| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500 |
- // Math overloads for simd -*- C++ -*-
- // Copyright (C) 2020-2021 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
- #ifndef _GLIBCXX_EXPERIMENTAL_SIMD_MATH_H_
- #define _GLIBCXX_EXPERIMENTAL_SIMD_MATH_H_
- #if __cplusplus >= 201703L
- #include <utility>
- #include <iomanip>
- _GLIBCXX_SIMD_BEGIN_NAMESPACE
- template <typename _Tp, typename _V>
- using _Samesize = fixed_size_simd<_Tp, _V::size()>;
- // _Math_return_type {{{
- template <typename _DoubleR, typename _Tp, typename _Abi>
- struct _Math_return_type;
- template <typename _DoubleR, typename _Tp, typename _Abi>
- using _Math_return_type_t =
- typename _Math_return_type<_DoubleR, _Tp, _Abi>::type;
- template <typename _Tp, typename _Abi>
- struct _Math_return_type<double, _Tp, _Abi>
- { using type = simd<_Tp, _Abi>; };
- template <typename _Tp, typename _Abi>
- struct _Math_return_type<bool, _Tp, _Abi>
- { using type = simd_mask<_Tp, _Abi>; };
- template <typename _DoubleR, typename _Tp, typename _Abi>
- struct _Math_return_type
- { using type = fixed_size_simd<_DoubleR, simd_size_v<_Tp, _Abi>>; };
- //}}}
- // _GLIBCXX_SIMD_MATH_CALL_ {{{
- #define _GLIBCXX_SIMD_MATH_CALL_(__name) \
- template <typename _Tp, typename _Abi, typename..., \
- typename _R = _Math_return_type_t< \
- decltype(std::__name(declval<double>())), _Tp, _Abi>> \
- enable_if_t<is_floating_point_v<_Tp>, _R> \
- __name(simd<_Tp, _Abi> __x) \
- { return {__private_init, _Abi::_SimdImpl::_S_##__name(__data(__x))}; }
- // }}}
- //_Extra_argument_type{{{
- template <typename _Up, typename _Tp, typename _Abi>
- struct _Extra_argument_type;
- template <typename _Tp, typename _Abi>
- struct _Extra_argument_type<_Tp*, _Tp, _Abi>
- {
- using type = simd<_Tp, _Abi>*;
- static constexpr double* declval();
- static constexpr bool __needs_temporary_scalar = true;
- _GLIBCXX_SIMD_INTRINSIC static constexpr auto _S_data(type __x)
- { return &__data(*__x); }
- };
- template <typename _Up, typename _Tp, typename _Abi>
- struct _Extra_argument_type<_Up*, _Tp, _Abi>
- {
- static_assert(is_integral_v<_Up>);
- using type = fixed_size_simd<_Up, simd_size_v<_Tp, _Abi>>*;
- static constexpr _Up* declval();
- static constexpr bool __needs_temporary_scalar = true;
- _GLIBCXX_SIMD_INTRINSIC static constexpr auto _S_data(type __x)
- { return &__data(*__x); }
- };
- template <typename _Tp, typename _Abi>
- struct _Extra_argument_type<_Tp, _Tp, _Abi>
- {
- using type = simd<_Tp, _Abi>;
- static constexpr double declval();
- static constexpr bool __needs_temporary_scalar = false;
- _GLIBCXX_SIMD_INTRINSIC static constexpr decltype(auto)
- _S_data(const type& __x)
- { return __data(__x); }
- };
- template <typename _Up, typename _Tp, typename _Abi>
- struct _Extra_argument_type
- {
- static_assert(is_integral_v<_Up>);
- using type = fixed_size_simd<_Up, simd_size_v<_Tp, _Abi>>;
- static constexpr _Up declval();
- static constexpr bool __needs_temporary_scalar = false;
- _GLIBCXX_SIMD_INTRINSIC static constexpr decltype(auto)
- _S_data(const type& __x)
- { return __data(__x); }
- };
- //}}}
- // _GLIBCXX_SIMD_MATH_CALL2_ {{{
- #define _GLIBCXX_SIMD_MATH_CALL2_(__name, arg2_) \
- template < \
- typename _Tp, typename _Abi, typename..., \
- typename _Arg2 = _Extra_argument_type<arg2_, _Tp, _Abi>, \
- typename _R = _Math_return_type_t< \
- decltype(std::__name(declval<double>(), _Arg2::declval())), _Tp, _Abi>> \
- enable_if_t<is_floating_point_v<_Tp>, _R> \
- __name(const simd<_Tp, _Abi>& __x, const typename _Arg2::type& __y) \
- { \
- return {__private_init, \
- _Abi::_SimdImpl::_S_##__name(__data(__x), _Arg2::_S_data(__y))}; \
- } \
- template <typename _Up, typename _Tp, typename _Abi> \
- _GLIBCXX_SIMD_INTRINSIC _Math_return_type_t< \
- decltype(std::__name( \
- declval<double>(), \
- declval<enable_if_t< \
- conjunction_v< \
- is_same<arg2_, _Tp>, \
- negation<is_same<__remove_cvref_t<_Up>, simd<_Tp, _Abi>>>, \
- is_convertible<_Up, simd<_Tp, _Abi>>, is_floating_point<_Tp>>, \
- double>>())), \
- _Tp, _Abi> \
- __name(_Up&& __xx, const simd<_Tp, _Abi>& __yy) \
- { return __name(simd<_Tp, _Abi>(static_cast<_Up&&>(__xx)), __yy); }
- // }}}
- // _GLIBCXX_SIMD_MATH_CALL3_ {{{
- #define _GLIBCXX_SIMD_MATH_CALL3_(__name, arg2_, arg3_) \
- template <typename _Tp, typename _Abi, typename..., \
- typename _Arg2 = _Extra_argument_type<arg2_, _Tp, _Abi>, \
- typename _Arg3 = _Extra_argument_type<arg3_, _Tp, _Abi>, \
- typename _R = _Math_return_type_t< \
- decltype(std::__name(declval<double>(), _Arg2::declval(), \
- _Arg3::declval())), \
- _Tp, _Abi>> \
- enable_if_t<is_floating_point_v<_Tp>, _R> \
- __name(const simd<_Tp, _Abi>& __x, const typename _Arg2::type& __y, \
- const typename _Arg3::type& __z) \
- { \
- return {__private_init, \
- _Abi::_SimdImpl::_S_##__name(__data(__x), _Arg2::_S_data(__y), \
- _Arg3::_S_data(__z))}; \
- } \
- template < \
- typename _T0, typename _T1, typename _T2, typename..., \
- typename _U0 = __remove_cvref_t<_T0>, \
- typename _U1 = __remove_cvref_t<_T1>, \
- typename _U2 = __remove_cvref_t<_T2>, \
- typename _Simd = conditional_t<is_simd_v<_U1>, _U1, _U2>, \
- typename = enable_if_t<conjunction_v< \
- is_simd<_Simd>, is_convertible<_T0&&, _Simd>, \
- is_convertible<_T1&&, _Simd>, is_convertible<_T2&&, _Simd>, \
- negation<conjunction< \
- is_simd<_U0>, is_floating_point<__value_type_or_identity_t<_U0>>>>>>> \
- _GLIBCXX_SIMD_INTRINSIC decltype(__name(declval<const _Simd&>(), \
- declval<const _Simd&>(), \
- declval<const _Simd&>())) \
- __name(_T0&& __xx, _T1&& __yy, _T2&& __zz) \
- { \
- return __name(_Simd(static_cast<_T0&&>(__xx)), \
- _Simd(static_cast<_T1&&>(__yy)), \
- _Simd(static_cast<_T2&&>(__zz))); \
- }
- // }}}
- // __cosSeries {{{
- template <typename _Abi>
- _GLIBCXX_SIMD_ALWAYS_INLINE static simd<float, _Abi>
- __cosSeries(const simd<float, _Abi>& __x)
- {
- const simd<float, _Abi> __x2 = __x * __x;
- simd<float, _Abi> __y;
- __y = 0x1.ap-16f; // 1/8!
- __y = __y * __x2 - 0x1.6c1p-10f; // -1/6!
- __y = __y * __x2 + 0x1.555556p-5f; // 1/4!
- return __y * (__x2 * __x2) - .5f * __x2 + 1.f;
- }
- template <typename _Abi>
- _GLIBCXX_SIMD_ALWAYS_INLINE static simd<double, _Abi>
- __cosSeries(const simd<double, _Abi>& __x)
- {
- const simd<double, _Abi> __x2 = __x * __x;
- simd<double, _Abi> __y;
- __y = 0x1.AC00000000000p-45; // 1/16!
