Просмотр исходного кода

Merge branch 'feature/flash_encryption_esp32s2' into 'master'

feature/flash_encryption_esp32s2: Enable flash encryption mechanism to esp32s2 chips

Closes IDF-804

See merge request espressif/esp-idf!8109
Angus Gratton 5 лет назад
Родитель
Сommit
017f07cda7

+ 2 - 2
components/bootloader/Kconfig.projbuild

@@ -601,7 +601,7 @@ menu "Security features"
 
         config SECURE_BOOT_ALLOW_ROM_BASIC
             bool "Leave ROM BASIC Interpreter available on reset"
-            depends on SECURE_BOOT_INSECURE || SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT
+            depends on (SECURE_BOOT_INSECURE || SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT) && IDF_TARGET_ESP32
             default N
             help
                 By default, the BASIC ROM Console starts on reset if no valid bootloader is
@@ -664,7 +664,7 @@ menu "Security features"
 
         config SECURE_FLASH_UART_BOOTLOADER_ALLOW_DEC
             bool "Leave UART bootloader decryption enabled"
-            depends on SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT
+            depends on SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT && IDF_TARGET_ESP32
             default N
             help
                 If not set (default), the bootloader will permanently disable UART bootloader decryption access on

+ 1 - 5
components/bootloader_support/CMakeLists.txt

@@ -6,17 +6,13 @@ set(srcs
     "src/bootloader_random.c"
     "src/bootloader_utility.c"
     "src/esp_image_format.c"
+    "src/flash_encrypt.c"
     "src/flash_partitions.c"
     "src/flash_qio_mode.c"
     "src/bootloader_flash_config_${IDF_TARGET}.c"
     "src/bootloader_efuse_${IDF_TARGET}.c"
     )
 
-if(IDF_TARGET STREQUAL "esp32")
-    # Not supported on ESP32S2 yet
-    list(APPEND srcs "src/flash_encrypt.c")
-endif()
-
 if(BOOTLOADER_BUILD)
     set(include_dirs "include" "include_bootloader")
     set(priv_requires micro-ecc spi_flash efuse)

+ 162 - 50
components/bootloader_support/src/esp32s2/flash_encrypt.c

@@ -25,66 +25,100 @@
 #include "esp32s2/rom/secure_boot.h"
 #include "esp32s2/rom/cache.h"
 #include "esp32s2/rom/efuse.h"
+#include "esp_efuse.h"
+#include "esp_efuse_table.h"
+#include "hal/wdt_hal.h"
 
 static const char *TAG = "flash_encrypt";
 
 /* Static functions for stages of flash encryption */
 static esp_err_t initialise_flash_encryption(void);
-static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis);
+static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis) __attribute__((unused));
 static esp_err_t encrypt_bootloader(void);
 static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions);
 static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partition);
 
 esp_err_t esp_flash_encrypt_check_and_update(void)
 {
-    // TODO: not clear why this is read from DATA1 and written to PGM_DATA2
-    uint32_t cnt = REG_GET_FIELD(EFUSE_RD_REPEAT_DATA1_REG, EFUSE_SPI_BOOT_CRYPT_CNT);
-    ESP_LOGV(TAG, "SPI_BOOT_CRYPT_CNT 0x%x", cnt);
+    uint8_t flash_crypt_wr_dis = 0;
+    uint32_t flash_crypt_cnt = 0;
 
-    bool flash_crypt_wr_dis = false; // TODO: check if CRYPT_CNT is write disabled
+    esp_efuse_read_field_blob(ESP_EFUSE_SPI_BOOT_CRYPT_CNT, &flash_crypt_cnt, 3);
+    esp_efuse_read_field_blob(ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT, &flash_crypt_wr_dis, 1);
+
+    ESP_LOGV(TAG, "SPI_BOOT_CRYPT_CNT 0x%x", flash_crypt_cnt);
+    ESP_LOGV(TAG, "EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT 0x%x", flash_crypt_wr_dis);
 
     _Static_assert(EFUSE_SPI_BOOT_CRYPT_CNT == 0x7, "assuming CRYPT_CNT is only 3 bits wide");
 
-    if (cnt == 1 || cnt == 3 || cnt == 7) {
+    if (__builtin_parity(flash_crypt_cnt) == 1) {
         /* Flash is already encrypted */
-        int left;
-        if (cnt == 7 /* || disabled */) {
-            left = 0;
-        } else if (cnt == 3) {
-            left = 1;
-        } else {
-            left = 2;
+        int left = (flash_crypt_cnt == 1) ? 1 : 0;
+        if (flash_crypt_wr_dis) {
+            left = 0; /* can't update FLASH_CRYPT_CNT, no more flashes */
         }
         ESP_LOGI(TAG, "flash encryption is enabled (%d plaintext flashes left)", left);
         return ESP_OK;
-    }
-    else {
+    } else {
+
+#ifndef CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
         /* Flash is not encrypted, so encrypt it! */
-        return encrypt_flash_contents(cnt, flash_crypt_wr_dis);
+        return encrypt_flash_contents(flash_crypt_cnt, flash_crypt_wr_dis);
+#else
+        ESP_LOGE(TAG, "flash encryption is not enabled, and SECURE_FLASH_REQUIRE_ALREADY_ENABLED "
+                      "is set, refusing to boot.");
+        return ESP_ERR_INVALID_STATE;
+#endif // CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
+
     }
 }
 
