NAME: Edges. (line 180)
  42419. * LABEL_ALT_ENTRY_P: Insns. (line 146)
  42420. * LABEL_DECL: Declarations. (line 6)
  42421. * LABEL_KIND: Insns. (line 146)
  42422. * LABEL_NUSES: Insns. (line 142)
  42423. * LABEL_PRESERVE_P: Flags. (line 48)
  42424. * label_ref: Constants. (line 199)
  42425. * label_ref and /v: Flags. (line 54)
  42426. * label_ref, RTL sharing: Sharing. (line 38)
  42427. * LABEL_REF_NONLOCAL_P: Flags. (line 54)
  42428. * language-dependent trees: Language-dependent trees.
  42429. (line 6)
  42430. * language-independent intermediate representation: Parsing pass.
  42431. (line 13)
  42432. * lang_hooks.gimplify_expr: Gimplification pass.
  42433. (line 18)
  42434. * lang_hooks.parse_file: Parsing pass. (line 6)
  42435. * large return values: Aggregate Return. (line 6)
  42436. * LAST_STACK_REG: Stack Registers. (line 30)
  42437. * LAST_VIRTUAL_REGISTER: Regs and Memory. (line 51)
  42438. * lceilMN2: Standard Names. (line 1019)
  42439. * LCSSA: LCSSA. (line 6)
  42440. * LDD_SUFFIX: Macros for Initialization.
  42441. (line 121)
  42442. * ldexpM3 instruction pattern: Standard Names. (line 804)
  42443. * LD_FINI_SWITCH: Macros for Initialization.
  42444. (line 28)
  42445. * LD_INIT_SWITCH: Macros for Initialization.
  42446. (line 24)
  42447. * le: Comparisons. (line 76)
  42448. * le and attributes: Expressions. (line 83)
  42449. * leaf functions: Leaf Functions. (line 6)
  42450. * leaf_function_p: Standard Names. (line 1600)
  42451. * LEAF_REGISTERS: Leaf Functions. (line 23)
  42452. * LEAF_REG_REMAP: Leaf Functions. (line 37)
  42453. * left rotate: Arithmetic. (line 195)
  42454. * left shift: Arithmetic. (line 173)
  42455. * LEGITIMATE_PIC_OPERAND_P: PIC. (line 31)
  42456. * LEGITIMIZE_RELOAD_ADDRESS: Addressing Modes. (line 150)
  42457. * length: GTY Options. (line 47)
  42458. * less than: Comparisons. (line 68)
  42459. * less than or equal: Comparisons. (line 76)
  42460. * leu: Comparisons. (line 76)
  42461. * leu and attributes: Expressions. (line 83)
  42462. * LE_EXPR: Unary and Binary Expressions.
  42463. (line 6)
  42464. * lfloorMN2: Standard Names. (line 1014)
  42465. * LIB2FUNCS_EXTRA: Target Fragment. (line 11)
  42466. * LIBCALL_VALUE: Scalar Return. (line 56)
  42467. * libgcc.a: Library Calls. (line 6)
  42468. * LIBGCC2_CFLAGS: Target Fragment. (line 8)
  42469. * LIBGCC2_GNU_PREFIX: Type Layout. (line 102)
  42470. * LIBGCC2_UNWIND_ATTRIBUTE: Misc. (line 1093)
  42471. * LIBGCC_SPEC: Driver. (line 115)
  42472. * library subroutine names: Library Calls. (line 6)
  42473. * LIBRARY_PATH_ENV: Misc. (line 532)
  42474. * LIB_SPEC: Driver. (line 107)
  42475. * LIMIT_RELOAD_CLASS: Register Classes. (line 296)
  42476. * LINK_COMMAND_SPEC: Driver. (line 240)
  42477. * LINK_EH_SPEC: Driver. (line 142)
  42478. * LINK_GCC_C_SEQUENCE_SPEC: Driver. (line 232)
  42479. * LINK_LIBGCC_SPECIAL_1: Driver. (line 227)
  42480. * LINK_SPEC: Driver. (line 100)
  42481. * list: Containers. (line 6)
  42482. * Liveness representation: Liveness information.
  42483. (line 6)
  42484. * load address instruction: Simple Constraints. (line 162)
  42485. * LOAD_EXTEND_OP: Misc. (line 80)
  42486. * load_multiple instruction pattern: Standard Names. (line 136)
  42487. * Local Register Allocator (LRA): RTL passes. (line 187)
  42488. * LOCAL_ALIGNMENT: Storage Layout. (line 281)
  42489. * LOCAL_CLASS_P: Classes. (line 70)
  42490. * LOCAL_DECL_ALIGNMENT: Storage Layout. (line 318)
  42491. * LOCAL_INCLUDE_DIR: Driver. (line 316)
  42492. * LOCAL_LABEL_PREFIX: Instruction Output. (line 151)
  42493. * LOCAL_REGNO: Register Basics. (line 104)
  42494. * log10M2 instruction pattern: Standard Names. (line 908)
  42495. * log1pM2 instruction pattern: Standard Names. (line 898)
  42496. * log2M2 instruction pattern: Standard Names. (line 915)
  42497. * logbM2 instruction pattern: Standard Names. (line 922)
  42498. * Logical Operators: Logical Operators. (line 6)
  42499. * logical-and, bitwise: Arithmetic. (line 158)
  42500. * LOGICAL_OP_NON_SHORT_CIRCUIT: Costs. (line 294)
  42501. * logM2 instruction pattern: Standard Names. (line 891)
  42502. * LOG_LINKS: Insns. (line 337)
  42503. * longjmp and automatic variables: Interface. (line 52)
  42504. * LONG_ACCUM_TYPE_SIZE: Type Layout. (line 92)
  42505. * LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 57)
  42506. * LONG_FRACT_TYPE_SIZE: Type Layout. (line 72)
  42507. * LONG_LONG_ACCUM_TYPE_SIZE: Type Layout. (line 97)
  42508. * LONG_LONG_FRACT_TYPE_SIZE: Type Layout. (line 77)
  42509. * LONG_LONG_TYPE_SIZE: Type Layout. (line 32)
  42510. * LONG_TYPE_SIZE: Type Layout. (line 21)
  42511. * Loop analysis: Loop representation.
  42512. (line 6)
  42513. * Loop manipulation: Loop manipulation. (line 6)
  42514. * Loop querying: Loop querying. (line 6)
  42515. * Loop representation: Loop representation.
  42516. (line 6)
  42517. * Loop-closed SSA form: LCSSA. (line 6)
  42518. * looping instruction patterns: Looping Patterns. (line 6)
  42519. * LOOP_ALIGN: Alignment Output. (line 40)
  42520. * LOOP_EXPR: Unary and Binary Expressions.
  42521. (line 6)
  42522. * lowering, language-dependent intermediate representation: Parsing pass.
  42523. (line 13)
  42524. * lo_sum: Arithmetic. (line 25)
  42525. * lrintMN2: Standard Names. (line 1004)
  42526. * lroundMN2: Standard Names. (line 1009)
  42527. * lshiftrt: Arithmetic. (line 190)
  42528. * lshiftrt and attributes: Expressions. (line 83)
  42529. * LSHIFT_EXPR: Unary and Binary Expressions.
  42530. (line 6)
  42531. * lshrM3 instruction pattern: Standard Names. (line 742)
  42532. * lt: Comparisons. (line 68)
  42533. * lt and attributes: Expressions. (line 83)
  42534. * LTGT_EXPR: Unary and Binary Expressions.
  42535. (line 6)
  42536. * lto: LTO. (line 6)
  42537. * ltrans: LTO. (line 6)
  42538. * ltu: Comparisons. (line 68)
  42539. * LT_EXPR: Unary and Binary Expressions.
  42540. (line 6)
  42541. * m in constraint: Simple Constraints. (line 17)
  42542. * machine attributes: Target Attributes. (line 6)
  42543. * machine description macros: Target Macros. (line 6)
  42544. * machine descriptions: Machine Desc. (line 6)
  42545. * machine mode conversions: Conversions. (line 6)
  42546. * machine mode wrapper classes: Machine Modes. (line 290)
  42547. * machine modes: Machine Modes. (line 6)
  42548. * machine specific constraints: Machine Constraints.
  42549. (line 6)
  42550. * machine-independent predicates: Machine-Independent Predicates.
  42551. (line 6)
  42552. * machine_mode: Machine Modes. (line 6)
  42553. * MACH_DEP_SECTION_ASM_FLAG: Sections. (line 120)
  42554. * macros, target description: Target Macros. (line 6)
  42555. * maddMN4 instruction pattern: Standard Names. (line 663)
  42556. * makefile fragment: Fragments. (line 6)
  42557. * makefile targets: Makefile. (line 6)
  42558. * MAKE_DECL_ONE_ONLY: Label Output. (line 281)
  42559. * make_safe_from: Expander Definitions.
  42560. (line 151)
  42561. * MALLOC_ABI_ALIGNMENT: Storage Layout. (line 190)
  42562. * Manipulating GIMPLE statements: Manipulating GIMPLE statements.
  42563. (line 6)
  42564. * marking roots: GGC Roots. (line 6)
  42565. * maskloadMN instruction pattern: Standard Names. (line 370)
  42566. * maskstoreMN instruction pattern: Standard Names. (line 377)
  42567. * mask_gather_loadM instruction pattern: Standard Names. (line 248)
  42568. * MASK_RETURN_ADDR: Exception Region Output.
  42569. (line 35)
  42570. * mask_scatter_storeM instruction pattern: Standard Names. (line 271)
  42571. * Match and Simplify: Match and Simplify. (line 6)
  42572. * matching constraint: Simple Constraints. (line 140)
  42573. * matching operands: Output Template. (line 49)
  42574. * match_dup: RTL Template. (line 73)
  42575. * match_dup <1>: define_peephole2. (line 28)
  42576. * match_dup and attributes: Insn Lengths. (line 16)
  42577. * match_operand: RTL Template. (line 16)
  42578. * match_operand and attributes: Expressions. (line 55)
  42579. * match_operator: RTL Template. (line 95)
  42580. * match_op_dup: RTL Template. (line 163)
  42581. * match_parallel: RTL Template. (line 172)
  42582. * match_par_dup: RTL Template. (line 219)
  42583. * match_scratch: RTL Template. (line 58)
  42584. * match_scratch <1>: define_peephole2. (line 28)
  42585. * match_test and attributes: Expressions. (line 64)
  42586. * math library: Soft float library routines.
  42587. (line 6)
  42588. * math, in RTL: Arithmetic. (line 6)
  42589. * matherr: Library Calls. (line 59)
  42590. * MATH_LIBRARY: Misc. (line 525)
  42591. * maxM3 instruction pattern: Standard Names. (line 478)
  42592. * MAX_BITSIZE_MODE_ANY_INT: Machine Modes. (line 448)
  42593. * MAX_BITSIZE_MODE_ANY_MODE: Machine Modes. (line 454)
  42594. * MAX_BITS_PER_WORD: Storage Layout. (line 54)
  42595. * MAX_CONDITIONAL_EXECUTE: Misc. (line 547)
  42596. * MAX_FIXED_MODE_SIZE: Storage Layout. (line 463)
  42597. * MAX_MOVE_MAX: Misc. (line 127)
  42598. * MAX_OFILE_ALIGNMENT: Storage Layout. (line 228)
  42599. * MAX_REGS_PER_ADDRESS: Addressing Modes. (line 42)
  42600. * MAX_STACK_ALIGNMENT: Storage Layout. (line 222)
  42601. * maybe_undef: GTY Options. (line 141)
  42602. * may_trap_p, tree_could_trap_p: Edges. (line 114)
  42603. * mcount: Profiling. (line 12)
  42604. * MD_EXEC_PREFIX: Driver. (line 271)
  42605. * MD_FALLBACK_FRAME_STATE_FOR: Exception Handling. (line 93)
  42606. * MD_HANDLE_UNWABI: Exception Handling. (line 112)
  42607. * MD_STARTFILE_PREFIX: Driver. (line 299)
  42608. * MD_STARTFILE_PREFIX_1: Driver. (line 304)
  42609. * mem: Regs and Memory. (line 396)
  42610. * mem and /c: Flags. (line 70)
  42611. * mem and /f: Flags. (line 74)
  42612. * mem and /j: Flags. (line 59)
  42613. * mem and /u: Flags. (line 78)
  42614. * mem and /v: Flags. (line 65)
  42615. * mem, RTL sharing: Sharing. (line 43)
  42616. * memory model: Memory model. (line 6)
  42617. * memory reference, nonoffsettable: Simple Constraints. (line 254)
  42618. * memory references in constraints: Simple Constraints. (line 17)
  42619. * memory_barrier instruction pattern: Standard Names. (line 1994)
  42620. * memory_blockage instruction pattern: Standard Names. (line 1985)
  42621. * MEMORY_MOVE_COST: Costs. (line 53)
  42622. * memory_operand: Machine-Independent Predicates.
  42623. (line 57)
  42624. * MEM_ADDR_SPACE: Special Accessors. (line 48)
  42625. * MEM_ALIAS_SET: Special Accessors. (line 9)
  42626. * MEM_ALIGN: Special Accessors. (line 45)
  42627. * MEM_EXPR: Special Accessors. (line 19)
  42628. * MEM_KEEP_ALIAS_SET_P: Flags. (line 59)
  42629. * MEM_NOTRAP_P: Flags. (line 70)
  42630. * MEM_OFFSET: Special Accessors. (line 31)
  42631. * MEM_OFFSET_KNOWN_P: Special Accessors. (line 27)
  42632. * MEM_POINTER: Flags. (line 74)
  42633. * MEM_READONLY_P: Flags. (line 78)
  42634. * MEM_REF: Storage References. (line 6)
  42635. * MEM_SIZE: Special Accessors. (line 39)
  42636. * MEM_SIZE_KNOWN_P: Special Accessors. (line 35)
  42637. * mem_thread_fence instruction pattern: Standard Names. (line 2270)
  42638. * MEM_VOLATILE_P: Flags. (line 65)
  42639. * METHOD_TYPE: Types. (line 6)
  42640. * MINIMUM_ALIGNMENT: Storage Layout. (line 331)
  42641. * MINIMUM_ATOMIC_ALIGNMENT: Storage Layout. (line 198)
  42642. * minM3 instruction pattern: Standard Names. (line 478)
  42643. * minus: Arithmetic. (line 38)
  42644. * minus and attributes: Expressions. (line 83)
  42645. * minus, canonicalization of: Insn Canonicalizations.
  42646. (line 27)
  42647. * MINUS_EXPR: Unary and Binary Expressions.
  42648. (line 6)
  42649. * MIN_UNITS_PER_WORD: Storage Layout. (line 64)
  42650. * MIPS coprocessor-definition macros: MIPS Coprocessors. (line 6)
  42651. * miscellaneous register hooks: Miscellaneous Register Hooks.
  42652. (line 6)
  42653. * mnemonic attribute: Mnemonic Attribute. (line 6)
  42654. * mod: Arithmetic. (line 136)
  42655. * mod and attributes: Expressions. (line 83)
  42656. * mode classes: Machine Modes. (line 226)
  42657. * mode iterators in .md files: Mode Iterators. (line 6)
  42658. * mode switching: Mode Switching. (line 6)
  42659. * MODE_ACCUM: Machine Modes. (line 256)
  42660. * MODE_BASE_REG_CLASS: Register Classes. (line 116)
  42661. * MODE_BASE_REG_REG_CLASS: Register Classes. (line 122)
  42662. * MODE_CC: Machine Modes. (line 275)
  42663. * MODE_CC <1>: MODE_CC Condition Codes.
  42664. (line 6)
  42665. * MODE_CODE_BASE_REG_CLASS: Register Classes. (line 129)
  42666. * MODE_COMPLEX_FLOAT: Machine Modes. (line 267)
  42667. * MODE_COMPLEX_INT: Machine Modes. (line 264)
  42668. * MODE_DECIMAL_FLOAT: Machine Modes. (line 244)
  42669. * MODE_FLOAT: Machine Modes. (line 240)
  42670. * MODE_FRACT: Machine Modes. (line 248)
  42671. * MODE_FUNCTION: Machine Modes. (line 271)
  42672. * MODE_INT: Machine Modes. (line 232)
  42673. * MODE_PARTIAL_INT: Machine Modes. (line 236)
  42674. * MODE_POINTER_BOUNDS: Machine Modes. (line 280)
  42675. * MODE_RANDOM: Machine Modes. (line 285)
  42676. * MODE_UACCUM: Machine Modes. (line 260)
  42677. * MODE_UFRACT: Machine Modes. (line 252)
  42678. * modifiers in constraints: Modifiers. (line 6)
  42679. * MODIFY_EXPR: Unary and Binary Expressions.
  42680. (line 6)
  42681. * MODIFY_JNI_METHOD_CALL: Misc. (line 896)
  42682. * modM3 instruction pattern: Standard Names. (line 416)
  42683. * modulo scheduling: RTL passes. (line 123)
  42684. * MOVE_MAX: Misc. (line 122)
  42685. * MOVE_MAX_PIECES: Costs. (line 210)
  42686. * MOVE_RATIO: Costs. (line 149)
  42687. * movM instruction pattern: Standard Names. (line 11)
  42688. * movmemM instruction pattern: Standard Names. (line 1118)
  42689. * movmisalignM instruction pattern: Standard Names. (line 125)
  42690. * movMODEcc instruction pattern: Standard Names. (line 1412)
  42691. * movstr instruction pattern: Standard Names. (line 1153)
  42692. * movstrictM instruction pattern: Standard Names. (line 119)
  42693. * msubMN4 instruction pattern: Standard Names. (line 686)
  42694. * mulhisi3 instruction pattern: Standard Names. (line 639)
  42695. * mulM3 instruction pattern: Standard Names. (line 416)
  42696. * mulqihi3 instruction pattern: Standard Names. (line 643)
  42697. * mulsidi3 instruction pattern: Standard Names. (line 643)
  42698. * mult: Arithmetic. (line 93)
  42699. * mult and attributes: Expressions. (line 83)
  42700. * mult, canonicalization of: Insn Canonicalizations.
  42701. (line 27)
  42702. * mult, canonicalization of <1>: Insn Canonicalizations.
  42703. (line 107)
  42704. * MULTIARCH_DIRNAME: Target Fragment. (line 173)
  42705. * MULTILIB_DEFAULTS: Driver. (line 256)
  42706. * MULTILIB_DIRNAMES: Target Fragment. (line 44)
  42707. * MULTILIB_EXCEPTIONS: Target Fragment. (line 70)
  42708. * MULTILIB_EXTRA_OPTS: Target Fragment. (line 135)
  42709. * MULTILIB_MATCHES: Target Fragment. (line 63)
  42710. * MULTILIB_OPTIONS: Target Fragment. (line 24)
  42711. * MULTILIB_OSDIRNAMES: Target Fragment. (line 142)
  42712. * MULTILIB_REQUIRED: Target Fragment. (line 82)
  42713. * MULTILIB_REUSE: Target Fragment. (line 103)
  42714. * multiple alternative constraints: Multi-Alternative. (line 6)
  42715. * MULTIPLE_SYMBOL_SPACES: Misc. (line 504)
  42716. * multiplication: Arithmetic. (line 93)
  42717. * multiplication with signed saturation: Arithmetic. (line 93)
  42718. * multiplication with unsigned saturation: Arithmetic. (line 93)
  42719. * MULT_EXPR: Unary and Binary Expressions.
  42720. (line 6)
  42721. * MULT_HIGHPART_EXPR: Unary and Binary Expressions.
  42722. (line 6)
  42723. * mulvM4 instruction pattern: Standard Names. (line 432)
  42724. * n in constraint: Simple Constraints. (line 73)
  42725. * name: Identifiers. (line 6)
  42726. * named address spaces: Named Address Spaces.
  42727. (line 6)
  42728. * named patterns and conditions: Patterns. (line 49)
  42729. * names, pattern: Standard Names. (line 6)
  42730. * namespace, scope: Namespaces. (line 6)
  42731. * NAMESPACE_DECL: Declarations. (line 6)
  42732. * NAMESPACE_DECL <1>: Namespaces. (line 6)
  42733. * NATIVE_SYSTEM_HEADER_COMPONENT: Driver. (line 326)
  42734. * ne: Comparisons. (line 56)
  42735. * ne and attributes: Expressions. (line 83)
  42736. * nearbyintM2 instruction pattern: Standard Names. (line 988)
  42737. * neg: Arithmetic. (line 82)
  42738. * neg and attributes: Expressions. (line 83)
  42739. * neg, canonicalization of: Insn Canonicalizations.
  42740. (line 27)
  42741. * NEGATE_EXPR: Unary and Binary Expressions.
  42742. (line 6)
  42743. * negation: Arithmetic. (line 82)
  42744. * negation with signed saturation: Arithmetic. (line 82)
  42745. * negation with unsigned saturation: Arithmetic. (line 82)
  42746. * negM2 instruction pattern: Standard Names. (line 754)
  42747. * negMODEcc instruction pattern: Standard Names. (line 1457)
  42748. * negvM3 instruction pattern: Standard Names. (line 757)
  42749. * nested functions, trampolines for: Trampolines. (line 6)
  42750. * nested_ptr: GTY Options. (line 149)
  42751. * next_bb, prev_bb, FOR_EACH_BB, FOR_ALL_BB: Basic Blocks. (line 25)
  42752. * NEXT_INSN: Insns. (line 30)
  42753. * NEXT_OBJC_RUNTIME: Library Calls. (line 82)
  42754. * NE_EXPR: Unary and Binary Expressions.
  42755. (line 6)
  42756. * nil: RTL Objects. (line 73)
  42757. * NM_FLAGS: Macros for Initialization.