- __y = __y * __x2 - 0x1.9394000000000p-37; // -1/14!
- __y = __y * __x2 + 0x1.1EED8C0000000p-29; // 1/12!
- __y = __y * __x2 - 0x1.27E4FB7400000p-22; // -1/10!
- __y = __y * __x2 + 0x1.A01A01A018000p-16; // 1/8!
- __y = __y * __x2 - 0x1.6C16C16C16C00p-10; // -1/6!
- __y = __y * __x2 + 0x1.5555555555554p-5; // 1/4!
- return (__y * __x2 - .5f) * __x2 + 1.f;
- }
- // }}}
- // __sinSeries {{{
- template <typename _Abi>
- _GLIBCXX_SIMD_ALWAYS_INLINE static simd<float, _Abi>
- __sinSeries(const simd<float, _Abi>& __x)
- {
- const simd<float, _Abi> __x2 = __x * __x;
- simd<float, _Abi> __y;
- __y = -0x1.9CC000p-13f; // -1/7!
- __y = __y * __x2 + 0x1.111100p-7f; // 1/5!
- __y = __y * __x2 - 0x1.555556p-3f; // -1/3!
- return __y * (__x2 * __x) + __x;
- }
- template <typename _Abi>
- _GLIBCXX_SIMD_ALWAYS_INLINE static simd<double, _Abi>
- __sinSeries(const simd<double, _Abi>& __x)
- {
- // __x = [0, 0.7854 = pi/4]
- // __x² = [0, 0.6169 = pi²/8]
- const simd<double, _Abi> __x2 = __x * __x;
- simd<double, _Abi> __y;
- __y = -0x1.ACF0000000000p-41; // -1/15!
- __y = __y * __x2 + 0x1.6124400000000p-33; // 1/13!
- __y = __y * __x2 - 0x1.AE64567000000p-26; // -1/11!
- __y = __y * __x2 + 0x1.71DE3A5540000p-19; // 1/9!
- __y = __y * __x2 - 0x1.A01A01A01A000p-13; // -1/7!
- __y = __y * __x2 + 0x1.1111111111110p-7; // 1/5!
- __y = __y * __x2 - 0x1.5555555555555p-3; // -1/3!
- return __y * (__x2 * __x) + __x;
- }
- // }}}
- // __zero_low_bits {{{
- template <int _Bits, typename _Tp, typename _Abi>
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi>
- __zero_low_bits(simd<_Tp, _Abi> __x)
- {
- const simd<_Tp, _Abi> __bitmask
- = __bit_cast<_Tp>(~make_unsigned_t<__int_for_sizeof_t<_Tp>>() << _Bits);
- return {__private_init,
- _Abi::_SimdImpl::_S_bit_and(__data(__x), __data(__bitmask))};
- }
- // }}}
- // __fold_input {{{
- /**@internal
- * Fold @p x into [-¼π, ¼π] and remember the quadrant it came from:
- * quadrant 0: [-¼π, ¼π]
- * quadrant 1: [ ¼π, ¾π]
- * quadrant 2: [ ¾π, 1¼π]
- * quadrant 3: [1¼π, 1¾π]
- *
- * The algorithm determines `y` as the multiple `x - y * ¼π = [-¼π, ¼π]`. Using
- * a bitmask, `y` is reduced to `quadrant`. `y` can be calculated as
- * ```
- * y = trunc(x / ¼π);
- * y += fmod(y, 2);
- * ```
- * This can be simplified by moving the (implicit) division by 2 into the
- * truncation expression. The `+= fmod` effect can the be achieved by using
- * rounding instead of truncation: `y = round(x / ½π) * 2`. If precision allows,
- * `2/π * x` is better (faster).
- */
- template <typename _Tp, typename _Abi>
- struct _Folded
- {
- simd<_Tp, _Abi> _M_x;
- rebind_simd_t<int, simd<_Tp, _Abi>> _M_quadrant;
- };
- namespace __math_float {
- inline constexpr float __pi_over_4 = 0x1.921FB6p-1f; // π/4
- inline constexpr float __2_over_pi = 0x1.45F306p-1f; // 2/π
- inline constexpr float __pi_2_5bits0
- = 0x1.921fc0p0f; // π/2, 5 0-bits (least significant)
- inline constexpr float __pi_2_5bits0_rem
- = -0x1.5777a6p-21f; // π/2 - __pi_2_5bits0
- } // namespace __math_float
- namespace __math_double {
- inline constexpr double __pi_over_4 = 0x1.921fb54442d18p-1; // π/4
- inline constexpr double __2_over_pi = 0x1.45F306DC9C883p-1; // 2/π
- inline constexpr double __pi_2 = 0x1.921fb54442d18p0; // π/2
- } // namespace __math_double
- template <typename _Abi>
- _GLIBCXX_SIMD_ALWAYS_INLINE _Folded<float, _Abi>
- __fold_input(const simd<float, _Abi>& __x)
- {
- using _V = simd<float, _Abi>;
- using _IV = rebind_simd_t<int, _V>;
- using namespace __math_float;
- _Folded<float, _Abi> __r;
- __r._M_x = abs(__x);
- #if 0
- // zero most mantissa bits:
- constexpr float __1_over_pi = 0x1.45F306p-2f; // 1/π
- const auto __y = (__r._M_x * __1_over_pi + 0x1.8p23f) - 0x1.8p23f;
- // split π into 4 parts, the first three with 13 trailing zeros (to make the
- // following multiplications precise):
- constexpr float __pi0 = 0x1.920000p1f;
- constexpr float __pi1 = 0x1.fb4000p-11f;
- constexpr float __pi2 = 0x1.444000p-23f;
- constexpr float __pi3 = 0x1.68c234p-38f;
- __r._M_x - __y*__pi0 - __y*__pi1 - __y*__pi2 - __y*__pi3
- #else
- if (_GLIBCXX_SIMD_IS_UNLIKELY(all_of(__r._M_x < __pi_over_4)))
- __r._M_quadrant = 0;
- else if (_GLIBCXX_SIMD_IS_LIKELY(all_of(__r._M_x < 6 * __pi_over_4)))
- {
- const _V __y = nearbyint(__r._M_x * __2_over_pi);
- __r._M_quadrant = static_simd_cast<_IV>(__y) & 3; // __y mod 4
- __r._M_x -= __y * __pi_2_5bits0;
- __r._M_x -= __y * __pi_2_5bits0_rem;
- }
- else
- {
- using __math_double::__2_over_pi;
- using __math_double::__pi_2;
- using _VD = rebind_simd_t<double, _V>;
- _VD __xd = static_simd_cast<_VD>(__r._M_x);
- _VD __y = nearbyint(__xd * __2_over_pi);
- __r._M_quadrant = static_simd_cast<_IV>(__y) & 3; // = __y mod 4
- __r._M_x = static_simd_cast<_V>(__xd - __y * __pi_2);
- }
- #endif
- return __r;
- }
- template <typename _Abi>
- _GLIBCXX_SIMD_ALWAYS_INLINE _Folded<double, _Abi>
- __fold_input(const simd<double, _Abi>& __x)
- {
- using _V = simd<double, _Abi>;
- using _IV = rebind_simd_t<int, _V>;
- using namespace __math_double;
- _Folded<double, _Abi> __r;
- __r._M_x = abs(__x);
- if (_GLIBCXX_SIMD_IS_UNLIKELY(all_of(__r._M_x < __pi_over_4)))
- {
- __r._M_quadrant = 0;
- return __r;
- }
- const _V __y = nearbyint(__r._M_x / (2 * __pi_over_4));
- __r._M_quadrant = static_simd_cast<_IV>(__y) & 3;
- if (_GLIBCXX_SIMD_IS_LIKELY(all_of(__r._M_x < 1025 * __pi_over_4)))
- {
- // x - y * pi/2, y uses no more than 11 mantissa bits
- __r._M_x -= __y * 0x1.921FB54443000p0;
- __r._M_x -= __y * -0x1.73DCB3B39A000p-43;
- __r._M_x -= __y * 0x1.45C06E0E68948p-86;
- }
- else if (_GLIBCXX_SIMD_IS_LIKELY(all_of(__y <= 0x1.0p30)))
- {
- // x - y * pi/2, y uses no more than 29 mantissa bits
- __r._M_x -= __y * 0x1.921FB40000000p0;
- __r._M_x -= __y * 0x1.4442D00000000p-24;
- __r._M_x -= __y * 0x1.8469898CC5170p-48;
- }
- else
- {
- // x - y * pi/2, y may require all mantissa bits
- const _V __y_hi = __zero_low_bits<26>(__y);
- const _V __y_lo = __y - __y_hi;
- const auto __pi_2_1 = 0x1.921FB50000000p0;
- const auto __pi_2_2 = 0x1.110B460000000p-26;
- const auto __pi_2_3 = 0x1.1A62630000000p-54;
- const auto __pi_2_4 = 0x1.8A2E03707344Ap-81;
- __r._M_x = __r._M_x - __y_hi * __pi_2_1
- - max(__y_hi * __pi_2_2, __y_lo * __pi_2_1)
- - min(__y_hi * __pi_2_2, __y_lo * __pi_2_1)
- - max(__y_hi * __pi_2_3, __y_lo * __pi_2_2)
- - min(__y_hi * __pi_2_3, __y_lo * __pi_2_2)
- - max(__y * __pi_2_4, __y_lo * __pi_2_3)
- - min(__y * __pi_2_4, __y_lo * __pi_2_3);
- }
- return __r;
- }
- // }}}
- // __extract_exponent_as_int {{{
- template <typename _Tp, typename _Abi>
- rebind_simd_t<int, simd<_Tp, _Abi>>
- __extract_exponent_as_int(const simd<_Tp, _Abi>& __v)
- {
- using _Vp = simd<_Tp, _Abi>;
- using _Up = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
- using namespace std::experimental::__float_bitwise_operators;
- const _Vp __exponent_mask
- = __infinity_v<_Tp>; // 0x7f800000 or 0x7ff0000000000000
- return static_simd_cast<rebind_simd_t<int, _Vp>>(
- __bit_cast<rebind_simd_t<_Up, _Vp>>(__v & __exponent_mask)
- >> (__digits_v<_Tp> - 1));
- }
- // }}}
- // __impl_or_fallback {{{
- template <typename ImplFun, typename FallbackFun, typename... _Args>
- _GLIBCXX_SIMD_INTRINSIC auto
- __impl_or_fallback_dispatch(int, ImplFun&& __impl_fun, FallbackFun&&,
- _Args&&... __args)
- -> decltype(__impl_fun(static_cast<_Args&&>(__args)...))