-static esp_err_t initialise_flash_encryption(void)
+static bool s_key_dis_read(ets_efuse_block_t block)
 {
-    /* Before first flash encryption pass, need to initialise key & crypto config */
+    unsigned key_num = block - ETS_EFUSE_BLOCK_KEY0;
+    return REG_GET_FIELD(EFUSE_RD_REPEAT_DATA0_REG, EFUSE_RD_DIS) & (EFUSE_RD_DIS_KEY0 << key_num);
+}
 
-    /* Find out if a key is already set */
-    bool has_aes128 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY, NULL);
-    bool has_aes256_1 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_1, NULL);
-    bool has_aes256_2 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_2, NULL);
+static bool s_key_dis_write(ets_efuse_block_t block)
+{
+    unsigned key_num = block - ETS_EFUSE_BLOCK_KEY0;
+    return REG_GET_FIELD(EFUSE_RD_WR_DIS_REG, EFUSE_WR_DIS) & (EFUSE_WR_DIS_KEY0 << key_num);
+}
 
+static esp_err_t check_and_generate_encryption_keys(void)
+{
+    esp_err_t err = ESP_ERR_INVALID_STATE;
+    ets_efuse_block_t aes_128_key_block;
+    ets_efuse_block_t aes_256_key_block_1;
+    ets_efuse_block_t aes_256_key_block_2;
+
+    bool has_aes128 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY, &aes_128_key_block);
+    bool has_aes256_1 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_1, &aes_256_key_block_1);
+    bool has_aes256_2 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_2, &aes_256_key_block_2);
     bool has_key = has_aes128 || (has_aes256_1 && has_aes256_2);
+    bool dis_write = false;
+    bool dis_read = false;
+
+    // If there are keys set, they must be write and read protected!
+    if(has_key && has_aes128) {
+        dis_write = s_key_dis_write(aes_128_key_block);
+        dis_read = s_key_dis_read(aes_128_key_block);
+    } else if (has_key && has_aes256_1 && has_aes256_2) {
+        dis_write = s_key_dis_write(aes_256_key_block_1) && s_key_dis_write(aes_256_key_block_2);
+        dis_read = s_key_dis_read(aes_256_key_block_1) && s_key_dis_read(aes_256_key_block_2);
+    }
 
     if (!has_key && (has_aes256_1 || has_aes256_2)) {
         ESP_LOGE(TAG, "Invalid efuse key blocks: Both AES-256 key blocks must be set.");
         return ESP_ERR_INVALID_STATE;
     }
 
-    if (has_key) {
-        ESP_LOGI(TAG, "Using pre-existing key in efuse");
+    if(has_key && (!dis_read || !dis_write)) {
+        ESP_LOGE(TAG, "Invalid key state, a key was set but not read and write protected.");
+        return ESP_ERR_INVALID_STATE;
+    }
 
-        ESP_LOGE(TAG, "TODO: Check key is read & write protected"); // TODO
-    } else {
+    if(!has_key && !dis_write && !dis_read) {
         ESP_LOGI(TAG, "Generating new flash encryption key...");
 #ifdef CONFIG_SECURE_FLASH_ENCRYPTION_AES256
         const unsigned BLOCKS_NEEDED = 2;
@@ -102,26 +136,87 @@ static esp_err_t initialise_flash_encryption(void)
         }
 
         for(ets_efuse_purpose_t purpose = PURPOSE_START; purpose <= PURPOSE_END; purpose++) {
-            uint32_t buf[8];
+            uint32_t buf[8] = {0};
             bootloader_fill_random(buf, sizeof(buf));
             ets_efuse_block_t block = ets_efuse_find_unused_key_block();
             ESP_LOGD(TAG, "Writing ETS_EFUSE_BLOCK_KEY%d with purpose %d",
                      block - ETS_EFUSE_BLOCK_KEY0, purpose);
-            bootloader_debug_buffer(buf, sizeof(buf), "Key content");
+
+            /* Note: everything else in this function is deferred as a batch write, but we write the
+               key (and write protect it) immediately as it's too fiddly to manage unused key blocks, etc.
+               in bootloader size footprint otherwise. */
             int r = ets_efuse_write_key(block, purpose, buf, sizeof(buf));
-            bzero(buf, sizeof(buf));
             if (r != 0) {
-                ESP_LOGE(TAG, "Failed to write efuse block %d with purpose %d. Can't continue.");
+                ESP_LOGE(TAG, "Failed to write efuse block %d with purpose %d. Can't continue.",
+                        block, purpose);
                 return ESP_FAIL;
             }
-        }
 
