Sfoglia il codice sorgente

unit_test:refactor ref clock to use RMT carrier

morris 5 anni fa
parent
commit
4dd649d533

+ 0 - 85
components/esp32/test/test_delay.c

@@ -1,85 +0,0 @@
-#include <stdio.h>
-#include <stdlib.h>
-#include <time.h>
-#include <sys/time.h>
-#include "unity.h"
-#include "esp_rom_sys.h"
-#include "freertos/FreeRTOS.h"
-#include "freertos/task.h"
-#include "freertos/semphr.h"
-#include "test_utils.h"
-
-typedef struct {
-    int delay_us;
-    int method;
-    int result;
-    SemaphoreHandle_t done;
-} delay_test_arg_t;
-
-static void test_delay_task(void* p)
-{
-    delay_test_arg_t* arg = (delay_test_arg_t*) p;
-    vTaskDelay(1);
-    uint64_t start = ref_clock_get();
-    switch (arg->method) {
-        case 0:
-            esp_rom_delay_us(arg->delay_us);
-            break;
-        case 1:
-            vTaskDelay(arg->delay_us / portTICK_PERIOD_MS / 1000);
-            break;
-        default:
-            TEST_FAIL();
-    }
-    uint64_t stop = ref_clock_get();
-
-    arg->result = (int) (stop - start);
-    xSemaphoreGive(arg->done);
-    vTaskDelete(NULL);
-}
-
-TEST_CASE("ets_delay produces correct delay on both CPUs", "[delay]")
-{
-    int delay_ms = 50;
-    const delay_test_arg_t args = {
-            .delay_us = delay_ms * 1000,
-            .method = 0,
-            .done = xSemaphoreCreateBinary()
-    };
-    ref_clock_init();
-    xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 0);
-    TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 2 / portTICK_PERIOD_MS) );
-    TEST_ASSERT_INT32_WITHIN(1000, args.delay_us, args.result);
-
-#if portNUM_PROCESSORS == 2
-    xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 1);
-    TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 2 / portTICK_PERIOD_MS) );
-    TEST_ASSERT_INT32_WITHIN(1000, args.delay_us, args.result);
-#endif
-
-    ref_clock_deinit();
-    vSemaphoreDelete(args.done);
-}
-
-TEST_CASE("vTaskDelay produces correct delay on both CPUs", "[delay]")
-{
-    int delay_ms = 50;
-    const delay_test_arg_t args = {
-            .delay_us = delay_ms * 1000,
-            .method = 1,
-            .done = xSemaphoreCreateBinary()
-    };
-    ref_clock_init();
-    xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 0);
-    TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 2 / portTICK_PERIOD_MS) );
-    TEST_ASSERT_INT32_WITHIN(1000, args.delay_us, args.result);
-
-#if portNUM_PROCESSORS == 2
-    xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 1);
-    TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 2 / portTICK_PERIOD_MS) );
-    TEST_ASSERT_INT32_WITHIN(1000, args.delay_us, args.result);
-#endif
-
-    ref_clock_deinit();
-    vSemaphoreDelete(args.done);
-}

+ 1 - 2
components/esp_common/test/CMakeLists.txt

@@ -1,3 +1,2 @@
 idf_component_register(SRC_DIRS .
-                       PRIV_REQUIRES unity spi_flash
-                    )
+                       PRIV_REQUIRES unity test_utils spi_flash)

+ 15 - 3
components/esp32s2/test/test_delay.c → components/esp_common/test/test_delay.c

@@ -2,11 +2,11 @@
 #include <stdlib.h>
 #include <time.h>
 #include <sys/time.h>
+#include "unity.h"
 #include "esp_rom_sys.h"
 #include "freertos/FreeRTOS.h"
 #include "freertos/task.h"
 #include "freertos/semphr.h"
-#include "unity.h"
 #include "test_utils.h"
 
 typedef struct {
@@ -38,7 +38,7 @@ static void test_delay_task(void *p)
     vTaskDelete(NULL);
 }
 
-TEST_CASE("ets_delay produces correct delay", "[delay]")
+TEST_CASE("esp_rom_delay_us produces correct delay on CPUs", "[delay]")
 {
     int delay_ms = 50;
     const delay_test_arg_t args = {
@@ -51,11 +51,17 @@ TEST_CASE("ets_delay produces correct delay", "[delay]")
     TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * 2 / portTICK_PERIOD_MS));
     TEST_ASSERT_INT32_WITHIN(1000, args.delay_us, args.result);
 