- { return __impl_fun(static_cast<_Args&&>(__args)...); }
- template <typename ImplFun, typename FallbackFun, typename... _Args>
- inline auto
- __impl_or_fallback_dispatch(float, ImplFun&&, FallbackFun&& __fallback_fun,
- _Args&&... __args)
- -> decltype(__fallback_fun(static_cast<_Args&&>(__args)...))
- { return __fallback_fun(static_cast<_Args&&>(__args)...); }
- template <typename... _Args>
- _GLIBCXX_SIMD_INTRINSIC auto
- __impl_or_fallback(_Args&&... __args)
- {
- return __impl_or_fallback_dispatch(int(), static_cast<_Args&&>(__args)...);
- }
- //}}}
- // trigonometric functions {{{
- _GLIBCXX_SIMD_MATH_CALL_(acos)
- _GLIBCXX_SIMD_MATH_CALL_(asin)
- _GLIBCXX_SIMD_MATH_CALL_(atan)
- _GLIBCXX_SIMD_MATH_CALL2_(atan2, _Tp)
- /*
- * algorithm for sine and cosine:
- *
- * The result can be calculated with sine or cosine depending on the π/4 section
- * the input is in. sine ≈ __x + __x³ cosine ≈ 1 - __x²
- *
- * sine:
- * Map -__x to __x and invert the output
- * Extend precision of __x - n * π/4 by calculating
- * ((__x - n * p1) - n * p2) - n * p3 (p1 + p2 + p3 = π/4)
- *
- * Calculate Taylor series with tuned coefficients.
- * Fix sign.
- */
- // cos{{{
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- cos(const simd<_Tp, _Abi>& __x)
- {
- using _V = simd<_Tp, _Abi>;
- if constexpr (__is_scalar_abi<_Abi>() || __is_fixed_size_abi_v<_Abi>)
- return {__private_init, _Abi::_SimdImpl::_S_cos(__data(__x))};
- else
- {
- if constexpr (is_same_v<_Tp, float>)
- if (_GLIBCXX_SIMD_IS_UNLIKELY(any_of(abs(__x) >= 393382)))
- return static_simd_cast<_V>(
- cos(static_simd_cast<rebind_simd_t<double, _V>>(__x)));
- const auto __f = __fold_input(__x);
- // quadrant | effect
- // 0 | cosSeries, +
- // 1 | sinSeries, -
- // 2 | cosSeries, -
- // 3 | sinSeries, +
- using namespace std::experimental::__float_bitwise_operators;
- const _V __sign_flip
- = _V(-0.f) & static_simd_cast<_V>((1 + __f._M_quadrant) << 30);
- const auto __need_cos = (__f._M_quadrant & 1) == 0;
- if (_GLIBCXX_SIMD_IS_UNLIKELY(all_of(__need_cos)))
- return __sign_flip ^ __cosSeries(__f._M_x);
- else if (_GLIBCXX_SIMD_IS_UNLIKELY(none_of(__need_cos)))
- return __sign_flip ^ __sinSeries(__f._M_x);
- else // some_of(__need_cos)
- {
- _V __r = __sinSeries(__f._M_x);
- where(__need_cos.__cvt(), __r) = __cosSeries(__f._M_x);
- return __r ^ __sign_flip;
- }
- }
- }
- template <typename _Tp>
- _GLIBCXX_SIMD_ALWAYS_INLINE
- enable_if_t<is_floating_point<_Tp>::value, simd<_Tp, simd_abi::scalar>>
- cos(simd<_Tp, simd_abi::scalar> __x)
- { return std::cos(__data(__x)); }
- //}}}
- // sin{{{
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- sin(const simd<_Tp, _Abi>& __x)
- {
- using _V = simd<_Tp, _Abi>;
- if constexpr (__is_scalar_abi<_Abi>() || __is_fixed_size_abi_v<_Abi>)
- return {__private_init, _Abi::_SimdImpl::_S_sin(__data(__x))};
- else
- {
- if constexpr (is_same_v<_Tp, float>)
- if (_GLIBCXX_SIMD_IS_UNLIKELY(any_of(abs(__x) >= 527449)))
- return static_simd_cast<_V>(
- sin(static_simd_cast<rebind_simd_t<double, _V>>(__x)));
- const auto __f = __fold_input(__x);
- // quadrant | effect
- // 0 | sinSeries
- // 1 | cosSeries
- // 2 | sinSeries, sign flip
- // 3 | cosSeries, sign flip
- using namespace std::experimental::__float_bitwise_operators;
- const auto __sign_flip
- = (__x ^ static_simd_cast<_V>(1 - __f._M_quadrant)) & _V(_Tp(-0.));
- const auto __need_sin = (__f._M_quadrant & 1) == 0;
- if (_GLIBCXX_SIMD_IS_UNLIKELY(all_of(__need_sin)))
- return __sign_flip ^ __sinSeries(__f._M_x);
- else if (_GLIBCXX_SIMD_IS_UNLIKELY(none_of(__need_sin)))
- return __sign_flip ^ __cosSeries(__f._M_x);
- else // some_of(__need_sin)
- {
- _V __r = __cosSeries(__f._M_x);
- where(__need_sin.__cvt(), __r) = __sinSeries(__f._M_x);
- return __sign_flip ^ __r;
- }
- }
- }
- template <typename _Tp>
- _GLIBCXX_SIMD_ALWAYS_INLINE
- enable_if_t<is_floating_point<_Tp>::value, simd<_Tp, simd_abi::scalar>>
- sin(simd<_Tp, simd_abi::scalar> __x)
- { return std::sin(__data(__x)); }
- //}}}
- _GLIBCXX_SIMD_MATH_CALL_(tan)
- _GLIBCXX_SIMD_MATH_CALL_(acosh)
- _GLIBCXX_SIMD_MATH_CALL_(asinh)
- _GLIBCXX_SIMD_MATH_CALL_(atanh)
- _GLIBCXX_SIMD_MATH_CALL_(cosh)
- _GLIBCXX_SIMD_MATH_CALL_(sinh)
- _GLIBCXX_SIMD_MATH_CALL_(tanh)
- // }}}
- // exponential functions {{{
- _GLIBCXX_SIMD_MATH_CALL_(exp)
- _GLIBCXX_SIMD_MATH_CALL_(exp2)
- _GLIBCXX_SIMD_MATH_CALL_(expm1)
- // }}}
- // frexp {{{
- #if _GLIBCXX_SIMD_X86INTRIN
- template <typename _Tp, size_t _Np>
- _SimdWrapper<_Tp, _Np>
- __getexp(_SimdWrapper<_Tp, _Np> __x)
- {
- if constexpr (__have_avx512vl && __is_sse_ps<_Tp, _Np>())
- return __auto_bitcast(_mm_getexp_ps(__to_intrin(__x)));
- else if constexpr (__have_avx512f && __is_sse_ps<_Tp, _Np>())
- return __auto_bitcast(_mm512_getexp_ps(__auto_bitcast(__to_intrin(__x))));
- else if constexpr (__have_avx512vl && __is_sse_pd<_Tp, _Np>())
- return _mm_getexp_pd(__x);
- else if constexpr (__have_avx512f && __is_sse_pd<_Tp, _Np>())
- return __lo128(_mm512_getexp_pd(__auto_bitcast(__x)));
- else if constexpr (__have_avx512vl && __is_avx_ps<_Tp, _Np>())
- return _mm256_getexp_ps(__x);
- else if constexpr (__have_avx512f && __is_avx_ps<_Tp, _Np>())
- return __lo256(_mm512_getexp_ps(__auto_bitcast(__x)));
- else if constexpr (__have_avx512vl && __is_avx_pd<_Tp, _Np>())
- return _mm256_getexp_pd(__x);
- else if constexpr (__have_avx512f && __is_avx_pd<_Tp, _Np>())
- return __lo256(_mm512_getexp_pd(__auto_bitcast(__x)));
- else if constexpr (__is_avx512_ps<_Tp, _Np>())
- return _mm512_getexp_ps(__x);
- else if constexpr (__is_avx512_pd<_Tp, _Np>())
- return _mm512_getexp_pd(__x);