+            /* assuming numbering of esp_efuse_block_t matches ets_efuse_block_t */
+            _Static_assert((int)EFUSE_BLK_KEY0 == (int)ETS_EFUSE_BLOCK_KEY0, "esp_efuse_block_t doesn't match ets_efuse_block_t");
+            _Static_assert((int)EFUSE_BLK_KEY1 == (int)ETS_EFUSE_BLOCK_KEY1, "esp_efuse_block_t doesn't match ets_efuse_block_t");
+            _Static_assert((int)EFUSE_BLK_KEY2 == (int)ETS_EFUSE_BLOCK_KEY2, "esp_efuse_block_t doesn't match ets_efuse_block_t");
+            _Static_assert((int)EFUSE_BLK_KEY3 == (int)ETS_EFUSE_BLOCK_KEY3, "esp_efuse_block_t doesn't match ets_efuse_block_t");
+            _Static_assert((int)EFUSE_BLK_KEY4 == (int)ETS_EFUSE_BLOCK_KEY4, "esp_efuse_block_t doesn't match ets_efuse_block_t");
+            _Static_assert((int)EFUSE_BLK_KEY5 == (int)ETS_EFUSE_BLOCK_KEY5, "esp_efuse_block_t doesn't match ets_efuse_block_t");
+
+            // protect this block against reading after key is set (writing is done by ets_efuse_write_key)
+            err = esp_efuse_set_read_protect(block);
+            if(err != ESP_OK) {
+                ESP_LOGE(TAG, "Failed to set read protect to efuse block %d. Can't continue.", block);
+                return err;
+            }
+        }
         ESP_LOGD(TAG, "Key generation complete");
+        return ESP_OK;
+
+    } else {
+        ESP_LOGI(TAG, "Using pre-existing key in efuse");
+        return ESP_OK;
+    }
+}
+
+static esp_err_t initialise_flash_encryption(void)
+{
+    esp_efuse_batch_write_begin(); /* Batch all efuse writes at the end of this function */
+
+    esp_err_t key_state = check_and_generate_encryption_keys();
+    if(key_state != ESP_OK) {
+        esp_efuse_batch_write_cancel();
+        return key_state;
     }
 
-    ESP_LOGE(TAG, "TODO: burn remaining security protection bits"); // TODO
+#ifndef CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_ENC
+    ESP_LOGI(TAG, "Disable UART bootloader encryption...");
+    const uint8_t dis_manual_encrypt = 1;
+    esp_efuse_write_field_blob(ESP_EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT, &dis_manual_encrypt, 1);
+#else
+    ESP_LOGW(TAG, "Not disabling UART bootloader encryption");
+#endif
 
-    return ESP_OK;
+#ifndef CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE
+    ESP_LOGI(TAG, "Disable UART bootloader cache...");
+    const uint8_t dis_download_caches = 1;
+    esp_efuse_write_field_blob(ESP_EFUSE_DIS_DOWNLOAD_DCACHE, &dis_download_caches, 1);
+    esp_efuse_write_field_blob(ESP_EFUSE_DIS_DOWNLOAD_ICACHE, &dis_download_caches, 1);
+#else
+    ESP_LOGW(TAG, "Not disabling UART bootloader cache - SECURITY COMPROMISED");
+#endif
+
+#ifndef CONFIG_SECURE_BOOT_ALLOW_JTAG
+    ESP_LOGI(TAG, "Disable JTAG...");
+    const uint8_t dis_jtag = 1;
+    esp_efuse_write_field_blob(ESP_EFUSE_HARD_DIS_JTAG, &dis_jtag, 1);
+#else
+    ESP_LOGW(TAG, "Not disabling JTAG - SECURITY COMPROMISED");
+#endif
+
+    const uint8_t dis_boot_remap = 1;
+    esp_efuse_write_field_blob(ESP_EFUSE_DIS_BOOT_REMAP, &dis_boot_remap, 1);
+
+    esp_err_t err = esp_efuse_batch_write_commit();
+
+    return err;
 }
 
 /* Encrypt all flash data that should be encrypted */
@@ -134,7 +229,7 @@ static esp_err_t encrypt_flash_contents(uint32_t spi_boot_crypt_cnt, bool flash_
     /* If the last spi_boot_crypt_cnt bit is burned or write-disabled, the
        device can't re-encrypt itself. */
     if (flash_crypt_wr_dis || spi_boot_crypt_cnt == EFUSE_SPI_BOOT_CRYPT_CNT) {
-        ESP_LOGE(TAG, "Cannot re-encrypt data (SPI_BOOT_CRYPT_CNT 0x%02x write disabled %d", spi_boot_crypt_cnt, flash_crypt_wr_dis);
+        ESP_LOGE(TAG, "Cannot re-encrypt data SPI_BOOT_CRYPT_CNT 0x%02x write disabled %d", spi_boot_crypt_cnt, flash_crypt_wr_dis);
         return ESP_FAIL;
     }
 
@@ -156,10 +251,7 @@ static esp_err_t encrypt_flash_contents(uint32_t spi_boot_crypt_cnt, bool flash_
         return err;
     }
 