  42758. (line 110)
  42759. * nondeterministic finite state automaton: Processor pipeline description.
  42760. (line 304)
  42761. * nonimmediate_operand: Machine-Independent Predicates.
  42762. (line 100)
  42763. * nonlocal goto handler: Edges. (line 171)
  42764. * nonlocal_goto instruction pattern: Standard Names. (line 1820)
  42765. * nonlocal_goto_receiver instruction pattern: Standard Names.
  42766. (line 1837)
  42767. * nonmemory_operand: Machine-Independent Predicates.
  42768. (line 96)
  42769. * nonoffsettable memory reference: Simple Constraints. (line 254)
  42770. * NON_LVALUE_EXPR: Unary and Binary Expressions.
  42771. (line 6)
  42772. * nop instruction pattern: Standard Names. (line 1633)
  42773. * NOP_EXPR: Unary and Binary Expressions.
  42774. (line 6)
  42775. * normal predicates: Predicates. (line 31)
  42776. * not: Arithmetic. (line 154)
  42777. * not and attributes: Expressions. (line 50)
  42778. * not equal: Comparisons. (line 56)
  42779. * not, canonicalization of: Insn Canonicalizations.
  42780. (line 27)
  42781. * note: Insns. (line 183)
  42782. * note and /i: Flags. (line 48)
  42783. * note and /v: Flags. (line 33)
  42784. * NOTE_INSN_BASIC_BLOCK: Basic Blocks. (line 50)
  42785. * NOTE_INSN_BASIC_BLOCK <1>: Basic Blocks. (line 52)
  42786. * NOTE_INSN_BEGIN_STMT: Insns. (line 233)
  42787. * NOTE_INSN_BLOCK_BEG: Insns. (line 208)
  42788. * NOTE_INSN_BLOCK_END: Insns. (line 208)
  42789. * NOTE_INSN_DELETED: Insns. (line 198)
  42790. * NOTE_INSN_DELETED_LABEL: Insns. (line 203)
  42791. * NOTE_INSN_EH_REGION_BEG: Insns. (line 214)
  42792. * NOTE_INSN_EH_REGION_END: Insns. (line 214)
  42793. * NOTE_INSN_FUNCTION_BEG: Insns. (line 221)
  42794. * NOTE_INSN_INLINE_ENTRY: Insns. (line 238)
  42795. * NOTE_INSN_VAR_LOCATION: Insns. (line 225)
  42796. * NOTE_LINE_NUMBER: Insns. (line 183)
  42797. * NOTE_SOURCE_FILE: Insns. (line 183)
  42798. * NOTE_VAR_LOCATION: Insns. (line 225)
  42799. * NOTICE_UPDATE_CC: CC0 Condition Codes.
  42800. (line 30)
  42801. * notMODEcc instruction pattern: Standard Names. (line 1464)
  42802. * NO_DBX_BNSYM_ENSYM: DBX Hooks. (line 25)
  42803. * NO_DBX_FUNCTION_END: DBX Hooks. (line 19)
  42804. * NO_DBX_GCC_MARKER: File Names and DBX. (line 27)
  42805. * NO_DBX_MAIN_SOURCE_DIRECTORY: File Names and DBX. (line 22)
  42806. * NO_DOLLAR_IN_LABEL: Label Output. (line 64)
  42807. * NO_DOT_IN_LABEL: Label Output. (line 70)
  42808. * NO_FUNCTION_CSE: Costs. (line 289)
  42809. * NO_IMPLICIT_EXTERN_C: Misc. (line 403)
  42810. * NO_PROFILE_COUNTERS: Profiling. (line 27)
  42811. * NO_REGS: Register Classes. (line 17)
  42812. * Number of iterations analysis: Number of iterations.
  42813. (line 6)
  42814. * NUM_MACHINE_MODES: Machine Modes. (line 387)
  42815. * NUM_MODES_FOR_MODE_SWITCHING: Mode Switching. (line 30)
  42816. * NUM_POLY_INT_COEFFS: Overview of poly_int.
  42817. (line 24)
  42818. * N_REG_CLASSES: Register Classes. (line 81)
  42819. * o in constraint: Simple Constraints. (line 23)
  42820. * OACC_CACHE: OpenACC. (line 6)
  42821. * OACC_DATA: OpenACC. (line 6)
  42822. * OACC_DECLARE: OpenACC. (line 6)
  42823. * OACC_ENTER_DATA: OpenACC. (line 6)
  42824. * OACC_EXIT_DATA: OpenACC. (line 6)
  42825. * OACC_HOST_DATA: OpenACC. (line 6)
  42826. * OACC_KERNELS: OpenACC. (line 6)
  42827. * OACC_LOOP: OpenACC. (line 6)
  42828. * OACC_PARALLEL: OpenACC. (line 6)
  42829. * OACC_UPDATE: OpenACC. (line 6)
  42830. * OBJC_GEN_METHOD_LABEL: Label Output. (line 482)
  42831. * OBJC_JBLEN: Misc. (line 1088)
  42832. * OBJECT_FORMAT_COFF: Macros for Initialization.
  42833. (line 96)
  42834. * offsettable address: Simple Constraints. (line 23)
  42835. * OFFSET_TYPE: Types. (line 6)
  42836. * OImode: Machine Modes. (line 51)
  42837. * OMP_ATOMIC: OpenMP. (line 6)
  42838. * OMP_CLAUSE: OpenMP. (line 6)
  42839. * OMP_CONTINUE: OpenMP. (line 6)
  42840. * OMP_CRITICAL: OpenMP. (line 6)
  42841. * OMP_FOR: OpenMP. (line 6)
  42842. * OMP_MASTER: OpenMP. (line 6)
  42843. * OMP_ORDERED: OpenMP. (line 6)
  42844. * OMP_PARALLEL: OpenMP. (line 6)
  42845. * OMP_RETURN: OpenMP. (line 6)
  42846. * OMP_SECTION: OpenMP. (line 6)
  42847. * OMP_SECTIONS: OpenMP. (line 6)
  42848. * OMP_SINGLE: OpenMP. (line 6)
  42849. * one_cmplM2 instruction pattern: Standard Names. (line 1115)
  42850. * operand access: Accessors. (line 6)
  42851. * Operand Access Routines: SSA Operands. (line 116)
  42852. * operand constraints: Constraints. (line 6)
  42853. * Operand Iterators: SSA Operands. (line 116)
  42854. * operand predicates: Predicates. (line 6)
  42855. * operand substitution: Output Template. (line 6)
  42856. * Operands: Operands. (line 6)
  42857. * operands: SSA Operands. (line 6)
  42858. * operands <1>: Patterns. (line 55)
  42859. * operator predicates: Predicates. (line 6)
  42860. * optc-gen.awk: Options. (line 6)
  42861. * OPTGROUP_ALL: Optimization groups.
  42862. (line 28)
  42863. * OPTGROUP_INLINE: Optimization groups.
  42864. (line 15)
  42865. * OPTGROUP_IPA: Optimization groups.
  42866. (line 9)
  42867. * OPTGROUP_LOOP: Optimization groups.
  42868. (line 12)
  42869. * OPTGROUP_OMP: Optimization groups.
  42870. (line 18)
  42871. * OPTGROUP_OTHER: Optimization groups.
  42872. (line 24)
  42873. * OPTGROUP_VEC: Optimization groups.
  42874. (line 21)
  42875. * optimization dumps: Optimization info. (line 6)
  42876. * optimization groups: Optimization groups.
  42877. (line 6)
  42878. * optimization info file names: Dump files and streams.
  42879. (line 6)
  42880. * Optimization infrastructure for GIMPLE: Tree SSA. (line 6)
  42881. * OPTIMIZE_MODE_SWITCHING: Mode Switching. (line 8)
  42882. * option specification files: Options. (line 6)
  42883. * optional hardware or system features: Run-time Target. (line 59)
  42884. * options, directory search: Including Patterns. (line 47)
  42885. * OPTION_DEFAULT_SPECS: Driver. (line 25)
  42886. * opt_mode: Machine Modes. (line 326)
  42887. * order of register allocation: Allocation Order. (line 6)
  42888. * ordered_comparison_operator: Machine-Independent Predicates.
  42889. (line 115)
  42890. * ORDERED_EXPR: Unary and Binary Expressions.
  42891. (line 6)
  42892. * Ordering of Patterns: Pattern Ordering. (line 6)
  42893. * ORIGINAL_REGNO: Special Accessors. (line 53)
  42894. * other register constraints: Simple Constraints. (line 171)
  42895. * outgoing_args_size: Stack Arguments. (line 48)
  42896. * OUTGOING_REGNO: Register Basics. (line 97)
  42897. * OUTGOING_REG_PARM_STACK_SPACE: Stack Arguments. (line 79)
  42898. * output of assembler code: File Framework. (line 6)
  42899. * output statements: Output Statement. (line 6)
  42900. * output templates: Output Template. (line 6)
  42901. * output_asm_insn: Output Statement. (line 52)
  42902. * OUTPUT_QUOTED_STRING: File Framework. (line 105)
  42903. * OVERLAPPING_REGISTER_NAMES: Instruction Output. (line 20)
  42904. * OVERLOAD: Functions for C++. (line 6)
  42905. * OVERRIDE_ABI_FORMAT: Register Arguments. (line 157)
  42906. * OVL_CURRENT: Functions for C++. (line 6)
  42907. * OVL_NEXT: Functions for C++. (line 6)
  42908. * p in constraint: Simple Constraints. (line 162)
  42909. * PAD_VARARGS_DOWN: Register Arguments. (line 238)
  42910. * parallel: Side Effects. (line 210)
  42911. * parameters, c++ abi: C++ ABI. (line 6)
  42912. * parameters, miscellaneous: Misc. (line 6)
  42913. * parameters, precompiled headers: PCH Target. (line 6)
  42914. * parity: Arithmetic. (line 242)
  42915. * parityM2 instruction pattern: Standard Names. (line 1102)
  42916. * PARM_BOUNDARY: Storage Layout. (line 150)
  42917. * PARM_DECL: Declarations. (line 6)
  42918. * PARSE_LDD_OUTPUT: Macros for Initialization.
  42919. (line 125)
  42920. * pass dumps: Passes. (line 6)
  42921. * passes and files of the compiler: Passes. (line 6)
  42922. * passing arguments: Interface. (line 36)
  42923. * pass_duplicate_computed_gotos: Edges. (line 161)
  42924. * PATH_SEPARATOR: Filesystem. (line 31)
  42925. * PATTERN: Insns. (line 307)
  42926. * pattern conditions: Patterns. (line 43)
  42927. * pattern names: Standard Names. (line 6)
  42928. * Pattern Ordering: Pattern Ordering. (line 6)
  42929. * patterns: Patterns. (line 6)
  42930. * pc: Regs and Memory. (line 383)
  42931. * pc and attributes: Insn Lengths. (line 20)
  42932. * pc, RTL sharing: Sharing. (line 28)
  42933. * PCC_BITFIELD_TYPE_MATTERS: Storage Layout. (line 357)
  42934. * PCC_STATIC_STRUCT_RETURN: Aggregate Return. (line 64)
  42935. * PC_REGNUM: Register Basics. (line 111)
  42936. * pc_rtx: Regs and Memory. (line 388)
  42937. * PDImode: Machine Modes. (line 40)
  42938. * peephole optimization, RTL representation: Side Effects. (line 244)
  42939. * peephole optimizer definitions: Peephole Definitions.
  42940. (line 6)
  42941. * per-function data: Per-Function Data. (line 6)
  42942. * percent sign: Output Template. (line 6)
  42943. * PHI nodes: SSA. (line 31)
  42944. * PIC: PIC. (line 6)
  42945. * PIC_OFFSET_TABLE_REGNUM: PIC. (line 15)
  42946. * PIC_OFFSET_TABLE_REG_CALL_CLOBBERED: PIC. (line 25)
  42947. * pipeline hazard recognizer: Processor pipeline description.
  42948. (line 6)
  42949. * pipeline hazard recognizer <1>: Processor pipeline description.
  42950. (line 53)
  42951. * Plugins: Plugins. (line 6)
  42952. * plus: Arithmetic. (line 14)
  42953. * plus and attributes: Expressions. (line 83)
  42954. * plus, canonicalization of: Insn Canonicalizations.
  42955. (line 27)
  42956. * PLUS_EXPR: Unary and Binary Expressions.
  42957. (line 6)
  42958. * Pmode: Misc. (line 351)
  42959. * pmode_register_operand: Machine-Independent Predicates.
  42960. (line 34)
  42961. * pointer: Types. (line 6)
  42962. * POINTERS_EXTEND_UNSIGNED: Storage Layout. (line 76)
  42963. * POINTER_DIFF_EXPR: Unary and Binary Expressions.
  42964. (line 6)
  42965. * POINTER_PLUS_EXPR: Unary and Binary Expressions.
  42966. (line 6)
  42967. * POINTER_SIZE: Storage Layout. (line 70)
  42968. * POINTER_TYPE: Types. (line 6)
  42969. * polynomial integers: poly_int. (line 6)
  42970. * poly_int: poly_int. (line 6)
  42971. * poly_int, invariant range: Overview of poly_int.
  42972. (line 31)
  42973. * poly_int, main typedefs: Overview of poly_int.
  42974. (line 46)
  42975. * poly_int, runtime value: Overview of poly_int.
  42976. (line 6)
  42977. * poly_int, template parameters: Overview of poly_int.
  42978. (line 24)
  42979. * poly_int, use in target-independent code: Consequences of using poly_int.
  42980. (line 32)
  42981. * poly_int, use in target-specific code: Consequences of using poly_int.
  42982. (line 40)
  42983. * POLY_INT_CST: Constant expressions.
  42984. (line 6)
  42985. * popcount: Arithmetic. (line 238)
  42986. * popcountM2 instruction pattern: Standard Names. (line 1090)
  42987. * pops_args: Function Entry. (line 111)
  42988. * pop_operand: Machine-Independent Predicates.
  42989. (line 87)
  42990. * portability: Portability. (line 6)
  42991. * position independent code: PIC. (line 6)
  42992. * POSTDECREMENT_EXPR: Unary and Binary Expressions.
  42993. (line 6)
  42994. * POSTINCREMENT_EXPR: Unary and Binary Expressions.
  42995. (line 6)
  42996. * post_dec: Incdec. (line 25)
  42997. * post_inc: Incdec. (line 30)
  42998. * POST_LINK_SPEC: Driver. (line 236)
  42999. * post_modify: Incdec. (line 33)
  43000. * post_order_compute, inverted_post_order_compute, walk_dominator_tree: Basic Blocks.
  43001. (line 34)
  43002. * POWI_MAX_MULTS: Misc. (line 986)
  43003. * powM3 instruction pattern: Standard Names. (line 936)
  43004. * pragma: Misc. (line 409)
  43005. * PREDECREMENT_EXPR: Unary and Binary Expressions.
  43006. (line 6)
  43007. * predefined macros: Run-time Target. (line 6)
  43008. * predicates: Predicates. (line 6)
  43009. * predicates and machine modes: Predicates. (line 31)
  43010. * predication: Conditional Execution.
  43011. (line 6)
  43012. * predict.def: Profile information.
  43013. (line 24)
  43014. * PREFERRED_DEBUGGING_TYPE: All Debuggers. (line 40)
  43015. * PREFERRED_RELOAD_CLASS: Register Classes. (line 249)
  43016. * PREFERRED_STACK_BOUNDARY: Storage Layout. (line 164)
  43017. * prefetch: Side Effects. (line 324)
  43018. * prefetch and /v: Flags. (line 92)
  43019. * prefetch instruction pattern: Standard Names. (line 1962)
  43020. * PREFETCH_SCHEDULE_BARRIER_P: Flags. (line 92)
  43021. * PREINCREMENT_EXPR: Unary and Binary Expressions.
  43022. (line 6)
  43023. * presence_set: Processor pipeline description.
  43024. (line 223)
  43025. * preserving SSA form: SSA. (line 74)
  43026. * pretend_args_size: Function Entry. (line 117)
  43027. * prev_active_insn: define_peephole. (line 60)
  43028. * PREV_INSN: Insns. (line 26)
  43029. * pre_dec: Incdec. (line 8)
  43030. * PRE_GCC3_DWARF_FRAME_REGISTERS: Frame Registers. (line 126)
  43031. * pre_inc: Incdec. (line 22)
  43032. * pre_modify: Incdec. (line 52)
  43033. * PRINT_OPERAND: Instruction Output. (line 95)
  43034. * PRINT_OPERAND_ADDRESS: Instruction Output. (line 122)
  43035. * PRINT_OPERAND_PUNCT_VALID_P: Instruction Output. (line 115)
  43036. * probe_stack instruction pattern: Standard Names. (line 1812)
  43037. * probe_stack_address instruction pattern: Standard Names. (line 1805)
  43038. * processor functional units: Processor pipeline description.
  43039. (line 6)
  43040. * processor functional units <1>: Processor pipeline description.
  43041. (line 68)
  43042. * processor pipeline description: Processor pipeline description.
  43043. (line 6)
  43044. * product: Arithmetic. (line 93)
  43045. * profile feedback: Profile information.
  43046. (line 14)
  43047. * profile representation: Profile information.
  43048. (line 6)
  43049. * PROFILE_BEFORE_PROLOGUE: Profiling. (line 34)
  43050. * PROFILE_HOOK: Profiling. (line 22)
  43051. * profiling, code generation: Profiling. (line 6)
  43052. * program counter: Regs and Memory. (line 384)
  43053. * prologue: Function Entry. (line 6)
  43054. * prologue instruction pattern: Standard Names. (line 1901)
  43055. * PROMOTE_MODE: Storage Layout. (line 87)
  43056. * pseudo registers: Regs and Memory. (line 9)
  43057. * PSImode: Machine Modes. (line 32)
  43058. * PTRDIFF_TYPE: Type Layout. (line 157)
  43059. * purge_dead_edges: Edges. (line 103)
  43060. * purge_dead_edges <1>: Maintaining the CFG.
  43061. (line 81)
  43062. * push address instruction: Simple Constraints. (line 162)
  43063. * pushM1 instruction pattern: Standard Names. (line 403)
  43064. * PUSH_ARGS: Stack Arguments. (line 17)
  43065. * PUSH_ARGS_REVERSED: Stack Arguments. (line 25)
  43066. * push_operand: Machine-Independent Predicates.
  43067. (line 80)
  43068. * push_reload: Addressing Modes. (line 176)
  43069. * PUSH_ROUNDING: Stack Arguments. (line 31)
  43070. * PUT_CODE: RTL Objects. (line 47)
  43071. * PUT_MODE: Machine Modes. (line 384)
  43072. * PUT_REG_NOTE_KIND: Insns. (line 369)
  43073. * QCmode: Machine Modes. (line 199)
  43074. * QFmode: Machine Modes. (line 57)
  43075. * QImode: Machine Modes. (line 25)
  43076. * QImode, in insn: Insns. (line 291)
  43077. * QQmode: Machine Modes. (line 106)
  43078. * qualified type: Types. (line 6)
  43079. * qualified type <1>: Types for C++. (line 6)
  43080. * querying function unit reservations: Processor pipeline description.
  43081. (line 90)
  43082. * question mark: Multi-Alternative. (line 42)
  43083. * quotient: Arithmetic. (line 116)
  43084. * r in constraint: Simple Constraints. (line 64)
  43085. * RDIV_EXPR: Unary and Binary Expressions.
  43086. (line 6)
  43087. * READONLY_DATA_SECTION_ASM_OP: Sections. (line 62)
  43088. * real operands: SSA Operands. (line 6)
  43089. * REALPART_EXPR: Unary and Binary Expressions.
  43090. (line 6)
  43091. * REAL_CST: Constant expressions.
  43092. (line 6)
  43093. * REAL_LIBGCC_SPEC: Driver. (line 124)
  43094. * REAL_NM_FILE_NAME: Macros for Initialization.
  43095. (line 105)
  43096. * REAL_TYPE: Types. (line 6)
  43097. * REAL_VALUE_ABS: Floating Point. (line 58)
  43098. * REAL_VALUE_ATOF: Floating Point. (line 39)
  43099. * REAL_VALUE_FIX: Floating Point. (line 31)
  43100. * REAL_VALUE_ISINF: Floating Point. (line 49)
  43101. * REAL_VALUE_ISNAN: Floating Point. (line 52)
  43102. * REAL_VALUE_NEGATE: Floating Point. (line 55)
  43103. * REAL_VALUE_NEGATIVE: Floating Point. (line 46)
  43104. * REAL_VALUE_TO_TARGET_DECIMAL128: Data Output. (line 147)
  43105. * REAL_VALUE_TO_TARGET_DECIMAL32: Data Output. (line 145)
  43106. * REAL_VALUE_TO_TARGET_DECIMAL64: Data Output. (line 146)
  43107. * REAL_VALUE_TO_TARGET_DOUBLE: Data Output. (line 143)
  43108. * REAL_VALUE_TO_TARGET_LONG_DOUBLE: Data Output. (line 144)
  43109. * REAL_VALUE_TO_TARGET_SINGLE: Data Output. (line 142)
  43110. * REAL_VALUE_TYPE: Floating Point. (line 25)
  43111. * REAL_VALUE_UNSIGNED_FIX: Floating Point. (line 34)
  43112. * recognizing insns: RTL Template. (line 6)
  43113. * recog_data.operand: Instruction Output. (line 54)
  43114. * RECORD_TYPE: Types. (line 6)
  43115. * RECORD_TYPE <1>: Classes. (line 6)
  43116. * redirect_edge_and_branch: Profile information.
