|
|
@@ -9,23 +9,42 @@
|
|
|
#include <esp_attr.h>
|
|
|
#include <esp_flash_encrypt.h>
|
|
|
#include <string.h>
|
|
|
+#include "esp_log.h"
|
|
|
|
|
|
+/*-------------------- For running this test, some configurations are necessary -------------------*/
|
|
|
+/* ESP32 | CONFIG_SECURE_FLASH_ENC_ENABLED | SET */
|
|
|
+/* ESP32S2 | CONFIG_SECURE_FLASH_ENC_ENABLED | SET */
|
|
|
+/* | CONFIG_EFUSE_VIRTUAL | NOT SET */
|
|
|
+/* | CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED | SET */
|
|
|
+/* ESP32C3 | CONFIG_SECURE_FLASH_ENC_ENABLED | SET */
|
|
|
+/* | CONFIG_EFUSE_VIRTUAL | NOT SET */
|
|
|
+/* | CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED | SET */
|
|
|
|
|
|
#ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
|
|
|
|
|
|
static void test_encrypted_write(size_t offset, const uint8_t *data, size_t length);
|
|
|
-static void test_encrypted_write_new_impl(size_t offset, const uint8_t *data, size_t length);
|
|
|
static void verify_erased_flash(size_t offset, size_t length);
|
|
|
|
|
|
static size_t start;
|
|
|
|
|
|
static void setup_tests(void)
|
|
|
{
|
|
|
- if (start == 0) {
|
|
|
- const esp_partition_t *part = get_test_data_partition();
|
|
|
- start = part->address;
|
|
|
- printf("Test data partition @ 0x%x\n", start);
|
|
|
+ const esp_partition_t *part = get_test_data_partition();
|
|
|
+ start = part->address;
|
|
|
+ printf("Test data partition @ 0x%x\n", start);
|
|
|
+}
|
|
|
+
|
|
|
+static void verify_erased_flash(size_t offset, size_t length)
|
|
|
+{
|
|
|
+ uint8_t *readback = (uint8_t *)heap_caps_malloc(SPI_FLASH_SEC_SIZE, MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
|
|
|
+ printf("verify erased 0x%x - 0x%x\n", offset, offset + length);
|
|
|
+ TEST_ASSERT_EQUAL_HEX(ESP_OK,
|
|
|
+ spi_flash_read(offset, readback, length));
|
|
|
+ for (int i = 0; i < length; i++) {
|
|
|
+ char message[32];
|
|
|
+ TEST_ASSERT_EQUAL_HEX_MESSAGE(0xFF, readback[i], message);
|
|
|
}
|
|
|
+ free(readback);
|
|
|
}
|
|
|
|
|
|
TEST_CASE("test 16 byte encrypted writes", "[flash_encryption][test_env=UT_T1_FlashEncryption]")
|
|
|
@@ -89,80 +108,6 @@ static void test_encrypted_write(size_t offset, const uint8_t *data, size_t leng
|
|
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(data, readback, length);
|
|
|
}
|
|
|
|
|
|
-TEST_CASE("test 16 byte encrypted writes (esp_flash)", "[flash_encryption][esp_flash_enc][test_env=UT_T1_FlashEncryption]")
|
|
|
-{
|
|
|
- setup_tests();
|
|
|
-
|
|
|
- TEST_ASSERT_EQUAL_HEX(ESP_OK,
|
|
|
- spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE));
|
|
|
-
|
|
|
- uint8_t fortyeight_bytes[0x30]; // 0, 1, 2, 3, 4... 47
|
|
|
- for(int i = 0; i < sizeof(fortyeight_bytes); i++) {
|
|
|
- fortyeight_bytes[i] = i;
|
|
|
- }
|
|
|
-
|
|
|
- /* Verify unaligned start or length fails */
|
|
|
- TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_ARG,
|
|
|
- esp_flash_write_encrypted(NULL, start+1, fortyeight_bytes, 32));
|
|
|
-
|
|
|
- TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_SIZE,
|
|
|
- esp_flash_write_encrypted(NULL, start, fortyeight_bytes, 15));
|
|
|
-
|
|
|
- /* ensure nothing happened to the flash yet */
|
|
|
- verify_erased_flash(start, 0x20);
|
|
|
-
|
|
|
- /* Write 32 byte block, this is the "normal" encrypted write */
|
|
|
- test_encrypted_write_new_impl(start, fortyeight_bytes, 0x20);
|
|
|