-    /* Now iterate the just-loaded partition table, looking for entries to encrypt
-     */
-
-    /* Go through each partition and encrypt if necessary */
+    /* Now iterate the just-loaded partition table, looking for entries to encrypt */
     for (int i = 0; i < num_partitions; i++) {
         err = encrypt_partition(i, &partition_table[i]);
         if (err != ESP_OK) {
@@ -172,13 +264,17 @@ static esp_err_t encrypt_flash_contents(uint32_t spi_boot_crypt_cnt, bool flash_
     /* Set least significant 0-bit in spi_boot_crypt_cnt */
     int ffs_inv = __builtin_ffs((~spi_boot_crypt_cnt) & 0x7);
     /* ffs_inv shouldn't be zero, as zero implies spi_boot_crypt_cnt == 0xFF */
-    uint32_t new_spi_boot_crypt_cnt = spi_boot_crypt_cnt + (1 << (ffs_inv - 1));
-    ESP_LOGD(TAG, "SPI_BOOT_CRYPT_CNT 0x%x -> 0x%x", spi_boot_crypt_cnt, new_spi_boot_crypt_cnt);
+    uint32_t new_spi_boot_crypt_cnt = (1 << (ffs_inv - 1));
+    ESP_LOGD(TAG, "SPI_BOOT_CRYPT_CNT 0x%x -> 0x%x", spi_boot_crypt_cnt, new_spi_boot_crypt_cnt + spi_boot_crypt_cnt);
 
-    ets_efuse_clear_program_registers();
-    REG_SET_FIELD(EFUSE_PGM_DATA2_REG, EFUSE_SPI_BOOT_CRYPT_CNT, new_spi_boot_crypt_cnt);
-    ets_efuse_program(ETS_EFUSE_BLOCK0);
+    esp_efuse_write_field_blob(ESP_EFUSE_SPI_BOOT_CRYPT_CNT, &new_spi_boot_crypt_cnt, 3);
 
+#ifdef CONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE
+    //Secure SPI boot cnt after its update if needed.
+    const uint32_t spi_boot_cnt_wr_dis = 1;
+    ESP_LOGI(TAG, "Write protecting SPI_CRYPT_CNT eFuse");
+    esp_efuse_write_field_blob(ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT, &spi_boot_cnt_wr_dis, 1);
+#endif
     ESP_LOGI(TAG, "Flash encryption completed");
 
     return ESP_OK;
@@ -191,21 +287,30 @@ static esp_err_t encrypt_bootloader(void)
     /* Check for plaintext bootloader (verification will fail if it's already encrypted) */
     if (esp_image_verify_bootloader(&image_length) == ESP_OK) {
         ESP_LOGD(TAG, "bootloader is plaintext. Encrypting...");
+
+#if CONFIG_SECURE_BOOT_V2_ENABLED
+        // Account for the signature sector after the bootloader
+        image_length = (image_length + FLASH_SECTOR_SIZE - 1) & ~(FLASH_SECTOR_SIZE - 1);
+        image_length += FLASH_SECTOR_SIZE;
+        if (ESP_BOOTLOADER_OFFSET + image_length > ESP_PARTITION_TABLE_OFFSET) {
+            ESP_LOGE(TAG, "Bootloader is too large to fit Secure Boot V2 signature sector and partition table (configured offset 0x%x)", ESP_PARTITION_TABLE_OFFSET);
+            return ESP_ERR_INVALID_SIZE;
+        }
+#endif // CONFIG_SECURE_BOOT_V2_ENABLED
+
         err = esp_flash_encrypt_region(ESP_BOOTLOADER_OFFSET, image_length);
         if (err != ESP_OK) {
             ESP_LOGE(TAG, "Failed to encrypt bootloader in place: 0x%x", err);
             return err;
-        }
-
-        if (esp_secure_boot_enabled()) {
-            // TODO: anything different for secure boot?
-        }
+        } 
+        
+        ESP_LOGI(TAG, "bootloader encrypted successfully");
+        return err;
     }
     else {
         ESP_LOGW(TAG, "no valid bootloader was found");
+        return ESP_ERR_NOT_FOUND;
     }
-
-    return ESP_OK;
 }
 
 static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions)
@@ -232,6 +337,7 @@ static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partitio
     }
 
     /* Valid partition table loded */
+    ESP_LOGI(TAG, "partition table encrypted and loaded successfully");
     return ESP_OK;
 }
 
@@ -280,7 +386,13 @@ esp_err_t esp_flash_encrypt_region(uint32_t src_addr, size_t data_length)
         return ESP_FAIL;
     }
 
+    wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
     for (size_t i = 0; i < data_length; i += FLASH_SECTOR_SIZE) {
+
+        wdt_hal_write_protect_disable(&rtc_wdt_ctx);
+        wdt_hal_feed(&rtc_wdt_ctx);
+        wdt_hal_write_protect_enable(&rtc_wdt_ctx);
+
         uint32_t sec_start = i + src_addr;
         err = bootloader_flash_read(sec_start, buf, FLASH_SECTOR_SIZE, false);
         if (err != ESP_OK) {