  43117. (line 71)
  43118. * redirect_edge_and_branch, redirect_jump: Maintaining the CFG.
  43119. (line 89)
  43120. * reduc_and_scal_M instruction pattern: Standard Names. (line 510)
  43121. * reduc_ior_scal_M instruction pattern: Standard Names. (line 511)
  43122. * reduc_plus_scal_M instruction pattern: Standard Names. (line 505)
  43123. * reduc_smax_scal_M instruction pattern: Standard Names. (line 495)
  43124. * reduc_smin_scal_M instruction pattern: Standard Names. (line 495)
  43125. * reduc_umax_scal_M instruction pattern: Standard Names. (line 500)
  43126. * reduc_umin_scal_M instruction pattern: Standard Names. (line 500)
  43127. * reduc_xor_scal_M instruction pattern: Standard Names. (line 512)
  43128. * reference: Types. (line 6)
  43129. * REFERENCE_TYPE: Types. (line 6)
  43130. * reg: Regs and Memory. (line 9)
  43131. * reg and /f: Flags. (line 102)
  43132. * reg and /i: Flags. (line 97)
  43133. * reg and /v: Flags. (line 106)
  43134. * reg, RTL sharing: Sharing. (line 17)
  43135. * register allocation order: Allocation Order. (line 6)
  43136. * register class definitions: Register Classes. (line 6)
  43137. * register class preference constraints: Class Preferences. (line 6)
  43138. * register pairs: Values in Registers.
  43139. (line 65)
  43140. * Register Transfer Language (RTL): RTL. (line 6)
  43141. * register usage: Registers. (line 6)
  43142. * registers arguments: Register Arguments. (line 6)
  43143. * registers in constraints: Simple Constraints. (line 64)
  43144. * REGISTER_MOVE_COST: Costs. (line 9)
  43145. * REGISTER_NAMES: Instruction Output. (line 8)
  43146. * register_operand: Machine-Independent Predicates.
  43147. (line 29)
  43148. * REGISTER_PREFIX: Instruction Output. (line 150)
  43149. * REGISTER_TARGET_PRAGMAS: Misc. (line 409)
  43150. * REGMODE_NATURAL_SIZE: Regs and Memory. (line 191)
  43151. * REGMODE_NATURAL_SIZE <1>: Regs and Memory. (line 268)
  43152. * REGMODE_NATURAL_SIZE <2>: Values in Registers.
  43153. (line 46)
  43154. * REGNO_MODE_CODE_OK_FOR_BASE_P: Register Classes. (line 172)
  43155. * REGNO_MODE_OK_FOR_BASE_P: Register Classes. (line 150)
  43156. * REGNO_MODE_OK_FOR_REG_BASE_P: Register Classes. (line 160)
  43157. * REGNO_OK_FOR_BASE_P: Register Classes. (line 146)
  43158. * REGNO_OK_FOR_INDEX_P: Register Classes. (line 186)
  43159. * REGNO_REG_CLASS: Register Classes. (line 105)
  43160. * regs_ever_live: Function Entry. (line 29)
  43161. * regular expressions: Processor pipeline description.
  43162. (line 6)
  43163. * regular expressions <1>: Processor pipeline description.
  43164. (line 105)
  43165. * REG_ALLOC_ORDER: Allocation Order. (line 8)
  43166. * REG_BR_PRED: Insns. (line 541)
  43167. * REG_BR_PROB: Insns. (line 533)
  43168. * REG_BR_PROB_BASE, BB_FREQ_BASE, count: Profile information.
  43169. (line 82)
  43170. * REG_BR_PROB_BASE, EDGE_FREQUENCY: Profile information.
  43171. (line 52)
  43172. * REG_CALL_NOCF_CHECK: Insns. (line 557)
  43173. * REG_CC_SETTER: Insns. (line 505)
  43174. * REG_CC_USER: Insns. (line 505)
  43175. * reg_class_contents: Register Basics. (line 63)
  43176. * REG_CLASS_CONTENTS: Register Classes. (line 91)
  43177. * reg_class_for_constraint: C Constraint Interface.
  43178. (line 48)
  43179. * REG_CLASS_NAMES: Register Classes. (line 86)
  43180. * REG_DEAD: Insns. (line 380)
  43181. * REG_DEAD, REG_UNUSED: Liveness information.
  43182. (line 32)
  43183. * REG_DEP_ANTI: Insns. (line 527)
  43184. * REG_DEP_OUTPUT: Insns. (line 523)
  43185. * REG_DEP_TRUE: Insns. (line 520)
  43186. * REG_EH_REGION, EDGE_ABNORMAL_CALL: Edges. (line 109)
  43187. * REG_EQUAL: Insns. (line 434)
  43188. * REG_EQUIV: Insns. (line 434)
  43189. * REG_EXPR: Special Accessors. (line 58)
  43190. * REG_FRAME_RELATED_EXPR: Insns. (line 547)
  43191. * REG_FUNCTION_VALUE_P: Flags. (line 97)
  43192. * REG_INC: Insns. (line 396)
  43193. * reg_label and /v: Flags. (line 54)
  43194. * REG_LABEL_OPERAND: Insns. (line 410)
  43195. * REG_LABEL_TARGET: Insns. (line 419)
  43196. * reg_names: Register Basics. (line 63)
  43197. * reg_names <1>: Instruction Output. (line 107)
  43198. * REG_NONNEG: Insns. (line 402)
  43199. * REG_NOTES: Insns. (line 344)
  43200. * REG_NOTE_KIND: Insns. (line 369)
  43201. * REG_OFFSET: Special Accessors. (line 62)
  43202. * REG_OK_STRICT: Addressing Modes. (line 99)
  43203. * REG_PARM_STACK_SPACE: Stack Arguments. (line 58)
  43204. * REG_PARM_STACK_SPACE, and TARGET_FUNCTION_ARG: Register Arguments.
  43205. (line 56)
  43206. * REG_POINTER: Flags. (line 102)
  43207. * REG_SETJMP: Insns. (line 428)
  43208. * REG_UNUSED: Insns. (line 389)
  43209. * REG_USERVAR_P: Flags. (line 106)
  43210. * REG_VALUE_IN_UNWIND_CONTEXT: Frame Registers. (line 156)
  43211. * REG_WORDS_BIG_ENDIAN: Storage Layout. (line 35)
  43212. * relative costs: Costs. (line 6)
  43213. * RELATIVE_PREFIX_NOT_LINKDIR: Driver. (line 266)
  43214. * reloading: RTL passes. (line 170)
  43215. * reload_completed: Standard Names. (line 1600)
  43216. * reload_in instruction pattern: Standard Names. (line 98)
  43217. * reload_in_progress: Standard Names. (line 57)
  43218. * reload_out instruction pattern: Standard Names. (line 98)
  43219. * remainder: Arithmetic. (line 136)
  43220. * remainderM3 instruction pattern: Standard Names. (line 790)
  43221. * reorder: GTY Options. (line 175)
  43222. * representation of RTL: RTL. (line 6)
  43223. * reservation delays: Processor pipeline description.
  43224. (line 6)
  43225. * restore_stack_block instruction pattern: Standard Names. (line 1726)
  43226. * restore_stack_function instruction pattern: Standard Names.
  43227. (line 1726)
  43228. * restore_stack_nonlocal instruction pattern: Standard Names.
  43229. (line 1726)
  43230. * rest_of_decl_compilation: Parsing pass. (line 51)
  43231. * rest_of_type_compilation: Parsing pass. (line 51)
  43232. * RESULT_DECL: Declarations. (line 6)
  43233. * return: Side Effects. (line 72)
  43234. * return instruction pattern: Standard Names. (line 1574)
  43235. * return values in registers: Scalar Return. (line 6)
  43236. * returning aggregate values: Aggregate Return. (line 6)
  43237. * returning structures and unions: Interface. (line 10)
  43238. * RETURN_ADDRESS_POINTER_REGNUM: Frame Registers. (line 64)
  43239. * RETURN_ADDR_IN_PREVIOUS_FRAME: Frame Layout. (line 127)
  43240. * RETURN_ADDR_OFFSET: Exception Handling. (line 59)
  43241. * RETURN_ADDR_RTX: Frame Layout. (line 116)
  43242. * RETURN_EXPR: Statements for C++. (line 6)
  43243. * RETURN_STMT: Statements for C++. (line 6)
  43244. * return_val: Flags. (line 283)
  43245. * return_val, in call_insn: Flags. (line 120)
  43246. * return_val, in reg: Flags. (line 97)
  43247. * return_val, in symbol_ref: Flags. (line 216)
  43248. * reverse probability: Profile information.
  43249. (line 66)
  43250. * REVERSE_CONDITION: MODE_CC Condition Codes.
  43251. (line 92)
  43252. * REVERSIBLE_CC_MODE: MODE_CC Condition Codes.
  43253. (line 77)
  43254. * right rotate: Arithmetic. (line 195)
  43255. * right shift: Arithmetic. (line 190)
  43256. * rintM2 instruction pattern: Standard Names. (line 996)
  43257. * RISC: Processor pipeline description.
  43258. (line 6)
  43259. * RISC <1>: Processor pipeline description.
  43260. (line 223)
  43261. * roots, marking: GGC Roots. (line 6)
  43262. * rotate: Arithmetic. (line 195)
  43263. * rotate <1>: Arithmetic. (line 195)
  43264. * rotatert: Arithmetic. (line 195)
  43265. * rotlM3 instruction pattern: Standard Names. (line 742)
  43266. * rotrM3 instruction pattern: Standard Names. (line 742)
  43267. * roundM2 instruction pattern: Standard Names. (line 969)
  43268. * ROUND_DIV_EXPR: Unary and Binary Expressions.
  43269. (line 6)
  43270. * ROUND_MOD_EXPR: Unary and Binary Expressions.
  43271. (line 6)
  43272. * ROUND_TYPE_ALIGN: Storage Layout. (line 454)
  43273. * RSHIFT_EXPR: Unary and Binary Expressions.
  43274. (line 6)
  43275. * rsqrtM2 instruction pattern: Standard Names. (line 770)
  43276. * RTL addition: Arithmetic. (line 14)
  43277. * RTL addition with signed saturation: Arithmetic. (line 14)
  43278. * RTL addition with unsigned saturation: Arithmetic. (line 14)
  43279. * RTL classes: RTL Classes. (line 6)
  43280. * RTL comparison: Arithmetic. (line 46)
  43281. * RTL comparison operations: Comparisons. (line 6)
  43282. * RTL constant expression types: Constants. (line 6)
  43283. * RTL constants: Constants. (line 6)
  43284. * RTL declarations: RTL Declarations. (line 6)
  43285. * RTL difference: Arithmetic. (line 38)
  43286. * RTL expression: RTL Objects. (line 6)
  43287. * RTL expressions for arithmetic: Arithmetic. (line 6)
  43288. * RTL format: RTL Classes. (line 72)
  43289. * RTL format characters: RTL Classes. (line 77)
  43290. * RTL function-call insns: Calls. (line 6)
  43291. * RTL insn template: RTL Template. (line 6)
  43292. * RTL integers: RTL Objects. (line 6)
  43293. * RTL memory expressions: Regs and Memory. (line 6)
  43294. * RTL object types: RTL Objects. (line 6)
  43295. * RTL postdecrement: Incdec. (line 6)
  43296. * RTL postincrement: Incdec. (line 6)
  43297. * RTL predecrement: Incdec. (line 6)
  43298. * RTL preincrement: Incdec. (line 6)
  43299. * RTL register expressions: Regs and Memory. (line 6)
  43300. * RTL representation: RTL. (line 6)
  43301. * RTL side effect expressions: Side Effects. (line 6)
  43302. * RTL strings: RTL Objects. (line 6)
  43303. * RTL structure sharing assumptions: Sharing. (line 6)
  43304. * RTL subtraction: Arithmetic. (line 38)
  43305. * RTL subtraction with signed saturation: Arithmetic. (line 38)
  43306. * RTL subtraction with unsigned saturation: Arithmetic. (line 38)
  43307. * RTL sum: Arithmetic. (line 14)
  43308. * RTL vectors: RTL Objects. (line 6)
  43309. * RTL_CONST_CALL_P: Flags. (line 115)
  43310. * RTL_CONST_OR_PURE_CALL_P: Flags. (line 125)
  43311. * RTL_LOOPING_CONST_OR_PURE_CALL_P: Flags. (line 129)
  43312. * RTL_PURE_CALL_P: Flags. (line 120)
  43313. * RTX (See RTL): RTL Objects. (line 6)
  43314. * RTX codes, classes of: RTL Classes. (line 6)
  43315. * RTX_FRAME_RELATED_P: Flags. (line 135)
  43316. * run-time conventions: Interface. (line 6)
  43317. * run-time target specification: Run-time Target. (line 6)
  43318. * s in constraint: Simple Constraints. (line 100)
  43319. * SAD_EXPR: Vectors. (line 6)
  43320. * same_type_p: Types. (line 86)
  43321. * SAmode: Machine Modes. (line 150)
  43322. * satfractMN2 instruction pattern: Standard Names. (line 1300)
  43323. * satfractunsMN2 instruction pattern: Standard Names. (line 1313)
  43324. * satisfies_constraint_M: C Constraint Interface.
  43325. (line 36)
  43326. * sat_fract: Conversions. (line 90)
  43327. * SAVE_EXPR: Unary and Binary Expressions.
  43328. (line 6)
  43329. * save_stack_block instruction pattern: Standard Names. (line 1726)
  43330. * save_stack_function instruction pattern: Standard Names. (line 1726)
  43331. * save_stack_nonlocal instruction pattern: Standard Names. (line 1726)
  43332. * SBSS_SECTION_ASM_OP: Sections. (line 75)
  43333. * Scalar evolutions: Scalar evolutions. (line 6)
  43334. * scalars, returned as values: Scalar Return. (line 6)
  43335. * scalar_float_mode: Machine Modes. (line 297)
  43336. * scalar_int_mode: Machine Modes. (line 294)
  43337. * scalar_mode: Machine Modes. (line 300)
  43338. * scalbM3 instruction pattern: Standard Names. (line 797)
  43339. * scatter_storeM instruction pattern: Standard Names. (line 254)
  43340. * SCHED_GROUP_P: Flags. (line 162)
  43341. * SCmode: Machine Modes. (line 199)
  43342. * scratch: Regs and Memory. (line 320)
  43343. * scratch operands: Regs and Memory. (line 320)
  43344. * scratch, RTL sharing: Sharing. (line 38)
  43345. * scratch_operand: Machine-Independent Predicates.
  43346. (line 49)
  43347. * SDATA_SECTION_ASM_OP: Sections. (line 57)
  43348. * SDmode: Machine Modes. (line 88)
  43349. * sdot_prodM instruction pattern: Standard Names. (line 539)
  43350. * search options: Including Patterns. (line 47)
  43351. * SECONDARY_INPUT_RELOAD_CLASS: Register Classes. (line 391)
  43352. * SECONDARY_MEMORY_NEEDED_RTX: Register Classes. (line 457)
  43353. * SECONDARY_OUTPUT_RELOAD_CLASS: Register Classes. (line 392)
  43354. * SECONDARY_RELOAD_CLASS: Register Classes. (line 390)
  43355. * SELECT_CC_MODE: MODE_CC Condition Codes.
  43356. (line 6)
  43357. * sequence: Side Effects. (line 259)
  43358. * Sequence iterators: Sequence iterators. (line 6)
  43359. * set: Side Effects. (line 15)
  43360. * set and /f: Flags. (line 135)
  43361. * setmemM instruction pattern: Standard Names. (line 1164)
  43362. * SETUP_FRAME_ADDRESSES: Frame Layout. (line 94)
  43363. * SET_ASM_OP: Label Output. (line 451)
  43364. * SET_ASM_OP <1>: Label Output. (line 462)
  43365. * set_attr: Tagging Insns. (line 31)
  43366. * set_attr_alternative: Tagging Insns. (line 49)
  43367. * set_bb_seq: GIMPLE sequences. (line 75)
  43368. * SET_DEST: Side Effects. (line 69)
  43369. * SET_IS_RETURN_P: Flags. (line 171)
  43370. * SET_LABEL_KIND: Insns. (line 146)
  43371. * set_optab_libfunc: Library Calls. (line 15)
  43372. * SET_RATIO: Costs. (line 237)
  43373. * SET_SRC: Side Effects. (line 69)
  43374. * set_thread_pointerMODE instruction pattern: Standard Names.
  43375. (line 2285)
  43376. * SET_TYPE_STRUCTURAL_EQUALITY: Types. (line 6)
  43377. * SET_TYPE_STRUCTURAL_EQUALITY <1>: Types. (line 81)
  43378. * SFmode: Machine Modes. (line 69)
  43379. * sharing of RTL components: Sharing. (line 6)
  43380. * shift: Arithmetic. (line 173)
  43381. * SHIFT_COUNT_TRUNCATED: Misc. (line 134)
  43382. * SHLIB_SUFFIX: Macros for Initialization.
  43383. (line 133)
  43384. * SHORT_ACCUM_TYPE_SIZE: Type Layout. (line 82)
  43385. * SHORT_FRACT_TYPE_SIZE: Type Layout. (line 62)
  43386. * SHORT_IMMEDIATES_SIGN_EXTEND: Misc. (line 108)
  43387. * SHORT_TYPE_SIZE: Type Layout. (line 15)
  43388. * shrink-wrapping separate components: Shrink-wrapping separate components.
  43389. (line 6)
  43390. * sibcall_epilogue instruction pattern: Standard Names. (line 1933)
  43391. * sibling call: Edges. (line 121)
  43392. * SIBLING_CALL_P: Flags. (line 175)
  43393. * signed division: Arithmetic. (line 116)
  43394. * signed division with signed saturation: Arithmetic. (line 116)
  43395. * signed maximum: Arithmetic. (line 141)
  43396. * signed minimum: Arithmetic. (line 141)
  43397. * significandM2 instruction pattern: Standard Names. (line 929)
  43398. * sign_extend: Conversions. (line 23)
  43399. * sign_extract: Bit-Fields. (line 8)
  43400. * sign_extract, canonicalization of: Insn Canonicalizations.
  43401. (line 103)
  43402. * SIG_ATOMIC_TYPE: Type Layout. (line 208)
  43403. * SImode: Machine Modes. (line 37)
  43404. * simple constraints: Simple Constraints. (line 6)
  43405. * simple_return: Side Effects. (line 86)
  43406. * simple_return instruction pattern: Standard Names. (line 1589)
  43407. * sincosM3 instruction pattern: Standard Names. (line 825)
  43408. * sinM2 instruction pattern: Standard Names. (line 819)
  43409. * SIZETYPE: Type Layout. (line 147)
  43410. * SIZE_ASM_OP: Label Output. (line 33)
  43411. * SIZE_TYPE: Type Layout. (line 131)
  43412. * skip: GTY Options. (line 76)
  43413. * SLOW_BYTE_ACCESS: Costs. (line 117)
  43414. * smax: Arithmetic. (line 141)
  43415. * smin: Arithmetic. (line 141)
  43416. * sms, swing, software pipelining: RTL passes. (line 123)
  43417. * smulM3_highpart instruction pattern: Standard Names. (line 655)
  43418. * soft float library: Soft float library routines.
  43419. (line 6)
  43420. * special: GTY Options. (line 238)
  43421. * special predicates: Predicates. (line 31)
  43422. * SPECS: Target Fragment. (line 194)
  43423. * speed of instructions: Costs. (line 6)
  43424. * splitting instructions: Insn Splitting. (line 6)
  43425. * split_block: Maintaining the CFG.
  43426. (line 96)
  43427. * SQmode: Machine Modes. (line 114)
  43428. * sqrt: Arithmetic. (line 206)
  43429. * sqrtM2 instruction pattern: Standard Names. (line 764)
  43430. * square root: Arithmetic. (line 206)
  43431. * SSA: SSA. (line 6)
  43432. * ssaddM3 instruction pattern: Standard Names. (line 416)
  43433. * ssadM instruction pattern: Standard Names. (line 548)
  43434. * ssashlM3 instruction pattern: Standard Names. (line 730)
  43435. * SSA_NAME_DEF_STMT: SSA. (line 184)
  43436. * SSA_NAME_VERSION: SSA. (line 189)
  43437. * ssdivM3 instruction pattern: Standard Names. (line 416)
  43438. * ssmaddMN4 instruction pattern: Standard Names. (line 678)
  43439. * ssmsubMN4 instruction pattern: Standard Names. (line 702)
  43440. * ssmulM3 instruction pattern: Standard Names. (line 416)
  43441. * ssnegM2 instruction pattern: Standard Names. (line 754)
  43442. * sssubM3 instruction pattern: Standard Names. (line 416)
  43443. * ss_abs: Arithmetic. (line 200)
  43444. * ss_ashift: Arithmetic. (line 173)
  43445. * ss_div: Arithmetic. (line 116)
  43446. * ss_minus: Arithmetic. (line 38)
  43447. * ss_mult: Arithmetic. (line 93)
  43448. * ss_neg: Arithmetic. (line 82)
  43449. * ss_plus: Arithmetic. (line 14)
  43450. * ss_truncate: Conversions. (line 43)
  43451. * stack arguments: Stack Arguments. (line 6)
  43452. * stack frame layout: Frame Layout. (line 6)
  43453. * stack smashing protection: Stack Smashing Protection.