- verify_erased_flash(start + 0x20, 0x20);
|
|
|
-
|
|
|
- /* Slip in an unaligned esp_flash_read_encrypted() test */
|
|
|
- uint8_t buf[0x10];
|
|
|
- esp_flash_read_encrypted(NULL, start+0x10, buf, 0x10);
|
|
|
- TEST_ASSERT_EQUAL_HEX8_ARRAY(fortyeight_bytes+0x10, buf, 16);
|
|
|
-
|
|
|
- /* Write 16 bytes unaligned */
|
|
|
- test_encrypted_write_new_impl(start + 0x30, fortyeight_bytes, 0x10);
|
|
|
- /* the 16 byte regions before and after the 16 bytes we just wrote should still be 0xFF */
|
|
|
- verify_erased_flash(start + 0x20, 0x10);
|
|
|
- verify_erased_flash(start + 0x40, 0x10);
|
|
|
-
|
|
|
- /* Write 48 bytes starting at a 32-byte aligned offset */
|
|
|
- test_encrypted_write_new_impl(start + 0x40, fortyeight_bytes, 0x30);
|
|
|
- /* 16 bytes after this write should still be 0xFF -unencrypted- */
|
|
|
- verify_erased_flash(start + 0x70, 0x10);
|
|
|
-
|
|
|
- /* Write 48 bytes starting at a 16-byte aligned offset */
|
|
|
- test_encrypted_write_new_impl(start + 0x90, fortyeight_bytes, 0x30);
|
|
|
- /* 16 bytes after this write should still be 0xFF -unencrypted- */
|
|
|
- verify_erased_flash(start + 0x120, 0x10);
|
|
|
-}
|
|
|
-
|
|
|
-static void test_encrypted_write_new_impl(size_t offset, const uint8_t *data, size_t length)
|
|
|
-{
|
|
|
- uint8_t readback[length];
|
|
|
- printf("encrypt %d bytes at 0x%x\n", length, offset);
|
|
|
- TEST_ASSERT_EQUAL_HEX(ESP_OK,
|
|
|
- esp_flash_write_encrypted(NULL, offset, data, length));
|
|
|
-
|
|
|
- TEST_ASSERT_EQUAL_HEX(ESP_OK,
|
|
|
- esp_flash_read_encrypted(NULL, offset, readback, length));
|
|
|
-
|
|
|
- TEST_ASSERT_EQUAL_HEX8_ARRAY(data, readback, length);
|
|
|
-}
|
|
|
-
|
|
|
-static void verify_erased_flash(size_t offset, size_t length)
|
|
|
-{
|
|
|
- uint8_t readback[length];
|
|
|
- printf("verify erased 0x%x - 0x%x\n", offset, offset + length);
|
|
|
- TEST_ASSERT_EQUAL_HEX(ESP_OK,
|
|
|
- spi_flash_read(offset, readback, length));
|
|
|
- for (int i = 0; i < length; i++) {
|
|
|
- char message[32];
|
|
|
- sprintf(message, "unerased flash @ 0x%08x", offset + i);
|
|
|
- TEST_ASSERT_EQUAL_HEX_MESSAGE(0xFF, readback[i], message);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
TEST_CASE("test read & write random encrypted data", "[flash_encryption][test_env=UT_T1_FlashEncryption]")
|
|
|
{
|
|
|
const int MAX_LEN = 192;
|
|
|
@@ -229,4 +174,158 @@ TEST_CASE("test read & write random encrypted data", "[flash_encryption][test_en
|
|
|
free(cmp_buf);
|
|
|
}
|
|
|
|
|
|
+#ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
|
|
|
+
|
|
|
+static char TAG[] = "flash_encrypt_test";
|
|
|
+static const char plainttext_data[] = "$$$$#### Welcome! This is flash encryption test, ..., ..., hello_world. &&&&***";
|
|
|
+
|
|
|
+static void test_encrypted_write_new_impl(size_t offset, const uint8_t *data, size_t length)
|
|
|
+{
|
|
|
+ uint8_t *readback = (uint8_t *)heap_caps_malloc(SPI_FLASH_SEC_SIZE, MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
|
|
|
+ printf("encrypt %d bytes at 0x%x\n", length, offset);
|
|
|
+ TEST_ASSERT_EQUAL_HEX(ESP_OK,
|
|
|
+ esp_flash_write_encrypted(NULL, offset, data, length));
|
|
|
+
|
|
|
+ TEST_ASSERT_EQUAL_HEX(ESP_OK,
|
|
|
+ esp_flash_read_encrypted(NULL, offset, readback, length));
|
|
|
+
|
|
|
+ TEST_ASSERT_EQUAL_HEX8_ARRAY(data, readback, length);
|
|
|
+ free(readback);
|
|
|
+}
|
|
|
+
|
|
|