+ 34 - 4
components/bootloader_support/src/flash_encrypt.c

@@ -20,6 +20,14 @@
 #include "esp_flash_encrypt.h"
 #include "esp_secure_boot.h"
 
+#if CONFIG_IDF_TARGET_ESP32
+#define CRYPT_CNT ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT
+#define WR_DIS_CRYPT_CNT ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT
+#elif CONFIG_IDF_TARGET_ESP32S2
+#define CRYPT_CNT ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT
+#define WR_DIS_CRYPT_CNT ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT
+#endif
+
 #ifndef BOOTLOADER_BUILD
 static const char *TAG = "flash_encrypt";
 
@@ -34,7 +42,7 @@ void esp_flash_encryption_init_checks()
 #ifdef CONFIG_SECURE_BOOT
     if (esp_secure_boot_enabled() && esp_flash_encryption_enabled()) {
         uint8_t flash_crypt_cnt_wr_dis = 0;
-        esp_efuse_read_field_blob(ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT, &flash_crypt_cnt_wr_dis, 1);
+        esp_efuse_read_field_blob(CRYPT_CNT, &flash_crypt_cnt_wr_dis, 1);
         if (!flash_crypt_cnt_wr_dis) {
             ESP_EARLY_LOGE(TAG, "Flash encryption & Secure Boot together requires FLASH_CRYPT_CNT efuse to be write protected. Fixing now...");
             esp_flash_write_protect_crypt_cnt();
@@ -62,22 +70,35 @@ void esp_flash_encryption_init_checks()
 void esp_flash_write_protect_crypt_cnt(void)
 {
     uint8_t flash_crypt_cnt_wr_dis = 0;
-    esp_efuse_read_field_blob(ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT, &flash_crypt_cnt_wr_dis, 1);
+
+    esp_efuse_read_field_blob(CRYPT_CNT, &flash_crypt_cnt_wr_dis, 1);
+
     if (!flash_crypt_cnt_wr_dis) {
-        esp_efuse_write_field_cnt(ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT, 1);
+        esp_efuse_write_field_cnt(WR_DIS_CRYPT_CNT, 1);
     }
 }
 
 esp_flash_enc_mode_t esp_get_flash_encryption_mode(void)
 {
     uint8_t efuse_flash_crypt_cnt_wr_protected = 0;
+#if CONFIG_IDF_TARGET_ESP32   
     uint8_t dis_dl_enc = 0, dis_dl_dec = 0, dis_dl_cache = 0;
+#elif CONFIG_IDF_TARGET_ESP32S2
+    uint8_t  dis_dl_enc = 0; 
+    uint8_t dis_dl_icache = 0; 
+    uint8_t dis_dl_dcache = 0; 
+
+#endif
+
     esp_flash_enc_mode_t mode = ESP_FLASH_ENC_MODE_DEVELOPMENT;
 
     if (esp_flash_encryption_enabled()) {
         /* Check if FLASH CRYPT CNT is write protected */
-        esp_efuse_read_field_blob(ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT, &efuse_flash_crypt_cnt_wr_protected, 1);
+        esp_efuse_read_field_blob(WR_DIS_CRYPT_CNT, &efuse_flash_crypt_cnt_wr_protected, 1);
+
         if (efuse_flash_crypt_cnt_wr_protected) {
+
+#if CONFIG_IDF_TARGET_ESP32
             esp_efuse_read_field_blob(ESP_EFUSE_DISABLE_DL_CACHE, &dis_dl_cache, 1);
             esp_efuse_read_field_blob(ESP_EFUSE_DISABLE_DL_ENCRYPT, &dis_dl_enc, 1);
             esp_efuse_read_field_blob(ESP_EFUSE_DISABLE_DL_DECRYPT, &dis_dl_dec, 1);
@@ -85,6 +106,15 @@ esp_flash_enc_mode_t esp_get_flash_encryption_mode(void)
             if ( dis_dl_cache && dis_dl_enc && dis_dl_dec ) {
                 mode = ESP_FLASH_ENC_MODE_RELEASE;
             }
+#elif CONFIG_IDF_TARGET_ESP32S2
+            esp_efuse_read_field_blob(ESP_EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT, &dis_dl_enc, 1);
+            esp_efuse_read_field_blob(ESP_EFUSE_DIS_DOWNLOAD_ICACHE, &dis_dl_icache, 1);
+            esp_efuse_read_field_blob(ESP_EFUSE_DIS_DOWNLOAD_DCACHE, &dis_dl_dcache, 1);
+
+            if (dis_dl_enc && dis_dl_icache && dis_dl_dcache) {
+                mode = ESP_FLASH_ENC_MODE_RELEASE;
+            }
+#endif            
         }
     } else {
         mode = ESP_FLASH_ENC_MODE_DISABLED;

+ 38 - 0
components/soc/soc/esp32s2/include/soc/efuse_reg.h

@@ -167,6 +167,14 @@ extern "C" {
 #define EFUSE_RD_DIS_V  0x7F
 #define EFUSE_RD_DIS_S  0
 