+#if portNUM_PROCESSORS == 2
+    xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void *)&args, 3, NULL, 1);
+    TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * 2 / portTICK_PERIOD_MS));
+    TEST_ASSERT_INT32_WITHIN(1000, args.delay_us, args.result);
+#endif
+
     ref_clock_deinit();
     vSemaphoreDelete(args.done);
 }
 
-TEST_CASE("vTaskDelay produces correct delay", "[delay]")
+TEST_CASE("vTaskDelay produces correct delay on CPUs", "[delay]")
 {
     int delay_ms = 50;
     const delay_test_arg_t args = {
@@ -68,6 +74,12 @@ TEST_CASE("vTaskDelay produces correct delay", "[delay]")
     TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * 2 / portTICK_PERIOD_MS));
     TEST_ASSERT_INT32_WITHIN(1000, args.delay_us, args.result);
 
+#if portNUM_PROCESSORS == 2
+    xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void *)&args, 3, NULL, 1);
+    TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * 2 / portTICK_PERIOD_MS));
+    TEST_ASSERT_INT32_WITHIN(1000, args.delay_us, args.result);
+#endif
+
     ref_clock_deinit();
     vSemaphoreDelete(args.done);
 }

+ 6 - 2
components/soc/src/esp32s2/include/hal/rmt_ll.h

@@ -334,8 +334,12 @@ static inline uint32_t rmt_ll_get_rx_thres_interrupt_status(rmt_dev_t *dev)
 
 static inline void rmt_ll_set_tx_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)
 {
-    dev->carrier_duty_ch[channel].high = high_ticks;
-    dev->carrier_duty_ch[channel].low = low_ticks;
+    // In case the compiler optimise a 32bit instruction (e.g. s32i) into two 16bit instruction (e.g. s16i, which is not allowed to access a register)
+    // We take care of the "read-modify-write" procedure by ourselves.
+    typeof(dev->carrier_duty_ch[0]) reg;
+    reg.high = high_ticks;
+    reg.low = low_ticks;
+    dev->carrier_duty_ch[channel].val = reg.val;
 }
 
 static inline void rmt_ll_set_rx_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)

+ 6 - 2
components/soc/src/esp32s3/include/hal/rmt_ll.h

@@ -314,8 +314,12 @@ static inline uint32_t rmt_ll_get_rx_thres_interrupt_status(rmt_dev_t *dev)
 
 static inline void rmt_ll_set_tx_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)
 {
-    dev->carrier_duty_ch[channel].high = high_ticks;
-    dev->carrier_duty_ch[channel].low = low_ticks;
+    // In case the compiler optimise a 32bit instruction (e.g. s32i) into two 16bit instruction (e.g. s16i, which is not allowed to access a register)
+    // We take care of the "read-modify-write" procedure by ourselves.
+    typeof(dev->carrier_duty_ch[0]) reg;
+    reg.high = high_ticks;
+    reg.low = low_ticks;
+    dev->carrier_duty_ch[channel].val = reg.val;
 }
 
 static inline void rmt_ll_set_rx_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)

+ 82 - 89
tools/unit-test-app/components/test_utils/ref_clock.c

@@ -1,4 +1,4 @@
-// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
+// Copyright 2017-2020 Espressif Systems (Shanghai) PTE LTD
 //
 // Licensed under the Apache License, Version 2.0 (the "License");
 // you may not use this file except in compliance with the License.
@@ -12,98 +12,91 @@
 // See the License for the specific language governing permissions and
 // limitations under the License.
 