+TEST_CASE("test 16 byte encrypted writes (esp_flash)", "[esp_flash_enc][flash_encryption][test_env=UT_T1_FlashEncryption]")
|
|
|
+{
|
|
|
+ setup_tests();
|
|
|
+
|
|
|
+ TEST_ASSERT_EQUAL_HEX(ESP_OK,
|
|
|
+ spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE));
|
|
|
+
|
|
|
+ uint8_t fortyeight_bytes[0x30]; // 0, 1, 2, 3, 4... 47
|
|
|
+ for(int i = 0; i < sizeof(fortyeight_bytes); i++) {
|
|
|
+ fortyeight_bytes[i] = i;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Verify unaligned start or length fails */
|
|
|
+ TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_ARG,
|
|
|
+ esp_flash_write_encrypted(NULL, start+1, fortyeight_bytes, 32));
|
|
|
+
|
|
|
+ TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_SIZE,
|
|
|
+ esp_flash_write_encrypted(NULL, start, fortyeight_bytes, 15));
|
|
|
+
|
|
|
+ /* ensure nothing happened to the flash yet */
|
|
|
+ verify_erased_flash(start, 0x20);
|
|
|
+
|
|
|
+ /* Write 32 byte block, this is the "normal" encrypted write */
|
|
|
+ test_encrypted_write_new_impl(start, fortyeight_bytes, 0x20);
|
|
|
+ verify_erased_flash(start + 0x20, 0x20);
|
|
|
+
|
|
|
+ /* Slip in an unaligned esp_flash_read_encrypted() test */
|
|
|
+ uint8_t buf[0x10];
|
|
|
+ esp_flash_read_encrypted(NULL, start+0x10, buf, 0x10);
|
|
|
+ TEST_ASSERT_EQUAL_HEX8_ARRAY(fortyeight_bytes+0x10, buf, 16);
|
|
|
+
|
|
|
+ /* Write 16 bytes unaligned */
|
|
|
+ test_encrypted_write_new_impl(start + 0x30, fortyeight_bytes, 0x10);
|
|
|
+ /* the 16 byte regions before and after the 16 bytes we just wrote should still be 0xFF */
|
|
|
+ verify_erased_flash(start + 0x20, 0x10);
|
|
|
+ verify_erased_flash(start + 0x40, 0x10);
|
|
|
+
|
|
|
+ /* Write 48 bytes starting at a 32-byte aligned offset */
|
|
|
+ test_encrypted_write_new_impl(start + 0x40, fortyeight_bytes, 0x30);
|
|
|
+ /* 16 bytes after this write should still be 0xFF -unencrypted- */
|
|
|
+ verify_erased_flash(start + 0x70, 0x10);
|
|
|
+
|
|
|
+ /* Write 48 bytes starting at a 16-byte aligned offset */
|
|
|
+ test_encrypted_write_new_impl(start + 0x90, fortyeight_bytes, 0x30);
|
|
|
+ /* 16 bytes after this write should still be 0xFF -unencrypted- */
|
|
|
+ verify_erased_flash(start + 0x120, 0x10);
|
|
|
+}
|
|
|
+
|
|
|
+TEST_CASE("test read & write encrypted data(32 bytes alianed address)", "[esp_flash_enc][flash_encryption][test_env=UT_T1_FlashEncryption]")
|
|
|
+{
|
|
|
+ setup_tests();
|
|
|
+
|
|
|
+ TEST_ESP_OK(spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE));
|
|
|
+ start = (start + 31) & (~31); // round up to 32 byte boundary
|
|
|
+
|
|
|
+ ESP_LOG_BUFFER_HEXDUMP(TAG, plainttext_data, sizeof(plainttext_data), ESP_LOG_INFO);
|
|
|
+ printf("Encrypteed writting......\n");
|
|
|
+ TEST_ESP_OK(esp_flash_write_encrypted(NULL, start, plainttext_data, sizeof(plainttext_data)));
|
|
|
+
|
|
|
+ uint8_t *cmp_encrypt_buf = heap_caps_malloc(SPI_FLASH_SEC_SIZE, MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
|
|
|
+ printf("Encrypted reading......\n");
|
|
|
+ TEST_ESP_OK(esp_flash_read_encrypted(NULL, start, cmp_encrypt_buf, SPI_FLASH_SEC_SIZE));
|
|
|
+ ESP_LOG_BUFFER_HEXDUMP(TAG, cmp_encrypt_buf, sizeof(plainttext_data), ESP_LOG_INFO);
|
|
|
+ TEST_ASSERT_EQUAL_HEX8_ARRAY(plainttext_data, cmp_encrypt_buf, sizeof(plainttext_data));
|
|
|
+
|
|
|
+ uint8_t *cmp_normal_buf = heap_caps_malloc(SPI_FLASH_SEC_SIZE, MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