+#define EFUSE_RD_DIS_KEY0 (1<<0)
+#define EFUSE_RD_DIS_KEY1 (1<<1)
+#define EFUSE_RD_DIS_KEY2 (1<<2)
+#define EFUSE_RD_DIS_KEY3 (1<<3)
+#define EFUSE_RD_DIS_KEY4 (1<<4)
+#define EFUSE_RD_DIS_KEY5 (1<<5)
+#define EFUSE_RD_DIS_SYS_DATA_PART2 (1<<6)
+
 #define EFUSE_PGM_DATA2_REG          (DR_REG_EFUSE_BASE + 0x008)
 /* EFUSE_KEY_PURPOSE_1 : R/W ;bitpos:[31:28] ;default: 4'h0 ; */
 /*description: Purpose of Key1. Refer to Table KEY_PURPOSE Values.*/
@@ -466,6 +474,36 @@ extern "C" {
 #define EFUSE_WR_DIS_V  0xFFFFFFFF
 #define EFUSE_WR_DIS_S  0
 
+#define EFUSE_WR_DIS_RD_DIS                        (1<<0)
+#define EFUSE_WR_DIS_DIS_RTC_RAM_BOOT              (1<<1)
+#define EFUSE_WR_DIS_GROUP_1                       (1<<2)
+#define EFUSE_WR_DIS_GROUP_2                       (1<<3)
+#define EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT            (1<<4)
+#define EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE0       (1<<5)
+#define EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE1       (1<<6)
+#define EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE2       (1<<7)
+#define EFUSE_WR_DIS_KEY0_PURPOSE                  (1<<8)
+#define EFUSE_WR_DIS_KEY1_PURPOSE                  (1<<9)
+#define EFUSE_WR_DIS_KEY2_PURPOSE                  (1<<10)
+#define EFUSE_WR_DIS_KEY3_PURPOSE                  (1<<11)
+#define EFUSE_WR_DIS_KEY4_PURPOSE                  (1<<12)
+#define EFUSE_WR_DIS_KEY5_PURPOSE                  (1<<13)
+#define EFUSE_WR_DIS_SECURE_BOOT_EN                (1<<15)
+#define EFUSE_WR_DIS_SECURE_BOOT_AGGRESSIVE_REVOKE (1<<16)
+#define EFUSE_WR_DIS_GROUP_3                       (1<<18)
+#define EFUSE_WR_DIS_BLK1                          (1<<20)
+#define EFUSE_WR_DIS_SYS_DATA_PART1                (1<<21)
+#define EFUSE_WR_DIS_USER_DATA                     (1<<22)
+#define EFUSE_WR_DIS_KEY0                          (1<<23)
+#define EFUSE_WR_DIS_KEY1                          (1<<24)
+#define EFUSE_WR_DIS_KEY2                          (1<<25)
+#define EFUSE_WR_DIS_KEY3                          (1<<26)
+#define EFUSE_WR_DIS_KEY4                          (1<<27)
+#define EFUSE_WR_DIS_KEY5                          (1<<28)
+#define EFUSE_WR_DIS_SYS_DATA_PART2                (1<<29)
+#define EFUSE_WR_DIS_USB_EXCHG_PINS                (1<<30)
+
+
 #define EFUSE_RD_REPEAT_DATA0_REG          (DR_REG_EFUSE_BASE + 0x030)
 /* EFUSE_VDD_SPI_DREFH : RO ;bitpos:[31:30] ;default: 2'h0 ; */
 /*description: The value of VDD_SPI_DREFH.*/

+ 1 - 0
components/spi_flash/CMakeLists.txt

@@ -15,6 +15,7 @@ else()
         "cache_utils.c"
         "flash_mmap.c"
         "flash_ops.c"
+        "${IDF_TARGET}/flash_ops_${IDF_TARGET}.c"
     )
     set(srcs
         "partition.c")

+ 4 - 0
components/spi_flash/esp32/flash_ops_esp32.c

@@ -36,6 +36,10 @@ esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_a
 {
     const uint8_t *ssrc = (const uint8_t *)src;
     esp_rom_spiflash_result_t rc;
+
+    assert((dest_addr % 16) == 0);
+    assert((size % 16) == 0);
+
     rc = esp_rom_spiflash_unlock();
     if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
         return rc;

+ 16 - 6
components/spi_flash/esp32s2/flash_ops_esp32s2.c

@@ -22,12 +22,21 @@
 #include "esp32s2/rom/cache.h"
 #include "hal/spi_flash_hal.h"
 #include "esp_flash.h"
+#include "esp_log.h"
+
+static const char *TAG = "spiflash_s2";
+
+#define SPICACHE SPIMEM0
+#define SPIFLASH SPIMEM1
 
 esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_addr, const void *src, size_t size)
 {
     const spi_flash_guard_funcs_t *ops = spi_flash_guard_get();
     esp_rom_spiflash_result_t rc;
 