-/* Unit tests need to have access to reliable timestamps even if CPU and APB
- * clock frequencies change over time. This reference clock is built upon two
- * peripherals: one RMT channel and one PCNT channel, plus one GPIO to connect
- * these peripherals.
+/**
+ * Some unit test cases need to have access to reliable timestamps even when CPU and APB clock frequencies change over time.
+ * This reference clock is built upon two peripherals: one RMT channel and one PCNT channel (hopefully we can have these two peripherals in all ESP chips).
  *
- * RMT channel is configured to use REF_TICK as clock source, which is a 1 MHz
- * clock derived from APB_CLK using a set of dividers. The divider is changed
- * automatically by hardware depending on the current clock source of APB_CLK.
- * For example, if APB_CLK is derived from PLL, one divider is used, and when
- * APB_CLK is derived from XTAL, another divider is used. RMT channel clocked
- * by REF_TICK is configured to generate a continuous 0.5 MHz signal, which is
- * connected to a GPIO. PCNT takes the input signal from this GPIO and counts
- * the edges (which occur at 1MHz frequency). PCNT counter is only 16 bit wide,
- * so an interrupt is configured to trigger when the counter reaches 30000,
+ * +---------------------+        500KHz Square Wave          +--------------------------+
+ * | RMT (channel 0, TX) +----------------------------------->+ PCNT (unit 0, channel 0) |
+ * +---------------------+                                    +--------------------------+
+ *
+ * RMT TX channel is configured to use a fixed clock (e.g. REF_TICK, XTAL) as clock source, so that our ref clock won't be affected during APB/CPU clock switch.
+ * Configure RMT channel to generate a 500KHz square wave (using carrier feature) to one GPIO.
+ * PCNT takes the input signal from the GPIO and counts the edges (which occur at 1MHz frequency).
+ * PCNT counter is only 16 bit wide, an interrupt is configured to trigger when the counter reaches 30000,
  * incrementing a 32-bit millisecond counter maintained by software.
- * Together these two counters may be used at any time to obtain the timestamp.
  */
 
+#include "sdkconfig.h"
 #include "test_utils.h"
-#include "soc/soc.h"
+#include "freertos/FreeRTOS.h"
+#include "esp_intr_alloc.h"
+#include "driver/periph_ctrl.h"
+#include "soc/gpio_sig_map.h"
+#include "soc/gpio_periph.h"
 #include "hal/rmt_hal.h"
 #include "hal/rmt_ll.h"
-#include "soc/pcnt_caps.h"
 #include "hal/pcnt_hal.h"
-#include "soc/gpio_periph.h"
-#include "soc/dport_reg.h"
-#include "esp_intr_alloc.h"
-#include "freertos/FreeRTOS.h"
-#include "driver/periph_ctrl.h"
 #include "esp_rom_gpio.h"
 #include "esp_rom_sys.h"
-#include "sdkconfig.h"
 
-/* Select which RMT and PCNT channels, and GPIO to use */
-#define REF_CLOCK_RMT_CHANNEL   SOC_RMT_CHANNELS_NUM - 1
-#define REF_CLOCK_PCNT_UNIT     0
-#define REF_CLOCK_GPIO          21
+#define REF_CLOCK_RMT_CHANNEL 0 // RMT channel 0
+#define REF_CLOCK_PCNT_UNIT 0   // PCNT unit 0 channel 0
+#define REF_CLOCK_GPIO 21       // GPIO used to combine RMT out signal with PCNT input signal
 
-#define REF_CLOCK_PRESCALER_MS  30
+#define REF_CLOCK_PRESCALER_MS 30 // PCNT high threshold interrupt fired every 30ms
 
-static void IRAM_ATTR pcnt_isr(void* arg);
+static void IRAM_ATTR pcnt_isr(void *arg);
 
 static intr_handle_t s_intr_handle;
 static portMUX_TYPE s_lock = portMUX_INITIALIZER_UNLOCKED;
 static volatile uint32_t s_milliseconds;
 
+static rmt_hal_context_t s_rmt_hal;
+static pcnt_hal_context_t s_pcnt_hal;
 
-static int get_pcnt_sig(void)
-{
-#if CONFIG_IDF_TARGET_ESP32
-    return (REF_CLOCK_PCNT_UNIT < 5) ?
-            PCNT_SIG_CH0_IN0_IDX + 4 * REF_CLOCK_PCNT_UNIT :
-            PCNT_SIG_CH0_IN5_IDX + 4 * (REF_CLOCK_PCNT_UNIT - 5);
-#elif CONFIG_IDF_TARGET_ESP32S2
-    return PCNT_SIG_CH0_IN0_IDX + 4 * REF_CLOCK_PCNT_UNIT;
-#endif
-}
-
-static rmt_hal_context_t  s_rmt;
-static pcnt_hal_context_t s_pcnt;
-
-void ref_clock_init()
+void ref_clock_init(void)
 {
-    assert(s_intr_handle == NULL && "already initialized");
+    assert(s_intr_handle == NULL && "ref clock already initialized");
 
     // Route RMT output to GPIO matrix
-    esp_rom_gpio_connect_out_signal(REF_CLOCK_GPIO, RMT_SIG_OUT0_IDX + REF_CLOCK_RMT_CHANNEL, false, false);
+    esp_rom_gpio_connect_out_signal(REF_CLOCK_GPIO, RMT_SIG_OUT0_IDX, false, false);
 