  43454. (line 6)
  43455. * STACK_ALIGNMENT_NEEDED: Frame Layout. (line 41)
  43456. * STACK_BOUNDARY: Storage Layout. (line 156)
  43457. * STACK_CHECK_BUILTIN: Stack Checking. (line 31)
  43458. * STACK_CHECK_FIXED_FRAME_SIZE: Stack Checking. (line 83)
  43459. * STACK_CHECK_MAX_FRAME_SIZE: Stack Checking. (line 74)
  43460. * STACK_CHECK_MAX_VAR_SIZE: Stack Checking. (line 90)
  43461. * STACK_CHECK_MOVING_SP: Stack Checking. (line 53)
  43462. * STACK_CHECK_PROBE_INTERVAL_EXP: Stack Checking. (line 45)
  43463. * STACK_CHECK_PROTECT: Stack Checking. (line 62)
  43464. * STACK_CHECK_STATIC_BUILTIN: Stack Checking. (line 38)
  43465. * STACK_DYNAMIC_OFFSET: Frame Layout. (line 67)
  43466. * STACK_DYNAMIC_OFFSET and virtual registers: Regs and Memory.
  43467. (line 83)
  43468. * STACK_GROWS_DOWNWARD: Frame Layout. (line 8)
  43469. * STACK_PARMS_IN_REG_PARM_AREA: Stack Arguments. (line 89)
  43470. * STACK_POINTER_OFFSET: Frame Layout. (line 51)
  43471. * STACK_POINTER_OFFSET and virtual registers: Regs and Memory.
  43472. (line 93)
  43473. * STACK_POINTER_REGNUM: Frame Registers. (line 8)
  43474. * STACK_POINTER_REGNUM and virtual registers: Regs and Memory.
  43475. (line 83)
  43476. * stack_pointer_rtx: Frame Registers. (line 104)
  43477. * stack_protect_set instruction pattern: Standard Names. (line 2295)
  43478. * stack_protect_test instruction pattern: Standard Names. (line 2305)
  43479. * STACK_PUSH_CODE: Frame Layout. (line 12)
  43480. * STACK_REGS: Stack Registers. (line 19)
  43481. * STACK_REG_COVER_CLASS: Stack Registers. (line 22)
  43482. * STACK_SAVEAREA_MODE: Storage Layout. (line 470)
  43483. * STACK_SIZE_MODE: Storage Layout. (line 481)
  43484. * STACK_SLOT_ALIGNMENT: Storage Layout. (line 302)
  43485. * standard pattern names: Standard Names. (line 6)
  43486. * STANDARD_STARTFILE_PREFIX: Driver. (line 278)
  43487. * STANDARD_STARTFILE_PREFIX_1: Driver. (line 285)
  43488. * STANDARD_STARTFILE_PREFIX_2: Driver. (line 292)
  43489. * STARTFILE_SPEC: Driver. (line 147)
  43490. * Statement and operand traversals: Statement and operand traversals.
  43491. (line 6)
  43492. * Statement Sequences: Statement Sequences.
  43493. (line 6)
  43494. * Statements: Statements. (line 6)
  43495. * statements: Function Properties.
  43496. (line 6)
  43497. * statements <1>: Statements for C++. (line 6)
  43498. * Static profile estimation: Profile information.
  43499. (line 24)
  43500. * static single assignment: SSA. (line 6)
  43501. * STATIC_CHAIN_INCOMING_REGNUM: Frame Registers. (line 77)
  43502. * STATIC_CHAIN_REGNUM: Frame Registers. (line 76)
  43503. * stdarg.h and register arguments: Register Arguments. (line 51)
  43504. * STDC_0_IN_SYSTEM_HEADERS: Misc. (line 372)
  43505. * STMT_EXPR: Unary and Binary Expressions.
  43506. (line 6)
  43507. * STMT_IS_FULL_EXPR_P: Statements for C++. (line 22)
  43508. * storage layout: Storage Layout. (line 6)
  43509. * STORE_FLAG_VALUE: Misc. (line 223)
  43510. * STORE_MAX_PIECES: Costs. (line 215)
  43511. * store_multiple instruction pattern: Standard Names. (line 159)
  43512. * strcpy: Storage Layout. (line 255)
  43513. * STRICT_ALIGNMENT: Storage Layout. (line 352)
  43514. * strict_low_part: RTL Declarations. (line 9)
  43515. * strict_memory_address_p: Addressing Modes. (line 186)
  43516. * STRING_CST: Constant expressions.
  43517. (line 6)
  43518. * STRING_POOL_ADDRESS_P: Flags. (line 179)
  43519. * strlenM instruction pattern: Standard Names. (line 1235)
  43520. * structure value address: Aggregate Return. (line 6)
  43521. * structures, returning: Interface. (line 10)
  43522. * STRUCTURE_SIZE_BOUNDARY: Storage Layout. (line 344)
  43523. * subM3 instruction pattern: Standard Names. (line 416)
  43524. * SUBOBJECT: Statements for C++. (line 6)
  43525. * SUBOBJECT_CLEANUP: Statements for C++. (line 6)
  43526. * subreg: Regs and Memory. (line 97)
  43527. * subreg and /s: Flags. (line 201)
  43528. * subreg and /u: Flags. (line 194)
  43529. * subreg and /u and /v: Flags. (line 184)
  43530. * subreg, in strict_low_part: RTL Declarations. (line 9)
  43531. * SUBREG_BYTE: Regs and Memory. (line 311)
  43532. * SUBREG_PROMOTED_UNSIGNED_P: Flags. (line 184)
  43533. * SUBREG_PROMOTED_UNSIGNED_SET: Flags. (line 194)
  43534. * SUBREG_PROMOTED_VAR_P: Flags. (line 201)
  43535. * SUBREG_REG: Regs and Memory. (line 311)
  43536. * subst iterators in .md files: Subst Iterators. (line 6)
  43537. * subvM4 instruction pattern: Standard Names. (line 432)
  43538. * SUCCESS_EXIT_CODE: Host Misc. (line 12)
  43539. * SUPPORTS_INIT_PRIORITY: Macros for Initialization.
  43540. (line 57)
  43541. * SUPPORTS_ONE_ONLY: Label Output. (line 290)
  43542. * SUPPORTS_WEAK: Label Output. (line 264)
  43543. * SWITCHABLE_TARGET: Run-time Target. (line 164)
  43544. * SWITCH_BODY: Statements for C++. (line 6)
  43545. * SWITCH_COND: Statements for C++. (line 6)
  43546. * SWITCH_STMT: Statements for C++. (line 6)
  43547. * symbolic label: Sharing. (line 20)
  43548. * SYMBOL_FLAG_ANCHOR: Special Accessors. (line 117)
  43549. * SYMBOL_FLAG_EXTERNAL: Special Accessors. (line 99)
  43550. * SYMBOL_FLAG_FUNCTION: Special Accessors. (line 92)
  43551. * SYMBOL_FLAG_HAS_BLOCK_INFO: Special Accessors. (line 113)
  43552. * SYMBOL_FLAG_LOCAL: Special Accessors. (line 95)
  43553. * SYMBOL_FLAG_SMALL: Special Accessors. (line 104)
  43554. * SYMBOL_FLAG_TLS_SHIFT: Special Accessors. (line 108)
  43555. * symbol_ref: Constants. (line 189)
  43556. * symbol_ref and /f: Flags. (line 179)
  43557. * symbol_ref and /i: Flags. (line 216)
  43558. * symbol_ref and /u: Flags. (line 19)
  43559. * symbol_ref and /v: Flags. (line 220)
  43560. * symbol_ref, RTL sharing: Sharing. (line 20)
  43561. * SYMBOL_REF_ANCHOR_P: Special Accessors. (line 117)
  43562. * SYMBOL_REF_BLOCK: Special Accessors. (line 130)
  43563. * SYMBOL_REF_BLOCK_OFFSET: Special Accessors. (line 135)
  43564. * SYMBOL_REF_CONSTANT: Special Accessors. (line 78)
  43565. * SYMBOL_REF_DATA: Special Accessors. (line 82)
  43566. * SYMBOL_REF_DECL: Special Accessors. (line 67)
  43567. * SYMBOL_REF_EXTERNAL_P: Special Accessors. (line 99)
  43568. * SYMBOL_REF_FLAG: Flags. (line 220)
  43569. * SYMBOL_REF_FLAG, in TARGET_ENCODE_SECTION_INFO: Sections. (line 282)
  43570. * SYMBOL_REF_FLAGS: Special Accessors. (line 86)
  43571. * SYMBOL_REF_FUNCTION_P: Special Accessors. (line 92)
  43572. * SYMBOL_REF_HAS_BLOCK_INFO_P: Special Accessors. (line 113)
  43573. * SYMBOL_REF_LOCAL_P: Special Accessors. (line 95)
  43574. * SYMBOL_REF_SMALL_P: Special Accessors. (line 104)
  43575. * SYMBOL_REF_TLS_MODEL: Special Accessors. (line 108)
  43576. * SYMBOL_REF_USED: Flags. (line 211)
  43577. * SYMBOL_REF_WEAK: Flags. (line 216)
  43578. * sync_addMODE instruction pattern: Standard Names. (line 2040)
  43579. * sync_andMODE instruction pattern: Standard Names. (line 2040)
  43580. * sync_compare_and_swapMODE instruction pattern: Standard Names.
  43581. (line 2000)
  43582. * sync_iorMODE instruction pattern: Standard Names. (line 2040)
  43583. * sync_lock_releaseMODE instruction pattern: Standard Names. (line 2105)
  43584. * sync_lock_test_and_setMODE instruction pattern: Standard Names.
  43585. (line 2079)
  43586. * sync_nandMODE instruction pattern: Standard Names. (line 2040)
  43587. * sync_new_addMODE instruction pattern: Standard Names. (line 2072)
  43588. * sync_new_andMODE instruction pattern: Standard Names. (line 2072)
  43589. * sync_new_iorMODE instruction pattern: Standard Names. (line 2072)
  43590. * sync_new_nandMODE instruction pattern: Standard Names. (line 2072)
  43591. * sync_new_subMODE instruction pattern: Standard Names. (line 2072)
  43592. * sync_new_xorMODE instruction pattern: Standard Names. (line 2072)
  43593. * sync_old_addMODE instruction pattern: Standard Names. (line 2055)
  43594. * sync_old_andMODE instruction pattern: Standard Names. (line 2055)
  43595. * sync_old_iorMODE instruction pattern: Standard Names. (line 2055)
  43596. * sync_old_nandMODE instruction pattern: Standard Names. (line 2055)
  43597. * sync_old_subMODE instruction pattern: Standard Names. (line 2055)
  43598. * sync_old_xorMODE instruction pattern: Standard Names. (line 2055)
  43599. * sync_subMODE instruction pattern: Standard Names. (line 2040)
  43600. * sync_xorMODE instruction pattern: Standard Names. (line 2040)
  43601. * SYSROOT_HEADERS_SUFFIX_SPEC: Driver. (line 176)
  43602. * SYSROOT_SUFFIX_SPEC: Driver. (line 171)
  43603. * t-TARGET: Target Fragment. (line 6)
  43604. * table jump: Basic Blocks. (line 67)
  43605. * tablejump instruction pattern: Standard Names. (line 1662)
  43606. * tag: GTY Options. (line 90)
  43607. * tagging insns: Tagging Insns. (line 6)
  43608. * tail calls: Tail Calls. (line 6)
  43609. * TAmode: Machine Modes. (line 158)
  43610. * tanM2 instruction pattern: Standard Names. (line 836)
  43611. * target attributes: Target Attributes. (line 6)
  43612. * target description macros: Target Macros. (line 6)
  43613. * target functions: Target Structure. (line 6)
  43614. * target hooks: Target Structure. (line 6)
  43615. * target makefile fragment: Target Fragment. (line 6)
  43616. * target specifications: Run-time Target. (line 6)
  43617. * targetm: Target Structure. (line 6)
  43618. * targets, makefile: Makefile. (line 6)
  43619. * TARGET_ABSOLUTE_BIGGEST_ALIGNMENT: Storage Layout. (line 185)
  43620. * TARGET_ADDITIONAL_ALLOCNO_CLASS_P: Register Classes. (line 639)
  43621. * TARGET_ADDRESS_COST: Costs. (line 344)
  43622. * TARGET_ADDR_SPACE_ADDRESS_MODE: Named Address Spaces.
  43623. (line 42)
  43624. * TARGET_ADDR_SPACE_CONVERT: Named Address Spaces.
  43625. (line 89)
  43626. * TARGET_ADDR_SPACE_DEBUG: Named Address Spaces.
  43627. (line 99)
  43628. * TARGET_ADDR_SPACE_DIAGNOSE_USAGE: Named Address Spaces.
  43629. (line 103)
  43630. * TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P: Named Address Spaces.
  43631. (line 59)
  43632. * TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS: Named Address Spaces.
  43633. (line 67)
  43634. * TARGET_ADDR_SPACE_POINTER_MODE: Named Address Spaces.
  43635. (line 36)
  43636. * TARGET_ADDR_SPACE_SUBSET_P: Named Address Spaces.
  43637. (line 74)
  43638. * TARGET_ADDR_SPACE_VALID_POINTER_MODE: Named Address Spaces.
  43639. (line 48)
  43640. * TARGET_ADDR_SPACE_ZERO_ADDRESS_VALID: Named Address Spaces.
  43641. (line 83)
  43642. * TARGET_ALIGN_ANON_BITFIELD: Storage Layout. (line 429)
  43643. * TARGET_ALLOCATE_INITIAL_VALUE: Misc. (line 832)
  43644. * TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS: Misc. (line 1110)
  43645. * TARGET_ALWAYS_STRIP_DOTDOT: Driver. (line 250)
  43646. * TARGET_ARG_PARTIAL_BYTES: Register Arguments. (line 99)
  43647. * TARGET_ARM_EABI_UNWINDER: Exception Region Output.
  43648. (line 133)
  43649. * TARGET_ARRAY_MODE: Register Arguments. (line 349)
  43650. * TARGET_ARRAY_MODE_SUPPORTED_P: Register Arguments. (line 364)
  43651. * TARGET_ASAN_SHADOW_OFFSET: Misc. (line 1138)
  43652. * TARGET_ASM_ALIGNED_DI_OP: Data Output. (line 9)
  43653. * TARGET_ASM_ALIGNED_HI_OP: Data Output. (line 7)
  43654. * TARGET_ASM_ALIGNED_SI_OP: Data Output. (line 8)
  43655. * TARGET_ASM_ALIGNED_TI_OP: Data Output. (line 10)
  43656. * TARGET_ASM_ASSEMBLE_UNDEFINED_DECL: Label Output. (line 231)
  43657. * TARGET_ASM_ASSEMBLE_VISIBILITY: Label Output. (line 301)
  43658. * TARGET_ASM_BYTE_OP: Data Output. (line 6)
  43659. * TARGET_ASM_CAN_OUTPUT_MI_THUNK: Function Entry. (line 209)
  43660. * TARGET_ASM_CLOSE_PAREN: Data Output. (line 133)
  43661. * TARGET_ASM_CODE_END: File Framework. (line 57)
  43662. * TARGET_ASM_CONSTRUCTOR: Macros for Initialization.
  43663. (line 68)
  43664. * TARGET_ASM_DECLARE_CONSTANT_NAME: Label Output. (line 177)
  43665. * TARGET_ASM_DECL_END: Data Output. (line 38)
  43666. * TARGET_ASM_DESTRUCTOR: Macros for Initialization.
  43667. (line 82)
  43668. * TARGET_ASM_ELF_FLAGS_NUMERIC: File Framework. (line 120)
  43669. * TARGET_ASM_EMIT_EXCEPT_PERSONALITY: Dispatch Tables. (line 80)
  43670. * TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL: Dispatch Tables. (line 73)
  43671. * TARGET_ASM_EMIT_UNWIND_LABEL: Dispatch Tables. (line 61)
  43672. * TARGET_ASM_EXTERNAL_LIBCALL: Label Output. (line 337)
  43673. * TARGET_ASM_FILE_END: File Framework. (line 35)
  43674. * TARGET_ASM_FILE_START: File Framework. (line 8)
  43675. * TARGET_ASM_FILE_START_APP_OFF: File Framework. (line 16)
  43676. * TARGET_ASM_FILE_START_FILE_DIRECTIVE: File Framework. (line 29)
  43677. * TARGET_ASM_FINAL_POSTSCAN_INSN: Instruction Output. (line 82)
  43678. * TARGET_ASM_FUNCTION_BEGIN_EPILOGUE: Function Entry. (line 67)
  43679. * TARGET_ASM_FUNCTION_END_PROLOGUE: Function Entry. (line 61)
  43680. * TARGET_ASM_FUNCTION_EPILOGUE: Function Entry. (line 73)
  43681. * TARGET_ASM_FUNCTION_PROLOGUE: Function Entry. (line 18)
  43682. * TARGET_ASM_FUNCTION_RODATA_SECTION: Sections. (line 218)
  43683. * TARGET_ASM_FUNCTION_SECTION: File Framework. (line 132)
  43684. * TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS: File Framework.
  43685. (line 142)
  43686. * TARGET_ASM_GLOBALIZE_DECL_NAME: Label Output. (line 222)
  43687. * TARGET_ASM_GLOBALIZE_LABEL: Label Output. (line 213)
  43688. * TARGET_ASM_INIT_SECTIONS: Sections. (line 164)
  43689. * TARGET_ASM_INTEGER: Data Output. (line 25)
  43690. * TARGET_ASM_INTERNAL_LABEL: Label Output. (line 380)
  43691. * TARGET_ASM_JUMP_ALIGN_MAX_SKIP: Alignment Output. (line 21)
  43692. * TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP: Alignment Output.
  43693. (line 34)
  43694. * TARGET_ASM_LABEL_ALIGN_MAX_SKIP: Alignment Output. (line 68)
  43695. * TARGET_ASM_LOOP_ALIGN_MAX_SKIP: Alignment Output. (line 53)
  43696. * TARGET_ASM_LTO_END: File Framework. (line 52)
  43697. * TARGET_ASM_LTO_START: File Framework. (line 47)
  43698. * TARGET_ASM_MARK_DECL_PRESERVED: Label Output. (line 343)
  43699. * TARGET_ASM_MERGEABLE_RODATA_PREFIX: Sections. (line 226)
  43700. * TARGET_ASM_NAMED_SECTION: File Framework. (line 112)
  43701. * TARGET_ASM_OPEN_PAREN: Data Output. (line 132)
  43702. * TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA: Data Output. (line 42)
  43703. * TARGET_ASM_OUTPUT_ANCHOR: Anchored Addresses. (line 42)
  43704. * TARGET_ASM_OUTPUT_DWARF_DTPREL: DWARF. (line 121)
  43705. * TARGET_ASM_OUTPUT_IDENT: File Framework. (line 99)
  43706. * TARGET_ASM_OUTPUT_MI_THUNK: Function Entry. (line 167)
  43707. * TARGET_ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 91)
  43708. * TARGET_ASM_PRINT_PATCHABLE_FUNCTION_ENTRY: Function Entry. (line 9)
  43709. * TARGET_ASM_RECORD_GCC_SWITCHES: File Framework. (line 173)
  43710. * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION: File Framework. (line 218)
  43711. * TARGET_ASM_RELOC_RW_MASK: Sections. (line 173)
  43712. * TARGET_ASM_SELECT_RTX_SECTION: Sections. (line 235)
  43713. * TARGET_ASM_SELECT_SECTION: Sections. (line 184)
  43714. * TARGET_ASM_TM_CLONE_TABLE_SECTION: Sections. (line 231)
  43715. * TARGET_ASM_TRAMPOLINE_TEMPLATE: Trampolines. (line 28)
  43716. * TARGET_ASM_TTYPE: Exception Region Output.
  43717. (line 127)
  43718. * TARGET_ASM_UNALIGNED_DI_OP: Data Output. (line 13)
  43719. * TARGET_ASM_UNALIGNED_HI_OP: Data Output. (line 11)
  43720. * TARGET_ASM_UNALIGNED_SI_OP: Data Output. (line 12)
  43721. * TARGET_ASM_UNALIGNED_TI_OP: Data Output. (line 14)
  43722. * TARGET_ASM_UNIQUE_SECTION: Sections. (line 206)
  43723. * TARGET_ASM_UNWIND_EMIT: Dispatch Tables. (line 87)
  43724. * TARGET_ASM_UNWIND_EMIT_BEFORE_INSN: Dispatch Tables. (line 93)
  43725. * TARGET_ATOMIC_ALIGN_FOR_MODE: Misc. (line 1157)
  43726. * TARGET_ATOMIC_ASSIGN_EXPAND_FENV: Misc. (line 1163)
  43727. * TARGET_ATOMIC_TEST_AND_SET_TRUEVAL: Misc. (line 1148)
  43728. * TARGET_ATTRIBUTE_TABLE: Target Attributes. (line 10)
  43729. * TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P: Target Attributes. (line 17)
  43730. * TARGET_BINDS_LOCAL_P: Sections. (line 313)
  43731. * TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED: Misc. (line 929)
  43732. * TARGET_BRANCH_TARGET_REGISTER_CLASS: Misc. (line 922)
  43733. * TARGET_BUILD_BUILTIN_VA_LIST: Register Arguments. (line 289)
  43734. * TARGET_BUILTIN_CHKP_FUNCTION: Misc. (line 647)
  43735. * TARGET_BUILTIN_DECL: Misc. (line 626)
  43736. * TARGET_BUILTIN_RECIPROCAL: Addressing Modes. (line 261)
  43737. * TARGET_BUILTIN_SETJMP_FRAME_VALUE: Frame Layout. (line 101)
  43738. * TARGET_CALLEE_COPIES: Register Arguments. (line 131)
  43739. * TARGET_CALL_ARGS: Varargs. (line 123)
  43740. * TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS: Miscellaneous Register Hooks.