- else
- __assert_unreachable<_Tp>();
- }
- template <typename _Tp, size_t _Np>
- _SimdWrapper<_Tp, _Np>
- __getmant_avx512(_SimdWrapper<_Tp, _Np> __x)
- {
- if constexpr (__have_avx512vl && __is_sse_ps<_Tp, _Np>())
- return __auto_bitcast(_mm_getmant_ps(__to_intrin(__x), _MM_MANT_NORM_p5_1,
- _MM_MANT_SIGN_src));
- else if constexpr (__have_avx512f && __is_sse_ps<_Tp, _Np>())
- return __auto_bitcast(_mm512_getmant_ps(__auto_bitcast(__to_intrin(__x)),
- _MM_MANT_NORM_p5_1,
- _MM_MANT_SIGN_src));
- else if constexpr (__have_avx512vl && __is_sse_pd<_Tp, _Np>())
- return _mm_getmant_pd(__x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
- else if constexpr (__have_avx512f && __is_sse_pd<_Tp, _Np>())
- return __lo128(_mm512_getmant_pd(__auto_bitcast(__x), _MM_MANT_NORM_p5_1,
- _MM_MANT_SIGN_src));
- else if constexpr (__have_avx512vl && __is_avx_ps<_Tp, _Np>())
- return _mm256_getmant_ps(__x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
- else if constexpr (__have_avx512f && __is_avx_ps<_Tp, _Np>())
- return __lo256(_mm512_getmant_ps(__auto_bitcast(__x), _MM_MANT_NORM_p5_1,
- _MM_MANT_SIGN_src));
- else if constexpr (__have_avx512vl && __is_avx_pd<_Tp, _Np>())
- return _mm256_getmant_pd(__x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
- else if constexpr (__have_avx512f && __is_avx_pd<_Tp, _Np>())
- return __lo256(_mm512_getmant_pd(__auto_bitcast(__x), _MM_MANT_NORM_p5_1,
- _MM_MANT_SIGN_src));
- else if constexpr (__is_avx512_ps<_Tp, _Np>())
- return _mm512_getmant_ps(__x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
- else if constexpr (__is_avx512_pd<_Tp, _Np>())
- return _mm512_getmant_pd(__x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
- else
- __assert_unreachable<_Tp>();
- }
- #endif // _GLIBCXX_SIMD_X86INTRIN
- /**
- * splits @p __v into exponent and mantissa, the sign is kept with the mantissa
- *
- * The return value will be in the range [0.5, 1.0[
- * The @p __e value will be an integer defining the power-of-two exponent
- */
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- frexp(const simd<_Tp, _Abi>& __x, _Samesize<int, simd<_Tp, _Abi>>* __exp)
- {
- if constexpr (simd_size_v<_Tp, _Abi> == 1)
- {
- int __tmp;
- const auto __r = std::frexp(__x[0], &__tmp);
- (*__exp)[0] = __tmp;
- return __r;
- }
- else if constexpr (__is_fixed_size_abi_v<_Abi>)
- {
- return {__private_init,
- _Abi::_SimdImpl::_S_frexp(__data(__x), __data(*__exp))};
- #if _GLIBCXX_SIMD_X86INTRIN
- }
- else if constexpr (__have_avx512f)
- {
- constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
- constexpr size_t _NI = _Np < 4 ? 4 : _Np;
- const auto __v = __data(__x);
- const auto __isnonzero
- = _Abi::_SimdImpl::_S_isnonzerovalue_mask(__v._M_data);
- const _SimdWrapper<int, _NI> __exp_plus1
- = 1 + __convert<_SimdWrapper<int, _NI>>(__getexp(__v))._M_data;
- const _SimdWrapper<int, _Np> __e = __wrapper_bitcast<int, _Np>(
- _Abi::_CommonImpl::_S_blend(_SimdWrapper<bool, _NI>(__isnonzero),
- _SimdWrapper<int, _NI>(), __exp_plus1));
- simd_abi::deduce_t<int, _Np>::_CommonImpl::_S_store(__e, __exp);
- return {__private_init,
- _Abi::_CommonImpl::_S_blend(_SimdWrapper<bool, _Np>(
- __isnonzero),
- __v, __getmant_avx512(__v))};
- #endif // _GLIBCXX_SIMD_X86INTRIN
- }
- else
- {
- // fallback implementation
- static_assert(sizeof(_Tp) == 4 || sizeof(_Tp) == 8);
- using _V = simd<_Tp, _Abi>;
- using _IV = rebind_simd_t<int, _V>;
- using namespace std::experimental::__proposed;
- using namespace std::experimental::__float_bitwise_operators;
- constexpr int __exp_adjust = sizeof(_Tp) == 4 ? 0x7e : 0x3fe;
- constexpr int __exp_offset = sizeof(_Tp) == 4 ? 0x70 : 0x200;
- constexpr _Tp __subnorm_scale = sizeof(_Tp) == 4 ? 0x1p112 : 0x1p512;
- _GLIBCXX_SIMD_USE_CONSTEXPR_API _V __exponent_mask
- = __infinity_v<_Tp>; // 0x7f800000 or 0x7ff0000000000000
- _GLIBCXX_SIMD_USE_CONSTEXPR_API _V __p5_1_exponent
- = -(2 - __epsilon_v<_Tp>) / 2; // 0xbf7fffff or 0xbfefffffffffffff
- _V __mant = __p5_1_exponent & (__exponent_mask | __x); // +/-[.5, 1)
- const _IV __exponent_bits = __extract_exponent_as_int(__x);
- if (_GLIBCXX_SIMD_IS_LIKELY(all_of(isnormal(__x))))
- {
- *__exp
- = simd_cast<_Samesize<int, _V>>(__exponent_bits - __exp_adjust);
- return __mant;
- }
- #if __FINITE_MATH_ONLY__
- // at least one element of __x is 0 or subnormal, the rest is normal
- // (inf and NaN are excluded by -ffinite-math-only)
- const auto __iszero_inf_nan = __x == 0;
- #else
- const auto __as_int
- = __bit_cast<rebind_simd_t<__int_for_sizeof_t<_Tp>, _V>>(abs(__x));
- const auto __inf
- = __bit_cast<rebind_simd_t<__int_for_sizeof_t<_Tp>, _V>>(
- _V(__infinity_v<_Tp>));
- const auto __iszero_inf_nan = static_simd_cast<typename _V::mask_type>(
- __as_int == 0 || __as_int >= __inf);
- #endif
- const _V __scaled_subnormal = __x * __subnorm_scale;
- const _V __mant_subnormal
- = __p5_1_exponent & (__exponent_mask | __scaled_subnormal);
- where(!isnormal(__x), __mant) = __mant_subnormal;
- where(__iszero_inf_nan, __mant) = __x;
- _IV __e = __extract_exponent_as_int(__scaled_subnormal);
- using _MaskType =
- typename conditional_t<sizeof(typename _V::value_type) == sizeof(int),
- _V, _IV>::mask_type;
- const _MaskType __value_isnormal = isnormal(__x).__cvt();
- where(__value_isnormal.__cvt(), __e) = __exponent_bits;
- static_assert(sizeof(_IV) == sizeof(__value_isnormal));
- const _IV __offset
- = (__bit_cast<_IV>(__value_isnormal) & _IV(__exp_adjust))
- | (__bit_cast<_IV>(static_simd_cast<_MaskType>(__exponent_bits == 0)
- & static_simd_cast<_MaskType>(__x != 0))
- & _IV(__exp_adjust + __exp_offset));