     // Initialize RMT
     periph_module_enable(PERIPH_RMT_MODULE);
-    rmt_hal_init(&s_rmt);
-    rmt_ll_enable_mem_access(s_rmt.regs, true);
+    rmt_hal_init(&s_rmt_hal);
+
     rmt_item32_t data = {
-            .duration0 = 1,
-            .level0 = 1,
-            .duration1 = 0,
-            .level1 = 0
+        .duration0 = 1,
+        .level0 = 1,
+        .duration1 = 0,
+        .level1 = 0
     };
-    rmt_hal_transmit(&s_rmt, REF_CLOCK_RMT_CHANNEL, &data, 1, 0);
-    rmt_ll_start_tx(s_rmt.regs, REF_CLOCK_RMT_CHANNEL);
-    rmt_ll_set_mem_owner(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, 0);
-    rmt_ll_reset_tx_pointer(s_rmt.regs, REF_CLOCK_RMT_CHANNEL);
-    rmt_ll_enable_carrier(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, false);
-    rmt_ll_set_counter_clock_div(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, 1);
-    rmt_ll_set_mem_blocks(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, 1);
-    rmt_ll_set_counter_clock_src(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, 0);
-    rmt_ll_enable_tx_loop(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, true);
-    rmt_ll_start_tx(s_rmt.regs, REF_CLOCK_RMT_CHANNEL);
+
+    rmt_ll_enable_drive_clock(s_rmt_hal.regs, true);
+#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
+    rmt_ll_set_counter_clock_src(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, 0); // select REF_TICK (1MHz)
+#else
+    // TODO: configure RMT module clock source to fixed 1MHz
+#endif
+    rmt_hal_set_counter_clock(&s_rmt_hal, REF_CLOCK_RMT_CHANNEL, 1000000, 1000000); // counter clock: 1MHz
+    rmt_ll_enable_tx_idle(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, true); // enable idle output
+    rmt_ll_set_tx_idle_level(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, 1); // idle level: 1
+    rmt_ll_enable_carrier(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, true);
+#if !CONFIG_IDF_TARGET_ESP32
+    rmt_ll_tx_set_carrier_always_on(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, true);
+#endif
+    rmt_hal_set_carrier_clock(&s_rmt_hal, REF_CLOCK_RMT_CHANNEL, 1000000, 500000, 0.5); // set carrier to 500KHz
+    rmt_ll_set_carrier_on_level(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, 1);
+    rmt_ll_enable_mem_access(s_rmt_hal.regs, true);
+    rmt_ll_reset_tx_pointer(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL);
+    rmt_ll_set_mem_blocks(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, 1);
+    rmt_ll_write_memory(s_rmt_hal.mem, REF_CLOCK_RMT_CHANNEL, &data, 1, 0);
+    rmt_ll_enable_tx_loop(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, false);
+    rmt_ll_start_tx(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL);
 
     // Route signal to PCNT
-    int pcnt_sig_idx = get_pcnt_sig();
-    esp_rom_gpio_connect_in_signal(REF_CLOCK_GPIO, pcnt_sig_idx, false);
+    esp_rom_gpio_connect_in_signal(REF_CLOCK_GPIO, PCNT_SIG_CH0_IN0_IDX, false);
     if (REF_CLOCK_GPIO != 20) {
         PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[REF_CLOCK_GPIO]);
     } else {
@@ -112,54 +105,54 @@ void ref_clock_init()
 
     // Initialize PCNT
     periph_module_enable(PERIPH_PCNT_MODULE);
-    pcnt_hal_init(&s_pcnt, REF_CLOCK_PCNT_UNIT);
-
-    pcnt_ll_set_mode(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_CHANNEL_0,
-                        PCNT_COUNT_INC, PCNT_COUNT_INC,
-                        PCNT_MODE_KEEP, PCNT_MODE_KEEP);
-    pcnt_ll_event_disable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_L_LIM);
-    pcnt_ll_event_enable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_H_LIM);
-    pcnt_ll_event_disable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_ZERO);
-    pcnt_ll_event_disable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_THRES_0);
-    pcnt_ll_event_disable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_THRES_1);
-    pcnt_ll_set_event_value(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_H_LIM, REF_CLOCK_PRESCALER_MS * 1000);
+    pcnt_hal_init(&s_pcnt_hal, REF_CLOCK_PCNT_UNIT);
+
+    pcnt_ll_set_mode(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_CHANNEL_0,
+                     PCNT_COUNT_INC, PCNT_COUNT_INC,
+                     PCNT_MODE_KEEP, PCNT_MODE_KEEP);
+    pcnt_ll_event_disable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_L_LIM);
+    pcnt_ll_event_enable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_H_LIM);
+    pcnt_ll_event_disable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_ZERO);
+    pcnt_ll_event_disable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_THRES_0);
+    pcnt_ll_event_disable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_THRES_1);
+    pcnt_ll_set_event_value(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_H_LIM, REF_CLOCK_PRESCALER_MS * 1000);
 