|
|
|
+ TEST_ESP_OK(esp_flash_read(NULL, cmp_normal_buf, start, SPI_FLASH_SEC_SIZE));
|
|
|
+ printf("Normal read(esp_flash_read)......\n");
|
|
|
+ ESP_LOG_BUFFER_HEXDUMP(TAG, cmp_normal_buf, sizeof(plainttext_data), ESP_LOG_INFO);
|
|
|
+
|
|
|
+ free(cmp_normal_buf);
|
|
|
+ free(cmp_encrypt_buf);
|
|
|
+}
|
|
|
+
|
|
|
+TEST_CASE("test read & write encrypted data(16 bytes alianed but 32 bytes unaligned)", "[esp_flash_enc][flash_encryption][test_env=UT_T1_FlashEncryption]")
|
|
|
+{
|
|
|
+ setup_tests();
|
|
|
+ TEST_ESP_OK(spi_flash_erase_sector(start/SPI_FLASH_SEC_SIZE));
|
|
|
+ do {
|
|
|
+ start++;
|
|
|
+ } while ((start % 16) != 0);
|
|
|
+
|
|
|
+ if (start % 32 == 0) {
|
|
|
+ start += 16;
|
|
|
+ }
|
|
|
+ printf("Write data partition @ 0x%x\n", start);
|
|
|
+
|
|
|
+ ESP_LOG_BUFFER_HEXDUMP(TAG, plainttext_data, sizeof(plainttext_data), ESP_LOG_INFO);
|
|
|
+ printf("Encrypteed writting......\n");
|
|
|
+ TEST_ESP_OK(esp_flash_write_encrypted(NULL, start, plainttext_data, sizeof(plainttext_data)));
|
|
|
+
|
|
|
+ uint8_t *cmp_encrypt_buf = heap_caps_malloc(SPI_FLASH_SEC_SIZE, MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
|
|
|
+ printf("Encrypted reading......\n");
|
|
|
+ TEST_ESP_OK(esp_flash_read_encrypted(NULL, start, cmp_encrypt_buf, SPI_FLASH_SEC_SIZE));
|
|
|
+ ESP_LOG_BUFFER_HEXDUMP(TAG, cmp_encrypt_buf, sizeof(plainttext_data), ESP_LOG_INFO);
|
|
|
+ TEST_ASSERT_EQUAL_HEX8_ARRAY(plainttext_data, cmp_encrypt_buf, sizeof(plainttext_data));
|
|
|
+
|
|
|
+ uint8_t *cmp_normal_buf = heap_caps_malloc(SPI_FLASH_SEC_SIZE, MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
|
|
|
+ TEST_ESP_OK(esp_flash_read(NULL, cmp_normal_buf, start, SPI_FLASH_SEC_SIZE));
|
|
|
+ printf("Normal read(esp_flash_read)......\n");
|
|
|
+ ESP_LOG_BUFFER_HEXDUMP(TAG, cmp_normal_buf, sizeof(plainttext_data), ESP_LOG_INFO);
|
|
|
+
|
|
|
+ free(cmp_normal_buf);
|
|
|
+ free(cmp_encrypt_buf);
|
|
|
+}
|
|
|
+
|
|
|
+static const uint8_t large_const_buffer[16432] = {
|
|
|
+ 203, // first byte
|
|
|
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
|
|
|
+ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
|
|
|
+ [50 ... 99] = 2,
|
|
|
+ [108 ... 1520] = 0x9b,
|
|
|
+ [1600 ... 2000] = 0x3d,
|
|
|
+ [8000 ... 9000] = 0xf7,
|
|
|
+ [15000 ... 16398] = 0xe8,
|
|
|
+ 43, 0x7f,
|
|
|
+ [16401 ... 16430] = 0xd1,
|
|
|
+ 202, // last byte
|
|
|
+};
|
|
|
+
|
|
|
+TEST_CASE("test read & write encrypted data with large buffer(n*64+32+16)", "[esp_flash_enc][flash_encryption][test_env=UT_T1_FlashEncryption]")
|
|
|
+{
|
|
|
+ // The tested buffer should be n*64(or n*32)+16 bytes.
|
|
|
+ setup_tests();
|
|
|
+ TEST_ESP_OK(esp_flash_erase_region(NULL, start, 5 * 4096));
|
|
|
+ printf("Encrypteed writting......\n");
|
|
|
+
|
|
|
+ TEST_ESP_OK(esp_flash_write_encrypted(NULL, start, large_const_buffer, sizeof(large_const_buffer)));
|
|
|
+ uint8_t *buf = (uint8_t*)heap_caps_malloc(sizeof(large_const_buffer), MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
|
|
|
+
|
|
|
+ TEST_ESP_OK(esp_flash_read_encrypted(NULL, start, buf, sizeof(large_const_buffer)));
|
|
|
+ TEST_ASSERT_EQUAL_HEX8_ARRAY(buf, large_const_buffer, sizeof(large_const_buffer));
|
|
|
+ free(buf);
|
|
|
+}
|
|
|
+#endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL
|
|
|
#endif // CONFIG_SECURE_FLASH_ENC_ENABLED
|