- *__exp = simd_cast<_Samesize<int, _V>>(__e - __offset);
- return __mant;
- }
- }
- // }}}
- _GLIBCXX_SIMD_MATH_CALL2_(ldexp, int)
- _GLIBCXX_SIMD_MATH_CALL_(ilogb)
- // logarithms {{{
- _GLIBCXX_SIMD_MATH_CALL_(log)
- _GLIBCXX_SIMD_MATH_CALL_(log10)
- _GLIBCXX_SIMD_MATH_CALL_(log1p)
- _GLIBCXX_SIMD_MATH_CALL_(log2)
- //}}}
- // logb{{{
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point<_Tp>::value, simd<_Tp, _Abi>>
- logb(const simd<_Tp, _Abi>& __x)
- {
- constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
- if constexpr (_Np == 1)
- return std::logb(__x[0]);
- else if constexpr (__is_fixed_size_abi_v<_Abi>)
- {
- return {__private_init,
- __data(__x)._M_apply_per_chunk([](auto __impl, auto __xx) {
- using _V = typename decltype(__impl)::simd_type;
- return __data(
- std::experimental::logb(_V(__private_init, __xx)));
- })};
- }
- #if _GLIBCXX_SIMD_X86INTRIN // {{{
- else if constexpr (__have_avx512vl && __is_sse_ps<_Tp, _Np>())
- return {__private_init,
- __auto_bitcast(_mm_getexp_ps(__to_intrin(__as_vector(__x))))};
- else if constexpr (__have_avx512vl && __is_sse_pd<_Tp, _Np>())
- return {__private_init, _mm_getexp_pd(__data(__x))};
- else if constexpr (__have_avx512vl && __is_avx_ps<_Tp, _Np>())
- return {__private_init, _mm256_getexp_ps(__data(__x))};
- else if constexpr (__have_avx512vl && __is_avx_pd<_Tp, _Np>())
- return {__private_init, _mm256_getexp_pd(__data(__x))};
- else if constexpr (__have_avx512f && __is_avx_ps<_Tp, _Np>())
- return {__private_init,
- __lo256(_mm512_getexp_ps(__auto_bitcast(__data(__x))))};
- else if constexpr (__have_avx512f && __is_avx_pd<_Tp, _Np>())
- return {__private_init,
- __lo256(_mm512_getexp_pd(__auto_bitcast(__data(__x))))};
- else if constexpr (__is_avx512_ps<_Tp, _Np>())
- return {__private_init, _mm512_getexp_ps(__data(__x))};
- else if constexpr (__is_avx512_pd<_Tp, _Np>())
- return {__private_init, _mm512_getexp_pd(__data(__x))};
- #endif // _GLIBCXX_SIMD_X86INTRIN }}}
- else
- {
- using _V = simd<_Tp, _Abi>;
- using namespace std::experimental::__proposed;
- auto __is_normal = isnormal(__x);
- // work on abs(__x) to reflect the return value on Linux for negative
- // inputs (domain-error => implementation-defined value is returned)
- const _V abs_x = abs(__x);
- // __exponent(__x) returns the exponent value (bias removed) as
- // simd<_Up> with integral _Up
- auto&& __exponent = [](const _V& __v) {
- using namespace std::experimental::__proposed;
- using _IV = rebind_simd_t<
- conditional_t<sizeof(_Tp) == sizeof(_LLong), _LLong, int>, _V>;
- return (__bit_cast<_IV>(__v) >> (__digits_v<_Tp> - 1))
- - (__max_exponent_v<_Tp> - 1);
- };
- _V __r = static_simd_cast<_V>(__exponent(abs_x));
- if (_GLIBCXX_SIMD_IS_LIKELY(all_of(__is_normal)))
- // without corner cases (nan, inf, subnormal, zero) we have our
- // answer:
- return __r;
- const auto __is_zero = __x == 0;
- const auto __is_nan = isnan(__x);
- const auto __is_inf = isinf(__x);
- where(__is_zero, __r) = -__infinity_v<_Tp>;
- where(__is_nan, __r) = __x;
- where(__is_inf, __r) = __infinity_v<_Tp>;
- __is_normal |= __is_zero || __is_nan || __is_inf;
- if (all_of(__is_normal))
- // at this point everything but subnormals is handled
- return __r;
- // subnormals repeat the exponent extraction after multiplication of the
- // input with __a floating point value that has 112 (0x70) in its exponent
- // (not too big for sp and large enough for dp)
- const _V __scaled = abs_x * _Tp(0x1p112);
- _V __scaled_exp = static_simd_cast<_V>(__exponent(__scaled) - 112);
- where(__is_normal, __scaled_exp) = __r;
- return __scaled_exp;
- }
- }
- //}}}
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- modf(const simd<_Tp, _Abi>& __x, simd<_Tp, _Abi>* __iptr)
- {
- if constexpr (__is_scalar_abi<_Abi>()
- || (__is_fixed_size_abi_v<
- _Abi> && simd_size_v<_Tp, _Abi> == 1))
- {
- _Tp __tmp;
- _Tp __r = std::modf(__x[0], &__tmp);
- __iptr[0] = __tmp;
- return __r;
- }
- else
- {
- const auto __integral = trunc(__x);
- *__iptr = __integral;
- auto __r = __x - __integral;
- #if !__FINITE_MATH_ONLY__
- where(isinf(__x), __r) = _Tp();
- #endif
- return copysign(__r, __x);
- }
- }
- _GLIBCXX_SIMD_MATH_CALL2_(scalbn, int)
- _GLIBCXX_SIMD_MATH_CALL2_(scalbln, long)
- _GLIBCXX_SIMD_MATH_CALL_(cbrt)
- _GLIBCXX_SIMD_MATH_CALL_(abs)
- _GLIBCXX_SIMD_MATH_CALL_(fabs)
- // [parallel.simd.math] only asks for is_floating_point_v<_Tp> and forgot to
- // allow signed integral _Tp
- template <typename _Tp, typename _Abi>
- enable_if_t<!is_floating_point_v<_Tp> && is_signed_v<_Tp>, simd<_Tp, _Abi>>
- abs(const simd<_Tp, _Abi>& __x)
- { return {__private_init, _Abi::_SimdImpl::_S_abs(__data(__x))}; }
- template <typename _Tp, typename _Abi>
- enable_if_t<!is_floating_point_v<_Tp> && is_signed_v<_Tp>, simd<_Tp, _Abi>>
- fabs(const simd<_Tp, _Abi>& __x)
- { return {__private_init, _Abi::_SimdImpl::_S_abs(__data(__x))}; }
- // the following are overloads for functions in <cstdlib> and not covered by
- // [parallel.simd.math]. I don't see much value in making them work, though
- /*
- template <typename _Abi> simd<long, _Abi> labs(const simd<long, _Abi> &__x)
- { return {__private_init, _Abi::_SimdImpl::abs(__data(__x))}; }
- template <typename _Abi> simd<long long, _Abi> llabs(const simd<long long, _Abi>
- &__x)
- { return {__private_init, _Abi::_SimdImpl::abs(__data(__x))}; }
- */
- #define _GLIBCXX_SIMD_CVTING2(_NAME) \
- template <typename _Tp, typename _Abi> \
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
- const simd<_Tp, _Abi>& __x, const __type_identity_t<simd<_Tp, _Abi>>& __y) \
- { \
- return _NAME(__x, __y); \
- } \
- \
- template <typename _Tp, typename _Abi> \
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
- const __type_identity_t<simd<_Tp, _Abi>>& __x, const simd<_Tp, _Abi>& __y) \
- { \
- return _NAME(__x, __y); \
- }
- #define _GLIBCXX_SIMD_CVTING3(_NAME) \
- template <typename _Tp, typename _Abi> \
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
- const __type_identity_t<simd<_Tp, _Abi>>& __x, const simd<_Tp, _Abi>& __y, \
- const simd<_Tp, _Abi>& __z) \
- { \
- return _NAME(__x, __y, __z); \
- } \
- \
- template <typename _Tp, typename _Abi> \
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
- const simd<_Tp, _Abi>& __x, const __type_identity_t<simd<_Tp, _Abi>>& __y, \
- const simd<_Tp, _Abi>& __z) \
- { \
- return _NAME(__x, __y, __z); \
- } \
- \
- template <typename _Tp, typename _Abi> \
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
- const simd<_Tp, _Abi>& __x, const simd<_Tp, _Abi>& __y, \
- const __type_identity_t<simd<_Tp, _Abi>>& __z) \
- { \
- return _NAME(__x, __y, __z); \
- } \
- \
- template <typename _Tp, typename _Abi> \
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
- const simd<_Tp, _Abi>& __x, const __type_identity_t<simd<_Tp, _Abi>>& __y, \
- const __type_identity_t<simd<_Tp, _Abi>>& __z) \
- { \
- return _NAME(__x, __y, __z); \
- } \
- \
- template <typename _Tp, typename _Abi> \
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
- const __type_identity_t<simd<_Tp, _Abi>>& __x, const simd<_Tp, _Abi>& __y, \
- const __type_identity_t<simd<_Tp, _Abi>>& __z) \
- { \
- return _NAME(__x, __y, __z); \
- } \
- \
- template <typename _Tp, typename _Abi> \
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
- const __type_identity_t<simd<_Tp, _Abi>>& __x, \
- const __type_identity_t<simd<_Tp, _Abi>>& __y, const simd<_Tp, _Abi>& __z) \
- { \
- return _NAME(__x, __y, __z); \
- }
- template <typename _R, typename _ToApply, typename _Tp, typename... _Tps>
- _GLIBCXX_SIMD_INTRINSIC _R
- __fixed_size_apply(_ToApply&& __apply, const _Tp& __arg0,
- const _Tps&... __args)
- {
- return {__private_init,
- __data(__arg0)._M_apply_per_chunk(
- [&](auto __impl, const auto&... __inner) {
- using _V = typename decltype(__impl)::simd_type;
- return __data(__apply(_V(__private_init, __inner)...));
- },
- __data(__args)...)};
- }
- template <typename _VV>
- __remove_cvref_t<_VV>
- __hypot(_VV __x, _VV __y)
- {
- using _V = __remove_cvref_t<_VV>;
- using _Tp = typename _V::value_type;
- if constexpr (_V::size() == 1)
- return std::hypot(_Tp(__x[0]), _Tp(__y[0]));
- else if constexpr (__is_fixed_size_abi_v<typename _V::abi_type>)
- {
- return __fixed_size_apply<_V>([](auto __a,
- auto __b) { return hypot(__a, __b); },
- __x, __y);
- }
- else
- {
- // A simple solution for _Tp == float would be to cast to double and
- // simply calculate sqrt(x²+y²) as it can't over-/underflow anymore with
- // dp. It still needs the Annex F fixups though and isn't faster on
- // Skylake-AVX512 (not even for SSE and AVX vectors, and really bad for
- // AVX-512).
- using namespace __float_bitwise_operators;
- _V __absx = abs(__x); // no error
- _V __absy = abs(__y); // no error
- _V __hi = max(__absx, __absy); // no error
- _V __lo = min(__absy, __absx); // no error
- // round __hi down to the next power-of-2:
- _GLIBCXX_SIMD_USE_CONSTEXPR_API _V __inf(__infinity_v<_Tp>);
- #ifndef __FAST_MATH__
- if constexpr (__have_neon && !__have_neon_a32)
- { // With ARMv7 NEON, we have no subnormals and must use slightly
- // different strategy
- const _V __hi_exp = __hi & __inf;
- _V __scale_back = __hi_exp;
- // For large exponents (max & max/2) the inversion comes too close
- // to subnormals. Subtract 3 from the exponent:
- where(__hi_exp > 1, __scale_back) = __hi_exp * _Tp(0.125);
- // Invert and adjust for the off-by-one error of inversion via xor:
- const _V __scale = (__scale_back ^ __inf) * _Tp(.5);
- const _V __h1 = __hi * __scale;
- const _V __l1 = __lo * __scale;
- _V __r = __scale_back * sqrt(__h1 * __h1 + __l1 * __l1);
- // Fix up hypot(0, 0) to not be NaN:
- where(__hi == 0, __r) = 0;
- return __r;
- }
- #endif
- #ifdef __FAST_MATH__
- // With fast-math, ignore precision of subnormals and inputs from
- // __finite_max_v/2 to __finite_max_v. This removes all
- // branching/masking.
- if constexpr (true)
- #else
- if (_GLIBCXX_SIMD_IS_LIKELY(all_of(isnormal(__x))
- && all_of(isnormal(__y))))
- #endif
- {
- const _V __hi_exp = __hi & __inf;
- //((__hi + __hi) & __inf) ^ __inf almost works for computing
- //__scale,
- // except when (__hi + __hi) & __inf == __inf, in which case __scale
- // becomes 0 (should be min/2 instead) and thus loses the
- // information from __lo.
- #ifdef __FAST_MATH__
- using _Ip = __int_for_sizeof_t<_Tp>;
- using _IV = rebind_simd_t<_Ip, _V>;
- const auto __as_int = __bit_cast<_IV>(__hi_exp);
- const _V __scale
- = __bit_cast<_V>(2 * __bit_cast<_Ip>(_Tp(1)) - __as_int);
- #else
- const _V __scale = (__hi_exp ^ __inf) * _Tp(.5);
- #endif
- _GLIBCXX_SIMD_USE_CONSTEXPR_API _V __mant_mask
- = __norm_min_v<_Tp> - __denorm_min_v<_Tp>;
- const _V __h1 = (__hi & __mant_mask) | _V(1);
- const _V __l1 = __lo * __scale;
- return __hi_exp * sqrt(__h1 * __h1 + __l1 * __l1);
- }
- else
- {
- // slower path to support subnormals
- // if __hi is subnormal, avoid scaling by inf & final mul by 0
- // (which yields NaN) by using min()
- _V __scale = _V(1 / __norm_min_v<_Tp>);
- // invert exponent w/o error and w/o using the slow divider unit:
- // xor inverts the exponent but off by 1. Multiplication with .5
- // adjusts for the discrepancy.