     // Enable PCNT and wait for it to start counting
-    pcnt_ll_counter_resume(s_pcnt.dev, REF_CLOCK_PCNT_UNIT);
-    pcnt_ll_counter_clear(s_pcnt.dev, REF_CLOCK_PCNT_UNIT);
+    pcnt_ll_counter_resume(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
+    pcnt_ll_counter_clear(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
 
     esp_rom_delay_us(10000);
 
     // Enable interrupt
     s_milliseconds = 0;
     ESP_ERROR_CHECK(esp_intr_alloc(ETS_PCNT_INTR_SOURCE, ESP_INTR_FLAG_IRAM, pcnt_isr, NULL, &s_intr_handle));
-    pcnt_ll_clear_intr_status(s_pcnt.dev, BIT(REF_CLOCK_PCNT_UNIT));
-    pcnt_ll_intr_enable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT);
+    pcnt_ll_clear_intr_status(s_pcnt_hal.dev, BIT(REF_CLOCK_PCNT_UNIT));
+    pcnt_ll_intr_enable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
 }
 
-static void IRAM_ATTR pcnt_isr(void* arg)
+static void IRAM_ATTR pcnt_isr(void *arg)
 {
     portENTER_CRITICAL_ISR(&s_lock);
-    pcnt_ll_clear_intr_status(s_pcnt.dev, BIT(REF_CLOCK_PCNT_UNIT));
+    pcnt_ll_clear_intr_status(s_pcnt_hal.dev, BIT(REF_CLOCK_PCNT_UNIT));
     s_milliseconds += REF_CLOCK_PRESCALER_MS;
     portEXIT_CRITICAL_ISR(&s_lock);
 }
 
 void ref_clock_deinit()
 {
-    assert(s_intr_handle && "deinit called without init");
+    assert(s_intr_handle && "ref clock deinit called without init");
 
     // Disable interrupt
-    pcnt_ll_intr_disable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT);
+    pcnt_ll_intr_disable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
     esp_intr_free(s_intr_handle);
     s_intr_handle = NULL;
 
     // Disable RMT
-    rmt_ll_stop_tx(s_rmt.regs, REF_CLOCK_RMT_CHANNEL);
+    rmt_ll_enable_carrier(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, false);
     periph_module_disable(PERIPH_RMT_MODULE);
 
     // Disable PCNT
-    pcnt_ll_counter_pause(s_pcnt.dev, REF_CLOCK_PCNT_UNIT);
+    pcnt_ll_counter_pause(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
     periph_module_disable(PERIPH_PCNT_MODULE);
 }
 
@@ -167,15 +160,15 @@ uint64_t ref_clock_get()
 {
     portENTER_CRITICAL(&s_lock);
     int16_t microseconds = 0;
-    pcnt_ll_get_counter_value(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, &microseconds);
+    pcnt_ll_get_counter_value(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, &microseconds);
     uint32_t milliseconds = s_milliseconds;
     uint32_t intr_status = 0;
-    pcnt_ll_get_intr_status(s_pcnt.dev, &intr_status);
+    pcnt_ll_get_intr_status(s_pcnt_hal.dev, &intr_status);
     if (intr_status & BIT(REF_CLOCK_PCNT_UNIT)) {
         // refresh counter value, in case the overflow has happened after reading cnt_val
-        pcnt_ll_get_counter_value(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, &microseconds);
+        pcnt_ll_get_counter_value(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, &microseconds);
         milliseconds += REF_CLOCK_PRESCALER_MS;
     }
     portEXIT_CRITICAL(&s_lock);
-    return 1000 * (uint64_t) milliseconds + (uint64_t) microseconds;
+    return 1000 * (uint64_t)milliseconds + (uint64_t)microseconds;
 }