  43741. (line 6)
  43742. * TARGET_CANNOT_FORCE_CONST_MEM: Addressing Modes. (line 234)
  43743. * TARGET_CANNOT_MODIFY_JUMPS_P: Misc. (line 909)
  43744. * TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P: Register Classes. (line 610)
  43745. * TARGET_CANONICALIZE_COMPARISON: MODE_CC Condition Codes.
  43746. (line 55)
  43747. * TARGET_CANONICAL_VA_LIST_TYPE: Register Arguments. (line 310)
  43748. * TARGET_CAN_CHANGE_MODE_CLASS: Register Classes. (line 543)
  43749. * TARGET_CAN_CHANGE_MODE_CLASS and subreg semantics: Regs and Memory.
  43750. (line 294)
  43751. * TARGET_CAN_ELIMINATE: Elimination. (line 58)
  43752. * TARGET_CAN_FOLLOW_JUMP: Misc. (line 818)
  43753. * TARGET_CAN_INLINE_P: Target Attributes. (line 165)
  43754. * TARGET_CAN_USE_DOLOOP_P: Misc. (line 782)
  43755. * TARGET_CASE_VALUES_THRESHOLD: Misc. (line 46)
  43756. * TARGET_CC_MODES_COMPATIBLE: MODE_CC Condition Codes.
  43757. (line 120)
  43758. * TARGET_CHECK_PCH_TARGET_FLAGS: PCH Target. (line 26)
  43759. * TARGET_CHECK_STRING_OBJECT_FORMAT_ARG: Run-time Target. (line 119)
  43760. * TARGET_CHKP_BOUND_MODE: Misc. (line 719)
  43761. * TARGET_CHKP_BOUND_TYPE: Misc. (line 717)
  43762. * TARGET_CHKP_FUNCTION_VALUE_BOUNDS: Varargs. (line 182)
  43763. * TARGET_CHKP_INITIALIZE_BOUNDS: Misc. (line 725)
  43764. * TARGET_CHKP_MAKE_BOUNDS_CONSTANT: Misc. (line 721)
  43765. * TARGET_CLASS_LIKELY_SPILLED_P: Register Classes. (line 499)
  43766. * TARGET_CLASS_MAX_NREGS: Register Classes. (line 515)
  43767. * TARGET_COMMUTATIVE_P: Misc. (line 825)
  43768. * TARGET_COMPARE_BY_PIECES_BRANCH_RATIO: Costs. (line 200)
  43769. * TARGET_COMPARE_VERSION_PRIORITY: Misc. (line 759)
  43770. * TARGET_COMPUTE_FRAME_LAYOUT: Elimination. (line 74)
  43771. * TARGET_COMPUTE_PRESSURE_CLASSES: Register Classes. (line 655)
  43772. * TARGET_COMP_TYPE_ATTRIBUTES: Target Attributes. (line 25)
  43773. * TARGET_CONDITIONAL_REGISTER_USAGE: Register Basics. (line 63)
  43774. * TARGET_CONSTANT_ALIGNMENT: Storage Layout. (line 268)
  43775. * TARGET_CONST_ANCHOR: Misc. (line 1121)
  43776. * TARGET_CONST_NOT_OK_FOR_DEBUG_P: Addressing Modes. (line 230)
  43777. * TARGET_CONVERT_TO_TYPE: Misc. (line 1081)
  43778. * TARGET_CPU_CPP_BUILTINS: Run-time Target. (line 8)
  43779. * TARGET_CSTORE_MODE: Register Classes. (line 647)
  43780. * TARGET_CUSTOM_FUNCTION_DESCRIPTORS: Trampolines. (line 84)
  43781. * TARGET_CXX_ADJUST_CLASS_AT_DEFINITION: C++ ABI. (line 86)
  43782. * TARGET_CXX_CDTOR_RETURNS_THIS: C++ ABI. (line 37)
  43783. * TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT: C++ ABI. (line 61)
  43784. * TARGET_CXX_COOKIE_HAS_SIZE: C++ ABI. (line 24)
  43785. * TARGET_CXX_DECL_MANGLING_CONTEXT: C++ ABI. (line 92)
  43786. * TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY: C++ ABI. (line 52)
  43787. * TARGET_CXX_GET_COOKIE_SIZE: C++ ABI. (line 17)
  43788. * TARGET_CXX_GUARD_MASK_BIT: C++ ABI. (line 11)
  43789. * TARGET_CXX_GUARD_TYPE: C++ ABI. (line 6)
  43790. * TARGET_CXX_IMPLICIT_EXTERN_C: Misc. (line 395)
  43791. * TARGET_CXX_IMPORT_EXPORT_CLASS: C++ ABI. (line 28)
  43792. * TARGET_CXX_KEY_METHOD_MAY_BE_INLINE: C++ ABI. (line 42)
  43793. * TARGET_CXX_LIBRARY_RTTI_COMDAT: C++ ABI. (line 68)
  43794. * TARGET_CXX_USE_AEABI_ATEXIT: C++ ABI. (line 73)
  43795. * TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT: C++ ABI. (line 79)
  43796. * TARGET_C_EXCESS_PRECISION: Storage Layout. (line 109)
  43797. * TARGET_C_PREINCLUDE: Misc. (line 383)
  43798. * TARGET_DEBUG_UNWIND_INFO: DWARF. (line 32)
  43799. * TARGET_DECIMAL_FLOAT_SUPPORTED_P: Storage Layout. (line 534)
  43800. * TARGET_DECLSPEC: Target Attributes. (line 72)
  43801. * TARGET_DEFAULT_PACK_STRUCT: Misc. (line 468)
  43802. * TARGET_DEFAULT_SHORT_ENUMS: Type Layout. (line 123)
  43803. * TARGET_DEFAULT_TARGET_FLAGS: Run-time Target. (line 55)
  43804. * TARGET_DEFERRED_OUTPUT_DEFS: Label Output. (line 465)
  43805. * TARGET_DELAY_SCHED2: DWARF. (line 77)
  43806. * TARGET_DELAY_VARTRACK: DWARF. (line 81)
  43807. * TARGET_DELEGITIMIZE_ADDRESS: Addressing Modes. (line 221)
  43808. * TARGET_DIFFERENT_ADDR_DISPLACEMENT_P: Register Classes. (line 603)
  43809. * TARGET_DLLIMPORT_DECL_ATTRIBUTES: Target Attributes. (line 55)
  43810. * TARGET_DWARF_CALLING_CONVENTION: DWARF. (line 12)
  43811. * TARGET_DWARF_FRAME_REG_MODE: Exception Region Output.
  43812. (line 113)
  43813. * TARGET_DWARF_HANDLE_FRAME_UNSPEC: Frame Layout. (line 165)
  43814. * TARGET_DWARF_POLY_INDETERMINATE_VALUE: Frame Layout. (line 177)
  43815. * TARGET_DWARF_REGISTER_SPAN: Exception Region Output.
  43816. (line 104)
  43817. * TARGET_EDOM: Library Calls. (line 59)
  43818. * TARGET_EMPTY_RECORD_P: Aggregate Return. (line 86)
  43819. * TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS: Emulated TLS. (line 67)
  43820. * TARGET_EMUTLS_GET_ADDRESS: Emulated TLS. (line 18)
  43821. * TARGET_EMUTLS_REGISTER_COMMON: Emulated TLS. (line 23)
  43822. * TARGET_EMUTLS_TMPL_PREFIX: Emulated TLS. (line 44)
  43823. * TARGET_EMUTLS_TMPL_SECTION: Emulated TLS. (line 35)
  43824. * TARGET_EMUTLS_VAR_ALIGN_FIXED: Emulated TLS. (line 62)
  43825. * TARGET_EMUTLS_VAR_FIELDS: Emulated TLS. (line 48)
  43826. * TARGET_EMUTLS_VAR_INIT: Emulated TLS. (line 55)
  43827. * TARGET_EMUTLS_VAR_PREFIX: Emulated TLS. (line 40)
  43828. * TARGET_EMUTLS_VAR_SECTION: Emulated TLS. (line 30)
  43829. * TARGET_ENCODE_SECTION_INFO: Sections. (line 256)
  43830. * TARGET_ENCODE_SECTION_INFO and address validation: Addressing Modes.
  43831. (line 82)
  43832. * TARGET_ENCODE_SECTION_INFO usage: Instruction Output. (line 127)
  43833. * TARGET_END_CALL_ARGS: Varargs. (line 137)
  43834. * TARGET_ENUM_VA_LIST_P: Register Arguments. (line 293)
  43835. * TARGET_ESTIMATED_POLY_VALUE: Costs. (line 425)
  43836. * TARGET_EXCEPT_UNWIND_INFO: Exception Region Output.
  43837. (line 46)
  43838. * TARGET_EXECUTABLE_SUFFIX: Misc. (line 883)
  43839. * TARGET_EXPAND_BUILTIN: Misc. (line 636)
  43840. * TARGET_EXPAND_BUILTIN_SAVEREGS: Varargs. (line 64)
  43841. * TARGET_EXPAND_DIVMOD_LIBFUNC: Scheduling. (line 461)
  43842. * TARGET_EXPAND_TO_RTL_HOOK: Storage Layout. (line 540)
  43843. * TARGET_EXPR: Unary and Binary Expressions.
  43844. (line 6)
  43845. * TARGET_EXTRA_INCLUDES: Misc. (line 996)
  43846. * TARGET_EXTRA_LIVE_ON_ENTRY: Tail Calls. (line 20)
  43847. * TARGET_EXTRA_PRE_INCLUDES: Misc. (line 1003)
  43848. * TARGET_FIXED_CONDITION_CODE_REGS: MODE_CC Condition Codes.
  43849. (line 105)
  43850. * TARGET_FIXED_POINT_SUPPORTED_P: Storage Layout. (line 537)
  43851. * target_flags: Run-time Target. (line 51)
  43852. * TARGET_FLAGS_REGNUM: MODE_CC Condition Codes.
  43853. (line 133)
  43854. * TARGET_FLOATN_BUILTIN_P: Register Arguments. (line 414)
  43855. * TARGET_FLOATN_MODE: Register Arguments. (line 396)
  43856. * TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P: Run-time Target.
  43857. (line 183)
  43858. * TARGET_FN_ABI_VA_LIST: Register Arguments. (line 305)
  43859. * TARGET_FOLD_BUILTIN: Misc. (line 742)
  43860. * TARGET_FORMAT_TYPES: Misc. (line 1024)
  43861. * TARGET_FRAME_POINTER_REQUIRED: Elimination. (line 8)
  43862. * TARGET_FUNCTION_ARG: Register Arguments. (line 10)
  43863. * TARGET_FUNCTION_ARG_ADVANCE: Register Arguments. (line 202)
  43864. * TARGET_FUNCTION_ARG_BOUNDARY: Register Arguments. (line 256)
  43865. * TARGET_FUNCTION_ARG_OFFSET: Register Arguments. (line 214)
  43866. * TARGET_FUNCTION_ARG_PADDING: Register Arguments. (line 222)
  43867. * TARGET_FUNCTION_ARG_ROUND_BOUNDARY: Register Arguments. (line 262)
  43868. * TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P: Target Attributes. (line 93)
  43869. * TARGET_FUNCTION_INCOMING_ARG: Register Arguments. (line 71)
  43870. * TARGET_FUNCTION_OK_FOR_SIBCALL: Tail Calls. (line 6)
  43871. * TARGET_FUNCTION_VALUE: Scalar Return. (line 9)
  43872. * TARGET_FUNCTION_VALUE_REGNO_P: Scalar Return. (line 96)
  43873. * TARGET_GENERATE_VERSION_DISPATCHER_BODY: Misc. (line 775)
  43874. * TARGET_GEN_CCMP_FIRST: Misc. (line 949)
  43875. * TARGET_GEN_CCMP_NEXT: Misc. (line 960)
  43876. * TARGET_GET_DRAP_RTX: Misc. (line 1104)
  43877. * TARGET_GET_FUNCTION_VERSIONS_DISPATCHER: Misc. (line 768)
  43878. * TARGET_GET_PCH_VALIDITY: PCH Target. (line 6)
  43879. * TARGET_GET_RAW_ARG_MODE: Aggregate Return. (line 81)
  43880. * TARGET_GET_RAW_RESULT_MODE: Aggregate Return. (line 76)
  43881. * TARGET_GIMPLE_FOLD_BUILTIN: Misc. (line 752)
  43882. * TARGET_GIMPLIFY_VA_ARG_EXPR: Register Arguments. (line 315)
  43883. * TARGET_GOACC_DIM_LIMIT: Addressing Modes. (line 499)
  43884. * TARGET_GOACC_FORK_JOIN: Addressing Modes. (line 503)
  43885. * TARGET_GOACC_REDUCTION: Addressing Modes. (line 514)
  43886. * TARGET_GOACC_VALIDATE_DIMS: Addressing Modes. (line 486)
  43887. * TARGET_HANDLE_C_OPTION: Run-time Target. (line 73)
  43888. * TARGET_HANDLE_OPTION: Run-time Target. (line 59)
  43889. * TARGET_HARD_REGNO_CALL_PART_CLOBBERED: Register Basics. (line 52)
  43890. * TARGET_HARD_REGNO_MODE_OK: Values in Registers.
  43891. (line 54)
  43892. * TARGET_HARD_REGNO_NREGS: Values in Registers.
  43893. (line 10)
  43894. * TARGET_HARD_REGNO_SCRATCH_OK: Values in Registers.
  43895. (line 139)
  43896. * TARGET_HAS_IFUNC_P: Misc. (line 1152)
  43897. * TARGET_HAS_NO_HW_DIVIDE: Library Calls. (line 52)
  43898. * TARGET_HAVE_CONDITIONAL_EXECUTION: Misc. (line 943)
  43899. * TARGET_HAVE_CTORS_DTORS: Macros for Initialization.
  43900. (line 63)
  43901. * TARGET_HAVE_NAMED_SECTIONS: File Framework. (line 150)
  43902. * TARGET_HAVE_SRODATA_SECTION: Sections. (line 302)
  43903. * TARGET_HAVE_SWITCHABLE_BSS_SECTIONS: File Framework. (line 155)
  43904. * TARGET_HAVE_TLS: Sections. (line 322)
  43905. * TARGET_INIT_BUILTINS: Misc. (line 610)
  43906. * TARGET_INIT_DWARF_REG_SIZES_EXTRA: Exception Region Output.
  43907. (line 119)
  43908. * TARGET_INIT_LIBFUNCS: Library Calls. (line 15)
  43909. * TARGET_INIT_PIC_REG: Register Arguments. (line 95)
  43910. * TARGET_INSERT_ATTRIBUTES: Target Attributes. (line 80)
  43911. * TARGET_INSN_COST: Costs. (line 380)
  43912. * TARGET_INSTANTIATE_DECLS: Storage Layout. (line 548)
  43913. * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN: Misc. (line 1048)
  43914. * TARGET_INVALID_BINARY_OP: Misc. (line 1067)
  43915. * TARGET_INVALID_CONVERSION: Misc. (line 1054)
  43916. * TARGET_INVALID_UNARY_OP: Misc. (line 1060)
  43917. * TARGET_INVALID_WITHIN_DOLOOP: Misc. (line 799)
  43918. * TARGET_IN_SMALL_DATA_P: Sections. (line 298)
  43919. * TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS: Register Classes. (line 570)
  43920. * TARGET_KEEP_LEAF_WHEN_PROFILED: Profiling. (line 39)
  43921. * TARGET_LEGITIMATE_ADDRESS_P: Addressing Modes. (line 48)
  43922. * TARGET_LEGITIMATE_COMBINED_INSN: Misc. (line 813)
  43923. * TARGET_LEGITIMATE_CONSTANT_P: Addressing Modes. (line 213)
  43924. * TARGET_LEGITIMIZE_ADDRESS: Addressing Modes. (line 129)
  43925. * TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT: Register Classes. (line 618)
  43926. * TARGET_LIBCALL_VALUE: Scalar Return. (line 65)
  43927. * TARGET_LIBC_HAS_FUNCTION: Library Calls. (line 77)
  43928. * TARGET_LIBFUNC_GNU_PREFIX: Library Calls. (line 24)
  43929. * TARGET_LIBGCC_CMP_RETURN_MODE: Storage Layout. (line 490)
  43930. * TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P: Register Arguments.
  43931. (line 388)
  43932. * TARGET_LIBGCC_SDATA_SECTION: Sections. (line 136)
  43933. * TARGET_LIBGCC_SHIFT_COUNT_MODE: Storage Layout. (line 496)
  43934. * TARGET_LIB_INT_CMP_BIASED: Library Calls. (line 42)
  43935. * TARGET_LOAD_BOUNDS_FOR_ARG: Varargs. (line 153)
  43936. * TARGET_LOAD_RETURNED_BOUNDS: Varargs. (line 172)
  43937. * TARGET_LOOP_UNROLL_ADJUST: Misc. (line 977)
  43938. * TARGET_LRA_P: Register Classes. (line 577)
  43939. * TARGET_MACHINE_DEPENDENT_REORG: Misc. (line 595)
  43940. * TARGET_MANGLE_ASSEMBLER_NAME: Label Output. (line 356)
  43941. * TARGET_MANGLE_DECL_ASSEMBLER_NAME: Sections. (line 246)
  43942. * TARGET_MANGLE_TYPE: Storage Layout. (line 552)
  43943. * TARGET_MAX_ANCHOR_OFFSET: Anchored Addresses. (line 38)
  43944. * TARGET_MAX_NOCE_IFCVT_SEQ_COST: Costs. (line 390)
  43945. * TARGET_MD_ASM_ADJUST: Misc. (line 513)
  43946. * TARGET_MEMBER_TYPE_FORCES_BLK: Storage Layout. (line 442)
  43947. * TARGET_MEMMODEL_CHECK: Misc. (line 1143)
  43948. * TARGET_MEMORY_MOVE_COST: Costs. (line 79)
  43949. * TARGET_MEM_CONSTRAINT: Addressing Modes. (line 107)
  43950. * TARGET_MEM_REF: Storage References. (line 6)
  43951. * TARGET_MERGE_DECL_ATTRIBUTES: Target Attributes. (line 45)
  43952. * TARGET_MERGE_TYPE_ATTRIBUTES: Target Attributes. (line 37)
  43953. * TARGET_MIN_ANCHOR_OFFSET: Anchored Addresses. (line 32)
  43954. * TARGET_MIN_ARITHMETIC_PRECISION: Misc. (line 63)
  43955. * TARGET_MIN_DIVISIONS_FOR_RECIP_MUL: Misc. (line 112)
  43956. * TARGET_MODES_TIEABLE_P: Values in Registers.
  43957. (line 123)
  43958. * TARGET_MODE_AFTER: Mode Switching. (line 57)
  43959. * TARGET_MODE_DEPENDENT_ADDRESS_P: Addressing Modes. (line 196)
  43960. * TARGET_MODE_EMIT: Mode Switching. (line 42)
  43961. * TARGET_MODE_ENTRY: Mode Switching. (line 64)
  43962. * TARGET_MODE_EXIT: Mode Switching. (line 71)
  43963. * TARGET_MODE_NEEDED: Mode Switching. (line 50)
  43964. * TARGET_MODE_PRIORITY: Mode Switching. (line 78)
  43965. * TARGET_MODE_REP_EXTENDED: Misc. (line 197)
  43966. * TARGET_MS_BITFIELD_LAYOUT_P: Storage Layout. (line 506)
  43967. * TARGET_MUST_PASS_IN_STACK: Register Arguments. (line 64)
  43968. * TARGET_MUST_PASS_IN_STACK, and TARGET_FUNCTION_ARG: Register Arguments.
  43969. (line 56)
  43970. * TARGET_NARROW_VOLATILE_BITFIELD: Storage Layout. (line 435)
  43971. * TARGET_NOCE_CONVERSION_PROFITABLE_P: Costs. (line 409)
  43972. * TARGET_NO_REGISTER_ALLOCATION: DWARF. (line 85)
  43973. * TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P: Costs. (line 415)
  43974. * TARGET_N_FORMAT_TYPES: Misc. (line 1029)
  43975. * TARGET_OBJC_CONSTRUCT_STRING_OBJECT: Run-time Target. (line 88)
  43976. * TARGET_OBJC_DECLARE_CLASS_DEFINITION: Run-time Target. (line 109)
  43977. * TARGET_OBJC_DECLARE_UNRESOLVED_CLASS_REFERENCE: Run-time Target.