- where(__hi >= __norm_min_v<_Tp>, __scale)
- = ((__hi & __inf) ^ __inf) * _Tp(.5);
- // adjust final exponent for subnormal inputs
- _V __hi_exp = __norm_min_v<_Tp>;
- where(__hi >= __norm_min_v<_Tp>, __hi_exp)
- = __hi & __inf; // no error
- _V __h1 = __hi * __scale; // no error
- _V __l1 = __lo * __scale; // no error
- // sqrt(x²+y²) = e*sqrt((x/e)²+(y/e)²):
- // this ensures no overflow in the argument to sqrt
- _V __r = __hi_exp * sqrt(__h1 * __h1 + __l1 * __l1);
- #ifdef __STDC_IEC_559__
- // fixup for Annex F requirements
- // the naive fixup goes like this:
- //
- // where(__l1 == 0, __r) = __hi;
- // where(isunordered(__x, __y), __r) = __quiet_NaN_v<_Tp>;
- // where(isinf(__absx) || isinf(__absy), __r) = __inf;
- //
- // The fixup can be prepared in parallel with the sqrt, requiring a
- // single blend step after hi_exp * sqrt, reducing latency and
- // throughput:
- _V __fixup = __hi; // __lo == 0
- where(isunordered(__x, __y), __fixup) = __quiet_NaN_v<_Tp>;
- where(isinf(__absx) || isinf(__absy), __fixup) = __inf;
- where(!(__lo == 0 || isunordered(__x, __y)
- || (isinf(__absx) || isinf(__absy))),
- __fixup)
- = __r;
- __r = __fixup;
- #endif
- return __r;
- }
- }
- }
- template <typename _Tp, typename _Abi>
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi>
- hypot(const simd<_Tp, _Abi>& __x, const simd<_Tp, _Abi>& __y)
- {
- return __hypot<conditional_t<__is_fixed_size_abi_v<_Abi>,
- const simd<_Tp, _Abi>&, simd<_Tp, _Abi>>>(__x,
- __y);
- }
- _GLIBCXX_SIMD_CVTING2(hypot)
- template <typename _VV>
- __remove_cvref_t<_VV>
- __hypot(_VV __x, _VV __y, _VV __z)
- {
- using _V = __remove_cvref_t<_VV>;
- using _Abi = typename _V::abi_type;
- using _Tp = typename _V::value_type;
- /* FIXME: enable after PR77776 is resolved
- if constexpr (_V::size() == 1)
- return std::hypot(_Tp(__x[0]), _Tp(__y[0]), _Tp(__z[0]));
- else
- */
- if constexpr (__is_fixed_size_abi_v<_Abi> && _V::size() > 1)
- {
- return __fixed_size_apply<simd<_Tp, _Abi>>(
- [](auto __a, auto __b, auto __c) { return hypot(__a, __b, __c); },
- __x, __y, __z);
- }
- else
- {
- using namespace __float_bitwise_operators;
- const _V __absx = abs(__x); // no error
- const _V __absy = abs(__y); // no error
- const _V __absz = abs(__z); // no error
- _V __hi = max(max(__absx, __absy), __absz); // no error
- _V __l0 = min(__absz, max(__absx, __absy)); // no error
- _V __l1 = min(__absy, __absx); // no error
- if constexpr (__digits_v<_Tp> == 64 && __max_exponent_v<_Tp> == 0x4000
- && __min_exponent_v<_Tp> == -0x3FFD && _V::size() == 1)
- { // Seems like x87 fp80, where bit 63 is always 1 unless subnormal or
- // NaN. In this case the bit-tricks don't work, they require IEC559
- // binary32 or binary64 format.
- #ifdef __STDC_IEC_559__
- // fixup for Annex F requirements
- if (isinf(__absx[0]) || isinf(__absy[0]) || isinf(__absz[0]))
- return __infinity_v<_Tp>;
- else if (isunordered(__absx[0], __absy[0] + __absz[0]))
- return __quiet_NaN_v<_Tp>;
- else if (__l0[0] == 0 && __l1[0] == 0)
- return __hi;
- #endif
- _V __hi_exp = __hi;
- const _ULLong __tmp = 0x8000'0000'0000'0000ull;
- __builtin_memcpy(&__data(__hi_exp), &__tmp, 8);
- const _V __scale = 1 / __hi_exp;
- __hi *= __scale;
- __l0 *= __scale;
- __l1 *= __scale;
- return __hi_exp * sqrt((__l0 * __l0 + __l1 * __l1) + __hi * __hi);
- }
- else
- {
- // round __hi down to the next power-of-2:
- _GLIBCXX_SIMD_USE_CONSTEXPR_API _V __inf(__infinity_v<_Tp>);
- #ifndef __FAST_MATH__
- if constexpr (_V::size() > 1 && __have_neon && !__have_neon_a32)
- { // With ARMv7 NEON, we have no subnormals and must use slightly
- // different strategy
- const _V __hi_exp = __hi & __inf;
- _V __scale_back = __hi_exp;
- // For large exponents (max & max/2) the inversion comes too
- // close to subnormals. Subtract 3 from the exponent:
- where(__hi_exp > 1, __scale_back) = __hi_exp * _Tp(0.125);
- // Invert and adjust for the off-by-one error of inversion via
- // xor:
- const _V __scale = (__scale_back ^ __inf) * _Tp(.5);
- const _V __h1 = __hi * __scale;
- __l0 *= __scale;
- __l1 *= __scale;
- _V __lo = __l0 * __l0
- + __l1 * __l1; // add the two smaller values first
- asm("" : "+m"(__lo));
- _V __r = __scale_back * sqrt(__h1 * __h1 + __lo);
- // Fix up hypot(0, 0, 0) to not be NaN:
- where(__hi == 0, __r) = 0;
- return __r;
- }
- #endif
- #ifdef __FAST_MATH__
- // With fast-math, ignore precision of subnormals and inputs from
- // __finite_max_v/2 to __finite_max_v. This removes all
- // branching/masking.
- if constexpr (true)
- #else
- if (_GLIBCXX_SIMD_IS_LIKELY(all_of(isnormal(__x))
- && all_of(isnormal(__y))
- && all_of(isnormal(__z))))
- #endif
- {
- const _V __hi_exp = __hi & __inf;
- //((__hi + __hi) & __inf) ^ __inf almost works for computing
- //__scale, except when (__hi + __hi) & __inf == __inf, in which
- // case __scale
- // becomes 0 (should be min/2 instead) and thus loses the
- // information from __lo.
- #ifdef __FAST_MATH__
- using _Ip = __int_for_sizeof_t<_Tp>;
- using _IV = rebind_simd_t<_Ip, _V>;
- const auto __as_int = __bit_cast<_IV>(__hi_exp);
- const _V __scale
- = __bit_cast<_V>(2 * __bit_cast<_Ip>(_Tp(1)) - __as_int);
- #else
- const _V __scale = (__hi_exp ^ __inf) * _Tp(.5);
- #endif
- constexpr _Tp __mant_mask
- = __norm_min_v<_Tp> - __denorm_min_v<_Tp>;
- const _V __h1 = (__hi & _V(__mant_mask)) | _V(1);
- __l0 *= __scale;
- __l1 *= __scale;
- const _V __lo
- = __l0 * __l0
- + __l1 * __l1; // add the two smaller values first
- return __hi_exp * sqrt(__lo + __h1 * __h1);
- }
- else
- {
- // slower path to support subnormals
- // if __hi is subnormal, avoid scaling by inf & final mul by 0
- // (which yields NaN) by using min()
- _V __scale = _V(1 / __norm_min_v<_Tp>);
- // invert exponent w/o error and w/o using the slow divider
- // unit: xor inverts the exponent but off by 1. Multiplication
- // with .5 adjusts for the discrepancy.
- where(__hi >= __norm_min_v<_Tp>, __scale)
- = ((__hi & __inf) ^ __inf) * _Tp(.5);
- // adjust final exponent for subnormal inputs
- _V __hi_exp = __norm_min_v<_Tp>;
- where(__hi >= __norm_min_v<_Tp>, __hi_exp)
- = __hi & __inf; // no error
- _V __h1 = __hi * __scale; // no error
- __l0 *= __scale; // no error
- __l1 *= __scale; // no error
- _V __lo = __l0 * __l0
- + __l1 * __l1; // add the two smaller values first
- _V __r = __hi_exp * sqrt(__lo + __h1 * __h1);
- #ifdef __STDC_IEC_559__
- // fixup for Annex F requirements
- _V __fixup = __hi; // __lo == 0
- // where(__lo == 0, __fixup) = __hi;
- where(isunordered(__x, __y + __z), __fixup)
- = __quiet_NaN_v<_Tp>;
- where(isinf(__absx) || isinf(__absy) || isinf(__absz), __fixup)
- = __inf;
- // Instead of __lo == 0, the following could depend on __h1² ==
- // __h1² + __lo (i.e. __hi is so much larger than the other two
- // inputs that the result is exactly __hi). While this may
- // improve precision, it is likely to reduce efficiency if the
- // ISA has FMAs (because __h1² + __lo is an FMA, but the
- // intermediate
- // __h1² must be kept)
- where(!(__lo == 0 || isunordered(__x, __y + __z)
- || isinf(__absx) || isinf(__absy) || isinf(__absz)),
- __fixup)
- = __r;
- __r = __fixup;
- #endif
- return __r;
- }
- }
- }
- }
- template <typename _Tp, typename _Abi>
- _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi>
- hypot(const simd<_Tp, _Abi>& __x, const simd<_Tp, _Abi>& __y,
- const simd<_Tp, _Abi>& __z)
- {
- return __hypot<conditional_t<__is_fixed_size_abi_v<_Abi>,
- const simd<_Tp, _Abi>&, simd<_Tp, _Abi>>>(__x,
- __y,
- __z);
- }
- _GLIBCXX_SIMD_CVTING3(hypot)
- _GLIBCXX_SIMD_MATH_CALL2_(pow, _Tp)
- _GLIBCXX_SIMD_MATH_CALL_(sqrt)
- _GLIBCXX_SIMD_MATH_CALL_(erf)
- _GLIBCXX_SIMD_MATH_CALL_(erfc)
- _GLIBCXX_SIMD_MATH_CALL_(lgamma)
- _GLIBCXX_SIMD_MATH_CALL_(tgamma)
- _GLIBCXX_SIMD_MATH_CALL_(ceil)
- _GLIBCXX_SIMD_MATH_CALL_(floor)
- _GLIBCXX_SIMD_MATH_CALL_(nearbyint)
- _GLIBCXX_SIMD_MATH_CALL_(rint)
- _GLIBCXX_SIMD_MATH_CALL_(lrint)
- _GLIBCXX_SIMD_MATH_CALL_(llrint)
- _GLIBCXX_SIMD_MATH_CALL_(round)
- _GLIBCXX_SIMD_MATH_CALL_(lround)
- _GLIBCXX_SIMD_MATH_CALL_(llround)
- _GLIBCXX_SIMD_MATH_CALL_(trunc)
- _GLIBCXX_SIMD_MATH_CALL2_(fmod, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(remainder, _Tp)
- _GLIBCXX_SIMD_MATH_CALL3_(remquo, _Tp, int*)
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- copysign(const simd<_Tp, _Abi>& __x, const simd<_Tp, _Abi>& __y)
- {
- if constexpr (simd_size_v<_Tp, _Abi> == 1)
- return std::copysign(__x[0], __y[0]);
- else if constexpr (is_same_v<_Tp, long double> && sizeof(_Tp) == 12)
- // Remove this case once __bit_cast is implemented via __builtin_bit_cast.
- // It is necessary, because __signmask below cannot be computed at compile
- // time.
- return simd<_Tp, _Abi>(
- [&](auto __i) { return std::copysign(__x[__i], __y[__i]); });
- else
- {
- using _V = simd<_Tp, _Abi>;
- using namespace std::experimental::__float_bitwise_operators;
- _GLIBCXX_SIMD_USE_CONSTEXPR_API auto __signmask = _V(1) ^ _V(-1);
- return (__x & (__x ^ __signmask)) | (__y & __signmask);
- }
- }
- _GLIBCXX_SIMD_MATH_CALL2_(nextafter, _Tp)
- // not covered in [parallel.simd.math]:
- // _GLIBCXX_SIMD_MATH_CALL2_(nexttoward, long double)
- _GLIBCXX_SIMD_MATH_CALL2_(fdim, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(fmax, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(fmin, _Tp)
- _GLIBCXX_SIMD_MATH_CALL3_(fma, _Tp, _Tp)
- _GLIBCXX_SIMD_MATH_CALL_(fpclassify)
- _GLIBCXX_SIMD_MATH_CALL_(isfinite)
- // isnan and isinf require special treatment because old glibc may declare
- // `int isinf(double)`.
- template <typename _Tp, typename _Abi, typename...,
- typename _R = _Math_return_type_t<bool, _Tp, _Abi>>
- enable_if_t<is_floating_point_v<_Tp>, _R>
- isinf(simd<_Tp, _Abi> __x)
- { return {__private_init, _Abi::_SimdImpl::_S_isinf(__data(__x))}; }
- template <typename _Tp, typename _Abi, typename...,
- typename _R = _Math_return_type_t<bool, _Tp, _Abi>>
- enable_if_t<is_floating_point_v<_Tp>, _R>
- isnan(simd<_Tp, _Abi> __x)
- { return {__private_init, _Abi::_SimdImpl::_S_isnan(__data(__x))}; }
- _GLIBCXX_SIMD_MATH_CALL_(isnormal)
- template <typename..., typename _Tp, typename _Abi>
- simd_mask<_Tp, _Abi>
- signbit(simd<_Tp, _Abi> __x)
- {
- if constexpr (is_integral_v<_Tp>)
- {
- if constexpr (is_unsigned_v<_Tp>)
- return simd_mask<_Tp, _Abi>{}; // false
- else
- return __x < 0;
- }
- else
- return {__private_init, _Abi::_SimdImpl::_S_signbit(__data(__x))};
- }
- _GLIBCXX_SIMD_MATH_CALL2_(isgreater, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(isgreaterequal, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(isless, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(islessequal, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(islessgreater, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(isunordered, _Tp)
- /* not covered in [parallel.simd.math]
- template <typename _Abi> __doublev<_Abi> nan(const char* tagp);
- template <typename _Abi> __floatv<_Abi> nanf(const char* tagp);
- template <typename _Abi> __ldoublev<_Abi> nanl(const char* tagp);
- template <typename _V> struct simd_div_t {
- _V quot, rem;
- };
- template <typename _Abi>
- simd_div_t<_SCharv<_Abi>> div(_SCharv<_Abi> numer,
- _SCharv<_Abi> denom);
- template <typename _Abi>
- simd_div_t<__shortv<_Abi>> div(__shortv<_Abi> numer,
- __shortv<_Abi> denom);
- template <typename _Abi>
- simd_div_t<__intv<_Abi>> div(__intv<_Abi> numer, __intv<_Abi> denom);
- template <typename _Abi>
- simd_div_t<__longv<_Abi>> div(__longv<_Abi> numer,
- __longv<_Abi> denom);
- template <typename _Abi>
- simd_div_t<__llongv<_Abi>> div(__llongv<_Abi> numer,
- __llongv<_Abi> denom);
- */
- // special math {{{
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- assoc_laguerre(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
- const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __m,
- const simd<_Tp, _Abi>& __x)
- {
- return simd<_Tp, _Abi>([&](auto __i) {
- return std::assoc_laguerre(__n[__i], __m[__i], __x[__i]);
- });
- }
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- assoc_legendre(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
- const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __m,
- const simd<_Tp, _Abi>& __x)
- {
- return simd<_Tp, _Abi>([&](auto __i) {
- return std::assoc_legendre(__n[__i], __m[__i], __x[__i]);
- });
- }
- _GLIBCXX_SIMD_MATH_CALL2_(beta, _Tp)
- _GLIBCXX_SIMD_MATH_CALL_(comp_ellint_1)
- _GLIBCXX_SIMD_MATH_CALL_(comp_ellint_2)
- _GLIBCXX_SIMD_MATH_CALL2_(comp_ellint_3, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(cyl_bessel_i, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(cyl_bessel_j, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(cyl_bessel_k, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(cyl_neumann, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(ellint_1, _Tp)
- _GLIBCXX_SIMD_MATH_CALL2_(ellint_2, _Tp)
- _GLIBCXX_SIMD_MATH_CALL3_(ellint_3, _Tp, _Tp)
- _GLIBCXX_SIMD_MATH_CALL_(expint)
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- hermite(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
- const simd<_Tp, _Abi>& __x)
- {
- return simd<_Tp, _Abi>(
- [&](auto __i) { return std::hermite(__n[__i], __x[__i]); });
- }
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- laguerre(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
- const simd<_Tp, _Abi>& __x)
- {
- return simd<_Tp, _Abi>(
- [&](auto __i) { return std::laguerre(__n[__i], __x[__i]); });
- }
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- legendre(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
- const simd<_Tp, _Abi>& __x)
- {
- return simd<_Tp, _Abi>(
- [&](auto __i) { return std::legendre(__n[__i], __x[__i]); });
- }
- _GLIBCXX_SIMD_MATH_CALL_(riemann_zeta)
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- sph_bessel(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
- const simd<_Tp, _Abi>& __x)
- {
- return simd<_Tp, _Abi>(
- [&](auto __i) { return std::sph_bessel(__n[__i], __x[__i]); });
- }
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- sph_legendre(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __l,
- const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __m,
- const simd<_Tp, _Abi>& theta)
- {
- return simd<_Tp, _Abi>([&](auto __i) {
- return std::assoc_legendre(__l[__i], __m[__i], theta[__i]);
- });
- }
- template <typename _Tp, typename _Abi>
- enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
- sph_neumann(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
- const simd<_Tp, _Abi>& __x)
- {
- return simd<_Tp, _Abi>(
- [&](auto __i) { return std::sph_neumann(__n[__i], __x[__i]); });
- }
- // }}}
- #undef _GLIBCXX_SIMD_MATH_CALL_
- #undef _GLIBCXX_SIMD_MATH_CALL2_
- #undef _GLIBCXX_SIMD_MATH_CALL3_
- _GLIBCXX_SIMD_END_NAMESPACE
- #endif // __cplusplus >= 201703L
- #endif // _GLIBCXX_EXPERIMENTAL_SIMD_MATH_H_
- // vim: foldmethod=marker sw=2 ts=8 noet sts=2
|