+    assert((dest_addr % 16) == 0);
+    assert((size % 16) == 0);
+
     if (!esp_ptr_internal(src)) {
         uint8_t block[128]; // Need to buffer in RAM as we write
         while (size > 0) {
@@ -48,10 +57,13 @@ esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_a
         return ESP_ROM_SPIFLASH_RESULT_OK;
     }
     else { // Already in internal memory
-        rc = esp_rom_spiflash_unlock();
-        if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
-            return rc;
-        }
+        ESP_LOGV(TAG, "calling SPI_Encrypt_Write addr 0x%x src %p size 0x%x", dest_addr, src, size);
+
+#ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
+        /* The ROM function SPI_Encrypt_Write assumes ADDR_BITLEN is already set but new
+           implementation doesn't automatically set this to a usable value */
+        SPIFLASH.user1.usr_addr_bitlen = 23;
+#endif
 
         if (ops && ops->start) {
             ops->start();
@@ -64,8 +76,6 @@ esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_a
     }
 }
 
-#define SPICACHE SPIMEM0
-#define SPIFLASH SPIMEM1
 #define FLASH_WRAP_CMD   0x77
 esp_err_t spi_flash_wrap_set(spi_flash_wrap_mode_t mode)
 {

+ 3 - 126
components/spi_flash/flash_ops.c

@@ -45,6 +45,7 @@
 #include "esp_flash.h"
 #include "esp_attr.h"
 
+esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_addr, const void *src, size_t size);
 
 /* bytes erased by SPIEraseBlock() ROM function */
 #define BLOCK_ERASE_SIZE 65536
@@ -434,58 +435,6 @@ out:
 #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL
 
 
-static IRAM_ATTR esp_err_t spi_flash_write_encrypted_in_rows(size_t dest_addr, const uint8_t *src, size_t size)
-{
-    assert((dest_addr % 16) == 0);
-    assert((size % 16) == 0);
-
-    /* esp_rom_spiflash_write_encrypted encrypts data in RAM as it writes,
-    so copy to a temporary buffer - 32 bytes at a time.
-
-    Each call to esp_rom_spiflash_write_encrypted takes a 32 byte "row" of
-    data to encrypt, and each row is two 16 byte AES blocks
-    that share a key (as derived from flash address).
-    */
-
-    esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
-    WORD_ALIGNED_ATTR uint8_t encrypt_buf[32];
-    uint32_t row_size;
-    for (size_t i = 0; i < size; i += row_size) {
-        uint32_t row_addr = dest_addr + i;
-
-        if (i == 0 && (row_addr % 32) != 0) {
-            /* writing to second block of a 32 byte row */
-            row_size = 16;
-            row_addr -= 16;
-            /* copy to second block in buffer */
-            memcpy(encrypt_buf + 16, src + i, 16);
-            /* decrypt the first block from flash, will reencrypt to same bytes */
-            spi_flash_read_encrypted(row_addr, encrypt_buf, 16);
-        } else if (size - i == 16) {
-            /* 16 bytes left, is first block of a 32 byte row */
-            row_size = 16;
-            /* copy to first block in buffer */
-            memcpy(encrypt_buf, src + i, 16);
-            /* decrypt the second block from flash, will reencrypt to same bytes */
-            spi_flash_read_encrypted(row_addr + 16, encrypt_buf + 16, 16);
-        } else {
-            /* Writing a full 32 byte row (2 blocks) */
-            row_size = 32;
-            memcpy(encrypt_buf, src + i, 32);
-        }
-
-        spi_flash_guard_start();
-        rc = esp_rom_spiflash_write_encrypted(row_addr, (uint32_t *)encrypt_buf, 32);
-        spi_flash_guard_end();
-        if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
-            break;
-        }
-    }
-    bzero(encrypt_buf, sizeof(encrypt_buf));
-    return spi_flash_translate_rc(rc);
-}
-
-
 esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size)
 {
     esp_err_t err = ESP_OK;
@@ -505,7 +454,7 @@ esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src,
     }
 
 #ifndef CONFIG_SPI_FLASH_VERIFY_WRITE
-    err = spi_flash_write_encrypted_in_rows(dest_addr, (const uint8_t*)src, size);
+    err = spi_flash_write_encrypted_chip(dest_addr, src, size);
     COUNTER_ADD_BYTES(write, size);
     spi_flash_guard_start();
     spi_flash_check_and_flush_cache(dest_addr, size);
@@ -535,7 +484,7 @@ esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src,
         }
 #endif
 
-        err = spi_flash_write_encrypted_in_rows(dest_addr + i, src + i, read_len);
+        err = spi_flash_write_encrypted_chip(dest_addr + i, src + i, read_len);
         if (err != ESP_OK) {
             break;
         }
@@ -795,78 +744,6 @@ void spi_flash_dump_counters(void)
 