  43978. (line 104)
  43979. * TARGET_OBJECT_SUFFIX: Misc. (line 878)
  43980. * TARGET_OBJFMT_CPP_BUILTINS: Run-time Target. (line 45)
  43981. * TARGET_OFFLOAD_OPTIONS: Misc. (line 1186)
  43982. * TARGET_OMIT_STRUCT_RETURN_REG: Scalar Return. (line 117)
  43983. * TARGET_OPTAB_SUPPORTED_P: Costs. (line 299)
  43984. * TARGET_OPTF: Misc. (line 1011)
  43985. * TARGET_OPTION_DEFAULT_PARAMS: Run-time Target. (line 160)
  43986. * TARGET_OPTION_FUNCTION_VERSIONS: Target Attributes. (line 157)
  43987. * TARGET_OPTION_INIT_STRUCT: Run-time Target. (line 156)
  43988. * TARGET_OPTION_OPTIMIZATION_TABLE: Run-time Target. (line 142)
  43989. * TARGET_OPTION_OVERRIDE: Target Attributes. (line 144)
  43990. * TARGET_OPTION_POST_STREAM_IN: Target Attributes. (line 125)
  43991. * TARGET_OPTION_PRAGMA_PARSE: Target Attributes. (line 137)
  43992. * TARGET_OPTION_PRINT: Target Attributes. (line 131)
  43993. * TARGET_OPTION_RESTORE: Target Attributes. (line 119)
  43994. * TARGET_OPTION_SAVE: Target Attributes. (line 112)
  43995. * TARGET_OPTION_VALID_ATTRIBUTE_P: Target Attributes. (line 100)
  43996. * TARGET_OS_CPP_BUILTINS: Run-time Target. (line 41)
  43997. * TARGET_OVERRIDES_FORMAT_ATTRIBUTES: Misc. (line 1033)
  43998. * TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT: Misc. (line 1039)
  43999. * TARGET_OVERRIDES_FORMAT_INIT: Misc. (line 1043)
  44000. * TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE: Run-time Target. (line 126)
  44001. * TARGET_PASS_BY_REFERENCE: Register Arguments. (line 119)
  44002. * TARGET_PCH_VALID_P: PCH Target. (line 11)
  44003. * TARGET_POSIX_IO: Misc. (line 539)
  44004. * TARGET_PREFERRED_OUTPUT_RELOAD_CLASS: Register Classes. (line 284)
  44005. * TARGET_PREFERRED_RELOAD_CLASS: Register Classes. (line 213)
  44006. * TARGET_PREFERRED_RENAME_CLASS: Register Classes. (line 201)
  44007. * TARGET_PREPARE_PCH_SAVE: PCH Target. (line 34)
  44008. * TARGET_PRETEND_OUTGOING_VARARGS_NAMED: Varargs. (line 144)
  44009. * TARGET_PROFILE_BEFORE_PROLOGUE: Sections. (line 306)
  44010. * TARGET_PROMOTED_TYPE: Misc. (line 1073)
  44011. * TARGET_PROMOTE_FUNCTION_MODE: Storage Layout. (line 126)
  44012. * TARGET_PROMOTE_PROTOTYPES: Stack Arguments. (line 10)
  44013. * TARGET_PTRMEMFUNC_VBIT_LOCATION: Type Layout. (line 250)
  44014. * TARGET_RECORD_OFFLOAD_SYMBOL: Misc. (line 1181)
  44015. * TARGET_REF_MAY_ALIAS_ERRNO: Register Arguments. (line 326)
  44016. * TARGET_REGISTER_MOVE_COST: Costs. (line 31)
  44017. * TARGET_REGISTER_PRIORITY: Register Classes. (line 582)
  44018. * TARGET_REGISTER_USAGE_LEVELING_P: Register Classes. (line 593)
  44019. * TARGET_RELAYOUT_FUNCTION: Target Attributes. (line 172)
  44020. * TARGET_RESET_LOCATION_VIEW: DWARF. (line 57)
  44021. * TARGET_RESOLVE_OVERLOADED_BUILTIN: Misc. (line 731)
  44022. * TARGET_RETURN_IN_MEMORY: Aggregate Return. (line 15)
  44023. * TARGET_RETURN_IN_MSB: Scalar Return. (line 124)
  44024. * TARGET_RETURN_POPS_ARGS: Stack Arguments. (line 98)
  44025. * TARGET_RTX_COSTS: Costs. (line 313)
  44026. * TARGET_RUN_TARGET_SELFTESTS: Misc. (line 1235)
  44027. * TARGET_SCALAR_MODE_SUPPORTED_P: Register Arguments. (line 333)
  44028. * TARGET_SCHED_ADJUST_COST: Scheduling. (line 35)
  44029. * TARGET_SCHED_ADJUST_PRIORITY: Scheduling. (line 50)
  44030. * TARGET_SCHED_ALLOC_SCHED_CONTEXT: Scheduling. (line 294)
  44031. * TARGET_SCHED_CAN_SPECULATE_INSN: Scheduling. (line 354)
  44032. * TARGET_SCHED_CLEAR_SCHED_CONTEXT: Scheduling. (line 309)
  44033. * TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK: Scheduling. (line 101)
  44034. * TARGET_SCHED_DFA_NEW_CYCLE: Scheduling. (line 255)
  44035. * TARGET_SCHED_DFA_POST_ADVANCE_CYCLE: Scheduling. (line 172)
  44036. * TARGET_SCHED_DFA_POST_CYCLE_INSN: Scheduling. (line 156)
  44037. * TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE: Scheduling. (line 165)
  44038. * TARGET_SCHED_DFA_PRE_CYCLE_INSN: Scheduling. (line 144)
  44039. * TARGET_SCHED_DISPATCH: Scheduling. (line 370)
  44040. * TARGET_SCHED_DISPATCH_DO: Scheduling. (line 375)
  44041. * TARGET_SCHED_EXPOSED_PIPELINE: Scheduling. (line 379)
  44042. * TARGET_SCHED_FINISH: Scheduling. (line 122)
  44043. * TARGET_SCHED_FINISH_GLOBAL: Scheduling. (line 137)
  44044. * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK: Scheduling. (line 235)
  44045. * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN: Scheduling. (line 223)
  44046. * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD: Scheduling.
  44047. (line 179)
  44048. * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD: Scheduling.
  44049. (line 207)
  44050. * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END: Scheduling. (line 240)
  44051. * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI: Scheduling. (line 250)
  44052. * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT: Scheduling. (line 245)
  44053. * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE: Scheduling. (line 229)
  44054. * TARGET_SCHED_FREE_SCHED_CONTEXT: Scheduling. (line 313)
  44055. * TARGET_SCHED_FUSION_PRIORITY: Scheduling. (line 389)
  44056. * TARGET_SCHED_GEN_SPEC_CHECK: Scheduling. (line 335)
  44057. * TARGET_SCHED_H_I_D_EXTENDED: Scheduling. (line 289)
  44058. * TARGET_SCHED_INIT: Scheduling. (line 111)
  44059. * TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN: Scheduling. (line 161)
  44060. * TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN: Scheduling. (line 153)
  44061. * TARGET_SCHED_INIT_GLOBAL: Scheduling. (line 129)
  44062. * TARGET_SCHED_INIT_SCHED_CONTEXT: Scheduling. (line 298)
  44063. * TARGET_SCHED_ISSUE_RATE: Scheduling. (line 11)
  44064. * TARGET_SCHED_IS_COSTLY_DEPENDENCE: Scheduling. (line 267)
  44065. * TARGET_SCHED_MACRO_FUSION_P: Scheduling. (line 87)
  44066. * TARGET_SCHED_MACRO_FUSION_PAIR_P: Scheduling. (line 91)
  44067. * TARGET_SCHED_NEEDS_BLOCK_P: Scheduling. (line 328)
  44068. * TARGET_SCHED_REASSOCIATION_WIDTH: Scheduling. (line 384)
  44069. * TARGET_SCHED_REORDER: Scheduling. (line 58)
  44070. * TARGET_SCHED_REORDER2: Scheduling. (line 75)
  44071. * TARGET_SCHED_SET_SCHED_CONTEXT: Scheduling. (line 305)
  44072. * TARGET_SCHED_SET_SCHED_FLAGS: Scheduling. (line 347)
  44073. * TARGET_SCHED_SMS_RES_MII: Scheduling. (line 361)
  44074. * TARGET_SCHED_SPECULATE_INSN: Scheduling. (line 316)
  44075. * TARGET_SCHED_VARIABLE_ISSUE: Scheduling. (line 22)
  44076. * TARGET_SECONDARY_MEMORY_NEEDED: Register Classes. (line 447)
  44077. * TARGET_SECONDARY_MEMORY_NEEDED_MODE: Register Classes. (line 466)
  44078. * TARGET_SECONDARY_RELOAD: Register Classes. (line 312)
  44079. * TARGET_SECTION_TYPE_FLAGS: File Framework. (line 160)
  44080. * TARGET_SELECT_EARLY_REMAT_MODES: Register Classes. (line 488)
  44081. * TARGET_SETUP_INCOMING_VARARGS: Varargs. (line 71)
  44082. * TARGET_SETUP_INCOMING_VARARG_BOUNDS: Varargs. (line 188)
  44083. * TARGET_SET_CURRENT_FUNCTION: Misc. (line 860)
  44084. * TARGET_SET_DEFAULT_TYPE_ATTRIBUTES: Target Attributes. (line 33)
  44085. * TARGET_SET_UP_BY_PROLOGUE: Tail Calls. (line 29)
  44086. * TARGET_SHIFT_TRUNCATION_MASK: Misc. (line 160)
  44087. * TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB: Shrink-wrapping separate components.
  44088. (line 36)
  44089. * TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS: Shrink-wrapping separate components.
  44090. (line 43)
  44091. * TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS: Shrink-wrapping separate components.
  44092. (line 54)
  44093. * TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS: Shrink-wrapping separate components.
  44094. (line 50)
  44095. * TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS: Shrink-wrapping separate components.
  44096. (line 27)
  44097. * TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS: Shrink-wrapping separate components.
  44098. (line 58)
  44099. * TARGET_SIMD_CLONE_ADJUST: Addressing Modes. (line 473)
  44100. * TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN: Addressing Modes.
  44101. (line 465)
  44102. * TARGET_SIMD_CLONE_USABLE: Addressing Modes. (line 477)
  44103. * TARGET_SIMT_VF: Addressing Modes. (line 483)
  44104. * TARGET_SLOW_UNALIGNED_ACCESS: Costs. (line 132)
  44105. * TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P: Register Arguments.
  44106. (line 424)
  44107. * TARGET_SPILL_CLASS: Register Classes. (line 632)
  44108. * TARGET_SPLIT_COMPLEX_ARG: Register Arguments. (line 277)
  44109. * TARGET_STACK_CLASH_PROTECTION_FINAL_DYNAMIC_PROBE: Stack Checking.
  44110. (line 97)
  44111. * TARGET_STACK_PROTECT_FAIL: Stack Smashing Protection.
  44112. (line 16)
  44113. * TARGET_STACK_PROTECT_GUARD: Stack Smashing Protection.
  44114. (line 6)
  44115. * TARGET_STACK_PROTECT_RUNTIME_ENABLED_P: Stack Smashing Protection.
  44116. (line 25)
  44117. * TARGET_STARTING_FRAME_OFFSET: Frame Layout. (line 34)
  44118. * TARGET_STARTING_FRAME_OFFSET and virtual registers: Regs and Memory.
  44119. (line 74)
  44120. * TARGET_STATIC_CHAIN: Frame Registers. (line 90)
  44121. * TARGET_STATIC_RTX_ALIGNMENT: Storage Layout. (line 240)
  44122. * TARGET_STORE_BOUNDS_FOR_ARG: Varargs. (line 163)
  44123. * TARGET_STORE_RETURNED_BOUNDS: Varargs. (line 177)
  44124. * TARGET_STRICT_ARGUMENT_NAMING: Varargs. (line 107)
  44125. * TARGET_STRING_OBJECT_REF_TYPE_P: Run-time Target. (line 114)
  44126. * TARGET_STRIP_NAME_ENCODING: Sections. (line 293)
  44127. * TARGET_STRUCT_VALUE_RTX: Aggregate Return. (line 44)
  44128. * TARGET_SUPPORTS_SPLIT_STACK: Stack Smashing Protection.
  44129. (line 30)
  44130. * TARGET_SUPPORTS_WEAK: Label Output. (line 272)
  44131. * TARGET_SUPPORTS_WIDE_INT: Misc. (line 1194)
  44132. * TARGET_TERMINATE_DW2_EH_FRAME_INFO: Exception Region Output.
  44133. (line 98)
  44134. * TARGET_TRAMPOLINE_ADJUST_ADDRESS: Trampolines. (line 74)
  44135. * TARGET_TRAMPOLINE_INIT: Trampolines. (line 54)
  44136. * TARGET_TRULY_NOOP_TRUNCATION: Misc. (line 184)
  44137. * TARGET_UNSPEC_MAY_TRAP_P: Misc. (line 851)
  44138. * TARGET_UNWIND_TABLES_DEFAULT: Exception Region Output.
  44139. (line 73)
  44140. * TARGET_UNWIND_WORD_MODE: Storage Layout. (line 502)
  44141. * TARGET_UPDATE_STACK_BOUNDARY: Misc. (line 1100)
  44142. * TARGET_USES_WEAK_UNWIND_INFO: Exception Handling. (line 123)
  44143. * TARGET_USE_ANCHORS_FOR_SYMBOL_P: Anchored Addresses. (line 53)
  44144. * TARGET_USE_BLOCKS_FOR_CONSTANT_P: Addressing Modes. (line 248)
  44145. * TARGET_USE_BLOCKS_FOR_DECL_P: Addressing Modes. (line 255)
  44146. * TARGET_USE_BY_PIECES_INFRASTRUCTURE_P: Costs. (line 165)
  44147. * TARGET_USE_PSEUDO_PIC_REG: Register Arguments. (line 91)
  44148. * TARGET_VALID_DLLIMPORT_ATTRIBUTE_P: Target Attributes. (line 66)
  44149. * TARGET_VALID_POINTER_MODE: Register Arguments. (line 321)
  44150. * TARGET_VECTORIZE_ADD_STMT_COST: Addressing Modes. (line 428)
  44151. * TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES: Addressing Modes.
  44152. (line 388)
  44153. * TARGET_VECTORIZE_BUILTIN_CONVERSION: Addressing Modes. (line 336)
  44154. * TARGET_VECTORIZE_BUILTIN_GATHER: Addressing Modes. (line 451)
  44155. * TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD: Addressing Modes. (line 266)
  44156. * TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION: Addressing Modes.
  44157. (line 356)
  44158. * TARGET_VECTORIZE_BUILTIN_SCATTER: Addressing Modes. (line 458)
  44159. * TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST: Addressing Modes.
  44160. (line 292)
  44161. * TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION: Addressing Modes.
  44162. (line 348)
  44163. * TARGET_VECTORIZE_DESTROY_COST_DATA: Addressing Modes. (line 446)
  44164. * TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE: Addressing Modes.
  44165. (line 412)
  44166. * TARGET_VECTORIZE_FINISH_COST: Addressing Modes. (line 439)
  44167. * TARGET_VECTORIZE_GET_MASK_MODE: Addressing Modes. (line 400)
  44168. * TARGET_VECTORIZE_INIT_COST: Addressing Modes. (line 419)
  44169. * TARGET_VECTORIZE_PREFERRED_SIMD_MODE: Addressing Modes. (line 373)
  44170. * TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT: Addressing Modes.
  44171. (line 298)
  44172. * TARGET_VECTORIZE_SPLIT_REDUCTION: Addressing Modes. (line 380)
  44173. * TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT: Addressing Modes.
  44174. (line 363)
  44175. * TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE: Addressing Modes.
  44176. (line 310)
  44177. * TARGET_VECTORIZE_VEC_PERM_CONST: Addressing Modes. (line 316)
  44178. * TARGET_VECTOR_ALIGNMENT: Storage Layout. (line 295)
  44179. * TARGET_VECTOR_MODE_SUPPORTED_P: Register Arguments. (line 344)
  44180. * TARGET_VTABLE_DATA_ENTRY_DISTANCE: Type Layout. (line 303)
  44181. * TARGET_VTABLE_ENTRY_ALIGN: Type Layout. (line 297)
  44182. * TARGET_VTABLE_USES_DESCRIPTORS: Type Layout. (line 286)
  44183. * TARGET_WANT_DEBUG_PUB_SECTIONS: DWARF. (line 72)
  44184. * TARGET_WARN_FUNC_RETURN: Tail Calls. (line 35)
  44185. * TARGET_WARN_PARAMETER_PASSING_ABI: Aggregate Return. (line 90)
  44186. * TARGET_WEAK_NOT_IN_ARCHIVE_TOC: Label Output. (line 308)
  44187. * TCmode: Machine Modes. (line 199)
  44188. * TDmode: Machine Modes. (line 97)
  44189. * TEMPLATE_DECL: Declarations. (line 6)
  44190. * Temporaries: Temporaries. (line 6)
  44191. * termination routines: Initialization. (line 6)
  44192. * testing constraints: C Constraint Interface.
  44193. (line 6)
  44194. * TEXT_SECTION_ASM_OP: Sections. (line 37)
  44195. * TFmode: Machine Modes. (line 101)
  44196. * The Language: The Language. (line 6)
  44197. * THEN_CLAUSE: Statements for C++. (line 6)
  44198. * THREAD_MODEL_SPEC: Driver. (line 162)
  44199. * THROW_EXPR: Unary and Binary Expressions.
  44200. (line 6)
  44201. * THUNK_DECL: Declarations. (line 6)
  44202. * THUNK_DELTA: Declarations. (line 6)
  44203. * TImode: Machine Modes. (line 48)
  44204. * TImode, in insn: Insns. (line 291)
  44205. * TLS_COMMON_ASM_OP: Sections. (line 80)
  44206. * TLS_SECTION_ASM_FLAG: Sections. (line 85)
  44207. * tm.h macros: Target Macros. (line 6)
  44208. * TQFmode: Machine Modes. (line 65)
  44209. * TQmode: Machine Modes. (line 122)
  44210. * trampolines for nested functions: Trampolines. (line 6)
  44211. * TRAMPOLINE_ALIGNMENT: Trampolines. (line 48)
  44212. * TRAMPOLINE_SECTION: Trampolines. (line 39)
  44213. * TRAMPOLINE_SIZE: Trampolines. (line 44)
  44214. * TRANSFER_FROM_TRAMPOLINE: Trampolines. (line 129)
  44215. * trap instruction pattern: Standard Names. (line 1943)
  44216. * tree: Tree overview. (line 6)
  44217. * tree <1>: Macros and Functions.
  44218. (line 6)
  44219. * Tree SSA: Tree SSA. (line 6)
  44220. * TREE_CHAIN: Macros and Functions.
  44221. (line 6)
  44222. * TREE_CODE: Tree overview. (line 6)
  44223. * tree_fits_shwi_p: Constant expressions.
  44224. (line 6)
  44225. * tree_fits_uhwi_p: Constant expressions.
  44226. (line 6)
  44227. * TREE_INT_CST_ELT: Constant expressions.
  44228. (line 6)
  44229. * tree_int_cst_equal: Constant expressions.
  44230. (line 6)
  44231. * TREE_INT_CST_LOW: Constant expressions.
  44232. (line 6)
  44233. * tree_int_cst_lt: Constant expressions.
  44234. (line 6)
  44235. * TREE_INT_CST_NUNITS: Constant expressions.
  44236. (line 6)
  44237. * TREE_LIST: Containers. (line 6)
  44238. * TREE_OPERAND: Expression trees. (line 6)
  44239. * TREE_PUBLIC: Function Basics. (line 6)
  44240. * TREE_PUBLIC <1>: Function Properties.
  44241. (line 28)
  44242. * TREE_PURPOSE: Containers. (line 6)
  44243. * TREE_READONLY: Function Properties.
  44244. (line 37)
  44245. * tree_size: Macros and Functions.
  44246. (line 13)
  44247. * TREE_STATIC: Function Properties.
  44248. (line 31)
  44249. * TREE_STRING_LENGTH: Constant expressions.
  44250. (line 6)
  44251. * TREE_STRING_POINTER: Constant expressions.
  44252. (line 6)
  44253. * TREE_THIS_VOLATILE: Function Properties.
  44254. (line 34)
  44255. * tree_to_shwi: Constant expressions.
  44256. (line 6)
  44257. * tree_to_uhwi: Constant expressions.
  44258. (line 6)
  44259. * TREE_TYPE: Macros and Functions.
  44260. (line 6)
  44261. * TREE_TYPE <1>: Types. (line 6)
  44262. * TREE_TYPE <2>: Working with declarations.
  44263. (line 11)
  44264. * TREE_TYPE <3>: Expression trees. (line 6)
  44265. * TREE_TYPE <4>: Expression trees. (line 17)
  44266. * TREE_TYPE <5>: Function Basics. (line 47)
  44267. * TREE_TYPE <6>: Types for C++. (line 6)
  44268. * TREE_VALUE: Containers. (line 6)
  44269. * TREE_VEC: Containers. (line 6)
  44270. * TREE_VEC_ELT: Containers. (line 6)
  44271. * TREE_VEC_LENGTH: Containers. (line 6)
  44272. * truncate: Conversions. (line 38)
  44273. * truncMN2 instruction pattern: Standard Names. (line 1278)
  44274. * TRUNC_DIV_EXPR: Unary and Binary Expressions.
  44275. (line 6)
  44276. * TRUNC_MOD_EXPR: Unary and Binary Expressions.
  44277. (line 6)
  44278. * TRUTH_ANDIF_EXPR: Unary and Binary Expressions.
  44279. (line 6)
  44280. * TRUTH_AND_EXPR: Unary and Binary Expressions.
  44281. (line 6)
  44282. * TRUTH_NOT_EXPR: Unary and Binary Expressions.
  44283. (line 6)
  44284. * TRUTH_ORIF_EXPR: Unary and Binary Expressions.
  44285. (line 6)
  44286. * TRUTH_OR_EXPR: Unary and Binary Expressions.
  44287. (line 6)
  44288. * TRUTH_XOR_EXPR: Unary and Binary Expressions.
  44289. (line 6)
  44290. * TRY_BLOCK: Statements for C++. (line 6)
  44291. * TRY_HANDLERS: Statements for C++. (line 6)
  44292. * TRY_STMTS: Statements for C++. (line 6)
  44293. * Tuple specific accessors: Tuple specific accessors.
  44294. (line 6)
  44295. * tuples: Tuple representation.
  44296. (line 6)
  44297. * type: Types. (line 6)
  44298. * type declaration: Declarations. (line 6)
  44299. * TYPENAME_TYPE: Types for C++. (line 6)
  44300. * TYPENAME_TYPE_FULLNAME: Types. (line 6)
  44301. * TYPENAME_TYPE_FULLNAME <1>: Types for C++. (line 6)
  44302. * TYPEOF_TYPE: Types for C++. (line 6)
  44303. * TYPE_ALIGN: Types. (line 6)
  44304. * TYPE_ALIGN <1>: Types. (line 30)
  44305. * TYPE_ALIGN <2>: Types for C++. (line 6)
  44306. * TYPE_ALIGN <3>: Types for C++. (line 44)
  44307. * TYPE_ARG_TYPES: Types. (line 6)
  44308. * TYPE_ARG_TYPES <1>: Types for C++. (line 6)
  44309. * TYPE_ASM_OP: Label Output. (line 76)
  44310. * TYPE_ATTRIBUTES: Attributes. (line 24)
  44311. * TYPE_BINFO: Classes. (line 6)
  44312. * TYPE_BUILT_IN: Types for C++. (line 66)
  44313. * TYPE_CANONICAL: Types. (line 6)
  44314. * TYPE_CANONICAL <1>: Types. (line 41)
  44315. * TYPE_CONTEXT: Types. (line 6)
  44316. * TYPE_CONTEXT <1>: Types for C++. (line 6)
  44317. * TYPE_DECL: Declarations. (line 6)
  44318. * TYPE_FIELDS: Types. (line 6)
  44319. * TYPE_FIELDS <1>: Types for C++. (line 6)
  44320. * TYPE_FIELDS <2>: Classes. (line 6)
  44321. * TYPE_HAS_ARRAY_NEW_OPERATOR: Classes. (line 93)
  44322. * TYPE_HAS_DEFAULT_CONSTRUCTOR: Classes. (line 78)
  44323. * TYPE_HAS_MUTABLE_P: Classes. (line 83)
  44324. * TYPE_HAS_NEW_OPERATOR: Classes. (line 90)
  44325. * TYPE_MAIN_VARIANT: Types. (line 6)
  44326. * TYPE_MAIN_VARIANT <1>: Types. (line 19)
  44327. * TYPE_MAIN_VARIANT <2>: Types for C++. (line 6)
  44328. * TYPE_MAX_VALUE: Types. (line 6)
  44329. * TYPE_METHOD_BASETYPE: Types. (line 6)
  44330. * TYPE_METHOD_BASETYPE <1>: Types for C++. (line 6)
  44331. * TYPE_MIN_VALUE: Types. (line 6)
  44332. * TYPE_NAME: Types. (line 6)
  44333. * TYPE_NAME <1>: Types. (line 33)
  44334. * TYPE_NAME <2>: Types for C++. (line 6)
  44335. * TYPE_NAME <3>: Types for C++. (line 47)
  44336. * TYPE_NOTHROW_P: Functions for C++. (line 154)
  44337. * TYPE_OFFSET_BASETYPE: Types. (line 6)
  44338. * TYPE_OFFSET_BASETYPE <1>: Types for C++. (line 6)
  44339. * TYPE_OPERAND_FMT: Label Output. (line 87)
  44340. * TYPE_OVERLOADS_ARRAY_REF: Classes. (line 101)
  44341. * TYPE_OVERLOADS_ARROW: Classes. (line 104)
  44342. * TYPE_OVERLOADS_CALL_EXPR: Classes. (line 97)
  44343. * TYPE_POLYMORPHIC_P: Classes. (line 74)
  44344. * TYPE_PRECISION: Types. (line 6)
  44345. * TYPE_PRECISION <1>: Types for C++. (line 6)
  44346. * TYPE_PTRDATAMEM_P: Types for C++. (line 6)
  44347. * TYPE_PTRDATAMEM_P <1>: Types for C++. (line 69)
  44348. * TYPE_PTRFN_P: Types for C++. (line 76)
  44349. * TYPE_PTROBV_P: Types for C++. (line 6)
  44350. * TYPE_PTROB_P: Types for C++. (line 79)
  44351. * TYPE_PTR_P: Types for C++. (line 72)
  44352. * TYPE_QUAL_CONST: Types. (line 6)
  44353. * TYPE_QUAL_CONST <1>: Types for C++. (line 6)
  44354. * TYPE_QUAL_RESTRICT: Types. (line 6)
  44355. * TYPE_QUAL_RESTRICT <1>: Types for C++. (line 6)
  44356. * TYPE_QUAL_VOLATILE: Types. (line 6)
  44357. * TYPE_QUAL_VOLATILE <1>: Types for C++. (line 6)
  44358. * TYPE_RAISES_EXCEPTIONS: Functions for C++. (line 149)
  44359. * TYPE_SIZE: Types. (line 6)
  44360. * TYPE_SIZE <1>: Types. (line 25)
  44361. * TYPE_SIZE <2>: Types for C++. (line 6)
  44362. * TYPE_SIZE <3>: Types for C++. (line 39)
  44363. * TYPE_STRUCTURAL_EQUALITY_P: Types. (line 6)
  44364. * TYPE_STRUCTURAL_EQUALITY_P <1>: Types. (line 77)
  44365. * TYPE_UNQUALIFIED: Types. (line 6)
  44366. * TYPE_UNQUALIFIED <1>: Types for C++. (line 6)
  44367. * TYPE_VFIELD: Classes. (line 6)
  44368. * uaddvM4 instruction pattern: Standard Names. (line 435)
  44369. * UDAmode: Machine Modes. (line 170)
  44370. * udiv: Arithmetic. (line 130)
  44371. * udivM3 instruction pattern: Standard Names. (line 416)
  44372. * udivmodM4 instruction pattern: Standard Names. (line 727)
  44373. * udot_prodM instruction pattern: Standard Names. (line 540)
  44374. * UDQmode: Machine Modes. (line 138)
  44375. * UHAmode: Machine Modes. (line 162)
  44376. * UHQmode: Machine Modes. (line 130)
  44377. * UINT16_TYPE: Type Layout. (line 214)
  44378. * UINT32_TYPE: Type Layout. (line 215)
  44379. * UINT64_TYPE: Type Layout. (line 216)
  44380. * UINT8_TYPE: Type Layout. (line 213)
  44381. * UINTMAX_TYPE: Type Layout. (line 197)
  44382. * UINTPTR_TYPE: Type Layout. (line 234)
  44383. * UINT_FAST16_TYPE: Type Layout. (line 230)
  44384. * UINT_FAST32_TYPE: Type Layout. (line 231)
  44385. * UINT_FAST64_TYPE: Type Layout. (line 232)
  44386. * UINT_FAST8_TYPE: Type Layout. (line 229)
  44387. * UINT_LEAST16_TYPE: Type Layout. (line 222)
  44388. * UINT_LEAST32_TYPE: Type Layout. (line 223)
  44389. * UINT_LEAST64_TYPE: Type Layout. (line 224)
  44390. * UINT_LEAST8_TYPE: Type Layout. (line 221)
  44391. * umaddMN4 instruction pattern: Standard Names. (line 674)
  44392. * umax: Arithmetic. (line 149)
  44393. * umaxM3 instruction pattern: Standard Names. (line 416)
  44394. * umin: Arithmetic. (line 149)
  44395. * uminM3 instruction pattern: Standard Names. (line 416)
  44396. * umod: Arithmetic. (line 136)
  44397. * umodM3 instruction pattern: Standard Names. (line 416)
  44398. * umsubMN4 instruction pattern: Standard Names. (line 698)
  44399. * umulhisi3 instruction pattern: Standard Names. (line 646)
  44400. * umulM3_highpart instruction pattern: Standard Names. (line 660)
  44401. * umulqihi3 instruction pattern: Standard Names. (line 646)
  44402. * umulsidi3 instruction pattern: Standard Names. (line 646)
  44403. * umulvM4 instruction pattern: Standard Names. (line 440)
  44404. * unchanging: Flags. (line 307)
  44405. * unchanging, in call_insn: Flags. (line 115)
  44406. * unchanging, in jump_insn, call_insn and insn: Flags. (line 28)
  44407. * unchanging, in mem: Flags. (line 78)
  44408. * unchanging, in subreg: Flags. (line 184)
  44409. * unchanging, in subreg <1>: Flags. (line 194)
  44410. * unchanging, in symbol_ref: Flags. (line 19)
  44411. * UNEQ_EXPR: Unary and Binary Expressions.
  44412. (line 6)
  44413. * UNGE_EXPR: Unary and Binary Expressions.
  44414. (line 6)
  44415. * UNGT_EXPR: Unary and Binary Expressions.
  44416. (line 6)
  44417. * unions, returning: Interface. (line 10)
  44418. * UNION_TYPE: Types. (line 6)
  44419. * UNION_TYPE <1>: Classes. (line 6)
  44420. * UNITS_PER_WORD: Storage Layout. (line 60)
  44421. * UNKNOWN_TYPE: Types. (line 6)
  44422. * UNKNOWN_TYPE <1>: Types for C++. (line 6)
  44423. * UNLE_EXPR: Unary and Binary Expressions.
  44424. (line 6)
  44425. * UNLIKELY_EXECUTED_TEXT_SECTION_NAME: Sections. (line 48)
  44426. * UNLT_EXPR: Unary and Binary Expressions.
  44427. (line 6)
  44428. * UNORDERED_EXPR: Unary and Binary Expressions.
  44429. (line 6)
  44430. * unshare_all_rtl: Sharing. (line 61)
  44431. * unsigned division: Arithmetic. (line 130)
  44432. * unsigned division with unsigned saturation: Arithmetic. (line 130)
  44433. * unsigned greater than: Comparisons. (line 64)
  44434. * unsigned greater than <1>: Comparisons. (line 72)
  44435. * unsigned less than: Comparisons. (line 68)
  44436. * unsigned less than <1>: Comparisons. (line 76)
  44437. * unsigned minimum and maximum: Arithmetic. (line 149)
  44438. * unsigned_fix: Conversions. (line 77)
  44439. * unsigned_float: Conversions. (line 62)
  44440. * unsigned_fract_convert: Conversions. (line 97)
  44441. * unsigned_sat_fract: Conversions. (line 103)
  44442. * unspec: Side Effects. (line 299)
  44443. * unspec <1>: Constant Definitions.
  44444. (line 111)
  44445. * unspec_volatile: Side Effects. (line 299)
  44446. * unspec_volatile <1>: Constant Definitions.
  44447. (line 99)
  44448. * untyped_call instruction pattern: Standard Names. (line 1559)
  44449. * untyped_return instruction pattern: Standard Names. (line 1622)
  44450. * UPDATE_PATH_HOST_CANONICALIZE (PATH): Filesystem. (line 59)
  44451. * update_ssa: SSA. (line 74)
  44452. * update_stmt: Manipulating GIMPLE statements.
  44453. (line 140)
  44454. * update_stmt <1>: SSA Operands. (line 6)
  44455. * update_stmt_if_modified: Manipulating GIMPLE statements.
  44456. (line 143)
  44457. * UQQmode: Machine Modes. (line 126)
  44458. * usaddM3 instruction pattern: Standard Names. (line 416)
  44459. * usadM instruction pattern: Standard Names. (line 549)
  44460. * USAmode: Machine Modes. (line 166)
  44461. * usashlM3 instruction pattern: Standard Names. (line 730)
  44462. * usdivM3 instruction pattern: Standard Names. (line 416)
  44463. * use: Side Effects. (line 168)
  44464. * used: Flags. (line 325)
  44465. * used, in symbol_ref: Flags. (line 211)
  44466. * user: GTY Options. (line 245)
  44467. * user gc: User GC. (line 6)
  44468. * USER_LABEL_PREFIX: Instruction Output. (line 152)
  44469. * USE_C_ALLOCA: Host Misc. (line 19)
  44470. * USE_LD_AS_NEEDED: Driver. (line 135)
  44471. * USE_LOAD_POST_DECREMENT: Costs. (line 254)
  44472. * USE_LOAD_POST_INCREMENT: Costs. (line 249)
  44473. * USE_LOAD_PRE_DECREMENT: Costs. (line 264)
  44474. * USE_LOAD_PRE_INCREMENT: Costs. (line 259)
  44475. * USE_SELECT_SECTION_FOR_FUNCTIONS: Sections. (line 198)
  44476. * USE_STORE_POST_DECREMENT: Costs. (line 274)
  44477. * USE_STORE_POST_INCREMENT: Costs. (line 269)
  44478. * USE_STORE_PRE_DECREMENT: Costs. (line 284)
  44479. * USE_STORE_PRE_INCREMENT: Costs. (line 279)
  44480. * USING_STMT: Statements for C++. (line 6)
  44481. * usmaddMN4 instruction pattern: Standard Names. (line 682)
  44482. * usmsubMN4 instruction pattern: Standard Names. (line 706)
  44483. * usmulhisi3 instruction pattern: Standard Names. (line 650)
  44484. * usmulM3 instruction pattern: Standard Names. (line 416)
  44485. * usmulqihi3 instruction pattern: Standard Names. (line 650)
  44486. * usmulsidi3 instruction pattern: Standard Names. (line 650)
  44487. * usnegM2 instruction pattern: Standard Names. (line 754)
  44488. * USQmode: Machine Modes. (line 134)
  44489. * ussubM3 instruction pattern: Standard Names. (line 416)
  44490. * usubvM4 instruction pattern: Standard Names. (line 440)
  44491. * us_ashift: Arithmetic. (line 173)
  44492. * us_minus: Arithmetic. (line 38)
  44493. * us_mult: Arithmetic. (line 93)
  44494. * us_neg: Arithmetic. (line 82)
  44495. * us_plus: Arithmetic. (line 14)
  44496. * us_truncate: Conversions. (line 48)
  44497. * UTAmode: Machine Modes. (line 174)
  44498. * UTQmode: Machine Modes. (line 142)
  44499. * V in constraint: Simple Constraints. (line 43)
  44500. * values, returned by functions: Scalar Return. (line 6)
  44501. * varargs implementation: Varargs. (line 6)
  44502. * variable: Declarations. (line 6)
  44503. * Variable Location Debug Information in RTL: Debug Information.
  44504. (line 6)
  44505. * VAR_DECL: Declarations. (line 6)
  44506. * var_location: Debug Information. (line 14)
  44507. * vashlM3 instruction pattern: Standard Names. (line 746)
  44508. * vashrM3 instruction pattern: Standard Names. (line 746)
  44509. * VA_ARG_EXPR: Unary and Binary Expressions.
  44510. (line 6)
  44511. * vcondeqMN instruction pattern: Standard Names. (line 359)
  44512. * vcondMN instruction pattern: Standard Names. (line 346)
  44513. * vconduMN instruction pattern: Standard Names. (line 356)
  44514. * vcond_mask_MN instruction pattern: Standard Names. (line 366)
  44515. * vector: Containers. (line 6)
  44516. * vector operations: Vector Operations. (line 6)
  44517. * VECTOR_CST: Constant expressions.
  44518. (line 6)
  44519. * VECTOR_STORE_FLAG_VALUE: Misc. (line 315)
  44520. * vec_cmpeqMN instruction pattern: Standard Names. (line 339)
  44521. * vec_cmpMN instruction pattern: Standard Names. (line 329)
  44522. * vec_cmpuMN instruction pattern: Standard Names. (line 336)
  44523. * vec_concat: Vector Operations. (line 28)
  44524. * VEC_COND_EXPR: Vectors. (line 6)
  44525. * vec_duplicate: Vector Operations. (line 33)
  44526. * vec_duplicateM instruction pattern: Standard Names. (line 297)
  44527. * VEC_DUPLICATE_EXPR: Vectors. (line 6)
  44528. * vec_extractMN instruction pattern: Standard Names. (line 281)
  44529. * vec_initMN instruction pattern: Standard Names. (line 290)
  44530. * vec_load_lanesMN instruction pattern: Standard Names. (line 165)
  44531. * VEC_LSHIFT_EXPR: Vectors. (line 6)
  44532. * vec_mask_load_lanesMN instruction pattern: Standard Names. (line 189)
  44533. * vec_mask_store_lanesMN instruction pattern: Standard Names.
  44534. (line 219)
  44535. * vec_merge: Vector Operations. (line 11)
  44536. * VEC_PACK_FIX_TRUNC_EXPR: Vectors. (line 6)
  44537. * VEC_PACK_SAT_EXPR: Vectors. (line 6)
  44538. * vec_pack_sfix_trunc_M instruction pattern: Standard Names. (line 591)
  44539. * vec_pack_ssat_M instruction pattern: Standard Names. (line 584)
  44540. * VEC_PACK_TRUNC_EXPR: Vectors. (line 6)
  44541. * vec_pack_trunc_M instruction pattern: Standard Names. (line 577)
  44542. * vec_pack_ufix_trunc_M instruction pattern: Standard Names. (line 591)
  44543. * vec_pack_usat_M instruction pattern: Standard Names. (line 584)
  44544. * vec_permM instruction pattern: Standard Names. (line 384)
  44545. * vec_permM instruction pattern <1>: Addressing Modes. (line 330)
  44546. * VEC_RSHIFT_EXPR: Vectors. (line 6)
  44547. * vec_select: Vector Operations. (line 19)
  44548. * vec_series: Vector Operations. (line 40)
  44549. * vec_seriesM instruction pattern: Standard Names. (line 307)
  44550. * VEC_SERIES_EXPR: Vectors. (line 6)
  44551. * vec_setM instruction pattern: Standard Names. (line 276)
  44552. * vec_shl_insert_M instruction pattern: Standard Names. (line 564)
  44553. * vec_shr_M instruction pattern: Standard Names. (line 571)
  44554. * vec_store_lanesMN instruction pattern: Standard Names. (line 206)
  44555. * vec_unpacks_float_hi_M instruction pattern: Standard Names.
  44556. (line 612)
  44557. * vec_unpacks_float_lo_M instruction pattern: Standard Names.
  44558. (line 612)
  44559. * vec_unpacks_hi_M instruction pattern: Standard Names. (line 598)
  44560. * vec_unpacks_lo_M instruction pattern: Standard Names. (line 598)
  44561. * vec_unpacku_float_hi_M instruction pattern: Standard Names.
  44562. (line 612)
  44563. * vec_unpacku_float_lo_M instruction pattern: Standard Names.
  44564. (line 612)
  44565. * vec_unpacku_hi_M instruction pattern: Standard Names. (line 605)
  44566. * vec_unpacku_lo_M instruction pattern: Standard Names. (line 605)
  44567. * VEC_UNPACK_FLOAT_HI_EXPR: Vectors. (line 6)
  44568. * VEC_UNPACK_FLOAT_LO_EXPR: Vectors. (line 6)
  44569. * VEC_UNPACK_HI_EXPR: Vectors. (line 6)
  44570. * VEC_UNPACK_LO_EXPR: Vectors. (line 6)
  44571. * VEC_WIDEN_MULT_HI_EXPR: Vectors. (line 6)
  44572. * VEC_WIDEN_MULT_LO_EXPR: Vectors. (line 6)
  44573. * vec_widen_smult_even_M instruction pattern: Standard Names.
  44574. (line 621)
  44575. * vec_widen_smult_hi_M instruction pattern: Standard Names. (line 621)
  44576. * vec_widen_smult_lo_M instruction pattern: Standard Names. (line 621)
  44577. * vec_widen_smult_odd_M instruction pattern: Standard Names. (line 621)
  44578. * vec_widen_sshiftl_hi_M instruction pattern: Standard Names.
  44579. (line 632)
  44580. * vec_widen_sshiftl_lo_M instruction pattern: Standard Names.
  44581. (line 632)
  44582. * vec_widen_umult_even_M instruction pattern: Standard Names.
  44583. (line 621)
  44584. * vec_widen_umult_hi_M instruction pattern: Standard Names. (line 621)
  44585. * vec_widen_umult_lo_M instruction pattern: Standard Names. (line 621)
  44586. * vec_widen_umult_odd_M instruction pattern: Standard Names. (line 621)
  44587. * vec_widen_ushiftl_hi_M instruction pattern: Standard Names.
  44588. (line 632)
  44589. * vec_widen_ushiftl_lo_M instruction pattern: Standard Names.
  44590. (line 632)
  44591. * verify_flow_info: Maintaining the CFG.
  44592. (line 116)
  44593. * virtual operands: SSA Operands. (line 6)
  44594. * VIRTUAL_INCOMING_ARGS_REGNUM: Regs and Memory. (line 59)
  44595. * VIRTUAL_OUTGOING_ARGS_REGNUM: Regs and Memory. (line 87)
  44596. * VIRTUAL_STACK_DYNAMIC_REGNUM: Regs and Memory. (line 78)
  44597. * VIRTUAL_STACK_VARS_REGNUM: Regs and Memory. (line 69)
  44598. * VLIW: Processor pipeline description.
  44599. (line 6)
  44600. * VLIW <1>: Processor pipeline description.
  44601. (line 223)
  44602. * vlshrM3 instruction pattern: Standard Names. (line 746)
  44603. * VMS: Filesystem. (line 37)
  44604. * VMS_DEBUGGING_INFO: VMS Debug. (line 8)
  44605. * void: Misc. (line 708)
  44606. * void <1>: Misc. (line 713)
  44607. * VOIDmode: Machine Modes. (line 192)
  44608. * VOID_TYPE: Types. (line 6)
  44609. * volatil: Flags. (line 339)
  44610. * volatil, in insn, call_insn, jump_insn, code_label, jump_table_data, barrier, and note: Flags.