 #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
 
-#if CONFIG_IDF_TARGET_ESP32S2
-#define SPICACHE SPIMEM0
-#define SPIFLASH SPIMEM1
-#define FLASH_WRAP_CMD 0x77
-esp_err_t spi_flash_wrap_set(spi_flash_wrap_mode_t mode)
-{
-    uint32_t reg_bkp_ctrl = SPIFLASH.ctrl.val;
-    uint32_t reg_bkp_usr  = SPIFLASH.user.val;
-    SPIFLASH.user.fwrite_dio = 0;
-    SPIFLASH.user.fwrite_dual = 0;
-    SPIFLASH.user.fwrite_qio = 1;
-    SPIFLASH.user.fwrite_quad = 0;
-    SPIFLASH.ctrl.fcmd_dual = 0;
-    SPIFLASH.ctrl.fcmd_quad = 0;
-    SPIFLASH.user.usr_dummy = 0;
-    SPIFLASH.user.usr_addr = 1;
-    SPIFLASH.user.usr_command = 1;
-    SPIFLASH.user2.usr_command_bitlen = 7;
-    SPIFLASH.user2.usr_command_value = FLASH_WRAP_CMD;
-    SPIFLASH.user1.usr_addr_bitlen = 23;
-    SPIFLASH.addr = 0;
-    SPIFLASH.user.usr_miso = 0;
-    SPIFLASH.user.usr_mosi = 1;
-    SPIFLASH.mosi_dlen.usr_mosi_bit_len = 7;
-    SPIFLASH.data_buf[0] = (uint32_t) mode << 4;;
-    SPIFLASH.cmd.usr = 1;
-    while(SPIFLASH.cmd.usr != 0)
-    { }
-
-    SPIFLASH.ctrl.val = reg_bkp_ctrl;
-    SPIFLASH.user.val = reg_bkp_usr;
-    return ESP_OK;
-}
-
-esp_err_t spi_flash_enable_wrap(uint32_t wrap_size)
-{
-    switch(wrap_size) {
-        case 8:
-            return spi_flash_wrap_set(FLASH_WRAP_MODE_8B);
-        case 16:
-            return spi_flash_wrap_set(FLASH_WRAP_MODE_16B);
-        case 32:
-            return spi_flash_wrap_set(FLASH_WRAP_MODE_32B);
-        case 64:
-            return spi_flash_wrap_set(FLASH_WRAP_MODE_64B);
-        default:
-            return ESP_FAIL;
-    }
-}
-
-void spi_flash_disable_wrap(void)
-{
-    spi_flash_wrap_set(FLASH_WRAP_MODE_DISABLE);
-}
-
-bool spi_flash_support_wrap_size(uint32_t wrap_size)
-{
-    if (!REG_GET_BIT(SPI_MEM_CTRL_REG(0), SPI_MEM_FREAD_QIO) || !REG_GET_BIT(SPI_MEM_CTRL_REG(0), SPI_MEM_FASTRD_MODE)){
-        return ESP_FAIL;
-    }
-    switch(wrap_size) {
-        case 0:
-        case 8:
-        case 16:
-        case 32:
-        case 64:
-            return true;
-        default:
-            return false;
-    }
-}
-#endif
 #if defined(CONFIG_SPI_FLASH_USE_LEGACY_IMPL) && defined(CONFIG_IDF_TARGET_ESP32S2)
 // TODO esp32s2: Remove once ESP32S2 has new SPI Flash API support
 esp_flash_t *esp_flash_default_chip = NULL;

+ 0 - 1
examples/security/flash_encryption/CMakeLists.txt

@@ -2,6 +2,5 @@
 # CMakeLists in this exact order for cmake to work correctly
 cmake_minimum_required(VERSION 3.5)
 
-# Flash encryption not currently supported for ESP32-S2
 include($ENV{IDF_PATH}/tools/cmake/project.cmake)
 project(flash_encryption)

+ 8 - 1
examples/security/flash_encryption/main/flash_encrypt_main.c

@@ -23,6 +23,13 @@ static void example_read_write_flash(void);
 
 static const char* TAG = "example";
 
+#if CONFIG_IDF_TARGET_ESP32
+#define TARGET_CRYPT_CNT_EFUSE  ESP_EFUSE_FLASH_CRYPT_CNT
+#define TARGET_CRYPT_CNT_WIDTH  7
+#elif CONFIG_IDF_TARGET_ESP32S2
+#define TARGET_CRYPT_CNT_EFUSE ESP_EFUSE_SPI_BOOT_CRYPT_CNT
+#define TARGET_CRYPT_CNT_WIDTH  3
+#endif
 
 void app_main(void)
 {
@@ -54,7 +61,7 @@ static void example_print_chip_info(void)
 static void example_print_flash_encryption_status(void)
 {
     uint32_t flash_crypt_cnt = 0;
-    esp_efuse_read_field_blob(ESP_EFUSE_FLASH_CRYPT_CNT, &flash_crypt_cnt, 7);
+    esp_efuse_read_field_blob(TARGET_CRYPT_CNT_EFUSE, &flash_crypt_cnt, TARGET_CRYPT_CNT_WIDTH);
     printf("FLASH_CRYPT_CNT eFuse value is %d\n", flash_crypt_cnt);
 
     esp_flash_enc_mode_t mode = esp_get_flash_encryption_mode();