  44611. (line 33)
  44612. * volatil, in label_ref and reg_label: Flags. (line 54)
  44613. * volatil, in mem, asm_operands, and asm_input: Flags. (line 65)
  44614. * volatil, in reg: Flags. (line 106)
  44615. * volatil, in subreg: Flags. (line 184)
  44616. * volatil, in subreg <1>: Flags. (line 194)
  44617. * volatil, in symbol_ref: Flags. (line 220)
  44618. * volatile memory references: Flags. (line 340)
  44619. * volatile, in prefetch: Flags. (line 92)
  44620. * voting between constraint alternatives: Class Preferences. (line 6)
  44621. * vrotlM3 instruction pattern: Standard Names. (line 746)
  44622. * vrotrM3 instruction pattern: Standard Names. (line 746)
  44623. * walk_dominator_tree: SSA. (line 195)
  44624. * walk_gimple_op: Statement and operand traversals.
  44625. (line 30)
  44626. * walk_gimple_seq: Statement and operand traversals.
  44627. (line 47)
  44628. * walk_gimple_stmt: Statement and operand traversals.
  44629. (line 10)
  44630. * WCHAR_TYPE: Type Layout. (line 165)
  44631. * WCHAR_TYPE_SIZE: Type Layout. (line 173)
  44632. * which_alternative: Output Statement. (line 58)
  44633. * WHILE_BODY: Statements for C++. (line 6)
  44634. * WHILE_COND: Statements for C++. (line 6)
  44635. * WHILE_STMT: Statements for C++. (line 6)
  44636. * while_ultMN instruction pattern: Standard Names. (line 319)
  44637. * whopr: LTO. (line 6)
  44638. * widen_ssumM3 instruction pattern: Standard Names. (line 557)
  44639. * widen_usumM3 instruction pattern: Standard Names. (line 558)
  44640. * WIDEST_HARDWARE_FP_SIZE: Type Layout. (line 110)
  44641. * window_save instruction pattern: Standard Names. (line 1914)
  44642. * WINT_TYPE: Type Layout. (line 178)
  44643. * WORDS_BIG_ENDIAN: Storage Layout. (line 28)
  44644. * WORDS_BIG_ENDIAN, effect on subreg: Regs and Memory. (line 225)
  44645. * word_mode: Machine Modes. (line 462)
  44646. * WORD_REGISTER_OPERATIONS: Misc. (line 53)
  44647. * wpa: LTO. (line 6)
  44648. * X in constraint: Simple Constraints. (line 122)
  44649. * x-HOST: Host Fragment. (line 6)
  44650. * XCmode: Machine Modes. (line 199)
  44651. * XCOFF_DEBUGGING_INFO: DBX Options. (line 12)
  44652. * XEXP: Accessors. (line 6)
  44653. * XFmode: Machine Modes. (line 82)
  44654. * XImode: Machine Modes. (line 54)
  44655. * XINT: Accessors. (line 6)
  44656. * xm-MACHINE.h: Filesystem. (line 6)
  44657. * xm-MACHINE.h <1>: Host Misc. (line 6)
  44658. * xor: Arithmetic. (line 168)
  44659. * xor, canonicalization of: Insn Canonicalizations.
  44660. (line 94)
  44661. * xorM3 instruction pattern: Standard Names. (line 416)
  44662. * XSTR: Accessors. (line 6)
  44663. * XVEC: Accessors. (line 38)
  44664. * XVECEXP: Accessors. (line 45)
  44665. * XVECLEN: Accessors. (line 41)
  44666. * XWINT: Accessors. (line 6)
  44667. * zero_extend: Conversions. (line 28)
  44668. * zero_extendMN2 instruction pattern: Standard Names. (line 1288)
  44669. * zero_extract: Bit-Fields. (line 30)
  44670. * zero_extract, canonicalization of: Insn Canonicalizations.
  44671. (line 103)
  44672. 
  44673. Tag Table:
  44674. Node: Top1789
  44675. Node: Contributing5073
  44676. Node: Portability5802
  44677. Node: Interface7590
  44678. Node: Libgcc10631
  44679. Node: Integer library routines12458
  44680. Node: Soft float library routines19426
  44681. Node: Decimal float library routines31364
  44682. Node: Fixed-point fractional library routines47122
  44683. Node: Exception handling routines147518
  44684. Node: Miscellaneous routines148625
  44685. Node: Languages150745
  44686. Node: Source Tree152292
  44687. Node: Configure Terms152874
  44688. Node: Top Level155830
  44689. Node: gcc Directory159260
  44690. Node: Subdirectories160212
  44691. Node: Configuration162380
  44692. Node: Config Fragments163100
  44693. Node: System Config164325
  44694. Node: Configuration Files165261
  44695. Node: Build167877
  44696. Node: Makefile168289
  44697. Ref: Makefile-Footnote-1175064
  44698. Ref: Makefile-Footnote-2175211
  44699. Node: Library Files175285
  44700. Node: Headers175847
  44701. Node: Documentation177930
  44702. Node: Texinfo Manuals178789
  44703. Node: Man Page Generation181118
  44704. Node: Miscellaneous Docs183031
  44705. Node: Front End184418
  44706. Node: Front End Directory188092
  44707. Node: Front End Config189408
  44708. Node: Front End Makefile192244
  44709. Node: Back End196012
  44710. Node: Testsuites200898
  44711. Node: Test Idioms201887
  44712. Node: Test Directives205285
  44713. Node: Directives205812
  44714. Node: Selectors216578
  44715. Node: Effective-Target Keywords217934
  44716. Ref: arm_fp_ok228498
  44717. Ref: arm_neon_ok229580
  44718. Ref: arm_neon_ok_no_float_abi229749
  44719. Ref: arm_neonv2_ok229916
  44720. Ref: arm_fp16_ok230083
  44721. Ref: arm_neon_fp16_ok230425
  44722. Ref: arm_vfp3_ok231301
  44723. Ref: arm_v8_1a_neon_ok231727
  44724. Ref: arm_v8_2a_fp16_scalar_ok232155
  44725. Ref: arm_v8_2a_fp16_neon_ok232606
  44726. Ref: arm_v8_2a_dotprod_neon_ok233081
  44727. Ref: arm_fp16fml_neon_ok233501
  44728. Ref: arm_coproc1_ok234343
  44729. Ref: arm_coproc2_ok234469
  44730. Ref: arm_coproc3_ok234697
  44731. Ref: stack_size_et244946
  44732. Node: Add Options247249
  44733. Ref: arm_fp16_ieee248267
  44734. Ref: arm_fp16_alternative248522
  44735. Ref: stack_size_ao250773
  44736. Node: Require Support251022
  44737. Node: Final Actions253851
  44738. Node: Ada Tests259510
  44739. Node: C Tests260673
  44740. Node: LTO Testing265045
  44741. Node: gcov Testing266688
  44742. Node: profopt Testing269678
  44743. Node: compat Testing271393
  44744. Node: Torture Tests275633
  44745. Node: GIMPLE Tests277267
  44746. Node: RTL Tests278510
  44747. Node: Options279816
  44748. Node: Option file format280257
  44749. Node: Option properties287246
  44750. Node: Passes301220
  44751. Node: Parsing pass302036
  44752. Node: Gimplification pass305564
  44753. Node: Pass manager307397
  44754. Node: Tree SSA passes309243
  44755. Node: RTL passes330785
  44756. Node: Optimization info343049
  44757. Node: Dump setup343868
  44758. Node: Optimization groups344997
  44759. Node: Dump files and streams345976
  44760. Node: Dump output verbosity347174
  44761. Node: Dump types348230
  44762. Node: Dump examples349720
  44763. Node: poly_int351201
  44764. Node: Overview of poly_int352681
  44765. Node: Consequences of using poly_int355285
  44766. Node: Comparisons involving poly_int356920
  44767. Node: Comparison functions for poly_int358558
  44768. Node: Properties of the poly_int comparisons359765
  44769. Node: Comparing potentially-unordered poly_ints362207
  44770. Node: Comparing ordered poly_ints363118
  44771. Node: Checking for a poly_int marker value365142
  44772. Node: Range checks on poly_ints365991
  44773. Node: Sorting poly_ints368645
  44774. Node: Arithmetic on poly_ints369418
  44775. Node: Using poly_int with C++ arithmetic operators370219
  44776. Node: wi arithmetic on poly_ints371750
  44777. Node: Division of poly_ints372602
  44778. Node: Other poly_int arithmetic374109
  44779. Node: Alignment of poly_ints375515
  44780. Node: Computing bounds on poly_ints378792
  44781. Node: Converting poly_ints379573
  44782. Node: Miscellaneous poly_int routines383120
  44783. Node: Guidelines for using poly_int383760
  44784. Node: GENERIC388692
  44785. Node: Deficiencies390570
  44786. Node: Tree overview390811
  44787. Node: Macros and Functions394935
  44788. Node: Identifiers395760
  44789. Node: Containers397369
  44790. Node: Types398526
  44791. Node: Declarations410600
  44792. Node: Working with declarations411095
  44793. Node: Internal structure416699
  44794. Node: Current structure hierarchy417083
  44795. Node: Adding new DECL node types419176
  44796. Node: Attributes423460
  44797. Node: Expression trees424704
  44798. Node: Constant expressions426458
  44799. Node: Storage References432550
  44800. Node: Unary and Binary Expressions436069
  44801. Node: Vectors456755
  44802. Node: Statements462424
  44803. Node: Basic Statements462956
  44804. Node: Blocks467583
  44805. Node: Statement Sequences469284
  44806. Node: Empty Statements469617
  44807. Node: Jumps470191
  44808. Node: Cleanups470844
  44809. Node: OpenMP472611
  44810. Node: OpenACC478456
  44811. Node: Functions479497
  44812. Node: Function Basics479968
  44813. Node: Function Properties483652
  44814. Node: Language-dependent trees486433
  44815. Node: C and C++ Trees487320
  44816. Node: Types for C++490224
  44817. Node: Namespaces495194
  44818. Node: Classes498300
  44819. Node: Functions for C++503208
  44820. Node: Statements for C++509459
  44821. Node: C++ Expressions517512
  44822. Node: Java Trees519017
  44823. Node: GIMPLE519130
  44824. Node: Tuple representation522795
  44825. Node: Class hierarchy of GIMPLE statements529755
  44826. Node: GIMPLE instruction set534743
  44827. Node: GIMPLE Exception Handling536375
  44828. Node: Temporaries538287
  44829. Ref: Temporaries-Footnote-1539605
  44830. Node: Operands539670
  44831. Node: Compound Expressions540431
  44832. Node: Compound Lvalues540665
  44833. Node: Conditional Expressions541427
  44834. Node: Logical Operators542086
  44835. Node: Manipulating GIMPLE statements549434
  44836. Node: Tuple specific accessors555370
  44837. Node: GIMPLE_ASM556149
  44838. Node: GIMPLE_ASSIGN558532
  44839. Node: GIMPLE_BIND563236
  44840. Node: GIMPLE_CALL565050
  44841. Node: GIMPLE_CATCH569193
  44842. Node: GIMPLE_COND570343
  44843. Node: GIMPLE_DEBUG573138
  44844. Node: GIMPLE_EH_FILTER577736
  44845. Node: GIMPLE_LABEL579299
  44846. Node: GIMPLE_GOTO579912
  44847. Node: GIMPLE_NOP580435
  44848. Node: GIMPLE_OMP_ATOMIC_LOAD580797
  44849. Node: GIMPLE_OMP_ATOMIC_STORE581793
  44850. Node: GIMPLE_OMP_CONTINUE582492
  44851. Node: GIMPLE_OMP_CRITICAL583971
  44852. Node: GIMPLE_OMP_FOR584965
  44853. Node: GIMPLE_OMP_MASTER588381
  44854. Node: GIMPLE_OMP_ORDERED588759
  44855. Node: GIMPLE_OMP_PARALLEL589153
  44856. Node: GIMPLE_OMP_RETURN591922
  44857. Node: GIMPLE_OMP_SECTION592567
  44858. Node: GIMPLE_OMP_SECTIONS593227
  44859. Node: GIMPLE_OMP_SINGLE594837
  44860. Node: GIMPLE_PHI595783
  44861. Node: GIMPLE_RESX597062
  44862. Node: GIMPLE_RETURN597781
  44863. Node: GIMPLE_SWITCH598355
  44864. Node: GIMPLE_TRY600230
  44865. Node: GIMPLE_WITH_CLEANUP_EXPR602002
  44866. Node: GIMPLE sequences602881
  44867. Node: Sequence iterators606087
  44868. Node: Adding a new GIMPLE statement code614544
  44869. Node: Statement and operand traversals615889
  44870. Node: Tree SSA618481
  44871. Node: Annotations620269
  44872. Node: SSA Operands620674
  44873. Node: SSA634749
  44874. Node: Alias analysis644455
  44875. Node: Memory model648229
  44876. Node: RTL649588
  44877. Node: RTL Objects651776
  44878. Node: RTL Classes655660
  44879. Node: Accessors660792
  44880. Node: Special Accessors662965
  44881. Node: Flags668752
  44882. Node: Machine Modes684015
  44883. Node: Constants701548
  44884. Node: Regs and Memory712827
  44885. Node: Arithmetic732079
  44886. Node: Comparisons742125
  44887. Node: Bit-Fields746417
  44888. Node: Vector Operations747969
  44889. Node: Conversions750002
  44890. Node: RTL Declarations754500
  44891. Node: Side Effects755344
  44892. Node: Incdec772355
  44893. Node: Assembler775691
  44894. Node: Debug Information777236
  44895. Node: Insns779163
  44896. Node: Calls807056
  44897. Node: Sharing809649
  44898. Node: Reading RTL812844
  44899. Node: Control Flow813835
  44900. Node: Basic Blocks815604
  44901. Node: Edges821058
  44902. Node: Profile information829677
  44903. Node: Maintaining the CFG834361
  44904. Node: Liveness information840129
  44905. Node: Loop Analysis and Representation842255
  44906. Node: Loop representation843291
  44907. Node: Loop querying850854
  44908. Node: Loop manipulation853675
  44909. Node: LCSSA856011
  44910. Node: Scalar evolutions858080
  44911. Node: loop-iv861324
  44912. Node: Number of iterations863246
  44913. Node: Dependency analysis867327
  44914. Node: Machine Desc873678
  44915. Node: Overview876241
  44916. Node: Patterns878281
  44917. Node: Example882590
  44918. Node: RTL Template884051
  44919. Node: Output Template894707
  44920. Node: Output Statement898888
  44921. Node: Predicates903227
  44922. Node: Machine-Independent Predicates906145
  44923. Node: Defining Predicates911089
  44924. Node: Constraints917052
  44925. Node: Simple Constraints918521
  44926. Node: Multi-Alternative931361
  44927. Node: Class Preferences934570
  44928. Node: Modifiers935462
  44929. Node: Machine Constraints940195
  44930. Node: Disable Insn Alternatives1002959
  44931. Node: Define Constraints1006451
  44932. Node: C Constraint Interface1013846
  44933. Node: Standard Names1016973
  44934. Ref: shift patterns1049019
  44935. Ref: prologue instruction pattern1100673
  44936. Ref: window_save instruction pattern1101166
  44937. Ref: epilogue instruction pattern1101443
  44938. Node: Pattern Ordering1120599
  44939. Node: Dependent Patterns1121835
  44940. Node: Jump Patterns1123455
  44941. Ref: Jump Patterns-Footnote-11125602
  44942. Node: Looping Patterns1125650
  44943. Node: Insn Canonicalizations1130379
  44944. Node: Expander Definitions1135586
  44945. Node: Insn Splitting1143800
  44946. Node: Including Patterns1153404
  44947. Node: Peephole Definitions1155188
  44948. Node: define_peephole1156441
  44949. Node: define_peephole21162771
  44950. Node: Insn Attributes1165837
  44951. Node: Defining Attributes1167019
  44952. Ref: define_enum_attr1170512
  44953. Node: Expressions1171548
  44954. Node: Tagging Insns1178298
  44955. Node: Attr Example1182651
  44956. Node: Insn Lengths1185024
  44957. Node: Constant Attributes1188432
  44958. Node: Mnemonic Attribute1189608
  44959. Node: Delay Slots1191127
  44960. Node: Processor pipeline description1194350
  44961. Ref: Processor pipeline description-Footnote-11213167
  44962. Node: Conditional Execution1213491
  44963. Node: Define Subst1216974
  44964. Node: Define Subst Example1219010
  44965. Node: Define Subst Pattern Matching1222004
  44966. Node: Define Subst Output Template1223230
  44967. Node: Constant Definitions1225300
  44968. Ref: define_enum1229082
  44969. Node: Iterators1229570
  44970. Node: Mode Iterators1230148
  44971. Node: Defining Mode Iterators1231126
  44972. Node: Substitutions1232620
  44973. Node: Examples1234862
  44974. Node: Code Iterators1236310
  44975. Node: Int Iterators1238589
  44976. Node: Subst Iterators1241035
  44977. Node: Target Macros1242727
  44978. Node: Target Structure1245739
  44979. Node: Driver1247855
  44980. Node: Run-time Target1266825
  44981. Node: Per-Function Data1276536
  44982. Node: Storage Layout1279300
  44983. Node: Type Layout1306617
  44984. Node: Registers1319958
  44985. Node: Register Basics1320932
  44986. Node: Allocation Order1326557
  44987. Node: Values in Registers1329041
  44988. Node: Leaf Functions1336517
  44989. Node: Stack Registers1339376
  44990. Node: Register Classes1340648
  44991. Node: Stack and Calling1375430
  44992. Node: Frame Layout1376036
  44993. Node: Exception Handling1387871
  44994. Node: Stack Checking1394081
  44995. Node: Frame Registers1399457
  44996. Node: Elimination1408008
  44997. Node: Stack Arguments1411864
  44998. Node: Register Arguments1419060
  44999. Node: Scalar Return1442944
  45000. Node: Aggregate Return1449400
  45001. Node: Caller Saves1453954
  45002. Node: Function Entry1454696
  45003. Node: Profiling1466248
  45004. Node: Tail Calls1468358
  45005. Node: Shrink-wrapping separate components1470269
  45006. Node: Stack Smashing Protection1473310
  45007. Node: Miscellaneous Register Hooks1475233
  45008. Node: Varargs1476099
  45009. Node: Trampolines1486203
  45010. Node: Library Calls1493367
  45011. Node: Addressing Modes1498051
  45012. Node: Anchored Addresses1524237
  45013. Node: Condition Code1526880
  45014. Node: CC0 Condition Codes1529207
  45015. Node: MODE_CC Condition Codes1532453
  45016. Node: Costs1539249
  45017. Node: Scheduling1560621
  45018. Node: Sections1584543
  45019. Node: PIC1600472
  45020. Node: Assembler Format1602531
  45021. Node: File Framework1603669
  45022. Ref: TARGET_HAVE_SWITCHABLE_BSS_SECTIONS1611268
  45023. Node: Data Output1614538
  45024. Node: Uninitialized Data1622484
  45025. Node: Label Output1627495
  45026. Node: Initialization1652106
  45027. Node: Macros for Initialization1658067
  45028. Node: Instruction Output1664786
  45029. Node: Dispatch Tables1675415
  45030. Node: Exception Region Output1679815
  45031. Node: Alignment Output1686897
  45032. Node: Debugging Info1691500
  45033. Node: All Debuggers1692154
  45034. Node: DBX Options1694926
  45035. Node: DBX Hooks1700364
  45036. Node: File Names and DBX1701673
  45037. Node: DWARF1703777
  45038. Node: VMS Debug1709592
  45039. Node: Floating Point1710171
  45040. Node: Mode Switching1712926
  45041. Node: Target Attributes1717363
  45042. Node: Emulated TLS1726329
  45043. Node: MIPS Coprocessors1729719
  45044. Node: PCH Target1730878
  45045. Node: C++ ABI1732720
  45046. Node: Named Address Spaces1737514
  45047. Node: Misc1743430
  45048. Ref: TARGET_SHIFT_TRUNCATION_MASK1751301
  45049. Node: Host Config1806745
  45050. Node: Host Common1807814
  45051. Node: Filesystem1810188
  45052. Node: Host Misc1814303
  45053. Node: Fragments1816752
  45054. Node: Target Fragment1817947
  45055. Node: Host Fragment1828760
  45056. Node: Collect21829000
  45057. Node: Header Dirs1831636
  45058. Node: Type Information1833059
  45059. Node: GTY Options1836335
  45060. Node: Inheritance and GTY1847594
  45061. Ref: Inheritance and GTY-Footnote-11849159
  45062. Node: User GC1849429
  45063. Node: GGC Roots1853168
  45064. Node: Files1853881
  45065. Node: Invoking the garbage collector1856588
  45066. Node: Troubleshooting1858093
  45067. Node: Plugins1859168
  45068. Node: Plugins loading1860297
  45069. Node: Plugin API1861396
  45070. Node: Plugins pass1869122
  45071. Node: Plugins GC1871093
  45072. Node: Plugins description1872811
  45073. Node: Plugins attr1873347
  45074. Node: Plugins recording1875627
  45075. Node: Plugins gate1876477
  45076. Node: Plugins tracking1877068
  45077. Node: Plugins building1877656
  45078. Node: LTO1881158
  45079. Node: LTO Overview1882030
  45080. Node: LTO object file layout1887857
  45081. Node: IPA1892487
  45082. Node: WHOPR1901452
  45083. Node: Internal flags1906012
  45084. Node: Match and Simplify1907423
  45085. Node: GIMPLE API1908377
  45086. Node: The Language1911172
  45087. Node: Funding1922535
  45088. Node: GNU Project1925034
  45089. Node: Copying1925683
  45090. Node: GNU Free Documentation License1963195
  45091. Node: Contributors1988316
  45092. Node: Option Index2029254
  45093. Node: Concept Index2030131
  45094. 
  45095. End Tag Table
  45096. 
  45097. Local Variables:
  45098. coding: utf-8
  45099. End: